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Kurzfassung

Diese Arbeit untersucht den Einsatz von Deep Reinforcement Learning (DRL) zur
Steuerung von Devisenrisiken, indem zwei DRL-Algorithmen – Double Deep Q-Network
(DDQN) und Proximal Policy Optimization (PPO) – mit traditionellen technischen
Benchmark-Strategien, Relative-Strength-Index (RSI) und Moving-Average-Crossover
(MAC), verglichen werden. Wir entwickeln eine realistische Umgebung, in der Zinsdiffe-
renziale und dynamische Transaktionskosten (Spreads, Kommissionen, Slippage) in die
Reward-Funktion integriert sind. Jede Strategie wird auf USD/CHF-Daten von 1980 bis
2024 anhand von Kennzahlen wie Gesamtrendite, annualisierte Rendite, Sharpe-Ratio,
maximaler Drawdown, Volatilität und Beta bewertet. Die Ergebnisse zeigen, dass PPO
die beste Performance liefert – mit den höchsten Renditen (14,96% gesamt, 4,76% p.a.),
den besten risikoadjustierten Kennzahlen (Sharpe 0,20) und kontrollierten Drawdowns
– während MAC als einfache, kosteneffiziente Alternative wettbewerbsfähige Renditen
erzielt (12,23% gesamt, 3,92% p.a.). RSI erweist sich als zu konservativ und DDQN
zeigt übermäßige Volatilität. Trotz dieser starken Ergebnisse konnten die DRL-Agenten
jedoch keine Positionen über längere Zeit halten und führten zu viele Transaktionen aus
– ein Ergebnis, das für FX-Hedging unerwünscht ist und in künftigen Arbeiten behoben
werden muss.
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Abstract

This thesis investigates the use of deep reinforcement learning (DRL) for managing
foreign exchange (FX) risk by comparing two DRL algorithms—Double Deep Q-Network
(DDQN) and Proximal Policy Optimization (PPO)—against traditional technical bench-
marks, Relative Strength Index (RSI) and Moving Average Crossover (MAC). We develop
a realistic environment that incorporates interest-rate differentials and dynamic transac-
tion costs (spreads, commissions, slippage) into the reward function. Each strategy is
evaluated on USD/CHF data from 1980–2024 using metrics such as total and annualized
return, Sharpe ratio, maximum drawdown, volatility, and beta. Results show that PPO
delivers the strongest performance—achieving the highest returns (14.96% total, 4.76%
p.a.), best risk-adjusted metrics (Sharpe 0.20) and controlled drawdowns—while MAC
offers a simple, cost-efficient alternative with competitive returns (12.23% total, 3.92%
p.a.). RSI proves overly conservative and DDQN exhibits excessive volatility. However,
despite these strong results, the DRL agents were unable to maintain positions for
extended periods and executed too many transactions—an outcome that is undesirable
for FX hedging and must be addressed in future work.
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CHAPTER 1
Introduction

1.1 Problem Statement
The foreign exchange (FX) market is the largest financial market in the world,
with an average daily trading volume of $5.1 trillion, according to [1]. Due to the effects of
globalization, there is a surge in companies which have subsidiaries in different countries
and serve clients around the world.
Therefore, it is extremely important to manage the risk associated with currency
fluctuations. Businesses and investors dealing with multiple currencies face risks due
to exchange rate movements that affect profits, financial planning, and the overall
functioning of the firm and investments.

Following simple technical strategies such as a Relative Strength Index (RSI) or
a Moving Average Crossover (MAC) provides a decent level of protection, but a
more dynamic hedging strategy is needed.
This thesis explores how Deep Reinforcement Learning (DRL) can be applied to
hedging the currency risk and whether we are able to develop an adaptive strategy
that balances risk and outperforms the baseline strategies.

1.2 Research Objective
The goal of the thesis is to develop an FX hedging strategy using Deep Reinforcement
Learning (DRL). More specifically, we will develop and compare one off-policy (Double
Deep Q-Learning DDQN), and one on-policy (Proximal Policy Optimization PPO),
against two simple technical strategies like the Relative Strength Index (RSI), and the
Moving Average Crossover (MAC).

By comparing these 4 strategies, we will understand how the DRL hedging strate-
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1. Introduction

gies match up to simple technical strategies. The performance will be measured by a
set of different financial metrics like total return, Sharpe Ratio, maximum drawdown,
and more. These metrics will provide a broad way to assess the performances between
strategies.

1.3 Challenges in Developing Effective FX Hedging
Strategies

Developing an FX hedging strategy with traditional ML is very difficult due to non-
stationarity of financial data, high volatility, and noise. FX markets are influenced by
macroeconomic events, interest rates, political factors, and other global developments.
This makes it extremely challenging to make reliable long-term predictions. A major issue
is that hedging requires long-term planning and maintaining a position over an extended
period of time. Standard ML models aren’t very capable in generalizing well for long
term predictions. Financial time series also have a low signal-to-noise ratio which causes
models to overfit to random noise. The superiority of a DRL model is that it learns
an adaptive policy because it interacts with the environment. The model dynamically
adjusts its strategy in response to real-time market conditions, and if modeled correctly
can avoid being constrained by outdated historical patterns. Furthermore, a DRL model
optimizes for long-term rewards, which is excellent in the context of hedging a currency
risk. It would be ideal if the strategy would make few but qualitative decisions, like
staying in a hedge for 6–18 months, or letting the value of the currency increase by being
outside of a hedge for long.
With the constant update of the strategy and policy of the DRL based on market
conditions, the model has the potential to be superior in developing a hedging strategy
for the FX market.

1.4 Contributions
1.4.1 Contributions of this Thesis
The contributions of this thesis to the field of FX hedging are the following:

Introducing the interest rate differential calculations inside the actual reward func-
tion of the DRL model. This is done to make the reward function as close to reality as
possible, and in the hope that the model would then realize when to actually hedge the
currency pair, and when to let the currency of his choice increase in value. The interest
rate differential is embedded in the future contracts used for hedging the currency pair,
and are therefore a very viable factor.

The comparison was made between the simple technical strategies and the DRL strategies.
This was not anything new, but it helped to expand the existing literature on DRL
hedging in FX, which is an area with limited research. The comparison was also done in

2



1.4. Contributions

a systematic way using a diverse set of financial metrics. The financial metrics include
total return, Sharpe ratio, and maximum drawdown.

Realistic transaction costs were introduced, including spread, brokerage fees, and slippage
when entering or exiting positions. This in combination with the reward function enables
a clear representation of the DRL hedging in FX.

1.4.2 Usage of AI
Chat GTP was used to generate the abstract of the thesis. It was used in Section 3.1 to
organize the text, and write small sentences that clearly explain parts of the strategies.
It was used very briefly in Section 4.1 and Subsection 4.4.2. It was used in Section 4.2
to clearly explain and organize the reward function with the formulas. All the larger
paragraphs were written without ChatGPT. Exceptions are Sections 3.3 and 3.4 which
were co-written with ChatGPT, focusing on the organization and structure of the formulas
and text. 1/5 of the thesis was written jointly with ChatGPT.

1.4.3 Theoretic Results
As this approach is relatively new in the literature, there were no results to compare
against. All the results that are presented in this thesis were deduced/proved by me.

1.4.4 Explanation of Code
The code retrieves the original Close price for USD/CHF from TradingEconomics. Using
the ‘ta’ library, it computes technical indicators (features). The dataset is then prepro-
cessed and prepared for training. Functions for calculating financial metrics (Sharpe
ratio, total return, maximum drawdown) are implemented.

The Moving Average Crossover (MAC) strategy and the Relative Strength Index (RSI)
strategy are backtested.

The entire environment is built from scratch with Gymnasium: the reward function
is defined (including transaction fees), and an LSTM policy network is implemented
for both DDQN and PPO using Ray RLlib. Random-search hyperparameter tuning is
performed for DDQN and PPO, and the best configurations are tested five times to
assess stability and performance. Graphs and visualizations are generated.

Libraries Used

• gymnasium — RL environment framework

• tradingeconomics — USD/CHF data retrieval

• ta — technical indicators computation

3



1. Introduction

• pandas, numpy — data manipulation & numerical calculations

• scikit-learn — data normalization

• ray[rllib] — implementation of DDQN and PPO

• matplotlib — plotting and visualizations
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CHAPTER 2
Related Work

“Superhuman capabilities of RL learning algorithms have been demonstrated in various
areas, and the list of extraordinary capabilities of AI systems built on reinforcement
learning is continually expanding. Prominent examples are playing backgammon, Atari
2600 games, many more computer games, card games, chess, Go, and shogi at superhuman
levels. Probably most famously, however, reinforcement learning is the last and crucial
step in training large language models such as ChatGPT” [6]. It was not long until RL
or DRL was increasingly being applied to algorithmic trading. The paper [14] from the
University of Edinburgh provided a detailed analysis of DRL applications in trading.

Due to different market assumptions and setups of the experiments, the study showed
that it is very difficult to compare the DRL models to each other. Some DRL models
have reported annual returns exceeding 20%. This information should be taken with a
grain of salt regarding the real-world applicability, as those returns outperform even the
best hedge fund and long term benchmarks like the S&P 500.

The paper also addresses the difficulty of selecting the appropriate trading timeframe. It
is complicated, due to the fact that long-term price movements are highly unpredictable
due to macroeconomic events. Predicting short-term prices can be easier, but in the
context of high frequency trading, the transactions costs quickly accumulate, and the noise
hinders the models performance. Striking the right balance remains an open research
questions.

A limitation in the field is that, there is little high-quality practically tested research.
Most studies and experiments present their results in the context of backtesting their
models on past data. While this is perfectly fine if the researchers align the transactions
costs and all the factors as realistic as possible, that is very rarely done. This makes it
unclear if the models would perform this well in real live trading. There is also a question
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2. Related Work

to be asked: if a model were genuinely profitable, would the researchers even disclose it?
However, the study showed promise and potential of DRL in algorithmic trading.

• [20] This paper from the University of Oxford demonstrates the effectiveness of
DRL when using Deep Q-Networks (DQN) in creating a successful trading strategy.
It was shown that a DQN agent trained on historical price data can outperform a
traditional trading strategy. This matches our assumption which is that DRL can
learn the complex market dynamics, and due to it interacting with the environment,
can adapt its trading decisions.

• [17] This paper from the University of Liege, Belgium, also explored the effectiveness
of DRL in algorithmic trading. The conclusion of the paper is that DRL agents are
highly sensitive to the design of the reward function, and the state representation.
It was discovered that for a DRL agent to be profitable, there is a need to carefully
feature engineer, and shape the reward function. This matched our assumption
as well, as DRL is highly sensitive. They finally compared a DQN strategy with
baseline approaches, and showed the superior performance of DRL.

There is a lack of existing research in applying DRL to FX hedging with forward contracts,
and we aim to provide a capable starting point for it. The goal of this thesis is not to
earn as much money as possible, but to manage the risk of the hypothetical client. By
developing a DRL-based agent that learns when to fully hedge or when not to, we apply
an existing method applied to a new setting in the financial context.

6



CHAPTER 3
Methodology

3.1 Baseline Strategies
We have selected two simple technical based trading strategies for a benchmark comparison
for our DRL hedging strategy. The two strategies we have selected the Relative Strength
Index (RSI) and the Moving Average Crossover (MAC). These are the most used technical
strategies in scientific papers, and the industry as a simple comparison strategy.

3.1.1 Relative Strength Index (RSI)
The Relative Strength Index (RSI) is a momentum oscillator used to identify
overbought or oversold conditions in a market. It ranges from 0 to 100 and is defined
as [8]

RSI := 100 − 100
1 + RS (3.1)

where

RS := Average gain over a specified period
Average loss over a specified period . (3.2)

Typically, the RSI is calculated using a 14-day period. In our implementation, we use
the RSI to generate hedging signals as follows:

• Overbought Condition (RSI > 70): If the RSI is above 70, the asset is
considered overbought. In this situation, we would exit the hedge, as the CHF is
expected to gain value in comparison to the USD. Therefore, the money that is
incoming regularly will be worth more and more upon conversion to USD.

7



3. Methodology

• Oversold Condition (RSI < 30): If the RSI is under 30, the asset is considered
oversold. In this situation, we would enter the hedge, as the CHF is expected to
lose value in comparison to the USD. By hedging, we protect our money in CHF to
potentially be worth less in the future. We lock in the current exchange rate, and
hold it until the model suggests and exit from the hedge.

• Neutral Condition (30 ≤ RSI ≤ 70): In this range, we maintain the current
position of being in hedge, or outside the hedge.

This RSI-based strategy provides a simple yet effective way to dynamically adjust
the hedging position based on market momentum.

Figure 3.1: Relative Strength Index (RSI) and corresponding trading signals throughout
the test period.

Figure 3.1 presents the Relative Strength Index (RSI) throughout the test period,
highlighting key trading signals. Periods where the RSI exceeds the overbought
threshold (RSI > 70) indicate a signal to exit the hedge. Periods where the RSI fall
short of the oversold threshold (RSI < 30), the strategy suggest to enter the hedge.
This graphs helps with visualizing the signals, and understanding the strategy better.

3.1.2 Moving Average Crossover (MAC)
The Moving Average Crossover (MAC) strategy is a trend-following strategy
that uses two moving averages: a shorter-period moving average (SMAshort) and
a longer-period moving average (SMAlong) [9]. A moving average is calculated by
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3.1. Baseline Strategies

taking the average price over a specified period. In this thesis, we calculate the moving
average as the sum of the closing prices, divided by the number of business days,
i.e.

SMA := Sum of closing prices over a specified period
Number of periods . (3.3)

The strategy generates trading signals when the two moving averages cross each other.
In our implementation, we use the MAC to generate hedging signals as follows:

• SMAshort Crosses Above SMAlong: This is considered a bullish signal, indicating
a upward trend. In this situation, we would enter the hedge as the CHF is expected
to lose value in comparison to the USD.

• SMAshort Crosses Below SMAlong: This is considered a bearish signal, indicating
a downward trend. In this situation, we would exit the hedge as the CHF is expected
to lose value in comparison to the USD.

• No Crossover: In the absence of a crossover, we maintain the existing positions
(either hedged or unhedged).

This MAC-based strategy is widely used in the financial industry as a benchmark for
comparison and can deliver satisfactory results when the financial instruments have long
and stable trends.

Figure 3.2: Moving Average Crossover (MAC) strategy applied to the USD/CHF exchange
rate throughout the test period.

9



3. Methodology

Figure 3.2 presents the Moving Average Crossover (MAC) strategy applied to the
USD/CHF exchange rate during the test period. The chart shows and highlights
the places where the long and short term moving average cross in one way or another.
Bullish signals are marked in green (when the short crosses the long moving average).
Bearish signals are marked in red (when the long crosses below the short moving average).
The visualization is helpful to understand the core of this simple strategy.

3.2 Introduction to Reinforcement Learning
Reinforcement Learning (RL) is a type of machine learning where an agent learns by
interacting with an environment to maximize a numerical reward [16]. It is different than
supervised learning in a sense that it does not need exact labels for a model to be trained
successfully. Instead, an agent must figure out what is the best strategy by interacting
with the environment through trial and error.

One of the main challenges of RL is that the significance of an action and its con-
sequences are not known immediately. Therefore, the agent needs to balance out with
making good decisions that provide high reward right away as well as making decisions
that will lead to higher rewards in the future. This idea of delayed rewards makes the
RL setting more complicated and dynamic than other ML fields.

An RL setup consists of an agent and an environment. The agent is the actual de-
cision maker which in each step observes the current state of the environment, and then
based on it makes a decision. An environment is everything the agent interacts with. It
responds after every action taken from an agent, by providing a new state and a reward.
Based on the reward, the agent knows if the action was good or bad. Throughout time,
the agent improves upon its strategy by interacting with the environment with a goal to
maximize its total rewards.

Another important concept in RL is the exploration-exploitation trade-off. The
agent must balance between:

• Exploration – trying new actions to discover better strategies.

• Exploitation – using what it has already learned to maximize rewards.

A good learning algorithm finds a balance between the two. It explores enough to gather
concrete information about the environment and which actions bring good reward. Then,
based on the research, it maximizes the reward. RL is widely used in areas like robotics,
finance, gaming, etc.

The RL process can be visualized in Figure 3.3, which illustrates the interaction between
an agent and its environment. In each time step i, the agent observes the current state
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3.3. Deep Reinforcement Learning Models

Si, receives a reward Ri, and takes an action Ai. This influences the environment,
transitioning it to a new state, and the process continues until a terminal state is reached
or the episode ends [6].

Figure 3.3: Interaction between an agent and an environment in RL [6].

The return

Gt :=
T∑︂

k=t+1
γk−(t+1)Rk = Rt+1 + γRt+2 + · · · (3.4)

is the total sum of rewards received by the agent, discounted by a factor γ [6]. The goal
of the agent is to maximize the expected return E[Gt].

3.3 Deep Reinforcement Learning Models

3.3.1 Double Deep Q-Network (DDQN) Model

Deep Q-Networks (DQN) introduced deep learning into reinforcement learning. It
allowed agents to learn optimal policies directly from high-dimensional state spaces [13].
In traditional Q-learning, the agent learns an action-value function Q(s, a) that estimates
the expected cumulative reward for taking action a in state s and following an optimal
policy thereafter. The Q-values are updated using the empirical Bellman target, which is
the approximation of the expected cumulative reward based on the current state, action,
and the Q-values of subsequent states.

11



3. Methodology

The Q-values are updated using the update rule

Qt+1(s, a) :=

(1 − αt)Qt(st, at) + αt

(︂
rt+1 + γ max

a
Qt(st+1, a)

)︂
, (s, a) = (st, at)

Qt(s, a), (s, a) ̸= (st, at)
(3.5)

[6], where αt is the learning rate, rt+1 is the reward received after taking action a in state
s, and γ is the discount factor for future rewards. However, storing a Q-table for large
state spaces is infeasible, leading to the development of Deep Q-Networks (DQN),
which approximate Q(s, a) using a deep neural network. The DQN model replaces the
traditional Q-table with a deep neural network Q(s, a; θ) and learns optimal action values
through experience replay and a target network to stabilize training. θ represents
the parameters (weights and biases) of the deep neural network used to approximate the
Q-values in the DQN model.

Despite these improvements, DQN suffers from overestimation bias due to the max
operator in action selection and evaluation. This overestimation leads to unstable
learning and suboptimal policies [5].

Double Deep Q-Network (DDQN): An Improvement Over DQN

To address the limitations of DQN, Double Deep Q-Networks (DDQN) [5] in-
troduce a modification that decouples action selection from action evaluation.
Instead of using the same Q-network for both selecting and evaluating the best action,
DDQN maintains two separate value estimates:

• The online network Q(s, a; θ) is used for action selection.

• The target network Q(s, a; θ−) is used for action evaluation.

This distinction prevents overestimation bias and results in more accurate Q-value
estimates. Mathematically, in DQN, the target Q-value is defined as [5]

Y DQN
t := Rt+1 + γ max

a
Q(St+1, a; θ−). (3.6)

In DDQN, the key modification is that the online network selects the best action,
while the target network evaluates it, i.e., [5]

Y DDQN
t := Rt+1 + γQ(St+1, arg max

a
Q(St+1, a; θ), θ−). (3.7)

This adjustment significantly reduces overoptimism in value estimation, leading to more
stable learning and better policy performance.
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3.3. Deep Reinforcement Learning Models

By preventing overestimation of Q-values, DDQN improves policy learning stability
and performance compared to standard DQN. It has been successfully applied to
various reinforcement learning tasks, demonstrating better convergence and more
robust decision-making in environments with complex state spaces [5].

Algorithm 1 Double Q-learning for calculating Q ≈ q∗ and π ≈ π∗ [6].
1: Initialization:
2: Choose learning rate α ∈ (0, 1]
3: Choose ϵ > 0
4: Initialize Q1[s, a] ∈ R and Q2[s, a] arbitrarily for all (s, a) ∈ S × A(s), except that

the value of the terminal state is 0
5: Loop // for all episodes
6: initialize s
7: while episode not finished do
8: repeat // for all time steps
9: Choose action a from s using an (ϵ-greedy) policy derived from Q := Q1+Q2

2
10: Take action a and receive new state s′ and reward r
11: if random number chosen uniformly in [0, 1) < 1/2 then
12: Q1[s, a] := Q1[s, a] + α

(︂
r + γQ2

[︂
s′, arg maxa′∈A(s′) Q1[s′, a′]

]︂
− Q1[s, a]

)︂
13: else
14: Q2[s, a] := Q2[s, a] + α

(︂
r + γQ1

[︂
s′, arg maxa′∈A(s′) Q2[s′, a′]

]︂
− Q2[s, a]

)︂
15: end if
16: s := s′

17: end while

Algorithm 1 [6] displays in pseudocode the learning process of the double Q-learning
algorithm. To adjust this for the DRL setting, the Q-value functions Q1 and Q2 are
approximated using deep neural networks instead of tables.

3.3.2 Proximal Policy Optimization (PPO) Model

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that
improves policy gradient methods by balancing sample efficiency, simplicity, and
reliable performance [15]. PPO is designed as an alternative to Trust Region Policy
Optimization (TRPO), maintaining its stability benefits while being simpler to
implement and more adaptable to different problems.

Policy Gradient Methods

Policy gradient methods optimize a stochastic policy πθ(a|s) using stochastic gra-
dient ascent on the expected return. The gradient estimator is defined as [15]
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3. Methodology

g := Et [∇θ log πθ(at|st)At] , (3.8)

where At is an estimator of the advantage function, measuring how much better an
action is compared to the average action in that state. The objective function is defined
as [15]

LPG(θ) := Et [log πθ(at|st)At] . (3.9)

However, standard policy gradient methods suffer from large, unstable pol-
icy updates, leading to poor sample efficiency and performance degradation. TRPO
addressed this issue but introduced computational complexity due to second-order
optimization constraints.

PPO: A Simpler Alternative to TRPO

PPO introduces a new objective function with clipped probability ratios, which
prevents overly large policy updates and ensures stable learning. The policy update is
constrained by clipping the probability ratio, i.e. [15]

rt(θ) := πθ(at|st)
πθold(at|st)

, (3.10)

where πθ is the new policy and πθold is the previous policy before the update.

The Clipped Surrogate Objective

PPO optimizes the clipped surrogate objective [15]

LCLIP(θ) := Et [min (rt(θ)At, clip (rt(θ), 1 − ϵ, 1 + ϵ) At)] , (3.11)

This objective ensures that updates do not excessively change the policy, as the clipping
mechanism prevents rt from moving too far from 1. If an update causes a large change
in rt, the clipped term prevents further increases, stabilizing learning.

14



3.4. LSTM as Base Policy

Algorithm 2 Proximal Policy Optimization (PPO) for policy optimization [6]
1: loop
2: for all actors from 1 to N do
3: run policy πθold for T time steps
4: compute advantage estimates Â1, . . . , ÂT using GAE
5: end for
6: optimize surrogate objective JCLIP+VF+S w.r.t. θ
7: using K epochs and minibatch size M ≤ NT
8: θold := θ
9: end loop

The key features of PPO are that it enables multiple updates per batch of data, which
improves sample efficiency. It also prevents drastic changes that could mess up with
the learning. It does this by controlling the policy updates with clipping the objective
function. PPO also uses the first-order optimization which makes it simpler and faster
than TRPO.

PPO has demonstrated state-of-the-art performance in various reinforcement learning
benchmarks, including robotic control (MuJoCo) and Atari environments [15].
Its balance between efficiency, stability, and ease of implementation makes it one of the
most widely used RL algorithms today.

3.4 LSTM as Base Policy
Long Short-Term Memory (LSTM) networks were introduced by Hochreiter and
Schmidhuber to address the vanishing gradient problem in traditional Recurrent Neural
Networks (RNNs) [7]. Unlike standard RNNs, which struggle to maintain long-term
dependencies, LSTM networks incorporate a memory cell that allows information to per-
sist over long sequences, making them highly effective for sequential decision-making tasks.

LSTM Architecture

An LSTM cell consists of three primary gates that regulate information flow:

• A forget gate determines which information from the previous state should be
discarded.

• An input gate controls what new information should be stored in the cell state.

• An output gate regulates how much of the current cell state should be passed as
output.
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Mathematically, the LSTM cell updates its states using the following equations:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi), (7)
ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf ), (8)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt + Whcht−1 + bc), (9)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo), (10)
ht = ot ⊙ tanh(ct), (11)

where σ is the logistic sigmoid function, and i, f , o, and c denote the input gate, forget
gate, output gate, and cell input activation vectors, all of which are the same size as the
hidden vector h. Here, ⊙ denotes elementwise (Hadamard) multiplication. The weight
matrix subscripts have the standard meaning: for instance, Wih denotes the matrix
from the previous hidden state ht−1 to the input gate it, while Wic and similar terms
represent peephole connections from the previous cell state. The biases bi, bf , bc, and bo

are omitted in most simplified descriptions [4].

LSTM in Reinforcement Learning

LSTM networks are particularly useful in reinforcement learning when dealing with
partially observable environments. Instead of relying solely on immediate observa-
tions, an LSTM-based policy can retain memory of past states, enabling the agent to
make better-informed decisions.

In this research, LSTM serves as the base policy for the reinforcement learning model,
allowing the agent to capture long-term dependencies in market conditions. By main-
taining a history of past prices and hedging decisions, the model can learn temporal
patterns that are crucial for optimizing FX hedging strategies.

LSTM-based policies have shown strong performance in various sequential decision-
making tasks, including algorithmic trading, portfolio optimization, and risk management.
By leveraging LSTM as the base policy in DRL, this research aims to improve the
stability and adaptability of FX hedging strategies.

3.5 Evaluation metrics
3.5.1 ML metrics
Temporal Difference (TD) error is the difference between the predicted Q-value and the
actual Q-value [13]. The TD error

TD Error := r + γ max Q(s′, a′) − Q(s, a) (3.12)

will be the main loss function of the DDQN model. A TD error moving toward zero over
time shows effective learning.
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The policy loss

LCLIP(θ) := Et [min (rtAt, clip (rt, 1 − ϵ, 1 + ϵ) At)] (3.13)

in PPO clips the probability ratio rt, and in doing so prevents larger updates. This always
makes the new policy relatively similar to the old policy, and there are no excessive jumps
in policies, which stabilizes training [15]. The policy loss will be the main loss function
of the PPO model.

The Cumulative Reward metric

Cumulative Reward :=
T∑︂

t=1
rt (3.14)

captures the total reward throughout the testing. As the reward is a representation of
how much money was earned, we can look at cumulative reward as cumulative earnings
throughout the period.

3.5.2 Financial metrics
The Sharpe Ratio

Sharpe Ratio := Rp − Rf

σp
(3.15)

reveals the average investment return, minus the risk-free rate of return, divided by the
standard deviation of returns for the investment [12].

The Maximum Drawdown (MDD)

Maximum Drawdown := max(Ppeak − Ptrough) (3.16)

measures the maximum fall in the value of the investment, as given by the difference
between the value of the lowest trough and that of the highest peak before the trough.
MDD is calculated over a long time period when the value of an asset or an investment
has gone through several boom-bust cycles [11].

Volatility

Volatility :=

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(Ri − R̄)2 (3.17)

measures the dispersion of returns around its mean. Higher volatility indicates higher
risk.

The Beta
β := Cov(Rp, Rb)

Var(Rb)
(3.18)

of an investment security is a measurement of its volatility of returns relative to the
entire market. A company with a higher beta has greater risk and also greater expected
returns [10].
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The Return of the Strategy

Return := Pfinal − Pinitial
Pinitial

(3.19)

measures how much the strategy has earned throughout the entire test period:

The Annualized Return

Returnp.a. := (1 + Return)
1
T − 1 (3.20)

measures the compounded yearly return of the strategy. It provides a clean metric on
what the strategy earns per year.
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CHAPTER 4
Results

4.1 Dataset, Features, and Preprocessing

The currency pair used in this research is USDCHF (United States Dollars / Swiss
Francs). Therefore, the dataset consisted of the USDCHF close price and a couple
of technical indicators which were derived from the USDCHF close price. The three
technical indicators are: Relative Strength Index (RSI), Moving Average Convergence
Divergence (MACD), and Exponential Moving Average (EMA). These features are the
most commonly used simple technical indicators to identify trends and momentum.

The dataset is divided into a training set from 1980 to 2022 with 10,903 observations and
a test set from 2022 to 2024 with 805 observations. The training data is used to develop
and optimize the reinforcement learning models, while the test data is used to evaluate
its performance. Figure 4.1 shows the exchange rate of USD/CHF throughout the test
period.
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Figure 4.1: USD/CHF Exchange rate throughout the test period, sourced from [18].

Features

The dataset consists of USDCHF close prices, RSI (Relative Strength Index), EMA
(Exponential Moving Average), and the MACD (Moving Average Convergence Diver-
gence). The data provider for the USDCHF closing price was Trading Economics [18]. All
the other features were created using the respective mathematical formulas of technical
indicators. The basis for their calculations were the close prices of USDCHF.

Relative Strength Index (RSI) is already explained in Section 3.1.1. It is a momen-
tum oscillator used to identify buy or sell signals in a market. We have used it as a raw
numerical feature in the dataset. The RSI was calculated over a 14-day rolling period. It
ranges from 0-100 and is provided as input to the model.

Exponential Moving Average (EMA) is a technical moving average indicator that
assigns greater weight to recent price data. This makes it more sensitive to price fluctua-
tions compared to Simple Moving Average (SMA) [2]. The EMA is calculated using
the recursive formula

EMAt := α · Pt + (1 − α) · EMAt−1, (4.1)

where:
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• Pt is the price at time t.

• α is the smoothing factor, calculated as 2
n+1 , where n is the number of periods.

• EMAt−1 is the previous EMA value.

EMA can react faster than SMA, as it assigns more weight to recent prices. This makes it
more effective for capturing trends and shifts in some scenarios. The Exponential Moving
Average (EMA) is useful for understanding market trends. When the EMA is rising, it
means prices are going up (uptrend), and when it’s falling, it suggests prices are going
down (downtrend). Traders also use crossover strategies, where a short-term EMA (like
a 9-day EMA) crossing above a long-term EMA (like a 50-day EMA) signals a possible
buying opportunity, while crossing below suggests selling. Additionally, the steepness of
the EMA helps measure how strong a price movement is, making it a useful tool for spot-
ting market momentum. The 10-day EMA was used in the research as input to the model.

Moving Average Convergence Divergence (MACD) is a momentum indicator that
measures the relationship between two moving averages of an asset’s price [3]. It consists
of three components. The first is the MACD line

MACD line := EMA12(Pt) − EMA26(Pt), (4.2)

which is the difference between the 12-day EMA and the 26-day EMA. This line
represents the core momentum signal.

The second is the signal line

Signal Line := EMA9(MACD line), (4.3)

which is the 9-day EMA of the MACD line. The third is the MACD histogram

MACD Histogram := MACD line − Signal Line (4.4)

which is the difference between the MACD line and the signal line.

The MACD is widely used as one of the most reliable technical indicators for momentum-
based trading strategies [3]. The buy signal is derived when the MACD line crosses above
the signal line, while the sell signals is derived when the MACD line crosses below the
signal line. We define

Final MACD value :=

����
1, MACD line > Signal Line (Buy Signal),
−1, MACD line < Signal Line (Sell Signal),
0, otherwise.

(4.5)
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Preprocessing

The financial time series requires intense preprocessing to make it possible for a model to
accurately forecast. As the quantitative finance methods were outside of the scope of the
thesis and the masters program, the preprocessing consisted of the simple data science
techniques. A 5-day rolling moving-average filter was applied to each feature. This
reduced the short term fluctuations. Min-Max Scaling was applied to normalize the
features between 0 and 1. This is a crucial step in machine learning, as the models learn
better when the features are on the same scale.

4.2 Reinforcement-Learning Environment
Set of actions and states will be very similar to a classical trading problem in reinforcement
learning. In actions the classical Buy is replaced by Enter Hedge, and the Sell is replaced
by the Exit Hedge. In states, the Long is replaced by Hedged, and the Short is replaced
by Protected. This is done to accommodate for the FX component of the research.

Actions:

• Enter Hedge – The agent opens a hedge position, securing the current exchange
rate and becoming exposed to the interest rate differential.

• Exit Hedge – The agent exits the hedge position and moves to a protected state,
allowing the exchange rate to fluctuate freely.

States:

• Hedged – The agent maintains a hedge position and earns or pays the interest
rate differential between the USD and CHF.

• Protected – The agent does not hedge, generating profit by benefiting from
exchange rate fluctuations.

When in the Hedged state, the agent is exposed to the interest rate differential
between the United States and Switzerland, which influences the cost of maintaining the
hedge. Conversely, in the Protected state, the agent profits by shorting the exchange
rate movement.

This structure provides a realistic framework for companies with international
subsidiaries receiving payments in foreign currencies. By optimizing when to hedge
(locking in the exchange rate) and when to remain unhedged (allowing the rate to fluctu-
ate), the model helps businesses minimize risk and maximize profits.
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4.2. Reinforcement-Learning Environment

Interest Rate Differential (IR Diff)

IR Diff represents the difference between the USD and CHF interest rates, calculated
using historical central bank data. This is very important in hedging decisions, as it
influences the cost or benefit of maintaining a hedge position, making it expensive
or profitable based on interest rate differentials. It also influences the reward structure in
the RL model, and it affects the long-term profitability of strategies. The IR Diff was
sourced from Trading Economics [18]. If the USD interest rate is higher than the CHF
interest rate, the hedger profits from the difference in rates because they borrow the
lower interest rate currency CHF, and invest in the higher interest rate currency USD. It
is helpful to think of it as an opportunity cost. The hedger has chosen not to keep their
money in CHF where they could earn 2% from government bonds, but to invest it in the
USD where they can earn 5% from government bonds.

Reward Function

At each time step t, the reward function is influenced by whether the agent executes a
trade (switching between Hedged and Protected), and whether the episode reaches
its final time step (truncation). When a trade is executed or the episode ends, the reward
is computed as

rt :=

��������
100 ·

(︂
IRt

)︂
· dt

252 · (1 − feebid) if in Hedged state,

100 · ln
(︃

Plast_trade
Pt

)︃
· (1 − feeask) if in Protected state,

0, otherwise,

(4.6)

where:

• Plast_trade is the price at the last executed trade.

• Pt is the current price.

• dt is the number of business days (or ticks) spent in the Hedged position.

• IRt = 1
dt

∑︁t−1
τ=tlast_trade IR Diff(τ) represents the average interest rate differen-

tial over the period [tlast_trade, t).

• feebid and feeask account for transaction-related costs, including spread, brokerage
fees, and slippage when entering or exiting positions.

If no trade is executed at time t and the episode continues, the reward is simply 0. Thus,
the reward is realized only when the agent transitions between states, or if the episode
reaches termination (truncation).
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This reward function encourages the agent to strategically time its hedging decisions
based on interest rate fluctuations, exchange rate movements, and transaction
costs.

4.3 Practical Application of the Strategy
4.3.1 Who Benefits?
This hedging strategy benefits all who actively manage currency risk. Those are companies
with foreign subsidiaries who must decide when to convert their earnings in the foreign
currency. It also benefits, exporters, institutional traders. They use such strategies to
avoid exchange rate fluctuations.

In this research, the analysis was looked from the perspective of a large international
company. The company receives payment in a foreign currency as it has a subsidiary in
another country.

4.3.2 Example Use Case
AlpineTech, a U.S.-based manufacturer of high-precision industrial equipment, operates
a subsidiary in Switzerland. It regularly receives money in Swiss Francs (CHF) from its
Swiss sales. AlpineTech reports its financials in U.S. Dollars (USD), and it is crucial
that it converts CHF to USD at the correct times. And, it must have a good strategy on
when to lock the exchange rate.

Two possible positions are explained down below:

• Position–Hedged: The client enters a hedging position when the strategy suggests
that the USD/CHF exchange rate will increase. This means the CHF will weaken
against the USD. By entering into a forward contract, the current exchange rate is
locked. Future CHF conversion are secured from losing their value.

• Position–Protected: The client exits the hedging position and remains unhedged
when the strategy suggests that the USD/CHF exchange rate will decrease. This
means the CHF will gain value in comparison to the USD.

Any company which has subsidiaries in multiple countries face this problem. For the
purposes of the research, we have focused on managing USDCHF currency risk to optimize
hedging.

4.4 Financial Costs and Trading Fees
In FX trading, there are multiple fees components that affect every transaction and
the profitability of the strategy. These are spreads, commissions, slippage, and interest
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rate differentials. Below is a general breakdown of the main fees involved in USD/CHF
trading. The issue with most research papers is that they assume a fixed percentage fee
model. While this assumption gets the results close to reality, it is never really the reality.
In this thesis, a dynamic fee model will be set up to make things as accurate as possible.

4.4.1 General Breakdown of FX Hedging Fees

The spread is the difference between the buying and selling prices of a currency pair. It
is expressed in pips which is the smallest price movement unit, or 0.0001. The USDCHF
is a highly liquid and stable currency pair, so we estimate the spread to be 1 pip.

Banks and brokers require fees to facilitate trades. This fee covers the execution of
the transaction and is around 1 pip as well.

Holding a hedge position through time incurs interest rate differential costs. The
USD/CHF currency pair is influenced by the difference between the U.S. Federal Reserve
and Swiss National Bank interest rates. If the USD interest rate is higher than the CHF
rate, traders will earn the difference when holding CHF. If CHF rates are higher, they
pay the differential. This components is incorporated inside the reward function, but it’s
also technically a fee.

Slippage occurs when a trade is executed at a different price than expected, often due
to high market volatility. This introduces an unpredictable fee that depends on market
conditions. For the sake of simplicity, we consider this to be 1 pip, but in real life this
would depend on the volatility and is unpredictable.

4.4.2 Example of Currency Hedging with USD/CHF–Fee Structure

For this example, an imaginary US-based company is expecting revenue in Swiss Francs
throughout the next 3 months. The CHF is expected to lose value against the USD, so
the company would like to hedge and enter into a forward contract. The breakdown of
fees is as follows:

• Trade Fee on Exiting the CHF Hedge–0.02%: When converting CHF to
USD (selling CHF), we incur a total transaction cost of 0.02% of the trade volume.
This includes both the spread and the bank/broker fee. For a 1 million CHF
trade, this results in a total cost of 200 CHF.

• Trade Fee on Entering the CHF Hedge–0.03%: When entering the hedge,
the total transaction cost is 0.03% of the trade volume. This includes the spread,
the bank/broker fee, and slippage. For a 1 million CHF trade, this amounts
to a total cost of 300 CHF.
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Table 4.1: Example FX Transaction and Associated Costs

Description Amount (CHF)
Imaginary transaction volume: 1,000,000
Trade fee on selling CHF (0.02%): 200
Trade fee on buying CHF (0.03%): 300
Total Cost: 500

The total cost of the hedge amounts to approximately 500 CHF, which represents
0.05% of the total transaction volume. This cost arises from the combined fees
associated with entering and exiting the hedge, including the spread, bank/broker
fees, and slippage. While this percentage may seem minimal, it can have a significant
impact over multiple transactions, especially for companies engaging in frequent hedging
activities or managing large currency exposures.

4.5 Modeling Process
The RL models were trained with a batch size of 1008 spread across six CPU cores in
parallel. The lookback period was 25 observations, or 1 month of data. Meaning, each
state was of shape (25,4). The training was done in 300,000 timesteps, while the training
set had a size of 10,000 observations. This means there were 30 epochs in the training
phase. Each episode lasted for 252 timesteps/observations (1 year).

Hyperparameter Tuning

We have tuned the parameters of the RL models using a random search based ap-
proach. We defined a range of values, and picked out multiple random combinations.
For both DDQN and PPO, the learning rate and the discount factor (γ) were tuned.
The learning rate was tested within the range of 10−5 to 10−3, while the discount factor
was explored between 0.9 and 0.99. However, the other hyperparameters were tuned
differently for each algorithm. For DDQN, the epsilon decay timesteps, which control
the gradual reduction of the exploration strategy (epsilon-greedy), were adjusted within
a range of 50, 000 to 200, 000. For PPO, the clipping parameter, which stabilizes
training by constraining policy updates, was tested between 0.1 and 0.4.

For each model, ten different hyperparameter configurations were evaluated, in-
cluding a default baseline configuration and nine randomly sampled variations from
the predefined ranges.

Model Selection and Evaluation

The best-performing hyperparameter configurations were selected based on the learning
progress. The learning progress plots of different configurations were analyzed to find
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the ones that exhibited stable convergence over iterations. Cumulative reward was also
taken into account in the training phase.

The selected models were further validated by running five consecutive training ses-
sions with the best hyperparameter settings. The chosen hyperparameter configurations
are as follows:

• Best DDQN Configuration:

– Learning Rate (LR): 0.000240
– Discount Factor (γ): 0.908433
– Epsilon Decay Timesteps: 57, 811
– Mean Reward Achieved: 49.123
– Mean Loss: 0.040886

• Best PPO Configuration:

– Learning Rate (LR): 0.000428
– Discount Factor (γ): 0.907824
– Clip Parameter: 0.367654
– Mean Reward Achieved: 61.967
– Mean Loss: −0.025326

The best configurations for both PPO and DDQN were picked by analyzing the learning
curves, rewards, and stability of learning over multiple training runs. The PPO showed
a higher mean reward than DDQN, which would mean that it came up with a more
effective policy for the environment.

4.6 Training Results and Learning Progress
It is important to realize that the learning progress plots will not be similar to those
seen in simpler DRL applications. Financial markets are inherently non-stationary which
means that market conditions, price, and influences change through time. As a result, we
cannot expect a typical convergence plot in which the loss gradually approaches zero. The
goal is to see a slow stabilization around zero. This indicates better adapting capabili-
ties of the model over time to market conditions, while maintaining consistency in learning.

In Figure 4.2, the TD error begins to stabilize around the 30th to 50th training batch.
This is approximately the area where the model shifts from exploration to exploitation in
our best model configuration for DDQN. After this, the model slightly diverges from the
zero TD error range, showing fluctuations in learning. Finally, it stabilizes once again
after approximately 250 training batches, and stayed consistent until the end.
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Figure 4.2: DDQN Learning Progress.

In Figure 4.3, we observe the learning progress of the best-performing PPO model
configuration. Unlike DDQN, which relies on temporal difference (TD) error minimization,
PPO’s loss function is based on policy gradient updates with a clipped surrogate objective.
Due to these fundamental differences, direct comparisons between DDQN and PPO
learning curves are not entirely meaningful, as the loss values and their respective
interpretations vary.

Figure 4.3: PPO Learning Progress.
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Still, some qualitative observations can be made. DDQN shows a relatively stable
convergence pattern. The TD error consistently oscillates around zero after an initial
exploration phase. PPO is more volatile in its loss values over the training period.
Despite this instability, final performance evaluation matters more than learning progress
alone. While DDQN appears to show a more structured stabilization process, the actual
effectiveness of each model will be determined by their ability to generalize the hedging
strategy in the test environment.

In Figure 4.4, we observe the mean training reward of the batches throughout the
training phase for both PPO (orange) and DDQN (blue).

Figure 4.4: Training rewards.

PPO starts off with strong improvements, rewards increase quickly within the first 50
batches. The variance is a lot bigger, meaning PPO fluctuates a lot during training. It
reaches a peak around batch 100, and after that it experience some instability before
stabilizing near batch 200.

DDQN has a more gradual learning curve. The rewards increase consistently with
less variance. The PPO achieves higher peak rewards, but the DDQN shows greater
stability.

The training reward plot shows the differences in models. PPO is more adaptive and
explores aggressively, but it can be unstable. DDQN provides more structured learning
but may take longer to reach optimal performance. The final evaluation will determine
which model generalizes better on the test set.
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4.7 Test Set Performance Analysis
In Figure 4.5, we observe the cumulative returns of each strategy throughout the test
period. The comparison includes the MAC strategy (blue), RSI strategy (orange), DDQN
(green), and PPO (red).

Figure 4.5: Cumulative earnings.

PPO comes out on top over the other strategies. It shows a strong upward trend in
cumulative rewards. There are plenty of successful trades with high returns in PPO, and
the step-like increase in rewards looks promising.

RSI and MAC perform similarly, with slow growth. These strategies look like they
could provide solid returns with little volatility and risk.

DDQN lagged in the beginning, but it caught up over time. It showed higher volatility
than PPO.

The Figure 4.5 clearly shows that both PPO and DDQN execute significantly more
trades compared to the baseline strategies. The number of trades or executions are
always important to analyze in any financial experiment. Increased transactions could be
considered good, as a higher number of correct trades would help the case of a trading
model to be good. But, in the context of FX hedging, the objective is to make fewer,
more high quality trades with longer periods. This optimizes risk management and cost
efficiency.
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PPO earned the most amount of money among all the strategies. It showed its ef-
fectiveness as a policy-based RL approach. DDQN started off slow, but stabilized half
way throughout the test period. RSI and MAC strategies, showed that they can compete
with advanced ML models. Simple technical indicators are a lot cheaper, and if they
produce consistent slower returns, they could be good for risk management.

The performance metrics in Table 4.1 provide a clear picture of how each strategy
performed in the test period. PPO achieved the highest total and annualized return
(14.96% and 4.76%), outperforming all other strategies. The MAC strategy followed
closely with a total return of 12.23% and an annualized return of 3.92%. The RSI-based
strategy had slightly lower returns (10.09% total, 3.25% annualized), while DDQN had
the lowest return (9.09% total, 2.94% annualized).

Metric MAC RSI DDQN PPO

Return Total (%) 12.23 10.09 9.09 14.96
Return p.a. (%) 3.92 3.25 2.94 4.76
Sharpe Ratio 0.09 0.03 0.00 0.20
Maximum Drawdown (%) 2.15 0.77 3.87 1.25
Yearly Volatility (%) 2.97 2.92 3.47 2.48
Beta 0.02 0.02 0.06 0.03

Table 4.2: Performance Metrics for Different Strategies. Best values are highlighted in
gray.

PPO also had the highest Sharpe Ratio (0.20). The MAC strategy came second with
(0.09). RSI had a near-zero Sharpe Ratio (0.03), and DDQN had 0.00. DDQN and RSI
failed to provide any added benefit over the risk the strategy took on itself. PPO came
the best in this metric as well.

The maximum drawdown metric shows the largest losses from peak to trough dur-
ing the test period. RSI had the smallest drawdown (0.77%), followed by PPO with
1.25%. MAC had a slightly higher drawdown of 2.15%, while DDQN had the largest
drawdown (3.87%). This suggests that DDQN lacked stability and struggled to manage
risks.

In terms of volatility, PPO exhibited the lowest yearly volatility (2.48%), reinforc-
ing its great performance throughout the test period. RSI and MAC had similar levels of
volatility (2.92% and 2.97%, respectively). DDQN showed the highest volatility (3.47%),
confirming that its returns fluctuated significantly.

Finally, the beta values show that all strategies had low market sensitivity, meaning their
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returns were largely independent of broader market trends.

In conclusion, PPO was by far the best strategy when looking at all the metrics. It
combined high returns with relatively low risk. MAC also performed surprisingly well,
and showed that for a simple strategy, it can be good. RSI and DDQN provided a close
return performance, but when looking at risk adjusted returns, volatility, and drawdown,
they do not seem good.
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CHAPTER 5
Discussion

5.1 Interpretation of Results
PPO stands out with the highest total and annual returns (14.96% and 4.76%), the
best Sharpe ratio (0.20), and a low maximum drawdown (1.25%). It strikes the right
balance between making money and keeping risks under control. The MAC strategy
is surprisingly good too: it delivers good returns (12.23% total, 3.92% annual) with
moderate volatility. RSI and DDQN lag behind on risk-adjusted measures. RSI hardly
boosts returns relative to risk, and it ends up too conservative. DDQN, despite many
trades, has the highest volatility and drawdown, making it unstable. Overall, PPO is the
clear winner for hedging, while MAC is a good low-cost fallback.

Despite the PPO coming out on top, the DRL models have their weaknesses and this
research highlighted them. They are sensitive to hyperparameters, and their performance
is highly dependent on careful tuning, which makes them difficult to generalize across
different market conditions. There is also high variance in learning, as PPO showed
fluctuating learning curves and DDQN struggled with convergence, leading to inconsistent
performance. Finally, overtrading is a concern, as both DRL models executed significantly
more trades than the baseline strategies. While this indicates high responsiveness, it
does not align with the goals of FX hedging.

5.2 Limitations of the Study
Market Fees Assumptions: The research incorporated all the trading fees which
would be present in the real-world scenario. We have made it as dynamic and realistic as
possible. Still, we have to acknowledge that until tested in real life on new data, with all
the systems connected together, we are unsure of the actual profit. This is the reality of
financial experiments when backtesting.
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5. Discussion

Feature Selection Constraints: The research used simple technical indicators like
RSI, MACD, EMA as features. They are useful for short-term trading strategies. But, in
FX hedging there is a need to rely on long-term macroeconomic factors. Incorporating
these features could improve the model to make long term stable transactions.

Lack of Live Testing: Again, the strategies were evaluated in a backtest on his-
torical data. This missed market impact, execution delays, and weird slippage situations.
A live trading environment brings a lot of other factors, which we could not anticipate.
The results provide insights, but further validation live would be helpful.

Single Currency Pair Analysis: The study focused on USD/CHF. Performance on
other currency pairs remains an open question.

These limitations suggest that further refinements are needed before deploying DRL-based
hedging strategies in real-world financial systems.

5.3 Future Research Directions
Incorporating Macroeconomic Indicators: Variables such as interest rate pro-
jections, inflation data, and geopolitical risk scores could enhance the model’s
predictive capabilities. Additionally, adopting a more rigorous approach to preprocessing
input features, as commonly practiced in quantitative finance, could further improve
model performance. From my experience, standard data science and machine learning
techniques alone are insufficient for financial datasets unless combined with a deep un-
derstanding of proper data preprocessing methods. For future research, I recommend
leveraging the insights from [19] to enhance feature engineering and data preparation.

Extending to Other Currency Pairs: The model should be tested on additional FX
pairs such as EUR/USD, GBP/JPY, and emerging market currencies to assess
its generalizability.

Exploring Hybrid Approaches: A potential improvement would be to combine
DRL with rule-based filters, where traditional indicators act as constraints to prevent
excessive trading.

Deploying DRL in Live Trading: Future research should implement these strategies
in real-time trading environments to assess their feasibility

By exploring these directions, the application of DRL in FX hedging can be further
refined and made more robust for real-world financial decision-making.
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CHAPTER 6
Conclusion

6.1 Summary of Findings
This thesis explored the application of DRL for FX hedging. It introduced a realistic
reward function with the Interest Rate differential incorporated. It compared two
reinforcement learning algorithms with two traditional baseline strategies. It has presented
a realistic fees structure, and comprehensive metrics system. We found that PPO had
the best overall performance, with the highest returns, lowest drawdowns, and strongest
risk-adjusted metrics. The MAC strategy also performed well, with consistent returns,
and acceptable risk adjusted metrics. In contrast, RSI and DDQN did not improve much
on risk-adjusted results: RSI was overly cautious and DDQN produced too much volatility.
These findings show that policy-based RL might be an effective tool for FX hedging,
and that simple moving average crossovers remain a viable alternative. Furthermore,
the study emphasized the importance of feature selection, showing that while technical
indicators such as RSI, MACD, and EMA were useful, incorporating macroeconomic
indicators could enhance model performance.

6.2 Final Thoughts on DRL for FX Hedging
The findings of this research suggest that DRL has potential as an FX hedging tool,
particularly in its ability to dynamically adjust to market conditions. However, its
superiority over traditional strategies remains marginal, and its practical implementation
requires careful calibration of trading frequency and cost considerations. While PPO
demonstrated strong adaptability, traditional approaches like MAC still provided com-
petitive results with fewer trades and lower complexity. Moreover, the agents in DRL
were not able to stick to one position for longer periods which made them execute too
many transactions. This would not work in a real life setting, and is an issue that has to
be solved among other things in order to deploy DRL for FX hedging.
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6. Conclusion

6.3 Potential for Real-World Implementation
For DRL-based FX hedging strategies to be viable in real-world settings, several improve-
ments and considerations must be addressed:

• Integration of Macroeconomic Indicators: Enhancing the feature set with
variables such as interest rate projections, inflation trends, and geopolitical risk
scores could improve decision-making.

• Live Trading Validation: Testing DRL strategies in a real-time trading environ-
ment is crucial to assess their practical viability beyond historical backtesting.

• Cost Optimization: Addressing transaction costs, particularly spreads, fees, and
slippage, is necessary to refine the profitability of DRL-based strategies.

• Hybrid Approaches: A promising direction is the combination of DRL with
rule-based filters. In the context of FX Hedging, a rule that would force the model
to make fewer trades.

Overall, this research contributes to the growing body of work on DRL in finance,
demonstrating the limitations in FX hedging. Future studies should continue refining
the approach, incorporating more economic indicators, and conducting live market tests
to bridge the gap between theoretical performance and real-world applicability.
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Overview of Generative AI Tools
Used

Chat GTP was used to generate the abstract of the thesis. It was used in Section 3.1 to
organize the text, and write small sentences that clearly explain parts of the strategies.
It was used very briefly in Section 4.1 and Subsection 4.4.2. It was used in Section 4.2
to clearly explain and organize the reward function with the formulas. All the larger
paragraphs were written without ChatGPT. Exceptions are Sections 3.3 and 3.4 which
were co-written with ChatGPT, focusing on the organization and structure of the formulas
and text. 1/5 of the thesis was written jointly with ChatGPT.

ChatGPT – Accessed from September 1, 2024, to April 20, 2025.
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Übersicht verwendeter Hilfsmittel

ChatGPT wurde verwendet, um die Zusammenfassung der Thesis zu erstellen. Es wurde
in Abschnitt 3.1 genutzt, um den Text zu strukturieren und kurze Sätze zu formulieren,
die die Teile der Strategien klar erklären. Es wurde sehr kurz in Abschnitt 4.1 und
Unterabschnitt 4.4.2 verwendet. In Abschnitt 4.2 wurde es eingesetzt, um die Belohnungs-
funktion zusammen mit den Formeln klar zu erklären und zu strukturieren. Alle größeren
Absätze wurden ohne ChatGPT geschrieben. Ausnahmen bilden die Abschnitte 3.3 und
3.4, die gemeinsam mit ChatGPT verfasst wurden, wobei der Fokus auf der Organisation
und Struktur der Formeln und des Textes lag. Ein Fünftel der Thesis wurde gemeinsam
mit ChatGPT geschrieben.

ChatGPT – Zugriff vom 1. September 2024 bis zum 20. April 2025.
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