
Analysis of (Multi-)Fault
Injection(s) causing memory

leaks on modern RISC-V
Microcontrollers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Jannic Hofmann, BSc
Matrikelnummer 11807859

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Mag. Dr.techn. Edgar Weippl
Mitwirkung: Christian Kudera, MSc BSc

Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc
Michael Pucher, MSc BSc

Wien, 1. März 2025
Jannic Hofmann Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Analysis of (Multi-)Fault
Injection(s) causing memory

leaks on modern RISC-V
Microcontrollers

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Jannic Hofmann, BSc
Registration Number 11807859

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof. Dipl.-Ing. Mag. Dr.techn. Edgar Weippl
Assistance: Christian Kudera, MSc BSc

Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc
Michael Pucher, MSc BSc

Vienna, March 1, 2025
Jannic Hofmann Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jannic Hofmann, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 1. März 2025
Jannic Hofmann

v

Danksagung

An erster Stelle möchte ich mich bei dem Forschungszentrum SBA Research für die
Möglichkeit der Durchführung dieser Arbeit bedanken. Besonderer Dank gibt hierbei
meinen Betreuern Christian Kudera, Georg Merzdovnik und Michael Pucher, die bei
Fragen immer zur Verfügung standen.

Außerdem danke ich Larissa für das Gegenlesen der Masterarbeit und die emotionale Un-
terstützung. Überdies möchte ich Max für die Anregungen und Tipps zur Strukturierung
der Arbeit, aber vor allem für die moralische Unterstützung danken.

Abschließend möchte ich mich bei Freunden und meiner Familie für die Unterstützung,
Geduld und Hilfsbereitschaft bedanken, ohne die das Studium nicht möglich gewesen
wäre.

vii

Kurzfassung

Embedded Systems verwenden häufig einen Mikrocontroller als zentrale Steuerkomponen-
te, dabei spielt es keine Rolle, ob es sich um sicherheitsfokussierte oder normale Systeme
handelt. Die verwendeten Mikrocontroller basieren auf einer Vielzahl verschiedener Ar-
chitekturen, dennoch fokussiert sich der Großteil der „Fault Injection“ Forschung auf
ARM- oder AVR-Architekturen. Die Reduced Instruction Set Computer V (RISC-V)
Architektur findet immer mehr Verwendung in neuen Mikrocontrollern, dies hat zur Folge,
dass auch die Forschung in Bezug auf RISC-V zunimmt. Diese Arbeit hat das Ziel, die
Erkenntnisse der aktuellen Forschung, in Bezug auf das Verhalten von RISC-V-basierten
Mikrocontrollern gegenüber Voltage Fault Injections (VFIs), zu erweitern. Demzufolge
wird in dieser Thesis ein Fault Injection Board (FIB), basierend auf etablierten Designs,
anfertigt und adaptiert, um eine kostengünstige, „All-in-one“ Lösung zu erstellen. Dieses
Board wird verwendet, um „Fault Injection“ Angriffe gegen die „strcpy“ Funktion durch-
zuführen. Ziel dieser Experimente ist, Speicherverletzungen auszulösen und somit Daten
zu extrahieren. In der nachfolgenden Analyse werden die experimentellen Ergebnisse
interpretieret, um die gefundenen Resultate nachzuvollziehen und interne und externe
Einflussfaktoren, wie sind Speicherort und Temperatur, zu diskutieren. Weiters werden
multiple VFIs getestet, um den Nutzen dieser, im Vergleich zu einer Single VFI, zu
erfassen. Abschließend werden die Resultate den Ergebnissen der aktuellen Forschung
gegenübergestellt.

ix

Abstract

Embedded systems commonly use microcontrollers (MCs) as an integral part, even
security-focused devices. MCs are built on various architectures, yet most fault injection
research focuses on AVR- and ARM -based MCs. Nonetheless, the Reduced Instruction
Set Computer V (RISC-V) architecture is rising in popularity, and so is its research.
Supra, this thesis aims to provide supplementary knowledge regarding the behaviour of
RISC-V-based MCs when exposed to Voltage Fault Injections (VFIs). Hereby, a Fault
Injection Board (FIB) is developed based on established designs, amending these to
provide a small, budget-friendly, all-in-one solution. The FIB is used to conduct fault
injection experiments targeting the strcpy function; the objective is to cause memory
leaks. Subsequently, the evaluation analyses the experimental outcomes to comprehend
the results and pinpoint internal and external influencing factors like storage location
or temperature. Besides, the usefulness of multiple VFIs is assessed. Ultimately, the
learnings are juxtaposed to prevailing research.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the Work and Research Question 2
1.3 Methodology . 2
1.4 Structure of the Work . 2

2 Technical Background 3
2.1 RISC-V Instruction Set Architecture 3
2.2 Fault Injections . 5
2.3 Fault Models . 8

3 Related work 9
3.1 Buffer Overflow Attack on 32-bit ARM and 8-bit AVR 9
3.2 Side Channel Attack & VFI Induced Buffer Overflows on RISC-V . . 10
3.3 Multiple Fault Injections . 12
3.4 C-Function on RISC-V Vulnerability Analysis 13

4 Implementation 15
4.1 Chip Selection . 15
4.2 Proof of Concept . 17
4.3 Fault Injection Board . 20
4.4 FPGA Design . 24
4.5 Software Design . 28

5 Evaluation 35
5.1 Single Fault Injections . 37
5.2 Temperature Influence . 51
5.3 Multiple Voltage Fault Injections . 60

xiii

5.4 Oscilloscope Measurements . 62

6 Discussion & Further Work 65
6.1 Discussion . 65
6.2 Comparison/ Relation to Related Work 68
6.3 Further work . 69

7 Conclusion 71

8 Appendix 73

List of Generative AI Tools Used 83

Tools and Software Used 85

List of Figures 86

List of Tables 89

List of Algorithms 91

Acronyms 93

Bibliography 95

CHAPTER 1
Introduction

The present chapter portrays the problem statement and motivation for this work, as well
as the to-be-answered research question and aim of the work. Moreover, the methodology
and structure of the work will be clarified.

1.1 Motivation and Problem Statement

Voltage Fault injection is a well-known attack vector for embedded systems. Most work
targets established reduced instruction set computer architectures like ARM or AVR.
ARM was introduced in 1985, and AVR in 1997. In contrast, the RISC-V architecture was
introduced in 2014 and is, therefore, by far the newest architecture. This also means that
most MCs on the market use ARM, AVR or other architectures. Yet, the adoption of the
RISC-V architecture is growing. Such is also shown by the rising interest and investments
from major corporations like Samsung [1]. Besides, it shows when looking at the five
newest and upcoming releases of Espressif MCs. ESP32-C2, ESP32-C6, ESP32-C5 and
ESP32-P4 all utilize the RISC-V architecture [2].

Hence, this work aims to provide more information on how VFIs behave on modern
RISC-V architecture-based MCs. This work should not show theoretical outcomes of VFIs
by simulation or code analysis but results obtained by experiments with real hardware.
There is already work showing successful use of VFIs on RISC-V-based MCs with real
hardware [3, 4]. However, this work should extend the already conducted research with
additional findings. This work aims to find internal and external influencing factors on
the success rate of VFIs and extract suitable parameters for these factors. Findings
should allow to get a better understanding on how VFI behave on modern RISC-V
architectures and how to improve success rates for VFIs. The conclusions of this work
will also be compared to outcomes in related studies.

1

1. Introduction

1.2 Aim of the Work and Research Question
This paper aims to conduct fault injection experiments on RISC-V-based MCs to answer
the question of whether they are vulnerable to single VFIs and which factors influence
the outcome of VFIs. The function strcpy will be the target of the VFIs with the goal
of achieving memory leaks. Multiple factors, e.g. voltage rail, storage location, Central
Processing Unit (CPU) frequency and temperature, which influence the success rate of
VFIs, will be analyzed, and suitable parameters will be extracted. The experiments should
also disclose whether multiple Fault Injections (FIs) can be used to achieve (additional)
memory leaks.

1.3 Methodology
Initially, state-of-the-art voltage-based FI attacks are studied. After that, RISC-V-based
MCs are compared to find a suitable Device under Test (DuT) for the following fault
injection experiments to gather qualitative as well as quantitative data. The voltage-based
FIs will target the voltage rails of the DuT, and the glitches are generated with a crowbar
circuit. Before conducting the experiments, precise questions are formulated and later
answered by evaluating the trials. The fault injection experiments are done by first
developing a suitable hardware platform, using an iterative approach, that allows faults to
be injected into the DuT and evaluate the results. The fault injection controller, running
on a Field Programmable Gate Array (FPGA), will be designed and programmed to
time the fault injection attacks and store outcomes for further analysis. The last step is
to evaluate the gathered test results, draw conclusions, and answer the before-formulated
research questions.

1.4 Structure of the Work
First, the essential Technical background and Related work will be presented. After
that, the Implementation of the Proof of Concept (PoC) will be shown. Based on
the findings gathered from the PoC, the Development of the fault injection board will
be explained. This includes Hardware design, FPGA design and Software design
of the DuT. Subsequently, the Evaluation will explain the results found in detail; hereby,
the Evaluation is structured into the sections Single Fault Injections, Temperature
Influence, Multiple Fault Injections and Oscilloscope Measurements. Last, the
chapters’ Discussion & Further work and Conclusion will end this thesis.

2

CHAPTER 2
Technical Background

The Technical background chapter depicts the fundamentals needed for this work.
First, the basics of the RISC-V Instruction Set Architecture are presented. After that, the
types of fault injections are exemplified, and lastly, the manifestation of fault injections,
the so-called fault models, are clarified.

2.1 RISC-V Instruction Set Architecture
RISC-V is an open and free-to-use Instruction Set Architecture (ISA) that was first
developed for education and research purposes but can nowadays also be found in modern
microcontrollers like the ESP32-C6, Microchip PIC64GX1000 and many more. As the
name RISC-V suggests, the computer architecture is a reduced instruction set with a
(typically) five-stage pipeline. The pipeline consists of the stages fetch, decode, execute,
memory and write back. The first stage, fetch, has the task of fetching the next
instruction from the instruction memory. After that, the stage decode will decode the
previously fetched instruction and read the needed registers for the next stage. The stage
execute can execute the decoded instruction and use the already-read registers. It might
also be the case that the execute stage has the task of calculating a memory address.
Following, the stage memory reads or writes to the memory if the instruction requires
it. Last, the stage write back has the task to write back the new results to the registers
so that the following instructions can fetch the new values [5].

Many different RISC-V compliant implementations are available and provide a full or a
subset of RISC-V instructions. They range from Application-Specific Integrated Circuit
(ASIC) implementations to general ones that can be implemented on a wide range of
FPGAs [6].

RISC-V processors can have a range of different instruction sets; there are base instruction
sets like the “base integer instruction set 64bit (RV64I)”. Optional Extensions can be

3

2. Technical Background

combined with all available base instruction sets. Examples of extensions are the
“atomic instructions set (A)” or “single-precision floating point set (F)”. The instructions
are encoded with a fixed length of 32-bit and come in four different base formats
and two additional immediate encoding formats. The Upper-immediate(U), Store(S),
Immediate(I) and Register(R) are the base formats. Jump(J) and Branch(B) are used for
immediate encoding. A detailed five-stage pipeline and instruction encoding are shown
in Figure 2.1 [5].

Figure 2.1: RISC-V pipeline & RISC-V instruction formats [7]

4

2.2. Fault Injections

2.2 Fault Injections
Fault injections alter the normal program flow of MCs. The goal is to modify the program
flow to achieve a specific behaviour. This can range from skipping a password check to
breaking encryption mechanisms. There are multiple ways to induce faults into MCs,
ranging from voltage-based to electromagnetic to laser-induced faults. Each has its pros
and cons. This paper will only focus on the first one, voltage-induced faults. These
have the advantage of being easy to produce without needing expensive equipment.
Laser-induced faults are known to require costly equipment. Some approaches try to
produce laser-induced faults on a low budget. However, sourcing the needed equipment
is complex, and a lot of trial and error is required in order to get such a system to work
correctly [8, 9].

2.2.1 Voltage Fault Injection
All MCs require a voltage rail to supply the system with power. Hence, voltage fault
injections work with nearly all MCs. Often, MCs have multiple power rails for different
internal functions. The datasheet of the MC can be used to narrow down the interesting
power rails. After that, testing is needed to determine the best working power rail.
Nowadays, lots of chips come with protections against voltage drops, the so-called Brown
out Detection (BOD). These will reboot or shut down the MC if the voltage drops
below the minimal specified voltage are detected [10]. Yet, short voltage glitches often
go undetected by the BOD. The duration of the voltage glitches is too short to get
recognized by the BOD circuit, as will be shown in this work.

Voltage-based FIs can be generated in multiple ways. The easiest way is to use a so-called
crowbar circuit. The crowbar circuit shorts the voltage supply of the DuT to another
voltage potential. Often, the voltage is shorted to ground, but it can also be connected
to a higher voltage potential at the risk of damaging the DuT. A basic crowbar circuit
consists of a MOSFET and a current-limiting resistor to keep the current reasonably
low. Figure 2.2 shows a crowbar circuit that connects the power supply to the ground
potential. To control the crowbar circuit, the trigger input is connected to an FPGA or
other MC. Controlling means determining the point in time when the voltage rails are
shorted to ground, as well as the short duration. The “Vcc Glitch” output of the crowbar
circuit is connected to the selected power rail(s) of the MC. [11, 12]

5

2. Technical Background

Trigger

Vcc

Vcc Glitch

Figure 2.2: Crowbar circuit short to ground

A more sophisticated way to generate VFI is to use so-called glitch shaping presented in
the article “Shaping the Glitch: Optimizing Voltage Fault Injection Attacks” [13]. Instead
of using a crowbar circuit, the voltage waveform is generated with a waveform generator.
This allows the creation of a more repeatable voltage glitch with fewer oscillations. A
crowbar circuit can not be used to set the voltage level of the glitch; it can only connect
two voltage potentials. The resulting waveform depends on the electronic characteristics
of the whole system. The waveform generator, in contrast, can define the voltage curve.
Varying properties of the electronic components like resistance, inductance or capacitance
influence the crowbar circuit way more than the glitch-shaping approach. Figure 2.3
shows the difference between a glitch produced by a crowbar circuit (left side) and the
glitch shaping via a waveform generator (right side) [13].

Figure 2.3: Crowbar circuit vs glitch shaping [13]

6

2.2. Fault Injections

2.2.2 Fault Injections on Clock Signals
Another common technique is to induce faults via the external clock line of a MC. Often,
MCs require an external crystal or oscillator as a reference to generate a consistent clock
signal. If one injects faults into the reference clock, e.g. one very fast additional clock,
the MC will start with the following instruction even if the previous one is not finished,
causing faults [14].

Unlike voltage glitching, clock glitching is less dependent on the actual glitching circuit.
The reason is that no capacitors or other components try to keep the voltage at a certain
level, like it is the case when glitching power rails [15]. However, newer MCs often run on
higher frequencies than the frequency supplied by the external crystal. This is achieved by
using a circuit including a phase lock loop (PLL) to increase the frequency, leading to the
fact that standard clock glitching on the external clock line will no longer work [15, 14].

The work “Peak Clock: Fault Injection into PLL-Based Systems via Clock Manipula-
tion” [14] tried to solve this problem by developing a new approach to use clock glitching
on MCs having a PLL. They use fuzzy glitches to overclock the PLL for a short time,
which again can be used to inject faults. This way, faults can still be injected even if
MCs use a PLL to increase the clock frequency. However, it’s more complicated than
MCs without a PLL. Figure 2.4 shows a normal clock glitch on the top and the proposed
fuzzy glitch at the bottom [14].

Figure 2.4: Top: Normal clock glitching, Bottom: Fuzzy Clock glitching [14]

7

2. Technical Background

2.3 Fault Models
VFIs can manifest inside MCs in multiple ways. The fault model describes these
manifestations. The work “How Practical Are Fault Injection Attacks, Really?” [9] from
Jakub Breier and Xiaolu Hou describes often-used fault models. These fault models are
listed below.

• Bit flip:
As the name implies, this fault occurs when one or more bits flip to the contrary
value. The attacker, however, must be able to directly specify which bit should be
flipped. If multiple bits flip, all the flipped bits must be chosen. This fault model
is often used when targeting Neural Networks [9, 16, 17].

• Bit set or reset
The “Bit set or reset” model is similar to the “Bit flip” model. Instead of just
flipping a bit, a bit is set high or low (reset). The attacker must again specify exactly
which bit should be set or reset. Blind attacks often use this fault model [9, 18].

• Stuck-at faults
“Stuck-at faults” cause a value to change permanently. This means that a bit or
multiple bits of stored data are altered. This is a viable way to bias true random
number generators [19, 9].

• Execution faults
The “Execution faults” can only occur in FPGAs. “Execution faults” mean that
setup violations influence the processing of values [9].

• Random byte
The “random byte” model describes the change of one or multiple bits inside a
selected byte. Yet, this attack does not specify which bit(s) to flip nor what value
the bit(s) flip to. This model has been shown to work for a differential fault
analysis [9, 20, 21].

• Instruction skip
A fault injection can be used to skip an instruction, e.g. skipping a branch- or add-
instruction. The “Instruction skip model” can be used for a wide range of powerful
attacks, e.g. key extraction [22] [9].

8

CHAPTER 3
Related work

This part presents associated research, beginning with buffer overflow attacks on 32-bit
ARM and 8-bit AVR MCs. After that, a study combining side-channel attacks with a VFI
induced buffer overflow on a RISC-V MC is shown. Thereafter, the use of multiple fault
injections to break the TrustZone-M on NXP MCs is exhibited. Lastly, a vulnerability
analysis of C-functions on RISC-V MCs is portrayed.

3.1 Buffer Overflow Attack on 32-bit ARM and 8-bit AVR
Clock glitching attacks are possible against 32-bit ARM and 8-bit AVR, as shown in
the work from Shoei Nashimoto and his team [23]. The paper shows that by injecting
faults at specific points in time, the program’s control flow of the executed program can
be manipulated so that a Buffer overflow (BOF) is caused. The target sends a trigger
signal as an initialisation point to coordinate the clock glitching attacks. Standard clock
glitching can be used since the used MCs don’t use a PLL. The glitches are generated with
a glitchy-clock generator developed in the paper [24]. The test program takes a 32-byte
user input and copies it to a 20-byte variable with the function strcpy. Afterwards, the
function stack_dump() is used to analyse if the clock glitches caused a BOF. For both the
arm (ATmega163 on a smart card) and the AVR (32-bit ARM Cortex-M0+) target, the
strcpy function used takes three augmenters; these are the source, the destination and
the number of bytes (counter) that should be copied. The strcpy function decrements
the counter each time a byte is copied and stops if the counter reaches zero. Therefore,
two points can be targeted by fault injections: either the decrement instruction of the
counter or when comparing whether the counter has reached zero. The paper chose the
first option. Subsequently, a typical user input is entered, and stack_dump is used to
determine the stack layout. From the stack_dump, the location of the return pointer was
determined and used to craft a malicious user input to rewrite the return pointer. The
malicious user input changes the program flow when the clock glitches succeed [25].

9

3. Related work

3.2 Side Channel Attack & VFI Induced Buffer Overflows
on RISC-V

Recently, in January 2024, Kévin Courdesses, a Hardware & Embedded Software Engineer,
published two articles on breaking the Flash Encryption Feature in Espressif’s RISC-V-
based ESP32-C3 and ESP32-C6, with external SPI flash storage, MCs. He accomplished
this in two ways: using a sophisticated side-channel attack [26]. This way, however, is
very slow since a successful correlation power analysis is needed for every 128-byte block
of the encrypted flash. The second option combines the side-channel attack with a VFI.
The advantage of this attack is that only a 128-byte block must be decrypted with the
side channel attack. The VFI can extract the rest of the flash [26].

The idea of the VFI-based approach is to inject a Fault at the boot of the MC. The
program Ghidra is utilised to analyze the ELF (published by Espressif) of the boot ROM
to find suitable points for fault injections. This analysis shows that Espressif added
protections into the boot sequence to reduce the success rate of fault injections. Cour-
desses discovered that functions with the name pattern “check_condCOUNTER.XXX()”
are called multiple times during the boot sequence at sensitive and security-related
sections, an example is given in Algorithm 3.1. The algorithm shows that “check _cond-
COUNTER.4107” is called seven times after the bootloader’s signature has been validated.
The “check_condCOUNTER.4107” function rechecks the validation_word of the boot-
loader; when the signature does not match, the MC reboots. The goal of having the
signature checked multiple times is to make a single VFI fail; multiple successful fault
injections would be necessary, which is unfeasible in the real world [26].

Therefore, Courdesses used a VFI to cause a buffer overflow when loading the bootloader
from the external flash. He targeted the memcpy call in the “ets_secure_boot_verify
_bootloader_with_keys” function. Memcpy takes the number of bytes that should be
copied as an argument. Therefore, he targets the instruction “ c.li a2, 0x8 // length”
that copies the length parameter. The voltage rail used for the VFI is PST2, while all
other power rails are supplied with a stable 3.3 Volt. The VFI was found to occasionally
change the length of “0x8” to “0x208”. Unfortunately, the buffer overflow does not
suffice to override the return address, yet the buffer overflow is sufficient to override
the cache address. The control of the cache address can then be used to override the
return address; control over the return address is then used to change the program flow.
Allowing a specially prepared code to be loaded from the external flash, resulting in a
complete dump of the decrypted external flash. For this to work, one must first use the
side channel attack proposed in the other article [26] by Courdesses to get control over
the first 128 bytes of encrypted external flash. This is needed to place the prepared code
in the external flash before the VFI [26].

10

3.2. Side Channel Attack & VFI Induced Buffer Overflows on RISC-V

Algorithm 3.1: load_bootloader() of the ESP32-C3 bootrom [3]
1 void check_condCOUNTER.4107(uint32_t *validation_word)
2 {
3 if (!secure_boot_enabled())
4 {
5 return;
6 }
7 if (*validation_word != 0x3a5a5aa5)
8 {
9 system_reset();

10 }
11 }
12
13 void load_bootloader()
14 {
15 /* [...] */
16
17 if (secure_boot_enabled())
18 {
19 validation_word = verify_stage_bootloader();
20 if (validation_word != 0x3a5a5aa5)
21 {
22 failure():
23 }
24 }
25
26 /* [...] */
27
28 check_condCOUNTER.4107(&validation_word);
29 check_condCOUNTER.4107(&validation_word);
30 check_condCOUNTER.4107(&validation_word);
31 check_condCOUNTER.4107(&validation_word);
32 check_condCOUNTER.4107(&validation_word);
33 check_condCOUNTER.4107(&validation_word);
34 check_condCOUNTER.4107(&validation_word);
35
36 /* [...] */
37
38 execute_bootloader();
39 }

11

3. Related work

3.3 Multiple Fault Injections
Single fault injections try to cause a change in the program flow by timing exactly one
VFI attack. Yet, some program flow changes require the injection of faults into multiple
instructions. New security-focused MCs come with special protections given the objective
to make single VFI infeasible in practice.

The paper “Oops..! I Glitched It Again! How to Multi-Glitch the Glitching-Protections
on ARM TrustZone-M” [27] presents an approach to use multiple VFIs to evade glitching
protections. More precisely, the paper attacks the TrustZone-M implementation on the
NXP’s LPC55SXX and RT6XX MCs. They developed a multi-fault injection platform
called the µ-Glitch that uses an overall success function to see if all fault targets are hit
and a partial success function to see if individual fault targets are hit [27].

The partial success function is first used to find correct parameters for all single VFI.
This is needed since multiple VFIs increase the search space exponentially. A sweep
finds the correct settings for the single VFIs. A Crowbar circuit is used to generate
the VFIs. After that, translation converts the absolute parameters into relative ones.
Subsequently, fuzzyfication adds some variance to the consecutive VFIs. This is needed
due to non-deterministic behaviour introduced by previous glitches [27].

Last, the integration combines the settings generated by the fuzzyfication to a brute
force search and uses an evaluation to check if the multi VFI succeeded. Using the
µ-Glitch injection platform, the researchers were able to disable the TrustZone-M on the
NXP’s LPC55SXX and RT6XX MCs. A total of four VFIs are needed to deactivate the
“TrustZone-M”. The success rate for all four VFIs to work and disable the “TrustZone-M”
is about 0.0003%. One million attacks can be executed in half a day; based on the success
rate, one successful deactivation of the TrustZone-M takes about half a day [27].

This approach can even be transformed to work with non-cooperative setups. This means
that first, a cooperative setup is used to find the correct parameters for the VFIs; after
that, the found parameters can be applied to non-cooperative systems. This is possible
since the manufacture of the MCs provides an example code that should be used to
set up the TrustZone-M. Therefore, all MCs using the same Software Development Kit
(SDK) should follow the exact instructions to activate the “TrustZone-M”.

12

3.4. C-Function on RISC-V Vulnerability Analysis

3.4 C-Function on RISC-V Vulnerability Analysis
The work “An In-Depth Vulnerability Analysis of RISC-V Micro-Architecture Against
Fault Injection Attack” [7] from Zahra Kazemi and his team analyses C-Functions for their
vulnerabilities. The tested functions include atoi, itoa, memset, memcpy, strcpy, strncpy,
qsort and bsearch. Vulnerabilities are analysed by simulation- and experiment-based
fault injections. The experimental and simulation approaches are combined to improve
each other. This means that the first experimental fault injections are used to locate
vulnerable parts of a program. Afterwards, simulations use a fault model to understand
and identify the causes of the results found by the experimental fault injections. Lastly,
the simulation results are used to tweak the experimental-based fault injections [7].

The experimental setup consists of three main parts: an interface to the clock glitch
generator, the clock glitch generator, and an analyzer interface. A PC controls the whole
setup. At first, the clock glitches are placed at random clock cycles throughout the
trigger signal and the successful attempts are logged. The Figure 3.1 shows the first
experimental results. For this work, the most interesting is the strcpy function; one can
see that the clock glitches were able to get a success rate of around 32%. The paper
found that both strcpy and strncpy copied corrupted strings; strncpy, however, is less
vulnerable due to the additionally added length parameter [7].

Figure 3.1: First experimental-based fault injection results [7]

The results are further analysed with the simulator “RIPES”. In each run, the simulation
replaces a correct instruction with an altered one and observes the higher-level outcome.
The instruction-level fault effect models focus on faults that occur inside the instruction
decode stage of the pipeline. Results gathered from the simulations are shown in Figure 3.2.

13

3. Related work

The outcome is divided into multiple classes; these are Target meet: the fault injection
was successful, TimeOut: the execution did not end, PC out of bound: that the address
moved to an unauthorised area and lastly “Disruption of run time”: the execution time
is changed. The most interesting function for this work is again strcpy. Surprisingly, the
most Target meet occur on the initial execution cycles of the strcpy execution [7].

Figure 3.2: Simulation-based fault injection results [7]

In the last step, the leanings from the simulations are used to tweak the experimental
fault injections. The findings shown in Figure 3.3 demonstrate that the success rate for
strcpy and “strncpy” could be improved. strcpy shows the largest improvement of them
all; the success rate improves from 32% to 73%. This is accomplished by focusing the
clock glitch at the initial execution cycles (0-40) [7].

Figure 3.3: Tweaked experimental-based fault injection results [7]

14

CHAPTER 4
Implementation

This chapter will show all the steps of building the VFI setup. First, the selection of the
RISC-V MC and setup of the PoC are presented. After that, the development of the
FIB, the FPGA-Design and the Software-Design of the DuT are shown.

4.1 Chip Selection
First, a RISC-V MC is chosen. There are several points that the MC must fulfil to
be suitable. Besides being built up on the RISC-V architecture, the most important
two points are that the chip must be readily available and inexpensive. These points
should keep the overall cost down and allow easy reproducibility. Furthermore, the chip
shall be no older than 5 years, ideally available as a development board and supported
by a well-established Integrated Development Environment (IDE). Preferably, the chip
should be used by lots of products to make the found results more interesting for a
broad audience. Research showed that the majority of the current MC are ARM -based;
however, more and more RISC-V-based MCs are appearing on the market. The following
eight RISC-V-based chips are considered:

• Renesas R9A02G021: The chip from Renesas is a 32-bit ultra-low power RISC-V-
based MC that was released in 2023 and is available at large electronic resellers.
Single Integrated Circuit (IC)s cost around 2-3€, and development boards are
available at around 17€. Programming is done via Renesas own IDE called e2-
Studio [28].

• WinChipHead CH32V203: The CH32V203 is a 32-bit low power RISC-V MC.
Large electronic resellers don’t list the standalone IC. However, a development
board from Adafruit is available for around 5€. Programming is done via the
vendors IDE MounRiver Studio or the Embeetle IDE [29].

15

4. Implementation

• Sifive Freedom U740: The Freedom U740 is a much more powerful processor than
the others. It has Quad-core 64-bit with high-speed interfaces like 8-lane PCIe Gen
3. That, however, leads to a much higher price of around €290 for the HF105-
001 development board. Large electronic resellers do not sell standalone chips.
Therefore, this chip is too expensive for this study [30].

• GigaDevice GD32VW553: The GD32VW553 is a series of chips with a 32-bit
RISC-V architecture that has been released in 2023. Programming is done via
the nuclei toolchain. Unfortunately, these chips are also not listed as standalone
chips at electronics resellers; only development boards are listed, but even these
are unavailable to order [31].

• Espressif ESP32-C3: The ESP32-C3 contains a single core 32-Bit RISC-V core, Wi-
Fi and Bluetooth and is marketed for secure Internet of Things (IoT) applications.
The chip was first released at the end of 2021 and can be found in a wide range of
IoT development boards and home automation applications. Standalone chips can
be found at large electronic resellers for around 1-2€ and development boards for
8€. The programming is done via the Espressif IoT Development Framework (ESP-
IDF), which can be installed as an extension into Visual Studio Code. Furthermore,
Arduino Studio now also supports this chip. There is even research showing that
this chip (the variant with external flash) is susceptible to Side Channel attacks
and VFI attacks; more details on these attacks can be found in Section 3.2 [3, 32].

• Espressif ESP32-C6: The ESP32-C6 is similar to the ESP32-C3. However, it is
newer, with a release in 2023 and more wireless capabilities like Zigbee, Thread
and WiFi-6. It also contains a 4-stage RISC-V pipeline and is readily available for
around €2 for standalone chips and €8 for development boards. The programming
is the same as with the ESP32-C3, and this chip is also shown to be susceptible
(the variant with external flash) to Side Channel attacks and VFI attacks [3, 33].

• Espressif ESP32-P4 and ESP32-C5: These two chips are the newest Espressif
RISC-V-based MC containing the newest (security) features; however, these two
are not readily available or available at all at the time of writing. Large electronic
resellers like Mouser Electronics, DigiKey or RS Components do not list these chips
yet. Only pages like AliExpress list them. However, the authenticity of the listings
can not be checked. Therefore, these two chips are not suited for this study [34, 35].

After deliberately comparing these eight MCs, the selection narrows down to the ESP32-
C3 and ESP32-C6. Both are inexpensive, easy to get and can already be found in many
(IoT) products. Furthermore, the versions with external flash are known to be susceptible
to VFI attacks [3]. Since the ESP32-C6 is newer than the ESP32-C3, the ESP32-C6 is
chosen. The variant having internal flash is picked to see if it is also susceptible to VFI
and, if so, whether data can be extracted by causing memory access violations.

16

4.2. Proof of Concept

4.2 Proof of Concept
After narrowing down the chip selection to the ESP32-C6, ESP32-C6 development boards
are used to test VFI with the help of a CW1173 ChipWhisperer-Lite [36]. The chosen
development board is the ESP32-C6-DevKitM-1 created by Espressif.

The ESP32-C6 silicon is under a metal can that shields the chip from interference. To
get to the ESP32-C6, the can must first be removed using hot air. After that, unneeded
filter capacitors are removed, and a suitable power rail is selected. Furthermore, an
SMA connector is added to allow easy connection to the ChipWhisperer-Lite. Figure 4.1
shows the power scheme of the ESP32-C6. There are multiple power rails, these are
VDD_PST1, VDD_PST2, VDDA1, VDDA2 and VDD_SPI. VDD_PST1 is used to
power low-power digital and part of analog pins. The voltage VDDA1 and VDDA2
power the analog power domain. The VDD_SPI is a backup power rail for the variant
with internal flash; the other variant uses VDD_SPI for the external flash. VDD_PST2
supplies the digital high-power domain. Based on this information, the power rails
VDD_PST1 and VDD_PST2 look the most promising for VFIs; the detailed testing
can be found in Section 5.

Figure 4.1: ESP32-C6 Power Scheme [33]

Applying all these steps to the development board leads to an experimental PoC setup
shown in figure 4.2. The wire on the bottom is the connection to the ChipWhisperer-Lite
used for VFI. The one on the top right is later used to test supplying a clock with a
FPGA instead of the crystal. A simple test program is written to prove whether the VFI
setup works. An integer is incremented inside a for-loop. The for-loop is inside a loop
that compares the counter’s value at the end of the for-loop with a fixed value. If a VFI
caused a fault during one of the increment or branch instructions, the code will break
the outer loop and print the result of the counter. The VFI is triggered manually via the

17

4. Implementation

Jupyter notebook interface of the ChipWhisperer-Lite. After triggering the VFI multiple
times, a successful fault could be injected, and the test program printed the influenced
counter.

Figure 4.2: ESP32-C6 Development board PoC for VFI

It showed that for an error to occur, the glitch generated had to have an extended
duration and had a long settling time (≈13.5 us) to get back to a stable 3.3 Volt. During
the settling phase, a lot of ripple with voltage spikes up to 10 volts can be seen. This
is shown in the Figure 4.3. This behaviour has several reasons. One being long wires
from the crowbar circuit to the ESP32-C6. Furthermore, all power rails are powered by
the same voltage regulator. Therefore, all rails are (more or less) affected by the VFI. A
couple of decoupling capacitors for the other voltage rails are still on the development
board. Finally, the voltage supply is directly connected to GND via the crowbar circuit
without a current-limiting resistor.

After verifying that VFI generally works on the ESP32-C6 with integrated flash, the
next step was to test whether a FPGA can take the role of the external crystal to supply
the clock reference. This will later be used to time the VFI and to try underclocking or
overclocking the ESP32-C6. From Kévin Courdesses’s article [26] about Side-Channel
attacks, it’s known that a clock signal generated by a FPGA(Lattice ICE5LP1K) needs
capacitive coupling to work with a ESP32-C6. Based on this information, the crystal is
removed with hot air and replaced with a small wire to connect a FPGA, in this case, the
Gowin’s GW1NR-9 on a Sipeed development board Tang Nano 9k [37]. This FPGA was
chosen due to its low cost compared to other FPGA brands, and it’s known to be sufficient

18

4.2. Proof of Concept

to control single VFI, as can be seen in the different work of Kévin Courdesses [3]. Due
to using an FPGA connected via long wires instead of a close crystal supplying the 40
MHz clock signal, the system is susceptible to movement and interferences. Therefore, a
custom FIB design is needed.

0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

Glitch

time [ns]

vo
lta

ge
[V

]

Figure 4.3: ESP32-C6 Successful VFI measured with an Oscilloscope

19

4. Implementation

4.3 Fault Injection Board
Information from the first PoC and previous research is used to create a custom FIB. The
schematic and Printed Circuit Board (PCB) were designed with Autodesk Fusion 360.
To reduce the number of board iterations and to keep the cost down, the board schematic
combines the designs of several PCBs that are known to work and extends them with
additional features. The design will use a crowbar circuit instead of a waveform generator
like proposed in the work [13]. The reason is that the cost should be minimal, and a
crowbar circuit costs a couple of cents, whereas a basic waveform generator, like the one
used in the paper [13], costs at least 50€. Furthermore, the goal is to create a setup
that contains all components on one PCB. This reduces wires, e.g. between the FIB and
waveform generator and, therefore, additional sources for varying results.

The final schematic is split up into multiple parts; the central part is the ESP32-C6
itself and a USB to Universal Asynchronous Receiver Transmitter (UART) Bridge with a
USB-C interface to program and reboot the MC as needed. This functionality is given by
the development board used in the PoC. Therefore, the schematic uses this circuit as a
reference implementation. The schematics and hardware design guidelines are published
by Espressif [38, 39].

The next part is the voltage supply of the ESP32-C6 ; this is different compared to the
development board used for the PoC, the FIB uses two separate voltage regulators. One
provides a stable 3.3 Volt to the USB to UART Bridge and the stable power rails of the
ESP32-C6. The second voltage regulator is connected via a small resistor to a MOSFET,
building a crowbar circuit. The two voltage supplies are connected to the ESP32-C6
power rails via jumpers, allowing later rerouting. The voltage supply and crowbar circuit
are based on the design found on the FIB designed by Kévin Courdesses [3]. To allow
testing at different temperatures, a heating resistor, temperature sensor and control
circuit are placed on the backside of the PCB behind the ESP32-C6. Furthermore, the
XTAL-Pin of the ESP32-C6 is connected via resistor and capacitor to a FPGA-PIN.
This allows the FPGA to supply a clock signal to the ESP32-C6. The temperature and
external clock supply are based on the circuit of a side-channel attack board for the
ESP32-C6 [26].

The FIB should also work with external crowbar circuits like the one on the Chipwisperer
used in the PoC. Therefore, two SMA connectors are added to the PCB. One is directly
connected to the fault injection power supply after the onboard crowbar circuit. The
second one is connected to an onboard header, which will be attached as needed later.
Furthermore, a crystal and a small Surface-Mount Device (SMD) switch are placed near
the ESP32-C6. The switch is used to switch between the crystal supplying the clock
signal and the FPGA. Last but not least, headers are added to allow direct connection of
the FPGA development board (Sipeed Tang Nano 9k) to the FIB. This is done primarily
to keep the distance between the supplied 40 MHz clock signal and the ESP32-C6 as
small as possible. The PCB is built up on a two-layer design; free planes on both sides
are filled with GND-Planes and are connected to each other by a VIA grid to keep the

20

4.3. Fault Injection Board

GND potential as constant as possible. Furthermore, both layers use a GND plane to
reduce the capacitance compared to having a GND and VCC plane. The FIB schematic
is shown in 4.4.

Figure 4.4: Schematic of the FIB

21

4. Implementation

A 3D rendering of the FIB with the FPGA development board is shown in Figure 4.5. On
the left side, both boards are separated, and on the right side, the FPGA development
board is connected to the FIB. The General Purpose Input/Output (GPIO) pins of
the FPGA are connected to the ESP32-C6 reset, trigger and UART pins via jumper
cables. The 3D model of the Tang Nano 9k can be found online on the manufacturer’s
homepage [37]. 3D models for most other PCB components are from the Mouser
Component Search Engine [40]. Missing 3D models were modeled with Autodesk Fusion
360.

Figure 4.5: 3D Model of the FIB and FPGA development board

22

4.3. Fault Injection Board

Soldering the PCB is done with a miniature heat plate and hot air station. To make
soldering more straightforward, a low-temperature solder paste is used. However, the
melting point of around 138°C limits the maximum temperature for temperature tests.
The annotated soldered FIB is shown in Figure 4.6. The cost for two fault injection
boards (excluding the FPGA development board) results in ≈€130. This means one
board costs around €65 (this would increase by at least 50€ when using a waveform
generator instead of a crowbar circuit). The FPGA development board Sipeed Tang Nano
9K can be found for ≈€20. This results in ≈€85 for a fully working FIB, including a
FPGA. The advantage of the modular design is that a single FPGA development board
can be used for multiple FIBs. This is useful to keep the cost down when comparing
multiple ESP32-C6 to each other or having a faulty FIB. A small reflow heat plate, hot
air station and soldering iron needed for assembly can be bought for ≈€120.

ESP32-C6

USB to UART

Clock Selector

Linear RegulatorsCrowbar Circuit

Voltage Selector

CW Interface

Heater & Temperature Sensor

Temperature Control

ESP GPIO

Reset & Boot

Heater MOSFET

Figure 4.6: Soldered FIB

23

4. Implementation

4.4 FPGA Design
The FPGA has multiple roles; one is timing and triggering the VFIs by activating
the crowbar circuit. The other tasks are to provide a clock signal to the ESP32-C6
and to restart the ESP32-C6 if needed. The overall execution control of these tasks
is taken over by a softcore CPU on the FPGA, in this case also a RISC-V CPU.
The VFIs are triggered and timed by the Fault-Injection-Unit (FIU) described by a
Hardware Description Language (HDL). The softcore CPU can communicate with the
FIU by reading and writing to registers. The whole FPGA design is created with the
LiteX framework [41]. This framework allows building System-on-a-Chips (SoCs) by
combining custom components written in HDLs like Migen, Verilog or VDL with supplied
components. These supplied components are optimised and known to work, e.g. softcore
CPUs, UART interfaces, LiteDRAM and more. The soft-core CPU is programmed in C.
The LiTeX Repository on GitHub provides a template for the C-Program running on the
softcore CPU and a template for the used FPGA development board Sipeed Tang Nano
9k [42, 43]. These are altered and extended to get the desired SoC. Figure 4.7 shows
the simplified architecture of the SoC and how the components communicate with each
other. The softcore CPU uses the 32-bit wishbone bus to communicate with memory
and a Configuration and Status Registers (CSR) bus to communicate with the other
periphery. The CSR is connected to the CPU via a wishbone to CSR Bridge. The FIU
and the clock signal unit are also controlled via the CSR bus.

VEXRISCV
CPU

ROM

SRAM

UART2IO

Fault Injection Unit

Clock Signal UART

Software
InterfaceOffset Timer

Glitch Timer

FSM
CordinatorIO

Wishbone 32-bit Bus

MAIN-RAM

FLASH

CSR

Wishbone to
CSR Bridge

Timer

Figure 4.7: FPGA SoC Architecture

24

4.4. FPGA Design

A clock reset generator is needed to time the fault injections and provide the clock
signal to the ESP32-C6 and the SoC itself. The clock reset generator takes the 27 MHz
signal of the crystal on the FPGA development board as a reference. First, a 160 MHz
clock is generated with a PLL. After that, clock dividers break down the clock into
lower frequencies. These are 80, 40 and 20 MHz. The 80 MHz signal is used to time
the VFI. The 40 MHz clock is used as SoC system clock and as a clock signal for the
ESP32-C6. Alternatively, the 20 MHz signal can be used to downclock the ESP32-C6.
The “AsyncResetSynchronizer” of LiTeX is used to reset all the derived clocks when a
system reset is executed. At first, the 160 MHz should have been used as a base for the
FIU timers. However, the FPGA design was not able to synthesise this without timing
violations, especially when implementing a FIU that can time multiple VFIs. The clock
reset generator is shown in Figure 4.8.

PPL

160Mhz

CLKDIV

40Mhz

CLKDIV

80Mhz

CLKDIV

20Mhz

AsyncReset
Synchronizer

AsyncReset
Synchronizer

AsyncReset
Synchronizer

27 MHz
Crystal

Clock reset generator

Figure 4.8: Clock reset generator

The control flow of VFIs, reset of the ESP32-C6 and evaluation of the results is controlled
by four state machines. One runs in the C-program and can be quickly adopted and
flashed onto the FPGA development board. The other controls the overall FIU, and the
third one exists two times, once in each timer. One timer is used to time the offsets
from the external trigger or the previous VFI. The other timer times the duration of
the Crowbar Activation Time (CAT). The FIU allows to specify a maximum of three
successive VFI, each can have an individual offset and a CAT. The steps of the timers are
based on the 80 MHz signal and can consequently be set in 12.5 ns increments. Initially,

25

4. Implementation

the 160 MHz signal should have been used to get the same step size as the ESP32-C6 at
maximum speed; however, as already mentioned, the FPGA did not synthesise without
timing violations.

Figure 4.9 shows the final software architecture. On the top, the finite state machine
(FSM) running on the softcore takes the task of configuring the FIU, selecting 20 MHz
or 40 MHz clock signal, setting the number of VFIs as well as setting the offset and CAT
of each VFI. After that, the FSM on the softcore resets the ESP32-C6 and waits for a
predefined time before enabling the FIU. This is needed since the trigger signal of the
ESP32-C6 is toggling during boot and would consequently trigger the FIU early. The
last two tasks of the C-program are to read the results from the ESP32-C6 and calculate
the new offset and CAT combination. After that, the process starts from the beginning,
which is repeated until all offset and CAT combinations are tested.

The FSM in the centre of the Figure 4.9 is controlling the FIU based on the signals
received from the softcore CPU via the CSR bus. It takes the number of VFI and
timing parameters and updates the local parameter set. When the software interface
activates the FIU, the local parameter set is loaded into the timers and the timers are
activated. When the FIU is active, changes to the local parameter set are blocked. The
combinational logic of the FIU communicates with signals from GPIO pins (trigger of the
ESP32-C6 and crowbar activation trigger) and the digital signals from the two timers.

The last two FSMs are placed in the timers. At first, the timers initialise the local timer
parameter sets with the parameters given by the FIU. This is done in multiple steps
to avoid timing violations during design synthesis. When enabled, the offset timer will
start counting as soon as the trigger signal of the ESP32-C6 gets pulled high. The CAT
timer begins after the offset timer is done. If multiple VFIs are enabled, the timers will
automatically load the next offset and CAT parameters. Initially, the “WaitTimer” [44]
provided by LiteX should have been used; however, this one does not allow reconfiguration
during runtime. Therefore, the “WaitTimer” was taken as a skeleton and extended to fit
the needs of the FIU.

26

4.4. FPGA Design

enable FIU updateIdle

!update

Update
Paramter

Timer updated

Update
Timer

!enable FIU

Lock
Paramter

enable Idle

!enable

Enable Initialize

init

Initialize
...

!init

Initialize 5

5
Steps

Combinational
Logic

C-Program on Soft Core CPU

Fault Injection Unit - FSM Timer - FSM

start via CLI Idle

FI completed

Config-
FIU

Check
Feedback

all done

new parameters

Calc next
Paramters

wait for FB

FB
checked

CSR-BUS

Figure 4.9: FIU State machines

27

4. Implementation

4.5 Software Design
The ESP32-C6 is programmed with the ESP-IDF version 5.3.1. To avoid unwanted side
effects and code changes, the compiler optimisation is set to “Debug without optimisation
(-O0)”, and the bootloader optimisation is left at “Size”. Furthermore, the log output
on the UART interface is minimised to reduce the boot time of the ESP32-C6. It is
essential to mention that the SDK configuration editor of ESP-IDF provides hundreds
of different settings ranging from power saving to security features like secure boot to
memory protections and more. Changing settings can affect the outcome of the VFI
even if the targeted code stays the same. For this thesis, it is out of scope to test all the
different combinations. The DuT uses the UART0 interface for programming. Hence, a
second UART interface is used to send results back to the FPGA. Besides that, GPIO
pin two is used as a signalling pin to the fault injection unit of the FPGA.

The function to be tested is the strcpy function; to see the internal working of this
function, the boot Read Only Memory (ROM) of the ESP32-c6 must be analysed. The
Executable and Linking Format (ELF) file of the ESP32-C6 can be found on the GitHub
repository “esp-rom-elfs ” [45] from Espressif. The ELF file is analysed with Ghidra, and
the code of strcpy is shown in Algorithm 4.1. Variables have been renamed to make the
code easier to read. The function arguments show that no length argument is provided
to the strcpy function. Only two pointers, one of the two points to the destination string
and one to the source string. C assumes Null-terminated strings. Therefore, the length
of the string that should be copied is determined by the NULL-character at the end of
the source string.

The strcpy function has two ways to copy the string: copying four bytes at once and
copying the string byte by byte. The four-byte version is an optimisation to reduce the
time needed to copy the string. However, copying four bytes at once is only possible if
the source and destination addresses are four-byte aligned. This is checked in line 13 of
the code. If the two addresses are four-byte aligned, the code from Line 14 to line 28 is
executed. Line 14 to 16 is the for-loop statement; this loop will increase the pointer of
the source string by four bytes until there is a NULL-Character in one of the following
four bytes. When there is a NULL character, lines 20 to 28 copy the last characters to
the destination. The Lines 31 to 39 are only executed if the source and destination are
not four-byte aligned. These use a while-loop to copy the string byte by byte until the
NULL-character is found in the source string. When done, the function returns a pointer
to the destination.

28

4.5. Software Design

Algorithm 4.1: strcpy function extracted from the ESP32-C6 ELF boot ROM
with Ghidra [45]
1 char * strcpy(char *__dest,char *__src)
2
3 {
4 uint NextSource4Byte;
5 uint *NextDestination4BytePointer;
6 char *nextDestinationPointer;
7 char nextSource1Byte;
8 char secondChar;
9 char thirdChar;

10
11 NextDestination4BytePointer = (uint *)__dest;
12 nextDestinationPointer = __dest;
13 if ((((uint)__dest | (uint)__src) & 3) == 0) {
14 for (; NextSource4Byte = *(uint *)__src,
15 ((NextSource4Byte & 0x7f7f7f7f) + 0x7f7f7f7f | NextSource4Byte | 0x7f7f7f7f) == 0xffffffff;
16 __src = (char *)((int)__src + 4)) {
17 *NextDestination4BytePointer = NextSource4Byte;
18 NextDestination4BytePointer = NextDestination4BytePointer + 1;
19 }
20 nextSource1Byte = *__src;
21 secondChar = *(char *)((int)__src + 1);
22 thirdChar = *(char *)((int)__src + 2);
23 *(char *)NextDestination4BytePointer = nextSource1Byte;
24 if (((nextSource1Byte != ’\0’) &&
25 (*(char *)((int)NextDestination4BytePointer + 1) = secondChar, secondChar != ’\0’)) &&
26 (*(char *)((int)NextDestination4BytePointer + 2) = thirdChar, thirdChar != ’\0’)) {
27 *(char *)((int)NextDestination4BytePointer + 3) = ’\0’;
28 return __dest;
29 }
30 }
31 else {
32 do {
33 nextSource1Byte = *__src;
34 __src = __src + 1;
35 *nextDestinationPointer = nextSource1Byte;
36 nextDestinationPointer = nextDestinationPointer + 1;
37 } while (nextSource1Byte != ’\0’);
38 }
39 return __dest;
40 }

First, assuming the two strings are four-byte aligned

The “for” loop from lines 14-16 can be a target for VFI. One way would be to change the
outcome of the “beq” branch instruction used to check if there is a NULL-character in one
of the next four bytes. This attack would only cause a memory leak if all four byte char
sets up to the char set including the NULL-character have been copied. Assuming this is
the case, one could continue to copy bytes until the next NULL-character is encountered.
Another option is to inject a fault when the pointer is incremented in line 16. This line
translates to an add intermediate RISC-V instruction “c.addi __src ,0x4”. A VFI
may cause the add intermediate to add more than “0x4”; this way, one may jump to
another location and copy from there until a NULL-character is found. It might even be
possible to cause a subtraction and copy data from a previous memory location. Lines
20 to 28 copy the last bytes (up to three); hence, a VFI targeting this code segment is
not interesting.

29

4. Implementation

Second, assuming the two strings are not four-byte aligned
If the source and destination are not four-byte aligned, then the code in lines 33 to 39 is
executed. There again are two options; one is to use VFI to change the outcome of the
“beq” branch instruction in line 37 that checks if the next char is the NULL-Character.
The VFI would only cause a memory leak if the fault is injected when the branch
instruction compares the NULL-Character. Otherwise, one might stop coping early.
The second option is to cause a fault when increasing the pointer in line 36. Adding or
subtracting more than one can cause jumps to other memory locations.

Time Stamp to the FPGA
Targeting exactly one specific instruction is quite tricky for multiple reasons. One is that
internal PLL makes standard VFI on the clock line ineffective, and counting the already
executed instructions is also problematic. Research shows that faults can be injected into
MC using PLL by overclocking the system for a limited time [14]. However, this is out
of the scope of this work. When the ESP32-C6 is restarted via the reset pin, the time
until the first instruction is executed varies slightly; this makes using the reset as a start
time stamp unpractical. Another option is to use the activation of the clock signal as a
time stamp. However, the PLL inside the ESP32-C6 has a settling time, also known as
lock time, needed to adapt to change at the input, making this not a valid time stamp.
Hence, the signaling pin from ESP32-C6 will provide a time stamp to the FPGA. This is
the starting point for a VFI sweep from the first to last clock cycle of the strcpy function.
More details on how this sweep works are shown in the section FPGA Design.

4.5.1 Target Program
The program running on the ESP32-C6 can be split into three sections; one is defining
the source and destination string. The second executes strcpy and signals the start and
end of the execution to the FPGA. The last section returns the results to the FPGA. The
program is shown in Algorithm 4.2. There are three different source memory locations to
compare: the data segment, stack and heap. Each storage location is tested individually
by changing the source string in line 8. The destination string is always placed on the
stack. Line 8 shows the format of the source string; the strcpy function copies starting at
an offset of 270, which leads to an expected output of “{No effect!}{No effect!}”. The
strings before and after the expected output are used to check if a VFI caused a memory
leak before or after the expected string.

30

4.5. Software Design

Algorithm 4.2: Program running on the ESP32-C6
1 // Before init UART interfaces and GPIO Pins
2 // Start sequence
3 uart_write_bytes(UART_CHANNEL, (const char*)"<|START", strlen("<|START"));
4
5 char destination[400];
6 memset(destination, 0, sizeof(destination));
7 //Source string location, changes based on used storage location
8 char* source ="{OneBefore1}{OneBefore1}\0{TwoBefore2}{TwoBefore2}\0{ThreeBefore3}{ThreeBefore3

}\0{FourBefore4}{FourBefore4}\0{FiveBefore5}{FiveBefore5}\0{SixBefore6}{SixBefore6}\0{
SevenBefore7}{SevenBefore7}\0{EightBefore8}{EightBefore8}\0{NineBefore9}{NineBefore9}\0{
TenBefore10}{TenBefore10}\0{No effect!}{No effect!}\0{OneLater1}{OneLater1}\0{TwoLater2}{
TwoLater2}\0{ThreeLater3}{ThreeLater3}\0{FourLater4}{FourLater4}\0{FiveLater5}{FiveLater5}\0{
SixLater6}{SixLater6}\0{SevenLater7}{SevenLater7}\0{EightLater8}{EightLater8}\0{NineLater9}{
NineLater9}\0{TenLater10}{TenLater10}\0";

9
10 //Trigger signal to the fpga and execute strcpy
11 gpio_set_level(GPIO2, 1);
12 strcpy(destination, source+270);
13 gpio_set_level(GPIO2, 0);
14
15 // Output results
16 usleep(5);
17 uart_write_bytes(UART_CHANNEL, (const char*)"[", strlen("["));
18 uart_write_bytes(UART_CHANNEL, (const char*)destination, strlen(destination));
19 uart_write_bytes(UART_CHANNEL, (const char*)"]", strlen("]"));
20 uart_write_bytes(UART_CHANNEL, (const char*)"END|>", strlen("END|>"));
21

Data Segment
The first option is to place the source string on the data segment displayed in Algorithm 4.3.
As the section Evaluation will show, this, compared to the other two options, is the
easiest way to get VFI to cause memory leaks. The resulting assembler code is shown in
Algorithm 4.4.

Algorithm 4.3: C-Code of strcpy with the source string placed in the data
segment.
1 char* source= "String\0";
2 char* destination[100];
3 strcpy(destination,source);
4

Analyzing the assembler code, one can see that the source and destination string addresses
are first prepared and loaded into the function parameter register; after that, the return
address is set, and the actual strcpy function is called.

31

4. Implementation

Algorithm 4.4: Assembler-Code of strcpy with the source string placed in the
data segment.
1 //char* source="String\0";
2 lui a5,0x42021
3 add a5,a5,-776
4 sw a5,-20(s0)
5 //char* destination[100];
6 //strcpy(destination,source);
7 add a5,s0,-420
8 lw a1,-20(s0)
9 mv a0,a5

10 auipc ra,0xfdff2
11 jalr 1124(ra) # 400004b8 <strcpy>
12

Stack
In the Algorithm 4.5, the source string is placed on the stack. When comparing the
assembler code of the stack version in Algorithm 4.6 to the data segment above, one
can see that setting up the source string takes more steps. First, the address for the
source is calculated, and then the initial value of the string is loaded from the ROM via
the function memset. After that, the addresses of the source and destination strings are
loaded into the function parameter register, the return address is set, and strcpy is called.

Algorithm 4.5: C-Code of strcpy with the source string placed on the stack.
1 char source[100]="String\0";
2 char* destination[100];
3 strcpy(destination,source);

Algorithm 4.6: Assembler-Code of strcpy with the source string placed on the
stack.
1 //char source[100]="String\0";
2 lui a5,0x69727
3 add a5,a5,1107
4 sw a5,-116(s0)
5 lui a5,0x6
6 add a5,a5,1902
7 sw a5,-112(s0)
8 add a5,s0,-108
9 li a4,92

10 mv a2,a4
11 li a1,0
12 mv a0,a5
13 auipc ra,0xfdff2
14 jalr 1092(ra) # 400004a8 <memset>
15 //char* destination[100];
16 //strcpy(destination,source);
17 add a4,s0,-116
18 add a5,s0,-516
19 mv a1,a4
20 mv a0,a5
21 auipc ra,0xfdff2
22 jalr 1088(ra) # 400004b8 <strcpy>
23
24

32

4.5. Software Design

Heap
The version using the heap as storage location is shown in the Algorithms 4.7 and 4.8.
Two function calls are needed when using the heap, including preparation of the function
argument registers and setting the return address. The first function call allocates the
memory with malloc, and after that, memcpy copies the string into the allocated space.
The call of strcpy is the same when using the data segment as storage location.

Algorithm 4.7: C-Code of strcpy with the source string placed on the heap.
char* source = (char*)malloc(100);
memcpy(string,"Heap\0",5);
char* destination[100];
strcpy(destination,source);

Algorithm 4.8: Assembler-Code of strcpy with the source string placed on the
heap.
1 //char* source =(char *)malloc(100);
2 li a0,100
3 auipc ra,0xfe802
4 jalr -224(ra) # 4080ff62 <malloc>
5 mv a5,a0
6 sw a5,-20(s0)
7 //memcpy(source,"String\0",7);
8 li a2,7
9 lui a5,0x42021

10 add a1,a5,-776
11 lw a0,-20(s0)
12 auipc ra,0xfdff2
13 jalr 1102(ra) # 400004ac <memcpy>
14 //char* destination[100];
15 //strcpy(destination,source);
16 add a5,s0,-420
17 lw a1,-20(s0)
18 mv a0,a5
19 auipc ra,0xfdff2
20 jalr 1096(ra) # 400004b8 <strcpy>

33

CHAPTER 5
Evaluation

The following Evaluation & Discussion will answer the subsequent questions.

• How do the storage locations influence the likelihood of memory leaks, and what is
the most vulnerable storage location?

• Do the VFI sweeps and leaked strings allow conclusions about the affected instruc-
tion?

• Does temperature affect the success rate of memory leaks? If so, can the best
temperature range be extracted?

• Are multiple VFIs possible, and if so, what are the results compared to a single
voltage fault VFI?

• Can the developed FIB reduce oscillations and settling time compared to the PoC
with the Chipwhisperer-Lite?

This chapter shows the results gathered by conducting VFI sweeps from the first to last
clock cycle of the strcpy function. Each offset (from the ESP32-C6 trigger signal) and
CAT combination is tested a hundred times to get a rough percentage of the success rate.
Low success rates, e.g. ≈1%, might be statistical outliers and be way lower in reality.
The number of offsets tested depends on the time the strcpy function needs to execute.
The CAT starts at 12.5 ns, increasing to 50ns with 12,5 ns increments. The CAT is the
time the crowbar circuit is activated; the actual glitch duration will differ a bit. For the
voltage rails, three different combinations are tested, PST1, PST2 and PST1 and PST2.
Furthermore, each VFI sweep is conducted once with a standard 40 MHz clock signal
and once with a clocked-down 20 MHz clock signal. The internal PLL multiplier of the
ESP32-C6 is left at the default “x4” mode. This results in an internal clock of 160 and 80

35

5. Evaluation

MHz, respectively. When using the 20 MHz clocked down signal, the UART frequency of
the ESP32-C6 has to be set to double to correct for the slower clock; otherwise, the data
will not be readable. All tests that don’t state otherwise are done without temperature
control. The evaluation and plotting of the results are done with a Python script.

36

5.1. Single Fault Injections

5.1 Single Fault Injections
This section shows the result from single fault injections on the ESP32-C6 targeting the
function strcpy.

5.1.1 Data Segment
The first storage location tested is the data segment. Figure 5.1 shows all VFI sweeps.
The x-axis shows the offset from the trigger signal sent by the ESP32-C6 and the y-axis
the CAT. There are six subplots; each represents a distinct power rail and clock signal
combination. The outcomes of the VFIs are divided into five categories. No Effect (NE)
means the expected string (“{No effect!}{No effect!}”) is returned. Reboot or Restart
(RoS) means the ESP32-C6 rebooted or is stuck without any output. Memory Leak
Before (MLB) means the returned string can be associated with a memory location before
the expected string, e.g. a string containing the phrase “Before”. Memory Leak Later
(MLL) is the same as MLB, but the returned string can be associated with a memory
location after the expected string, e.g. a string containing the phrase “Later”. System
influenced (Si) means that a string distinct from the default one is received. MLL and
MLB also classify as Si but not necessarily the other way around, e.g. this is the case
for the returned string “???VffV7B"??Vfect!}”. This string can not be associated with a
memory location. Considering that each offset and CAT combination is tested a hundred
times, a combination can be associated with multiple categories.

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

No Effect Rebooted or Stuck System influcened Memory Leak Later Memory Leak Before

Offset in Ticks (80 MHz/ 12.5 ns per Tick)

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

VFI sweeps, power rail PST1, clock signal 20 MHz, PLL at x4 mode.

VFI sweeps, power rail PST2, clock signal 20 MHz, PLL at x4 mode.

VFI sweeps, power rail PST1-PST2, clock signal 20 MHz, PLL at x4 mode.

VFI sweeps, power rail PST1, clock signal 40 MHz, PLL at x4 mode.

VFI sweeps, power rail PST2, clock signal 40 MHz, PLL at x4 mode.

VFI sweeps, power rail PST1-PST2, clock signal 40 MHz, PLL at x4 mode.

Figure 5.1: Data Segment VFI Sweeps overview

37

5. Evaluation

Comparing the different VFI sweeps, one can see that the most assuring power rail and
clock signal combinations are the voltage rail PST2 with a 20 MHz or 40 MHz clock
signal or voltage rail PST1 and PST2 with a 20 MHz clock signal. Both MLLs and
MLBs can be triggered for these combinations. This is also evident when comparing the
statistics illustrated in Figure 5.2. The highest absolute number and relative percentage
(compared to the number of total VFI attempts) of memory leaks (19010/≈4.32% MLL
and 220/≈0.05% MLB) is achieved by using the power rail PST2 at 20 MHz clock. For
instance, at an offset of 472 ticks and a CAT of 50 ns, the returned string is:

{No effect!}{No ef{TenBefore10}

Category Count %
Total 440360 -
NE: 327015 ≈74.26
RoS: 111628 ≈25.35
Si: 1717 ≈0.39
MLB: 0 ≈0.0
MLL 0 ≈0.0

PST1 | 20MHz

Category Count %
Total 227048 -
NE: 87929 ≈38.73
RoS: 123290 ≈54.3
Si: 15829 ≈6.97
MLB: 0 ≈0.0
MLL 0 ≈0.0

PST1 | 40MHz

Category Count %
Total 440360 -
NE: 191543 ≈43.5
RoS: 129947 ≈29.51
Si: 118870 ≈26.99
MLB: 220 ≈0.05
MLL 19010 ≈4.32

PST2 | 20MHz

Category Count %
Total 227048 -
NE: 56873 ≈25.05
RoS: 89414 ≈39.38
Si: 80761 ≈35.57
MLB: 20 ≈0.01
MLL 6500 ≈2.86

PST2 | 40MHz

Category Count %
Total 440360 -
NE: 172447 ≈39.16
RoS: 185226 ≈42.06
Si: 82687 ≈18.78
MLB: 1 ≈0.0
MLL 17254 ≈3.92

PST1-PST2 | 20MHz

Category Count %
Total 227048 -
NE: 56748 ≈24.99
RoS: 169263 ≈74.55
Si: 1037 ≈0.46
MLB: 0 ≈0.0
MLL 11 ≈0.0

PST1-PST2 | 40MHz

Figure 5.2: VFI sweep results when targeting the Data segment

38

5.1. Single Fault Injections

The VFI sweeps in Figure 5.1 show the outcomes at distinct power rail and clock signal
combinations, yet not how likely the outcomes are to be obtained. To solve this, heatmaps
are used to show the calculated success rates. The axis of the heatmap remains the same
and depicts the offset from the trigger signal on the x-axis and the CAT on the y-axis.
Each subplot represents a distinct VFI outcome category. On the left side, the legend
shows which success rate in % is associated with which colour.

The heatmap in Figure 5.4 shows the success rates for the power rail PST2 at a 20 MHz
clock signal. Analyzing the MLB subplot, one can see that the maximum likelihood to
cause a MLB is around 100%. Comparing this to the heatmap in Figure 5.5 for voltage
rail PST1 and PST2 with a 20 MHz clock, here the likelihood for a MLB is only 1%.
The probability for a MLB using power rail PST2 with a 40 MHz clock signal is between
the two options with ≈16%. All other combinations showed no MLB.

The offset for most MLBs are located at the centre of the execution time of the strcpy
function. Since the pointer must have been decremented, it’s most likely that the VFI
caused an error at the incrementation of the pointer. Power rail PST2 with 20 MHz
or 40 MHz also have a MLB near the end of the execution time, yet the pointer must
have decremented; therefore, most likely, the incrementation of the pointer got glitched.
However, the used VFI sweep technique does not provide enough information to determine
the exact instruction of the strcpy function that caused the leak.

MLLs can be achieved with all power rail combinations, apart from using only power
rail PST1. MLL with ≈100% likelihod can be achieved with power rail PST2 using a 20
MHz or 40 MHz clock signal and PST1 and PST2 using 20 MHz clock signal. Using
power rails PST1 and PST2 with a 40 MHz clock signal only showed a maximum success
rate of ≈10%. The majority of MLLs have an offset that is near the end of the execution
time of the strcpy function; therefore, at first glance, it seems likely that the beq branch
instruction used to check for the NULL-Character got glitched. Yet this would lead
to the word “Later1” to be leaked, and evaluating the leaked words in 5.3 shows that
“Later2” is leaked most of the time. Consequently, most likely, the increment instruction
got glitched. Furthermore, power rail PST1 and PST2 with a 20 MHz clock signal show
MLLs near the start of the strcpy execution. For these, it might be possible that the
VFI caused a glitch before the jump to the actual strcpy function via “jalr xxxx(ra)
#400004b8 <strcpy>”. MLL that occurred halfway through the execution time are most
likely caused by glitching the incrementation of the pointer.

39

5. Evaluation

Assessing the leaked worlds in Figure 5.3 shows that power rail PST2 with a 40 MHz
clock signal provides the highest number of diverse memory leaks. When comparing the
absolute number of times a phrase leaked, one must remember that if using the slowed
down clock signal of 20 MHz, more offset combinations are tested due to the longer
execution times. E.g. analyzing the results of power rail PST2, the word “Later1” at 40
MHz is leaked around 80 times less than at 20MHz. This shows “Later1” is harder to
leak at 40 MHz, even considering the slowed-down clock signal.

Not shown heatmaps for the other power rails and frequencies can be found in the
appendix.

Word Count
None –

PST1 | 20MHz

Word Count
None –

PST1 | 40MHz

Word Count
Before10 220
Later1 1295
Later2 17715

PST2 | 20MHz

Word Count
Before10 19
Before6 1
Later1 9
Later2 6466
Later3 25

PST2 | 40MHz

Word Count
Before10 1
Later1 712
Later2 15791
Later3 751

PST1-PST2 | 20MHz

Word Count
Later2 11

PST1-PST2 | 40MHz

Figure 5.3: Leaked words from the data segment

40

5.1. Single Fault Injections

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.4: Heatmap: Data Segment, power rail PST2, clock signal 20MHz

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.5: Heatmap: Data Segment, power rails PST1 and PST2, clock signal 20MHz

41

5. Evaluation

5.1.2 Stack

The second source string location tested is the Stack. Figure 5.1 shows the outcome of
the VFI sweeps from the first to last clock cycle of the strcpy function. Most of the time,
the VFI result in a RoS; MLL and MLB are very hard to achieve.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

No Effect Rebooted or Stuck System influcened Memory Leak Later

Offset in Ticks (80 MHz/ 12.5 ns per Tick)

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

VFI sweeps, power rail PST1, clock signal 20 MHz, PLL at x4 mode.

VFI sweeps, power rail PST2, clock signal 20 MHz, PLL at x4 mode.

VFI sweeps, power rail PST1-PST2, clock signal 20 MHz, PLL at x4 mode.

VFI sweeps, power rail PST1, clock signal 40 MHz, PLL at x4 mode.

VFI sweeps, power rail PST2, clock signal 40 MHz, PLL at x4 mode.

VFI sweeps, power rail PST1-PST2, clock signal 40 MHz, PLL at x4 mode.

Figure 5.6: Stack VFI Sweeps overview

Analyzing the VFI sweeps for MLL, one can see that the power rail PST1 with a 40 MHz
clock signal provides the best results. The tables in Figure 5.8 show that 73 MLL could
be triggered. However, this is still a very low number compared to the 109080 total tries.
All other combinations show even worse results, with at most two MLL using power rails
PST1 and PST2 with a 20 MHz clock signal or power rail PST1 with a 20 MHz clock
signal. Power rail PST1 and PST2 with a 40 MHz clock signal shows only one MLL.

42

5.1. Single Fault Injections

Category Count %
Total 230280 -
NE: 169198 ≈73.47
RoS: 58479 ≈25.39
Si: 2603 ≈1.13
MLB: 0 ≈0.0
MLL 2 ≈0.0

PST1 | 20MHz

Category Count %
Total 109080 -
NE: 27425 ≈25.14
RoS: 81518 ≈74.73
Si: 137 ≈0.13
MLB: 0 ≈0.0
MLL 73 ≈0.07

PST1 | 40MHz

Category Count %
Total 230280 -
NE: 119108 ≈51.72
RoS: 110925 ≈48.17
Si: 247 ≈0.11
MLB: 0 ≈0.0
MLL 0 ≈0.0

PST2 | 20MHz

Category Count %
Total 109080 -
NE: 27395 ≈25.11
RoS: 62446 ≈57.25
Si: 19239 ≈17.64
MLB: 0 ≈0.0
MLL 0 ≈0.0

PST2 | 40MHz

Category Count %
Total 230280 -
NE: 102690 ≈44.59
RoS: 126975 ≈55.14
Si: 615 ≈0.27
MLB: 0 ≈0.0
MLL 2 ≈0.0

PST1-PST2 | 20MHz

Category Count %
Total 109080 -
NE: 27270 ≈25.0
RoS: 81751 ≈74.95
Si: 59 ≈0.05
MLB: 0 ≈0.0
MLL 1 ≈0.0

PST1-PST2 | 40MHz

Figure 5.7: Leaked words from the stack

The heatmap for PST1 with a 40 MHz clock is shown in Figure 5.9. The highest success
rate for a MLL can be reached with an offset of 200 ticks and a CAT of 25 ns, resulting
in a ≈17% success rate. The heatmap for power rails PST1 and PST2 with a 20 MHz
clock displayed in Figure 5.11 indicates a maximum likelihood for MLL of only ≈1%.
Power rail PST1 with a 20 MHz clock signal has a maximum probability for a MLL of
≈2% illustrated by the heatmap in Figure 5.10. Power rail PST1 and PST2 with a 40
MHz clock signal has only one MLL and, therefore, a maximum success rate for MLL of
only ≈1%.

The offsets for MLLs using power rail PST1 with 20 MHz or 40 MHz clock or power rails

43

5. Evaluation

PST1 and PST2 with 20 MHz clock are near the end of the strcpy function. Therefore,
the “beq” branch instruction is most likely glitched. That is also suggested by the leaked
word “Later1”, which is directly stored behind the expected string. The returned string
is:

{No effect!}{No effecater{OneLater1}{OneLater1}

A few random chars are between the expected and the additional leaked strings. This
could be due to further errors introduced by the VFI. Using the power rails PST1 and
PST2 at a 40 MHz clock signal, a MLL is achieved at an offset of 67 (at ≈25% of the
strcpy execution time), making it most likely that an increment instruction is glitched.
The returned string is:

[er4}{FourLater4}

Since the returned string contains nearly no part of the default string and the leaked
string is “Later4”, it is very likely that the VFI affected the increment instruction.

MLB could not be achieved using the Stack as a source string location. Additional tests
with different project settings in the ESP-IDF menu config are also tested. Yet, MLB
could not be triggered for all the tried settings. The tables in Figure 5.7 show that only
the words “Later1” and “Later4” could be extracted.

Word Count
Later1 2

PST1 | 20MHz

Word Count
Later1 73

PST1 | 40MHz

Word Count
None –

PST2 | 20MHz

Word Count
None –

PST2 | 40MHz

Word Count
Later1 2

PST1-PST2 | 20MHz

Word Count
Later4 1

PST1-PST2 | 40MHz

Figure 5.8: VFI sweep results when targeting the stack

44

5.1. Single Fault Injections

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.9: Heatmap: Stack, power rail PST1, clock signal 40MHz

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.10: Heatmap: Stack, power rail PST1, clock signal 20MHz

45

5. Evaluation

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.11: Heatmap: Stack power rails PST1 and PST2, clock signal 20MHz

46

5.1. Single Fault Injections

5.1.3 Heap
The last source storage location tested is the Heap. Figure 5.1 shows all VFI sweeps.
When targeting the heap, the best results can be achieved with the voltage rails PST1
and PST2 with a clock signal of 20 MHz. The tables in Figure 5.13 show that 642
MLL could be achieved. The associated heatmap in Figure 5.15 indicates a maximum
probability for a MLL of ≈98% with a CAT of 37.5 ns. All other power rail and clock
signal combinations lead to way worse results, at most 8 MLL using power rail PST1 with
a 20 MHz clock. The associated heatmap in Figure 5.16 shows a maximum likelihood
for a MLL of ≈8%. The power rail combinations PST2 with a clock signal of 20 MHz
and PST1 with a clock signal of 40 MHz have only one MLL and therefore a maximum
chance for a MLL of ≈1%

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

No Effect Rebooted or Stuck System influcened Memory Leak Later

Offset in Ticks (80 MHz/ 12.5 ns per Tick)

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

VFI sweeps, power rail PST1, clock signal 20 MHz, PLL at x4 mode.

VFI sweeps, power rail PST2, clock signal 20 MHz, PLL at x4 mode.

VFI sweeps, power rail PST1-PST2, clock signal 20 MHz, PLL at x4 mode.

VFI sweeps, power rail PST1, clock signal 40 MHz, PLL at x4 mode.

VFI sweeps, power rail PST2, clock signal 40 MHz, PLL at x4 mode.

VFI sweeps, power rail PST1-PST2, clock signal 40 MHz, PLL at x4 mode.

Figure 5.12: Heap VFI Sweeps overview

47

5. Evaluation

Category Count %
Total 193112 -
NE: 141312 ≈73.18
RoS: 48878 ≈25.31
Si: 2922 ≈1.51
MLB: 0 ≈0.0
MLL 8 ≈0.0

PST1 | 20MHz

Category Count %
Total 94132 -
NE: 37554 ≈39.9
RoS: 52203 ≈55.46
Si: 4375 ≈4.65
MLB: 0 ≈0.0
MLL 1 ≈0.0

PST1 | 40MHz

Category Count %
Total 193112 -
NE: 82158 ≈42.54
RoS: 110570 ≈57.26
Si: 384 ≈0.2
MLB: 0 ≈0.0
MLL 1 ≈0.0

PST2 | 20MHz

Category Count %
Total 94132 -
NE: 23463 ≈24.93
RoS: 53791 ≈57.14
Si: 16878 ≈17.93
MLB: 0 ≈0.0
MLL 0 ≈0.0

PST2 | 40MHz

Category Count %
Total 193112 -
NE: 73639 ≈38.13
RoS: 113038 ≈58.53
Si: 6435 ≈3.33
MLB: 0 ≈0.0
MLL 642 ≈0.33

PST1-PST2 | 20MHz

Category Count %
Total 94132 -
NE: 23625 ≈25.1
RoS: 70458 ≈74.85
Si: 49 ≈0.05
MLB: 0 ≈0.0
MLL 0 ≈0.0

PST1-PST2 | 40MHz

Figure 5.13: VFI sweep results when targeting the heap

Analyzing the VFI sweep for voltage rails PST1 and PST2 with a clock signal of 20 MHz,
one can see that MLL occurs near the centre of execution time of the strcpy function
(offset ≈213 ticks). At these settings, a leaked string is:

{No effect!}{No effectter{OneLater1}{OneLater1}

Based on the offset location, it looks like the increment instruction of the pointer is
glitched. The returned string, however, contains nearly the complete default message
followed by the succeeding string “Later1”. Therefore, it’s unclear if the increment or

48

5.1. Single Fault Injections

branch instruction at the end is glitched. Power rail PST1 with a 20 MHz clock and
PST2 with a 20 MHz clock show the same behaviour.

The VFI sweep using PST1 with a clock signal of 40 MHz has the MLL occur in the last
quarter of strcpy execution time. The leaked string at this location is:

{No effect!}{No effect!}r{OneLater1}{OneLater1}

The offset location and returned string reinforce the assumption that the branch instruc-
tion is glitched. However, this can not be said with certainty. The tables in Figure 5.14
show that “Later1” is the only word that could be extracted. Leaks from addresses before
the expected string could not be achieved.

Word Count
Later1 8

PST1 | 20MHz

Word Count
Later1 1

PST1 | 40MHz

Word Count
Later1 1

PST2 | 20MHz

Word Count
None –

PST2 | 40MHz

Word Count
Later1 642

PST1-PST2 | 20MHz

Word Count
None –

PST1-PST2 | 40MHz

Figure 5.14: Leaked words from the heap

49

5. Evaluation

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.15: Heatmap: Heap, power rails PST1 and PST2, clock signal 20MHz

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.16: Heatmap: Heap, power rail PST1, clock signal 20MHz

50

5.2. Temperature Influence

5.2 Temperature Influence

To test the influence of temperature on the results, a second FIB is assembled. Heating
up to ≈ 45 ◦C can be done with the onboard heating resistor. However, cooling and
heating beyond 45 ◦C is impossible with the board alone. Therefore, the second FIB is
mounted on a Peltier device. A thermal pad bridges the gap between the Peltier device
and the FIB. The temperature control is taken over by an external microcontroller that
reads the temperature via the onboard temperature sensor and uses a MOSFET module
to control the Peltier device via a PID control loop. By changing the polarity of the
Peltier device, one can switch between heating and cooling. At first, during cooling, an
air temperature and humidity sensor was used to keep the board over the dew point to
prevent condensation and possible short circuits. Later, a conformal coating was applied
to the FIB to allow tests below the dew point. For each storage location, the most
promising power rail and clock frequency is selected based on the results from the VFI
sweeps of the first FIB presented above. For the selected combinations, three different
temperatures are tested. One as low as possible, depending on the ambient temperature,
this goes down to minus 9 ◦C, one at around 40 ◦C and one at ≈ 100 ◦C. As the following
test will show, this approach gives a rough estimation of the temperature influence. Yet,
a better-controlled environment with closer temperature intervals is needed; more on
that in the Discussion section.

5.2.1 Data Segment

Figure 5.17 shows the three VFI sweeps from the first to last clock cycle of the strcpy
function. The power rail PST2 with a clock signal of 40 MHz is chosen. The 40 MHz
clock signal is selected even though 20 MHz showed better results in previous tests with
the first FIB. The reason is that the VFI sweeps at a lower clock rate take way longer
than at a standard clock rate. The overall behaviour of the second FIB is similar to the
first FIB when targeting the data segment.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

No Effect Rebooted or Stuck System influcened Memory Leak Later Memory Leak Before

Offset in Ticks (80 MHz/ 12.5 ns per Tick)

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

VFI sweeps, power rail PST2, clock signal 40 MHz, PLL at x4 mode. Temperature between -6 °C and -8 °C

VFI sweeps, power rail PST2, clock signal 40 MHz, PLL at x4 mode. Temperature between 35 °C and 38 °C

VFI sweeps, power rail PST2, clock signal 40 MHz, PLL at x4 mode. Temperature between 96 °C and 101 °C

Figure 5.17: Overview of temperature influence test on VFI Sweeps targeting the data
segment

51

5. Evaluation

Comparing the tables in Figure 5.18 and 5.19, one can see that the MLBs are only
possible at the two lower temperatures. At 100 °C, MLBs are no longer possible. The
likelihood for MLLs, in contrast to MLBs, increases with temperature; an increase of 1.5
percentage points can be seen between (-6 °C to -8 °C) to (96 °C to 101 °C). The number
of MLLs increases with the temperature. The VFI sweeps, however, show that a VFI
offset blow 400 ticks no longer leads to MLL at a temperature of ≈ 100 °C. Successful
MLL at an offset below 400 ticks can be found at lower temperatures.

The maximum probability for MLB and MLL at (-6 °C to -8 °C) is ≈100%; this is
indicated by the heatmap in Figure 5.20. When setting the temperature to ≈ 100 °C,
the maximum likelihood for MLL is still ≈100%; this is visualized in the heatmap in
Figure 5.21. MLB do not occur. Therefore, they have a measured success rate of 0%.

Moreover, when comparing the results of the second FIB to the VFI sweep of the first
FIB, the number of MLLs is lower at all temperatures (second board: 4097, first board:
6500). Still, the number of MLBs at -6 °C to -8 °C is higher on the second FIB for PST2
at 40 MHz (second board max: 148, first board: 20).

Category Count %
Total 227048 -
NE: 29573 ≈13.02
RoS: 111807 ≈49.24
Si: 85668 ≈37.73
MLB: 148 ≈0.07
MLL 1434 ≈0.63

PST2 | 40MHz
-6 to -8 ◦C

Category Count %
Total 227048 -
NE: 50272 ≈22.14
RoS: 102023 ≈44.93
Si: 74753 ≈32.92
MLB: 75 ≈0.03
MLL 4097 ≈1.8

PST2 | 40MHz
35 to 38 ◦C

Category Count %
Total 227048 -
NE: 56309 ≈24.8
RoS: 105347 ≈46.4
Si: 65392 ≈28.8
MLB: 0 ≈0.0
MLL 4980 ≈2.19

PST2 | 40MHz
96 to 101 ◦C

Figure 5.18: Results of temperature influence test on VFI Sweeps targeting the data
segment

52

5.2. Temperature Influence

Word Count
Before10 148
Later1 332
Later2 1102

PST2 | 40MHz
-6 to -8 ◦C

Word Count
Before10 75
Later1 754
Later2 3343

PST2 | 40MHz
35 to 38 ◦C

Word Count
Later1 171
Later2 4809

PST2 | 40MHz
96 to 101 ◦C

Figure 5.19: Temperature influence on the VFI sweeps; leaked words from the data
segment

53

5. Evaluation

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.20: Heatmap: Data segment, power rail PST2, clock signal 40MHz,
temperature -6 °C to -8 °C

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.21: Heatmap: Data segment, power rail PST2, clock signal 40MHz,
temperature 96 °C to 101 °C

54

5.2. Temperature Influence

5.2.2 Heap
For testing the heap, the power rails PST1 and PST2 with a 20 MHz clock signal are
selected. Figure 5.22 shows the three VFI sweeps. The likelihood of MLLs are highly
influenced by temperature when using the heap as a storage location. The sweep at -3 °C
to -7 °C has no MLL at all; the sweep at 96 °C to 101 °C instead shows multiple MLLs
in the middle of the execution time of the strcpy function.

Comparing the number of MLL shown in the Figures 5.24 to the results from the first
FIB in Figure 5.13, one can see that the second board is less likely to leak data. Only
30 MLL could be achieved at a ≈ 100 °C, in contrast the first FIB showed 642 MLL, a
difference of ≈2000%. The tables in Figure 5.23 indicate that only one unique world is
leaked, “Later1”.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

No Effect Rebooted or Stuck System influcened Memory Leak Later

Offset in Ticks (80 MHz/ 12.5 ns per Tick)

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

VFI sweeps, power rail PST1-PST2, clock signal 20 MHz, PLL at x4 mode. Temperature between -3 °C and -7 °C

VFI sweeps, power rail PST1-PST2, clock signal 20 MHz, PLL at x4 mode. Temperature between 38 °C and 40 °C

VFI sweeps, power rail PST1-PST2, clock signal 20 MHz, PLL at x4 mode. Temperature between 96 °C and 101 °C

Figure 5.22: Overview of temperature influence test on VFI Sweeps targeting the Heap

Word Count
None –

PST1-PST2 | 20MHz
-3 to -7 ◦C

Word Count
None –

PST1-PST2 | 20MHz
38 to 40 ◦C

Word Count
Later1 30

PST1-PST2 | 20MHz
96 to 101 ◦C

Figure 5.23: Temperature influence on the VFI sweeps; leaked words from the heap

55

5. Evaluation

Category Count %
Total 181800 -
NE: 56101 ≈30.86
RoS: 125675 ≈69.13
Si: 24 ≈0.01
MLB: 0 ≈0.0
MLL 0 ≈0.0

PST1-PST2 | 20MHz
-3 to -7 ◦C

Category Count %
Total 181800 -
NE: 61903 ≈34.05
RoS: 119815 ≈65.9
Si: 82 ≈0.05
MLB: 0 ≈0.0
MLL 0 ≈0.0

PST1-PST2 | 20MHz
38 to 40 ◦C

Category Count %
Total 181800 -
NE: 74025 ≈40.72
RoS: 106734 ≈58.71
Si: 1041 ≈0.57
MLB: 0 ≈0.0
MLL 30 ≈0.02

PST1-PST2 | 20MHz
96 to 101 ◦C

Figure 5.24: Results of temperature influence test on VFI Sweeps targeting the heap

The heatmaps in Figure 5.25 and 5.26 show the difference between the VFI sweep at -3
°C to -7 °C and the one at ≈ 100 °C. The plots not only show that the likelihood of a
MLL decreases when the temperature drops, but the overall Si rate decreases as well.
Overall, it seems as if the second FIB’s likelihood to leak from the heap increases with
the temperature but is still way lower in contrast to the first FIB.

An exact reason for the different behaviour could not be determined, yet an interesting
finding is that the second board, running the same program, has an ≈8 ms shorter boot
time than the first board and prints less to UART0 during boot. Since both FIBs run the
same program with the same SDK settings, the efuses are compared. The comparison
showed that the first board has the efuse "UART_PRINT_CONTROL" set to “ENABLE”
and the second board to “DISABLE”. This might be the reason for the different boot
times. However, this is not necessarily the reason for the different behaviour when
glitching. More on this in the Discussion section.

Due to the huge difference between the first and second board, a small extra temperature
test is performed with the first board. The offset is fixed to 219 ticks, and the CAT is
set to 37.5 ns. Six temperature tests are performed with the onboard heater; each is

56

5.2. Temperature Influence

tested 10000 times. The probability for a MLL at the different temperatures is shown
in Table 5.1. The table shows that slight temperature changes completely influence the
likelihood for a MLL to occur when using the heap as a source location. At 37 °C the
likelihood is ≈64% and at 2 °C less only ≈20%. The same test is repeated with the
second FIB; here, the board showed a 0% success rate for all six temperatures. The VFI
sweeps of the second FIB above showed a success rate of ≈9% at a temperature of ≈100
°C when using the same offset of 219 ticks and a CAT of 37.5 ns.

Temperature 30 °C 33 °C 35 °C 37 °C 40 °C 45 °C
Probability for MLL ≈1.4% ≈27.5% ≈20% ≈64% ≈18.7% 12.7%

Table 5.1: Temperature influence on the first FIB using the Heap with power rails
“PST1 and PST2” and a 20MHz clock signal

57

5. Evaluation

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.25: Heatmap: Heap, power rail PST1 and PST2, clock signal 20 MHz,
temperature -3 °C to -7 °C

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 5.26: Heatmap: Heap, power rail PST1 and PST2, clock signal 20
MHz,temperature 96 °C to 101 °C

58

5.2. Temperature Influence

5.2.3 Stack
The temperature influence tests of the stack showed no successful VFIs. No matter what
power rail, clock frequency or temperature was tested, no successful MLB or MLL could
be triggered. Figure 5.27 shows the three VFI sweeps for the power rail PST1 at a
clock signal of 40 MHz. Using the same setup, the VFI sweep on the first FIB, without
temperature control, showed 73 MLL with a maximum success rate of ≈17%. More on
that finding in the Discussion section.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

No Effect Rebooted or Stuck System influcened

Offset in Ticks (80 MHz/ 12.5 ns per Tick)

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

VFI sweeps, power rail PST1, clock signal 40 MHz, PLL at x4 mode. Temperature between -3 °C and -7 °C

VFI sweeps, power rail PST1, clock signal 40 MHz, PLL at x4 mode. Temperature between 38 °C and 40 °C

VFI sweeps, power rail PST1, clock signal 40 MHz, PLL at x4 mode. Temperature between 96 °C and 101 °C

Figure 5.27: Overview of temperature influence test on VFI Sweeps targeting the Stack

Since the second board showed no memory leak, a focused temperature test is conducted
with the first FIB. A fixed offset of 202 ticks with a CAT of 25 ns is tested 10000 times
at each temperature. To get over 45 °C, a small external reflow heater is used to increase
the temperature. Table 5.2 shows the results. One can see that the temperature influence
is very high; at 45 °C, the success rate for a MLL is ≈0.5%, at 60 °C, it’s ≈13.5%, and
at 68 °C, it’s zero. Repeating the same test for the second FIB showed no success at all
temperatures.

Temperature 29 °C 33 °C 37 °C 40 °C 45 °C 51 °C 60 °C 68 °C
Probability for MLL 0% 0% 0% ≈0.2% ≈0.5% ≈2.6% ≈13.5% 0%

Table 5.2: Temperature influence on the first FIB using the Stack with PST1 and a
40MHz clock

59

5. Evaluation

5.3 Multiple Voltage Fault Injections

As shown above, single VFI can cause memory leaks when targeting the strcpy function.
The FIU is able to time three consecutive VFI. This is used to test if multiple VFIs can
cause additional leaks from the memory.

5.3.1 Data segment

First, a working offset, CAT, voltage rail and clock frequency are selected from the
information gathered by the single VFI sweep. In this case, the power rail PST2 with a
40 MHz clock signal, an offset of 439 ticks and a CAT of 25 ns is selected. After that,
the FIU is configured to keep the first VFI fixed and increment the offset and CAT of
the second VFI. Based on the information gathered by the single VFI sweep, the offset
of successful MLLs are located near the end of the execution of the strcpy function.
Therefore, the range for the second VFI sweep can be focused on the last half of the
execution of the strcpy function. The single VFI with an offset of 439 ticks and an CAT
of 25 ns leads to a MLL that returns the string:

??}{NoefKP8?q?????woLater2}{TwoLater2}

The second VFI sweep shows that multiple VFIs are indeed possible. A second offset of
250 ticks (compared to the first VFI) and an CAT of 25 ns lead to a MLL that returns
the string:

«/????•?Ñ}{No ef?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿwoLater2}

{TwoLa?ÆW?’Ð?µF‡&VTÆ?FW3}{ThreeLater3}

This string contains the word “ThreeLater3”, and therefore, the second VFI succeeded.
However, no new data has been extracted since “ThreeLater3” was also extracted with a
single VFI before.

The FIU can coordinate up to three VFI. Hence, the offset and CAT of the first two VFI
are fixed, and a sweep for the third VFI is conducted. At an offset of 143 and an CAT of
37.5 ns, the caused MLL returned the string:

«/????•?Ñ} {No ef?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿwoLater2}

{TwoLauFW?’Ð?µF‡&VTÆ?FW3} {Three]ateÿÿÿÿ{FourLater4}{ForLater4}

The string contains the word, “FourLater4”, which is even further behind the expected
string and was not extracted by a single VFI. This shows that multiple VFIs can be used
to target the function strcpy when using the data segment as a source location to extract
even more data.

60

5.3. Multiple Voltage Fault Injections

5.3.2 Heap and Stack
The heap and stack showed low success rates for single voltage fault injections compared
to the data segment storage location. Furthermore, the temperature tests showed that
these two storage locations are highly influenced by temperature. This was also shown in
the multiple VFI trials, which tested multiple voltage rails at various clock rates and
with different offset and CAT settings for the first VFI. All VFI sweeps for the second
VFI showed no success. The section Further work will show some ways that might
improve the results.

61

5. Evaluation

5.4 Oscilloscope Measurements
One goal of the FIB is to improve the behaviour of the voltage glitches. The Keysight
MSOX3024T oscilloscope is used to measure and visualize the VFIs. When analyzing the
measurement from the PoC in Figure 5.30 on the left side, one can find large oscillations
at the end of the glitch and overall long settling time needed to get back to the stable 3.3
Volt. When comparing this to the measurement from the FIB shown in Figure 5.30 on
the right, the oscillations at the end of the glitch are gone, and the overall time needed
to get back to a stable 3.3 Volt is reduced as well. The time is reduced from ≈13.5 us to
≈0.2 us, which is a reduction of ≈650%. The blue voltage line in the right image is the
second power supply; one can clearly see that this power supply stays stable at 3.3 volts
during the VFI.

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

Glitch

time [ns]

vo
lta

ge
[V

]

Figure 5.28: PoC

0 200 400 600
0,5

1

1,5

2

2,5

3

3,5

Glitch
Stable 3.3v

time [ns]

vo
lta

ge
[V

]

Figure 5.29: FIB

Figure 5.30: Time and Oscillation Analysis

The measurement in Figure 5.31 shows three consecutive VFI on the power rails PST1
and PST2. The first two VFI show a similar behaviour; after the third VFI, one can see
a voltage overshoot that slowly comes back down to 3.3 Volt without oscillation. The
overshoot is within the specification of the ESP32-C6 ; a maximal voltage of 3.6 Volt is
allowed, and the overshoot reaches ≈ 3.5 Volt.

62

5.4. Oscilloscope Measurements

0 1000 2000 3000 4000
0,5

1

1,5

2

2,5

3

3,5

Glitch
Stable 3.3v

time [ns]

vo
lta

ge
[V

]

Figure 5.31: Triple VFI on power rails PST1 and PST2

Figure 5.32 shows the crowbar circuit activation signal in blue and the voltage line in
yellow. The measurement shows an offset of ≈ 28 ns between the activation of the
crowbar circuit and the actual voltage glitch.

−100 −50 0 50 100 150
−1,5

−0,5

0,5

1,5

2,5

3,5

4,5
Glitch

Glitch Trigger

time [ns]

vo
lta

ge
[V

]

Figure 5.32: Crowbar activation to VFI offset

63

5. Evaluation

Figure 5.33 shows the 20 MHz signal generated by the FPGA. The signal is measured
before the capacitive coupling to the ESP32-C6. One can see that the clock signal has an
acceptable overshoot when changing from a high to a low state and vice versa. However,
comparing the clock cycles to each other shows minimal variation.

0 50 100 150 200
−0,5

0,5

1,5

2,5

3,5

4,5
Clock Signal

time [ns]

vo
lta

ge
[V

]

Figure 5.33: 20 MHz clock signal of the FPGA

64

CHAPTER 6
Discussion & Further Work

This segment will first discuss the findings presented in the section Evaluation. There-
after, resulting topics for further work will be highlighted.

6.1 Discussion
The discussion consists of three parts; first, single-fault injection results will be discussed.
Followed by an interpretation of temperature influence results and a discussion of the
oscilloscope measurements.

6.1.1 Interpretation of Single Fault Injections Results

The single VFI sweeps for the distinct storage locations and power rail/ clock signal
combinations showed that single VFI can indeed cause memory leaks in modern RISC-V
architectures. An interesting finding is that the source string location has a massive
influence on the success rate of VFI. The data segment is the most vulnerable, followed by
the heap, and the stack is the most difficult to glitch. Heap and stack should be allocated
internally in Random-Access-Memory (RAM) but still exhibit a different behaviour.
Targeting the stack, power rail PST1 with a 40 MHz clock signal showed the best results.
The heap, in contrast, showed the most memory leaks using power rails PST1 and PST2
with a 20 MHz clock. Considering the data segment, the string is placed inside the
internal flash and not in RAM; therefore, different behaviour is comprehensible. The
strcpy function uses different routines for four-byte aligned and not four-byte aligned
strings. Unfortunately, this work did not determine which subroutine is used for the
various storage locations. Since this can also influence the behaviour of the ESP32-C6,
a way to assess the used subroutine, e.g. analysis via the JTAG interface, is a part of
further research.

65

6. Discussion & Further Work

Besides that, each offset and CAT combination is tested a hundred times to get a rough
success rate. However, a hundred times is still too little to get a highly accurately
measured success rate, especially when the rates are very low. e.g. 1% implies one out of
100 VFI succeeded, meaning it could just be a lucky occurrence, and the actual likelihood
is way smaller. Nonetheless, it gives a rough estimate and provides more information than
just testing each setting once. Increasing the number was not viable for this thesis since
a single large sweep at low frequencies already required around two days to complete.

Table 6.1 shows each storage location’s best power rail and frequency combination.
Furthermore, it shows which instruction (branch or increment) of the “strcpy” function
was most likely affected by the VFI.

Storage location Power rail clock signal Affected
instruction Memoryleak

Data segment PST2 20 MHz Add & Beq MLL & MLB
Stack PST1 40 MHz Add & Beq MLL
Heap PST1-PST2 20 MHz Beq MLL

Table 6.1: Best power rail and clock signal combination for single voltage fault injections

6.1.2 Interpretation of Temperature Influence Results
The temperature influence tests revealed two significant points. Primarily, since the
temperature tests are conducted with the second FIB, a slight variation from the first
FIB is expected. However, the results vary vastly. As pointed out in the evaluation,
the ESP32-C6 on the second board has a different efuse setting compared to the first
board. To be more meticulous, the "UART_PRINT_CONTROL" is set to “ENABLE”
on the first board and to “DISABLE” on the second board. The efuse settings were
never directly changed, yet as investigation revealed, some SDK configurations inside
the ESP-IDF can burn efuses. A burnt efuse can not be reverted. This most likely
happened unnoticed during the testing of different SDK settings (most likely the setting
“BOOT_ROM_LOG_SCHEME”). The set efuse explains the different boot times of
the boards; the first board prints more debug information during boot to the UART0
interface than the second board. Nevertheless, this does not necessarily explain the
different glitching behaviours. Even so, the electronic properties of the ESP32-C6 itself
or the surrounding components can vary from board to board, leading to differing results.
The VFIs targeting the stack led to a crash or reboot of the ESP32-C6 instead of a
successful VFIs on the second board. Examining this behaviour in more detail is a point
for further work and is out of the scope of this thesis.

Secondly, the temperature tests showed that temperature vastly influences the memory
leaks caused by VFIs. Not only high temperatures but also low temperatures can be
needed to trigger specific memory leaks. Especially MLB on the data segment were only
triggered at lower temperatures, with the highest success rate at temperatures below 0
°C. Due to the vastly different behaviour of the second board when targeting the heap

66

6.1. Discussion

and stack, small temperature tests were conducted with the first board. These showed
that even small temperature changes of 2 °C changed the success rate for MLL by ≈40
percentage points for the heap. The stack showed a similar response, with the highest
success rates occurring at slightly higher temperatures (23°C more) than the heap. One
hypothesis is that the temperature change might cause a slight variation in execution
times. Therefore, a fixed offset might affect different instructions, leading to different
success rates. A VFI sweep would provide more information than a single fixed offset,
but especially with 10000 tries per setting, this is not feasible in the timeframe of this
work. Therefore, further work must be conducted with smaller temperature intervals
and a higher precision FIU to draw a more accurate conclusion and to extract the best
temperature ranges for high success rates. Notwithstanding, this shows that temperature
has a considerable influence and should at least be monitored when conducting VFIs.

6.1.3 Interpretation of Multi-Fault Injections Results
Multiple VFIs showed only to be successful when targeting the data segment storage
location. A new word could be extracted from the data segment using three consecutive
VFI. Due to high success rates when targeting the data segment, even for three stacked
MLL, a FIU with the capability to time more than three VFI might be able to extract
even more memory yet this can only be shown with further testing. The other two storage
locations, heap and stack, showed no success. This does not mean that multiple VFIs
do not work with these storage locations, only that the tested settings resulted in no
successful memory leaks. The section Further work below will name additional ways
that might succeed.

6.1.4 Interpretation of Oscilloscope Measurements
The measurements with the oscilloscope show an improved glitching behaviour with the
FIB compared to the PoC. Only a tiny voltage overshoot without oscillations and a
faster settling time after a glitch. The second voltage, used for the non-targeted power
rails, stays stable during the VFI and allows targeting power rails individually without
interfering with the other rails.

The offset between the crowbar activation and the real glitch is measured to be ≈28
ns. This means the real glitch will occur after (offset ticks) × 12, 5ns + 28ns. Therefore,
the additional offset increases the offset by ≈2.2 ticks. Since the earliest caused MLL is
found at an offset of 4 ticks, the 2.2 ticks additional offset should not reduce the number
of found MLL. If a MLL had been caused at an offset of 0, it might be the case that an
earlier VFI (max. 2.2 ticks) could have caused a VFI as well. Yet, the 2.2 ticks might
shift the VFI compared to the clock by 0.2 ticks (2.5 ns).

The measured 20 MHz clock signal generated by the FPGA shows a slight overshoot
when switching voltage levels. However, the overshoots are small(3.75 Volt and -0.5
Volt are never exceeded). Furthermore, capacitive coupling exists between the measured
clock signal and the ESP32-C6. Most importantly, the signal seems stable with minimal

67

6. Discussion & Further Work

variations. The signal is generated with the PLL of the FPGA and lowered by a
“divider” module of the FPGA. The PLL does not allow generating arbitrary frequencies.
Furthermore, a complete resynthesis is needed after changing the parameters. Therefore,
using this setup to find borderline frequencies (over or underclocking) is very difficult.
However, it would be interesting to test the behaviour of the ESP32-C6 to VFI when
running at these edge frequencies.

6.2 Comparison/ Relation to Related Work
Differentiating the findings from the research described in the section Related work,
one can find some interesting points. When comparing the work of “Buffer overflow
attack on 32-bit ARM and 8-bit AVR” [23], one can see that the strcpy functions differ.
The ESP32-C6 expects a NULL-terminated string, while the strcpy function in the paper
uses a counter to determine the length of the string to copy. Furthermore, the function
on the ESP32-C6 has an optimization for four-byte aligned strings, and the one in the
paper does not. Due to the use of clock glitching, the work shown in the paper could
target single instructions more efficiently than the sweep approach used in this work.

The work by Kévin Courdesses [26, 3] uses the power rail PST2 to inject single VFI into
a ESP32-C6 with external flash. This work uses the ESP32-C6 with internal flash. It
shows that, depending on the targeted memory location, the power rail PST1, PST2
or the combination PST1 and PST2 lead to higher success rates than just PST2. This
might also apply to the ESP32-C6 with external flash.

This work shows that multiple (three) VFIs can be used to cause (multiple) memory
leaks when targeting the function strcpy using the data segment as a source location.
The settings for each VFI are found one after the other to keep the search space small.
The proposed µ-Glitch platform in “Oops..! I Glitched It Again! How to Multi-Glitch the
Glitching-Protections on ARM TrustZone-M” [27] uses a similar but more sophisticated
approach. They use a partial success function to find correct parameters for the single
VFI and afterwards combine them into one setup by translation and fuzzyfication. That
technique does not work for this work since the previous VFI must be successful for the
subsequent one to even work. Therefore, it’s impossible to first find all settings for the
three single VFI and then combine them. However, by doing one VFI sweep after the
other with an analysis of the results between the sweeps, one basically gets a manual
partial success check.

Lastly, this work can be compared to the results found for the vulnerability analysis
of the strcpy function on RISC-V in “An In-Depth Vulnerability Analysis of RISC-V
Micro-Architecture Against Fault Injection Attack” [7]. By utilising clock glitching, the
paper found that the strcpy function is most vulnerable at the first initial execution cycles
(0-40). This work, however, shows another result. When looking at the VFI sweeps from
the first to last clock cycle of the strcpy function, most (nearly all) successful memory
leaks were found in the last quarter of the strcpy function’s clock cycles. Yet, the paper
does not look at memory leaks directly and defines the success of the clock glitch as a

68

6.3. Further work

corrupted returned string. Therefore, one can look at the System influenced (Si) class,
also shown in the VFI sweep images. When doing so, the Si class can also be seen at the
start of the VFI sweeps (especially using power rail PST2 with a 40 MHz clock). Still,
many VFIs in the middle of the VFI sweeps result in a Si. Maybe clock glitching behaves
differently, or the strcpy function used in the paper uses a different implementation.

6.3 Further work
The Evaluation showed that the developed system is able to provide clock signals to
the ESP32-C6 and time (multiple) VFI to cause memory leaks. Even the influence of
temperature on the ESP32-C6 is shown. However, additional work is needed to draw a
clearer picture. Creating a large batch of FIBs to test the variation from board to board
using the same settings and program is needed. Moreover, a controlled chamber with
temperature and humidity control combined with an accurate and stable heating and
cooling system of the FIB will help to test one influencing factor at a time. Besides that,
the influence of temperature can be tested in more detail. A controlled environment
would also guarantee constant conditions when comparing multiple FIBs to each other.
Ideally, electromagnetic interferences should be shielded or controlled to rule them out as
well.

Besides, the developed FIB has some points that could be improved. Developing a better
but more expensive VFI board that can select the voltage rails to be targeted by software
instead of jumpers. Using a more powerful FPGA that is capable of increasing the
frequency of the FIU to get a finer granularity of Glitch offsets and CATs. In addition,
the FIB could be soldered with high-temperature solder paste to allow even higher
temperature tests, especially since the internal flash is rated up to 140°C.

Likewise, testing additional VFI techniques and comparing them would be interesting.
Testing the clock glitching approach as proposed in paper [46] for PLL-based MCs or
replacing the crowbar circuit with a glitch shaping setup developed in the paper [13]
would be interesting. Yet, a higher budget would be needed to do so.

69

CHAPTER 7
Conclusion

This work conducted fault injection experiments with a newly developed, all-in-one,
budget-friendly FIB. Oscilloscope measurements verified that the FIB significantly im-
proved the VFI behaviour compared to the Chipwhisperer-Lite-based PoC. Numerous VFI
sweeps are carried out from the first to last clock cycle of the strcpy function to compare
various VFI parameters. The trials revealed that distinct power rail and clock signal
combinations are better than others, depending on the source string storage location.
Overall, the data segment is the most vulnerable, followed by the heap, and the stack
is the most difficult to glitch. The VFI sweep technique and leaked data do not allow
pinpointing the exact instruction that caused the leak. Still, both suggest that the branch
and increment instructions of the strcpy function can be glitched to trigger a memory
leak.

Furthermore, results disclosed that temperature considerably influences the success rate
of VFIs. However, there is no best temperature; high and low temperatures can be
beneficial depending on the glitched instruction and desired outcome. Besides, even
minor temperature variations (2 °C) can affect the success rate. Additional fine-grained
temperature tests are needed to examine this behaviour in detail.

Last, the FIU is used to test the usefulness of multiple VFIs on the strcpy function.
The tests demonstrated that multiple VFIs can leak additional memory from the data
segment. Experiments on heap and stack showed no memory leaks, yet further testing is
required to test these two storage locations in more detail.

71

CHAPTER 8
Appendix

Data segment

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.1: Heatmap: VFI sweeps targeting the Data segment, power rail PST1, clock
signal 20 MHz, PLL at x4 mode.

73

8. Appendix

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.2: Heatmap: VFI sweeps targeting the Data segment, power rail PST1, clock
signal 40 MHz, PLL at x4 mode.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.3: Heatmap: VFI sweeps targeting the Data segment, power rail PST2, clock
signal 40 MHz, PLL at x4 mode.

74

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.4: Heatmap: VFI sweeps targeting the Data segment, power rail PST1-PST2,
clock signal 40 MHz, PLL at x4 mode.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.5: Heatmap: VFI sweeps targeting the Data segment, power rail PST2, clock
signal 40 MHz, PLL at x4 mode, temperature 35 °C to 38 °C

75

8. Appendix

Stack

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.6: Heatmap: VFI sweeps targeting the Stack, power rail PST2, clock signal 20
MHz, PLL at x4 mode.

76

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.7: Heatmap: VFI sweeps targeting the Stack, power rail PST2, clock signal 40
MHz, PLL at x4 mode.

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.8: Heatmap: VFI sweeps targeting the Stack, power rail PST1-PST2, clock
signal 20 MHz, PLL at x4 mode.

77

8. Appendix

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.9: Heatmap: VFI sweeps targeting the Stack, power rail PST1, clock signal 40
MHz, PLL at x4 mode, temperature -3 °C to -7°C

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.10: Heatmap: VFI sweeps targeting the Stack, power rail PST1, clock signal 40
MHz, PLL at x4 mode, temperature 38 °C to 40 °C

78

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.11: Heatmap: VFI sweeps targeting the Stack, power rail PST1, clock signal 40
MHz, PLL at x4 mode, temperature 96 °C to 101 °C

79

8. Appendix

Heap

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.12: Heatmap: VFI sweeps targeting the Heap, power rail PST1, clock signal 20
MHz, PLL at x4 mode.

80

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.13: Heatmap: VFI sweeps targeting the Heap, power rail PST2, clock signal 20
MHz, PLL at x4 mode.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.14: Heatmap: VFI sweeps targeting the Heap, power rail PST2, clock signal 40
MHz, PLL at x4 mode.

81

8. Appendix

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 2 Clock cycles of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.15: Heatmap: VFI sweeps targeting the Heap, power rail PST1-PST2, clock
signal 40 MHz, PLL at x4 mode.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
12.5

25
37.5

50

0

20

40

60

80

100
SR %

Memory Leak Before

Memory Leak Later

System influcened

Stuck or Reboot

No effect

Offset in Ticks (80 MHz/ 12.5 ns per Tick), 1 Tick = 1 Clock cycle of the ESP32-C6

C
ro

w
ba

r
A
ct

iv
at

io
n

Ti
m

e
(n

s)

Figure 8.16: Heatmap: VFI sweeps targeting the Heap, power rail PST1and PST2, clock
signal 20 MHz, PLL at x4 mode, temperature 38 °C to 40 °C

82

List of Generative AI Tools Used

• GitHub Copilot extension in Visual Studio Code for Code autocompletion only
used for programming the ESP32-C6 DuT.

• Local running instance of llama3.1 as Documentation & Manpage on how to use
the Python Libraries Ploty and Pandas.

83

Tools and Software Used

For implementation:

• Visual Studio Code

• Ghidra

• Fusion 360

• Virtual Box

• Gowin®EDA

• openFPGALoader

• Python/ LiteX / C

For writing:

• Overleaf

• Languagetool free without AI-Features

• Grammarly premium without AI-Features

For plotting & images:

• pgfplots & tikzpicture

• Draw.io

• Inkscape

• Python with Ploty and Pandas

85

List of Figures

2.1 RISC-V pipeline & RISC-V instruction formats [7] 4
2.2 Crowbar circuit short to ground . 6
2.3 Crowbar circuit vs glitch shaping [13] . 6
2.4 Top: Normal clock glitching, Bottom: Fuzzy Clock glitching [14] 7

3.1 First experimental-based fault injection results [7] 13
3.2 Simulation-based fault injection results [7] 14
3.3 Tweaked experimental-based fault injection results [7] 14

4.1 ESP32-C6 Power Scheme [33] . 17
4.2 ESP32-C6 Development board PoC for VFI 18
4.3 ESP32-C6 Successful VFI measured with an Oscilloscope 19
4.4 Schematic of the FIB . 21
4.5 3D Model of the FIB and FPGA development board 22
4.6 Soldered FIB . 23
4.7 FPGA SoC Architecture . 24
4.8 Clock reset generator . 25
4.9 FIU State machines . 27

5.1 Data Segment VFI Sweeps overview . 37
5.2 VFI sweep results when targeting the Data segment 38
5.3 Leaked words from the data segment . 40
5.4 Heatmap: Data Segment, power rail PST2, clock signal 20MHz 41
5.5 Heatmap: Data Segment, power rails PST1 and PST2, clock signal 20MHz 41
5.6 Stack VFI Sweeps overview . 42
5.7 Leaked words from the stack . 43
5.8 VFI sweep results when targeting the stack 44
5.9 Heatmap: Stack, power rail PST1, clock signal 40MHz 45
5.10 Heatmap: Stack, power rail PST1, clock signal 20MHz 45
5.11 Heatmap: Stack power rails PST1 and PST2, clock signal 20MHz 46
5.12 Heap VFI Sweeps overview . 47
5.13 VFI sweep results when targeting the heap 48
5.14 Leaked words from the heap . 49
5.15 Heatmap: Heap, power rails PST1 and PST2, clock signal 20MHz 50

86

5.16 Heatmap: Heap, power rail PST1, clock signal 20MHz 50
5.17 Overview of temperature influence test on VFI Sweeps targeting the data

segment . 51
5.18 Results of temperature influence test on VFI Sweeps targeting the data

segment . 52
5.19 Temperature influence on the VFI sweeps; leaked words from the data segment 53
5.20 Heatmap: Data segment, power rail PST2, clock signal 40MHz, temperature

-6 °C to -8 °C . 54
5.21 Heatmap: Data segment, power rail PST2, clock signal 40MHz, temperature

96 °C to 101 °C . 54
5.22 Overview of temperature influence test on VFI Sweeps targeting the Heap 55
5.23 Temperature influence on the VFI sweeps; leaked words from the heap . . 55
5.24 Results of temperature influence test on VFI Sweeps targeting the heap . 56
5.25 Heatmap: Heap, power rail PST1 and PST2, clock signal 20 MHz, temperature

-3 °C to -7 °C . 58
5.26 Heatmap: Heap, power rail PST1 and PST2, clock signal 20 MHz,temperature

96 °C to 101 °C . 58
5.27 Overview of temperature influence test on VFI Sweeps targeting the Stack 59
5.28 PoC . 62
5.29 FIB . 62
5.30 Time and Oscillation Analysis . 62
5.31 Triple VFI on power rails PST1 and PST2 63
5.32 Crowbar activation to VFI offset . 63
5.33 20 MHz clock signal of the FPGA . 64

8.1 Heatmap: VFI sweeps targeting the Data segment, power rail PST1, clock
signal 20 MHz, PLL at x4 mode. 73

8.2 Heatmap: VFI sweeps targeting the Data segment, power rail PST1, clock
signal 40 MHz, PLL at x4 mode. 74

8.3 Heatmap: VFI sweeps targeting the Data segment, power rail PST2, clock
signal 40 MHz, PLL at x4 mode. 74

8.4 Heatmap: VFI sweeps targeting the Data segment, power rail PST1-PST2,
clock signal 40 MHz, PLL at x4 mode. 75

8.5 Heatmap: VFI sweeps targeting the Data segment, power rail PST2, clock
signal 40 MHz, PLL at x4 mode, temperature 35 °C to 38 °C 75

8.6 Heatmap: VFI sweeps targeting the Stack, power rail PST2, clock signal 20
MHz, PLL at x4 mode. 76

8.7 Heatmap: VFI sweeps targeting the Stack, power rail PST2, clock signal 40
MHz, PLL at x4 mode. 77

8.8 Heatmap: VFI sweeps targeting the Stack, power rail PST1-PST2, clock
signal 20 MHz, PLL at x4 mode. 77

8.9 Heatmap: VFI sweeps targeting the Stack, power rail PST1, clock signal 40
MHz, PLL at x4 mode, temperature -3 °C to -7°C 78

87

8.10 Heatmap: VFI sweeps targeting the Stack, power rail PST1, clock signal 40
MHz, PLL at x4 mode, temperature 38 °C to 40 °C 78

8.11 Heatmap: VFI sweeps targeting the Stack, power rail PST1, clock signal 40
MHz, PLL at x4 mode, temperature 96 °C to 101 °C 79

8.12 Heatmap: VFI sweeps targeting the Heap, power rail PST1, clock signal 20
MHz, PLL at x4 mode. 80

8.13 Heatmap: VFI sweeps targeting the Heap, power rail PST2, clock signal 20
MHz, PLL at x4 mode. 81

8.14 Heatmap: VFI sweeps targeting the Heap, power rail PST2, clock signal 40
MHz, PLL at x4 mode. 81

8.15 Heatmap: VFI sweeps targeting the Heap, power rail PST1-PST2, clock signal
40 MHz, PLL at x4 mode. 82

8.16 Heatmap: VFI sweeps targeting the Heap, power rail PST1and PST2, clock
signal 20 MHz, PLL at x4 mode, temperature 38 °C to 40 °C 82

88

List of Tables

5.1 Temperature influence on the first FIB using the Heap with power rails “PST1
and PST2” and a 20MHz clock signal . 57

5.2 Temperature influence on the first FIB using the Stack with PST1 and a
40MHz clock . 59

6.1 Best power rail and clock signal combination for single voltage fault injections 66

89

List of Algorithms

3.1 load_bootloader() of the ESP32-C3 bootrom [3] 11

4.1 strcpy function extracted from the ESP32-C6 ELF boot ROM with Ghidra [45] 29

4.2 Program running on the ESP32-C6 . 31

4.3 C-Code of strcpy with the source string placed in the data segment. . . 31

4.4 Assembler-Code of strcpy with the source string placed in the data segment. 32

4.5 C-Code of strcpy with the source string placed on the stack. 32

4.6 Assembler-Code of strcpy with the source string placed on the stack. . . 32

4.7 C-Code of strcpy with the source string placed on the heap. 33

4.8 Assembler-Code of strcpy with the source string placed on the heap. . . 33

91

Acronyms

ASIC Application-Specific Integrated Circuit. 3

BOD Brown out Detection. 5

BOF Buffer overflow. 9

CAT Crowbar Activation Time. 25, 26, 35, 37–39, 43, 47, 56, 57, 59–61, 66, 69

CPU Central Processing Unit. 2, 24, 26

CSR Configuration and Status Registers. 24, 26

DuT Device under Test. 2, 5, 15, 28, 83

ELF Executable and Linking Format. 28, 29, 91

ESP-IDF Espressif IoT Development Framework. 16, 28, 44, 66

FI Fault Injection. 2, 5

FIB Fault Injection Board. ix, xi, 15, 19–23, 35, 51, 52, 55–57, 59, 62, 66, 67, 69, 71, 86,
87, 89

FIU Fault-Injection-Unit. 24–27, 60, 67, 69, 71, 86

FPGA Field Programmable Gate Array. 2, 3, 5, 8, 17–20, 22–26, 28, 30, 64, 67–69, 86,
87

FSM finite state machine. 26

GPIO General Purpose Input/Output. 22, 26, 28

HDL Hardware Description Language. 24

IC Integrated Circuit. 15

93

IDE Integrated Development Environment. 15

IoT Internet of Things. 16

ISA Instruction Set Architecture. 3

MC microcontroller. xi, 1, 2, 5, 7–10, 12, 15, 16, 20, 30, 69

MLB Memory Leak Before. 37–39, 42, 44, 52, 59, 66

MLL Memory Leak Later. 37–39, 42–44, 47–49, 52, 55–57, 59, 60, 66, 67

NE No Effect. 37

PCB Printed Circuit Board. 20, 23

PLL phase lock loop. 7, 9, 25, 30, 35, 68, 69

PoC Proof of Concept. 2, 15, 17, 18, 20, 35, 62, 67, 71, 86, 87

RAM Random-Access-Memory. 65

RISC-V Reduced Instruction Set Computer V. ix, xi, 1–4, 9, 10, 15, 16, 24, 29, 65, 68,
86

ROM Read Only Memory. 28, 29, 91

RoS Reboot or Restart. 37, 42

SDK Software Development Kit. 12, 28, 56, 66

Si System influenced. 37, 56, 69

SMD Surface-Mount Device. 20

SoC System-on-a-Chip. 24, 25, 86

UART Universal Asynchronous Receiver Transmitter. 20, 24, 28, 36, 56, 66

VFI Voltage Fault Injection. ix, xi, 1, 2, 6, 8–10, 12, 15–19, 24–26, 28–31, 35, 37–39, 42,
44, 47–49, 51–53, 55–57, 59–63, 65–69, 71, 86, 87

94

Bibliography

[1] J. Saidova, “RISC-V ARCHITECTURE AND ITS ROLE IN THE NEAR
FUTURE,” Journal of Advanced Scientific Research (ISSN: 0976-9595), vol. 5,
no. 9, Oct. 2024, number: 9. [Online]. Available: https://sciencesage.info/index.php/
jasr/article/view/322

[2] Espressif, “Espressif Leads the IoT Chip Market with Over 1 Billion
Shipments Worldwide | Espressif Systems,” Feb. 2025. [Online]. Available:
https://www.espressif.com/en/news/1_Billion_Chip_Sales

[3] courk, “Fault Injection Attacks against the ESP32-C3 and ESP32-C6,” section:
Projects. [Online]. Available: https://courk.cc/esp32-c3-c6-fault-injection

[4] S. Nashimoto, D. Suzuki, R. Ueno, and N. Homma, “Bypassing Isolated Execution on
RISC-V using Side-Channel-Assisted Fault-Injection and Its Countermeasure,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 28–68, 2022.
[Online]. Available: https://tches.iacr.org/index.php/TCHES/article/view/9289

[5] “The RISC-V Instruction Set Manual Volume I: Unprivileged Architecture.”

[6] M. Hadir Khan, S. Ahmed, and A. Amir Jalal, “(PDF) IBTIDA: Fully
open-source ASIC implementation of Chisel-generated System on a Chip.” [Online].
Available: https://www.researchgate.net/publication/355051535_IBTIDA_Fully_
open-source_ASIC_implementation_of_Chisel-generated_System_on_a_Chip

[7] Z. Kazemi, A. Norollah, A. Kchaou, M. Fazeli, D. Hely, and V. Beroulle, “An
In-Depth Vulnerability Analysis of RISC-V Micro-Architecture Against Fault
Injection Attack,” in 2021 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), Oct. 2021, pp. 1–6, iSSN:
2765-933X. [Online]. Available: https://ieeexplore.ieee.org/document/9568318/

[8] courk, “Laser Fault Injection on a Budget: RP2350 Edition,” Nov. 2025, section:
Projects. [Online]. Available: https://courk.cc/rp2350-challenge-laser

[9] J. Breier and X. Hou, “How Practical Are Fault Injection Attacks, Really?” IEEE
Access, vol. 10, pp. 113 122–113 130, 2022, conference Name: IEEE Access. [Online].
Available: https://ieeexplore.ieee.org/document/9930514/?arnumber=9930514

95

https://sciencesage.info/index.php/jasr/article/view/322
https://sciencesage.info/index.php/jasr/article/view/322
https://www.espressif.com/en/news/1_Billion_Chip_Sales
https://courk.cc/esp32-c3-c6-fault-injection
https://tches.iacr.org/index.php/TCHES/article/view/9289
https://www.researchgate.net/publication/355051535_IBTIDA_Fully_open-source_ASIC_implementation_of_Chisel-generated_System_on_a_Chip
https://www.researchgate.net/publication/355051535_IBTIDA_Fully_open-source_ASIC_implementation_of_Chisel-generated_System_on_a_Chip
https://ieeexplore.ieee.org/document/9568318/
https://courk.cc/rp2350-challenge-laser
https://ieeexplore.ieee.org/document/9930514/?arnumber=9930514

[10] “Circuit Protection in Microcontrollers: Brown-Out Detection,” Oct. 2019.
[Online]. Available: https://www.arrow.com/en/research-and-events/articles/
circuit-protection-in-microcontrollers

[11] M. Agazzini, “Fault Injection - Down the Rabbit Hole,” Nov. 2024. [Online].
Available: https://security.humanativaspa.it/fault-injection-down-the-rabbit-hole/

[12] C. O’Flynn, “[PDF] Fault Injection using Crowbars on Embedded Systems
| Semantic Scholar,” 2016. [Online]. Available: https://www.semanticscholar.
org/paper/Fault-Injection-using-Crowbars-on-Embedded-Systems-O%27Flynn/
bd8b724cf102a9e9f6347dfe67ff519220b2fbbd

[13] C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the Glitch: Optimizing
Voltage Fault Injection Attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 199–224, Feb. 2019. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/7390

[14] B. Selmke, F. Hauschild, and J. Obermaier, “Peak Clock: Fault Injection into
PLL-Based Systems via Clock Manipulation,” in Proceedings of the 3rd ACM
Workshop on Attacks and Solutions in Hardware Security Workshop, ser. ASHES’19.
New York, NY, USA: Association for Computing Machinery, Nov. 2019, pp. 85–94.
[Online]. Available: https://doi.org/10.1145/3338508.3359577

[15] N. T. Inc, “Part 2, Topic 1: Introduction to Voltage Glitching (MAIN)
- NewAE Hardware Product Documentation,” Feb. 2025. [Online]. Avail-
able: https://rtfm.newae.com/tutorials/CWLITEARM/SOLN_Fault%202_1%
20-%20Introduction%20to%20Voltage%20Glitching/

[16] A. S. Rakin, Z. He, J. Li, F. Yao, C. Chakrabarti, and D. Fan, “T-BFA:
Targeted Bit-Flip Adversarial Weight Attack,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7928–7939, Nov. 2022.
[Online]. Available: http://www.scopus.com/inward/record.url?scp=85115121309&
partnerID=8YFLogxK

[17] J. Breier, D. Jap, X. Hou, S. Bhasin, and Y. Liu, “SNIFF: Reverse Engineering of
Neural Networks With Fault Attacks,” IEEE Transactions on Reliability, vol. 71,
no. 4, pp. 1527–1539, Dec. 2022, conference Name: IEEE Transactions on Reliability.
[Online]. Available: https://ieeexplore.ieee.org/document/9530205

[18] R. Korkikian, S. Pelissier, and D. Naccache, “Blind Fault Attack against SPN
Ciphers,” 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 94–
103, Sep. 2014, conference Name: 2014 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC) ISBN: 9781479962921 Place: Busan, South Korea
Publisher: IEEE. [Online]. Available: http://ieeexplore.ieee.org/document/6976635/

[19] M. Madau, M. Agoyan, J. Balasch, M. Grujic, P. Haddad, P. Maurine, V. Rozic,
D. Singelee, B. Yang, and I. Verbauwhede, “The Impact of Pulsed Electromagnetic

96

https://www.arrow.com/en/research-and-events/articles/circuit-protection-in-microcontrollers
https://www.arrow.com/en/research-and-events/articles/circuit-protection-in-microcontrollers
https://security.humanativaspa.it/fault-injection-down-the-rabbit-hole/
https://www.semanticscholar.org/paper/Fault-Injection-using-Crowbars-on-Embedded-Systems-O%27Flynn/bd8b724cf102a9e9f6347dfe67ff519220b2fbbd
https://www.semanticscholar.org/paper/Fault-Injection-using-Crowbars-on-Embedded-Systems-O%27Flynn/bd8b724cf102a9e9f6347dfe67ff519220b2fbbd
https://www.semanticscholar.org/paper/Fault-Injection-using-Crowbars-on-Embedded-Systems-O%27Flynn/bd8b724cf102a9e9f6347dfe67ff519220b2fbbd
https://tches.iacr.org/index.php/TCHES/article/view/7390
https://doi.org/10.1145/3338508.3359577
https://rtfm.newae.com/tutorials/CWLITEARM/SOLN_Fault%202_1%20-%20Introduction%20to%20Voltage%20Glitching/
https://rtfm.newae.com/tutorials/CWLITEARM/SOLN_Fault%202_1%20-%20Introduction%20to%20Voltage%20Glitching/
http://www.scopus.com/inward/record.url?scp=85115121309&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85115121309&partnerID=8YFLogxK
https://ieeexplore.ieee.org/document/9530205
http://ieeexplore.ieee.org/document/6976635/

Fault Injection on True Random Number Generators,” 2018 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 43–48, Sep. 2018, conference
Name: 2018 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC)
ISBN: 9781538681978 Place: Amsterdam, Netherlands Publisher: IEEE. [Online].
Available: https://ieeexplore.ieee.org/document/8573933/

[20] P. Luo, Y. Fei, L. Zhang, and A. A. Ding, “Differential Fault Analysis of
SHA3-224 and SHA3-256,” 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pp. 4–15, Aug. 2016, conference Name: 2016
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) ISBN:
9781509011087 Place: Santa Barbara, CA Publisher: IEEE. [Online]. Available:
https://ieeexplore.ieee.org/document/7774477/

[21] D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,
D. Tygar, M. Y. Vardi, G. Weikum, and C. Giraud, “DFA on AES,” vol. 3373,
pp. 27–41, 2005, book Title: Advanced Encryption Standard – AES ISBN:
9783540265573 9783540318408 Place: Berlin, Heidelberg Publisher: Springer Berlin
Heidelberg. [Online]. Available: http://link.springer.com/10.1007/11506447_4

[22] J. Breier, D. Jap, and C.-N. Chen, “Laser Profiling for the Back-Side Fault
Attacks: With a Practical Laser Skip Instruction Attack on AES,” Proceedings
of the 1st ACM Workshop on Cyber-Physical System Security, pp. 99–103,
Apr. 2015, conference Name: ASIA CCS ’15: 10th ACM Symposium on
Information, Computer and Communications Security ISBN: 9781450334488
Place: Singapore Republic of Singapore Publisher: ACM. [Online]. Available:
https://dl.acm.org/doi/10.1145/2732198.2732206

[23] S. Nashimoto, N. Homma, Y.-i. Hayashi, J. Takahashi, H. Fuji, and T. Aoki, “Buffer
overflow attack with multiple fault injection and a proven countermeasure,” Journal
of Cryptographic Engineering, vol. 7, no. 1, pp. 35–46, Apr. 2017. [Online]. Available:
https://doi.org/10.1007/s13389-016-0136-3

[24] S. Endo, “A Configurable On-Chip Glitchy-Clock Generator for Fault
Injection Experiments | Request PDF,” ResearchGate, Jan. 2012. [Online].
Available: https://www.researchgate.net/publication/220237269_A_Configurable_
On-Chip_Glitchy-Clock_Generator_for_Fault_Injection_Experiments

[25] S. Endo, T. Sugawara, N. Homma, T. Aoki, and A. Satoh, “An on-chip
glitchy-clock generator for testing fault injection attacks,” Journal of Cryptographic
Engineering, vol. 1, no. 4, pp. 265–270, Dec. 2011. [Online]. Available:
https://doi.org/10.1007/s13389-011-0022-y

[26] courk, “Breaking the Flash Encryption Feature of Espressif’s Parts,” section: Projects.
[Online]. Available: https://courk.cc/breaking-flash-encryption-of-espressif-parts

97

https://ieeexplore.ieee.org/document/8573933/
https://ieeexplore.ieee.org/document/7774477/
http://link.springer.com/10.1007/11506447_4
https://dl.acm.org/doi/10.1145/2732198.2732206
https://doi.org/10.1007/s13389-016-0136-3
https://www.researchgate.net/publication/220237269_A_Configurable_On-Chip_Glitchy-Clock_Generator_for_Fault_Injection_Experiments
https://www.researchgate.net/publication/220237269_A_Configurable_On-Chip_Glitchy-Clock_Generator_for_Fault_Injection_Experiments
https://doi.org/10.1007/s13389-011-0022-y
https://courk.cc/breaking-flash-encryption-of-espressif-parts

[27] M. Saß, R. Mitev, and A.-R. Sadeghi, “Oops..! I Glitched It Again! How
to Multi-Glitch the Glitching-Protections on ARM TrustZone-M,” Mar. 2023,
arXiv:2302.06932 [cs]. [Online]. Available: http://arxiv.org/abs/2302.06932

[28] Renesas, “R9A02G021 - Ultra-low Power 48MHz MCU with Re-
nesas RISC-V CPU Core | Renesas,” Feb. 2025. [Online]. Avail-
able: https://www.renesas.com/en/products/microcontrollers-microprocessors/
risc-v/r9a02g021-ultra-low-power-48mhz-mcu-renesas-risc-v-cpu-core

[29] wch, “32-bit Enhanced Low-Power RISC-V MCU – CH32V203 -
NanjingQinhengMicroelectronics,” Feb. 2025. [Online]. Available: https:
//www.wch-ic.com/products/CH32V203.html

[30] Sifive, “HiFive Unmatched - SiFive Boards,” Feb. 2025. [Online]. Available:
https://www.sifive.com/boards/hifive-unmatched

[31] Gigadevice, “GD32VW553 Series MCUs-GigaDevice.com,” Feb. 2025. [Online]. Avail-
able: https://www.gigadevice.com/product/mcu/wireless-mcus/gd32vw553-series

[32] Espressif, “ESP32-C3 Wi-Fi & BLE 5 SoC | Espressif Systems,” Feb. 2025. [Online].
Available: https://www.espressif.com/en/products/socs/esp32-c3

[33] ——, “ESP32-C6 Wi-Fi 6 & BLE 5 & Thread/Zigbee SoC | Espressif Systems,” Feb.
2025. [Online]. Available: https://www.espressif.com/en/products/socs/esp32-c6

[34] ——, “ESP32-P4 High-performance SoC | Espressif Systems,” Feb. 2025. [Online].
Available: https://www.espressif.com/en/products/socs/esp32-p4

[35] ——, “ESP32-C5 2.4 and 5 GHz Dual-band Wi-Fi 6 MCU | Espressif Systems,” Feb.
2025. [Online]. Available: https://www.espressif.com/en/products/socs/esp32-c5

[36] N. T. Inc., “CW1173 ChipWhisperer-Lite,” Jun. 2025. [Online]. Available:
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/

[37] “Tang Nano 9K - Sipeed Wiki.” [Online]. Available: https://wiki.sipeed.com/
hardware/en/tang/Tang-Nano-9K/Nano-9K.html

[38] Espressif, “ESP32-C6-DevKitM-1 Schematic,” Mar. 2023. [Online]. Available:
https://dl.espressif.com/dl/schematics/esp32-c6-devkitm-1-schematics.pdf

[39] espressif, “esp hardware design guidelines esp32c6,” Dec. 2024. [Online].
Available: https://docs.espressif.com/projects/esp-hardware-design-guidelines/en/
latest/esp32c6/esp-hardware-design-guidelines-en-master-esp32c6.pdf

[40] “Mouser Component Search.” [Online]. Available: https://ms.componentsearchengine.
com/

[41] enjoy digital, “enjoy-digital/litex,” Feb. 2025, original-date: 2015-11-07T12:02:12Z.
[Online]. Available: https://github.com/enjoy-digital/litex

98

http://arxiv.org/abs/2302.06932
https://www.renesas.com/en/products/microcontrollers-microprocessors/risc-v/r9a02g021-ultra-low-power-48mhz-mcu-renesas-risc-v-cpu-core
https://www.renesas.com/en/products/microcontrollers-microprocessors/risc-v/r9a02g021-ultra-low-power-48mhz-mcu-renesas-risc-v-cpu-core
https://www.wch-ic.com/products/CH32V203.html
https://www.wch-ic.com/products/CH32V203.html
https://www.sifive.com/boards/hifive-unmatched
https://www.gigadevice.com/product/mcu/wireless-mcus/gd32vw553-series
https://www.espressif.com/en/products/socs/esp32-c3
https://www.espressif.com/en/products/socs/esp32-c6
https://www.espressif.com/en/products/socs/esp32-p4
https://www.espressif.com/en/products/socs/esp32-c5
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/
https://wiki.sipeed.com/hardware/en/tang/Tang-Nano-9K/Nano-9K.html
https://wiki.sipeed.com/hardware/en/tang/Tang-Nano-9K/Nano-9K.html
https://dl.espressif.com/dl/schematics/esp32-c6-devkitm-1-schematics.pdf
https://docs.espressif.com/projects/esp-hardware-design-guidelines/en/latest/esp32c6/esp-hardware-design-guidelines-en-master-esp32c6.pdf
https://docs.espressif.com/projects/esp-hardware-design-guidelines/en/latest/esp32c6/esp-hardware-design-guidelines-en-master-esp32c6.pdf
https://ms.componentsearchengine.com/
https://ms.componentsearchengine.com/
https://github.com/enjoy-digital/litex

[42] EnjoyDigital, “LiteX software demo,” Jun. 2025. [Online]. Available: https:
//github.com/enjoy-digital/litex/blob/master/litex/soc/software/demo/donut.c

[43] ——, “LiteX sipeed_tang_nano_9k,” Jun. 2025. [Online]. Avail-
able: https://github.com/litex-hub/litex-boards/blob/master/litex_boards/targets/
sipeed_tang_nano_9k.py

[44] ——, “LiteX WaitTimer,” Jun. 2025. [Online]. Available: https://github.com/
enjoy-digital/litex/blob/2bcbbafdd679a8c7ac549d63a3a289f0b348fccb/litex/gen/
genlib/misc.py#L76

[45] espressif, “Release 20240305 · espressif/esp-rom-elfs,” Mar. 2024. [Online]. Available:
https://github.com/espressif/esp-rom-elfs/releases/tag/20240305

[46] S. Endo, T. Sugawara, N. Homma, T. Aoki, and A. Satoh, “A configurable
on-chip glitchy-clock generator for fault injection experiments,” IEICE
Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E-95-A, no. 1, pp. 263–266, Jan. 2012, publisher: Maruzen Co.,
Ltd/Maruzen Kabushikikaisha. [Online]. Available: https://tohoku.elsevierpure.com/
en/publications/a-configurable-on-chip-glitchy-clock-generator-for-fault-injectio

99

https://github.com/enjoy-digital/litex/blob/master/litex/soc/software/demo/donut.c
https://github.com/enjoy-digital/litex/blob/master/litex/soc/software/demo/donut.c
https://github.com/litex-hub/litex-boards/blob/master/litex_boards/targets/sipeed_tang_nano_9k.py
https://github.com/litex-hub/litex-boards/blob/master/litex_boards/targets/sipeed_tang_nano_9k.py
https://github.com/enjoy-digital/litex/blob/2bcbbafdd679a8c7ac549d63a3a289f0b348fccb/litex/gen/genlib/misc.py#L76
https://github.com/enjoy-digital/litex/blob/2bcbbafdd679a8c7ac549d63a3a289f0b348fccb/litex/gen/genlib/misc.py#L76
https://github.com/enjoy-digital/litex/blob/2bcbbafdd679a8c7ac549d63a3a289f0b348fccb/litex/gen/genlib/misc.py#L76
https://github.com/espressif/esp-rom-elfs/releases/tag/20240305
https://tohoku.elsevierpure.com/en/publications/a-configurable-on-chip-glitchy-clock-generator-for-fault-injectio
https://tohoku.elsevierpure.com/en/publications/a-configurable-on-chip-glitchy-clock-generator-for-fault-injectio

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work and Research Question
	Methodology
	Structure of the Work

	Technical Background
	RISC-V Instruction Set Architecture
	Fault Injections
	Fault Models

	Related work
	Buffer Overflow Attack on 32-bit ARM and 8-bit AVR
	Side Channel Attack & VFI Induced Buffer Overflows on RISC-V
	Multiple Fault Injections
	C-Function on RISC-V Vulnerability Analysis

	Implementation
	Chip Selection
	Proof of Concept
	Fault Injection Board
	FPGA Design
	Software Design

	Evaluation
	Single Fault Injections
	Temperature Influence
	Multiple Voltage Fault Injections
	Oscilloscope Measurements

	Discussion & Further Work
	Discussion
	Comparison/ Relation to Related Work
	Further work

	Conclusion
	Appendix
	List of Generative AI Tools Used
	Tools and Software Used
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

