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Kurzfassung

Die automatisierte Bewertung offener Antworten von Studierenden anhand von Mus-
terlösungen im Deutschen, insbesondere im juristischen Bereich, erfordert präzise und
interpretierbare Methoden. Diese Arbeit begegnet dieser Herausforderung, indem sie
die Bewertung von Antworten anhand von Musterlösungen als offene, durch textuelle
Implikation validierte Informationsextraktion konzipiert. Wir nutzen Implikation als
Verifizierungsschritt: Ein Antwortabschnitt eines Studierenden gilt nur dann als korrekt,
wenn er die entsprechenden erforderlichen Informationen aus der Musterlösung enthält.

Diese Arbeit verwendet ein symbolisches Framework für die validierte Extraktion und
leistet wichtige Beiträge zur Anpassung der grafischen Wissensrepräsentation an das
Deutsche und zur Modellierung des Negationsumfangs. Der Kern des Frameworks basiert
auf einer grafischen Wissensrepräsentation, die sowohl für Prämissenmuster aus Mus-
terlösungen als auch für Sätze aus Antworten von Studierenden erstellt wurde. Diese
Repräsentation baut auf Dependency Parsing auf, erweitert dieses jedoch erheblich durch
die Einbeziehung mehrerer Ebenen linguistischer Details. Diese Ebenen umfassen eine
lexikalische Ebene für Synonyme und hierarchische Beziehungen, eine Eigenschaftsebene
zur Erfassung morphologischer Merkmale des Deutschen und eine Kontextebene mit
regelbasierter Negationserkennung zur präzisen Modellierung des Negationsumfangs.

Diese detaillierten grafischen Wissensdarstellungen werden anschließend in einem mehr-
stufigen, graphenbasierten Matching-Prozess verglichen. Dieser Vergleich verifiziert die
Implikation durch den Abgleich von Prämissen- und Hypothesengraphen, die Prüfung
auf erforderliche Konzepte und Argumente und die Berücksichtigung der kodierten
lexikalischen, morphologischen und Negationsbeschränkungen.

Die Evaluierung des Frameworks anhand der Bewertung deutscher Rechtsfalllösungen
zeigt, dass die Einbeziehung externen lexikalischen Wissens und die explizite Negationsbe-
handlung sowohl die Präzision als auch den F1-Gesamtwert im Vergleich zu Basismethoden
erhöhen. Der symbolische Charakter des Systems ermöglicht die Erklärbarkeit während
des gesamten Extraktionsprozesses.
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Abstract

Automated grading of open-ended student answers against sample solutions in the
German language, particularly within the legal domain, necessitates methods that are
both accurate and interpretable. This thesis addresses this challenge by framing the task of
grading student answers against sample solutions as open information extraction validated
by textual entailment. We leverage entailment as a verification step: a student’s answer
segment is considered correct only if it entails the corresponding required information
from the sample solution.

This thesis employs a symbolic framework for validated extraction, featuring key contribu-
tions in adapting graphical knowledge representation for German and modeling negation
scope. The core of the framework uses a graphical knowledge representation constructed
for both premise patterns derived from sample solutions and sentences from student
answers. This representation builds upon dependency parsing but significantly enriches
them by incorporating multiple layers of linguistic detail. These layers include a lexical
layer for synonyms and hierarchical relations, a property layer capturing morphological
features specific to German, and a context layer featuring rule-based negation detection to
accurately model the negation scope. These detailed graphical knowledge representations
are then compared using a multi-stage, graph-based matching process. This comparison
verifies entailment by matching premise and hypothesis graphs, checking for required
concepts and arguments, and respecting the encoded lexical, morphological, and negation
constraints.

Evaluating this framework on the task of grading German legal case solutions demonstrates
that incorporating external lexical knowledge and explicit negation handling increases
both precision and overall F1 score compared to baseline methods. The symbolic nature
of the system allows for explainability throughout the entire extraction process.
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CHAPTER 1
Introduction

Natural language understanding (NLU) involves drawing conclusions from incomplete or
ambiguous information, relying on context, shared knowledge, and implicit assumptions.
This allows humans to interpret implications even when some information is not explicitly
stated.

In contrast, machines typically rely on patterns and correlations in training data. While
advances in Natural Language Processing (NLP), such as Natural Language Inference
(NLI) and NLU, have improved language tasks, machines still lack the common-sense
reasoning humans use effortlessly.

This ability to reason with knowledge and context is particularly important when
evaluating complex responses, such as grading open-ended exam questions in domains like
law. Determining if a student’s answer is correct requires understanding if it accurately
reflects, or entails, the key information defined in a sample solution. Such task is known
as recognizing textual entailment (RTE), a subtask of NLI focused on identifying this
entailment relationship.

This thesis focuses on a specific use case from an Austrian legal publisher: developing a
system to provide feedback on students’ German-language legal exam answers. The core
challenge involves accurately comparing student responses against detailed expert solu-
tions and guidelines. Students may express correct legal concepts using varied phrasing,
synonyms, or sentence structures, while legal language itself presents complexities like
domain-specific terminology, abbreviations, and even Latin phrases. Therefore, simple
keyword matching is insufficient. Furthermore, the educational and legal context de-
mands high transparency, explainability, and reliability in the assessment, often without
the large annotated datasets needed for conventional machine learning models. RTE
becomes relevant in this scenario. It allows the system to assess whether segments of a
student’s answer, despite linguistic variations, logically entail the specific legal concepts
and reasoning outlined in the expert guidelines.
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1. Introduction

Based on these requirements, this thesis models the task of grading legal exam answers in
the German language as Open Information Extraction (OIE) validated by RTE. We treat
essential information extracted from the sample solution as premises and sentences from
the student’s attempt as hypotheses. The goal is to use OIE to find potential answer
segments and RTE to verify if they logically entail the required premise content.

To achieve this, we employ and evaluate a symbolic framework centered around knowledge
graphical representations tailored for German. This framework utilizes graph-matching
algorithms to detect entailment between premise patterns and hypothesis sentences. The
approach is designed to be interpretable, leverage linguistic resources, handle specific
German features, and operate effectively without large training datasets.

1.1 Motivation
NLI is a core task in NLP, serving as a foundation for downstream applications such
as text summarization, question answering, and information extraction. While recent
Large Language Models (LLMs) demonstrate impressive capabilities across many NLP
tasks, LLMs act as a black-box and depend on statistical methods rather than ex-
plicit reasoning through problem understanding ([Zini and Awad, 2022, Nie et al., 2020,
McCoy et al., 2019]), limiting their interpretability in scenarios requiring transparent
logic, a critical requirement in educational and legal contexts.

Motivated by these challenges, our work models NLI using a symbolic framework that
parses text into structured graphs and employs graph-matching algorithms to determine
entailment. This method integrates trusted lexical and morphological resources, providing
full explainability throughout the inference process. Additionally, a key motivation for
this work is to develop a framework tailored to the German language. While many
NLP tools and frameworks exist primarily for English, language-specific approaches for
German are less common, especially in the domain of symbolic NLI.

1.2 Problem statement
The task of automatically grading student exams in German requires a system that can
evaluate open-ended answers against detailed expert-authored guidelines and solutions.
This evaluation process needs to be transparent and explainable at every step, allowing
users to understand how the system reached its conclusions. The system must work
without a large training dataset, instead relying on the expert guidelines to detect correct
answers on the fly.

German language processing adds complexity to this task. The language’s features
like gendered articles, case-based grammar, and compound words may require specific
handling. Symbolic approaches for NLI necessitate external language resources for
effective implementation. Consequently, the development of an effective system requires
the integration of German-specific language resources. The challenge is to combine these
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1.3. Research questions

resources in a way that maintains transparency while accurately processing German
texts.

1.3 Research questions
In order to evaluate the effectiveness of the proposed framework, our experiments are
guided by the following research questions:

1. Can symbolic rules grounded in German morphology and semantics increase the
recall and precision in extracting correct answers compared to two different baseline
approaches?

2. How do unique linguistic features of German, such as compound nouns, case-based
syntax, and gendered articles, affect the robustness of rule-based inference?

3. Can explicit negation detection and morphological consistency checks reduce false
positives in entailment extraction, a common pitfall for statistical methods?

1.4 Structure of the thesis
The thesis is structured as follows:

• Chapter 2 provides the theoretical foundation for our work. It begins with an
overview of OIE techniques. The chapter then explores NLI in detail, including
its role in language understanding and current challenges. Finally, it presents the
specific use case of automatic exam grading for legal texts, highlighting the unique
requirements and constraints of this application.

• Chapter 3 reviews existing approaches to symbolic NLI as well as state-of-the-art
methods based on deep learning models.

• Chapter 4 details our employed framework. The first section describes the adapta-
tion of the graphical knowledge representation for German, explaining how we parse
and structure the sentences. The second section presents our entailment detection
method, including the methods and resources used for determining correct answers.

• Chapter 5 outlines our evaluation methodology. It covers potential data preprocess-
ing steps and describes the experimental settings, including baseline comparisons
and evaluation metrics.

• Chapter 6 presents and analyzes our findings. It includes a detailed error analysis
that examines the strengths and limitations of our approach.

• Chapter 7 summarizes our contributions and findings, provides the answers to our
research questions, and suggests directions for future work.

3





CHAPTER 2
Background

In this chapter, we provide theoretical background for the key concepts used in our
work. We will cover a wide range of topics within the NLP field, including semantic
parsing, OIE, and NLI, providing the necessary theoretical foundation to follow the work
presented in this thesis.

2.1 Introduction to NLP
Natural language processing, in literature often abbreviated as NLP, is a field of computer
science and artificial intelligence that deals with the interaction between computers and
human language. The overall goal of NLP is to enable machines to understand, interpret,
and generate human language, both written and spoken, a task that is challenging due
to the complexity and variability of human language, and the fact that humans can
implicitly understand language without being aware of the rules that govern it or without
being able to express it explicitly. In the last decades, different types of computational
methods have been developed and applied to address the challenges of NLP. Nowadays,
these NLP methods have become an integral part of widely used applications such as
speech assistants, search engines, chatbots, and translation systems.

2.1.1 History of NLP
While tracing the precise origins of NLP is difficult, significant early efforts emerged
during the 1960s and 1970s, generating considerable optimism, especially in machine
translation. This was driven by the ambition to automatically translate languages, such
as translating Russian to English during the Cold War. Despite initial excitement, these
early approaches largely failed to deliver on their promises.

Between the 1970s and the 1990s, the field saw a shift towards more structured symbolic
representations, emphasizing knowledge-based methods and conceptual ontologies. The
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2. Background

use of ontologies, formal representations of knowledge domain enabled explicit encoding of
semantic information, helping NLP systems achieve notable successes in limited and well-
defined scenarios. Despite these achievements, purely rule-based symbolic approaches
struggled when applied to unrestricted, real-world text due to the vast complexity
of language and the difficulty to scale the development of rules for every linguistic
phenomenon.
In the late 1980s and early 1990s, statistical methods started to gain traction. These
methods leveraged large corpora of text data to derive patterns statistically rather than
relying solely on explicitly programmed logical rules. Techniques such as n-gram models
[Brown et al., 1992] emerged, which predicted words based on the frequency of word
sequences seen in training data. Statistical NLP quickly became dominant because it
significantly improved performance in practical tasks, such as speech recognition and
text classification, by being more robust to linguistic variations and ambiguities.
The rise of deep learning around 2010 marked the next paradigm shift in NLP. Neural
network-based models, particularly word embeddings like Word2Vec [Mikolov et al., 2013],
captured semantic relationships by mapping words into continuous vector spaces. These
approaches allowed NLP models to learn richer semantic information directly from data
without explicit feature engineering.
The introduction of the Transformer architecture by Vaswani et al. in 2017 [Vaswani et al., 2023]
represented another breakthrough. Transformers leverage self-attention mechanisms,
enabling models to efficiently capture context from large text sequences. This innova-
tion led to the development of large-scale pretrained language models such as BERT
[Devlin et al., 2019], GPT [Brown et al., 2020], and RoBERTa [Liu et al., 2019], which
currently represent the state-of-the-art in numerous NLP tasks, achieving remarkable
performance levels across diverse benchmarks.

2.1.2 Approaches in NLP
While it is clear that research in NLP has moved from rule-based to statistical and now
to neural network-based approaches, it is important to note that the approaches are not
mutually exclusive and can be combined in different ways.
NLP techniques can be primarily categorized into symbolic, statistical, and neural network-
based methodologies. Each approach presents distinct advantages and limitations, making
them suitable for different scenarios and requirements within NLP applications.
The symbolic approach relies on explicitly defined rules and knowledge bases. Its
primary strength lies in interpretability and transparency, allowing developers to precisely
understand why and how certain outputs are generated. Symbolic methods are often
chosen in scenarios where explainability is crucial, such as legal, medical, or regulatory
contexts, where decisions must be justified explicitly. However, the symbolic approach
typically struggles with scalability and generalization due to the extensive effort required
to manually encode rules for each linguistic phenomenon. This approach is thus often
confined to highly structured or domain-specific tasks.
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2.2. Relational Tuples

The statistical approach utilizes probabilistic models derived from large, annotated
text corpora. These models learn statistical patterns directly from this data. By learning
these patterns, they are applied to tasks such as speech recognition, spam detection,
and language modeling, attempting to handle linguistic variations, ambiguous cases, and
noisy input like misspellings. Their effectiveness may be limited in low-resource languages
or highly specialized domains where sufficient training data might not be available.

The neural network-based approach, particularly deep learning, has become dominant.
These models learn complex patterns and can generalize effectively across diverse linguistic
contexts, largely thanks to transfer learning. Transfer learning allows pre-trained models
to be adapted quickly to various NLP tasks with minimal additional training. However,
neural network approaches are often criticized for being "black box" models that lack
interpretability, making them less desirable in applications where transparency and
reliability are mandatory. Additionally, these models are computationally intensive,
consuming significant energy resources, which poses sustainability challenges, particularly
for large-scale language models (LLMs).

In practice, NLP solutions frequently integrate multiple approaches, leveraging symbolic
rules for preprocessing tasks like tokenization or normalization, statistical methods for
tasks requiring robustness to variation, and neural networks for tasks needing deep
semantic understanding or generalization. Ultimately, the choice of approach involves
trade-offs based on specific task requirements, including interpretability, scalability,
available resources, and computational efficiency. Hybrid models, which combine symbolic
transparency, statistical robustness, and neural generalization capabilities, often provide
optimal solutions in real-world NLP applications.

2.2 Relational Tuples

A common format for representing factual information extracted from text is the use of
triplets, also known as relational tuples, which typically take the form (subject, relation,
object). This representation format offers a structured yet flexible way to extract and store
semantic content from natural language text. It is particularly useful for downstream
applications such as knowledge base construction, question answering, and information
retrieval.

The triplet format allows for a sentence to be segmented into its core semantic components.
For instance, the sentence "A black cat is eating the tuna" can be abstracted as the triplet
(cat, eat, tuna). This simplified representation captures the essential elements of the
sentence, "who" is doing "what" to "whom or what", a structure often used for conceptual
modeling and logical reasoning [Niklaus et al., 2018].

Triplets may be binary, where each relational unit connects only two arguments (subject
and object), or they can be extended to n-ary or nested structures to encode additional
information such as time, place, or manner [Bhutani et al., 2016]. The decision to use
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2. Background

binary versus more complex structures typically depends on the task at hand and the
expressiveness required in the target representation.
One advantage of the triplet representation is its interpretability and compatibility with
symbolic reasoning systems. However, its simplification can sometimes lead to loss of
information, especially in sentences involving complex syntactic constructs or implicit
arguments. For example, implicit causality, modal verbs, or conditional clauses may not
be adequately captured by simple triplets.
Furthermore, the extraction of high-quality triplets requires accurate identification of
the semantic roles of entities and the boundaries of meaningful phrases. This is often a
non-trivial task, especially in languages with rich morphology and flexible word order,
such as German. Nevertheless, due to their simplicity and usability, triplets remain a
simple yet effective method for representing structured information from text.

2.3 Open Information Extraction
Information Extraction (IE) refers to the automatic identification of structured informa-
tion such as entities, relations, and events from unstructured textual sources. Traditional
IE methods typically require predefined schemas or domain-specific ontologies, limiting
their applicability to particular contexts and constraining their flexibility.
Open Information Extraction (OpenIE), initially proposed by Banko et al. [Etzioni et al., 2008],
aims to address these limitations by eliminating the need for pre-specified relations or
domain-specific knowledge. OpenIE extracts information, often represented as the re-
lational tuples discussed previously, directly from text in an "open domain" setting.
This enables it to process a wide range of texts from diverse domains without prior
configuration. Unlike traditional IE methods that generate structured outputs aligned
with fixed schemas, OpenIE methods can produce flexible relational tuples capturing
the semantic relationships within sentences. The increase in data available on the web,
characterized by its diversity, volume, and unstructured nature, has significantly driven
the demand for OpenIE techniques.
OpenIE has become instrumental in various applications, including knowledge base
population, question-answering systems, summarization, and semantic web applications.
For instance, OpenIE can populate knowledge bases by extracting structured facts from
large-scale news corpora, enabling automated updates and comprehensive coverage of
new information.
Recent symbolic approaches to OpenIE often rely on linguistic analyses and handcrafted
rules to identify meaningful relational phrases and arguments. These systems typically
leverage syntactic structures to extract semantically coherent tuples, an approach also
utilized in this thesis to detect German textual entailment.
Deep learning methods for OpenIE, such as neural OpenIE systems, have emerged in recent
literature. Systems like RnnOIE [Stanovsky et al., 2018] employ neural architectures
that learn directly from annotated datasets.
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2.4. Natural Language Inference

In this thesis, we implement OpenIE methods to extract potential correct answer passages
from a given student attempt. We don’t aim to define entities and relations for the legal
domain, but rather use simple patterns from the golden solution, and provide them to
the OpenIE system to extract matching patterns in the student’s attempt. In line with
this goal, we adopt the triplet format discussed in the previous section as a means of
representing simplified correct answer content. This allows us to focus on extracting
the core concepts in student responses and matching them to patterns derived from
gold-standard solutions.

2.3.1 Dependency Parsing
Dependency parsing is a syntactic parsing approach that identifies grammatical relation-
ships between words in a sentence, producing a tree-structured representation known as
a dependency tree. In this tree, words are nodes, and the edges represent dependency
relations that specify which word depends on which other word and in what way.

For example, in the sentence "The cat is sleeping in the living room," dependency parsing
would identify "sleeping" as the main verb (or root), "cat" as its subject, and "room" as
the object of the prepositional phrase introduced by "in." Each dependency relation (e.g.,
nsubj, prep, pobj) adds a layer of meaning that is critical for understanding sentence
structure, as illustrated in Figure 2.1.

Dependency grammars are particularly useful in languages with flexible word order, such
as German, since dependency relations explicitly define the sentence structure regardless
of word sequence. Dependency parsing models are language-specific and are trained using
manually annotated linguistic datasets known as "treebanks." Treebanks, developed by
linguists, contain sentences annotated with dependency relations, serving as the basis
for training parsing models. For example, German treebanks address complexities like
morphological inflections, grammatical cases, and highly flexible word order, making them
distinct from English treebanks, which handle a different set of linguistic characteristics.

The Universal Dependencies (UD) [Nivre et al., 2016] initiative plays a central role
in providing such annotated resources across many languages. UD aims to create a
standardized set of syntactic annotation guidelines and multilingual treebanks, promoting
cross-linguistic consistency, facilitating cross-lingual learning, and supporting robust
multilingual NLP applications.

Modern dependency parsers are often based on transition-based or graph-based algorithms,
with many recent systems incorporating deep learning architectures for improved accuracy
and generalization.

2.4 Natural Language Inference
NLI (Natural Language Inference) tries to determine the logical relationship between
a pair of sentences, named premise and hypothesis. The premise serves as the context
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2. Background

Figure 2.1: Dependency tree for the sentence "The cat is sleeping in the living room".

or the base for an argument, and defines our only knowledge about the world. The
hypothesis is a statement that we want to evaluate against the premise.

To illustrate the problem, let’s define a simple example with the following premise and
hypothesis:

• Premise: A Persian cat is napping on the couch.

• Hypothesis: A domestic animal is resting.

Determining the relationship requires understanding the meaning of the words involved.
First, it involves lexical inference: recognizing that a "Persian cat" is a specific type of

10



2.4. Natural Language Inference

"domestic animal". Second, it requires knowing that "napping" is a form of "resting".
Since both the subject (Persian cat → domestic animal) and the action (napping →
resting) in the hypothesis are broader categories or synonyms that encompass those in
the premise, we can conclude that the premise entails the hypothesis. This relies on
lexical-semantic knowledge, which for machines might come from resources like WordNet
[Miller, 1992] or be learned from data.

In general, NLI is a backbone for different tasks that require some type of reason-
ing, providing a framework for machines to understand and process complex linguistic
relationships.

2.4.1 History of NLI
The history of NLI begins with early symbolic approaches. One of the foundational works
in this area was the use of logic-based systems, which relied on formal logic and inference
rules to determine entailment. These systems, while precise, required extensive manual
effort to craft rules and struggled with the variability of natural language.

A significant shift occurred with the introduction of statistical methods. The PASCAL
RTE Challenge [Dagan et al., 2005] in 2005 provided a benchmark for evaluating en-
tailment systems, encouraging the development of machine learning approaches. These
methods treated entailment as a classification problem, using features extracted from text
pairs to train models. However, they often lacked the ability to capture deep semantic
relationships.

The advent of deep learning marked a transformative period for NLI. The introduction
of a SNLI corpus [Bowman et al., 2015], a large-scale dataset that enabled the training
of neural network models. These models, particularly those based on recurrent neural
networks and later transformers, significantly improved performance by learning complex
patterns in data.

The introduction of transformer-based models, such as BERT [Devlin et al., 2019], rev-
olutionized the field. These models leveraged pre-training on vast corpora to capture
language understanding, achieving state-of-the-art results on NLI benchmarks. The
development of even larger models, like GPT-3 [Brown et al., 2020], further pushed the
boundaries, demonstrating impressive generalization capabilities across diverse linguistic
contexts.

Despite these advancements, challenges remain in ensuring robustness and interpretability
in NLI systems.

2.4.2 Challenges of NLI
In this section, we highlight some key challenges of NLI, which arise from the complex
nature of human language and the need for deep semantic understanding. These challenges
are also present in our work on automatic grading of German legal texts, where we
encounter them on a practical level.
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• Lexical and Structural Variability: Often the same meaning can be expressed
with different words or syntactic structures. For example, "The cat chased the
mouse" and "The mouse was chased by the cat" are syntactically different but
semantically equivalent.

• Contextual Awareness: Understanding the context is crucial for accurate inter-
pretation. For instance, a common example used in the literature is the phrase
"Aspirin eliminates headaches" where "eliminates" suggests a beneficial effect, while
"Aspirin eliminates patients" implies harm [Levy and Dagan, 2016]. The context
in which "eliminates" is used changes the entailment relationship, highlighting the
importance of contextual awareness in determining meaning.

• Distinguishing Contradiction and Neutrality: One particularly challenging
aspect of NLI is distinguishing between contradiction and neutrality. For example:

– Premise: A Persian cat is napping on the couch.

– Hypothesis: A dog is resting.

Consider the premise about the napping Persian cat and the hypothesis about
a resting dog. Does introducing a dog, absent from the premise, constitute a
contradiction, or is it merely a neutral statement about an unrelated entity? The
premise doesn’t support the hypothesis (implying contradiction), yet the hypothesis
doesn’t directly negate the premise about the cat (implying neutrality). Resolving
this ambiguity is a central challenge. NLI systems need clear definitions or learned
criteria to reliably distinguish these similar outcomes.

• Understanding Quantification: Complex hypotheses involving quantifiers (all,
some), negation, or conjunctions require compositional reasoning. For instance, the
premise "Some cats are asleep" contradicts "No cats are asleep" but is neutral to
"All cats are asleep".

These challenges highlight the need for NLI systems to not only perform syntactic analysis
but also understand semantics, pragmatics, and possess real-world knowledge.

In real-world applications, the distinction between contradiction and neutrality can
be particularly challenging, as it involves deep semantic understanding and contextual
reasoning. If the task does not require distinguishing between contradiction and neutrality,
NLI can be simplified to recognizing textual entailment (RTE). In RTE, the focus shifts
to determining whether the hypothesis is entailed by the premise, reducing the problem
to a binary classification task. This simplification can make the task more manageable,
allowing NLI systems to focus purely on the presence or absence of entailment.

In this thesis, we adopt the RTE approach to verify the presence of required information
in student responses.
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2.4.3 The Role of NLI in Information Extraction
While OpenIE can be employed to extract relational tuples from text, it does not verify
whether those tuples are factually supported by the source. Extracting information is
sometimes not enough; we want to ensure that the information is consistent and factually
correct. This is crucial because OpenIE’s strength lies in its flexibility to identify and
extract diverse relational data. However, without a mechanism to validate this data,
there is a risk of retrieving incorrect information. NLI bridges this gap by acting as a
validation layer, allowing us to apply it on top of OpenIE to retrieve only the correct
information.

In this thesis, we leverage NLI to verify whether answer passages extracted from student
responses align with the semantic content of the sample solution. This approach combines
the flexibility of OpenIE with the additional validation of NLI, ensuring that extracted
answers are not only present but also contextually and logically consistent with the source
material.

2.5 AI legal tutor case
To illustrate the application of our methods, we examine a practical business case
originating from an Austrian publisher of legal educational materials. The scenario
involves legal exercises where students are given cases to solve. In these exercises,
students must analyze factual scenarios, apply relevant legal principles, and provide
their reasoned judgments with supporting explanations. The ultimate objective for
the publisher is to develop an AI-enhanced system capable of offering feedback to law
students on their analyses, indicating completeness and identifying missing elements in a
transparent manner.

Additionally to the challenges mentioned above for NLI such as lexical and structural
variability of sentences, the complexity of legal language necessitates careful attention
to word meanings, abbreviations, and synonyms, including Latin terms. To guide
the analysis, the use case comes with detailed explanations for the sample solution,
highlighting the ideal structure of the solution, which concepts with their synonyms are
important and listing some variations of possible correct answers. Key concepts and
relations from these guidelines are transformed into relational tuples, which are used to
validate the student’s attempt.

The core task involves comparing student-submitted attempts against relational tuples
extracted from the detailed expert-authored sample solutions and guidelines. Specifically,
the system needs to identify whether statements reflecting the required key information
are present in a student’s text, irrespective of the exact wording used.

For certain legal points, multiple valid applications or justifications might exist (e.g.,
different ways to demonstrate a legal transaction occurred for consideration). The
guideline specifies that recognizing just one valid application in the student’s text is
sufficient. Furthermore, while some very domain-specific synonyms (like "Gutgläubigkeit"
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[good faith] and "Redlichkeit" [honesty]) might be noted, providing comprehensive lists
covering all variations of concepts, including Latin phrases or paragraph references, is
unfeasible.

The primary focus of the work presented in this thesis is centered on the information
extraction component required for such a feedback system. We aim to develop and
evaluate a symbolic approach, specifically leveraging OpenIE and NLI as discussed
previously, to detect the presence of the required key information from the sample
solution within the student attempts. It is crucial to emphasize that this work does
not encompass the development of the user-facing feedback interface, the assignment of
points, automatic grading, or the generation of qualitative feedback messages for students.
The scope is strictly limited to identifying whether the essential semantic content, as
defined by the expert solution, is present in the student’s answer.
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CHAPTER 3
Related Work

This chapter provides a comprehensive overview of related work. Our primary focus is
the intersection of open information extraction (OIE) and symbolic NLI, particularly
approaches utilizing dependency parsing and relational tuples. Whenever relevant, we
emphasize applications within the German legal domain. To provide a broader context, we
present current state-of-the-art approaches, which predominantly rely on large language
models.

3.1 Open Information Extraction
One of the earliest OIE systems, TextRunner [Yates et al., 2007] defined the task as an
unsupervised extraction of relational tuples from large web corpora using a classifier
trained on shallow linguistic features. [Wu and Weld, 2010] compared shallow features
with dependency parse features for OIE, demonstrating that dependency parsing signifi-
cantly improved extraction precision and recall, using Wikipedia infoboxes to create a
high-quality training corpus.

REVERB [Fader et al., 2011] was developed as a successor to TextRunner, aiming to
address incoherent extractions by introducing simple syntactic (POS-based regular
expressions) and lexical constraints (relation phrases taking diverse arguments) on verb-
based binary relations.

Building upon dependency parsing, Kraken [Akbik and Löser, 2012] employed hand-
written rules over typed dependencies to extract complete, N-ary facts, aiming for higher
completeness than previous binary-focused systems like ReVerb.

[Mausam et al., 2012] created OLLIE, which improved upon ReVerb by using high-
precision ReVerb tuples to bootstrap a pattern learner, enabling the extraction of relations
mediated by nouns and adjectives, and including contextual information like belief or
conditionality.
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[Stanovsky et al., 2016] argued that dependency trees alone might miss certain semantic
information and proposed PROPS. This system converts dependency trees using rules into
a more semantically oriented graph representation tailored to capture the propositional
structure of sentences directly.

While rule-based systems offer explainability, neural approaches emerged, leveraging large
datasets and complex architectures. RnnOIE [Stanovsky et al., 2018] framed OIE as a
sequence tagging problem to handle challenges like multiple extractions per predicate.
An encoder-decoder model (NeuralOIE) [Cui et al., 2018] was developed to generate
relation triplets conditioned on the input sentence. These neural methods often lack the
transparency required in domains like law.

LILLIE [Smith et al., 2022] presents a hybrid system combining linguistic rules with
learning-based methods. This approach aims to leverage the strengths of both paradigms,
using learning to refine and improve the quality of triples initially extracted or guided by
linguistic principles.

3.2 Current State-of-the-Art in NLI and Information
Extraction

Recent advancements in NLI and IE are largely dominated by pre-trained Large Language
Models (LLMs). These models demonstrate impressive performance across various
benchmarks, often employed in hybrid systems or adapted through prompting and
fine-tuning.

For instance, [Sainz et al., 2022] explored few-shot information extraction using LLMs.
Their approach involves prompting pre-trained models and fine-tuning them for textual
entailment tasks, showcasing the potential of LLMs to perform IE with minimal task-
specific annotations by leveraging their broad linguistic knowledge.

Similarly, hybrid approaches combine the strengths of structured knowledge and LLM
reasoning. [Boer et al., 2024] proposed a method for question answering that uses knowl-
edge graphs for initial triplet-based prefiltering, followed by LLM-based ranking and
reranking to refine answers. This combination leverages structured data for efficiency
and LLM capabilities for deeper understanding, achieving strong results.

However, while powerful, these LLM-based approaches often function as black boxes,
limiting their interpretability and reliability in contexts demanding explicit reasoning
and transparency, such as the legal domain central to this thesis.

3.3 Domain-Specific Challenges and Approaches
Applying NLI and IE techniques effectively can be complicated when dealing with specific
languages and specialized domains, which often have unique challenges and requirements.
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3.3.1 NLP for German

German presents particular challenges for NLP due to its flexible word order and rich
morphology compared to English. Several works illustrate efforts to address these.
For instance, [Neumann and Xu, 2003] focused on mining answers from German web
pages using techniques adapted to German web content. PropsDE [Falke et al., 2016]
involved adapting an English rule-based OIE system (PropS) to German, demonstrating
feasibility but also the effort required for cross-lingual rule porting based on dependency
parses. GerIE [Bassa et al., 2018] was designed specifically for German OIE, employing
handcrafted rules over dependency parses tailored to German linguistic phenomena.
More recently, [Engelbach et al., 2023] applied fine-tuned question-answering models to
German legal documents, incorporating rule-based validation to check the neural model’s
output, highlighting work at the intersection of language and domain.

3.3.2 NLP for the Legal Domain

The legal domain introduces its own difficulties, including specialized terminology,
complex sentence structures, and requirements for high precision and justification.
Early work in the German legal domain, such as [Walter and Pinkal, 2006], used rule-
based methods to extract definitions from court decisions. Datasets like GerDaLIR
[Wrzalik and Krechel, 2021] provide resources, though often for specific tasks like citation-
based retrieval rather than the semantic interpretation needed for NLI/OIE. These
examples show the focus on developing methods, including rule-based, neural, and hy-
brid systems, to address the particular requirements of processing legal texts where
interpretability and precision are often important considerations.

3.4 Symbolic NLI
Addressing requirements for explainability, particularly in specialized domains like law
and for morphologically rich languages like German, symbolic NLI approaches model
entailment through structured reasoning based on linguistic rules and logical frameworks.

[Angeli et al., 2015] utilized natural logic inference within an OIE framework. Their
system focuses on selecting maximally specific candidate triples by reasoning about lexical
relationships (like hyponymy and hypernymy) and clause structures, aiming to improve
the precision of open-domain extraction through logical validation.

The Hy-NLI framework [Kalouli et al., 2020] includes GKR4NLI, a symbolic engine using
natural logic that represents sentences as semantic graphs [Kalouli and Crouch, 2018].
GKR4NLI evaluates truth preservation under lexical substitutions based on specificity and
monotonicity principles derived from natural logic. This provides explainable inferences,
particularly effective for linguistically complex cases. While the full Hy-NLI framework
combines this symbolic engine with LLMs for hybrid decision-making in English, the
underlying GKR4NLI graph representation and natural logic reasoning provide a strong
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foundation for explainable, linguistically-grounded NLI, which inspires the approach
taken in this thesis for German legal text.
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CHAPTER 4
Methodology

The goal of this chapter is to explain the components used for detecting entailment.
First, we introduce our adapted graphical knowledge representation, which can be seen
as a semantically rich graph with multiple sublayers. Then, we describe the multi-stage
graph-based matching process that uses the graphical knowledge representations from
the premise and hypothesis to detect entailment.

4.1 Graphical Knowledge Representation
As discussed earlier in Section 2.3.1, dependency parsing helps identify the grammatical
structure of a sentence. However, relying only on dependency relations is often insufficient
for recognizing textual entailment. Dependency trees show the direct links between words
but may not capture enough information about word meanings, variations in phrasing,
or context, which are important for deciding entailment.

To address these limitations and allow for a better understanding of sentence meaning,
we propose employing a graphical knowledge representation. This approach uses the
dependency parse tree as a base structure. We then enrich parts of this structure by
adding extra layers of information.

Specifically, we enrich the graph by incorporating base forms identified using a morpho-
logical analyzer, lexical-semantic details such as synonyms, hypernyms, and hyponyms
derived from external language resources, and contextual information such as negation.
An overview of the graphical knowledge representation is shown in Figure 4.1.

The goal is to create a more detailed graph that helps our system compare the meaning
of sentences more effectively, even when they are phrased differently. This allows the
system to better check if one statement follows logically from another (entailment) or
contradicts it.
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4. Methodology

Figure 4.1: Overview of our adapted graphical knowledge representation for German
inspired by GKR [Kalouli and Crouch, 2018].

Our method is inspired by similar graph-based approaches for NLI, such as the Graphi-
cal Knowledge Representation (GKR) developed for English [Kalouli and Crouch, 2018,
Kalouli et al., 2020]. We adapt the core idea of GKR to create a related, but sim-
pler, graphical knowledge representation specifically for German. Unlike GKR, which
incorporates coreference resolution within the graph building process, we experiment
with applying coreference resolution as a separate preprocessing step before parsing the
sentences. This choice is explored further in Chapter 5.

4.1.1 Dependency Parsing
Dependency parsing constitutes the foundational step in our methodology. The resulting
dependency graph for each sentence, derived from both the sample solution and the
student attempt, serves as the structural backbone upon which the graphical knowledge
representation is built.

4.1.2 Concept layer
The concept layer serves as an intermediate representation, designed to distill the complex
syntactic structure of a sentence’s dependency graph into its core semantic essence.
Its primary purpose is to simplify the sentence representation down to the minimal
information required for the entailment task, focusing on the key entities (concepts) and
the relationships between them.

In the context of our AI legal tutor use case, the dataset provides sample solutions
containing both full sentences and corresponding relational tuples (e.g., prüfen(gutgläubig,
Erwerb) [examine(bona_fide, acquisition)] with the sentence "Zu prüfen ist der gutgläubige
Erwerb"[Bona fide acquisition is to be examined]). These tuples represent the key legal
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concepts or facts that must be present in a student’s answer for it to be considered
correct. They function as the target patterns for our entailment detection process.

Figure 4.2 illustrates this process, showing a concept graph derived from the annotated
relational tuple prüfen(gutgläubig, Erwerb) and its corresponding source sentence "Zu
prüfen ist der gutgläubige Erwerb" [Bona fide acquisition is to be examined]. The graph
clearly shows the core concepts (prüfen, Erwerb, gutgläubig) and their dependency links as
extracted from the sentence, representing the essential meaning defined by the annotation.

Figure 4.2: Example of a concept graph extracted from the annotation prüfen(gutgläubig,
Erwerb) and the sentence "Zu prüfen ist der gutgläubige Erwerb" [Bona fide acquisition
is to be examined]. Nodes represent concepts (words) and edges represent dependency
relations.

This simplification significantly reduces the number of nodes and edges compared to the
full dependency graph and aligns well with the structure of relational tuples used for
matching.

A key advantage of this approach is its flexibility. The concept graph is not restricted
to representing only actions and their participants. It can effectively represent simpler
conceptual links, such as the modification of a noun by an adjective (e.g., representing
"gutgläubiger Erwerb" [bona fide acquisition] directly) without the presence of a predicate.
This allows us to capture a wider range of semantic patterns relevant to the legal domain.

For this work, we use the provided annotations from the sample solutions to define the
scope of the concept graph. This ensures the graph precisely reflects the target pattern
specified in the sample solution. This premise concept graph then serves as the foundation
upon which subsequent layers (lexical, property, context) are built.

4.1.3 Lexical layer
Building upon the concept graph, the lexical graph enriches the representation by
incorporating semantic information for each concept node. This layer leverages external
lexical resources to expand the potential matches beyond exact word forms, enabling a
more detailed understanding of semantic relatedness. The idea behind this additional layer
is to allow the system to match more flexible entailment patterns, and as a consequence,
increase recall. Similarly to the GKR [Kalouli and Crouch, 2018], where different sources
for English are used to build the lexical layer, we adapt this idea for German.

Figure 4.3 provides a visualization of the lexical graph built upon the concept graph
example from Figure 4.2.

21



4. Methodology

Figure 4.3: Lexical graph on top of the concept graph

In this figure, which corresponds to the sentence "Zu prüfen ist der gutgläubige Erwerb"
[Bona fide acquisition is to be examined], new lexical nodes (yellow boxes) and edges
representing lexical relations (lex_match, hypernym) are shown connected to the original
concept nodes (blue ellipses). For clarity, the visualization limits the number of hypernyms
displayed per node (here, a maximum of 2) and omits hyponyms entirely. The depth of
hypernym/hyponym relations explored in GermaNet is a configurable parameter in our
system, defaulting to a depth of 2.

The primary source for this lexical information is GermaNet [Hamp and Feldweg, 1997],
a large lexical-semantic network for the German language developed at the University
of Tübingen. Similar in structure and purpose to the English WordNet [Miller, 1992],
GermaNet organizes German nouns, verbs, and adjectives into sets of synonyms called
"synsets". It establishes various semantic relationships between these synsets, such
as hypernymy (more general term) and hyponymy (more specific term), effectively
functioning as both a comprehensive thesaurus and a lightweight ontology.

For each concept node derived from a token in the sentence, we query GermaNet to
retrieve related lexical units. Specifically, we add nodes representing:

• Synonyms: Words with the same or very similar meaning (e.g., "Auto" and
"Wagen", both terms for a vehicle). These directly support entailment: if the
premise uses "Wagen" and the hypothesis uses "Auto", the synonym link allows the
system to recognize them as equivalent concepts.

• Hypernyms: Words representing a broader category (e.g., "Tier" [animal] is a
hypernym of "Katze" [cat]). These enable hierarchical inference: if the premise
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states "Die Katze schläft" [The cat sleeps] and the hypothesis is "Ein Tier schläft"
[An animal sleeps], the hypernym link (Katze → Tier) validates the entailment, as
a cat is a type of animal.

• Hyponyms: Words representing a more specific instance of a category (e.g.,
"Katze" [cat] is a hyponym of "Tier" [animal]). These present a more complex case.
Standard logical entailment does not typically flow from a general term to a specific
one (e.g., "Ein Tier schläft" [An animal sleeps] does not strictly entail "Die Katze
schläft" [The cat sleeps]). However, including hyponym relations allows for exploring
more flexible matching scenarios. In certain contexts, particularly in information
retrieval or question answering, identifying a specific instance (hyponym) mentioned
in the hypothesis that falls under a general concept in the premise might be relevant.
We include hyponyms experimentally to assess their potential benefit in capturing
such looser forms of relatedness, acknowledging that they do not represent strict
logical entailment.

These related terms are linked to the original concept node via specific edge types (e.g.,
synonym, hypernym, hyponym). Since a single word can have multiple meanings (senses),
and thus multiple entries in GermaNet, we initially add lexical information corresponding
to all possible senses associated with the concept node’s lemma. The crucial step of
Word Sense Disambiguation (WSD) is deferred to the matching stage (detailed in Section
4.2.1), where the hypothesis graph helps select the most appropriate sense.

4.1.4 Property layer
While the concept graph captures the core relational structure and the lexical layer adds
semantic information, the property layer focuses on enriching each concept node with
detailed linguistic features derived from the original sentence. This layer provides crucial
morphological and syntactic information that refines the representation of each concept.

In our adaption of the GKR architecture [Kalouli and Crouch, 2018], we include proper-
ties for each concept using a combination of the spaCy NLP library [Honnibal et al., 2020]
for general linguistic processing and, the DWDSmor component [Klein and Geyken, 2010]
for in-depth German morphological analysis.

Figure 4.4 illustrates this layer by showing the concept nodes from the previous example
("prüfen", "gutgläubig", "Erwerb") annotated with tables displaying their extracted lin-
guistic properties. These properties are stored as attributes within the data associated
with each node in the graph representation.

Each concept node is enriched with essential linguistic properties derived from the
corresponding token, including its base form (lemma) and grammatical role (part-of-
speech). Additionally, detailed morphological features crucial for German, such as case,
number, and gender, are extracted to provide a richer grammatical description for each
concept.
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Figure 4.4: Example of the property layer. Concept nodes from Figure 4.2 are shown with
their associated linguistic properties (lemma, POS, gender, number, case, etc.) extracted
using spaCy and DWDSmor.

These properties add layers of specificity and constraint to the concept nodes. While
not every mentioned property will be explicitly applied in the symbolic NLI system
presented in this thesis, we still include this rich information to provide a robust graph
representation. For future work and use case task specific different properties can be
selected and applied to further enhance the system’s accuracy.

4.1.5 Context layer

Until now, there is no information about the existence of the "concept" of the sentence.
The dependency graphs for negated and non-negated sentences are structurally identical,
as visible in Figure 4.5. The context layer should introduce the contexts, indicating
whether the concepts and their relations have been instantiated or not, specifically
focusing on negation.

Contrary to the GKR representation where different contexts such as implicatures,
negation, disjunctions are detected and a separate graph is built, we focus solely on
negation detection. However, simply identifying negation words is insufficient. Accurate
NLI requires understanding precisely what is being negated (the scope of negation).
Failing to determine the correct scope can lead to critical errors, such as incorrectly
concluding entailment when a key concept is negated in the hypothesis but not the
premise, or vice-versa.
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(a) Dependency graph for the positive sentence
"Das Fahrrad ist eine bewegliche Sache" (The
bicycle is a movable object).

(b) Dependency graph for the negated sentence
"Das Fahrrad ist keine bewegliche Sache" (The
bicycle is not a movable object).

Figure 4.5: Comparison of concept graphs for a positive sentence (left) and its negated
counterpart (right). The underlying structure is identical before employing the negation
detection.

The necessity for differentiating negation types becomes clear in complex sentences.
Consider this sentence from our use case:

(1) Jedoch
However

liegt
lies

kein
no

gültiger
valid

Titel
title

vor,
forth,

da
as

Paula
Paula

nur
only

Sachbesitzerin,
physical.owner,

nicht
not

Rechtbesitzerin
legal.owner

ist
is

und
and

daher
therefore

nicht
not

über
over

das
the

Fahrrad
bicycle

verfügt
disposes

dürfte
should

[However, there is no valid title, as Paula is only the physical owner, not the legal
owner, and therefore should not be allowed to dispose of the bicycle.]

In this single sentence, multiple concepts and relations exist, some negated and some
affirmed:

• "gültiger Titel" [valid title] is negated by "kein".

• "Rechtbesitzerin" [legal owner] is negated by "nicht".

• "über das Fahrrad verfügt dürfte" [should dispose of the bicycle] is negated by
"nicht".

• "Sachbesitzerin" [physical owner] is not negated.

This example highlights the importance of accurately determining the scope. A naive
approach might incorrectly negate "Sachbesitzerin" or fail to negate "gültiger Titel".
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To address this challenge, we developed a rule-based negation detection system that ana-
lyzes the dependency parse tree. Our approach is inspired by [Carrillo de Albornoz et al., 2012],
where the scope of negation is solved using dependency parsed trees and WordNet. We
adapted some ideas for the German language. Our system operates in two passes:

1. Cue Identification: The first pass identifies potential negation cues within the sen-
tence. It uses a pre-defined expanded lexicon (NEGATION_LEXICON ) containing vari-
ous German negation words categorized by their function (particles like nicht, noun phrase
negators like kein, prepositions like ohne, negating verbs like verneinen, and conjunctions
like weder). Crucially, this pass also employs a list of FALSE_NEGATION_PATTERNS
(e.g., "nicht nur" - not only, "kein anderer" - no other) to filter out phrases where negation
words appear but do not actually negate the surrounding context. Only tokens identified
as true negation cues proceed to the next step.

2. Scope Determination: The second pass determines the scope for each identified
true negation cue based on its type and its position in the dependency tree. Different
rules apply depending on the cue type:

• Particle Negation (e.g., nicht, nie): These typically modify a specific word
(their syntactic head).

– The primary target of negation is the head word itself (often a verb or adjective).
Example: In "Der Erwerb ist nicht gutgläubig", nicht negates gutgläubig.

– Subject Expansion: If the negated head is a verb, its subject is also included
in the scope. Example: In "Paula hat das Fahrrad nicht gekauft", both gekauft
and Paula are marked as negated.

– Boundary Limitation: This right-side expansion is stopped if it encoun-
ters a subordinate clause introduced by conjunctions listed in SUBORDI-
NATE_BOUNDARIES (e.g., "weil", "obwohl"). This prevents negation from
incorrectly extending into clauses expressing cause, condition, etc.

• Noun Phrase Negation (e.g., kein, keine): These negate an entire noun
phrase.

– The algorithm identifies the head noun governed by the negator (e.g., "Titel"
in "kein gültiger Titel").

– It then traverses the dependency subtree starting from this head noun (in-
cluding adjectives like "gültiger" or prepositional phrases attached to the
noun).

– Boundary Limitation: Similar to particle negation, this traversal stops if it
encounters a subordinate clause boundary.

• Prepositional Negation (e.g., ohne, außer): These negate the noun phrase(s)
that function as the object of the preposition. Example: In "Er kam ohne einen
Mantel" [He came without a coat], ohne negates einen Mantel.
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• Verb Negation: Certain verbs inherently carry negative meaning, such as
verneinen, ablehnen, bestreiten, leugnen, verweigern, ausschließen, or vermeiden
[deny, reject, dispute, deny, refuse, exclude, avoid]. Our system identifies these
verbs using a predefined lexicon (NEGATION_LEXICON ). When such a verb is
detected, the system identifies the main grammatical roles connected to the negating
verb, specifically its subject (the entity performing the action, or being described
in passive sentences) and its objects or complements (entities receiving the action
or completing the verb’s meaning). The system then marks these core participants
as being negated by the verb. This enables us to distinguish whether a student
correctly affirms a concept or incorrectly negates it through their choice of verb. For
example, in a sentence like ’Der gutgläubige Erwerb ist zu verweigern’ [Acquisition
in good faith is to be denied], the presence of the negating verb verweigern influences
how the related concepts are interpreted in terms of affirmation or negation.

Figure 4.6: Negation scopes detected for the complex sentence. Negated concepts are
marked with a red background. Note how different rules apply to ’kein’ and the two
instances of ’nicht’.

Figure 4.6 visually demonstrates the outcome of our scope determination rules applied
to the complex example sentence "Jedoch liegt kein gültiger Titel vor, da Paula nur
Sachbesitzerin, nicht Rechtbesitzerin ist und daher nicht über das Fahrrad verfügt dürfte".
In the following, we explain how the system arrives at this specific negation marking.

• kein gültiger Titel: The system first identifies kein as a noun phrase negator.
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Following the rules for this type, it finds the head noun governed by kein, which is
Titel. It then marks the subtree rooted at Titel, including the modifier gültiger, as
negated. This corresponds to the red highlighting of kein, gültiger, and Titel in the
figure.

• nicht Rechtbesitzerin: The first instance of nicht is identified as a particle
negator. Its syntactic head in the dependency tree is Rechtbesitzerin. According to
the particle negation rule, the head itself is the primary target, so Rechtbesitzerin
is marked as negated (shown in red). Notably, Sachbesitzerin is correctly left
unaffirmed, as it is not the head of this specific nicht.

• nicht über das Fahrrad verfügt dürfte: The second nicht is also a particle
negator, and its head is the main verb verfügt. The rule dictates negating the
head verb (verfügt) and its associated auxiliary verb (dürfte). Furthermore, the
subject expansion rule identifies Paula (the subject of verfügt) and includes it in the
negation scope. The rule also extends the scope to other dependents connected to
the verb, such as the prepositional phrase über das Fahrrad. The figure highlights
nicht, verfügt, dürfte, über, das, and Fahrrad in red, reflecting this determined
scope.

This detailed, context-aware approach allows the system to accurately represent which
parts of the sentence meaning are affirmed and which are negated, forming a critical
input for the subsequent entailment detection process.

4.2 Entailment Detection
To illustrate the entailment detection process described in the following subsections, we
will use a running example. Let the premise pattern be derived from the sentence "Zu
prüfen ist der gutgläubige Erwerb" [Bona fide acquisition is to be examined], represented
by the relational tuple prüfen(gutgläubig,Erwerb ). We will primarily consider the
hypothesis sentence "Der gutgläubige Kauf ist zu überprüfen" [The bona fide purchase
is to be reviewed/checked] to demonstrate the matching steps. Additional hypothesis
variations will be introduced to clarify specific concepts like structural validation modes.

Following the construction of the multi-layered graphical knowledge representations for
both the premise (derived from the gold-standard relational tuple and its source sentence)
and the hypothesis (each sentence from the student’s attempt), the core task is to
determine if the meaning expressed in the hypothesis entails the meaning required by the
premise. Our system approaches this as a graph matching problem, specifically checking
if the conceptual structure defined in the premise pattern graph can be found within the
hypothesis sentence graph, considering semantic variations and logical consistency.

The process is designed to identify entailment, focusing on whether the student’s answer
contains the necessary information as defined by the premise pattern. It does not attempt
to classify the relationship into the full NLI classes (entailment, contradiction, neutral).
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Instead, it performs a targeted search for positive evidence of entailment, incorporating
validation steps to avoid simple contradictions, particularly those involving negation.

The detection process is split into several stages: initial predicate matching, subsequent
argument matching to ensure all required arguments are present, and finally, validation
checks focusing on structural consistency and negation agreement. Throughout this
process, detailed information about the nature of the matches is recorded to provide
explainability for the final entailment decision.

4.2.1 Initial matching
The first step aims to establish potential alignment points between the premise pattern
graph and the hypothesis sentence graph.

The system takes the graphical knowledge representation representing the premise pattern
and compares its core concept node (identified as the predicate during annotation) against
all nodes in the dependency graph of a hypothesis sentence. The matching can be
performed based on different criteria, allowing for experimental flexibility:

• Lexical Meaning (Lemma): The system can match based on the fundamental
dictionary form (lemma) of the words, accessed via the property layer of the graphs.
This allows matching "kaufen" [to buy] with "kauft" [buys].

• Lexical Relations: If lemma matching is used for arguments, GermaNet relations
(synonyms, hypernyms, hyponyms) can be optionally considered, as configured.
Instead of relying only on strict lexical units provided within GermaNet synsets,
we employ a path-based similarity measure to capture closely related terms. This
approach addresses challenges like words having multiple senses (synsets) and the
need to identify near-synonyms or co-hyponyms not listed in the same synset.
The measure calculates the path distance between synsets via the hypernymy
relation. This distance is then normalized to produce a similarity score between
0 and 1. For instance, consider the verbs "prüfen" [examine] and "überprüfen"
[review/check]. They do not appear in the same synset, and neither is a direct
hypernym of the other. Relying only on direct links would thus disregard their
clear semantic relatedness, even though GermaNet’s own definition for "überprüfen"
acknowledges it is often identical to "prüfen" ("v. häufiger: völlig identisch mit
prüfen..."). Our path-based measure bridges this gap: these two verbs share the
common hypernym "kontrollieren" [control/check], resulting in a short path (length
2: prüfen → kontrollieren ← überprüfen) and thus a high similarity score (e.g.,
>0.9). This similarity threshold is configurable; we use a default of 0.9 to prioritize
high-confidence matches, assuming terms scoring this high are likely synonyms or
very closely related concepts, thereby maintaining explainability. Lowering the
threshold could increase recall but potentially match less related terms. When
multiple senses exist for a lemma, the system compares all potential sense pairings
within the same semantic field and selects the one yielding the highest similarity
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score. In our running example, the premise predicate prüfen would be matched
with the hypothesis node überprüfen using this lexical relation approach, yielding a
high similarity score and establishing a potential alignment.

The choice between purely lemma-based or a combination of lemma and the specific
utilization of lexical relations, represents a configurable aspect of our methodology.

As a final step in the initial matching stage, the negation status from the context layer is
considered if the corresponding experimental setting is enabled (use_negation=True, see
Section 5.5). If enabled, a potential match is only forwarded to the argument matching
stage if the premise concept and the candidate hypothesis concept share the same negation
status (both affirmed or both negated). For example, if our hypothesis sentence were
"Der gutgläubige Kauf ist nicht zu überprüfen", the node überprüfen would be marked
as negated by the context layer. Since the premise predicate prüfen is affirmed, this
potential match would be discarded at this stage due to the negation mismatch.

The output of this stage is a set of potential matches, where each match links the premise
predicate node to a specific node in the hypothesis graph, along with metadata indicating
how the match was achieved (e.g., equals_lemma, equals_synonyms, subclass, hyponym).

4.2.2 Argument matching
Once a potential predicate match is established (like prüfen → überprüfen in our example),
the system proceeds to the argument matching stage. The goal here is to verify that
all the arguments associated with the predicate in the premise pattern graph (Erwerb
and gutgläubig) also have corresponding, compatible matches in the hypothesis sentence
graph ("Der gutgläubige Kauf ist zu überprüfen"), relative to the initial predicate match.

For a given predicate match (linking a premise predicate to a hypothesis node), the
system identifies all argument nodes connected to the predicate in the premise graph’s
concept layer. Then, for each premise argument node, it searches the hypothesis graph for
a suitable matching node. In our running example, the system needs to find matches for
Erwerb and gutgläubig in the hypothesis sentence. gutgläubig can be matched directly to
gutgläubig based on lemma equality. Matching Erwerb to Kauf would require using lexical
relations, assuming they are considered synonyms or closely related by the path-based
similarity measure exceeding the configured threshold.

Similar to the initial matching, the criteria for matching arguments can be based on
lemma or POS, depending on the experimental configuration (Section 5.5). In addition,
further constraints from the property layer can be optionally enforced during argument
matching:

• Lexical Relations: If lemma matching is used for arguments, GermaNet relations
(synonyms, etc.) can be optionally considered, as configured.
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• Morphological Features: Checks for agreement in grammatical gender or number
can be applied if enabled in the configuration, particularly relevant for German
nouns and adjectives.

• Negation Status: If negation handling is enabled (use_negation), the negation
status of a premise argument and its potential hypothesis match must be identical.
In our example, both Erwerb and gutgläubig in the premise are affirmed. Therefore,
their matches in the hypothesis (Kauf and gutgläubig) must also be affirmed.

A critical requirement of this stage is that every single argument node present in the
premise pattern graph must find a valid and compatible match in the hypothesis graph
according to the active configuration. If even one premise argument cannot be successfully
aligned (e.g., if Kauf was not considered similar enough to Erwerb, or if gutgläubig was
missing from the hypothesis), this entire potential entailment path (stemming from the
initial predicate match) is considered invalid, and the system may proceed to check other
potential predicate matches if available.

Successfully matching an argument involves finding the candidate node in the hypothesis
sentence graph that satisfies the configured criteria and constraints (negation, gender,
number if active), while also ensuring that a single hypothesis node is not matched to
multiple distinct premise nodes (arguments or predicate) within the same match attempt.

4.2.3 Validation

The final stage involves validating the complete match (predicate and all arguments)
found through the preceding steps. This validation focuses on structural consistency
between the matched nodes in the premise and hypothesis graphs and reinforces the
check against logical contradictions involving negation.

Structural Consistency Check: After successfully aligning the predicate and all
its arguments, the system can optionally perform a structural check to ensure the
relationships between these aligned concepts are preserved. This check examines the
dependency edges connecting the concept nodes within the premise graph and verifies
their correspondence in the hypothesis graph. The methodology supports three different
levels of structural strictness, configured via the edge_check_mode parameter:

• Exact dependency label: This is the strictest mode. For every dependency edge
connecting two matched concept nodes in the premise graph (e.g., an object relation
edge from prüfen to Erwerb and a modifier edge from Erwerb to gutgläubig), it checks
if an edge with the exact same dependency label exists between the corresponding
hypothesis nodes (überprüfen, Kauf, and gutgläubig). In our first hypothesis sentence,
"Der gutgläubige Kauf ist zu überprüfen", this check would likely pass, assuming a
similar grammatical structure.
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• Path exists: This is a more relaxed mode. For every dependency edge between
two matched concept nodes in the premise graph, it only checks if any directed
path exists between the corresponding hypothesis nodes in the hypothesis graph.
Consider the hypothesis "Beim Verkauf des Fahrrades von Paula an Fanny, ist
zu überprüfen, ob ein gutgläubiger Erwerb durch Fanny in Frage kommt" ["When
selling the bicycle from Paula to Fanny, it must be checked whether a bona fide
acquisition by Fanny is possible"]. The system might match prüfen → überprüfen,
Erwerb → Erwerb, and gutgläubig → gutgläubiger. Although the direct dependency
links might differ (e.g., Erwerb might be part of a subordinate clause governed
by überprüfen), this mode verifies that some path exists between überprüfen and
Erwerb, and between Erwerb and gutgläubiger, confirming connectivity without
enforcing the specific original grammatical relation.

• Open: This mode skips the structural validation entirely, relying only on the
successful matching of the individual predicate and argument nodes within the
sentence. For example, given the hypothesis "Der derivative Erwerb sowie der
gutgläubige Verkauf sind zu überprüfen" ["The derivative acquisition and bona fide
sale must be reviewed"], this mode might match prüfen → überprüfen, Erwerb →
Erwerb (the first instance), and gutgläubig → gutgläubige (modifying Verkauf ).
It ignores the fact that Erwerb and gutgläubige are not directly related in the
hypothesis structure as they were in the premise. While maximizing recall, this
can lead to logically incorrect entailments.

If a structural check is enabled (i.e., mode is not Open) and fails according to the selected
mode, the match is invalidated.

Negation Consistency: While potentially checked during individual node matching
(if use_negation is enabled), the validation stage implicitly relies on the consistent
application of negation status. The requirement that matched predicate and argument
nodes must share the same negation status (both affirmed or both negated according
to the context layer) is fundamental to avoiding simple contradictions and correctly
identifying entailment, leading to more robust and precise extracted entailments.

Final Entailment Decision: The system concludes that the hypothesis sentence entails
the premise pattern if and only if:

1. A valid initial predicate match is found between the premise pattern and the hypoth-
esis sentence (using the configured method: primarily lemma in our experiments).

2. All arguments defined in the premise pattern find corresponding valid matches
in the hypothesis sentence (using the configured method: lemma or POS, and
satisfying active constraints like negation, gender, number).

3. The configured structural consistency check (if not none) passes according to the
selected edge_check_mode.
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If these conditions are met for at least one premise pattern within a given gold-standard
section, and for at least one sentence in the student’s attempt, the system predicts
entailment for that section.

Explainability Output: For each successful entailment found, the system stores a
detailed record of the match. Listing 4.1 shows an example of such an output for the
match found between our premise pattern prüfen(gutgläubig,Erwerb) and the hypothesis
sentence "Beim Verkauf ... in Frage kommt." (used previously to illustrate the Path
exists mode).

This record includes:

• The specific premise pattern (pattern) and the hypothesis sentence involved.

• The mapping between premise concept nodes (premise_node_id) and hypothesis
nodes (hypothesis_node_id), including the path-based similarity score if GermaNet
relations are used (similarity_score). This is shown in predicate_matches and
argument_matches.

• The type of match achieved for each node (e.g., equals_lemma, equals_synonyms,
subclass) under match_type.

• Confirmation of whether structural checks were performed and passed (depen-
dency_check_passed - null here indicates it wasn’t performed) and which mode
was used.

• Additional details like the overall configuration used (approach), the final node
mapping (node_map), internal flags (detail_flags), and specificity counts (argu-
ment_specificities).

This detailed trace provides transparency and allows for error analysis, making the
system’s reasoning process explainable.
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{
"attempt_id": 4,
"section": 1,
"pattern": "prüfen(gutgläubig, Erwerb)",
"approach": "lemma_lemma_synonyms",
"matched_sentences": [
"Beim Verkauf des Fahrrades von Paula an Fanny, ist zu überprüfen, ob

ein gutgläubiger Erwerb durch Fanny in Frage kommt."
],
"predicate_matches": [
{
"premise_node_id": "c_1",
"premise_node_label": "prüfen",
"hypothesis_node_id": 11,
"hypothesis_node_label": "überprüfen",
"match_type": "equals_synonyms",
"similarity_score": 0.92857

}
],
"argument_matches": [
{
"premise_node_id": "c_4",
"premise_node_label": "gutgläubig",
"hypothesis_node_id": 15,
"hypothesis_node_label": "gutgläubig",
"match_type": "equals_lemma",
"similarity_score": 1.0

},
{
"premise_node_id": "c_5",
"premise_node_label": "Erwerb",
"hypothesis_node_id": 16,
"hypothesis_node_label": "Erwerb",
"match_type": "equals_lemma",
"similarity_score": 1.0

}
],
"detail_flags": {
"initial_match_found": true,
"argument_match_passed": true,
"dependency_check_passed": null

},
"evaluation": "TP"

}

Listing 4.1: Example of a record of a successful entailment
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CHAPTER 5
Experimental Setup

This chapter details the experimental framework used to evaluate our graph-based
entailment detection system. We begin by exploring the dataset specific to our AI legal
tutor use case, providing insights into its structure and characteristics. Subsequently,
we describe the experimental data preprocessing steps investigated, namely coreference
resolution and compound word splitting. We then introduce the baseline systems
against which our approach is compared and define the evaluation metrics used to assess
performance. Finally, we outline the various matching configurations of our system
that are systematically evaluated to understand the impact of different features and
constraints.

5.1 Data Exploration
The dataset for our AI legal tutor use case, previously introduced in Chapter 2, comprises
three core components for each scenario:

1. The legal case description.

2. A detailed sample solution with key passages for the case.

3. Student attempts to solve the case.

These materials originate from the domain of Austrian jurisprudence.

For this study, we were provided with data for two distinct legal cases, including sample
solutions and several annotated student attempts for each. Our experiments focus
specifically on one case (hereafter referred to as Case 1) for which detailed annotations
are available. For Case 1, the sample solution is segmented into "key passages", each
representing a crucial point or concept required for a correct answer. These key passages
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correspond to the relational tuples (e.g., "prüfen(gutgläubig, Erwerb)" [check(bona_fide,
acquisition)]) that serve as the premise patterns for our entailment detection system.

The evaluation for Case 1 is structured into 8 distinct sections, each potentially containing
one or more key passages (premise patterns). A student’s attempt is evaluated against
these 8 sections, and the score for each section contributes to the overall grade. Students
are unaware of this internal sectional structure, its weighting, or the specific points
allocated per section; they only receive the case description to solve. Some sections might
be satisfied by matching a single premise pattern, while others may offer alternative
correct answers, requiring a match with any one of several patterns. In total, Case 1
involves 18 distinct premise patterns distributed across the 8 sections.

We have access to 5 student attempts for Case 1. The gold-standard annotation classifies
24 student answer segments as correctly entailing the required premise pattern(s), while
16 segments are marked as incorrect (either contradicting the sample solution or failing
to cover the necessary aspect). The combined student attempts consist of 53 sentences
and 707 tokens.

5.2 Dependency Parser
For this task, we employ the de_hdt_lg model, a German language model available
within the spaCy framework [Honnibal et al., 2020]. The dependency parser compo-
nent of this model is trained primarily on the Hamburg Dependency Treebank (HDT)
[Foth et al., 2014], which has been converted to the Universal Dependencies (UD) format
(UD/de-hdt). The HDT was created at the University of Hamburg through manual an-
notation, guided by specific annotation standards and aided by a constraint-based parser.
It is a large corpus consisting of 261,821 sentences (approximately 4.8 million tokens),
sourced entirely from the German news website heise.de, covering articles published
between 1996 and 2001. In addition to the HDT data, the de_hdt_lg model’s training
also incorporates data from the WikiNER corpus [Nothman et al., 2013].

5.3 Data Preprocessing Experiments
Beyond the core graph construction described in Chapter 4, we investigate the impact of
two optional preprocessing steps applied to the student attempts. These steps are treated
as experimental variations, evaluated for their potential benefits. Standard preprocessing
techniques like stopword removal or extensive lemmatization were not applied to preserve
the original linguistic structure as much as possible.

5.3.1 Coreference Resolution
Coreference occurs when multiple expressions in a text refer to the same entity. A
common example involves pronouns referencing previously mentioned nouns, such as
in "The cat is hungry. It wants food," where "It" refers to "The cat." Resolving these
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references (mapping "It" back to "The cat") can be important for understanding the
text’s meaning.

This phenomenon poses challenges, particularly in German. Consider this example from
a student attempt: "Wenn Fanny gutgläubig ist, d.h., sie wusste nicht und konnte nicht
wissen, dass Paula nicht die Eigentümerin war, dann hat sie das Eigentum an dem
Fahrrad durch den Kauf und die Übergabe gutgläubig erworben." [If Fanny is in good faith,
i.e., she did not know and could not have known that Paula was not the owner, then she
acquired ownership of the bicycle in good faith through the purchase and handover.]

Here, the pronoun "sie" [she] appears twice. The first "sie" likely refers to Fanny, while the
second "sie" also refers to Fanny. However, resolving the reference requires understanding
the sentence structure and context, especially given that both "Fanny" and "Paula" are
female names, and "Paula" is mentioned later in the sentence. While humans often
resolve such ambiguities intuitively, it presents a significant challenge for automated
systems.

The GKR framework [Kalouli and Crouch, 2018], which inspired our graphical knowledge
representation, incorporates coreference resolution directly into the graph building process.
Given the complexity, we opted for a simpler approach: applying coreference resolution as
an experimental preprocessing step before generating the graphs. We utilize the corefer-
ence resolution component available within the spaCy framework [Honnibal et al., 2020]
(specifically, its German models) to process the student attempts. The hypothesis moti-
vating this experiment is that the annotated premise patterns likely use the full names of
entities, not pronouns. Resolving pronouns in the student attempts back to these full
names could potentially increase the likelihood of finding matches.

5.3.2 Compound Word Splitting
German frequently uses compound words, where two or more words are combined to form
a single, valid new word (e.g., "Fußballspiel" [football game] from "Fußball" [football] +
"Spiel" [game]). Sometimes, connecting letters like ’s’ are used, as in "Eigentumserwerb"
[property acquisition] ("Eigentum" (property) + "s" + "Erwerb" (acquisition)).

While these are standard words, their composite nature might obscure semantic relation-
ships if the individual components are relevant for entailment. GermaNet [Hamp and Feldweg, 1997]
provides information about the structure for the most common compound words in Ger-
man (identifying the head and modifier components).

As another experimental preprocessing step, we leverage this information. For tokens
identified as compounds in GermaNet, we replace the compound word with a phrase
explicitly stating the relationship between its components (e.g., replacing "Eigentumser-
werb" [property acquisition] with "Erwerb von Eigentum" [acquisition of property]). This
normalization aims to expose the underlying concepts within compounds, potentially fa-
cilitating matches with premise patterns that might refer to these components separately.
We evaluate the impact of applying this splitting process to the student attempts.
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5.4 Baselines and Evaluation Metrics
To contextualize the performance of our proposed graph-based system, we compare it
against several baselines and employ standard evaluation metrics.

5.4.1 Baselines
We define two primary baselines:

1. Sentence Embedding Baseline: This baseline addresses the overall task of
identifying required information within student attempts, framing it as a sentence
similarity problem rather than a strict NLI task. We compare simplified source
sentences from the sample solution (these are the same sentences used to derive
the premise patterns for our graph-based method) against individual sentences
extracted from the student’s attempt. The core idea is to transform these sentences
into vector representations (embeddings) and calculate their similarity. A student’s
answer regarding specific required information is considered correct if the similarity
score between the corresponding source sentence and any sentence in their attempt
exceeds a predefined threshold. The process involves the following steps:

• Student attempts are split into individual sentences using spaCy’s German
language model.

• Embeddings are generated for both the simplified source sentences and each
student sentence using a multilingual sentence transformer model (’distiluse-
base-multilingual-cased-v1’) [Reimers and Gurevych, 2019].

• The cosine similarity between each source sentence embedding and each student
sentence embedding is calculated.

• If any similarity score exceeds a predetermined threshold, the student attempt
is considered to entail the required information for that section.

2. Triplet Matching Baseline (No External Resources): This uses our developed
graph-matching system but in its most basic configuration. It performs matching
based solely on exact lemma matches between the premise pattern nodes and
hypothesis sentence nodes, without leveraging any lexical-semantic information
from GermaNet (synonyms, hypernyms, hyponyms) or morphological features from
DWDSmor. Negation and structural checks are also disabled. This baseline isolates
the contribution of the core graph alignment algorithm itself.

Additionally, we attempted to establish a baseline using the HOLMES system [Hudson, 2023],
an Open Information Extraction tool based on predicate logic that has been adapted for
German as well. We provided HOLMES with the simplified premise sentences (as used
in the LLM baseline) and the original student attempt sentences. However, HOLMES

38



5.4. Baselines and Evaluation Metrics

was unable to extract matching structures and consequently failed to detect any entail-
ments in our dataset, resulting in zero recall. Therefore, it was not included in the final
comparative evaluation.

5.4.2 Evaluation Metrics
We frame the entailment detection task as binary classification. For each pairing of a
premise pattern (from a gold-standard section) and a hypothesis sentence (from a student
attempt), the system predicts either positive (entailment) or negative (no entailment).
The primary goal is to correctly identify the positive instances, where the student’s
text successfully entails the meaning required by the sample solution’s premise pattern.
It is important to emphasize that this evaluation focuses solely on extracting positive
evidence of entailment to provide feedback on correctly mentioned points; the system is
not designed to explicitly identify contradictions or report missing information.

Performance is evaluated using standard metrics from information retrieval and clas-
sification: Precision, Recall, and F1-score. These metrics are calculated based on the
comparison between the system’s predictions and the gold-standard annotations, catego-
rized as follows:

• True Positives (TP): The system correctly predicts entailment when the gold stan-
dard indicates entailment. (The student’s answer contains the required information,
and the system detects it).

• False Positives (FP): The system incorrectly predicts entailment when the gold
standard indicates no entailment. (The system claims the student provided the
required information, but they did not, according to the annotation).

• False Negatives (FN): The system incorrectly predicts no entailment when
the gold standard indicates entailment. (The student did provide the required
information, but the system failed to detect it).

• True Negatives (TN): The system correctly predicts no entailment when the
gold standard indicates no entailment. (The student did not provide the required
information, and the system correctly identifies its absence).

It is important to note that our system, by design, searches for positive evidence of
entailment and does not explicitly count True Negatives. Furthermore,False Negatives are
inferred by identifying the gold-standard entailments that the system failed to predict.

The evaluation metrics are calculated as:

Recall (Sensitivity, True Positive Rate): Measures the proportion of actual positive
instances (true entailments in the gold standard) that the system correctly identified.

Recall = TP
TP + FN (5.1)
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Precision: Measures the proportion of instances predicted as positive by the system
that are actually positive according to the gold standard.

Precision = TP
TP + FP (5.2)

F1-Score: The harmonic mean of precision and recall, providing a single score that
balances both metrics. It gives more weight to lower values, making it suitable when
minimizing both false positives and false negatives is important.

F1-Score = 2 × Precision × Recall
Precision + Recall = 2 × TP

2 × TP + FP + FN (5.3)

These three metrics form the basis for evaluating and comparing the different system
configurations and baselines presented in the Chapter 6.

5.5 Matching Settings Experiments
After constructing the graphs for premises and hypotheses (potentially incorporating the
preprocessing steps described in Section 5.3), the entailment detection module performs
the matching process. This process is highly configurable, allowing us to systematically
evaluate the contribution of different information layers and matching strategies. The
only parameter fixed during graph construction is the depth for retrieving hypernyms
and hyponyms from GermaNet, which defaults to 2 levels.

We experiment with various settings controlled by boolean flags and configuration
parameters:

• Matching Type Flags (init, arg): These internal flags determine whether lemma
(False) or POS (True) is used for initial predicate matching (init) and argument
matching (arg). Our experiments focus on init=False, arg=False (Lemma-Lemma)
and init=False, arg=True (Lemma-POS).

• POS Matching Granularity (pos_matching_type): When POS matching
is enabled (arg=True), this parameter selects which POS representation to use:
spaCy’s pos tags (e.g., NOUN, VERB) or its more fine-grained tag tags (providing
more specific distinctions).

• Use GermaNet Relations (use_synonyms, use_hypernyms, use_hyponyms):
These boolean flags control whether the lexical layer is utilized during lemma
matching. Enabling these allows matching based on synonyms, hypernyms (gener-
alizations), or hyponyms (specifications) retrieved from GermaNet, in addition to
exact lemma matches. We test configurations using none, only synonyms, or all
three relation types.
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• Use Negation (use_negation): A boolean flag determining whether the negation
status from the context layer (Section 4.1.5) is enforced. If True, a premise node
and a hypothesis node can only match if they have the same negation status (both
negated or both affirmed). If False, negation status is ignored during matching.
This allows evaluating the impact of negation handling.

• Use Morphological Constraints (use_gender, use_number): Boolean flags
to enable constraints based on morphological features from the property layer (Sec-
tion 4.1.4). If use_gender is True, matching nodes (typically nouns/adjectives when
using lemma matching) must have compatible grammatical gender. If use_number
is True, they must match in grammatical number (singular/plural). These are pri-
marily explored in combination with Lemma-POS matching to potentially constrain
the broader matches produced by POS tags.

• Structural Validation (edge_check_mode): This parameter controls the
level of structural consistency checking performed during the validation stage
(Section 4.2.3) after initial node matches are found. It determines whether and how
the dependency relations between matched nodes are compared.

By systematically varying these settings, we aim to identify which combination of semantic
information (lemmas, lexical relations), structural information (POS tags, dependency
relations), morphological features (gender, number), and context (negation) yields the
best performance for entailment detection in our specific use case, balancing precision
and recall.

In the next chapter, we will present the results obtained from applying these different data
preprocessing steps and matching configurations, including an error analysis facilitated
by the system’s explainability features.
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CHAPTER 6
Results & Discussion

This chapter presents and discusses the results of the experiments detailed in Chapter
5. We evaluate our proposed symbolic entailment detection method within the context
of an AI legal tutor use case. Given that entailments make up 60% of our evaluation
dataset, our analysis places particular emphasis on precision metrics, though we also
consider recall and F1 scores to provide a comprehensive evaluation.

First, we compare the performance of our symbolic baseline approach against two
preprocessing techniques: coreference resolution and compound word splitting. Second,
we investigate the impact of incorporating external lexical resources from GermaNet.
Third, we analyze how different strategies for matching lemmas and POS tags affect
performance. Fourth, we explore the influence of different structural validation modes
on the dependency graph matching. Finally, we assess the effectiveness of an explicit
negation detection step in improving precision.

6.1 Baseline Performance and Default Settings
Before evaluating specific components like preprocessing or lexical resources, we establish
the performance of our baseline systems. We compare a standard BERT Sentence
Embedding approach, as explained in Section 5.4.1, against our basic symbolic method
(lemma-lemma matching) using different structural constraints.

6.1.1 BERT Sentence Embedding Baseline
The BERT baseline calculates the cosine similarity between sentence embeddings of
student answers and target solutions. A match is predicted if the similarity exceeds a
predefined threshold. Table 6.1 shows the performance for various thresholds.

While a low threshold (0.1) yields the highest F1 score due to perfect recall, it suffers
from low precision. The achieved precision of 0.667 is considered low, offering only a
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Cosine similarity threshold Precision Recall F1 Score
0.1 0.667 1.000 0.800
0.3 0.630 0.708 0.667
0.5 0.615 0.333 0.432
0.7 0.667 0.083 0.148

Table 6.1: BERT Sentence Embedding baseline performance by the cosine similarity
threshold

marginal improvement over simply guessing the positive class for every instance (which
would achieve 60% precision).

6.1.2 Symbolic Baseline and Structural Validation

Our basic symbolic baseline (lemma_lemma) matches lemmas directly without external
resources. We evaluated its performance under the three structural validation modes
described in Section 6.5: (open), (path exists), and (dependency exact). Results are shown
in Table 6.2.

Structural Mode Precision Recall F1 Score
open (lemma_lemma) 0.875 0.292 0.438
path exists (lemma_lemma) 0.833 0.208 0.333
dependency exact (lemma_lemma) 1.000 0.167 0.286

Table 6.2: Symbolic Baseline (lemma_lemma) Performance by Structural Mode

As expected, stricter structural requirements increase precision (reaching 1.000 for
"dependency exact") but significantly decrease recall and the overall F1 score. The
"open" mode, requiring only the presence of matching terms within the same sentence,
achieves the highest F1 score (0.438) among the symbolic baselines. Notably, all symbolic
baselines demonstrate substantially higher precision than the BERT approach, with the
"dependency exact" mode achieving perfect precision, which is particularly valuable for
our use case. However, our symbolic baseline suffers from low recall. A primary goal
of this work was to increase recall while maintaining the high precision advantages of
the symbolic approach. We will examine the results of our efforts to address this recall
challenge in the next sections.

6.2 Impact of Preprocessing Techniques

We conducted experiments to evaluate the effect of text preprocessing on the system’s
performance. We compared three scenarios: no preprocessing (baseline), coreference
resolution applied, and compound word splitting applied (as described in Section 5.3).
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Table 6.3 summarizes the precision, recall, and F1 scores for each preprocessing step
compared to the baseline (lemma_lemma_baseline) which uses simple lemma matching
without any external resources or specific structural constraints.

Preprocessing Precision Recall F1 Score
None (Symbolic Baseline) 0.875 0.292 0.438
Coreference Resolution 0.875 0.292 0.438
Compound Word Splitting 1.000 0.250 0.400

Table 6.3: Performance comparison of different preprocessing techniques.

As shown in Table 6.3, applying coreference resolution yielded identical results to the
baseline. This indicates that, for our dataset and annotation scheme, resolving pronouns
did not lead to the extraction of additional or different relevant relational tuples compared
to the baseline. A closer look at the annotations revealed that relational tuples often
omitted explicit subjects or objects when they were clearly inferable from the case
description context.

Compound word splitting resulted in perfect precision (1.000) but lower recall (0.250) and
F1 score (0.400) compared to the baseline. The improvement in precision is noteworthy, as
it eliminates false positives, though at the cost of some recall. While splitting compounds
might seem beneficial for precision, it sometimes hindered matching, as discussed below.

Overall, neither preprocessing technique improved the F1 score over the baseline in this
specific setup, though compound splitting did achieve perfect precision.

6.2.1 Qualitative Analysis
The explainability of our symbolic approach allows for a qualitative analysis of the
differences observed.

Coreference Resolution: Consider the example: "Wenn Fanny gutgläubig ist, d.h., sie
wusste nicht und konnte nicht wissen, dass Paula nicht die Eigentümerin war, dann hat
sie das Eigentum an dem Fahrrad durch den Kauf und die Übergabe gutgläubig erworben"
["If Fanny is in good faith, i.e., she did not know and could not have known that Paula
was not the owner, then she acquired ownership of the bicycle in good faith through the
purchase and handover"]. The system needed to resolve "sie" [she] in the final clause. It
incorrectly resolved the coreference to "Paula" instead of "Fanny". However, the annotated
target tuple for this segment was simply "erwerben(Eigentum)" [acquire(ownership)],
omitting the agent because only Fanny could acquire ownership in this context. Thus,
despite the incorrect resolution, the system still matched the tuple, and precision was
unaffected.

In a simpler case, "Es gehört Fanny, da sie es gutgläubig erworben hat" ["It belongs
to Fanny, as she acquired it in good faith"]. Coreference resolution correctly changed
the sentence to "Es gehört Fanny, da Fanny es gutgläubig erworben hat" ["It belongs to
Fanny, as Fanny acquired it in good faith"]. The target tuple was "erwerben(gutgläubig)"
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[acquire(good_faith)], again omitting the agent. If the annotation had been more specific,
e.g., "erwerben(Fanny, gutgläubig)", the coreference resolution step would have been
crucial for finding the match, whereas the baseline might have missed it. This suggests
coreference resolution could be beneficial for tasks with more detailed relational tuple
annotations that include subjects and objects more consistently.

Compound Word Splitting: Splitting compound words sometimes prevented matches.
For example, the system aimed to match the tuple "beweglich(Fahrrad, Sache)" [mov-
able(bicycle, thing)] indicating that the bicycle is a movable object. When processing an
answer containing "Fahrrad" [bicycle], the splitting algorithm segmented it into "Fahr"
[drive/ride] and "Rad" [wheel/bike]. This prevented a direct lemma match with the
target tuple’s argument "Fahrrad" [bicycle]. While lexical resources like GermaNet (dis-
cussed next) could potentially bridge this gap by relating "Rad" [wheel/bike] to "Fahrrad"
[bicycle] (e.g., as a synonym or hypernym), the splitting process itself introduced this
intermediate hurdle. Given that incorporating lexical resources offers a more robust way
to handle such variations (Section 6.3), we chose to omit the compound splitting step in
subsequent experiments. We hypothesize that relationships between compounds and their
components are better captured through semantic relations like synonymy or hyponymy.

6.3 Impact of Lexical Resources
We investigated how incorporating lexical-semantic knowledge from GermaNet affects
performance. We focused on integrating synonyms, hyponyms (more specific terms), and
hypernyms (more general terms) into the matching process, using the default "open"
structural validation mode.

Table 6.4 presents the results compared to the symbolic baseline and the BERT sentence
embedding baseline.

Approach Relation Type Precision Recall F1 Score
Symbolic Baseline - 0.875 0.292 0.438
Lemma+Lemma+Synonyms Synonyms 0.857 0.500 0.632
Lemma+Lemma+Hyponyms Hyponyms 0.889 0.333 0.485
Lemma+Lemma+Hypernyms Hypernyms 0.875 0.292 0.438

Table 6.4: Performance comparison using lexical resources (open Structure)

The inclusion of synonyms provided the most substantial improvement, boosting the
F1 score to 0.632 primarily through increased recall (0.500), while maintaining a strong
precision of 0.857. Incorporating hyponyms also slightly improved the F1 score to
0.485 and achieved the highest precision (0.889) among the lexical resource approaches.
However, adding hypernyms did not lead to any improvement over the symbolic baseline
in this configuration. A possible explanation for this lack of improvement with hypernyms
could be that we limited the depth of both hypernym and hyponym relations to 2 in our
GermaNet integration. While this depth appears sufficient for hyponyms to capture more
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specific terms, it may be too restrictive for hypernyms, where a greater depth might be
needed to reach more general terms that could facilitate additional matches.

6.3.1 Analysis of Synonym Integration
While allowing synonym matches significantly increased recall, it occasionally introduced
false positives, slightly reducing precision compared to the baseline. For instance, the
student’s answer "beim Fahrrad handelt es sich um eine bewegliche Sache" ["the bicycle is
a movable object"] was incorrectly matched with the target pattern "verkauft(Fahrrad)"
[sold(bicycle)]. This occurred because "handeln" [to trade] was matched as a synonym for
"verkaufen" [to sell] in GermaNet for a specific sense. The system’s inability to perform
accurate word sense disambiguation led to this incorrect match based on an inappropriate
synonym sense.

Another false positive arose from the target pattern "verkauft(Fahrrad)" derived from
the solution text "Das Fahrrad wurde verkauft" ["The bicycle was sold"]. The system
matched the student attempt "Da Paula nicht Eigentümerin des Fahrrades ist kann Sie
dieses nicht verkaufen" ["Since Paula is not the owner of the bicycle, she cannot sell it"].
This match is incorrect for two reasons:

• Tense/Aspect Mismatch: The target pattern refers to a past, completed action,
while the student’s answer discusses a potential future action. While we include
the verb form in our property sublayer, we did not explore it as a constraint in this
experiment.

• Negation: The student’s answer explicitly negates the action ("nicht verkaufen"
[cannot sell]). This particular false positive is successfully eliminated when negation
detection is enabled (Section 6.6), demonstrating how negation handling can improve
precision.

It was also observed that using GermaNet’s path-based relatedness measure (instead of
strict synonym sets), as explained in Section 4.2.1, implicitly captured some hyponymic
relations. For example, terms like "Fahrrad" [bicycle] and "Rad" [bike], "Kaufvertrag"
[purchase contract] and "Vertrag" [contract], or "Preis" [price] and "Kaufpreis" [purchase
price] might be considered related via short paths in GermaNet, even if not strict
synonyms.

6.4 Lemma and POS Matching Strategies
This section explores different strategies for matching nodes in the graphs, combin-
ing lemma matching with POS information. As defined in Chapter 4, relational tu-
ples follow the format "predicate(argument1, argument2, ...)". Our baseline approach
("lemma_lemma") requires exact lemma matches for both the predicate and its arguments
(or their synonyms/hyponyms when lexical resources are enabled).
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We experimented with relaxing the matching criteria for arguments, requiring only the
predicate to match by lemma (or related term) while allowing arguments to match based
on POS tags instead. We tested two types of POS tags: coarse-grained universal POS
tags ("lemma_pos") and fine-grained STTS tags ("lemma_tag").

Table 6.5 shows the performance of these different matching strategies, combined with
GermaNet synonyms and using the default "Open" structural validation mode. It also
includes a variant ("lemma_tag_syno_gender") that additionally checks for gender
agreement, as well as variants with negation detection enabled.

Approach Precision Recall F1 Score
Symbolic Baseline 0.875 0.292 0.438
lemma_pos 0.846 0.458 0.595
lemma_tag 0.846 0.458 0.595
lemma_tag_syno 0.818 0.750 0.783
lemma_tag_syno_gender 0.800 0.667 0.727
lemma_pos_syno_negation 0.900 0.750 0.818
lemma_tag_syno_negation 0.947 0.750 0.837
lemma_tag_syno_negation_gender 0.941 0.667 0.780

Table 6.5: Performance comparison of different lemma and POS matching modes (Open
Structure, with Synonyms where indicated)

Relaxing the argument matching to use POS or TAG tags ("lemma_pos", "lemma_tag")
improved the F1 score compared to the symbolic baseline. The combination of fine-grained
TAG matching for arguments with lemma matching for predicates and incorporating
synonyms ("lemma_tag_syno") achieved a strong F1 score of 0.783. While this approach
shows a slight decrease in precision (0.818) compared to the symbolic baseline (0.875),
the substantial gain in recall (0.750 vs. 0.292) justifies this trade-off.

When negation detection is enabled, we observe further improvements in performance. The
"lemma_tag_syno_negation" approach achieves the highest overall F1 score (0.837) with
excellent precision (0.947) while maintaining the high recall (0.750). This demonstrates
that fine-grained TAG attributes are more effective than simple POS tags when negation
is enabled, as seen by comparing with "lemma_pos_syno_negation" (F1 = 0.818).

Adding gender agreement checks consistently lowers recall in both settings, though it
shows potential for reducing false positives when combined with negation detection.
This suggests that enforcing gender agreement is too restrictive for this task, potentially
filtering out valid matches where gender information is not critical to the semantic
meaning.

Overall, these results indicate that the combination of lemma matching for predicates,
TAG-based matching for arguments, synonym integration, and negation detection provides
the most balanced and effective approach for matching relational tuples in German legal
texts.
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6.5 Impact of Structural Validation Modes
We investigated the effect of varying the strictness of structural validation when matching
dependency paths between the student’s answer and the target solution pattern. As
detailed in Chapter 4, we compared three modes:

• Exact Dependency (dep): Requires the dependency relation label path between
matched nodes to be identical.

• Path exists (path): Requires only that a directed path exists between the matched
nodes in the student’s answer graph, corresponding to the path in the target pattern,
regardless of the specific edge labels.

• Open: The least restrictive mode, requiring only that the predicate and argument
nodes are present in the same sentence, without checking the dependency path
between them.

Table 6.6 compares these modes using the "lemma_lemma_syno" approach (lemma
matching for predicate and arguments, plus synonyms).

Approach Structural Mode Precision Recall F1 Score
Symbolic Baseline Open 0.875 0.292 0.438
lemma_lemma_syno Open 0.857 0.500 0.632
lemma_lemma_syno Path Existence 0.909 0.417 0.571
lemma_lemma_syno Exact Match 1.000 0.292 0.452

Table 6.6: Performance comparison for different structural validation modes (using
Lemma+Lemma+Synonyms)

As expected, the "Dependency exact" mode yielded the highest precision (1.000) but the
lowest recall (0.292), resulting in an F1 score of 0.452. The perfect precision achieved with
this mode is particularly valuable in applications where false positives must be minimized.
The "Path exists" mode offered a compromise with higher precision (0.909) than the
"open" mode and better recall than the "Dependency exact" mode, achieving an F1 score
of 0.571. This mode confirms the intuition that the directed nature of dependency graphs
implies meaningful relationships, even if the specific labels vary.

However, the highest recall (0.500) and overall F1 score (0.632) were achieved with the
"open" mode, while still maintaining strong precision (0.857). This might be because
the student attempts and the sample solution operate within a constrained domain with
limited vocabulary. Consequently, simply mentioning the correct entities (predicate and
arguments) in the same sentence is often sufficient to indicate the correct meaning, even if
the grammatical structure or dependency relations differ slightly from the target pattern.
Furthermore, potential inaccuracies in dependency parsing for complex sentences could
also favour the less restrictive "open" mode.
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6.6 Impact of Negation Detection
Finally, we analyze whether incorporating an explicit negation detection step improves
system performance, specifically by reducing false positives and thus increasing precision.
We applied the negation check to several of the best-performing configurations from the
previous experiments. The negation component verifies whether the matched predicate
or tuple is negated in the student’s answer compared to the target pattern.

Table 6.7 compares the performance of selected approaches with and without the negation
detection step enabled.

Approach Negation Precision Recall F1 Score
Symbolic Baseline No 0.875 0.292 0.438
lemma_lemma_synonyms No 0.857 0.500 0.632
lemma_lemma_synonyms_negation Yes 1.000 0.500 0.667
lemma_tag_syno_open No 0.818 0.750 0.783
lemma_tag_syno_negation_open Yes 0.947 0.750 0.837
lemma_tag_syno_path No 0.812 0.542 0.650
lemma_tag_syno_negation_path Yes 0.929 0.542 0.684

Table 6.7: Performance comparison with and without negation detection

The results consistently show that applying the negation detection step increases precision,
often significantly. For instance, adding negation to the "lemma_lemma_synonyms"
approach raised precision from 0.857 to 1.000, improving the F1 score from 0.632 to
0.667. Similarly, for the best performing "lemma_tag_syno_open" approach, negation
detection increased precision from 0.818 to 0.947, boosting the F1 score from 0.783
to 0.837. The recall remains unaffected as negation detection only filters out existing
matches, it does not find new ones. These results strongly support the inclusion of
an explicit negation handling mechanism for improving the accuracy of the symbolic
entailment system, particularly for applications where precision is required.

6.7 Analysis of Missed Entailments
This section examines some examples of correct student answers that the system failed
to identify (false negatives) and discusses potential reasons.

1. Student answer: "Entgeltlichkeit liegt aufgrund des Kaufpreises iHv 100€ vor" ["Consid-
eration exists due to the purchase price of €100"]. The target patterns for this point were
"entgeltliches(Rechtsgeschäft)" ["onerous(legal_transaction)"] and "Preis(angemessener)"
["price(reasonable)"]. Matching either should suffice.

The system failed to entail the noun "Entgeltlichkeit" ["consideration/onerousness"] from
the adjectival predicate "entgeltlich" ["onerous"] in the first pattern. This highlights
a limitation of strict lemma matching; morphological variants might require explicit
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handling or more sophisticated lexical resources. Furthermore, the pattern required the
argument "Rechtsgeschäft" ["legal transaction"] (or a synonym) to be present, which was
absent in the student’s answer, although contextually implied.

For the second pattern, "Preis(angemessener)" ["reasonable(price)"], the system (and
indeed, a human reader without further context) cannot determine if the mentioned
price of €100 is "angemessen" ["reasonable"]. This points to the need for domain-specific
knowledge, which are beyond the scope of the current symbolic matching approach.

2. Student answer: "Da Paula nicht Eigentümerin des Fahrrades ist kann Sie diese nicht
verkaufen" ["Since Paula is not the owner of the bicycle, she cannot sell it"]. This was
annotated as correctly conveying the meaning of the target pattern "scheidet(derivativ,
Erwerb)" ["ruled_out(derivative, acquisition)"], meaning derivative acquisition is not
possible. Capturing this entailment requires significant legal background knowledge to
understand that Paula’s inability to sell due to lack of ownership implies the impossibility
of derivative acquisition by Fanny. This represents a complex entailment requiring
domain-specific reasoning beyond lexical and structural matching. It is worth considering
whether such an answer, which relies on implied legal reasoning (Paula’s lack of ownership
prevents derivative acquisition) rather than stating it explicitly, should be considered
fully correct for assessment purposes.

3. Student answer: "es handelt sich um eine individuell bestimmbare Sache, die beweglich
ist." ["it is an individually determinable thing that is movable."]. The corresponding
target pattern was "Fahrrad(bewegliche, Sache)" ["bicycle(movable, thing)"]. Although
the student’s answer correctly identifies the bicycle as movable, the system missed the
match. The pronoun "es" ["it"] refers to the bicycle, but this coreference was not resolved
or linkable because "Fahrrad" ["bicycle"] was not mentioned in the preceding context
of this specific student’s answer. Even the POS/TAG matching strategies (Section 6.4)
failed here, as the pronoun "es" ["it"] and the noun "Fahrrad" ["bicycle"] do not share
the same POS or TAG attributes.
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CHAPTER 7
Conclusion

This thesis presented the development and evaluation of a symbolic system for recognizing
textual entailment in German legal texts, motivated by the requirements of an AI legal
tutor application.

7.1 Contributions

The primary contributions of this work are the adaptation of the graphical knowledge
representation that includes external German lexical resources and the negation detection
component for the symbolic entailment detection system.

First, we employed a multi-layered knowledge graph representation for German text
based on the GKR architecture [Kalouli and Crouch, 2018], building upon a dependency
parsing. This representation then integrates several layers: a concept layer that simplifies
the syntactic structure to core entities and relations guided by annotated target patterns; a
lexical layer that enriches concept nodes with synonyms, hypernyms, and hyponyms from
GermaNet, enabling matching beyond literal terms and increasing semantic flexibility;
a property layer that adds detailed morphological and POS information (from spaCy
and DWDSmor); and finally, a context layer focusing on negation, implemented via a
rule-based system that determines the scope of negation cues within the dependency
structure. This rich representation provides a structured base for semantic comparison.

Second, we developed and evaluated a fully symbolic, rule-based entailment detection
system that uses configurable graph-matching methods to determine if the graph repre-
sentation of a sentence entails the graph representation of another sentence.
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7.2 Addressing Research Questions
Our experimental evaluation provided insights into the research questions posed at the
beginning:
Regarding RQ1, whether symbolic rules grounded in German morphology and semantics
can increase recall and precision compared to two different baseline approaches, our
findings show significant enhancements. Incorporating German-specific semantic and
morphological information improved entailment detection compared to both a standard
sentence embedding baseline and a basic symbolic lemma-matching baseline. The
integration of lexical resources (particularly synonyms from GermaNet) substantially
improved recall while maintaining high precision, as shown in Chapter 6. Using detailed
morphological features and POS tags allowed for more refined matching strategies. Several
configurations of our symbolic system achieved perfect or near-perfect precision, reducing
false positives.
Concerning RQ2, how unique German linguistic features like compound nouns, case-based
syntax, and gender affect rule-based inference, our experiments revealed varied impacts.
Explicitly splitting compound nouns did not improve overall performance and slightly
reduced recall, though it increased precision in one setting. Problems came up because
splitting sometimes prevented direct matches. Accessing components of compound nouns
seemed better handled through hyponymy and synonym relations. Specific German
language characteristics such as free-word order and case-bases syntax were implicitly
captured by the dependency parser, requiring no explicit handling. While adding explicit
case matching wasn’t needed for structural validation in our setup, case information
could be valuable for future tasks like word sense disambiguation. Regarding gender,
incorporating grammatical gender agreement as a constraint consistently lowered recall,
although it slightly improved precision sometimes (especially with negation detection).
Enforcing strict gender agreement might be too restrictive for this task, filtering out
valid matches where gender isn’t critical to the meaning. The trade-off needs careful
consideration.
Finally, for RQ3, whether explicit negation detection and morphological consistency
checks can reduce false positives, our results strongly support this. The rule-based
negation detection component consistently improved precision, often significantly, by
correctly handling negated statements. The false positive rate was always reduced when
negation detection was active, showing its effectiveness. Morphological checks like gender
agreement also showed potential but had less impact and a larger recall penalty compared
to negation detection.

7.3 Limitations
Despite promising results, our approach has several limitations.
The entire graphical knowledge representation depends heavily on the initial dependency
parser accuracy. Errors in parsing, performed by the parser model trained primarily
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on news text (HDT Treebank), directly affect the system’s performance. The parser’s
effectiveness on domain-specific legal text was not explicitly evaluated and is a potential
weakness. The HDT Treebank’s origin (news articles in the tech domain from 1996-2001)
might also represent a domain and time mismatch for current legal texts, potentially
affecting parsing accuracy. Evaluating the parser’s performance specifically on the target
legal domain is crucial.

The context representation is limited, currently modeling only negation. Other factors
like modality, certainty, or tense are not represented, limiting the ability to handle more
complex semantic relationship, which are crucial in our use case.

A key limitation is the simple relational structure, which maps each predicate or argument
to a single token from the sentence. This proves problematic for German compound
verbs, where multi-token verbs like "sich handeln um" [to be about] have a distinct
meaning from their base verb "handeln" [to act/to trade]. The inability to represent these
multi-token verbs as single semantic units led to false negatives in certain entailment
scenarios. Furthermore, the system was designed for a specific use case and doesn’t
support scenarios needing multiple tuple matches for a specific pattern. This limitation
was evident in some missed entailments where the required meaning was expressed across
multiple clauses or involved concepts not easily reducible to single tokens. More flexible
graph structures or semantic representations might be needed.

The system targets only the entailment relation, unable to capture contradiction or
neutrality, limiting its use in general NLI tasks. Extending it for more comprehensive
feedback requires significant additions.

The system struggles with handling implicit knowledge and reasoning. The analysis of
missed entailments showed it cannot handle cases needing significant domain knowledge,
complex inference. Symbolic matching struggles with these knowledge-intensive inferences
as it relies on explicit node and edge matching, limiting its ability to capture paraphrases
or inferences not directly supported by resources.

Morphological variation sometimes caused failures when entailment depended on recog-
nizing relationships between different word forms (like noun vs. adjective), indicating
limitations in lemmatization or lexical matching.

Finally, word sense disambiguation is basic; the heuristic used sometimes led to incorrect
sense matches and false positives, suggesting a need for a more advanced WSD mechanism.

7.4 Future Work

Based on these findings and limitations, several directions for future research appear
useful. We divide into two parts: improvements to the symbolic entailment detection
system and suggestions for future work on the AI legal tutor application.
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7.4.1 Symbolic textual entailment
Future enhancements to the symbolic system could focus on several areas. Firstly, the
context layer should be expanded beyond negation to model other relevant contexts,
such as modality, certainty, tense, and aspect, which is crucial for improving entailment
accuracy.

Secondly, investigating more flexible relational representations beyond simple token-based
tuples could better handle complex meaning structures inherent in legal language.

Thirdly, implementing an adaptive matching strategy could improve robustness. Such
a strategy could start with strict settings for high precision and progressively relax
constraints for initially unmatched patterns. This approach would provide confidence
information based on the relaxation level, allowing low-confidence matches to be flagged for
review by a domain expert or a more sophisticated large language model. Exploring hybrid
approaches that integrate large language models could combine the symbolic system’s
precision and interpretability with data-driven robustness, particularly for complex cases.
For instance, vector representations could be adapted for heuristic matching in tasks like
Word Sense Disambiguation (WSD) and semantic similarity assessment.

Furthermore, the negation detection component could be enhanced to recognize morpho-
logical negation cues in adjectives and adverbs, such as prefixes (e.g., "a-", "un-", "ir-",
"des-") and suffixes (e.g., "-los"). Detecting such implicit negations would further enhance
the system’s reasoning capabilities.

Finally, the system’s utility could be enhanced by extending it to detect contradictions,
not just entailment. This would involve defining specific conflict patterns or integrating
domain-specific rules.

7.4.2 AI legal tutor application
Specific improvements related to the AI legal tutor application should address parser
reliability and domain knowledge integration. Given the system’s reliance on syntactic
structure, the dependency parser’s reliability is critical. Therefore, a thorough evaluation
of its performance on German legal texts is necessary, along with exploring alternatives
like domain-specific fine-tuning or different parser models to quantify and mitigate parsing
errors.

Integrating domain-specific knowledge is also essential. Incorporating resources such
as legal ontologies, specialized dictionaries, and references to relevant legal paragraphs
would significantly improve the handling of specific terminology and enable more complex
reasoning patterns relevant to the legal domain.

Beyond entailment and contradiction, the tutor application could benefit from explicitly
detecting affirmation. Similar to negation detection, identifying when a student’s answer
clearly affirms a concept could provide valuable feedback regarding their understanding
and the direction of their reasoning. To further improve negation handling itself, we advise
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domain experts to incorporate more domain-relevant negation cues into the system’s
knowledge base.

In conclusion, this thesis demonstrated the potential of a linguistically-informed, symbolic
graph-based approach for precise textual entailment detection in the challenging domain
of German legal text. While achieving high precision and offering explainability, the
system faces limitations related to parser dependency, knowledge representation, and
complex inferences. The outlined future work, particularly exploring hybrid models and
integrating domain knowledge, offers promising paths towards building more robust and
comprehensive NLI systems for specialized domains like law.
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Overview of Generative AI Tools
Used

In this thesis following supportive tools were used:

• ChatGPT-4o was used for proofreading and improving the clarity of the content
of some paragraphs in the thesis. Overall, the following prompt was used: "Can you
double-check the grammar? Rephrase something if unclear, but without changing the
key content or the writing style: [input paragraph]" Each change was then manually
checked to ensure that the original meaning and style were preserved.

• DeepL was used to provide translations for legal terms and phrases from German
to English.

• Google Translate was used to provide an initial translation for the sections
Abstract and Acknowledgements. Both translations were then manually refined.

• Grammarly was employed once as a final proofreading tool to ensure that the
final version of the thesis was free of grammatical errors.
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