
Eine Referenzimplementierung
für den erweiterten Algorithmus

von Simon

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Oskar Mayer, Bsc
Matrikelnummer 01426798

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao. Univ-Prof. Dr. Uwe Egly

Wien, 2. Mai 2025
Oskar Mayer Uwe Egly

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Reference Implementation for
the Extended Version of Simon’s

Algorithm

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Oskar Mayer, Bsc
Registration Number 01426798

to the Faculty of Informatics

at the TU Wien

Advisor: Ao. Univ-Prof. Dr. Uwe Egly

Vienna, May 2, 2025
Oskar Mayer Uwe Egly

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Oskar Mayer, Bsc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die ver-
wendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die
ohne substantielle Änderungen übernommen wurden, habe ich jeweils die von mir formu-
lierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem Produktnamen
und Versionsnummer/Datum angegeben.

Wien, 2. Mai 2025
Oskar Mayer

v

Acknowledgements

I am most grateful to Uwe Egly for guiding the entire process of writing this thesis. In
particular, I am thankful for the diligent proofreading, helpful discussions, and all the
valuable feedback which made working on this thesis a pleasant experience from start to
finish.

Writing this thesis was also supported by the colleagues and friends I made at TU Wien.
Thank you to Felix and Paul for cheering up countless study sessions at the library.
Greetings to Tabea, who talked me into signing up for my first course on quantum
computing. Thanks also to Alice for patiently correcting my English writing.

Lijep pozdrav Ani. Volim te najviše!

vii

Kurzfassung

Simons Problem und Simons Algorithmus sind fundamentale Ergebnisse aus dem Bereich
Quantum Computing. Im Jahr 1997 publizierten Brassard und Høyer eine Erweiterung der
Arbeit von Simon, welche als die erweiterte Version von Simons Problem und Algorithmus
bekannt ist, und welche schließlich zur Entwicklung zusätzlicher wichtiger Konzepte wie
dem Problem der verborgenen Untergruppe und dem Amplitudenverstärkungsverfahren
führte. Trotz ihres Einflusses existierte die Arbeit von Brassard und Høyer bis jetzt nur auf
dem Papier und es gab keine Referenzimplementierung für den erweiterten Algorithmus
von Simon.

Im Zuge dieser Diplomarbeit führen wir zunächst eine detaillierte mathematische Analyse
der Arbeit Brassard- und Høyers durch. Weiters stellen wir eine neuartige Prozedur vor,
mit welcher automatisch Testinstanzen für die erweiterte Version von Simons Problem
generiert werden können. Bei diesen Testinstanzen handelt es sich um Quantenprogram-
me, welche gemeinhin Orakel genannt werden. Unsere Orakel sind auf real existierenden
Quantencomputern lauffähig. Darüber hinaus präsentieren wir die erste Referenzimple-
mentierung der erweiterten Version von Simons Algorithmus, welche ebenfalls auf echten
Quantencomputern lauffähig ist.

Abschließend evaluieren wir unsere Implementierung auf einem störungsfreien Quanten-
computersimulator, auf mehreren störungsbehafteten Simulatoren echter Geräte und auf
einem real existierenden Quantencomputer selbst. Unsere Erkenntnisse sind, dass sich un-
sere Implementierung sowohl auf dem störungsfreien- als auch auf den störungsbehafteten
Simulatoren verhält wie erwartet. Die Ergebnisse auf dem echten Quantencomputer legen
jedoch nahe, dass die momentan verfügbare Quantenhardware nicht ausgereift genug ist,
um selbst kleinste Instanzen der erweiterten Version von Simons Problem zu lösen.

ix

Abstract

Simon’s problem and Simon’s algorithm are seminal results in quantum computing. In
1997, Brassard and Høyer published an extension to the work of Simon known as the
extended version of Simon’s problem and algorithm, which itself laid the foundations
for further important concepts like the hidden subgroup problem framework and the
amplitude amplification quantum algorithm paradigm. Despite this, the work of Brassard
and Høyer so far existed on paper only and lacked a reference implementation.

We first provide a detailed mathematical analysis of the work by Brassard and Høyer.
Second, we present a novel procedure that automatically generates test instances for
the extended version of Simon’s problem. Those test instances are quantum programs
commonly called oracles, and our oracles are runnable on actual quantum hardware.
Third, we provide the first reference implementation for the extended version of Simon’s
algorithm itself, which is runnable on actual quantum hardware as well.

Last, we tested our implementation on a noise-free quantum computer simulator, on noisy
simulators for actual quantum processors and on a real quantum device. Our findings are
that the extended version of Simon’s algorithm works as expected both on the noise-free
and the noisy simulators. The results from the real quantum computer however hint that
current-generation devices are still not mature enough to solve even small toy instances
of the extended version of Simon’s problem.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Notation and Mathematical Background 5
2.1 Group Theory . 5
2.2 Linear Algebra Basics . 6
2.3 Quantum-Mechanical Basics . 8
2.4 Operators in Quantum Computing . 11

3 Classical and Quantum Complexity 13
3.1 Classical Complexity Theory . 13
3.2 The Circuit Model of Computation . 14
3.3 Quantum Complexity Theory . 14
3.4 Quantum Circuits . 15
3.5 Oracle Complexity . 16
3.6 Quantum Computing in Practice . 16

4 A Randomized Algorithm for Simon’s Problem 19
4.1 Quantum Algorithm for Simon’s Problem 20
4.2 Classical Post-Processing for Simon’s Problem 23
4.3 An Example Run of the Original Version of Simon’s Algorithm 24
4.4 Computational Complexity . 25

5 A Randomized Algorithm for the Extended Version of Simon’s Prob-
lem 29
5.1 Quantum Algorithm for the Extended Version of Simon’s Problem . . 30

6 Removing Already Known Vectors from a Superposition 39
6.1 Implementing a Single Blocking Clause 39

xiii

6.2 Implementing Multiple Blocking Clauses 44

7 Removing the Zero Vector from a Superposition 47
7.1 Preparatory Quantum Operators . 47
7.2 Quantum Algorithm for Removing the Zero Vector 50

8 A Deterministic Algorithm for the Extended Version of Simon’s
Problem 57
8.1 Preparatory Results . 57
8.2 Deterministic Quantum Algorithm for the Extended Version of Simon’s

Problem . 60
8.3 Classical Post-Processing for the Extended Version of Simon’s Problem 65
8.4 An Example Run of the Extended Version of Simon’s Algorithm . . . 65
8.5 Computational Complexity . 69

9 Implementation 71
9.1 Oracle Implementation . 72
9.2 Circuit Examples . 75
9.3 Considerations for NISQ Hardware . 77

10 Conclusion 81

Overview of Generative AI Tools Used 83

Bibliography 85

CHAPTER 1
Introduction

Imagine we are given some kind of mysterious machine. The machine is sealed shut,
so we cannot take it apart and inspect how it works on the inside. However, we can
turn the machine on and interact with it. That is, we can feed the machine inputs and
it will give us outputs in return. We are also given a user manual claiming that the
machine fulfills exactly one of the following conditions: Either each possible input gets
mapped to a unique output, or there are always two distinct inputs that get mapped
to the same output. Our job is to find out whether the machine fulfills the first or the
second condition and, in the latter case, what are the pairs of inputs that get mapped to
the same output.

The setting from above is better known as Simon’s problem [32]. In its formal description,
instead of an actual physical machine, we are given a black box implementation of some
function which we can run on a computer. We immediately note that a trivial way to
solve Simon’s problem is to simply run the black box function once for each possible
input and to log the results. However, in the case of Simon’s problem, the input space of
the function are bitstrings of length n, so we would be required to make O(2n) queries to
the function, too much to be feasible for large n. More sophisticated solutions exist, but
even state-of-the-art algorithms (deterministic as well as randomized) require an amount
of queries exponential in n [32].

Although Simon’s problem is rather abstract and its usefulness is not immediately obvious,
its proposal in 1994 caused excitement in the field of quantum computing. Simon’s
problem is the first problem ever discovered where, if we use a quantum computer, we
can find a solution substantially faster than we could using classical hardware only. The
corresponding hybrid quantum-classical algorithm is now known as Simon’s algorithm
[32], and it is considered a seminal result, covered in most quantum computing textbooks
and courses. Importantly, Simon’s algorithm is probabilistic, that is, we do not have a
guaranteed upper bound for its runtime, only an expected one.

1

1. Introduction

Over time, both Simon’s problem and Simon’s algorithm have been generalized and
adapted. In 1997, Brassard and Høyer presented what is now called the extended version
of Simon’s problem [13]. In that extended version, we are given as problem instance a
black box function implementation which does not fulfill one of two, but one of multiple
(i.e. possibly more than two) conditions. The task is again to find out, which condition
the black box implementation fulfills. Additionally, Brassard and Høyer presented what
is now called the extended version of Simon’s algorithm [13]. It not only solves the more
general extended version of Simon’s problem, it further does so deterministically (with a
fixed upper runtime bound) and using the same amount of queries against the black box.

The extended version of Simon’s problem was eventually generalized into what is now
commonly called the hidden subgroup problem (HSP) [27]. In this most general definition
we are still given a black box implementation of some function. The input space of that
function is not comprised of bitstrings of length n anymore, but of elements of some
algebraic group G, and the behavior of the function (i.e. which input values are mapped
to which output values) is specified via the structure of a ‘hidden’ subgroup of G. While
the previous versions of Simon’s problem serve mainly theoretical purposes, important
real-world applications have reductions to the HSP. For example, the celebrated algorithm
of Shor [31], for computing the prime factor decomposition of a number, can be seen as
an instance of the HSP where G is the algebraic group over the set of integers where the
group operation is integer addition [27].

The extended version of Simon’s algorithm has received continuous attention since its
original proposal as well. The technique at the heart of the algorithm is now called
amplitude amplification [14, 18], and it is often used to speed up the search in an
unstructured search space. An example use case is attacking symmetric cryptographic
primitives [15], like inverting a hash function.

Although the work by Brassard and Høyer [13] proved to be so influential, no runnable
implementation of the extended version of Simon’s algorithm was ever published. A
reason for this is that back in 1997, when Brassard and Høyer proposed their work, actual
quantum computers were, aside from primitive experimental prototypes, merely science-
fiction. Hence, developing a quantum algorithm meant giving a written description of
abstract mathematical operations being executed on some hypothetical device, and then
proving the correctness of the entire procedure on paper. The absence of actual quantum
computers meant there was no use developing concrete runnable implementations of
quantum algorithms. This situation has changed. At the time of writing this thesis,
commercial quantum computers are available, for example IBM Eagle [4] or IonQ Aria
[5]. Since quantum hardware is now a reality, we would also like to experiment with the
algorithms that so far exist on paper only, and this is the research gap we are trying to
fill. Our contributions are:

• A rigorous mathematical analysis of the work of Brassard and Høyer [13]. We
formally relate the original version of Simon’s problem to the extended version and
we give detailed proofs for the correctness and runtime bounds of the extended

2

version of Simon’s algorithm. Analyses like this already exist, but they generally
stay on a high level and tend to skip important details and edge cases.

• A novel procedure for automatically generating test instances for the extended
version of Simon’s problem, which we implemented using the IBM Qiskit [21]
quantum SDK. Such a procedure already exists for the original version of Simon’s
problem, but not for the extended version.

• A runnable reference implementation [24] for the extended version of Simon’s
algorithm as presented by Brassard and Høyer [13], also using the IBM Qiskit SDK.
To the best of our knowledge, our reference implementation is the first one ever
published.

The rest of this thesis is structured as follows. We first give an overview over formalisms
in quantum computing. Chapter 2 contains core mathematical concepts and notation
used throughout the thesis. In Chapter 3 we give a short introduction to quantum
complexity theory. We need this in order to formalize what it means for an algorithm to
be efficient in the context of the extended version of Simon’s problem.

Next, we give a detailed description of the work of Simon [32]. Chapter 4 contains a
formal definition of the original version of Simon’s problem, together with a detailed
analysis of the original version of Simon’s algorithm.

We follow this up with a detailed description of the work by Brassard and Høyer [13].
In Chapter 5 we first present a formal definition of the extended version of Simon’s
problem. We then repeat the analysis of the original version of Simon’s algorithm, but
now in the setting of the extended version of Simon’s problem. In Chapters 6 and 7 we
present the techniques with which we can make the original version of Simon’s algorithm
deterministic and fit for the extended version of Simon’s problem. In Chapter 8, we tie
everything together and give a formal description of the extended version of Simon’s
algorithm.

Finally, we present and discuss our implementation in Chapter 9. We first show the
procedure to generate test instances for the extended version of Simon’s problem. Next, we
present examples for the circuits generated by our overall implementation of the extended
version of Simon’s algorithm, where we show which parts of the circuits implement which
parts of the quantum algorithm. We then present experimental results from running
those circuits both on simulators and on an actual IBM Eagle [4] processor. Chapter 10
contains concluding remarks.

3

CHAPTER 2
Notation and Mathematical

Background

In this section we first present core concepts from group theory needed for the analysis
of the extended version of Simon’s problem. Next, we present general results from linear
algebra. Those are needed first for a better understanding of how quantum computing
works. Second, throughout this thesis, we will work with bitstrings a lot, and it will
often be helpful to view those as a vector space over Z2 to derive more advanced results.
Next we present linear algebra results special to quantum computing and last we give an
overview on the concrete quantum operators used in the thesis.

2.1 Group Theory
Following Appendix 2 in [27] by Nielsen and Chuang, a group is a tuple ⟨X, ◦⟩ where X
is some non-empty set and ◦ denotes a binary operation with the following properties.

• ∀x, y ∈ X : (x ◦ y) ∈ X (closure)

• ∀x, y, z ∈ X : (x ◦ y) ◦ z = x ◦ (y ◦ z) (associativity)

• ∃e ∈ X : ∀x ∈ X : x ◦ e = e ◦ x = x (neutral element)

• ∀x ∈ X : ∃x−1 ∈ X : x ◦ x−1 = x−1 ◦ x = e (inverses)

As a shorthand, we often refer to a group ⟨X, ◦⟩ by just X when the corresponding binary
operation is clear from the context.

We now follow Brassard and Høyer [13] as we present the particular group G defined as
⟨{0, 1}n, ⊕⟩, where

5

2. Notation and Mathematical Background

• {0, 1}n denotes the set of all possible bitstrings of length n, n > 0 and

• ⊕ denotes the bitwise XOR operation.

The neutral element of G is the zero bitstring, which we denote as 0. Furthermore, in G,
each element is its own inverse. For any H ⊆ {0, 1}n, if ⟨H, ⊕⟩ is a group, we call H a
subgroup of G. If H additionally contains an element that is not the zero bitstring, we
call H a non-trivial subgroup of G.

For a subgroup H of G and any arbitrary y ∈ G, the coset of H induced by y is defined
as {y ⊕ h | h ∈ H}, and we call y the representative of that coset. Furthermore, we write
y ⊕ H as a shorthand for the set {y ⊕ h | h ∈ H}.

If Y is a subset of G, then ⟨Y ⟩ denotes the set generated by Y . More formally, we have

⟨Y ⟩ =
{︄

{0} Y = ∅
{x | ∃y(1), . . . y(j) ∈ Y : x = y(1) ⊕ · · · ⊕ y(j)} otherwise

.

For any x ∈ G and for any i with 0 ≤ i < n, we write xi to refer to the bit at index i in
x. We now deviate from the notation given by Brassard and Høyer [13] by introducing a
separate symbol for the bitwise inner product modulo 2 between two bitstrings

The ⊙ symbol denotes the bitwise inner product modulo 2 of two bitstrings x, y ∈ G.
Formally it is defined as

x ⊙ y = (xn−1 · yn−1) ⊕ (xn−2 · yn−2) ⊕ · · · ⊕ (x0 · y0).

Note that Brassard and Høyer do not use the ⊙ symbol in their paper [13]. They instead
overload the · symbol and use it for both the bitwise inner product and for regular integer
multiplication.

For any set Y ⊆ G, we define

Y ⊥ = {g | g ∈ G, ∀y ∈ Y : g ⊙ y = 0},

and we call Y ⊥ the orthogonal set of Y .

2.2 Linear Algebra Basics
It is outside the scope of this work to provide either a comprehensive introduction to the
field of linear algebra or to the field of quantum computing. We will however formally
introduce some concepts particularly useful for the analysis of the algorithms that we
present here. We loosely follow Section 2.1 in [27] by Nielsen and Chuang.

For any complex number a, let a denote its complex conjugate. Let V be a vector space
of dimension n. As is common in quantum computing, when we talk about the basis of

6

2.2. Linear Algebra Basics

V , we refer to the computational standard basis

n

��������

����
1
0
...
0

���� ,

����
0
1
...
0

���� , . . . ,

����
0
0
...
1

���� .

In general, all vector spaces referenced in this work are considered to be finite-dimensional.
Consider a function ⟨·|·⟩ with ⟨·|·⟩ : (V × V) → C. We call ⟨·|·⟩ an inner product (or
inner product function) if ∀x, y, z ∈ V and ∀λ, µ ∈ C we have

• ⟨x|λy + µz⟩ = λ ⟨x|y⟩ + µ ⟨x|z⟩,
• ⟨x|y⟩ = ⟨y|x⟩,
• ⟨x|x⟩ ≥ 0 and ⟨x|x⟩ = 0 if and only if x is the zero vector.

The pair (V, ⟨·|·⟩) is then called an inner product space.

An inner product induces a norm function || · || on V with

||x|| =
√︂

⟨x|x⟩, ∀x ∈ V.

We call a vector x ∈ V unit if its squared norm equals one. That is, x is unit if
||x||2 = (

√︁⟨x|x⟩)2 = ⟨x|x⟩ = 1.

As is custom in quantum computing, from now on we switch to Dirac notation. That
is, for any vector x ∈ V we write |x⟩ (also called ket-x). Additionally, we write ⟨x| (also
called bra-x) for ⟨x|·⟩, the inner product function where the left parameter is fixed to
x. While |x⟩ is just different notation for a vector x, ⟨x| denotes a function ⟨x| : V → C.
More precisely, ⟨x| is the inner product function where the first parameter is fixed to x.

Let V, W be two complex vector spaces. A function A with A : V → W is called a linear
operator if ∀λv ∈ C and ∀ |v⟩ ∈ V we have

A

(︃ ∑︂
|v⟩∈V

λv |v⟩
)︃

=
(︃ ∑︂

|v⟩∈V

λiA |v⟩
)︃

.

Linear operators can be viewed as matrices of finite dimensions and applying a linear
operator A to some vector |x⟩ ∈ V corresponds to matrix-vector multiplication. Corre-
spondingly, from now on we write A |x⟩ instead of A(|x⟩). When we apply m operators
A1, A2, . . . , Am in succession, we write (A1 · A2 · · · An) |x⟩. Note that here the · symbol
denotes matrix-matrix multiplication.

The identity operator I satisfies I |x⟩ = |x⟩ ∀ |x⟩ ∈ V . For any linear operator A, we
denote its inverse operator as A−1, that is, we have AA1 = I.

7

2. Notation and Mathematical Background

For any linear operator A, there exists a unique linear operator A† such that

⟨x|Ay⟩ =
⟨︂
A†x

⃓⃓⃓
y

⟩︂
∀x, y ∈ V.

A† is called the adjoint operator of A. From the definition, we can deduce an interesting
property of the adjoint operator. We have that

⟨x|(AB)y⟩ =
⟨︂
A†x

⃓⃓⃓
By

⟩︂
=

⟨︂
B†A†x

⃓⃓⃓
y

⟩︂
.

Since both x and y are chosen arbitrarily, it holds that (AB)† = B†A†.

A linear operator A is called self-adjoint if we have A† = A. A linear operator A is called
unitary if A†A = AA† = I. We note that for unitary operators, A† = A−1. If an operator
A is both unitary and self-adjoint, we have A−1A = AA−1 = AA = I.

We also require further properties of linear operators that are proven in Chapter 3 of
Sheldon Axler’s book [7]. The dimension of any vector space V , denoted dim(V), is the size
of a basis of V . Let A be a linear operator that maps from some vector space V to another
vector space W . Then we define the kernel of A to be ker(A) = {|v⟩ | |v⟩ ∈ V, A |v⟩ = |0⟩}.
Furthermore, we define the range of A to be the set {A |v⟩ | |v⟩ ∈ V }. It can be shown
that both ker(A) and range(A) are vector spaces.

Axler presents a proof that for any linear operator A we have that dim(range(A)) equals
the rank of A, which is the number of linearly independent rows (or columns) of A [7]. He
goes on to prove what he calls the ‘Fundamental Theorem if Linear Maps’, which states
that for any finite-dimensional vector space V and any linear operator A that maps from
V to some other vector space W we have that dim(V) = dim(ker(A)) + dim(range(A))
[7]. We combine both results into the following variant of the Fundamental Theorem of
Linear Maps.

Theorem 1 (Fundamental Theorem of Linear Maps). Let V be a finite-dimensional
vector space and A is a linear operator that maps from V to some other vector space W ,
we have that

dim(V) = dim(ker(A)) + rank(A).

2.3 Quantum-Mechanical Basics
So far, we discussed general mathematical principles. We now apply those principles to
quantum computing, loosely following Sections 2.1 and 2.2 in [27] by Nielsen and Chuang.
In general, quantum registers of size n are mathematically modeled as 2n-dimensional
inner product spaces. We define the following inner product function

⟨x|y⟩ = ⟨x2n−1, . . . x0|y2n−1, . . . , y0⟩ =
(︂
x2n−1 . . . x0

)︂
·
�y2n−1

...
y0

� ∀x, y ∈ C2n
.

8

2.3. Quantum-Mechanical Basics

Having fixed the inner product function, it is immediately obvious that the computational
standard basis is orthonormal, that is for arbitrary basis elements |x⟩ , |y⟩ we have that

• ⟨x|x⟩ = 1 and

• ⟨x|y⟩ = 0 ⇐⇒ |x⟩ ≠ |y⟩.

So far we defined adjoint operators for linear operators only. However, in our setting,
finding the adjoint of an arbitrary linear operator A corresponds to calculating its complex
conjugate transpose. We thus define an adjoint value for vectors as well, which we also
set to the complex conjugate transpose, that is we define |x⟩† = ⟨x| for arbitrary |x⟩. We
thus get (A |x⟩)† = ⟨x| A† and, if A is unitary, we get (A |x⟩)† = ⟨x| A−1.

Another important concept for quantum computing is the tensor product. When A is an
n × m matrix and B is a p × q matrix, then one way to define the tensor product is

A ⊗ B =

����
A1,1 · B A1,2 · B . . . A1,m · B
A2,1 · B A2,2 · B . . . A2,m · B

...
...

...
...

An,1 · B An,n · B . . . An,m · B

����
⏞ ⏟⏟ ⏞

m × q

�������� n × p

Note that here the · symbol denotes scalar-matrix multiplication. For any matrix A,
A⊗0 = (1) where (1) is a one-by-one matrix. Note that for any matrix A we also have
A ⊗ (1) = A. When we have a set of matrices A = {A(1), . . . , A(|A|)}, we use the following
shorthand for the tensor product over all its elements⨂︂

x∈A

x = A(1) · · · A(|A|).

We first examine important properties of the tensor product when applied to elements of
vector spaces. Let V, W denote complex vector spaces and let |v⟩ , |v′⟩ |w⟩ , |w′⟩ denote
vectors from V and W respectively and let λ ∈ C. Then the following properties can be
deduced for the tensor product.

• λ · (︁|v⟩ ⊗ |w⟩)︁ =
(︁
λ · |v⟩)︁ ⊗ |w⟩ = |v⟩ ⊗ (︁

λ · |w⟩)︁.

•
(︁|v⟩ + |v′⟩)︁ ⊗ |w⟩ =

(︁|v⟩ ⊗ |w⟩)︁ +
(︁|v′⟩ ⊗ |w⟩)︁.

• |v⟩ ⊗ (︁|w⟩ + |w′⟩)︁ =
(︁|v⟩ ⊗ |w⟩)︁ +

(︁|v⟩ ⊗ |w′⟩)︁.

Above we defined the tensor product as a function over matrices, so we can also apply the
tensor product to the matrix representations of linear operators. Let A, B be two linear
operators (represented as matrices) on some complex vector spaces V, W and let |v⟩ ∈ V
and |w⟩ ∈ W . Then an important property used constantly in quantum computing is(︁

A ⊗ B
)︁(︁|v⟩ ⊗ |w⟩)︁ =

(︁
A |v⟩ ⊗ B |w⟩)︁.

9

2. Notation and Mathematical Background

A single qubit is a unit vector from C21 = C2. That is, a single qubit |q⟩ has the form

|q⟩ =
(︄

α
β

)︄
with α, β ∈ C and ⟨q|q⟩ = αα + ββ = 1. Following convention, we introduce

dedicated symbols for the basis states of C2, we define(︄
1
0

)︄
= |0⟩ , and

(︄
0
1

)︄
= |1⟩ .

Moreover, we will always write non-basis states as decompositions of basis states. That

is, instead of writing
(︄

α
β

)︄
, we write α · |0⟩ + β · |1⟩. A non-basis state like this is called a

superposition and α, β are called the amplitudes of the respective basis states.
Multi-qubit registers are composed of single qubits via the tensor product. We concatenate
two qubits |q1⟩ , |q0⟩ by calculating |q1⟩ ⊗ |q0⟩, and usually we omit the ⊗ symbol and just
write |q1⟩ |q0⟩ or |q1q0⟩ (which is now a unit vector in C4). Let x denote a bitstring of
length n. Then we write |xn−1⟩ ⊗ |xn−2⟩ ⊗ · · · ⊗ |x0⟩ = |xn−1xn−2 . . . x0⟩ = |x⟩, where x0
is the least significant bit and xn−1 is the most significant bit. We say that the quantum
register |x⟩ holds the bitstring x.
Note also that the set Bn = {|x⟩ | x ∈ {0, 1}n} forms the computational standard basis
for the vector space C2n . Recall that the computational standard basis (with respect
to our fixed inner product function) is orthogonal. Hence, for any two basis elements
|x⟩ , |y⟩ ∈ Bn with |x⟩ ≠ |y⟩ we have that ⟨x|y⟩ = 0.
Quantum registers are manipulated by unitary operators. If A is a unitary operator with
A : C2 → C2 and |q⟩ is a qubit, then we apply A to |q⟩ by calculating A · |q⟩, where
· denotes matrix-vector multiplication. Similarly to how we construct larger quantum
registers from smaller ones, we can construct larger quantum operators from smaller ones
via the tensor product. If we want to apply A to |q1q0⟩, we construct a new operator
A ⊗ A and calculate (A ⊗ A) |q1q0⟩. If we want to apply A to each qubit of an n qubit
register |x⟩, we construct A⊗n = A ⊗ A ⊗ · · · ⊗ A⏞ ⏟⏟ ⏞

n times

and calculate A⊗n |x⟩.

Let |x⟩ be a quantum register of length n + m. Let A, B be unitary operators with
A : C2n → C2n and B : C2m → C2m . Then we can simultaneously apply A to the first
n qubits and B to the last m qubits of |x⟩ by constructing the operator A ⊗ B and
calculating (A ⊗ B) |x⟩. We call the successive application of unitary operators to a
quantum register a quantum algorithm.
The operation of measuring a quantum gate corresponds to projecting it to a basis state.
Consider a quantum register in the following superposition

|x⟩ =
∑︂

y∈X⊆{0,1}n

λy |y⟩ .

Then the probability to measure any particular y is given as

⟨λyy|λyy⟩ = λyλy ⟨y|y⟩ = (||λy||)2.

10

2.4. Operators in Quantum Computing

We use |ψ⟩ or |Ψ⟩ when we want to assign names to quantum states. Furthermore, follow-
ing Brassard and Høyer [13], we introduce shorthands for certain recurring superposition
states. Let G = ⟨{0, 1}n, ⊕⟩, then for any non-empty X ⊆ G and g ∈ G we use the
shorthands

|g ⊕ X⟩ = 1√︁|X|
∑︂
x∈X

|g ⊕ x⟩ , |φgX⟩ = 1√︁|X|
∑︂
x∈X

(−1)g⊙x |x⟩ .

2.4 Operators in Quantum Computing
We give an overview over the standard quantum operators that are used in the algorithms
presented in this thesis, starting with those operators that act on a single qubit, the
symbol I denotes the quantum mechanical identity operator. Furthermore, X denotes the
Pauli X operator and H denotes the Hadamard operator. They are commonly defined as

I =
(︄

1 0
0 1

)︄
, X =

(︄
0 1
1 0

)︄
, H = 1√

2

(︄
1 1
1 −1

)︄
.

The operator I was already covered before in the section on linear algebra basics. The
operator X has a nice interpretation as the quantum analog to the logical negation, we
have X |0⟩ = |1⟩ and X |1⟩ = |0⟩.
The Hadamard operator is a crucial building block for most quantum algorithms as it
can be used to create superposition states. Its effects are

H |0⟩ = 1√
2

(︁|0⟩ + |1⟩)︁ and H |1⟩ = 1√
2

(︁|0⟩ − |1⟩)︁.

Let |x⟩ be some n-qubit quantum state. Then another important property of the
Hadamard operator [13], which we will make use of frequently is

H⊗n |x⟩ = 1√
2n

∑︂
y∈{0,1}n

(−1)y⊙x |y⟩ .

The gates mentioned so far are all self-adjoint, hence we have II = X X = HH = I.

The symbol S denotes the phase operator

S =
(︄

1 0
0 i

)︄
.

We note that S |0⟩ = |0⟩, that is, the operator S only has effects when applied to |1⟩.
Importantly, the S operator is not self-adjoint. On paper, we can easily construct S−1 by
just taking the complex conjugate transpose of the matrix of S. A more implementation-
oriented approach relying on operators already introduced would be just to repeat
applications S, we have (SSS)S |q⟩ = |q⟩ , |q⟩ ∈ {|0⟩ , |1⟩}.

11

2. Notation and Mathematical Background

We turn our attention towards operators on multiple qubits. Sometimes, we want to
apply an operator conditionally, depending on the current state of a register. This is
where controlled operations come in. The two-qubit CN OT operator (also controlled X
operator) is defined as

CN OT =

���
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

��� .

It never changes the first qubit, also called the control qubit. If the control qubit is
in state |1⟩, the second qubit, called the target qubit, is negated. That is we have
CN OT |q1⟩ |q0⟩ = |q1⟩ |q1 ⊕ q0⟩.
The three-qubit Toffoli operator, also called CCN OT , is similar to the regular CN OT
operator, but this time we have two control qubits. The CCN OT operator is defined as

CCN OT =

������������

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

������������
.

In other words, we have CCN OT |11⟩ |q0⟩ = |11⟩ X |q0⟩ and CCN OT |x1x0⟩ |q0⟩ =
|x1x0⟩ |q0⟩ when |x1⟩ , |x0⟩ are not both |1⟩.
We can also control other one-qubit operators. If A is a quantum operator, then its
controlled version is denoted A(qn−1∧···∧q0),qn

. The semantics of this notation is that we
apply A to |qn⟩ if and only if |qn−1⟩ = · · · = |q0⟩ = |1⟩. Arbitrary controlled operators
are non-standard and have to be simulated individually.

It is easy to see that the CN OT and CCN OT operators are self-adjoint. For arbitrary
controlled operators, the self-adjoint property depends on the concrete operator that is
being controlled.

Let f be a function with f : {0, 1}n → {0, 1}m. Then we denote the operator that
implements f as Uf , and we have Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f(y)⟩, where |x⟩ is an n-qubit
register and |y⟩ is an m-qubit register. The matrix representation of Uf depends on the
function f , thus it needs to be stated individually for each f . However, for arbitrary f ,
the Uf operator is self-adjoint.

12

CHAPTER 3
Classical and Quantum

Complexity

In this section we give an overview over the classical and quantum complexity classes
relevant for this thesis. We recapitulate the circuit model of computation which we will
use later for analyzing the complexity of the quantum algorithms presented here. We also
formally introduce the complexity measure oracle complexity which is highly relevant for
Simon’s problem and last we discuss challenges for quantum computation in practice.

3.1 Classical Complexity Theory

The complexity class P (for polynomial time) describes all problems whose instances
can be solved by a deterministic Turing machine in time polynomial in the instance
size. More formally, let P be a problem and let p be an arbitrary instance of P. Then
P is contained in P precisely if there exists some polynomial function f such that a
deterministic Turing machine halts on p after f(|p|) steps (applications of the transition
function) where |p| denotes the size of p. Problems in P are considered tractable.

The complexity class BPP (for bounded-error probabilistic polynomial time) describes all
problems whose instances can be solved by a probabilistic Turing machine with bounded
error probability in polynomial time. Note that some authors give a concrete number
for the error probability bound when defining BPP, for example 1

3 or 1
4 . As long as

the upper bound is constant, the concrete number essentially does not matter. This
is because we can boost the success probability of the probabilistic Turing machine by
running it repeatedly on the same input. Problems in BPP are still considered tractable
[27].

13

3. Classical and Quantum Complexity

3.2 The Circuit Model of Computation
Turing machines help us to reason about a problem on an abstract level. However,
apart from introductory courses to computer science, we never actually specify, let alone
physically construct Turing machines when we implement an algorithm for a problem.
Instead, we write a computer program in a programming language of our choice, which
then gets compiled, ultimately, into a Boolean logic circuit. Intuitively, the circuit consists
of wires that connect bits (as many as our CPU has available) to logic gates (those gates
that the CPU implements). We then run the circuit on our CPU and obtain our result.
This process has been formalized and is known as the circuit model of computation and
in its presentation we follow Nielsen and Chuang [27].

With circuits, we aim to model actual hardware. Contrary to Turing machines which
have infinitely long tapes, actual computing hardware is finite, and thus we want to
reason about finite circuits. In the Turing machine model, we have only one Turing
machine that solves arbitrary instances of a problem, but in the circuit model, different
instances (with respect to size) require different circuits. Thus, a problem is not solved by
any one circuit, but by a set (often called family) of circuits often denoted {Cn}, n ∈ N+.
Intuitively, Cn stands for the circuit that solves problem instances of size n. A circuit
family {Cn} is called uniform if for any problem instance p of some problem P there
exists a Turing machine that ‘efficiently’ constructs Cn.

For a uniform circuit family, the size of a generated circuit relative to its input coincides
with the notion of complexity we have in the Turing machine model. For example, if
there is an exact uniform circuit family for P where each circuit has size polynomial
in its input, then P ∈ P. Popular measures for the size of a circuit are first its width,
which is the number of bits acted upon. Circuit width corresponds to space complexity
from the Turing machine model. A second popular circuit size measure is circuit depth,
where we count the number of gates that are executed upon each individual bit, and
then we take the maximum result. Circuit depth corresponds to time complexity in the
Turing machine model, and we will use circuit depth to describe the complexity of the
algorithms presented in this thesis.

3.3 Quantum Complexity Theory
Similar to the Turing machine which is used as a formalism to decide complexity and
computability on classical hardware, there is the concept of a quantum Turing machine
for quantum hardware [11]. We omit the details but note one key difference to classical
Turing machines. Classical Turing machines have a tape which we can read at any
time and as often as we want. Quantum Turing machines have a tape that we can only
ever read once, usually at the very end of some computation. This process of reading
corresponds to the measurement operation defined in Section 2.3

Similar to the classical complexity theory, we classify problems by how long it takes a
quantum Turing machine to solve them. The quantum complexity class analog to P is

14

3.4. Quantum Circuits

called EQP (for exact quantum polynomial time). It contains all problems that can be
solved by a quantum Turing machine in polynomial time. More formally, a problem P is
contained in EQP if there exist a quantum Turing machine with a dedicated acceptance
cell and a polynomial function f such that for every instance p of P, we are guaranteed
to measure that acceptance cell after f(|p|) time steps [11].

The class BQP (for bounded-error quantum polynomial) is the quantum analog to the
classical complexity class BPP. As described above for EQP, it contains all problems
that can be solved by a quantum Turing machine in polynomial time, but now we drop
the restriction that we must always measure the acceptance cell in the end [11]. We
again admit a bounded error probability.

3.4 Quantum Circuits
As with classical computing, as an alternative to Turing machines, we can use the circuit
model of computation for quantum computers. The key difference is that we now do not
construct Boolean logic circuits, but quantum circuits. Quantum circuits are made from
qubits and quantum gates, connected by quantum wires. They are not executed on a
regular CPU but on a quantum processing unit (QPU) [27].

The quantum gates for a particular QPU are the quantum operators that the QPU
supports. When we use the operators described in Section 2.4 as gates in a quantum
circuit, we denote them like shown in Figure 3.1. We use the same names for quantum
operators and quantum gates. When we reason about operators, we use calligraphic
letters and when we reason about gates, we use standard Latin letters. In our figures
depicting quantum circuits, we always use Qiskit bit order. That is, the least significant
qubit is topmost.

|x0⟩ X H S
|x0⟩
|x1⟩

X, H and S gates
CNOT gate,

|x0⟩ is control qubit,
|x1⟩ is the target qubit

n

m

|x⟩
Uf

|y⟩ y y ⊕ f(x)

|x0⟩
|x1⟩
|x2⟩

Uf gate
CCNOT gate,

|x0⟩ , |x1⟩ are control qubits,
|x2⟩ is the target qubit

Figure 3.1: Quantum Gates

15

3. Classical and Quantum Complexity

As with the classical circuit model of computation, for a problem to be placed in a certain
complexity class, we need a corresponding uniform circuit family where the size of the
generated circuits meets some criteria based on the problem input size. All quantum
algorithms presented in this thesis are given as quantum circuits, along with a uniform
specification on how to generate them. Hence, the complexity of the algorithms in the
quantum Turing machine sense coincides with the corresponding circuit depths.

3.5 Oracle Complexity
So far we discussed general complexity measures for arbitrary problems. We now introduce
a complexity measure for a particular class of problems called oracle problems. The
input to an oracle problem is a black box implementation of some function ρ, denoted
Uρ. We assume that the output of ρ is not random, but follows a certain pattern. In the
literature, ρ is often described as ‘fulfilling a promise’. When we are given Uρ, our task is
to reconstruct its pattern. Well known oracle problems are the problem of Deutsch [17],
the problem of Bernstein and Vazirani [11] or the problem of Simon [32].

In an oracle problem setting, analyzing the circuit size gives us only incomplete information
about the problem’s complexity. To illustrate this, let Uρ be an instance of an oracle
problem. Assume further that we have a circuit in which we repeatedly query Uρ with
different inputs to reconstruct its pattern. Then, the size of our circuit depends on
the circuit size of Uρ. We cannot control Uρ since it is given to us as problem input,
and because Uρ is given to us as a black box, we cannot even analyze its size. As a
consequence, we cannot make adequate statements about the size of our own circuit
anymore.

In such a situation it is common to reason about the number of calls to Uρ only, that
number is widely known as oracle complexity. This measure is particularly useful when
a call to Uρ is expensive, i.e. when its circuit depth is large. On the other hand, it is
imprecise for situations where calls to Uρ are cheap or when we have only few (e.g. linearly
many) oracle calls, but then lots of pre- and post-processing (e.g. exponentially many)
steps. For a more nuanced approach, we follow Berthiaume and Brassard [12] and treat
Uρ as an elementary (quantum) Turing machine operation or, in the circuit model, as an
elementary (quantum) gate. Then the complexity class PUρ contains all problems that
can be solved by a deterministic Turing machine in polynomial time that can access Uρ

in constant time. All other complexity classes discussed so far can be augmented with an
oracle analogously.

3.6 Quantum Computing in Practice
Quantum computing is in the so-called NISQ (for Noisy Intermediate-Scale Quantum)
era [29]. Intermediate-scale means that currently only few quantum hardware resources
are available. Noisy means that the quantum hardware we do have is very susceptible
to faults and imprecision. If we prepare a qubit to a certain state, then with time, it

16

3.6. Quantum Computing in Practice

will evolve to a different state on its own because we currently cannot fully isolate a
qubit from its environment. This phenomenon is called decoherence. Moreover, if we
apply a quantum gate to a qubit, then the resulting state of the qubit might very well
deviate substantially from what we would expect from the gate’s specification. This
happens because current quantum gate implementations are often not capable to perform
fine-grained qubit state manipulations with mathematical precision. This phenomenon
is widely known as gate infidelity. Decoherence and gate infidelity drastically limit the
depth up to which circuits can be run with reasonable error probability [22].

Due to NISQ limitations, it is even difficult to just predict, whether a certain quantum
computer can successfully run a certain quantum circuit. One widely adopted benchmark
measure for quantum processors is quantum volume (QV) [16]. Intuitively, the quantum
volume score of a quantum processor is the size of the largest quadratic quantum circuit
(that is a circuit with equal width and depth) from a certain circuit family that can
successfully be run on it. While giving a good first estimate of what a processor can do,
the quantum volume score is a bad predictor for the performance of circuits that are
not quadratic, i.e. where one ‘side’ is way longer than the other [23]. Additionally, the
circuits that are used for the benchmark need to be compiled for the hardware they are
executed on, and thus the quality of the compiler in use also impacts the quantum volume
score of a given device. As a consequence, for developers without access to sophisticated
proprietary compilers, the quantum volume score is an even worse indicator of how well
a given circuit might run on any particular quantum processor [28].

17

CHAPTER 4
A Randomized Algorithm for

Simon’s Problem

We now give a formal definition of Simon’s problem, sticking closely to the original
presentation [32].

• Input: A black box implementation for some function ρ : {0, 1}n → {0, 1}m with
m ≥ n. Furthermore, ρ fulfills the promise that either

– ρ is bijective or
– there exists a non-trivial bitstring s such that for all g, g′ ∈ {0, 1}n, g ̸= g′, we

have

ρ(g) = ρ(g′) ⇐⇒ g′ = g ⊕ s.

• Output: In case ρ is bijective, a random string. Otherwise s.

In a classical setting, Simon’s problem is hard. The best known algorithms have expo-
nential oracle complexity, both in the deterministic and in the randomized case [32]. As
a consequence, solving Simon’s problem using classical hardware only is likely infeasible
even for problem instances where the implementation of ρ has constant runtime.

As already mentioned in the introduction, Daniel Simon also proposed what is now known
as Simon’s algorithm. It is a mixed quantum-classical algorithm that solves Simon’s
problem with only linear oracle complexity. That means, when we use oracle complexity
as complexity measure, Simon’s hybrid algorithm has exponential speedup over all known
purely classical ones. In the algorithm, we first run a fixed quantum circuit multiple
times, and each such run yields a bitstring h ∈ {0, 1}n. Once we have collected ‘enough’
of them, we use a classical computer to form a system of linear equations. If ρ is bijective,

19

4. A Randomized Algorithm for Simon’s Problem

then the solution to that system of equations is some random bitstring. In the other case
however, the solution is the secret string s.

In this chapter we first give a formal description and mathematical analysis of the
quantum algorithm proposed by Simon [32]. We prove its correctness and we formalize
what it means to have ‘enough’ bitstrings. Next, we analyze the classical post-processing
step, and finally we present an example run of the entire algorithm.

4.1 Quantum Algorithm for Simon’s Problem
Before we give a formal description of Simon’s algorithm, we state a purely technical
lemma which will help us simplify the upcoming mathematical analysis.

Lemma 1 (Distributivity Lemma). Let g, k, y be three arbitrary bitstrings of equal length.
Then we have

(−1)g⊙(y⊕k) = (−1)g⊙y(−1)g⊙k.

Proof. First note that for an arbitrary index i, 0 ≤ i < n and arbitrary bitstrings g, y, k
of length n we have

(gi · yi) ⊕ (gi · ki) = gi · (yi ⊕ ki).

This can be easily verified by performing a case distinction on y and k. If yi = ki, then
we have

gi · yi ⊕ gi · ki = 0 = gi · 0 = gi · (yi ⊕ ki).

If on the other hand we have yi ̸= ki, then we have

gi · yi ⊕ gi · ki = gi = gi · 1 = gi · (yi ⊕ ki).

Now we can write

g ⊙ (y ⊕ k) = gn−1 · (yn−1 ⊕ kn−1) ⊕ · · · ⊕ g0 · (y0 ⊕ k0)
= (gn−1 · yn−1) ⊕ (gn−1 · kn−1) ⊕ · · · ⊕ (g0 · y0) ⊕ (g0 · k0)
= (g ⊙ y) ⊕ (g ⊙ k).

Hence, we have

(−1)g⊙(y⊕k) = (−1)(g⊙y)⊕(g⊙k) = (−1)(g⊙y)+(g⊙k) = (−1)g⊙y(−1)g⊙k.

The quantum part of Simon’s algorithm can be defined as in Algorithm 4.1. It operates
on two quantum registers, one of size n and the other of size m. Furthermore, we assume
that we are given a black box quantum implementation of ρ in the form of the quantum
operator Uρ, for which we have Uρ |x⟩ |y⟩ = |x⟩ |y ⊕ ρ(x)⟩. The presentation in Algorithm

20

4.1. Quantum Algorithm for Simon’s Problem

4.1 stays close to the original one given by Simon [32], we only deviate in step 4 (state
|ψ′

2⟩), which is not part of the original presentation. This extra step is not strictly
necessary, but it drastically simplifies the mathematical analysis of the algorithm, and it
is included in many corresponding textbooks and articles [20, 3].

Algorithm 4.1: Quantum part of Simon’s Algorithm, simplified

1. |ψ0⟩ = |0⟩⊗n |0⟩⊗m initial state

2. |ψ1⟩ = (H⊗n ⊗ I⊗m) |ψ0⟩ apply H to each qubit in first register

3. |ψ2⟩ = Uρ |ψ1⟩ apply oracle for ρ

4. |ψ′
2⟩ measure the second register

5. |ψ3⟩ = (H⊗n ⊗ I⊗m) |ψ2⟩ apply H to each qubit in first register

6. Obtain h by measuring the first register.

In the next theorem, we perform the mathematical analysis of Simon’s algorithm as
described in Algorithm 4.1.

Theorem 2. Let ρ be an instance of Simon’s problem. Then Simon’s quantum algorithm
returns a random element h ∈ {0, 1}n if ρ is bijective. Otherwise, the algorithm returns
an element h ∈ {0, 1}n with s ⊙ h = 0 where s is the secret string of ρ. Moreover, Simon’s
quantum algorithm can be implemented as a quantum circuit with the same depth as the
circuit for Uρ plus a constant.

Proof. We first analyze the states of Simon’s algorithm (Algorithm 4.1) in more detail,
starting with |ψ1⟩. We have

|ψ1⟩ = (H⊗n ⊗ I⊗m) |ψ0⟩ = H⊗n |0⟩⊗n |0⟩⊗m = 1√
2n

(︃ ∑︂
g∈{0,1}n

(−1)g⊙0 |g⟩
)︃

|0⟩⊗m

= 1√
2n

(︃ ∑︂
g∈{0,1}n

|g⟩
)︃

|0⟩⊗m .

Next we apply Uρ to |ψ1⟩, resulting in

|ψ2⟩ = Uρ |ψ1⟩ = 1√
2n

(︃ ∑︂
g∈{0,1}n

|g⟩ |0 ⊕ ρ(g)⟩
)︃

= 1√
2n

(︃ ∑︂
g∈{0,1}n

|g⟩ |ρ(g)⟩
)︃

.

In the next step, we measure the second register, thus fixing one particular ρ(g) for some
g ∈ {0, 1}n in the second register. Since we applied Uρ in the previous step, both registers
are entangled and fixing ρ(g) also influences the superposition in the first register. The
value held in the first register now depends on whether ρ is bijective or there exists a

21

4. A Randomized Algorithm for Simon’s Problem

non-trivial bitstring s such that ρ(g) = ρ(g′) ⇐⇒ g′ = g ⊕ s (where g′ ∈ {0, 1}n, g ̸= g′).
In the first case, we have |ψ′

2⟩ = |g⟩ for some g ∈ {0, 1}n. In the second case we have
|ψ′

2⟩ = 1√
2(|g⟩ + |g ⊕ s⟩).

We proceed with the next step. Note that in our description of |ψ′
2⟩, we already omitted

the second register, because we measured it and we will not use it again. From now on,
we are working with the first quantum register of size n only. In case ρ is bijective, we
have

|ψ3⟩ = H⊗n
⃓⃓
ψ′

2
⟩︁

= H⊗n |g⟩ = 1√
2n

(︃ ∑︂
h∈{0,1}n

(−1)g⊙h |h⟩
)︃

.

Hence, when we measure |ψ3⟩, we will obtain some random bitstring in {0, 1}n. In the
other case, the analysis is more involved. We start with

|ψ3⟩ = H⊗n
⃓⃓
ψ′

2
⟩︁

= H⊗n 1√
2

(︃
|g⟩ + |g ⊕ s⟩

)︃
= 1√

2

(︃
H⊗n |g⟩ + H⊗n |g ⊕ s⟩

)︃
= 1√

2

(︃ 1√
2n

(︃ ∑︂
h∈{0,1}n

(−1)g⊙h |h⟩
)︃

+ 1√
2n

(︃ ∑︂
h∈{0,1}n

(−1)(g⊕s)⊙h |h⟩
)︃)︃

= 1√
2

1√
2n

(︃ ∑︂
h∈{0,1}n

(−1)g⊙h |h⟩ +
∑︂

h∈{0,1}n

(−1)(g⊕s)⊙h |h⟩
)︃

= 1√
2n+1

(︃ ∑︂
h∈{0,1}n

(−1)g⊙h |h⟩ + (−1)(g⊕s)⊙h |h⟩
)︃

= 1√
2n+1

(︃ ∑︂
h∈{0,1}n

(︁
(−1)g⊙h + (−1)(g⊕s)⊙h)︁ |h⟩

)︃
.

By the Distributivity Lemma (Lemma 1), we can rewrite |ψ3⟩ further into

|ψ3⟩ = 1√
2n+1

(︃ ∑︂
h∈{0,1}n

(︁
(−1)g⊙h + (−1)g⊙h(−1)(s⊙h))︁ |h⟩

)︃

= 1√
2n+1

(︃ ∑︂
h∈{0,1}n

(−1)g⊙h(︁
1 + (−1)(s⊙h))︁ |h⟩

)︃
.

We now fix an arbitrary h ∈ {0, 1}n with s ⊙ h = 1, and we analyze its amplitude in |ψ3⟩.
It is given as

1√
2n+1

(︃
(−1)g⊙h(︁

1 + (−1)(s⊙h))︁)︃
= 1√

2n+1

(︃
(−1)g⊙h(︁

1 + (−1)
)︁)︃

= 0.

Hence, when we measure the register in |ψ3⟩, we are guaranteed to measure a bitstring h
with s ⊙ h = 0.

Step 2. clearly has circuit depth 1. Step 3. has precisely the circuit depth of the circuit
of Uρ. The steps 4. and 5. have circuit depth 1 again, hence the total depth of the circuit
is the depth of the circuit of Uρ + 3.

22

4.2. Classical Post-Processing for Simon’s Problem

The quantum part of Simon’s algorithm consists of repeatedly running Algorithm 4.1
until we have collected precisely n − 1 linearly independent bitstrings from {0, 1}n. Each
time, we run the same quantum circuit, so it might happen that we repeatedly measure
bitstrings that are linearly dependent from those we already measured previously. Hence,
Simon’s algorithm is not deterministic, but randomized, and we cannot give a fixed upper
runtime bound, only an expected one. Later in Section 4.4 we are going to prove that
after O(n) repetitions of Algorithm 4.1 we will have measured n − 1 linearly independent
bitstrings with very high probability.

4.2 Classical Post-Processing for Simon’s Problem
Assume that for an instance Uρ of Simon’s problem, we are given a linearly independent
set of bitstrings {h(1), . . . , h(n−1)} obtained by repeatedly running Simon’s quantum
algorithm (Algorithm 4.1). We now use those bitstrings to construct a system of linear
equations as follows

h
(1)
n−1xn−1 + h

(1)
n−2xn−2 + · · · + h

(1)
0 x0 ≡ 0 (mod 2)

. . .

h
(n−1)
n−1 xn−1 + h

(n−1)
n−2 xn−2 + · · · + h

(n−1)
0 x0 ≡ 0 (mod 2).

The above system has the trivial solution x = 0. Since we are working with equations
with n unknowns and since we have n − 1 linearly independent equations, the system also
has one unique non-trivial solution. We can obtain that solution (on classical hardware)
via Gaussian elimination. We now perform a case distinction.

First, we consider the case that ρ is bijective. Then the nontrivial solution x to our
system of equations is some random bitstring. Consider now the case that ρ is not
bijective. Then there exists a secret string s such that for all g, g′ ∈ {0, 1}n, g ̸= g′ we
have that ρ(g) = ρ(g′) ⇐⇒ g′ = g ⊕ s. By Theorem 2, for 1 ≤ i ≤ n − 1 we have
h(i) ⊙ s = 0, which is equivalent to the condition

h
(i)
n−1sn−1 + h

(i)
n−2sn−2 + · · · + h

(i)
0 s0 ≡ 0 (mod 2).

Hence, the non-trivial solution to our system of equations is s itself.

Given a non-trivial solution s′ to the system of equations above, we still need to distinguish
between the cases of ρ being bijective or not. We do this by running both ρ(0) and ρ(s′)
and comparing the results.

Lemma 2. If ρ(s′) ̸= ρ(0), then ρ must be bijective.

Proof. Assume towards a contradiction that ρ(s′) ̸= ρ(0), but ρ is not bijective. We
recall from above that if ρ is not bijective, then s′ = s and for all g, g′ ∈ {0, 1}n we have
ρ(g) = ρ(g′) ⇐⇒ g′ = g ⊕ s. In particular, we then must have ρ(0) = ρ(s′) ⇐⇒ s′ =
0⊕s. Since s′ = s = 0⊕s, we must also have ρ(s′) = ρ(0), a contradiction to the original
assumption.

23

4. A Randomized Algorithm for Simon’s Problem

Lemma 3. If ρ(s′) = ρ(0), then ρ is not bijective.

Proof. Assume towards a contradiction that ρ(s′) = ρ(0), but ρ is bijective. By construc-
tion, s′ ̸= 0 and since ρ is bijective, we cannot have ρ(s′) = ρ(0).

4.3 An Example Run of the Original Version of Simon’s
Algorithm

Let ρ with ρ : {0, 1}3 → {0, 1}2 be a function fulfilling Simon’s promise. Let s = 001 and
for all g, g′ ∈ {0, 1}3 : ρ(g) = ρ(g′) ⇐⇒ g′ = g ⊕ s. A possible implementation Uρ is the
quantum operator specified as follows

Uρ |000⟩ |q1q0⟩ → |000⟩ |q1q0 ⊕ 00⟩ , Uρ |001⟩ |q1q0⟩ → |001⟩ |q1q0 ⊕ 00⟩ ,

Uρ |010⟩ |q1q0⟩ → |010⟩ |q1q0 ⊕ 01⟩ , Uρ |011⟩ |q1q0⟩ → |011⟩ |q1q0 ⊕ 01⟩ ,

Uρ |100⟩ |q1q0⟩ → |100⟩ |q1q0 ⊕ 10⟩ , Uρ |101⟩ |q1q0⟩ → |101⟩ |q1q0 ⊕ 10⟩ ,

Uρ |110⟩ |q1q0⟩ → |110⟩ |q1q0 ⊕ 11⟩ , Uρ |111⟩ |q1q0⟩ → |111⟩ |q1q0 ⊕ 11⟩ .

We run Algorithm 4.1 in a loop. In each loop iteration we have |ψ0⟩ = |0⟩⊗3 |0⟩⊗2. Next,
we apply the Hadamard operator to the first register and get

|ψ1⟩ = 1√
8

(︃
|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩

)︃
|00⟩ .

Next, we apply Uρ, which puts our quantum computer in the state

|ψ2⟩ = 1√
8

(︃
|000⟩ |00⟩ + |001⟩ |00⟩ + |010⟩ |01⟩ + |011⟩ |01⟩

+ |100⟩ |10⟩ + |101⟩ |10⟩ + |110⟩ |11⟩ + |111⟩ |11⟩
)︃

.

We then measure the second register. Assume that we measure the bitstring 01. Then
the first register of our quantum computer is in state |ψ′

2⟩ = 1√
2(|010⟩ + |011⟩). We will

again omit the second register from future calculations, as we are not going to need it
anymore. The next step is to apply the Hadamard operator to each qubit in the first

24

4.4. Computational Complexity

register, which gives

|ψ3⟩ = H⊗3 ⃓⃓
ψ′

2
⟩︁

= H⊗3 1√
2

(︃
|010⟩ + |011⟩

)︃
= 1√

2

(︃
H⊗3 |010⟩ + H⊗3 |011⟩

)︃
= 1√

2

(︃ 1√
8

(︃ ∑︂
g∈{0,1}3

(−1)010⊙g |g⟩
)︃

+ 1√
8

(︃ ∑︂
g∈{0,1}3

(−1)011⊙g |g⟩
)︃)︃

= 1√
2

(︃ 1√
8

(︃
|000⟩ + |001⟩ − |010⟩ − |011⟩ + |100⟩ + |101⟩ − |110⟩ − |111⟩

)︃
+ 1√

8

(︃
|000⟩ − |001⟩ − |010⟩ + |011⟩ + |100⟩ − |101⟩ − |110⟩ + |111⟩

)︃)︃
= 1√

2
1√
8

(︃
2 · |000⟩ − 2 · |010⟩ + 2 · |100⟩ − 2 · |110⟩

)︃
= 1

2

(︃
|000⟩ − |010⟩ + |100⟩ − |110⟩

)︃
.

We now measure the quantum register, and obtain any state from the superposition in
|ψ3⟩ with equal probability. Assume we measure the bitstring 010. We need to repeat
this procedure until we measured n − 1 = 2 linearly independent bitstrings.

Hence, we run the same quantum circuit again (the calculation works analogously to
above), but this time we measure the bitstring 000. This does not give us any new
information, because the bitstrings 010 and 000 are not linearly independent (we can
express 000 as 010 ⊕ 010).

We run the same quantum circuit again, this time we measure the bitstring 010. This is
again not helpful, because we measured 010 already. We run the quantum circuit again,
but now we measure 110 in the end. The bitstrings 010 and 110 are linearly independent,
so we (on classical hardware) set up a system of equations

0 · s2 + 1 · s1 + 0 · s0 ≡ 0 (mod 2)
1 · s2 + 1 · s1 + 0 · s0 ≡ 0 (mod 2).

The system has the trivial solution 000 and exactly one non-trivial solution 001 =
s. To verify that ρ is not bijective, we prepare two quantum registers in the state
|ψ4⟩ = |000⟩ |00⟩ and run Uρ |ψ4⟩ = |000⟩ |00⟩. We measure the second register (which
corresponds to ρ(000)) and measure the bitstring 00. Next, we prepare two quantum
registers in the state |ψ5⟩ = |001⟩ |00⟩ and run Uρ |ψ5⟩ = |001⟩ |00⟩. We again measure
the second register (which corresponds to ρ(001)) and measure the bitstring 00. Because
ρ(000) = ρ(001) = 00, we conclude that ρ fulfills Simon’s promise and its secret string s
is 001.

4.4 Computational Complexity
As already explained, we use the quantum part of Simon’s algorithm to generate bitstrings
h such that h⊙s = 0 (where s is the secret string in Simon’s problem). Since the algorithm

25

4. A Randomized Algorithm for Simon’s Problem

is probabilistic, we cannot give a number of executions after which we are guaranteed to
have generated enough such elements. However, as is common for probabilistic algorithms,
we can give an expected number of executions. In order to do so, we must establish how
many different bitstrings h ∈ {0, 1}n exist with h ⊙ s = 0, and we need to know with
what probability any given set of such vectors is linearly independent.

Regarding the first point, we note that the set of all bitstrings of length n can be
interpreted as a vector space over Z2 with dimension n and 0 as the neutral element. The
⊕ operation is the vector addition, and we define scalar-vector multiplication as 0 · x = 0
and 1 · x = x for each x ∈ {0, 1}n. Furthermore, the elements x of that vector space that
additionally satisfy s ⊙ x = 0 form a closed subspace, since by Lemma 1, for two elements
x, x′ ∈ {0, 1}n with x ⊙ s = x′ ⊙ s = 0 we have s ⊙ (x ⊕ x′) = (s ⊙ x) ⊕ (s ⊙ x′) = 0. In
the following lemma, we analyze the dimension of the introduced subspace.

Lemma 4. Let V be a subspace of G = {0, 1}n such that for all y ∈ V we have that
s ⊙ y = 0. Then the dimension of that subspace is n − 1.

Proof. Consider the linear operator A =
(︂
sn−1 sn−2 . . . s0

)︂
. Since, for arbitrary

x ∈ G we have Ax =
(︂
sn−1xn−1 ⊕ sn−2xn−2 ⊕ · · · ⊕ s0x0

)︂
= (s ⊙ x), we immediately

see that x ⊙ s ⇐⇒ x ∈ ker(A). We instantiate the Fundamental Theorem of Linear
Maps and get dim(G) = dim(ker(A)) + rank(A) and hence n = dim(ker(A)) + 1 and
dim(ker(A)) = n − 1.

Regarding the second point, in the following lemma, we calculate a lower bound for
the probability that a set of elements drawn from a vector space over Z2 is linearly
independent.

Lemma 5. Let V be a vector space over Z2 with dim(V) = m. Let y(1), . . . , y(m) be some
elements of V sampled uniformly at random. Then the probability that y(1), . . . , y(m) are
linearly independent is strictly greater than 1

4 .

Proof. Let Ph(i) denote the probability that the vectors h(1), . . . , h(i) are not linearly
independent. We choose y(1) uniformly at random and analyze Ph(1) , the probability
that h(1) is not linearly independent from itself. This is the case when y(1) = 0, and
the probability for this is 1

2m . We choose y(2) uniformly at random and analyze the
probability Ph(2) , which is the probability for the event where y(2) = 0 or y(2) = y(1).
Hence, we have that Ph(2) = 1

2m + 1
2m = 1

2m−1 . We choose y(3) uniformly at random and
analyze Ph(3) , the probability for the event where h(3) ∈ {0, h(1), h(2), h(1) ⊕ h(2)}. We
calculate Ph(3) = 1

2m + 1
2m + 1

2m + 1
2m = 1

2m−2 .

Generalizing the above considerations, we calculate

Ph(m−1) = Ph(1) + Ph(2) + · · · + Ph(m−3) + Ph(m−2) = 1
2m

+ 1
2m−1 + · · · + 1

8 + 1
4 =

m∑︂
k=2

1
2k

.

26

4.4. Computational Complexity

Using properties of the well-known geometric series we get

2 =
∞∑︂

k=0

1
2k

= 1 + 1
2 +

∞∑︂
k=2

1
2k

, and hence
∞∑︂

k=2

1
2k

= 1
2 .

The equality just derived helps us to more concretely estimate Ph(m−1) to

Ph(m−1) =
m∑︂

k=2

1
2k

<
∞∑︂

k=2

1
2k

= 1
2 .

As a consequence, the complementary probability Ph(m−1) = 1−Ph(m−1) , i.e. the probability
that h(1), . . . , h(m−1) are in fact linearly independent, is strictly larger than 1

2 . Assume
now we already drew m − 1 linearly independent vectors. Then the probability that the
next vector we draw, h(m), is linearly independent from the first m − 1 vectors is given
by 2m−1

2m = 1
2 . Hence, we know

Ph(m) = Ph(m−1) · 1
2 >

1
2 · 1

2 = 1
4 .

Putting everything together, the elements h ∈ {0, 1}n that satisfy h ⊙ s = 0 form a vector
space of dimension n − 1 (by Lemma 4), and hence by Lemma 5, when we draw n − 1
elements from that vector space, they are linearly independent with probability strictly
grater than 1

4 . Consequently, after an expected 4 · (n − 1) = O(n) runs of the quantum
part of Simon’s algorithm, we will have collected n − 1 linearly independent bitstrings h
with h ⊙ s = 0 with high probability.

By Theorem 2, the quantum circuit for Simon’s algorithm, which we run 4 · (n − 1)
times, has depth 3 plus the circuit depth of Uρ, hence the entire quantum part of Simon’s
algorithm has the expected circuit depth of 4 · (n − 1) times the circuit depth of Uρ plus
4 · (n − 1) · 3.

We also need to classically post-process our linearly independent set of bitstrings. More
precisely, we need to solve the system of equations induced by those bitstrings. A common
algorithm for this task is Gaussian elimination, which, for n − 1 bitstrings of length n
can be done within O(n3) computation steps [19].

When we combine the circuit depth result for the quantum part and the amount of
computation steps needed for the classical post post-processing, we end up with expected
linearly many calls to the oracle implementation Uρ and a number of other computation
steps polynomial in n. In terms of complexity classes, we can thus place Simon’s algorithm
in BQP Uρ . This is faster than any known classical algorithm, be it determinstic or
randomized [32], but not necessarily to an extent that warrants the expensive development
of quantum hardware. However, when we compare the number of calls to the oracle for ρ
only, Simon’s hybrid quantum-classical routine is exponentially faster than any known
purely classical algorithm [32].

27

CHAPTER 5
A Randomized Algorithm for the

Extended Version of Simon’s
Problem

As mentioned in the introduction, Simon’s problem was rephrased and generalized by
Brassard and Høyer [13]. We will call this the extended version of Simon’s problem, and
it is formally defined as follows.

• Input: A black box implementation for some function ρ : G → R where

– G = ⟨{0, 1}n, ⊕⟩, that is, the group over bit strings of length n, together with
bitwise XOR (denoted by ⊕) as the group operation, and

– R is some arbitrary set.

Furthermore, ρ fulfills the promise that

– there exists a subgroup H ≤ G, and
– ∀g1, g2 ∈ G : ρ(g1) = ρ(g2) ⇐⇒ g1 ⊕ H = g2 ⊕ H.

That is, ρ behaves constant and distinct for each coset of H in G.

• Output: A generating set for H.

We first relate the standard version of Simon’s problem from the previous chapter to
this new version and show that the new version is a strict generalization. Consider an
instance of Simon’s problem where we get a black box implementation of some function
ρ where ρ is bijective. We first reduce this instance of the original version to an instance
of the extended version.

29

5. A Randomized Algorithm for the Extended Version of Simon’s Problem

Lemma 6. Let H be a trivial subgroup of G = ⟨{0, 1}n, ⊕⟩. Then the cosets of H in G
are {g} for each g ∈ G.

Proof. Since H is a trivial subgroup of G, we can write H = {0}. Then, by definition of
a coset, for each g ∈ G, the coset of H induced by g can be written as

{g ⊕ h | h ∈ H} = {g ⊕ 0} = {g}.

If ρ is a bijective instance of the original version of Simon’s problem, we can reduce it to
an instance of the extended version of Simon’s problem where the hidden subgroup H is
trivial. The reason for this is that by Lemma 6, if ρ is bijective, then it behaves constant
and distinct for each coset of the trivial subgroup H = {0} of G. The generating set is
{0} in that case.

When, for an instance of Simon’s problem, ρ is not bijective, this corresponds to an
instance of the extended version of Simon’s problem where the hidden subgroup H
satisfies the property |H| = 2. Analogous to the first case, we examine the structure of
the cosets of H in G.

Lemma 7. Let H be any subgroup of G = ⟨{0, 1}n, ⊕⟩ with |H| = 2. Then H can be
written as {0, x}, where x is some non-trivial bitstring. Furthermore, for each g ∈ G,
the coset of H in G induced by g has the form {g, g ⊕ x}.

Proof. For the first part of the lemma, we recall that because H is a subgroup of G, it
must contain the neutral element from G, which is the bitstring 0. Because |H| = 2, H
must contain one additional element x with x ̸= 0, which is the first thing we needed to
prove.

The second part of the lemma follows from the definition of a coset of H in G. For
arbitrary g ∈ G, the coset induced by g has the form

{g ⊕ h | h ∈ H} = {g ⊕ 0, g ⊕ x} = {g, g ⊕ x}.

Consider an instance of the original version of Simon’s problem where ρ is a function
such that there exists a secret bitstring s and for all g, g′ ∈ G, g ≠ g′ we have that
ρ(g) = ρ(g′) ⇐⇒ g′ = g ⊕ s. We reduce this to an instance of the extended version of
Simon’s problem by constructing the subgroup H = {0, s}. By Lemma 7, ρ satisfying
Simon’s promise corresponds precisely to ρ behaving constant and distinct on each coset
of H in G. It is easy to see that {s} is a generating set for H = {0, s}.

5.1 Quantum Algorithm for the Extended Version of
Simon’s Problem

We can reuse the quantum algorithm originally proposed by Simon [32] as part of the
quantum algorithm for the extended version of Simon’s problem. In that new setting

30

5.1. Quantum Algorithm for the Extended Version of Simon’s Problem

however, we need to adapt its mathematical analysis. The fact that the hidden subgroup
has unknown size makes things substantially more complicated, hence before reasoning
about the algorithm, we need to state auxiliary lemmata. The first one is purely technical.

Lemma 8 (Group Shift Lemma). Let G be a group and let H be any subgroup of
G = ⟨{0, 1}n, ⊕⟩. Let αh′ denote some term depending on any particular h′ ∈ H. Then
we have ∑︂

h∈H

αh⊕h′ =
∑︂
h∈H

αh.

Proof. We note that by semantics of ⊕ and because H is a group and therefore closed we
have H = {h ⊕ h′ | h ∈ H}. Hence, the difference between ∑︁

h∈H αh⊕h′ and ∑︁
h∈H αh is

just the order of the summands. Since both sums are finite, the order does not influence
the end result of the summation process.

Algorithm 4.1, for simplification of the mathematical analysis, contains a measurement
operation in step 4. This is the step where we measure and discard the second register
holding the function output of ρ, so this step also abstracts away a lot of complexity
regarding cosets (recall that the output of ρ is not random, but depends on the cosets of
H in G). In the setting of the extended version of Simon’s problem, we cannot perform
that simplification anymore, hence now we need some more advanced mathematical
machinery. The following lemma gives us additional information about cosets.

Lemma 9 (Coset Lemma). Let H be any subgroup of the group G = ⟨{0, 1}n, ⊕⟩. Then
the following statements hold.

• The cosets of H in G partition G.

• There are precisely |G|
|H| cosets of H in G.

Proof. In order to prove that the cosets of H in G partition G, we first show that all
elements of G are also elements of some coset of H in G. Second we show that two cosets
are either equal or disjoint, i.e. no g ∈ G is element of two distinct cosets.

By construction 0 ∈ H and hence every g ∈ G is contained in the set {g ⊕ h | h ∈ H},
which is the coset of H in G induced by g.

The fact that cosets are either equal or disjoint is a well known result in group theory,
and we loosely follow the proof given by Scott [30]. Consider t1, t2 ∈ G and assume that
the two cosets (t1 ⊕ H) and (t2 ⊕ H) are not disjoint. Then there exists some bitstring c
such that c ∈ (t1 ⊕H) and c ∈ (t2 ⊕H). Hence, we can write c = t1 ⊕h and c = t2 ⊕h′ for
some h, h′ ∈ H . In the first equation, we XOR h on both sides, which gives us t1 = c ⊕ h.
Now we replace c with t2 ⊕ h′ from the second equation and get t1 = t2 ⊕ h′ ⊕ h. Because
both h and h′ ∈ H, by the group closure property, h′ ⊕ h ∈ H and hence t1 ∈ (t2 ⊕ H).

31

5. A Randomized Algorithm for the Extended Version of Simon’s Problem

Analogously we can infer t2 ∈ (t1 ⊕ H). The representatives t1 and t2 are chosen
arbitrarily, so if any two cosets overlap, they are equal.

Last, we prove the claim about the coset count. For this we first analyze the size of any
arbitrary coset (g ⊕ H). Suppose |(g ⊕ H)| < |H|. Then there must exist at least two
distinct bitstrings h, h′ ∈ H such that g ⊕ h = z and g ⊕ h′ = z for some z. In that
situation however we know g ⊕ h = g ⊕ h′ and hence h = h′, which is a contradiction
to h and h′ being distinct. Hence we must have |g ⊕ H| ≥ |H|. On the other hand, we
must also have |(g ⊕ H)| ≤ |H| since ((g ⊕ H)) is made up of the results of precisely |H|
applications of the ⊕ function, and we cannot obtain more than |H| distinct results there.
Hence, |(g ⊕ H)| = |H|.
We also just proved that the cosets of H in G partition G, so each partition must have
the same size and the total number of partitions must be |G|

|H| .

Corollary 1. If t ⊕ H is a coset of H in G, then for each x ∈ (t ⊕ H) it holds that
(x ⊕ H) = (t ⊕ H).

Proof. The corollary follows directly from the fact that two cosets are either equal or
disjoint and that for all x we have that x ∈ (x ⊕ H).

Since in the original version of Simon’s problem, the hidden subgroup H has a fixed
size, the orthogonal set H⊥ has a fixed size as well. In the extended version of Simon’s
problem, where H can be any subgroup of G, the size of H⊥ also changes in response.
This again forces us to make our analysis more sophisticated, and to address the added
complexity. We state a more general version of Lemma 4.

Lemma 10 (Orthogonal Group Size Lemma). Let H be a subgroup of the group G =
⟨{0, 1}n, ⊕⟩ and let H⊥ be the orthogonal set corresponding to H. Then we have |H⊥| =
|G|
|H| .

Proof. Let Y = {y(1), . . . , y(k)} be a basis of H , that is ⟨Y ⟩ = H . We use Y to construct
a linear operator A in the following way

A =

��
y

(1)
n−1 y

(1)
n−2 . . . y

(1)
0

...
...

...
...

y
(k)
n−1 y

(k)
n−2 . . . y

(k)
0

�� .

Note that because Y is a basis of H, A has the rank k.

We claim that for arbitrary x ∈ G, we have x ∈ ker(A) ⇐⇒ x ∈ H⊥. The only-if
direction is immediately obvious when we examine the result after we apply A to x (all

32

5.1. Quantum Algorithm for the Extended Version of Simon’s Problem

calculations are done in Z2, and x is interpreted as a column vector).

Ax =

�y
(1)
n−1xn−1 ⊕ y

(1)
n−2xn−2 ⊕ · · · ⊕ y

(1)
0 x0

. . .

y
(k)
n−1xn−1 ⊕ y

(k)
n−2xn−2 ⊕ · · · ⊕ y

(k)
0 x0

� =

�y(1) ⊙ x
. . .

y(k) ⊙ x

� .

If x ∈ H⊥, then we have x ⊙ h = 0 for all h ∈ H and in particular for all elements in Y .

For the if direction, assume towards a contradiction that x ∈ ker(A) but x ̸∈ H⊥. By
the assumption x ∈ ker(A), we know that for all elements y(i) of Y , x ⊙ y(i) = 0. By the
assumption that x ̸∈ H⊥, there then exists some element y ∈ H such that x ⊙ y = 1.
If y ∈ Y , we have a contradiction to the assumption that x ∈ ker(A). If y ̸∈ Y , then,
because Y is a basis of H, we can write y = y(i1) ⊕ · · · ⊕ y(iℓ) where y(i1), . . . , y(iℓ) ∈ Y .
This again leads to a contradiction since by the Distributivity Lemma (Lemma 1) we
have

x ⊙ y = x ⊙ (y(i1) ⊕ · · · ⊕ y(iℓ)) = (x ⊙ y(i1))⏞ ⏟⏟ ⏞
0 since x∈ker(A)

⊕ · · · ⊕ (x ⊙ y(iℓ))⏞ ⏟⏟ ⏞
0 since x∈ker(A)

= 0.

Now we instantiate the Fundamental Theorem of Linear Maps (Theorem 1). We have
that dim(G) = dim(ker(A)) + rank(A) and consequently n = dim(H⊥) + k and thus
dim(H⊥) = n − k. In our situation, where the vector space or the group we are working
in are bitstrings, if dim(H⊥) = n − k, then |H⊥| = 2n−k. Furthermore, because |Y | = k
and ⟨Y ⟩ = H, we have |H| = 2k. Thus, we write

|H⊥| = 2n−k = 2n

2k
= |G|

|H| .

Finally, we state Simon’s quantum algorithm again in Algorithm 5.1, but this time
precisely as it was stated by Simon himself [32]. That is, when compared to Algorithm
4.1, we skip step 4 where we measure the second register.

Algorithm 5.1: Simon’s Algorithm

1. |ψ0⟩ = |0⟩⊗n |0⟩⊗m initial state

2. |ψ1⟩ = (H⊗n ⊗ I⊗m) |ψ0⟩ apply H to each qubit in first register

3. |ψ2⟩ = Uρ |ψ1⟩ apply oracle for ρ

4. |ψ3⟩ = (H⊗n ⊗ I⊗m) |ψ2⟩ apply H to each qubit in first register

5. Obtain h by measuring the first register.

We are now equipped to analyze the behavior of Simon’s algorithm in the setting of the
extended version of Simon’s problem. The following Theorem 3 and its proof are based

33

5. A Randomized Algorithm for the Extended Version of Simon’s Problem

on Section 3 in the paper of Brassard and Høyer [13]. Note that while in the proof of
Theorem 2 we reason about Algorithm 4.1, in Theorem 3 we reason about Algorithm 5.1.

Theorem 3. Let G = ⟨{0, 1}n, ⊕⟩ and H be any subgroup of G. Furthermore, let
ρ : G → {0, 1}m be a function that fulfills the promise of the extended version of Simon’s
problem: ρ behaves constant and distinct on each coset of H. Let Uρ be a quantum
implementation of ρ, that is Uρ |g⟩ |g′⟩ = |g⟩ |g′ ⊕ ρ(g)⟩ for all g ∈ G and g′ ∈ {0, 1}m.
Let T be a set composed of precisely one representative for each coset of H in G. Then
Algorithm 5.1 performs the state change

|0⟩⊗n |0⟩⊗m → 1√︁|T |
(︃∑︂

t∈T

⃓⃓⃓
φtH

⊥⟩︂
|ρ(t)⟩)︁.

Proof. Following the presentation of Brassard and Høyer [13], we start in the state

|ψ0⟩ = |0⟩⊗n |0⟩⊗m .

We first apply the Hadamard transformation to the first register, resulting in the state

|ψ1⟩ = H⊗n ⊗ I⊗m |ψ0⟩ = 1√︁|G|
(︃∑︂

g∈G

|g⟩ |0⟩⊗m
)︃

.

Next, we apply Uρ resulting in

|ψ2⟩ = Uρ |ψ1⟩ = 1√︁|G|
(︃∑︂

g∈G

|g⟩ |0 ⊕ ρ(g)⟩
)︃

= 1√︁|G|
(︃∑︂

g∈G

|g⟩ |ρ(g)⟩
)︃

.

Let T (1), . . . , T (|T |) be the cosets of H in G. By Lemma 9, the cosets of H in G partition
G and thus we can rewrite |ψ2⟩ into

|ψ2⟩ = 1√︁|G|
(︃ ∑︂

t∈T (1)

|t⟩ |ρ(t)⟩ + · · · +
∑︂

t∈T (|T |)
|t⟩ |ρ(t)⟩

)︃
.

Next we use Corollary 1 to pick one representative t(j) for each coset T (j) and write T (j)

as t(j) ⊕ H. The result is

|ψ2⟩ = 1√︁|G|
(︃ ∑︂

h∈H

⃓⃓⃓
t(1) ⊕ h

⟩︂ ⃓⃓⃓
ρ(t(1) ⊕ h)

⟩︂
+ · · · +

∑︂
h∈H

⃓⃓⃓
t(|H|) ⊕ h

⟩︂ ⃓⃓⃓
ρ(t(|H|) ⊕ h)

⟩︂)︃
.

Because T (j) = t(j) ⊕ H and hence (t(j) ⊕ h) ∈ T (j) for each h ∈ H, we can use the
promise of ρ to simplify the second register. Recall that ρ behaves constant and distinct
for each coset of H in G, and hence ρ(t(j) ⊕ h) = ρ(t(j)) for each h ∈ H . When we apply
this to |ψ2⟩ we get

|ψ2⟩ = 1√︁|G|
(︃ ∑︂

h∈H

⃓⃓⃓
t(1) ⊕ h

⟩︂ ⃓⃓⃓
ρ(t(1))

⟩︂
+ · · · +

∑︂
h∈H

⃓⃓⃓
t(|H|) ⊕ h

⟩︂ ⃓⃓⃓
ρ(t(|H|))

⟩︂)︃

= 1√︃
|G|
|H|

(︃ 1√︁|H|
∑︂
h∈H

⃓⃓⃓
t(1) ⊕ h

⟩︂ ⃓⃓⃓
ρ(t(1))

⟩︂
+ · · · + 1√︁|H|

∑︂
h∈H

⃓⃓⃓
t(|H|) ⊕ h

⟩︂ ⃓⃓⃓
ρ(t(|H|))

⟩︂)︃
.

34

5.1. Quantum Algorithm for the Extended Version of Simon’s Problem

Now recall the definition of the shorthand notation 1√
|H|

∑︁
h∈H |t ⊕ h⟩ = |t ⊕ H⟩. We

use it to simplify |ψ2⟩ into

|ψ2⟩ = 1√︃
|G|
|H|

(︃⃓⃓⃓
t(1) ⊕ H

⟩︂ ⃓⃓⃓
ρ(t(1))

⟩︂
+ · · · +

⃓⃓⃓
t(|T |) ⊕ H

⟩︂ ⃓⃓⃓
ρ(t(|T |))

⟩︂)︃
.

Using |T | = |G|
|H| from Lemma 9, we rewrite |ψ2⟩ a final time into

|ψ2⟩ = 1√︁|T |
(︃∑︂

t∈T

|t ⊕ H⟩ |ρ(t)⟩
)︃

,

which is the superposition derived by Brassard and Høyer in their description of Simon’s
algorithm in Section 3 in [13]. Our final quantum operation is to apply the Hadamard
transformation to the first register again. Using the definition of the Hadamard transfor-
mation H⊗n |x⟩ = 1√

|G|
∑︁

g∈G(−1)g⊙x |g⟩ we get

|ψ3⟩ = H⊗n ⊗ I⊗m |ψ2⟩ = 1√︁|T |
(︃∑︂

t∈T

H⊗n |t ⊕ H⟩ |ρ(t)⟩
)︃

= 1√︁|T |
(︃∑︂

t∈T

1√︁|H|
(︃ ∑︂

h∈H

H⊗n |t ⊕ h⟩
)︃)︃

|ρ(t)⟩

= 1√︁|T |
(︃∑︂

t∈T

1√︁|H|
(︃ ∑︂

h∈H

1√︁|G|
(︃∑︂

g∈G

(−1)g⊙(t⊕h) |g⟩
)︃)︃)︃

|ρ(t)⟩ .

We apply the Distributivity Lemma (Lemma 1) to rewrite ψ3 into

|ψ3⟩ = 1√︁|T |
(︃∑︂

t∈T

1√︁|H|
(︃ ∑︂

h∈H

1√︁|G|
(︃∑︂

g∈G

(−1)g⊙t(−1)g⊙h |g⟩
)︃)︃)︃

|ρ(t)⟩ .

We now perform a case distinction on H . Suppose H is non-trivial and recall the definition
of H⊥ = {g ∈ G | g ⊙ h = 0 ∀h ∈ H}. Following a proof idea by Mihara and Sung [26],
we consider the superposition the first register is in and fix an arbitrary g ̸∈ H⊥. Such a
g must exist, because |H| > 1 and hence, by the Orthogonal Group Size Lemma (Lemma
10), |H⊥| < |G|. The amplitude of |g⟩ is given by

1√︁|T |
(︃∑︂

t∈T

1√︁|H|
(︃ ∑︂

h∈H

1√︁|G|(−1)g⊙t(−1)g⊙h
)︃)︃

= 1√︁|T |
(︃∑︂

t∈T

1
2
√︁|H|

(︃ ∑︂
h∈H

1√︁|G|(−1)g⊙t(−1)g⊙h +
∑︂
h∈H

1√︁|G|(−1)g⊙t(−1)g⊙h
)︃)︃

.

35

5. A Randomized Algorithm for the Extended Version of Simon’s Problem

By construction of H⊥ and because g ̸∈ H⊥, there exists some h′ ∈ H with g ⊙ h′ = 1.
We apply the Group Shift Lemma (Lemma 8) to rewrite the amplitude of g further into

1√︁|T |
(︃∑︂

t∈T

1
2
√︁|H|

(︃ ∑︂
h∈H

1√︁|G|(−1)g⊙t(−1)g⊙h +
∑︂
h∈H

1√︁|G|(−1)g⊙t(−1)g⊙(h⊕h′)
)︃)︃

= 1√︁|T |
(︃∑︂

t∈T

1
2
√︁|H|

1√︁|G|
(︃ ∑︂

h∈H

(−1)g⊙t(−1)g⊙h + (−1)g⊙t(−1)g⊙(h⊕h′)
)︃)︃

.

We use Lemma 1 again to rewrite the amplitude to

1√︁|T |
(︃∑︂

t∈T

1
2
√︁|H|

1√︁|G|
(︃ ∑︂

h∈H

(−1)g⊙t(−1)g⊙h + (−1)g⊙t(−1)g⊙h(−1)g⊙h′
)︃)︃

= 1√︁|T |
(︃∑︂

t∈T

1
2
√︁|H|

1√︁|G|
(︃ ∑︂

h∈H

(−1)g⊙t(−1)g⊙h
(︃

1 + (−1)g⊙h′
)︃)︃)︃

.

Now we recall that g ⊙ h′ = 1 to conclude that the amplitude of g is

1√︁|T |
(︃∑︂

t∈T

1
2
√︁|H|

1√︁|G|
(︃ ∑︂

h∈H

(−1)g⊙t(−1)g⊙h
(︃

1 − 1
)︃)︃)︃

= 0.

The innermost sum in |ψ3⟩ is over elements of the group G. We just showed that for
arbitrary g ∈ G with g ̸∈ H⊥, the amplitude of g is zero. Hence, we can rewrite the
innermost sum in |ψ3⟩ into a sum over elements of H⊥ only. The result is

|ψ3⟩ = 1√︁|T |
(︃∑︂

t∈T

1√︁|H|
(︃ ∑︂

h∈H

1√︁|G|
(︃ ∑︂

g∈H⊥
(−1)g⊙t(−1)g⊙h |g⟩

)︃)︃)︃
|ρ(t)⟩ .

We can perform the very same rewrite of |ψ3⟩ as well if H is trivial. In that case, by
Lemma 10, we have |H⊥| = |G| and hence we can use G and H⊥ interchangeably.

Recall that by definition of H⊥ and by construction of h, for each element g in H⊥ we
have g ⊙ h = 0. We use this to simplify |ψ3⟩ into

|ψ3⟩ = 1√︁|T |
(︃∑︂

t∈T

1√︁|H|
(︃ ∑︂

h∈H

1√︁|G|
(︃ ∑︂

g∈H⊥
(−1)g⊙t |g⟩

)︃)︃)︃
|ρ(t)⟩ .

Now we realize that h does not occur anymore in any summand and further rewrite |ψ3⟩
into

|ψ3⟩ = 1√︁|T |
(︃∑︂

t∈T

|H|√︁|H|
1√︁|G|

(︃ ∑︂
g∈H⊥

(−1)g⊙t |g⟩
)︃)︃

|ρ(t)⟩

= 1√︁|T |
(︃∑︂

t∈T

√︄
|H|
|G|

(︃ ∑︂
g∈H⊥

(−1)g⊙t |g⟩
)︃)︃

|ρ(t)⟩ .

36

5.1. Quantum Algorithm for the Extended Version of Simon’s Problem

Last, we apply Lemma 10 again to get |H⊥| = |G|
|H| . Taking both sides of the equality to

the power of −1 gives us 1
|H⊥| = |H|

|G| , which we use to rewrite |ψ3⟩ into

|ψ3⟩ = 1√︁|T |
(︃∑︂

t∈T

1√︂
|H⊥|

(︃ ∑︂
g∈H⊥

(−1)g⊙t |g⟩
)︃)︃

|ρ(t)⟩ = 1√︁|T |
(︃∑︂

t∈T

⃓⃓⃓
φtH

⊥⟩︂
|ρ(t)⟩)︁.

This is the superposition also stated in Equation (4) in the paper by Brassard and Høyer
[13].

Note that the final superposition |ψ3⟩ is precisely what we get in the original version
of Simon’s problem (as presented in Chapter 4), just written down differently. Let ρ
be an instance of the original version of Simon’s problem such that ρ is bijective (i.e.
the hidden subgroup is trivial). In that case, by Lemma 6, both sets T and H⊥ would
correspond to G, and we would measure some random bitstring. If ρ is not bijective (i.e.
the hidden subgroup is of form {0, s}), then |ψ3⟩ would be a superposition over all g ∈ G
with g ⊙ s = 0, which is exactly the definition of H⊥.

In the original version of Simon’s problem, we know the sizes of the possible hidden
subgroups. Hence, we also know that we can stop sampling elements from H⊥ when
we have collected n − 1 linearly independent ones, and we can construct a generating
set for H. In the extended setting however, we do not know |H| and hence we also do
not know when to stop sampling. Moreover, we would like to not measure any already
known elements from H⊥ again. In the subsequent sections, we will discuss a way to
achieve both.

37

CHAPTER 6
Removing Already Known Vectors

from a Superposition

When we apply the original version of Simon’s algorithm, it might happen that we
measure the same element from H⊥ multiple times. In their paper [13], Brassard and
Høyer propose a quantum routine that prevents exactly that. By applying additional
quantum operators (i.e. introducing blocking clauses), we can make sure to always measure
a new element from H⊥ if such an element exists.

We first present the Equal Cardinality Lemma, which is an important tool to reason
about the structure of arbitrary subgroups of G. Next, we discuss a quantum algorithm
that allows us to introduce a single blocking clause (that is, a quantum algorithm with
which we ensure not to measure one particular known element from H⊥ again) in the
Blocking Clause Lemma. Finally, generalizing the Blocking Clause Lemma, we introduce
a quantum algorithm that ensures that we do not measure a set of already known elements
from H⊥ again.

6.1 Implementing a Single Blocking Clause
The following lemma gives us a crucial insight into non-trivial subgroups of ⟨{0, 1}n, ⊕⟩,
which we are going to exploint for the quantum algorithm that blocks already measured
bitstrings from future measurements. Intuitively, we can split a non-trivial subgroup of
G into two parts using some non-trivial pivot element and based on the structure of the
pivot element, we get information on the structure of the two parts of the subgroup. A
similar observation can be found in Section 4.3 in the paper by Brassard and Høyer [13],
but there it is stated without a proof.

Lemma 11 (Equal Cardinality Lemma). Let H be a non-trivial subgroup of group
G = ⟨{0, 1}n, ⊕⟩. Then for some j with 0 ≤ j < n, there exists an element y ∈ H such

39

6. Removing Already Known Vectors from a Superposition

that the two sets

Kj = {k ∈ H | kj = 0} and K ′
j = {k′ ∈ H | k′

j = 1}
have the same cardinality, i.e. |Kj | = |K ′

j |.

Proof. First note that there exists at least one non-zero element y in H, because H is
non-trivial. Because y is non-zero, there exists a bit yj in y with yj = 1. Thus, the sets
Kj and K ′

j are well-defined.

Consider the following set A = {y ⊕ k′ | k′ ∈ K ′
j}. We note that for an arbitrary k′ ∈ K ′

j

we have yj = k′
j = 1 and hence (y ⊕ k′)j = 0 and thus (y ⊕ k′) ∈ Kj . Consequently,

A ⊆ Kj . We note that for arbitrary a, b ∈ G we have (y ⊕ a = y ⊕ b) =⇒ a = b and
thus |A| = |K ′

j |. Consequently, we have

|K ′
j | ≤ |Kj |.

Analogously, consider the set B = {y ⊕ k | k ∈ Kj}. Note that for an arbitrary k ∈ Kj ,
because yj = 1 and kj = 0, we have that (y ⊕ k)j = 1 and hence (y ⊕ k) ∈ K ′

j .
Consequently, B ⊆ K ′

j . Analogous to above, |B| = |Kj | and we get

|Kj | ≤ |K ′
j |.

Then |Kj | = |K ′
j |.

Corollary 2. K ′
j = {y ⊕ k | k ∈ Kj}.

Proof. This follows immediately from the proof of the Equal Cardinality Lemma. Consider
set B and recall B ⊆ K ′

j and |B| = |Kj |. Using |Kj | = |K ′
j | from the Equal Cardinality

Lemma, we get |B| = |K ′
j | and therefore K ′

j = B = {y ⊕ k | k ∈ Kj}.

Moving on, we present a quantum algorithm that implements a single blocking clause.
Intuitively, we are given a quantum register in a superposition state that also includes
an element from a subgroup of G which we already know and which we would like to
not measure again. In the proof of the Blocking Clause Lemma below, we construct a
quantum algorithm that manipulates that superposition in a way that our known element
is not included anymore. Note that the Blocking Clause Lemma was originally stated by
Brassard and Høyer as Lemma 6 [13]. Our presentation closely follows the original one,
but we present the mathematical analysis in much more detail.

Lemma 12 (Blocking Clause Lemma). Let H be a non-trivial subgroup of group G =
⟨{0, 1}n, ⊕⟩. Furthermore, let y be a non-zero element of H. Define (as in Lemma 11)
the two sets

Kj = {k ∈ H | kj = 0} and K ′
j = {k′ ∈ H | k′

j = 1}

40

6.1. Implementing a Single Blocking Clause

with yj = 1 for some j with 0 ≤ j < n. Then there exists a quantum algorithm that,
applied to two quantum registers of size n and 1, performs the state change

|φgH⟩ |0⟩ → |φgKj⟩ |g ⊙ y⟩ .

Moreover, the algorithm can be implemented as a measurement-free quantum circuit of
depth linear in n.

Proof. Assume two quantum registers, the first one of size n and the second one of size 1.
Since H is non-trivial, there is at least one y ∈ H , with y ̸= 0. Choose an arbitrary j for
which yj = 1 holds. Then we start in the state

|ψ0⟩ = |φgH⟩ |0⟩ = 1√︁|H|
∑︂
h∈H

(−1)g⊙h |h⟩ |0⟩ .

Following Brassard and Høyer [13], we apply the CN OT operator with the j-th qubit in
the first register as control qubit and the single qubit in the second register as target
qubit. The resulting state is

|ψ1⟩ = 1√︁|H|
(︃ ∑︂

h∈H

(−1)g⊙h |h⟩ |hj⟩
)︃

.

What follows next is a complex rewriting of |ψ1⟩, which is not further detailed in [13].
We note that Kj ∪ K ′

j = H and that Kj ∩ K ′
j = ∅. Thus, we can rewrite |φgH⟩ to⃓⃓⃓

φg(Kj ∪ K ′
j)

⟩︂
. Then

|ψ1⟩ = 1√︂
|(Kj ∪ K ′

j)|

(︃ ∑︂
h∈(Kj∪K′

j)
(−1)g⊙h |h⟩ |hj⟩

)︃

= 1√︂
|Kj ∪ K ′

j |

(︃(︃ ∑︂
k∈Kj

(−1)g⊙k |k⟩ |0⟩
)︃

+
(︃ ∑︂

k′∈K′
j

(−1)g⊙k′ ⃓⃓
k′⟩︁ |1⟩

)︃)︃
.

Exploiting the Equal Cardinality Lemma (Lemma 11), we derive the following identity
1√︂

|Kj ∪ K ′
j |

= 1√︂
|Kj | + |K ′

j |
= 1√︂

|Kj | + |Kj |
= 1√︂

2 · |Kj |
= 1√

2
· 1√︂

|Kj |
.

We apply that identity to |ψ1⟩ and get

|ψ1⟩ = 1√
2

1√︂
|Kj |

(︃(︃ ∑︂
k∈Kj

(−1)g⊙k |k⟩ |0⟩
)︃

+
(︃ ∑︂

k′∈K′
j

(−1)g⊙k′ ⃓⃓
k′⟩︁ |1⟩

)︃)︃
.

With yj = 1 and Corollary 2, we rewrite the sum over K ′ into a sum over K. We get

|ψ1⟩ = 1√
2

1√︂
|Kj |

(︃(︃ ∑︂
k∈Kj

(−1)g⊙k |k⟩ |0⟩
)︃

+
(︃ ∑︂

k∈Kj

(−1)g⊙(k⊕y) |y ⊕ k⟩ |1⟩
)︃)︃

.

41

6. Removing Already Known Vectors from a Superposition

Next we apply the Distributivity Lemma (Lemma 1) and get

|ψ1⟩ = 1√
2

1√︂
|Kj |

(︃(︃ ∑︂
k∈Kj

(−1)g⊙k |k⟩ |0⟩
)︃

+
(︃ ∑︂

k∈Kj

(−1)g⊙k(−1)g⊙y |y ⊕ k⟩ |1⟩
)︃)︃

= 1√
2

1√︂
|Kj |

(︃(︃ ∑︂
k∈Kj

(−1)g⊙k |k⟩ |0⟩
)︃

+ (−1)g⊙y
(︃ ∑︂

k∈Kj

(−1)g⊙k |y ⊕ k⟩ |1⟩
)︃)︃

.

For the next steps, let · denote scalar-vector multiplication. Recall that y denotes a
bitstring, which we interpret as a vector. Hence, we have 1 · y = y and 0 · y = 0. We note
about 0 that x ⊙ 0 = 0 and consequently (−1)x⊙0 = (−1)0 = 1 for arbitrary x ∈ G. We
rewrite ψ1 even further to

|ψ1⟩ = 1√
2

1√︂
|Kj |

(︃
(−1)g⊙(0·y)

(︃ ∑︂
k∈Kj

(−1)g⊙k |k⟩ |0⟩
)︃

+

(−1)g⊙(1·y)
(︃ ∑︂

k∈Kj

(−1)g⊙k |y ⊕ k⟩ |1⟩
)︃)︃

= 1√
2

1√︂
|Kj |

(︃
(−1)g⊙(0·y)

(︃ ∑︂
k∈Kj

(−1)g⊙k |(0 · y) ⊕ k⟩ |0⟩
)︃

+

(−1)g⊙(1·y)
(︃ ∑︂

k∈Kj

(−1)g⊙k |(1 · y) ⊕ k⟩ |1⟩
)︃)︃

= 1√
2

∑︂
i∈Z2

(−1)g⊙(i·y)
(︃ 1√︂

|Kj |
∑︂

k∈Kj

(−1)g⊙k |(i · y) ⊕ k⟩
)︃

|i⟩ .

This is the superposition stated in [13] on page 5. Following the presentation of Brassard
and Høyer, we apply a quantum operation that performs the following state change on
the first register if the second register is in state |1⟩: |x⟩ |1⟩ → |x ⊕ y⟩ |1⟩. We observe
that if the second register is in state |1⟩, the first register is in a superposition state over
all elements k ∈ Kj where each summand is of form |(1 · y) ⊕ k⟩. After the application
of the quantum operation, by the semantics of ⊕, the first register of each summand is
in the state |k⟩, and the resulting overall state of our quantum registers is

|ψ2⟩ = 1√
2

∑︂
i∈Z2

(−1)g⊙(i·y)
(︃ 1√︂

|Kj |
∑︂

k∈Kj

(−1)g⊙k |k⟩
)︃

|i⟩

=
(︃ 1√︂

|Kj |
∑︂

k∈Kj

(−1)g⊙k |k⟩
)︃(︃ 1√

2
∑︂
i∈Z2

(−1)g⊙(i·y) |i⟩
)︃

= |φgKj⟩
(︃ 1√

2
∑︂
i∈Z2

(−1)g⊙(i·y) |i⟩
)︃

.

42

6.1. Implementing a Single Blocking Clause

From now on, we omit the first register, because its content does not change. Instead,
we focus on the second register, which we can rewrite to⃓⃓

ψ′
2
⟩︁

= 1√
2

∑︂
i∈Z2

(−1)g⊙(i·y) |i⟩ = 1√
2

(︃
(−1)g⊙(0·y) |0⟩ + (−1)g⊙(1·y) |1⟩

)︃

= 1√
2

(︃
(−1)(g⊙y)·0 |0⟩ + (−1)(g⊙y)·1 |1⟩

)︃
= 1√

2
∑︂
i∈Z2

(−1)(g⊙y)·i |i⟩

= 1√
2

∑︂
i∈Z2

(−1)(g⊙y)⊙i |i⟩ .

We instantiate the Hadamard identity H⊗n |x⟩ = 1√
2n

∑︁
y∈{0,1}n(−1)y⊙x |y⟩ for n = 1 and

get H |x⟩ = 1√
2

∑︁
y∈{0,1}1(−1)y⊙x |y⟩ = 1√

2
∑︁

y∈{0,1}(−1)y·x |y⟩, which we use to further
simplify |ψ′

2⟩ into ⃓⃓
ψ′

2
⟩︁

= H |g ⊙ y⟩ .

Following the presentation of Brassard and Høyer [13], we now apply the H operator to
the second register. The resulting final state is

|ψ3⟩ = H |ψ2⟩ = HH |g ⊙ y⟩ = I |g ⊙ y⟩ = |g ⊙ y⟩ .

The overall state of our two quantum registers is thus |φgKj⟩ |g ⊙ y⟩, which concludes
the first part of the proof.

We still need to prove that there is a circuit with depth linear in n that performs the above
algorithm. The state transition from |ψ0⟩ to |ψ1⟩ is performed using one CN OT operator
only, so this part even has constant circuit depth. The transition from |ψ1⟩ to |ψ2⟩ can
be implemented in the following way. We traverse each bit yi in y and extend our circuit
in case y1 = 1. We add a CNOT gate where the control qubit is the single qubit in the
second register and the target qubit is the i-th qubit in the first register.

Let our quantum registers be in state |x⟩ |q⟩ before we apply the above circuit. Then
we claim that this circuit changes the state of the registers to |x ⊕ y⟩ |q⟩ if and only if
|q⟩ = |1⟩. Suppose |q⟩ = |0⟩. Then by construction, none of the CNOT gates in the above
circuit get activated and thus the state of the register is not changed at all. Suppose
|q⟩ = |1⟩. By construction, each qubit |xi⟩ in the first register is in state |xi ⊕ yi⟩ after
we apply the circuit. If yi = 0, then we did not add any gate to the circuit and hence
|xi⟩ = |xi ⊕ 0⟩ = |xi ⊕ yi⟩. If yi = 1, then the above circuit has a CNOT gate where
the target qubit is |xi⟩ and the control qubit is |q⟩. That CNOT gate gets activated
as by assumption |q⟩ = |1⟩. Hence, |xi⟩ gets changed to |xi ⊕ 1⟩ = |xi ⊕ yi⟩. Because
each qubit |xi⟩ gets transformed to |xi ⊕ yi⟩, the entire value |x⟩ gets changed to |x ⊕ y⟩.
Note that we add a maximum of n CNOT gates for this step.

An application of a single Hadamard gate to state |ψ2⟩ results in state |ψ3⟩. The entire
circuit is therefore built from 1 + O(n) + 1 gates and does not apply any measurement
operations. This concludes the second part of the proof.

43

6. Removing Already Known Vectors from a Superposition

Corollary 3. We can undo the effects of the circuit described in the Blocking Clause
Lemma (Lemma 12) by just running it in reverse order.

Proof. The corollary follows directly from the fact that all gates used in the above circuit
implement self-adjoint quantum operators.

Corollary 4. We can generalize the setting for the above defined algorithm to the
case where the second quantum register contains more than one qubit. That is, for all
ℓ, 1 ≤ ℓ ≤ m, there exists a quantum algorithm Cℓ with

Cℓ |φgH⟩ |qm−1 . . . qm−ℓ+1 0 qm−ℓ−1 . . . q0⟩
= |φgKj⟩ |qm−1 . . . qm−ℓ+1(g ⊙ y)qm−ℓ−1 . . . q0⟩ ,

where Kj is defined like in the Blocking Clause Lemma (Lemma 12). Moreover, Cℓ can
be implemented as a quantum circuit of depth linear in n.

Proof. The proof works analogously to the proof of Lemma 12. For any Cℓ, we just set
the second quantum register from the Lemma 12 to be the ℓ-th most significant qubit
from the second register in our setting.

6.2 Implementing Multiple Blocking Clauses
We can repeatedly apply the algorithm from the Blocking Clause Lemma (Lemma 12) to
exclude multiple already known states from a superposition. One precondition of the
Blocking Clause Lemma is that our quantum register is in a superposition state over a
group. We thus first prove in Lemma 13 that the superposition we get after we applied
the Blocking Clause Lemma (Lemma 12), is still a superposition over a group.

Lemma 13. Let H be any subgroup of the group G = {0, 1}n and let {i1, . . . , im} be a
set of indices where each element ij satisfies 0 ≤ j < n. Define K = {h ∈ H | hi1 =
· · · = him = 0}. Then, ⟨K, ⊕⟩ is a group.

Proof. We first note that K is non-empty because 0 is the neutral element of H, and we
have 0i1 = · · · = 0im = 0. Hence, 0 ∈ K. Next we prove the group axioms.

1. Closure: Fix arbitrary elements k, k′ ∈ K. By definition of K we have ki1 = · · · =
kim = k′

i1 = · · · = k′
im

= 0. Hence, (k ⊕ k′)i1 = · · · = (k ⊕ k′)im = 0 and therefore
(k ⊕ k′) ∈ K.

2. Neutral Element: The neutral element of K is 0 since for arbitrary k ∈ K we
have k ⊕ 0 = k.

3. Inverse Element: By definition of ⊕, each k ∈ K is its own inverse.

44

6.2. Implementing Multiple Blocking Clauses

4. Associativity: Follows directly from the definition of ⊕.

Second, we use Lemma 13 in a larger constructive proof for the existence of a quantum
algorithm that shrinks a superposition to not include multiple already known elements.
We formulate the Blocking Clause Theorem, which is adapted from Lemma 7 by Brassard
and Høyer [13], who state it without a proof.

Theorem 4 (Blocking Clause Theorem). Let H be any subgroup of the group G =
⟨{0, 1}n, ⊕⟩, let g ∈ G, and let Y = {y(1), . . . , y(|Y |)} be any subset of H where each
y(j) ∈ Y satisfies the following two formulas

• ∃ij : y
(j)
ij

= 1, and

• ∀ℓ : 1 ≤ ℓ < j, y
(j)
iℓ

= 0.

If Y = ∅ define K(0) = H. Otherwise, for each j with 1 ≤ j ≤ |Y | define K(j) = {h ∈
H | hi1 = · · · = hij = 0}. Then there exists a quantum algorithm that performs the state
change

|φgH⟩ |0⟩⊗|Y | →
⃓⃓⃓
φgK(|Y |)

⟩︂ (︃ ⨂︂
y(j)∈Y

⃓⃓⃓
g ⊙ y(j)

⟩︂)︃
.

Moreover, the algorithm can be implemented as a quantum circuit with depth quadratic
in n.

Proof. We first construct a quantum algorithm to perform the above state change. Second,
we prove the correctness of that algorithm and third we prove the claim about its circuit
depth.

Let C0 = I and for each j with 1 ≤ j ≤ |Y |, let Cj be the quantum algorithm from
Corollary 4 (where y(j) is the singled-out non-zero bitstring) and define CY = C|Y | · · · C1C0.
We prove the following statement via mathematical induction on |Y |.

CY |φgH⟩ |0⟩⊗|Y | =
⃓⃓⃓
φgK(|Y |)

⟩︂ (︃ ⨂︂
y(j)∈Y

⃓⃓⃓
g ⊙ y(j)

⟩︂)︃
.

Induction Start |Y | = 0. Then Y = ∅ and by construction C∅ = C0 = I. We have

C0 |φgH⟩ |0⟩⊗0 = I |φgH⟩ |0⟩⊗0 = |φgH⟩ ⊗ (1) =
⃓⃓⃓
φgK(0)

⟩︂ (︃ ⨂︂
y(j)∈Y

⃓⃓⃓
g ⊙ y(j)

⟩︂)︃
,

where we used |ψ⟩⊗0 = (1) by definition of the tensor product.

45

6. Removing Already Known Vectors from a Superposition

Induction Hypothesis |Y | = m − 1 for some m > 1. Let CY = Cm−1 · · · C0 and

CY |φgH⟩ |0⟩⊗m−1 =
(︁Cm−1 · · · C0

)︁ |φgH⟩ |0⟩⊗m−1 =
⃓⃓⃓
φgK(m−1)

⟩︂ (︃ ⨂︂
y(j)∈Y

⃓⃓⃓
g ⊙ y(j)

⟩︂)︃
.

Induction Step Consider Y with |Y | = m. Then CY = Cm · · · C1C0. Because |Y | = m,
we can write Y = {y(1), . . . , y(m)}. When we apply CY to the initial state we get

CY |φgH⟩ |0⟩⊗m =
(︃

CmCm−1 · · · C0

)︃
|φgH⟩ |0⟩⊗m

= Cm ·
(︃

Cm−1 · · · C0

)︃
|φgH⟩ |0⟩⊗m−1 |0⟩ .

We use the induction hypothesis to rewrite the above expression to

Cm

⃓⃓⃓
φgK(m−1)

⟩︂ (︃ ⨂︂
y(j)∈Y \{y(m)}

⃓⃓⃓
g ⊙ y(j)

⟩︂)︃
|0⟩ .

By construction of Y , there must exist some index im such that y
(m)
im

= 1 and y
(m)
i1 =

· · · = y
(m)
im−1 = 0. By Lemma 13, K(m−1) is a group and because y(m) ∈ K(m−1), K(m−1)

is non-trivial. Hence, we can apply the Blocking Clause Lemma (Lemma 12) to the above
expression and obtain

Cm

⃓⃓⃓
φgK(m−1)

⟩︂ (︃ ⨂︂
y(j)∈Y \{y(m)}

⃓⃓⃓
g ⊙ y(j)

⟩︂)︃
|0⟩

=
⃓⃓⃓
φgK(m)

⟩︂ (︃ ⨂︂
y(j)∈Y \{y(m)}

⃓⃓⃓
g ⊙ y(j)

⟩︂)︃ ⃓⃓⃓
g ⊙ y(m)

⟩︂

=
⃓⃓⃓
φgK(m)

⟩︂ (︃ ⨂︂
y(j)∈Y

⃓⃓⃓
g ⊙ y(j)

⟩︂)︃
,

which concludes the induction proof.

Having proven the correctness of CY , we proceed by analyzing its circuit depth. By
the Blocking Clause Lemma, for each j with 1 ≤ j ≤ |Y |, Cj can be implemented as a
quantum circuit of depth linear in n. We apply |Y | such operators, so in order to reason
about the total circuit depth, we need to give an upper bound on |Y |. By definition of
Y , for each y(j) with 1 ≤ j ≤ |Y | there exists some index ij with y

(j)
ij

= 1. Because we
additionally have ∀ℓ : 1 ≤ ℓ < j, y

(j)
iℓ

= 0, all such indices ij are different. An n-bit
bitstring cannot have more than n different indices and hence an upper bound for |Y | is
n. Hence, the circuit depth for CY is at most quadratic in n.

46

CHAPTER 7
Removing the Zero Vector from a

Superposition

In the previous chapter, we discussed a method to remove any non-zero bitstring from a
superposition. When we inspect the superposition produced by Algorithm 5.1, we realize
however, that this is not enough. For a hidden subgroup H, the superposition at the
end of Theorem 3 is over elements of H⊥ and by construction, we always have 0 ∈ H⊥.
This is a problem, since in the setting of the extended version of Simon’s problem, we
are looking for linearly independent elements from H⊥. The zero vector is never part of
a linearly independent set of vectors, hence if we measure it, we do not get additional
information. The possibility to repeatedly measure the zero vector also renders the
procedure developed so far a probabilistic one, but we are interested in a deterministic
algorithm with a fixed runtime. Consequently, we need an additional modification to the
original version of Simon’s algorithm which removes the zero vector from superpositions
over H⊥.

We first present quantum operators and their implementation, which serve as building
blocks for a larger quantum algorithm that removes the zero vector from a superposition.
Second, following Lemma 8 from Brassard and Høyer [13], we state such a quantum
algorithm itself and prove its correctness and computational complexity.

7.1 Preparatory Quantum Operators

The following technical result helps us with the implementation of complex quantum
operators. Intuitively the lemma states that, in order to shift the global phase of a
quantum register |ψ⟩ by i, it is enough to just perform the shift locally on one qubit only.

47

7. Removing the Zero Vector from a Superposition

Lemma 14 (Phase Shift Lemma). Let |ψ⟩ = |qn−1qn−2 . . . q0⟩ be an n-qubit quantum
state with n > 0. Then for an arbitrary j with 0 ≤ j < n we have(︁I⊗j ⊗ (i · I) ⊗ I⊗n−j−1)︁ |ψ⟩ = i |ψ⟩ .

Proof. Let |ψ⟩ = |qn−1qn−2 . . . q0⟩ be an n-qubit register. Fix an arbitrary qubit |qj⟩ , 0 ≤
j < n. We examine the operator that changes the phase of |qj⟩ only and does not
manipulate any other qubit. In the following, note that the edge cases j = 0 and j = n−1
are fully covered because we defined I⊗0 = (1).

I⊗j ⊗ (i · I) ⊗ I⊗n−j−1 =

�1 0 0
0 . . . 0
0 0 1

�
⏞ ⏟⏟ ⏞

2j×2j

⊗
(︄

i 0
0 i

)︄
⊗ I⊗n−j−1

=

�i 0 0
0 . . . 0
0 0 i

�
⏞ ⏟⏟ ⏞

2j+1×2j+1

⊗I⊗n−j−1 = i · I⊗j+1 ⊗ I⊗n−j−1 = i · In.

Hence, (I⊗j ⊗ (i · I) ⊗ I⊗n−j−1) |ψ⟩ = i · |ψ⟩.

Next, we introduce non-standard quantum operators and specify procedures for how to
implement them as quantum circuits.

Lemma 15 (Lemma S{0}). Let |x⟩ ∈ Bn be a state from the n-qubit computational
standard basis. Let S{0} = I⊗n − |0⟩⟨0| + i|0⟩⟨0|. Then we have

S{0} |x⟩ =
{︄

i |x⟩ |x⟩ = |0⟩ ,

|x⟩ otherwise.

Proof. Fix an arbitrary |x⟩ ∈ Bn. Then we have

S{0} |x⟩ =
(︁I⊗n − |0⟩⟨0| + i|0⟩⟨0|)︁ |x⟩

= |x⟩ − |0⟩ ⟨0|x⟩ + i |0⟩ ⟨0|x⟩ .

Now we perform a case distinction on |x⟩.
Case |x⟩ = |0⟩. The above expression S{0} |x⟩ simplifies to

|0⟩ − |0⟩ ⟨0|0⟩ + i |0⟩ ⟨0|0⟩ = i |0⟩ ,

where in the last step we use that ⟨0|0⟩ = 1, because |0⟩ is a computational basis state.

48

7.1. Preparatory Quantum Operators

Case |x⟩ ̸= |0⟩. We use the fact that |x⟩ and |0⟩ are distinct states from the orthogonal
computational basis and hence ⟨0|x⟩ = 0. Consequently, the above expression S{0} |x⟩
simplifies to |x⟩.
Thus, we have that S{0} changes the phase of the input state |x⟩ by the imaginary unit i
if and only if |x⟩ = |0⟩.

We also specify how to implement the S{0} operator as a quantum circuit.

Lemma 16. Let S{0} be the quantum operator described in Lemma 15, operating on an
n-qubit register. Then S{0} can be implemented as a quantum circuit of depth linear in n.

Proof. We first consider the special case n = 1. The corresponding circuit is shown in
Figure 7.1. If the input qubit is in state |0⟩, then the first X gate will put it in state |1⟩.
Then the S gate performs the phase shift, and we reset the input qubit back to |0⟩ with
another X gate. If the input qubit is in state |1⟩, then the first X gate puts it into state
|0⟩, where the S gate has no effect and hence no phase shift is performed. The second X
gate again resets the input qubit to its original state.

Next, we consider the special case n = 2. The corresponding circuit is also shown in
Figure 7.1. Note that we now assume an ancillary qubit in state |0⟩. Recall that by
the Phase Shift Lemma (Lemma 14), if we want to shift the phase of an entire register,
it is enough to just perform the phase shift on any one of its qubits. Hence, for us, it
is enough to apply the S gate to the ancillary qubit. The rest of the analysis remains
analogous to the previous case.

|x0⟩ X S X

|x0⟩ X X

|x1⟩ X X

|0⟩ S

n = 1 n = 2

Figure 7.1: S{0} for n ∈ {1, 2}, least significant qubit is topmost

The cases where n > 2 work analogously. However, multi-controlled X gates are non-
standard, and we have to simulate them. One possible simulation method is given by
Nielsen and Chuang in Section 4.3 of [27]. We show an example circuit for n = 5 and
with 4 ancillary qubits in Figure 7.2.

For a working register of size n, we first apply n X gates in parallel, adding to our
circuit depth 1. Next we execute (n − 1) CCNOT gates sequentially, which increases
the depth of the circuit by n − 1. After that, we apply one S gate and undo the
previous steps by running them in reverse. In total, we thus have a circuit depth of
1 + (n − 1) + 1 + (n − 1) + 1 = 2n + 1, which is linear in n.

49

7. Removing the Zero Vector from a Superposition

|x0⟩ X X

|x1⟩ X X

|x2⟩ X X

|x3⟩ X X

|x4⟩ X X

|0⟩
|0⟩
|0⟩

|0⟩ S

Figure 7.2: S{0} for n = 5, least significant qubit is topmost

The upside of the proposed circuit for S{0} is that its depth grows only linearly with
the size of the working quantum register. However, the downside is that we need n − 1
ancillary qubits and those are scarce on NISQ hardware. As noted by Barenco et al. [8],
multi-controlled X gates can also be simulated entirely without ancillary qubits. We do
not follow that approach because then the circuit depth would grow exponentially in n.

7.2 Quantum Algorithm for Removing the Zero Vector
We now provide a quantum algorithm to remove the zero state |0⟩ from a superposition,
closely following Lemma 8 from [13], but making some adjustments for simplicity and
clarity. The algorithm uses a particular form of a technique called amplitude amplification
[14, 18], where intuitively we are given a superposition over ‘good’ states which we would
like to measure and ‘bad’ states which we would not like to measure. Our goal is to
increase the amplitudes of the good states and to decrease the amplitudes of the bad
states. In our particular case, we can even boost the amplitude of the good states such
that the probability to measure one of them is 100%.

The setting is as follows. We are working on one quantum register of length n (not
counting ancillary qubits). Let X ⊆ G be some subset of group G (but not necessarily a
subgroup). Let A be a measurement-free quantum algorithm composed of self-adjoint
operators that performs the state transition |0⟩ → |Ψ⟩ where

|Ψ⟩ =
∑︂
x∈X

αx |x⟩ , ∀x ∈ X : αx ∈ C, ⟨Ψ|Ψ⟩ = 1.

At this point we do not care about the internal construction of A, we only care about its
effects on |0⟩. We will instantiate A with a concrete quantum algorithm later in Section
8.2.

Let χ : X → {0, 1} be a total Boolean function. We use χ to partition the set X into

50

7.2. Quantum Algorithm for Removing the Zero Vector

two disjoint subsets

A = {x ∈ X | χ(x) = 1} and B = {x ∈ X | χ(x) = 0},

where intuitively A is the set of good states and B is the set of bad states. We note that
by construction, A ∩ B = ∅ and A ∪ B = X. Hence, we can write the superposition |Ψ⟩
as |A⟩ + |B⟩ where

|A⟩ =
∑︂
x∈A

αx |x⟩ and |B⟩ =
∑︂
x∈B

αx |x⟩ .

We recall from Section 2.3 that for each x ∈ X, a quantum register |x⟩ that holds the
value x, is in a state from the orthogonal computational basis of C2n . Consequently,
when a register is in state |Ψ⟩, the probability to measure a state from |A⟩ or |B⟩ is
a = ⟨A|A⟩ or b = ⟨B|B⟩ respectively.

Additionally, we assume that we are given an n + 1 qubit quantum operator Uχ, which
implements χ. That is, we have Uχ |x⟩ |q⟩ = |x⟩ |q ⊕ χ(x)⟩. In particular, Uχ |x⟩ |0⟩ =
|x⟩ |1⟩ for x ∈ A and Uχ |x⟩ |0⟩ = |x⟩ |0⟩ for x ∈ B. Note that |q⟩ is merely an ancillary
qubit used in the implementation of Uχ. It is omitted in the following mathematical
analysis.

The deviations from the definition by Brassard and Høyer [13] are as follows. We explicitly
state that the function χ must be total. Furthermore, in the original formulation, the
authors use the symbol I for the set here denoted by X. Members of the set I are
originally denoted with the i symbol rather than with the x symbol here. The symbol i is
already reserved for the imaginary unit, hence the renaming. Moreover, in their original
formulation, the authors do not explicitly state the amplitudes αx for the elements in
the superposition in |Ψ⟩. Instead, they introduce a second quantum register that holds
non-basis states entangled with the first register in order to ensure that |Ψ⟩ is a valid
quantum state. Introducing a second register makes the notation for this section even
more complicated than it already is, hence the rework.

The original statement of Lemma 8 has two parts:

(A) There exists a quantum algorithm Q that brings us from the state |0⟩ to the state

(2i(1 − a) − 1) |A⟩ + i(1 − 2a) |B⟩ .

(B) If A and Uχ use no measurement operators, then Q uses no measurement operators
as well. Furthermore, the circuit depth of Q is linear in the quantum register size
n and constant in the circuit depths of A and Uχ.

In the paper by Brassard and Høyer [13], there is only one high-level proof that covers
both statements. Here, we give two separate theorems with separate, detailed proofs.

51

7. Removing the Zero Vector from a Superposition

Theorem 5 (Remove Zero A). There exists a quantum algorithm Q that on input |0⟩
returns

(2i(1 − a) − 1) |A⟩ + i(1 − 2a) |B⟩ ,

where a = ⟨A|A⟩.

Proof. Following the presentation of Brassard and Høyer [13], we note the following:

• The state |Ψ⟩ is a superposition of some states from the computational standard
basis Bn. By definition, all its states are orthogonal to each other. That means we
have ⟨A|B⟩ = ⟨B|A⟩ = 0.

• Because A ∩ B = ∅ and A ∪ B = X, we have a + b = 1 and in particular b = 1 − a.

We recall the definition of the quantum operator S{0} from Lemma 15 and introduce the
new quantum operator SA:

S{0} |x⟩ =
{︄

i |x⟩ x = |0⟩ ,

|x⟩ otherwise.
SA |x⟩ =

{︄
i |x⟩ x ∈ A,

|x⟩ otherwise.

Claim: Let G = AS{0}A−1SA. Then Q is realized by the operator GA. What follows is
the analysis of what happens when we apply Q to the initial state |0⟩.
We recall that for A we have A |0⟩ = |Ψ⟩. Hence, for Q we have

Q |0⟩ = GA |0⟩ = G |Ψ⟩ = G(|A⟩ + |B⟩) = G |A⟩ + G |B⟩ .

For the further steps we go into detail about how G is implemented. We make some
observations.

• The effects of SA on |A⟩ and |B⟩ can be described as follows:

SA |A⟩ = SA

∑︂
x∈A

αx |x⟩ =
∑︂
x∈A

αxSA |x⟩ = i
∑︂
x∈A

αx |x⟩ = i |A⟩

SA |B⟩ = SA

∑︂
x∈B

αx |x⟩ =
∑︂
x∈B

αxSA |x⟩ =
∑︂
x∈B

αx |x⟩ = |B⟩

• By invoking Lemma 15, we can express S{0} as

S{0} = I − |0⟩⟨0| + i|0⟩⟨0|.

• Recall A |0⟩ = |Ψ⟩ = |A⟩ + |B⟩ and that A is unitary by assumption. This allows
us to derive a helpful identity.

A |0⟩ ⟨0| A−1 = |Ψ⟩⟨Ψ| =
(︁ |A⟩ + |B⟩)︁(︁ ⟨A| + ⟨B|)︁

= |A⟩⟨A| + |A⟩⟨B| + |B⟩⟨A| + |B⟩⟨B|

52

7.2. Quantum Algorithm for Removing the Zero Vector

Now we first calculate G |A⟩.
G |A⟩ = AS{0}A−1SA |A⟩ = AS{0}A−1i |A⟩ = A(︁I − |0⟩⟨0| + i|0⟩⟨0|)︁A−1i |A⟩

=
(︁AA−1 − A|0⟩⟨0|A−1 + iA|0⟩⟨0|A−1)︁

i |A⟩
=

(︁I − A|0⟩⟨0|A−1 + iA|0⟩⟨0|A−1)︁
i |A⟩

= i |A⟩ − A|0⟩⟨0|A−1i |A⟩ + iA|0⟩⟨0|A−1i |A⟩
= i |A⟩ − A|0⟩⟨0|A−1i |A⟩ − A|0⟩⟨0|A−1 |A⟩

We analyze the term A|0⟩⟨0|A−1 i |A⟩.
A|0⟩⟨0|A−1 i |A⟩ =

(︁|A⟩⟨A| + |A⟩⟨B| + |B⟩⟨A| + |B⟩⟨B|)︁ i |A⟩
= i |A⟩ ⟨A|A⟩ + i |A⟩ ⟨B|A⟩ + i |B⟩ ⟨A|A⟩ + i |B⟩ ⟨B|A⟩
= ia |A⟩ + ia |B⟩

In the same style, we derive

A|0⟩⟨0|A−1 |A⟩ = a |A⟩ + a |B⟩ .

The two identities just derived help us to simplify G |A⟩ to

G |A⟩ = i |A⟩ − ia |A⟩ − ia |B⟩ − a |A⟩ − a |B⟩ .

Next we consider G |B⟩.
G |B⟩ = AS{0}A−1SA |B⟩ = AS{0}A−1 |B⟩ = A(︁I − |0⟩⟨0| + i|0⟩⟨0|)︁A−1 |B⟩

=
(︁I − A|0⟩⟨0|A−1 + iA|0⟩⟨0|A−1)︁ |B⟩

= |B⟩ − A|0⟩⟨0|A−1 |B⟩ + iA|0⟩⟨0|A−1 |B⟩

We analyze the term A|0⟩⟨0|A−1 |B⟩, where in the last step we use b = 1 − a.

A|0⟩⟨0|A−1 |B⟩ =
(︁|A⟩⟨A| + |A⟩⟨B| + |B⟩⟨A| + |B⟩⟨B|)︁ |B⟩

= |A⟩ ⟨A|B⟩ + |A⟩ ⟨B|B⟩ + |B⟩ ⟨A|B⟩ + |B⟩ ⟨B|B⟩
= b |A⟩ + b |B⟩
= |A⟩ − a |A⟩ + |B⟩ − a |B⟩

We immediately get

iA|0⟩⟨0|A−1 |B⟩ = i |A⟩ − ia |A⟩ + i |B⟩ − ia |B⟩ .

The two identities just derived help us to simplify G |B⟩.
G |B⟩ = |B⟩ − |A⟩ + a |A⟩ − |B⟩ + a |B⟩ + i |A⟩ − ia |A⟩ + i |B⟩ − ia |B⟩

53

7. Removing the Zero Vector from a Superposition

Finally, we combine the two results.

G |A⟩ + G |B⟩ = i |A⟩ − ia |A⟩ − ia |B⟩ − a |A⟩ − a |B⟩ +
|B⟩ − |A⟩ + a |A⟩ − |B⟩ + a |B⟩ + i |A⟩ − ia |A⟩ + i |B⟩ − ia |B⟩

= 2 · i |A⟩ − 2 · ia |A⟩ − |A⟩ − 2 · ia |B⟩ + i |B⟩
= (2i(1 − a) − 1) |A⟩ + i(1 − 2a) |B⟩

Theorem 6 (Remove Zero B). If A and Uχ use no measurement operators, then Q uses
no measurement operators. Furthermore, the circuit depth of Q is linear in the quantum
register size n and constant in the circuit depths of A and Uχ.

Proof. Assume that A uses no measurements. Recalling the definition of Q, we have
Q = GA and G = AS{0}A−1SA. In Q we have two applications of A and one application
of A−1, which in total contribute three times the circuit depth of A to the circuit depth
of Q.

The operator S{0}, by Lemma 16, can be implemented as a circuit without measurement
operations that has depth linear in n. We still have to show that the last building
block of Q, the operator SA can be implemented as a circuit with depth linear in n and
constant in the depth of the implementation of Uχ. In the following, we present such an
implementation. Assume we are working on two quantum registers, the first one of size
n and the second one, holding only an ancillary qubit aux, of size 1. Let |ψ0⟩ = |x⟩ |0⟩,
where |x⟩ is any state from the superposition |Ψ⟩. Then, the following quantum algorithm,
which directly translates into a circuit (shown in Figure 7.3), implements SA on |ψ0⟩:

1. |ψ1⟩ = Uχ |ψ0⟩ aux is |1⟩ iff x ∈ A

2. |ψ2⟩ =
(︁I⊗n ⊗ S)︁ |ψ1⟩ perform conditional phase shift on aux

3. |ψ3⟩ = Uχ |ψ2⟩ reset aux qubit

Suppose x ∈ A. Then, after step 1., the ancillary qubit is in state |1⟩. In step 2., we
apply the S operator to the ancillary qubit. By the Phase Shift Lemma (Lemma 14),
this puts the entire register in state

|ψ2⟩ = i ·
(︃

|x⟩ |1⟩
)︃

.

Finally, we apply Uχ again, resetting the ancillary qubit and putting the register in state

|ψ3⟩ = i ·
(︃

|x⟩ |0⟩
)︃

= i · |ψ0⟩ .

Suppose x ̸∈ A. Then, after step 1., the ancillary qubit is still in state |0⟩. Thus, applying
the S operator in step 2. has no effect and neither does the application of Uχ in step 3.

54

7.2. Quantum Algorithm for Removing the Zero Vector

n

1

|xn−1 . . . x0⟩
Uχ Uχ

|aux⟩ S0 0 ⊕ χ(x) 0 ⊕ χ(x) 0

Figure 7.3: SA circuit, Uχ transforms aux only, least significant qubit is topmost

With the S gate being standard (no expensive simulation required), the construction step
2. adds only one gate to the SA circuit. Steps 1. and 3. require a total amount of two Uχ

applications, so the depth of the circuit of SA is constant in the depth of the circuit of
Uχ. As a consequence, the circuit for Q meets the conditions from the statement of the
theorem.

55

CHAPTER 8
A Deterministic Algorithm for the

Extended Version of Simon’s
Problem

In the previous chapters 5, 6 and 7 we collected the building blocks for an algorithm
that deterministically solves the extended version of Simon’s problem. We still need
to piece them together and give a formal description of the algorithm, which we are
going to do in this chapter. First, we prove some preparatory results needed for the
orchestration of the individual building blocks. Next, we state and (using the results
from the previous chapters) prove Theorem 4 from Brassard and Høyer [13], in which
they present an enhanced version of the quantum routine by Simon. This routine always
outputs a new piece of information (i.e. a previously unknown element of H⊥). Following
the presentation of Brassard and Høyer in their Theorem 5 [13], we then present the
overall quantum routine that recovers a generating set of H⊥. Finally, we present an
example run of the new algorithm.

8.1 Preparatory Results
In our introduction, we defined the orthogonal set of a subgroup of G. We prove now
that the orthogonal set is even a group.

Lemma 17 (Orthogonal Group Lemma). Let H be a subgroup of the group G =
⟨{0, 1}n, ⊕⟩. Then ⟨H⊥, ⊕⟩ is a group.

Proof. It is straightforward to see that H⊥ is non-empty. First we note that 0 ∈ G.
Then, for arbitrary h ∈ H we have

0 ⊙ h = 0 · hn−1 ⊕ · · · ⊕ 0 · h0 = 0,

57

8. A Deterministic Algorithm for the Extended Version of Simon’s Problem

and hence 0 ∈ H⊥. It is only left to show that ⟨H⊥, ⊕⟩ satisfies the group axioms:

1. Closure: Fix arbitrary elements h ∈ H and g1, g2 ∈ H⊥. Then, by the Distribu-
tivity Lemma (Lemma 1) we have h ⊙ (g1 ⊕ g2) = (h ⊙ g1) ⊕ (h ⊙ g2). Because
g1, g2 ∈ H⊥, we have h ⊙ g1 = h ⊙ g2 = 0. By definition of ⊕, 0 ⊕ 0 = 0 and thus
(g1 ⊕ g2) ∈ H⊥.

2. Neutral Element: The neutral element of H⊥ is 0 since for arbitrary h ∈ H⊥ we
have h ⊕ 0 = h.

3. Inverse Element: By definition of ⊕, each g ∈ H⊥ is its own inverse.

4. Associativity: Follows directly from the definition of ⊕.

When we want to recover a hidden subgroup H , our goal is to collect a generating set for
H⊥, because we can turn this into a generating set for H. With H being hidden, we do
not know |H|, and thus we also do not know |H⊥|. This causes a problem: When we
construct a basis for H⊥ by collecting linearly independent elements from H⊥, how do
we know when we are done? The following lemma answers that question.

Lemma 18 (K-Y-H Lemma). Let H be a subgroup of the group G = ⟨{0, 1}n, ⊕⟩ and
let Y = {y(1), . . . , y(|Y |)} ⊆ H be a set where each y(j) ∈ Y satisfies the following two
formulas

• ∃ij : y
(j)
ij

= 1, and

• ∀ℓ : 1 ≤ ℓ < j, y
(j)
iℓ

= 0.

Let K = {h ∈ H | hi1 = hi2 = · · · = hi|Y | = 0}. Then we have

⟨Y ⟩ = H ⇐⇒ K = {0}

Proof, =⇒ . We prove ⟨Y ⟩ = H =⇒ K = {0}. Assume towards a contradiction that
⟨Y ⟩ = H but K ̸= {0}. Note that 0 ∈ H for arbitrary H and thus by construction of
K, we always have {0} ⊆ K. From the assumption K ̸= {0}, we conclude that there
exists some bitstring x, x ̸= 0 such that {0, x} ⊆ K. The fact that x ∈ K gives us two
important pieces of information:

(F1) By the construction of K we get that xi1 = xi2 = · · · = xi|Y | = 0.

(F2) Since x ∈ K and K ⊆ H, we get x ∈ H and by our assumption ⟨Y ⟩ = H we get
x ∈ ⟨Y ⟩.

58

8.1. Preparatory Results

Because of (F2), there must exist some subset Y ′ of Y with Y ′ = {y(a1), . . . , y(am)}, such
that x = y(a1)⊕· · ·⊕y(am). Note that |Y ′| ≥ 1, since x ≠ 0 and an empty set only generates
{0}. In other words, there must exist at least one element of Y = {y(1), . . . , y(|Y |)} which
is also contained in Y ′. We will bring this to a contradiction by proving by strong
mathematical induction on the elements of Y that no such element is also contained in
Y ′.

Induction Start We prove y(1) ̸∈ Y ′ indirectly, so we assume towards a contradiction
that y(1) ∈ Y ′. Let i1 be such that y

(1)
i1 = 1. Then by construction of Y , we must

have that for all elements of Y ′ except y(1), their bit value at index i1 is 0 and thus(︁
y(a1) ⊕ · · · ⊕ y(am))︁

i1
= 1. This is a contradiction to xi1 = 0, which we derived in (F1).

Induction Hypothesis Let j > 1 and assume that for all ℓ, 1 ≤ ℓ < j, we have y(ℓ) ̸∈ Y ′.

Induction Step Consider y(j) with y
(j)
ij

= 1 and assume towards a contradiction that
y(j) ∈ Y ′. By construction of Y we have that for all ℓ with 1 ≤ ℓ < j, y

(j)
iℓ

= 0 and, by
hypothesis, y(ℓ) ̸∈ Y ′. Hence, all elements in Y that still can be in Y ′ are of form y(k)

with k ≥ j. Since by construction of Y those elements must all satisfy y
(k)
ij

= 0, we must
have xij = 1, which is a contradiction to xij = 0, which we derived before in (F1).

We derived both that Y ′ is a non-empty subset of Y and that no element of Y ′ is also
an element of Y , which is a contradiction. The only assumption we made so far is that
K ̸= {0}, so the opposite must be true, and we must have K = {0}.

Proof, ⇐= . We prove K = {0} =⇒ ⟨Y ⟩ = H. Let K = {0} and assume towards a
contradiction that ⟨Y ⟩ ̸= H. By our assumption, we get that there exists some h ∈ H
such that h ̸∈ ⟨Y ⟩. We define K(0) = H, and for each j with 1 ≤ j ≤ |Y | we define
K(j) = {h ∈ H | hi1 = · · · = hij = 0}. Then the following statement holds:

For each j with 0 ≤ j ≤ |Y | there exists a bitstring k(j) ∈ K(j) and a sequence of
bitstrings y(ℓ1), . . . , y(ℓm) from Y with 0 ≤ m ≤ j (if m = 0, then the sequence is empty)
such that h = k(j) ⊕ y(ℓ1) ⊕ · · · ⊕ y(ℓm).

We prove this statement via mathematical induction on j.

Induction Start j = 0. We need to show that h = k(0) for some k(0) ∈ K(0). By
definition, K(0) = H and we know that h ∈ H. Hence, we can set k(0) = h, and we are
done.

Induction Hypothesis For some j with 0 ≤ j ≤ |Y | there exist a bitstring k(j) ∈ K(j)
and a sequence of bitstrings y(ℓ1), . . . , y(ℓm) from Y with m ≤ j such that h = k(j) ⊕
y(ℓ1) ⊕ · · · ⊕ y(ℓm).

Induction Step By induction hypothesis we can write h = k(j) ⊕ y(ℓ1) ⊕ · · · ⊕ y(ℓm).
Consider first the case that k(j) = 0 (0 holds a 0 in each bit). By definition, 0 ∈ K(j+1).
Furthermore, since m ≤ j we also have m ≤ j + 1, and as a consequence, for j + 1, we
can still write h = k(j) ⊕ y(ℓ1) ⊕ · · · ⊕ y(ℓm).

59

8. A Deterministic Algorithm for the Extended Version of Simon’s Problem

Consider next the case that k(j) ̸= 0. Because K = {0}, we have that k(j) ̸∈ K and thus
there must exist some a with a > j such that k(j) ∈ K(a−1) but k(j) ̸∈ K(a). By Corollary
2 from Section 6.1, we can thus write k(j) = k′ ⊕ y(a) for some k′ ∈ K(a). We insert this
equality to the construction of h from the hypothesis, h = k(j) ⊕ y(ℓ1) ⊕ · · · ⊕ y(ℓm), and
get

h = k′ ⊕
≤j elements⏟ ⏞⏞ ⏟

y(ℓ1) ⊕ · · · ⊕ y(ℓm) ⊕y(a)⏞ ⏟⏟ ⏞
≤j+1 elements

,

where we recall that k′ ∈ K(a) and because a > j we must also have that k′ ∈ K(j+1),
which concludes the induction step from j to j + 1.

We instantiate the statement just proven with j = |Y |, which gives us

h = k(|Y |) ⊕ y(ℓ1) ⊕ · · · ⊕ y(ℓm)

for some m ≤ |Y |. Since k(|Y |) ∈ K(i|Y |) = K = {0}, we infer that k(|Y |) = 0 and hence
we can write h = y(ℓ1) ⊕ · · · ⊕ y(ℓm), which is a contradiction to the assumption that
h ̸∈ ⟨Y ⟩.

8.2 Deterministic Quantum Algorithm for the Extended
Version of Simon’s Problem

The next theorem was originally stated by Brassard and Høyer [13] as Theorem 4. In
their original version, Y is just a linearly independent set. We strengthen that condition
to simplify the mathematical analysis.

Theorem 7. Let H be any subgroup of the group G = ⟨{0, 1}n, ⊕⟩, n > 1 and let
ρ : G → R be a function that fulfills Simon’s promise and where R is some set representable
on an m-qubit quantum register. Assume that a quantum algorithm Uρ that computes ρ
without making any measurement is given, together with the value of n and an arbitrary
subset Y ⊆ H⊥ where each element y(j) ∈ Y satisfies the following two formulas

• ∃ij : y
(j)
ij

= 1, and

• ∀ℓ : 1 ≤ ℓ < j, y
(j)
iℓ

= 0.

Then there exists a quantum algorithm that returns an element of H⊥ \ ⟨Y ⟩ provided Y
does not generate H⊥, and otherwise it returns the zero element. Moreover, the algorithm
can be implemented as a quantum circuit of depth at most n times the circuit depth of Uρ

plus a number of other quantum computation steps within O(n3).

60

8.2. Deterministic Quantum Algorithm for the Extended Version of Simon’s Problem

Proof. We are working on three quantum registers of size n, m and |Y |. For better
readability, any ancillary qubits needed for the computation of Uρ or multi-controlled
gates are omitted. Initially, all qubits are set to the |0⟩ state, and we have

|ψ0⟩ = |0⟩⊗n |0⟩⊗m |0⟩⊗|Y | .

Let B denote Algorithm 5.1, but where we skip the measurement step at the very end.
Then by Theorem 3 we get

|ψ1⟩ = BI⊗|Y | |ψ0⟩ = 1√︁|T |
(︃ ∑︂

t∈T

⃓⃓⃓
φtH

⊥⟩︂
|ρ(t)⟩

)︃
|0⟩⊗|Y | .

In the original version of Simon’s algorithm we would not skip measuring the first register
now, and we would obtain some random y ∈ H⊥. In particular, it could happen that we
measure some y ∈ ⟨Y ⟩, i.e. some element that we already discovered and that is of no
use. To avoid repeated measurements, we note that by the Orthogonal Group Lemma
(Lemma 17), H⊥ is a group, hence we can apply the quantum algorithm CY from the
Blocking Clause Theorem (Theorem 4) to the state |ψ1⟩. Note that CY operates on two
registers, but in state |ψ1⟩ we have three. We choose the first register from |ψ1⟩ as the
first register for CY and the last register from |ψ1⟩ as the second register for CY . That is,
the application of CY does not change the state of the middle register in |ψ1⟩. The result
is

|ψ2⟩ = CY |ψ1⟩ = 1√︁|T |
(︃ ⃓⃓⃓

φtK(|Y |)
⟩︂

|ρ(t)⟩
(︃ ⨂︂

y(j)∈Y

⃓⃓⃓
t ⊙ y(j)

⟩︂)︃)︃
.

By definition, each y(j) ∈ Y has an index ij for 1 ≤ j ≤ |Y | with y
(j)
ij

= 1. However, the
superposition in |ψ2⟩ is over elements of K(|Y |) = {h ∈ H⊥ | hi1 = · · · = hi|Y | = 0} and
hence an application of CY ensures that we are not going to measure an element from Y
again.

We note that by construction, 0 ∈ K(|Y |). The 0 vector does not meet the requirements
for the set Y because on all of its indices, it holds a 0. Hence, we cannot update Y with
0 and in that sense, measuring 0 does not give us any additional information that helps
us to solve Simon’s problem. We get around this by applying the quantum algorithm
from Theorem 5. For each i with 0 ≤ i < n we define χi : G → {0, 1} with

χi(x) =
{︄

1, xi = 1
0, xi = 0

.

Based on the function χi, we construct a quantum operator Uχi with Uχi |x⟩ |q⟩ =
|x⟩ |q ⊕ χi(x)⟩. This operator can easily be translated into a quantum circuit with size
one, we simply apply the CNOT gate with the control qubit being |xi⟩ and the target
qubit being |q⟩. Moreover, we wrap the quantum algorithm we constructed so far into a
fresh operator A with A = CY B and thus A |ψ0⟩ = |ψ2⟩.

61

8. A Deterministic Algorithm for the Extended Version of Simon’s Problem

We recall that the superposition in |ψ2⟩ is over elements of K(|Y |) and fix an arbitrary
i with 1 ≤ i < n. Let A = {h ∈ K(|Y |) | hi = 1} and B = {h ∈ K(|Y |) | hi = 0}. We
analyze the superposition in |ψ2⟩ and distinguish between two cases.

1. The superposition is over states from B only.

2. The superposition is both over states from A and B. This follows from K(|Y |) being
a group and the Equal Cardinality Lemma (Lemma 11).

Note that by the Equal Cardinality Lemma, the superposition in |ψ2⟩ can not be over
states from A only. By construction, all states from A can be used to update the set
Y . Additionally, those states in B can be used for the update which are different from
the zero vector. We would like a guarantee that we measure a usable state, which we
currently do not have, because in both cases one and two, the superposition of the
quantum computer contains states from B. We are now going to use Theorem 5 to
circumvent this.

Let Di be the quantum algorithm we get by instantiating Theorem 5 with A and Uχi . By
Theorem 5, if we apply Di to |ψ0⟩, end up in the state (2i(1 − a) − 1) |A⟩ + i(1 − 2a) |B⟩,
where a, b are the probabilities to measure a state from A or B respectively. We apply
this to the two cases described above.

1. If states from A do not exist, then a = 0 and Di |ψ0⟩ puts the quantum register in
a superposition state of the form

(2i(1 − 0) − 1) |A⟩ + i(1 − 2 · 0) |B⟩ = i |B⟩ .

2. If there are as many states in A as in B, then we have a = b = 1
2 . Hence when we

apply Di |ψ0⟩, the quantum computer is in a superposition state of the form

(2i(1 − 1
2) − 1) |A⟩ + i(1 − 2 · 1

2) |B⟩ = (i − 1) |A⟩ .

This means, if there exists some element y(|Y |+1) which is not yet contained in Y and
which satisfies y

(|Y |+1)
i = 1, we are guaranteed to measure it after one application of Di.

With this observation in place, we can construct the witness for the algorithm from the
statement of this theorem.

62

8.2. Deterministic Quantum Algorithm for the Extended Version of Simon’s Problem

Algorithm 8.1: get_new_basis_element, witness for Theorem 7

Input : Y a (not necessarily strict) subset from a basis of H⊥.
Input : Uρ a blackbox quantum implementation of ρ.
Output : An element from the basis of H⊥ which is not in Y . If such an element

does not exist 0.
for i = 0; i++; i < n do

Di ←− construct_quantum_circuit(i, Y, Uρ)
y ←− run_quantum_circuit_and_measure_first_register(Di)
if yi ̸= 0 then

return y

return 0

In Algorithm 8.1, the construct_quantum_circuit subroutine constructs the quan-
tum circuit for the quantum operator Di. The subroutine
run_quantum_circuit_and_measure_first_register then runs that circuit
on a quantum computer with initial state |ψ0⟩ = |0⟩⊗n |0⟩⊗m |0⟩⊗|Y | and returns the
measurement result from the first register.

Suppose Y does not generate H⊥. Then there exists some element y ∈ H⊥ with y ̸∈ ⟨Y ⟩.
We know that y ̸= 0 because 0 ∈ ⟨Y ⟩. Hence, there must exist some index i such that
yi = 1. Running Di |ψ0⟩ results in a superposition of elements with a value 1 at index i
in the first quantum register. By the K-Y-H-Lemma (Lemma 18), we know that all of
those elements are in H⊥ \ ⟨Y ⟩. Measuring the first register will yield a random such
element and Algorithm 8.1 then returns it.

Suppose Y generates H⊥. Then there exists no non-zero element y ∈ H⊥ with y ̸∈ ⟨Y ⟩.
Hence, for all i with 0 ≤ i < n, running Di |ψ0⟩ produces a superposition of elements
with 0 at index i. Algorithm 8.1 in that case returns the zero vector.

We still need to prove the circuit depth claims for Algorithm 8.1. Fix an arbitrary i with
0 ≤ i < n and consider the circuit size of Di. By construction of Di and by Theorem 6,
the depth of the circuit of Di is linear in n, constant in the depth of A and constant in
the depth of Uχi . We first analyze the circuit depth of A and A−1.

The first step of A, where we perform the state change from |ψ0⟩ to |ψ1⟩, corresponds to
Algorithm 5.1. By Theorem 2, the circuit depth of that algorithm is the depth of Uρ plus
a constant.

In the second step of A, where we go from |ψ1⟩ to |ψ2⟩, we apply Cj for each j ≤ |Y |. The
operator Cj is defined as the quantum algorithm described in Corollary 4 of the Blocking
Clause Lemma (Lemma 12), where the singled-out non-zero element is y(j). By Lemma
12 we get that the circuit depth of Cj is linear in n for each j ≤ |Y |. By construction
|Y | ≤ n and hence we need to apply Cj at most n times. Consequently, going from |ψ1⟩
to |ψ2⟩ takes a number of quantum computation steps quadratic in n.

63

8. A Deterministic Algorithm for the Extended Version of Simon’s Problem

Combining the results for the first and second step of A, we get that one application
of A in total takes one call to Uρ plus a number of other quantum computation steps
within O(n2 + C) = O(n2) where C is some constant. Furthermore, as shown above, the
operator Uχi can be implemented using a single quantum gate. By Theorem 6, running
Di therefore takes only a constant number of calls to Uρ and a number of other quantum
computer steps (asymptotically) quadratic in n.

In Algorithm 8.1, we invoke Di for all i with 0 ≤ i < n in the worst case. Hence, in the
worst case, we need n calls to Uρ, plus a number of other quantum computation steps
cubic in n.

We note that get_new_basis_element (Algorithm 8.1) is already a hybrid quantum-
classical algorithm. In each iteration of the for-loop, we first construct a quantum
circuit on classical hardware, next we run that circuit on quantum hardware, and last
we use classical hardware again in order to decide whether we continue the loop or not.
Algorithm 8.1 also showcases a key difference between the original version of Simon’s
algorithm and the extended version: In the extended version, we generate a different
quantum circuit in every loop iteration, whereas in the original version we run the same
quantum circuit multiple times. So far we have a procedure that generates one additional
element for our basis of H⊥. We still need to wrap this procedure into a larger algorithm
that constructs an entire basis of H⊥. This is achieved by the following Algorithm 8.2,
which was originally stated by Brassard and Høyer in Theorem 5 [13].

Algorithm 8.2: Quantum Part of the Deterministic Solution to Simon’s Problem
Input : Uρ a blackbox quantum implementation of ρ.
Output : Y a basis of the hidden subgoup of ρ.
Y ←− ∅
while (y ←− get_new_basis_element(Y, Uρ)) ̸= 0 do

Y ←− Y ∪ {y}
return Y

By Theorem 7, with every loop iteration, we update Y with a fresh basis element from H⊥

that is linearly independent from all other vectors in Y . By the K-Y-H Lemma (Lemma
18), if get_new_basis_element returns the zero vector, then we have ⟨Y ⟩ = H⊥.

As noted by Brassard and Høyer in [13], Algorithm 8.2 can be optimized. Following
the pseudocode in Algorithm 8.1, on each invocation of get_new_basis_element
we run Di for each i with 0 ≤ i < n. However, we actually never have to execute Di

twice for the same i [13]. This is because of three reasons. First, if one application of Di

yields a bitstring with value 1 at index i, then because of Theorem 4, it does not make
sense to run Di again in future iterations, as all bitstrings with value 1 at index i will be
eliminated from future superpositions. Second, if one application of Di yields a nonzero
bitstring that has a value 0 at index i, that bitstring can still be used to update the set

64

8.3. Classical Post-Processing for the Extended Version of Simon’s Problem

Y . Third, if one application of Di returns the zero vector, then we know for sure that
there exists no bitstring we have not measured so far that has a value 1 at index i.

8.3 Classical Post-Processing for the Extended Version of
Simon’s Problem

After a run of Algorithm 8.2, we obtain Y , a basis of H⊥. We still need to convert this to
a basis of H . In principle, this works completely analogous to the classical post-processing
for the standard version of Simon’s algorithm described in Section 4.2. However, since
now the hidden subgroup can be of any size, the mathematical analysis becomes more
complicated. We first present a lemma describing a way to transform H⊥ into H.

Lemma 19. Let H be any subgroup of the group G = ⟨{0, 1}n, ⊕⟩ and let H⊥ be its
orthogonal set. Then (H⊥)⊥ = H.

Proof. First we prove H ⊆ (H⊥)⊥. By definition of (H⊥)⊥, for any x ∈ G we have

x ∈ (H⊥)⊥ ⇐⇒ x ⊙ g = 0 ∀g ∈ H⊥.

If x ∈ H, then for arbitrary g ∈ H⊥, we have x ⊙ g = 0 and hence x ∈ (H⊥)⊥.

Next we prove that (H⊥)⊥ cannot contain more elements than those in H by analyzing
the size of (H⊥)⊥. By Lemma 10, we have |H⊥| = |G|

|H| . Moreover, by Lemma 17, (H⊥)⊥

is a group and hence we can apply Lemma 10 again to conclude

|(H⊥)⊥| = |G|
|H⊥| = |G|

|G|
|H|

= |G| · |H|
|G| = |H|.

(H⊥)⊥ contains all elements of H, and it does not contain any others, hence (H⊥)⊥ =
H.

We use the bitstrings from Y to construct a system of linear equations analogous to
Section 4.2. By Lemma 19, the solution space to that system of equations is the hidden
subgroup H. Note that in the case of the standard version of Simon’s algorithm, after
solving the system of linear equations, we had to run some implementation of ρ again in
order to distinguish between the cases where ρ is bijective or not. This step becomes
obsolete in the extended version of Simon’s algorithm, since we are now guaranteed
that Y is a complete basis of H⊥ and the solution space to the system of equations
corresponds precisely to H.

8.4 An Example Run of the Extended Version of Simon’s
Algorithm

We revisit the instance of Simon’s problem from Section 4.3, but we first rephrase it
as an instance of the extended version of Simon’s problem. The oracle operator from

65

8. A Deterministic Algorithm for the Extended Version of Simon’s Problem

Section 4.3, Uρ, has the hidden subgroup H = {000, 001}. We calculate the cosets of H in
G = {0, 1}3 to be {000, 001}, {010, 011}, {100, 101} and {110, 111}, and we observe that
Uρ indeed behaves constant for each element of each coset and distinct for each coset.
Additionally, we choose a set T of coset representatives as T = {000, 010, 100, 110}, and
we calculate H⊥ = {000, 010, 100, 110}.

For Algorithm 8.2, we need three quantum registers. The first one is of size 3, holding
input values of the oracle operator. The second one is of size 2 and holds output values
of the oracle. Finally, we need another quantum register of dynamic size, depending on
how many bitstrings we already measured.

We now run Algorithm 8.2. Entering the loop, we first execute
get_new_basis_element(∅). In that function, we first run the quantum circuit for
D0. By construction, D0 wraps the algorithm C∅B from Theorem 7 in the algorithm
Q from Theorem 5. Before we start with the calculations, we briefly recapitulate the
quantum operators in use.

Algorithm B is the original version of Simon’s algorithm, which puts the first register into
a superposition of elements of H⊥. More formally, by Theorem 3, in our setting we have

B |000⟩ |00⟩ = 1√︁|T |
(︃∑︂

t∈T

⃓⃓⃓
φtH

⊥⟩︂
|ρ(t)⟩)︁.

With algorithm C∅, we remove already measured elements from H⊥. In our case, since
this is our first time executing get_new_basis_element, we do not yet have any
bitstring to block. More formally, by Theorem 4, we have C∅ = I and the third quantum
register is empty.

We first analyze the behavior of B, and then we investigate the effects of wrapping B in
Q0. For the initial state |ψ0⟩ = |000⟩ |00⟩, by Theorem 3, the operator B performs the
state change

|ψ1⟩ = B |ψ0⟩ = 1√︁|T |
(︃∑︂

t∈T

⃓⃓⃓
φtH

⊥⟩︂
|ρ(t)⟩

)︃

= 1√
4

(︃∑︂
t∈T

(︃ 1√︂
|H⊥|

∑︂
g∈H⊥

(−1)g⊙t |g⟩
)︃

|ρ(t)⟩
)︃

= 1√
4

(︃∑︂
t∈T

1√
4

(︃
(−1)000⊙t |000⟩ + (−1)010⊙t |010⟩ + (−1)100⊙t |100⟩

+ (−1)110⊙t |110⟩
)︃

|ρ(t)⟩
)︃

.

We now recall from Section 4.3 that ρ(000) = 00, ρ(010) = 01, ρ(100) = 10 and

66

8.4. An Example Run of the Extended Version of Simon’s Algorithm

ρ(110) = 11 and rewrite |ψ1⟩ to

|ψ1⟩ = 1√
4

(︃ 1√
4

(︃
|000⟩ + |010⟩ + |100⟩ + |110⟩

)︃
|00⟩

+ 1√
4

(︃
|000⟩ − |010⟩ + |100⟩ − |110⟩

)︃
|01⟩

+ 1√
4

(︃
|000⟩ + |010⟩ − |100⟩ − |110⟩

)︃
|10⟩

+ 1√
4

(︃
|000⟩ − |010⟩ − |100⟩ + |110⟩

)︃
|11⟩

)︃
.

The state |ψ1⟩ can be partitioned into two sets of states. First, we group those states
that hold a 1 at index 0 of the first quantum register (the least significant bit in Qiskit
bit order) into set A. Second, we group those states that hold a 0 at index 0 of the first
quantum register into set B. We immediately realize that all states in |ψ1⟩ are in set B
and that A = ∅. As a consequence, the probability to measure a state from A, denoted a,
is zero. We now recapitulate Theorem 5. When we wrap B into Q0, we get

Q0 |000⟩ |0⟩ = ((2i(1 − a) − 1) |A⟩ + i(1 − 2a) |B⟩) = i · |B⟩ = i · |ψ1⟩ .

Consequently, when we wrap B into Q0 and run Q0 |ψ0⟩, the result is state |ψ′
1⟩ which

differs from |ψ1⟩ only in one way: The global phase is shifted by the imaginary unit i.
When we now measure the first register from |ψ′

1⟩, we measure any element from H⊥.
For this example, let us assume that we are particularly unlucky and measure the zero
vector.

The algorithm now enters the second loop iteration and, which consists of constructing
and running Q1. The algorithm Q1 is again constructed by wrapping B into the algorithm
from Theorem 5. We thus inspect the state |ψ1⟩ again. This time, we group all bitstrings
into set A that hold a 1 at index 1 (the middle qubit) of the first quantum register. All
states with a bit value 0 at the same index are grouped into set B. We realize that
precisely half the states in |ψ1⟩ are in A and the other half is in B (and all have the same
amplitude), so a = 1

2 . By Theorem 5, we thus have

Q1 |000⟩ |00⟩ = ((2i(1 − a) − 1) |A⟩ + i(1 − 2a) |B⟩)
= (2i(1 − 1

2) − 1) |A⟩ + i(1 − 2 · 1
2) |B⟩ = (i − 1) |A⟩ .

67

8. A Deterministic Algorithm for the Extended Version of Simon’s Problem

More precisely, we end up in the state

⃓⃓
ψ′

1
⟩︁

= 1√
4

(︃ 1√
4

(︃
i · |010⟩ − |010⟩ + i · |110⟩ − |110⟩

)︃
|00⟩

+ 1√
4

(︃
−i · |010⟩ + |010⟩ − i · |110⟩ + |110⟩

)︃
|01⟩

+ 1√
4

(︃
i · |010⟩ − |010⟩ − i · |110⟩ + |110⟩

)︃
|10⟩

+ 1√
4

(︃
−i · |010⟩ + |010⟩ + i · |110⟩ − |110⟩

)︃
|11⟩

)︃
,

and hence when we measure the first register, we are guaranteed to obtain a nonzero
bitstring. For this example, let us assume we measure the bitstring y(1) = 110. This gets
returned by the get_new_basis_element(∅) routine, and we set Y = ∅ ∪ {y(1)} =
{110}.

Next we run get_new_basis_element({110}). To simplify the analysis, we use the
fact that we only have to try each Qi once and that it is hence only left to run Q2.
Analogously to above, we first investigate the effects of applying the quantum algorithm
C1(B · I) to |ψ0⟩, and then we investigate the effects of wrapping it into Q2. Note that
this time we do have the bitstring y(1), which we want to remove from the superposition
over H⊥ created by B and hence we are now working on three quantum registers. We
have |ψ0⟩ = |000⟩ |00⟩ |0⟩ and thus

|ψ1⟩ = |000⟩ |00⟩ |0⟩ =
(︁B ⊗ I)︁ |ψ0⟩

= 1√
4

(︃ 1√
4

(︃
|000⟩ + |010⟩ + |100⟩ + |110⟩

)︃
|00⟩

+ 1√
4

(︃
|000⟩ − |010⟩ + |100⟩ − |110⟩

)︃
|01⟩

+ 1√
4

(︃
|000⟩ + |010⟩ − |100⟩ − |110⟩

)︃
|10⟩

+ 1√
4

(︃
|000⟩ − |010⟩ − |100⟩ + |110⟩

)︃
|11⟩

)︃
|0⟩ .

For the already known bitstring y(1) = 110, we set ij = 1 and hence K(1) = {h ∈ H⊥ |
h1 = 0} = {000, 100}. In Theorem 7 we defined

C1
1√︁|T |

(︃∑︂
t∈T

⃓⃓⃓
φtH

⊥⟩︂
|ρ(t)⟩

)︃
|0⟩ = 1√︁|T |

(︃∑︂
t∈T

⃓⃓⃓
φtK(1)

⟩︂
|ρ(t)⟩

)︃ ⃓⃓⃓
t ⊙ y(1)

⟩︂
.

68

8.5. Computational Complexity

When we apply the quantum algorithm C1 to |ψ1⟩, we shrink the superposition in |ψ1⟩ to

|ψ2⟩ = C1 |ψ1⟩

= 1√
4

(︃ 1√
2

(︃
|000⟩ + |100⟩

)︃
|00⟩ |0⟩ + 1√

2

(︃
|000⟩ + |100⟩

)︃
|01⟩ |1⟩

+ 1√
2

(︃
|000⟩ − |100⟩

)︃
|10⟩ |1⟩ + 1√

2

(︃
|000⟩ − |100⟩

)︃
|11⟩ |0⟩

)︃
.

We partition the states of |ψ2⟩ into two sets A (all states that hold a bit value 1 at index
3) and B (all states that hold a bit value 0 at index 3). We notice that exactly half of
the states in |ψ2⟩ is in A and the other half is in B, hence when we wrap C1 ⊗ (B · I)
into Q3, we end up in the state⃓⃓

ψ′
2
⟩︁

= Q3 |ψ0⟩ = (i − 1) |A⟩

= 1√
4

(︃ 1√
2

(︃
i · |100⟩ − |100⟩

)︃
|00⟩ |0⟩ + 1√

2

(︃
i · |100⟩ − |100⟩

)︃
|01⟩ |1⟩

+ 1√
2

(︃
−i · |100⟩ + |100⟩

)︃
|10⟩ |1⟩ + 1√

2

(︃
−i · |100⟩ − |100⟩

)︃
|11⟩ |0⟩

)︃
.

When we measure the first register, we are guaranteed to measure the bitstring y(2) = 100.
Since we have run Qi for each i with 0 ≤ 2, we know that we are done constructing the
basis of H⊥ and Algorithm 8.2 terminates, returning Y = {y(1), y(2)} = {110, 100}. We
use Y to form a system of linear equations

1 · x2 + 1 · x1 + 0 · x0 ≡ 0 (mod 2)
1 · x2 + 0 · x1 + 0 · x0 ≡ 0 (mod 2).

As in the original example, the solution space for this system is {000, 001} and a generating
set of this solution space is {001}, which is the solution to this instance of the extended
version of Simon’s problem.

8.5 Computational Complexity
The algorithm for the extended version of Simon’s problem consists of two phases. First
the quantum phase (Algorithm 8.2) and second the classical post-processing. We first
analyze the circuit depth of Algorithm 8.2. Let G = {0, 1}n and let H ⊆ G be any hidden
subgroup of G. In the worst case, H = {0} and thus by Lemma 10, |H⊥| = 2n. Any basis
of H⊥ then has size n, which means that we have to run get_new_basis_element
exactly n times. By Theorem 7, one such execution of get_new_basis_element
requires O(n) calls of Uρ and a number of other quantum computation steps within
O(n3). Hence, executing get_new_basis_element n times costs O(n2) calls to Uρ

and a number of other quantum computation steps within O(n4). When we use the
optimization from the end of Section 8.2, we only need O(n) many calls to Uρ and O(n3)
other quantum computation steps.

69

8. A Deterministic Algorithm for the Extended Version of Simon’s Problem

The second phase of the algorithm is completely analogous to the classical post-processing
for the standard version of Simon’s algorithm. Obtaining a basis for the solution space of
a system of linear equations can be done via Gaussian elimination in O(n3) computation
steps [19]. Thus, we can place the extended version of Simon’s problem in the complexity
class EQP Uρ .

70

CHAPTER 9
Implementation

For this thesis, the algorithm for the extended version of Simon’s problem consisting of
Algorithm 8.2 and the procedure described in Section 8.3 were implemented in Python
[24]. Generating the quantum circuits was done using Qiskit [21] and for the classical
post-processing we used SymPy [25]. We already described almost all quantum circuits
that are needed to run the algorithm:

• The circuit for the original version of Simon’s algorithm is described in Section 5.1
in Algorithm 5.1.

• The circuit that implements a blocking clause to exclude already measured bitstrings
from future measurements is described in Section 6.1 in the proof of Lemma 12.

• The circuit for the operator that shifts the phase of a register precisely if the register
is in state |0⟩ (the quantum operator S{0}) is described in Section 7.2 in the proof
of Lemma 16.

• The circuit for shifting the phase of a register precisely if the qubit with index i
holds a |1⟩ (the quantum operator Uχi) is described in Section 8.2 in the proof of
Theorem 7.

There is one part missing. Up until now, we abstracted away the actual input for
instances of Simon’s problem, the oracle function implementations. This is no big deal
for the original version of Simon’s problem, since it is well studied, and possible oracle
implementations can be found on most tutorial pages or in courses for quantum computing
(e.g. the tutorial repository from Amazon Braket [2] or the IBM Quantum Learning
platform [6]). The extended version of Simon’s problem has received less attention and
hence such out-of-the-box solutions do not already exist.

71

9. Implementation

Hence, in this chapter we first describe a way to create oracle circuits for the extended
version of Simon’s problem. Next, we present a concrete example of the circuits being
run for the extended version of Simon’s algorithm. Last, we briefly discuss challenges for
running those circuits on current NISQ hardware.

9.1 Oracle Implementation
In this section, we present a way to dynamically create valid oracles for the extended
version of Simon’s problem, given the hidden subgroup of the corresponding problem
instance. Let ρ be a function that fulfills the promise from the extended version of
Simon’s problem. That is, we have ρ : G → R where G is the group ⟨{0, 1}n, ⊕⟩ and R
is some set representable on a quantum computer. Furthermore, there exists a hidden
subgroup H of G such that ρ behaves constant and distinct on each coset of H in G.

The first question we must address when designing a circuit for an oracle is how many
qubits we need. The function ρ has domain G, that is, bitstrings of length n. Hence,
to hold the input values of ρ, we need a quantum register of size n. The range of ρ is
the set R, and since this is any arbitrary set representable on a quantum computer, we
have a certain degree of freedom with respect to how many qubits we need to hold the
output values of ρ. There is no upper bound for that register size, but we can give a
lower bound. By Lemma 9, there are precisely m = |G|

|H| cosets of H in G, and for each
coset we need one unique output value for ρ. We assign each coset of H in G a number
within the closed interval [0, m − 1], and we can model those m numbers on a quantum
register in binary notation using a total of log2(m) qubits. Note that both |G| and |H|
are powers of two, hence m is a power of two as well and log2(m) is a natural number.
As a special case, we set m = 1 if |H| = |G|, because log2(1) = 0 and we would like at
least one output qubit. Technically, we also need a register that holds ancillary qubits
for various computations in the oracle circuit. In order to keep the presentation concise,
we ignore that ancillary register in the following analysis.

The second question of interest is how we design a circuit that maps inputs of ρ to their
correct outputs. We first present a more abstract corresponding quantum algorithm
and next we describe how to implement that algorithm as a quantum circuit. As a
building block for the quantum algorithm, we define a quantum operator that works
on two quantum registers of size n and m respectively. Intuitively, the first quantum
register holds the input value for function ρ and the second quantum register holds its
output value. For each coset T (i) of H in G where 0 ≤ i < m and for each t(j) ∈ T (i)

where 0 ≤ j < |T (i)|, define Ti,j as follows

Ti,j |x⟩ |z⟩ =
{︄

|x⟩ |bin(i) ⊕ z⟩ if x = t(j)

|x⟩ |z⟩ otherwise
,

where bin(i) denotes the binary representation of the natural number i. We further define
Ti =

(︁Ti,|T (i)|−1 · · · Ti,0
)︁

and Uρ = Tm−1 · · · T0. We now prove that the quantum algorithm
Uρ is indeed a valid implementation of ρ.

72

9.1. Oracle Implementation

Lemma 20. The quantum algorithm Uρ is a valid instance of the extended version of
Simon’s problem.

Proof. Let |x⟩ , |y⟩ be arbitrary states from the computational standard basis Bn. Fur-
thermore, let |z⟩ be an arbitrary state from Bm. Apply the operator Uρ to |x⟩ |z⟩ and
|y⟩ |z⟩ respectively and let the resulting states be |x⟩ |zx⟩ and |y⟩ |zy⟩ (note that by
construction, Uρ never changes the value held in the first quantum register). What we
need to show is that |zx⟩ = |zy⟩ precisely if both x and y are in the same coset of H in G.

Recall that by the Coset Lemma (Lemma 9), the cosets of H in G partition G and thus
also Bn. Hence, there must exist cosets T (i) and T (k) such that x ∈ T (i) and y ∈ T (k).
Note that any arbitrary operator Tℓ, by construction, acts on input states from coset T (ℓ)

only. As a consequence, since we have Uρ = Tm−1 · · · Tk · · · Ti · · · T0, when we examine the
effect of Uρ |x⟩ |z⟩, it is enough to just investigate the effects of Ti on |x⟩ |z⟩. Analogously,
when we examine the effects of Uρ |y⟩ |z⟩, it is enough to investigate the effects of Tk |y⟩ |z⟩.
Assume that both x and y are in the same coset of H in G or more formally, T (i) = T (k).
Then we can write x = t(j) and y = t(ℓ) for some t(j), t(ℓ) ∈ T (i). Thus, Ti has the form
Ti = Ti,|T (i)|−1 · · · Ti,ℓ · · · Ti,j · · · Ti,0. If the first register holds |x⟩, then Ti,j is the only
operator that has an effect in Ti. Correspondingly, if the first register holds |y⟩, then
Ti,ℓ is the only operator that has an effect in Ti. Now we simply derive Ti,j |x⟩ |z⟩ =
|x⟩ |bin(i) ⊕ z⟩ and thus |zx⟩ = |bin(i) ⊕ z⟩. Analogously, Ti,ℓ |y⟩ |z⟩ = |y⟩ |bin(i) ⊕ z⟩
and thus |zy⟩ = |bin(i) ⊕ z⟩, and we have |zx⟩ = |zy⟩.
Assume that x and y are not in the same coset of H in G or more formally, T (i) ̸= T (k).
In the same way as above, we deduce Uρ |x⟩ |z⟩ = Ti |x⟩ |z⟩ = Ti,j |x⟩ |z⟩ = |x⟩ |bin(i) ⊕ z⟩
where we get j by rewriting x as some element t(j) ∈ T (i). We have |zx⟩ = |bin(i) ⊕ z⟩.
Similarly, we get Uρ |y⟩ |z⟩ = Tk |y⟩ |z⟩ = Tk,ℓ |y⟩ |z⟩ = |y⟩ |bin(k) ⊕ z⟩ where we get ℓ by
rewriting x as some element t(ℓ) ∈ T (k). We have |zy⟩ = |bin(k) ⊕ z⟩. From T (i) ̸= T (k)

we get i ̸= k and thus also bin(i) ̸= bin(k) and hence |zx⟩ ≠ |zy⟩.

Next, we describe how to translate Uρ into a quantum circuit. Since the operator Uρ

is composed entirely of the operators Ti,j for cosets T (i) and elements t(j) ∈ T (i) it is
enough to present a circuit that implements Ti,j . For each t(j) in T (i), we construct the
following circuit, where |x⟩ and |z⟩ are the input and output registers respectively.

1. For each index k with t
(j)
k = 0 we add an X gate at index k of the input register.

2. For each index k where bin(i) = 1 we add an X(xn−1∧···∧x0),zk
gate.

3. Reset the input qubits by repeating step 1.

Suppose |x⟩ holds the value t(j). Then after step 1., all qubits of |x⟩ are in state |1⟩.
Consequently, all controlled X gates which are added in step 2., get activated and by

73

9. Implementation

construction of step 2., the output register holds the value |bin(i) ⊕ z⟩. Since X X = I,
after step 3., all qubits in the input register are reset to their original values.

Suppose |x⟩ does not hold the value t(j). In this case, the controlled X gates introduced
in step 2. do not get activated. To see this, note that since x ̸= t(j), there must exist
at least one index k such that xk ̸= t

(j)
k . If xk = 0, then t

(j)
k = 1 and hence in step 1.,

no X gate was added at index k of the input register. Since |xk⟩ = |0⟩, and since the
controlled X gates are controlled by all qubits in the input register, step 2. has no effect.
If xk = 1, then t

(j)
k = 0. By construction of step 1., the circuit has an X gate at index k

and hence after step 1., we have |xk⟩ = |0⟩. Analogous to before, the controlled-X gates
in step 2. do not get activated. As explained above, step 3. resets the input register to
its original state again.

Note that step 2. relies on multi-controlled X gates, which are non-standard, meaning
that we have to simulate them. We use the same simulation method as described in the
proof of Lemma 16. The circuit for Ti,j can be optimized in one aspect: Since 0 ⊕ x = x
for arbitrary x ∈ G, we do not have to create any circuit for T0.

Figure 9.1 depicts an example circuit for an oracle implementing the hidden subgroup H =
{000, 001, 010, 011}. The cosets of H in G are T (0) = H and T (1) = {100, 101, 110, 111}.
In the circuit, the first register is the input register |x⟩. Since we are operating in group
G = ⟨{0, 1}3, ⊕⟩, it has size n = 3. The second register |z⟩ is the output register. The
hidden subgroup H has two different cosets in G, hence m = 2 and we can model the
natural numbers 0 and 1 using just a single qubit (note that bin(0) = 0 and bin(1) = 1).
Therefore, |z⟩ has size 1. The last register of size 1 is an ancillary register.

Note that if the input register in Figure 9.1 holds a value from T (0), the depicted circuit
does nothing and after the circuit was executed, the output qubit will hold the value
|z0 ⊕ bin(0)⟩ = |z0 ⊕ 0⟩ = |z⟩. Otherwise, if the input register holds a value from T (1),
the output qubit will hold the value |z0 ⊕ bin(1)⟩ = |z0 ⊕ 1⟩.

|x0⟩ X X X X

|x1⟩ X X X X

|x2⟩
|z0⟩
|0⟩

encoded 100 encoded 110 encoded 111encoded 101

Figure 9.1: Circuit for Uρ where H = {000, 001, 010, 100} with the cosets T (0) = H and
T (1) = {100, 101, 110, 111}, and ρ(x) = 0 for x ∈ T (0) and ρ(x) = 1 for x ∈ T (1). Least
significant qubit is topmost.

74

9.2. Circuit Examples

9.2 Circuit Examples
We present another example of the extended version of Simon’s algorithm. This time,
different to Section 4.3 and Section 8.4, we do not focus on the mathematical analysis of
the algorithm, but rather on the generated quantum circuits. As at the end of Section
9.1, let ρ : G = {0, 1}3 → {0, 1} with H = {000, 001, 010, 011}, H⊥ = {000, 100} and
ρ(000) = ρ(001) = ρ(010) = ρ(011) = 0 and ρ(100) = ρ(101) = ρ(110) = ρ(111) = 1.

We run Algorithm 8.2 with the optimization that we need to run Di only once for each i
with 0 ≤ i < 3. First we execute get_new_basis_element(∅) and thus execute the
quantum algorithm D0. The quantum circuit for D0 is depicted in Figure 9.2 (A), where
the circuit for Uρ is the same as presented in Figure 9.1.

The quantum gates before barrier 1. implement the standard version of Simon’s algorithm
(without the measurements at the end). In the very first iteration of the algorithm, there
are no blocking clauses yet, hence this step corresponds to the quantum algorithm A
from the proof of Theorem 7. The single S gate between barriers 1. and 2. serves as
the implementation of the quantum operator Uχ0 described in the proof of Theorem
7. The quantum gates between barriers 2. and 3. correspond to A−1. The quantum
gates between barriers 3. and 4. implement S{0}, where we shift the global phase by i
precisely if all qubits in all working registers (that is the input register and the output
register) hold the value |0⟩. The quantum gates between barriers 4. and 5. correspond to
one application of A again. The entire circuit thus implements the quantum algorithm
D0 = AS{0}A−1Uχ0A.

After the application of D0, the state of the quantum computer is a superposition over
elements from H⊥ = {000, 100}. Assume that we get lucky and measure the bitstring
y(1) = 100. Since y(1) holds a 1 at index 2 (the most significant qubit), all that is left to do
is to run D1 in the context of get_new_basis_element({100}). The corresponding
circuit is shown in Figure 9.2 (B). We immediately note how the circuit changes: First,
there is one additional qubit which we need for the implementation of the blocking clause
for y(1). That blocking clause is implemented with the gates between barriers 1. and 1.1.
Second, the S gate between barriers 1.1 and 2. is now at index 1, since we are running
a circuit for D1. Third, since S{0} is now operating on the input register, the output
register and additionally on the blocking clause register, we need one additional ancillary
qubit for its implementation.

By Theorem 7, we are guaranteed to measure the zero vector after one run of D1.
Moreover, we do not have to run D2, since y

(1)
2 = 1 and all bitstrings with a 1 at index

2 are blocked from future measurements. We thus proceed to construct a system of
equations

1 · x2 + 0 · x1 + 0 · x0 ≡ 0 (mod 2)

with the solution set {000, 001, 010, 011}. Any subset spanning this set is the solution to
this instance of the extended version of Simon’s problem (e.g. {001, 010}).

75

9. Implementation

|in
0⟩

H

U
ρ

H
S

H

U
ρ

H
H

U
ρ

H

|in
1⟩

H
H

H
H

H
H

|in
2⟩

H
H

H
H

H
H

|ou
t 0

⟩ |0⟩ |0⟩ |0⟩
S

0
0

⊕
ρ
(x

)
0

⊕
ρ
(x

)
0

0
0

⊕
ρ
(x

)

1
2

3
4

5

(A) First circuit

|in
0⟩

H

U
ρ

H
H

U
ρ

H
H

U
ρ

H

|in
1⟩

H
H

S
H

H
H

H

|in
2⟩

H
H

H
H

H
H

|ou
t 0

⟩

|bl
oc

k
0⟩

H
H

H

|0⟩ |0⟩ |0⟩ |0⟩
S

0
0

⊕
ρ
(x

)
0

⊕
ρ
(x

)
0

0
0

⊕
ρ
(x

)

1
3

4
2

1.
1

5

(B) Second circuit
Figure 9.2: The quantum circuits generated for the extended version of Simon’s problem
where H = {000, 001, 010, 011}, least significant qubit is topmost

76

9.3. Considerations for NISQ Hardware

9.3 Considerations for NISQ Hardware
The implementation for the extended version of Simon’s algorithm [24] was developed
and tested using the noise-free quantum computing simulator Qiskit Aer [21]. The local
simulation setup consisted of an Intel i7-13700H with 64 GiB RAM using Python 3.10.12
on Ubuntu 22.04.5 LTS. We found local simulations to be feasible for hidden subgroups
of ⟨{0, 1}n, ⊕⟩ with 2 ≤ n ≤ 5. For larger n, simulating a quantum computer on classical
hardware is very computationally expensive. A main reason for this is that slightly
increasing n increases the number of qubits needed for the generated circuits substantially.
A small hidden subgroup of a large group has many cosets (recall Lemma 9) and hence
oracle implementations need many output qubits. Moreover, a small hidden subgroup
of a large group has a large orthogonal group (recall Lemma 10) and hence in such a
situation we need many blocking clauses. Note also that each increase of any working
register automatically increases the number of ancillary qubits needed for the simulation
of S{0}, hence for local simulations without a GPU we quickly approach the limits of
what is possible.

Next, we tested the implementation against simulators of the current state-of-the-art
quantum computers IBM Eagle r3 [4] and IonQ Aria [5]. Recall that the extended version
of Simon’s problem is in EQP Uρ and thus (for efficient implementations of Uρ) tractable
from a purely complexity-theoretic point of view. Consider now, with actual NISQ
hardware limitations in mind, the concrete problem instance from Section 9.2. The circuit
in Figure 9.2 (A) has width 7 and depth 69, and the circuit in Figure 9.2 (B) has width
9 and depth 79. IBM rates their Eagle QPU at QV 128 [4], so both circuits, on paper,
should be executable there. Note that our circuit sizes are calculated before transpilation
to any particular QPU, and that the QV score depends on un-transpiled circuits as well
[16, 28]. IonQ uses a specialized benchmark value similar to quantum volume called
algorithmic qubits (AQ) [1], and they rate their Aria QPU at AQ 25 [5]. Intuitively, this
means that Aria should be able to successfully execute all circuits with width up to 25
and depth up to 252 = 625. Hence, on paper, both circuits should be executable on
IonQ Aria as well. For all the following results, the standard Qiskit transpiler was used
to translate circuits to the instruction sets supported by the corresponding quantum
computers.

Figure 9.3 shows the measurement results from running the circuit in Figure 9.2 (A) 1024
times. We would expect to only sample bitstrings from H⊥, which is {000, 100} in that
particular scenario. As we can see, this is only the case with the noise-free Qiskit Aer
simulator. The results for both the simulators of IBM Eagle and IonQ Aria showcase
significant noise. No bitstring outside H⊥ has probability zero, and the total probability
to measure a noisy result is around 64% for IBM Eagle and around 44% for IonQ Aria.

We observe similar results in Figure 9.4, which depicts the measurement results from
running the circuit in Figure 9.2 (B). We would expect to only measure the zero vector
(since 100 already generates H⊥ in this scenario and 100 is blocked), but this is only
achieved with the noise-free Qiskit Aer simulator. None of the real-device simulators give

77

9. Implementation

000 001 010 011 100 101 110 111

0

100

200

300

400

500

600

Measured bitstrings

R
es

ul
ts

co
un

ts
Qiskit Aer
IBM Eagle
IonQ Aria

Figure 9.3: Measurement results from the quantum circuit in Figure 9.2 (A),
all measurements obtained on simulators

000 001 010 011 100 101 110 111

0

200

400

600

800

1,000

Measured bitstrings

R
es

ul
ts

co
un

ts

Qiskit Aer
IBM Eagle
IonQ Aria

Figure 9.4: Measurement results from the quantum circuit in Figure 9.2 (B),
all measurements obtained on simulators

us a guarantee to only measure 000. Furthermore, on the simulator for IBM Eagle, still
each bitstring from {0, 1}3 is a possible measurement result and the total probability to
measure a noisy result is around 68%. Interestingly, for the simulator for the IonQ Aria
QPU, the bitstrings that are blocked by 100 (those with a value 1 at index 2, counting

78

9.3. Considerations for NISQ Hardware

from right to left), have now probability zero. However, we still do not get a guarantee
to measure the zero vector itself, the probability for a noisy result is around 45%.

On paper (and on the noiseless Qiskit Aer simulator), the extended version of Simon’s
algorithm is deterministic. However, the measurement results from Figure 9.3 and 9.4 tell
us that on real NISQ hardware, we still have to expect a high error probability. This issue
is not unique to our setting, and a common mitigation stragegy is to not run a quantum
circuit precisely once, but multiple times (as was done for collecting data for Figures 9.3
and 9.4). In that scenario, the result of running a quantum circuit is then often defined
as the bitstring that was measured most often, which is also what our implementation
does. Hence, despite the high error probabilities on both circuits depicted in Figure 9.2,
our implementation picks a correct bitstring at each step and successfully solves this
particular instance of Simon’s problem.

Motivated by this fact, we also tested our implementation on a real IBM Eagle r3 QPU.
The results of running the circuits in Figure 9.2 are depicted in Figure 9.5 and Figure
9.6, where we contrast the measurements obtained from the actual QPU with those from
the Qiskit Aer simulator. The results are humbling, to say the least. In Figure 9.5 we
observe that none of the desired bitstrings 000 and 100 are measured significantly more
often than the rest. The opposite is the case, the bitstrings that are measured most
often are noisy ones. We also cannot observe any clear pattern in the output, all possible
measurement results seem to be roughly distributed uniformly. We also note that in this
case, the actual IBM Eagle QPU performs significantly worse than we would expect from
analyzing the corresponding simulator results, and now our implementation would choose
a noisy bitstring, and thus reconstruct a wrong hidden subgroup.

000 001 010 011 100 101 110 111

0

100

200

300

400

500

600

Measured bitstrings

R
es

ul
ts

co
un

ts

Qiskit Aer (simulator)
IBM Eagle (real)

Figure 9.5: Measurement results from the quantum circuit in Figure 9.2 (A)

79

9. Implementation

The results in Figure 9.6 are more in line with what we would expect from the simulations
prior. We again have the problem that the only desired bitstring 000 is not measured
most often, and thus our implementation would again choose a noisy bitstring and return
a wrong result. However, a pattern we could observe in Figure 9.4 is also visible in Figure
9.6: The bitstrings blocked by the bitstring 100 are measured significantly less often than
the rest.

000 001 010 011 100 101 110 111

0

200

400

600

800

1,000

Measured bitstrings

R
es

ul
ts

co
un

ts

Qiskit Aer (simulator)
IBM Eagle (real)

Figure 9.6: Measurement results from the quantum circuit in Figure 9.2 (B)

A detailed analysis of why the extended version of Simon’s algorithm is such a challenge
for NISQ hardware is outside the scope of this thesis, but we note the following. Our test
circuits have width 7 and 9 only, which is significantly less than the 128 qubits available
on IBM Eagle [4] or the 25 available on IonQ Aria [5], hence circuit width should not be
the main obstacle. However, our circuits have depth 69 and 79 respectively, which appears
to cause substantial noise due to decoherence effects and imprecise gates. Moreover, our
circuits make heavy use of the three-qubit CCNOT gate, which is non-standard both on
IBM Eagle and IonQ Aria, and thus needs to be (expensively) simulated there.

80

CHAPTER 10
Conclusion

The standard version of Simon’s problem [32] is well-studied and part of many introductory
courses or tutorials on quantum computing. Hence, quite a lot of effort has gone into
making Simon’s algorithm accessible for a general public, and many well-documented
implementations already exist [6, 2]. The same was not the case for the extended version
of Simon’s problem [13] until now. Although this extended version proved to be influential
for further research in quantum computing, eventually leading to the discovery of the
amplitude amplification technique [14, 18] and to the development of the hidden subgroup
problem framework [27], so far no reference implementation for the extended version of
Simon’s algorithm was published. While the original version is usually covered in detail
in textbooks on quantum computing (e.g. [20]), the extended version is only mentioned
as a footnote, if at all.

This might be because of the first key insight from writing this thesis: the mathematical
analysis of the extended version of Simon’s algorithm is substantially more complex
than the analysis of the original one. For the extended version, we require sophisticated
results from linear algebra, from the structure of the algebraic group ⟨{0, 1}n, ⊕⟩ and its
subgroups, and from quantum computing in general. The extended version of Simon’s
algorithm has many moving parts, which makes it particularly hard to engage with.

Back in the 1990s, when the different versions of Simon’s algorithm were originally
proposed, actual quantum hardware did not exist at all. There were also no corresponding
toolchains for the development of quantum algorithms, and thus ‘developing’ meant giving
an abstract mathematical description. Our second finding is that quantum toolchains now
exist and that they can be pleasant to work with. Toolchains like IBM Qiskit [21] provide
us with a straightforward way to create code runnable on actual quantum hardware, and
the entire process is much closer to classical software development.

Our next finding is strongly related to the workflows of classical software development
as well. A classical development paradigm is to first specify test cases and only then

81

10. Conclusion

start to work on any implementation (known as test driven development [9]). If we
want to introduce the same process when implementing an algorithm to solve an oracle
problem, we need some corresponding oracle implementations as test instances first. In
quantum computing, for some well-studied quantum algorithms for oracle problems like
the original version of Simon’s algorithm [32] or the algorithm of Shor [31], concrete
oracle implementations already exist [2, 6, 10]. However, for less known oracle problems
like the extended version of Simon’s problem, it is common practice to keep the oracle
details abstract and to not actually care about their implementation. Hence, we needed
to come up with our own test oracle implementation from scratch.

Lastly, we want to touch on our experimental results. On a noise-free quantum computer
simulator our implementation works precisely as expected. That is, from each run of
the quantum computer, we are guaranteed to measure a bitstring which gets us one
step closer to solving an instance of the extended version of Simon’s problem. In other
words, on a noise-free simulator, our implementation of the extended version of Simon’s
algorithm is indeed deterministic. The results from the simulators of actual NISQ devices,
while not ideal, also are in line with what we would expect. It is common knowledge that
NISQ machines suffer severely from decoherence and gate infidelity [22], so it comes as
no surprise that our implementation performs worse there. This could be in part because
the quantum circuits generated by our implementation tend to be rather deep, and they
rely heavily on the three-qubit CCNOT gate, which needs to be expensively simulated
on most machines. For both, we do not see an immediately obvious fix.

What comes as a disappointment are the results we got on the real IBM Eagle [4] QPU.
Our results show that real NISQ hardware is not yet mature enough to run complex
quantum algorithms like the extended version of Simon’s algorithm successfully, not even
for toy instances. Further research into better quantum hardware is needed, in order to
make this technology applicable and attractive for real-world use cases.

82

Overview of Generative AI Tools
Used

The bars of the charts in figures 9.3, 9.4, 9.5 and 9.6 contain patterns in order to make
them better distinguishable on a black and white printout. ChatGPT 1 was used to find
the correct Latex commands to create such patterns.

In the implementation [24] we make use of the static code analysis tool Pylint 2 in order
to improve the overall code quality and in order to catch bugs early (note that Pylint
is not a generative AI tool itself). As is common practice in software engineering, we
exclude test code from the Pylint analysis, which is done via a configuration file called
.pylintrc. ChatGPT was used to generate that configuration file.

Otherwise, no generative AI was used.

1https://chatgpt.com/, last accessed at 2025-04-17
2https://www.pylint.org/, last accesed at 2025-01-05

83

https://chatgpt.com/
https://www.pylint.org/

Bibliography

[1] Algorithmic Qubits. https://ionq.com/resources/
algorithmic-qubits-a-better-single-number-metric.
Accessed: 2025-03-27.

[2] Braket Tutorials Github. https://github.com/amazon-braket/
amazon-braket-examples/.
Accessed: 2025-03-22.

[3] Exploring Simon’s Algorithm with Daniel Simon. https://aws.amazon.com/
blogs/quantum-computing/simons-algorithm/. Accessed: 2024-09-05.

[4] IBM Eagle. https://docs.quantum.ibm.com/guides/
processor-types#eagle. Accessed: 2025-04-03.

[5] IonQ Aria. https://ionq.com/quantum-systems/aria. Accessed: 2025-03-
27.

[6] Quantum query algorithms. https://learning.quantum.ibm.com/course/
fundamentals-of-quantum-algorithms/quantum-query-algorithms.
Accessed: 2025-03-22.

[7] Sheldon Axler. Linear Algebra Done Right. Springer Nature, 2024. https://
linear.axler.net/LADR4e.pdf.

[8] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman
Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.
Elementary gates for quantum computation. Physical Review A, 52(5):3457, 1995.
https://arxiv.org/pdf/quant-ph/9503016.pdf.

[9] Kent Beck. Test Driven Development: By Example. The Addison-Wesley
signature series. Addison-Wesley, Boston, 1st edition edition, 2003. https:
//learning.oreilly.com/library/view/test-driven-development/
0321146530/.

[10] David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and John Preskill.
Efficient networks for quantum factoring. Physical Review A, 54:1034–1063, Aug

85

https://ionq.com/resources/algorithmic-qubits-a-better-single-number-metric
https://ionq.com/resources/algorithmic-qubits-a-better-single-number-metric
https://github.com/amazon-braket/amazon-braket-examples/
https://github.com/amazon-braket/amazon-braket-examples/
https://aws.amazon.com/blogs/quantum-computing/simons-algorithm/
https://aws.amazon.com/blogs/quantum-computing/simons-algorithm/
https://docs.quantum.ibm.com/guides/processor-types#eagle
https://docs.quantum.ibm.com/guides/processor-types#eagle
https://ionq.com/quantum-systems/aria
https://learning.quantum.ibm.com/course/fundamentals-of-quantum-algorithms/quantum-query-algorithms
https://learning.quantum.ibm.com/course/fundamentals-of-quantum-algorithms/quantum-query-algorithms
https://linear.axler.net/LADR4e.pdf
https://linear.axler.net/LADR4e.pdf
https://arxiv.org/pdf/quant-ph/9503016.pdf
https://learning.oreilly.com/library/view/test-driven-development/0321146530/
https://learning.oreilly.com/library/view/test-driven-development/0321146530/
https://learning.oreilly.com/library/view/test-driven-development/0321146530/

1996. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.
54.1034.

[11] Ethan Bernstein and Umesh Vazirani. Quantum Complexity Theory. In Proceedings
of the twenty-fifth annual ACM symposium on Theory of Computing, pages 11–20,
1993. https://dl.acm.org/doi/pdf/10.1145/167088.167097.

[12] André Berthiaume and Gilles Brassard. Oracle Quantum Computing. Jour-
nal of Modern Optics, 41(12):2521–2535, 1994. https://doi.org/10.1080/
09500349414552351.

[13] Gilles Brassard and Peter Høyer. An exact quantum polynomial-time algorithm
for Simon’s problem. In Proceedings of the Fifth Israeli Symposium on Theory of
Computing and Systems, pages 12–23. IEEE, 1997. https://arxiv.org/abs/
quant-ph/9704027v1.

[14] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum Amplitude
Amplification and Estimation, 2002. https://arxiv.org/pdf/quant-ph/
0005055.

[15] André Chailloux, María Naya-Plasencia, and André Schrottenloher. An Ef-
ficient Quantum Collision Search Algorithm and Implications on Symmetric
Cryptography. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology – ASIACRYPT 2017, pages 211–240, Cham, 2017. Springer In-
ternational Publishing. https://link.springer.com/chapter/10.1007/
978-3-319-70697-9_8.

[16] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M.
Gambetta. Validating quantum computers using randomized model circuits. Physi-
cal Review A, 100:032328, Sep 2019. https://link.aps.org/doi/10.1103/
PhysRevA.100.032328.

[17] David Deutsch. Quantum theory, the Church–Turing principle and the
universal quantum computer. Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences, 400(1818):97–117, 1985. https://
royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070.

[18] Lov K. Grover. Quantum Computers Can Search Rapidly by Using Almost Any
Transformation. Physical Review Letters, 80(19):4329, 1998. https://journals.
aps.org/prl/pdf/10.1103/PhysRevLett.80.4329.

[19] Nicholas J. Higham. Gaussian elimination. WIREs Computational Statis-
tics, 3(3):230–238, 2011. https://wires.onlinelibrary.wiley.com/doi/
full/10.1002/wics.164.

[20] Matthias Homeister. Quantum Computing verstehen. Springer, 2008. https:
//link.springer.com/book/10.1007/978-3-658-36434-2.

86

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.54.1034
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.54.1034
https://dl.acm.org/doi/pdf/10.1145/167088.167097
https://doi.org/10.1080/09500349414552351
https://doi.org/10.1080/09500349414552351
https://arxiv.org/abs/quant-ph/9704027v1
https://arxiv.org/abs/quant-ph/9704027v1
https://arxiv.org/pdf/quant-ph/0005055
https://arxiv.org/pdf/quant-ph/0005055
https://link.springer.com/chapter/10.1007/978-3-319-70697-9_8
https://link.springer.com/chapter/10.1007/978-3-319-70697-9_8
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.80.4329
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.80.4329
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wics.164
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wics.164
https://link.springer.com/book/10.1007/978-3-658-36434-2
https://link.springer.com/book/10.1007/978-3-658-36434-2

[21] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake
Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W.
Cross, Blake R. Johnson, and Jay M. Gambetta. Quantum computing with Qiskit,
2024. https://github.com/Qiskit/qiskit-aer.

[22] Frank Leymann and Johanna Barzen. The bitter truth about gate-based quantum
algorithms in the NISQ era. Quantum Science and Technology, 5(4):044007, Sep
2020. https://dx.doi.org/10.1088/2058-9565/abae7d.

[23] Thomas Lubinski, Sonika Johri, Paul Varosy, Jeremiah Coleman, Luning Zhao,
Jason Necaise, Charles H. Baldwin, Karl Mayer, and Timothy Proctor. Application-
Oriented Performance Benchmarks for Quantum Computing. IEEE Transactions
on Quantum Engineering, 4:1–32, 2023. https://ieeexplore.ieee.org/
abstract/document/10061574.

[24] Oskar Mayer. Reference implementation for the extended version of simon’s algo-
rithm, April 2025. https://doi.org/10.5281/zenodo.15235735.

[25] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B.
Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-
taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-
dregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo,
Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy:
symbolic computing in Python. PeerJ Computer Science, 3:e103, January 2017.
https://docs.sympy.org/latest/index.html.

[26] Takashi Mihara and Shao Chin Sung. Deterministic polynomial-time quantum
algorithms for Simon’s problem. Computational Complexity, 12:162–175, 2003.
https://link.springer.com/article/10.1007/s00037-003-0181-z.

[27] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2010.
https://www.cambridge.org/highereducation/books/
quantum-computation-and-quantum-information/
01E10196D0A682A6AEFFEA52D53BE9AE#overview.

[28] Elijah Pelofske, Andreas Bärtschi, and Stephan Eidenbenz. Quantum Volume in
Practice: What Users Can Expect From NISQ Devices. IEEE Transactions on Quan-
tum Engineering, 3:1–19, 2022. https://ieeexplore.ieee.org/document/
9805433.

[29] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,
2018. https://quantum-journal.org/papers/q-2018-08-06-79/.

87

https://github.com/Qiskit/qiskit-aer
https://dx.doi.org/10.1088/2058-9565/abae7d
https://ieeexplore.ieee.org/abstract/document/10061574
https://ieeexplore.ieee.org/abstract/document/10061574
https://doi.org/10.5281/zenodo.15235735
https://docs.sympy.org/latest/index.html
https://link.springer.com/article/10.1007/s00037-003-0181-z
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://ieeexplore.ieee.org/document/9805433
https://ieeexplore.ieee.org/document/9805433
https://quantum-journal.org/papers/q-2018-08-06-79/

[30] William R. Scott. Group theory. Dover books on advanced mathematics. Dover Publ.,
New York, NY, reprint. edition, 1987. https://permalink.catalogplus.
tuwien.at/AC01292875.

[31] Peter W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring. In Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 124–134, 1994. ArXiv version: https://arxiv.org/pdf/quant-ph/
9508027v2.pdf.

[32] Daniel R. Simon. On the Power of Quantum Computation. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, SFCS ’94, page 116–123,
USA, 1994. IEEE Computer Society. Final version published 1997 in SIAM journal
on Computing. https://doi.org/10.1109/SFCS.1994.365701.

88

 https://permalink.catalogplus.tuwien.at/AC01292875
 https://permalink.catalogplus.tuwien.at/AC01292875
https://arxiv.org/pdf/quant-ph/9508027v2.pdf
https://arxiv.org/pdf/quant-ph/9508027v2.pdf
https://doi.org/10.1109/SFCS.1994.365701

	Kurzfassung
	Abstract
	Contents
	Introduction
	Notation and Mathematical Background
	Group Theory
	Linear Algebra Basics
	Quantum-Mechanical Basics
	Operators in Quantum Computing

	Classical and Quantum Complexity
	Classical Complexity Theory
	The Circuit Model of Computation
	Quantum Complexity Theory
	Quantum Circuits
	Oracle Complexity
	Quantum Computing in Practice

	A Randomized Algorithm for Simon's Problem
	Quantum Algorithm for Simon's Problem
	Classical Post-Processing for Simon's Problem
	An Example Run of the Original Version of Simon's Algorithm
	Computational Complexity

	A Randomized Algorithm for the Extended Version of Simon's Problem
	Quantum Algorithm for the Extended Version of Simon's Problem

	Removing Already Known Vectors from a Superposition
	Implementing a Single Blocking Clause
	Implementing Multiple Blocking Clauses

	Removing the Zero Vector from a Superposition
	Preparatory Quantum Operators
	Quantum Algorithm for Removing the Zero Vector

	A Deterministic Algorithm for the Extended Version of Simon's Problem
	Preparatory Results
	Deterministic Quantum Algorithm for the Extended Version of Simon's Problem
	Classical Post-Processing for the Extended Version of Simon's Problem
	An Example Run of the Extended Version of Simon's Algorithm
	Computational Complexity

	Implementation
	Oracle Implementation
	Circuit Examples
	Considerations for NISQ Hardware

	Conclusion
	Overview of Generative AI Tools Used
	Bibliography

