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Abstract

Traditionally, adversarial examples have been defined as imperceptible perturbations that fool deep
neural networks. This thesis challenges this view by examining unrestricted adversarial examples – a
broader class of manipulations that can compromise model security while preserving semantics.
Through extensive experiments, we make three key contributions: First, we demonstrate that the
standard imperceptibility constraint is insufficient for characterizing real-world adversarial threats
through a comprehensive survey of current research. Second, we develop a novel and computationally
efficient method for generating adversarial examples using geometric masks inspired by hCAPTCHA
challenges. Our approach creates adversarial examples that are (1) effective, (2) transferable between
models and (3) more traceable in the model’s decision space – achieving comparable misclassification
rates to existing techniques while requiring significantly less compute. Finally, we investigate im-
proving model robustness by creating ensembles from intermediary ResNet layers using linear probes,
combined with nature-inspired noise during training. While this architectural approach shows promise,
we find that achieving “zero-cost robustness” remains unattainable without adversarial training.
This work advances our understanding of adversarial examples beyond pixel-space perturbations and
provides practical tools for both generating and defending against them. Our findings highlight the
need to rethink how we conceptualize and evaluate adversarial robustness in machine learning systems.

Keywords: Reliability, Robustness, Security, Algorithmic Models



Zusammenfassung

Traditionell wurden adversariale Beispiele als unmerkliche Störungen definiert, die tiefe neuronale
Netze täuschen. Diese Arbeit stellt diese Sichtweise infrage, indem sie uneingeschränkte adversariale
Beispiele untersucht – eine breitere Klasse von Manipulationen, die die Modellsicherheit gefährden
können, während die Semantik erhalten bleibt.
Durch umfangreiche Experimente leisten wir drei wichtige Beiträge: Erstens zeigen wir durch eine
umfassende Untersuchung der aktuellen Forschung, dass die standardmäßige Beschränkung der Un-
merklichkeit für die Charakterisierung realer adversarialer Bedrohungen unzureichend ist. Zweitens
entwickeln wir eine neuartige und rechnerisch effiziente Methode zur Erzeugung adversarialer Beispiele
mithilfe geometrischer Masken, die von hCAPTCHA-Herausforderungen inspiriert sind. Unser Ansatz
erzeugt adversariale Beispiele, die (1) effektiv, (2) zwischen Modellen übertragbar und (3) im Entschei-
dungsraum des Modells besser nachvollziehbar sind – wobei vergleichbare Fehlklassifizierungsraten wie
bei bestehenden Techniken erreicht werden, während deutlich weniger Rechenleistung erforderlich ist.
Schließlich untersuchen wir die Verbesserung der Modellrobustheit durch die Erstellung von Ensembles
aus intermediären ResNet-Schichten unter Verwendung linearer Sonden, kombiniert mit naturinspiri-
ertem Rauschen während des Trainings. Während dieser architektonische Ansatz vielversprechend ist,
stellen wir fest, dass das Erreichen einer “kostenfreien Robustheit” ohne adversariales Training nicht
möglich ist.
Diese Arbeit erweitert unser Verständnis von adversarialen Beispielen über Pixel-Raum-Störungen
hinaus und bietet praktische Werkzeuge sowohl für deren Erzeugung als auch für die Verteidigung gegen
sie. Unsere Ergebnisse unterstreichen die Notwendigkeit, unser Verständnis und unsere Bewertung der
adversarialen Robustheit in maschinellen Lernsystemen zu überdenken.
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Papers

Seeing Through the Mask: Rethinking Adversarial Examples for CAPTCHAs
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Open source software

The majority of time working on this thesis was spent on developing a reproducible research pipeline
for experiments in a compute and GPU memory constrained, containerized environment with locked
dependencies.
Due to the exploratory nature of the work, many of the software built and experiments conducted had
to be discarded.
The following projects were developed as part of this work (in chronological order, with the most
recent first):
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All experiments related to the Self-Ensembling algorithm by Fort et al.
https://github.com/ETH-DISCO/self-ensembling
https://huggingface.co/sueszli/self-ensembling-resnet152

ensemble-everything-everywhere
Pull Request: Optimizing the official Self-Ensembler repository by Fort et al.
https://github.com/stanislavfort/ensemble-everything-everywhere/pull/2

vision
Pull Request: Containerizing TorchVision to build ResNet from scratch.
https://github.com/pytorch/vision/pull/8652

advx-bench
All experiments related to the geometric masks from the paper.
https://github.com/ETH-DISCO/advx-bench
https://huggingface.co/sueszli/robustified_clip_vit

cluster-tutorial
Tutorial on how to circumvent the distributed NFS4 filesystem by attaching the terminal to an inter-
active SLURM job, running an Apptainer to provide root privileges and redirecting all file pointers
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https://github.com/ETH-DISCO/cluster-tutorial
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Chapter 1

Introduction

We have two goals in writing this document. One: fulfilling the requirements for a master’s degree by
presenting and extending our original research [2] in thesis form. Two: offering a fresh and cohesive
perspective on the rapidly evolving and, in our view, really exciting field of adversarial machine
learning to a broader audience, with fewer technical prerequisites. We hope it will be valuable to
those interested.

1.1 Definition

Adversarial examples are closely related to the concept of perturbation methods1.

1.1.1 Perturbation Methods

The origin of perturbations can be traced back to the early days of computational geometry by Seidel et
al. in 1998 [3]. Perturbation techniques in computational geometry address a fundamental challenge:
handling “degeneracies” in geometric algorithms. These are special cases that occur when geometric
primitives align in ways that break the general position assumptions the algorithms rely on.

Example: Perturbation scheme for a Linear Classifier

Consider a simple case of determining whether a point lies above or below a line [4]. While
this classification appears straightforward, numerical issues arise when the point lies exactly
on the line. Such degeneracies can cascade into algorithm failures or inconsistent results. The
elegant solution is to imagine slightly moving (perturbing) the geometric objects to eliminate
these special cases. Formally, we can express symbolic perturbation as pε(x) = x + ε · δ(x)
where x is the original input, ε is an infinitesimally small positive number, the exact value of
which is unimportant and δ(x) is the perturbation function to break degeneracies.

A perturbation scheme should be (1) consistent, meaning that the same input always produces
the same perturbed output (2) infinitesimal, such that perturbations are small enough not to
affect non-degenerate cases and (3) effective in breaking all possible degeneracies.

One powerful perturbation approach is Simulation of Simplicity (SoS) [5–10]. SoS system-
atically perturbs input coordinates using powers of a symbolic infinitesimal. For a point
pi = (xi, yi), the perturbed coordinates become:

(x̃i, ỹi) = (xi + ε2i, yi + ε2i+1) = pi + ε2i · (1, ε)

1Thanks to Prof. Roger Wattenhofer for sharing this piece of unorthodox history.
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This scheme ensures that no two perturbed points share any coordinate, effectively eliminating
collinearity and other degeneracies.

The beauty of perturbation methods lies in their ability to handle degeneracies without explicitly
detecting them, making geometric algorithms both simpler and more robust.

1.1.2 Imperceptible Adversarial Examples

Adversarial examples, first introduced by Szegedy et al. in 2014 [11], follow the same principles as
perturbation methods, but with the opposite objective. Instead of seeking to eliminate degeneracies
(brittleness in the decision boundary), they exploit them to cause targeted misclassifications. Intu-
itively, they can be understood as seeking the closest point in the input space that lies on the “wrong
side” of a decision boundary relative to the original input. This shift, applied to the original input,
creates an adversarial example.

Example: Fast Gradient Sign Method (FGSM)

FGSM is one of the earliest and most widely recognized adversarial attack techniques,
introduced by Goodfellow et al. [12] in the context of visual recognition tasks. Given an input
image x, FGSM generates an adversarial example x′ by perturbing the input in the direction
of the gradient of the loss function with respect to the input.

The perturbation is controlled by a parameter ε > 0 a, which determines the magnitude of the
change based on the direction of change for each pixel or feature in the input x. The model’s
loss function denoted by J , θ represents the model’s parameters and y is the true target label.

It works by calculating the gradient of the loss function with respect to the input, ∇xJ(θ, x, y)
and then adjusting the input in the direction of this gradient. The sign of the gradient,
sign(∇xJ(θ, x, y)), is used to ensure that the perturbation is small, while the ℓ∞-norm
constraint ensures that the change to the input remains “imperceptible” to human ob-
servers [12,13]. More on the concept of imperceptibility later.

The process for generating an adversarial example with FGSM can be expressed as:

x′ = x+ ε · sign(∇xJ(θ, x, y))

Perturbation

In the untargeted version, the perturbation is designed to increase the loss for the correct class.
In the targeted version the perturbation is designed to minimize the loss with respect to the
adversary’s chosen target class, making the model predict it deliberately.

aCommonly ε = 8/255 for 8-bit images, so it stays within the precision constraints of the pixel values.

Digression: Pixel-space constraints do not guarantee imperceptibility

Traditionally, adversarial examples are expected to have two key properties: (1) they should
successfully cause misclassification in targeted models while (2) remaining imperceptible to
human observers [14].
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However, the concept of “imperceptibility [to humans]” as originally proposed by Szegedy et
al. [11] by limiting pixel-space perturbations through an ε-bounded constraint is fundamentally
flawed. This is because the human visual system is not solely reliant on pixel-space information
to interpret images [15,16].

Humans can detect forged low-ε adversarial examples with high accuracy in both the visual
(85.4%) [17] and textual (≥70%) [18] domain. It’s worth mentioning that invertible neural
networks can partially mitigate this issue in the visual domain [19].

Additionally, small ε-bounded adversarial perturbations are found to cause misclassification in
time-constrained humans [20] and primates [21].

Intuition: The Deep Learning Hypothesis

Ilya Sutskever, in his “Test of Time” award talk at NeurIPS 2024 [22], revisited an idea he had
previously only hinted at in interviews. This heuristic has since gained widespread acceptance
and is now even taught in introductory machine learning courses [23].

The idea is straightforward: Human perception operates at a rapid pace. Neurons in the
human brain can fire up to 100 times per second. Humans can complete simple perceptual
tasks within 0.1 seconds. This implies that neurons fire in a sequence of at most 10 times
for such tasks. Consequently, any task that a human can perform in 0.1 seconds can also be
accomplished by a deep neural network with approximately 10 layers [22].

This could explain why adversarial examples transfer to time-constrained humans [20]. It also
suggests that there may be a fundamental limit to the robustness of deep learning models, as
they are inherently limited by the speed of their computations.

At first glance this idea might seem contradictory to the universal approximation theorem
(UAT). However, the UAT only guarantees the existence of a network that can approximate
any continuous function, not the efficiency or speed of computation [24].

While initially discovered in computer vision applications, the attack can be crafted for any domain
or data type, even graphs [25]. Natural language processing models can be attacked by circumventing
the discrete nature of text data [26–28]. Speech recognition systems are vulnerable to audio-based
attacks, where crafted noise can cause system failure [29]. Deep reinforcement learning applications,
including pathfinding and robot control, have also shown susceptibility to adversarial manipulations
that can compromise their decision-making capabilities [30].

1.1.3 Semantics Preserving Adversarial Examples

Imperceptible noise-based adversarial examples are just one type of semantics-preserving adversarial
examples. Other examples include rotating an image by a few degrees or capturing it from a different
angle, which can also cause misclassification. These broader categories of adversarial examples are
often referred to as “unrestricted” [31, 32] or “semantics-preserving” [33–35]. The comparison in
Fig. 1.1 and the illustration in Fig. 1.2 highlight the differences between various kinds of adversarial
examples. Fig. 1.3 shows a collection of naturally occurring adversarial examples, also known as
“natural adversarial examples” [36,37].
This shift in defining adversarial examples, popularized by the “Unrestricted Adversarial Examples
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Figure 1.1: Unrestricted adversarial examples [32].
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Figure 1.2: Semantics preserving/changing perturbations in pixel/latent-space (assuming full accu-
racy).

Challenge” [32] by Google in 2018, has led to a more nuanced understanding of the phenomenon.
It acknowledges that real-world applications, especially in safety-critical contexts, are subject to a
broader range of adversarial attacks than previously assumed and do not always adhere to the “small
perturbation” constraint initially proposed [32].
This paradigm shift towards seeking more meaningful adversarial examples and “spatial robustness”
was first proposed by Gilmer et al. in 2018 [38] and further explored by Engstrom et al. in 2019 [39].
These works lay the theoretical foundation for our research and we believe this approach to be the
most promising for future research in adversarial machine learning.
The challenge of defining semantics is central to this discussion. Without perfect representations
that align with human judgment functions, we must rely on the best available encoders or semantics
preservation metrics [18, 39] as proxies. This pragmatic approach acknowledges the limitations of
current technology while striving for more meaningful adversarial examples.
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Figure 1.3: Natural adversarial examples [37]: Dog vs. Similar looking objects.

1.2 Motivation

Machine learning systems are growing rapidly in scale, capability2 and are increasingly being deployed
in critical applications [43–53].
Ensuring the safety of these systems is widely recognized as one of the most impactful fields for
addressing global challenges [54–56].

Neglectedness. The field of ML safety – which encompasses research areas such as robustness
(resilience to hazards), monitoring (hazard detection), alignment (guiding ML systems’ behavior) and
systemic safety (minimizing deployment risks) – remains significantly overlooked compared to other
domains of machine learning [54, 56]. As estimated by Hilton et al. only about 0.1% of the resources
dedicated to advancing AI capabilities in 2021 were allocated toward mitigating AI risks [57]. That
is, despite a growing consensus that the risks posed by AI systems are significant and warrant urgent
attention [55, 56] and a near-exponential surge in academic interest in adversarial machine learning
since 2014 [58].

Impact. Adversarial attacks and machine learning security extend beyond academic curiosity. Al-
gorithmic models like deep neural networks face several challenges when deployed in high-stakes sce-
narios. (1) They fail to provide clear explanations for decisions, which makes their outcomes hard to
trust. (2) They create additional security risks by expanding the potential attack surface, which we
do not yet fully know how to defend. (3) They can be weaponized to uncover unknown vulnerabilities
(zero-days) at an unprecedented scale.
The issue with a lack of interpretability in high-stakes decisions and model vulnerability appears
clearly in areas like autonomous weapons [59], critical national infrastructure [60–64], financial fraud
detection [65–67], healthcare diagnostics [68–70], autonomous vehicles [71–73] and cybersecurity [74–
76]. Another, more day-to-day example of a model’s vulnerability is the exploitation of conference
paper-reviewer assignment systems, enabling the adversary to preselect reviewers to gain a competitive
advantage [76].

2Today’s LLMs are no longer mere “stochastic parrots”, as they demonstrate compositional generalization [40–42].
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Finally, tools such as the VulnHuntr [77] and Big Sleep [78] models have high potential to be misused
for malicious purposes. The latter has recently been particularly successful in automatically detecting
zero-day exploits in SQLite [78].
This has lead to major companies investing heavily in adversarial machine learning research and
security.

Funding. Microsoft has taken a leading position, spending over $20 billion on cybersecurity initia-
tives, with a significant portion dedicated to machine learning security research and their specialized
ML red team operations [79].
Open Philanthropy has provided $330,000 and $343,235 in funding to Carnegie Mellon University
dedicated to adversarial machine learning research [80].
The MITRE corporation is now cooperating with Microsoft, Bosch, IBM, NVIDIA, Airbus, Deep
Instinct and PricewaterhouseCoopers to develop the Adversarial Machine Learning Threat Matrix for
threat modeling and risk assessment [81].
The Defense Advanced Research Projects Agency (DARPA) has granted nearly $1 million to the
computer vision and adversarial machine learning research team at UC Riverside [82]. Booz Allen
Hamilton, the largest provider of machine learning services for the Federal government, invested in
HiddenLayer, Robust Intelligence [83,84] Shift5, Credo, Hidden Level, Latent, Synthetaic and Reveal
Technology [85,86], all of which are dedicated to machine learning security and robustness research.
These investments reflect a growing recognition of the importance of adversarial machine learning
research and the need for robust, secure and reliable machine learning systems in the industry.

1.3 Threat Modeling

Having established the general concept of adversarial examples, we can now explore the various ways
they can be categorized. Our system is not exhaustive: The field continues to evolve, with new attack
vectors emerging regularly [87]. This is particularly important in threat modeling, where the goal is
to anticipate and defend against potential attacks.
We can differentiate between white-box and black-box attacks. White-box attacks assume complete
knowledge of and access to the target model, while black-box attacks operate with limited or no access
to the model’s internal workings [88]. Interestingly, research has shown that in some cases, black-box
attacks can be more effective than white-box approaches at compromising model security [88].
An attack can be targeted or untargeted. Targeted attacks aim to manipulate the model into producing
a specific, predetermined output, whereas untargeted attacks simply seek to cause any misclassification
or erroneous output [25, 88]. This distinction is particularly relevant in security-critical applications,
where the attacker’s goals may vary from causing general disruption to achieving specific malicious
outcomes.
The method used to generate adversarial examples can be gradient-based, optimization-based or
search-based strategies. For example, some text-based attacks leverage language models to gener-
ate alternatives for masked tokens, ensuring grammatical correctness and semantic coherence [89].
The extent to which adversarial examples are transferable – meaning their ability to fool multiple dif-
ferent models or the human vision system [20] – is another way to differentiate them. Some adversarial
examples demonstrate high transferability across various model architectures, while others are more
model-specific in their effectiveness [90,91]. Recent research has shown that adversarial examples are
more readily transferable between vanilla neural networks than between defended ones [92,93].
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Finally, attacks can either focus on preserving the semantic meaning of inputs or exploit the mathe-
matical properties of models without regard for semantic interpretation [33].

1.4 Latent Representations

The internal latent representations of neural networks, their alignment with human understanding
and the resulting gap between the two (the human-machine vision gap [94]) is a central theme in
adversarial machine learning research. This gap has many practical implications for the robustness
and interpretability of machine learning models.
Neural networks trained with topological features develop substantially different internal representa-
tions compared to those trained on raw data, though these differences can sometimes be reconciled
through simple affine transformations [95]. This finding suggests that while the structural representa-
tions may differ, the underlying semantic understanding might be preserved across different training
approaches.
The Centered Kernel Alignment (CKA) metric enables us to compare neural network representations,
though it comes with important caveats. In biological and artificial neural networks, CKA can show
artificially high similarity scores in low-data, high-dimensionality scenarios, even with random matri-
ces [96]. This limitation is particularly relevant when comparing representations of different sizes or
when analyzing specific regions of interest.
The relationship between network architecture and concept representation has also been explored.
Generally higher-level concepts are typically better represented in the final layers of neural networks,
while lower-level concepts are often better captured in middle layers [97, 98]. This hierarchical orga-
nization mirrors our understanding of human cognitive processing and suggests that neural networks
naturally develop structured representations that align with human conceptual understanding.
The choice of an objective function significantly influences how networks represent information, par-
ticularly when dealing with biased data. Networks trained with Negative Log Likelihood and Softmax
Cross-Entropy loss functions demonstrate comparable capabilities in developing robust representa-
tions [99].
Recent research [100] has demonstrated that neural networks with strong performance tend to learn
similar internal representations, regardless of their training methodology. Networks trained through
different approaches, such as supervised or self-supervised learning, can be effectively “stitched” to-
gether without significant performance degradation. This suggests a convergence in how successful
neural networks represent information.
This aligns with the “Platonic Representation Hypothesis”, which suggests that neural networks are
converging toward a shared statistical model of reality, regardless of their training objectives or ar-
chitectures [101]. As models become larger and are trained on more diverse tasks and data, their
internal representations increasingly align with each other, even across different modalities like vision
and language. This convergence appears to be driven by the fundamental constraints3 of modeling
the underlying structure of the real world, similar to Plato’s concept of an ideal reality that exists
beyond our sensory perceptions. The hypothesis proposes that this convergence is not coincidental but
rather a natural consequence of different models attempting to capture the same underlying statistical
patterns and relationships that exist in reality [101].
Should the “Platonic Representation Hypothesis” hold true, this would either mean that (a) adversarial
examples as we know them are misalignments from a converged model of reality or (b) that there exist
a universal adversarial example that can fool any model, regardless of its architecture, training data
or objective function, converging to a single and shared model of reality.

3Formally: “If an optimal representation exists in function space, larger hypothesis spaces are more likely to cover it.”
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Recent work by Moosavi-Dezfooli et al. [102] have demonstrated the existence of a single perturbation
that can fool most models for all naturally occurring images, adding weight to the latter interpretation,
though the question remains open.

1.5 Mental Models

The question discussed in the previous section is just one of many that remain open and yet have to
be fully explained [103]. Among them are:

• What are adversarial examples?
• Why are the adversarial examples so close to the original images?
• Why do the adversarial perturbations not resemble the target class?
• Why do robustness and accuracy trade-off [104]?
• Why do adversarial examples transfer between models, even on disjoint training sets [11]?
• Why do adversarial examples transfer between models [11]?
• Why do adversarial examples transfer between models and time-limited humans [20]?

Initially, when Szegedy et al. [11] coined the term they proposed that adversarial examples are caused
by (1) neural networks developing internal representations that become increasingly disconnected from
the input features as they progress through deeper layers and (2) that these networks fail to maintain
the smoothness properties typically assumed in traditional machine learning approaches. The idea
was that this lack of smoothness gives them their expressive power, but also makes them vulnerable
to these attacks.

Definition: Manifold

The first attempt to explain adversarial examples by Szegedy et al. [11] used the term
“manifold”, while referring to a data submanifold.

A manifold can be thought of as a low-dimensional structure embedded in a high-dimensional
space, representing the set of valid data points (e.g., natural images) that the neural network
is trained to classify. Mathematically, if the input data lies on a manifold M ⊂ Rm, then M
represents the subset of the high-dimensional input space Rm that corresponds to meaningful
or real-world data.

Szegedy et al. suggest that adversarial examples exploit the structure of this manifold and its
surrounding space. Specifically, adversarial examples are small perturbations r added to an
input x ∈ M, such that the perturbed input x′ = x + r lies off the data manifold but still
within the high-dimensional input space.

Formally, given a classifier f : Rm → {1, ..., k} and its associated loss function Lossf (x, y), an
adversarial example x′ for an input x with true label y can be found by solving:

min
r

∥r∥2 subject to f(x+ r) ̸= y, x+ r ∈ [0, 1]m

where r is constrained to be small (e.g., in terms of its L2-norm). This optimization problem
effectively traverses the space near x, moving off the manifold M, to find regions where the
classifier’s decision boundary behaves unexpectedly.
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The paper suggests that these adversarial examples expose “blind spots” in the learned
representation of the manifold by the neural network. The network’s decision boundary may
extend into regions near M in ways that are not semantically meaningful, allowing adversarial
perturbations to exploit these regions. This phenomenon arises due to the high dimensionality
of the input space and the discontinuous mappings learned by deep networks, which can fail
to generalize smoothly beyond the manifold [103,105–108].

A more rigorous definition of the manifold hypothesis is provided by Khoury et al. [105].

Definition: Realism

A “realistic subspace” can be understood as a subset of the data manifold where the images
appear plausible according to human perception or a given distribution P . A simple formula
that expresses this idea elegantly to quantify realism is derived from the notion of randomness
deficiency in algorithmic information theory [109]:

U(x) = − logP (x)−K(x)

where P (x) is the probability density of the image x under the target distribution and K(x)
is the Kolmogorov complexity of x, representing the shortest description of x in a universal
programming language. This measure, called a “universal critic”, captures how well x aligns
with both the statistical properties of P and its compressibility. A low value of U(x) indicates
that x is realistic, while a high value suggests it is unrealistic [109].

This approach generalizes prior methods by integrating both probabilistic and structural
aspects of realism. It highlights that realism depends not only on adherence to statistical
patterns (e.g., probabilities or divergences) but also on whether an image can be plausibly
generated within the constraints of P . While directly computing K(x) is infeasible due
to its uncomputability, practical approximations (e.g., compression algorithms or neural
network-based critics) can serve as proxies [109].

The distinction between realistic and unrealistic perturbations is crucial for practical applica-
tions, as some adversarial examples may be mathematically valid but physically impossible to
realize in real-world scenarios [110].

The challenge of quantifying realism remains a fundamental problem in machine learning [109].

Since then there have been many attempts at finding a cohesive narrative to explain these counter-
intuitive properties, each with their own limitations and assumptions – some complementary, some
contradictory [111].

Non-robust features & concentration of measure in high dimensions. Most popularly, Ilyas
et al. [111] proposed that features that models learn from can be divided in 3 categories: (1) useless
featurs, to be discarded by the feature extractor, (2) robust features, which are comprehensible to
humans, generalize across multiple datasets and remain stable under small adversarial perturbations
and (3) non-robust features, which are incomprehensible to humans, learned by the supervised model
to exploit patterns in the data distribution which are highly effective for the task at hand but also
brittle and easily manipulated by adversarial perturbations. The authors suggest that the vulnerability
of deep neural networks to adversarial examples is due to their reliance on non-robust features and
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inherent to how the models are optimized to minimize the loss function. In essence, the authors argue
that adversarial vulnerability is a property of the dataset, not the algorithm and by removing these
non-robust features from the training data although the adversarial robustness of the model can be
improved, due to information loss of the most predictive features, the model’s overall accuracy will
decrease. This view is also shared among [112–121].

Theoretical constructions which incidentally exploit non-robust features. A compliment-
ing hypothesis is that because models trained to maximize accuracy will naturally utilize non-robust
data, regardless of whether it aligns with human perception [111] they add a low-magnitude weight
to sensitive variables that can get overamplified by adversarial examples [122, 123]. The assumption
is that this happens due to computational constraints or model complexity.

Insufficient data. Schmidt et al. argue [124] that adversarial vulnerabilities are intrinsic to sta-
tistical learning in high-dimensional spaces and not merely due to flaws in specific algorithms or
architectures. This is a natural consequence of the mental model proposed by Ilyas et al. [111]. They
also argue that due to information loss in a robust dataset, significantly more data is required during
training in order to achieve comparable performance.

Boundary Tilting. A competing view by Tanay and Kim et al. [125,126] suggests that adversarial
examples exist because decision boundaries extend beyond the actual data manifold and can lie un-
comfortably close to it, essentially viewing adversarial examples as a consequence of overfitting. This
observation can be quantified through the concept of adversarial strength, which relates to the angular
deviation between the classifier and the nearest centroid classifier. The authors also argue that this
vulnerability can be addressed through proper regularization techniques.

Test Error in Noise. There might be a link between robustness to random noise and adversarial
attacks [116,127–129]. This might imply that adversarial examples exploit inherent weaknesses in how
models generalize under noisy or perturbed conditions.

Local Linearity. Goodfellow, Shlens and Szegedy et al. [12, 121] argue that even though DNNs
are highly nonlinear overall, their behavior in high-dimensional spaces often resembles that of linear
models. This makes the models vulnerable to small, targeted perturbations similar to how they are
computed by FGSM. However some adversarial examples are successful all while defying the assump-
tion of local linearity and reducing a model’s linearity does not necessarily improve its robustness
either [130].

Piecewise-linear decision boundaries. In the “dimpled manifold hypothesis” [103] the central
claim is that adversarial examples emerge because we attempt to fit high n− 1 dimensional decision
boundaries to inherently low-dimensional data like images (which can be losslessly projected to k ≪ n
dimensions). This leaves redundant dimensions on which adversarial examples will not be judged,
which enables them exist roughly perpendicularly from the true location of the low-dimensional natural
image, by using large gradients. In this mental model adversarial examples can be on-manifold or off-
manifold, based on the angle of the gradients relative to the data manifold.
The authors also suggest that decision boundaries of neural networks evolve during training. This
happens through two distinct phases. First, there is a rapid “clinging” phase where the decision
boundary moves close to the low-dimensional image manifold containing the training examples. This
is followed by a slower “dimpling” phase that creates shallow bulges in the decision boundary, pushing
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it to the correct side of the training examples, without shifting the plane. This gradient-descent-based
process is highly efficient, but it also leaves a brittle decision boundary that can be easily exploited.
This implies that any attempt to robustify a network by limiting all its directional derivatives will
make it harder to train and thus less accurate.
It also explains why networks trained on incorrectly labeled adversarial examples can still perform
well on regular test images, as the main effect of adversarial training is simply to deepen these dimples
in the decision boundary.
Lukas Karner successfully was able to successfully reproduce the experiments from the “Dimpled
Manifold Hypothesis” paper in 2023 [131]. He additionally demonstrated that dimensionality reduction
increases the interpretability of the perturbations to humans [131].
However, despite the experiments being carried out correctly themselves, the chain of reasoning might
be flawed, as shown by a succinct (<100 LoC) counterexample by Yannik Kilcher in 2021 [132, 133].
While the “Dimpled Manifold Hypothesis” implies a relatively uniform vulnerability across all di-
mensions the counter experiment contradicts these assumptions through successful adversarial attacks
constructed by perturbing either an arbitrary subset of selected dimensions or their complement. If
the decision boundary truly “clung” to the data manifold, restricting perturbations to a subset of di-
mensions would not have produced successful adversarial examples. The ability to generate adversarial
examples in complementary subspaces suggests the decision boundary structure is more complex than
just simple dimples.
To summarize, there is no consensus on the root cause of adversarial examples and the field remains
an active area of research. The mental models proposed by different researchers are not necessarily
mutually exclusive and it is likely that the true explanation involves a combination of these factors.

1.6 Defenses

Having discussed the various theories and approaches in explaining adversarial examples, we can now
turn our attention to the countermeasures that have been proposed to mitigate their impact.

1.6.1 Train- and Test-time defenses

A leaderboard of adversarial robustness can be found on the RobustBench platform [134], which pro-
vides a standardized evaluation of adversarial robustness across a wide range of models and datasets.
The platform includes a variety of metrics for evaluating robustness, such as the ℓ∞ and ℓ2 adversarial
perturbation sizes, as well as the robust accuracy under different attack settings.
Several effective strategies have been developed. This collection is by no means exhaustive.

Adversarial Training. One of the least invasive methods to improve adversarial robustness is adver-
sarial training. Incorporating adversarial examples into the training process improves model resilience
by learning from potential attack patterns and helps maintain performance on clean data [135, 136].
However, this requires the anticipated attacks to be known in advance. An alternative would be
introducing derived variables for controlled randomness to input data during training, which is still
effective [137].

Quality Assessment Integration. Implementing image quality assessment combined with knowl-
edge distillation helps detect potentially harmful inputs that could cause incorrect model predic-
tions [138]. Another alternative preprocessing technique is using brain-inspired encoders [139]. This
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method is particularly effective as it does not require model retraining, but depending on the prepro-
cessing technique used, it can be computationally expensive.

Moving Target Defense. Using heterogeneous models, diversifying the model structure, using
ensembles and dynamic model switching can protect against white-box adversarial attacks. This
approach will make attack vectors that work on one model ineffective on others [140].

Statistical Detection. Statistical tests can be employed for some signal-based deep learning sys-
tems to detect adversarial examples. This includes analyzing a peak-to-average-power ratio and ex-
amining softmax outputs of the model [141].

Enhanced Transformation. Transformation-based defense strategies, such as using generative ad-
versarial networks (GANs), can help recover from adversarial examples. These methods can counteract
adversarial effects while maintaining or even improving classification performance [142].
The countermeasures discussed so far provide a diverse array of techniques to mitigate the impact of
adversarial examples. Each method addresses specific aspects of the problem, ranging from input pre-
processing to model architecture adjustments and training methodologies. Notably, hybrid strategies
that combine multiple techniques often yield the best results, with some implementations achieving
reliable performance even under sophisticated attack benchmarks [143].

1.6.2 Architectural Defenses

Assuming that robustness and generalizability are not competing objectives but complementary goals,
the ultimate defense lies in designing architectures that inherently integrate robustness and inter-
pretability [144]. By prioritizing these objectives at the core of model development, we can create
systems that not only withstand adversarial attacks but also offer more trustworthy and transparent
decision-making.

Fermi-Bose Machine. One noteworthy example is the Fermi-Bose Machine [145]. Unlike tra-
ditional neural networks that rely on backpropagation, this method introduces a local contrastive
learning mechanism inspired by quantum mechanics principles. The system works by making rep-
resentations of inputs with identical labels cluster together (like bosons), while representations of
different labels repel each other (like fermions). This layer-wise learning approach is considered more
biologically plausible than traditional backpropagation [145]. The researchers demonstrated the ef-
fectiveness of their method on the MNIST dataset, showing that by adjusting the target fermion-
pair-distance parameter, they could significantly reduce the susceptibility to adversarial attacks that
typically disturb standard perceptrons [145]. The key innovation lies in controlling the geometric
separation of prototype manifolds through the target distance parameter, as revealed by statistical
mechanics analysis [145].

Ensemble everything everywhere. A recent (August 2024) state-of-the-art approach works by
multi-resolution input representations and dynamic self-ensembling of intermediate layer predictions [146].
The researchers introduced a robust aggregation mechanism called CrossMax, based on Vickrey auc-
tion, which combines predictions from different layers of the network [146].
The method achieved impressive results without requiring adversarial training or additional data,
reaching approximately 72% adversarial accuracy on CIFAR-10 and 48% on CIFAR-100 using the Ro-
bustBench AutoAttack suite [146]. When combined with simple adversarial training, the performance
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improved further to 78% on CIFAR-10 and 51% on CIFAR-100, surpassing the current state-of-the-art
by 5% and 9% respectively [146].
An interesting secondary outcome of this research was the discovery that gradient-based attacks against
their model produced human-interpretable images of target classes [146]. Additionally, the multi-
resolution approach enabled the researchers to transform pre-trained classifiers and CLIP models into
controllable image generators, while also developing successful transferable attacks on large vision
language models [146].

1.7 Future Directions

Perhaps we should be rethinking unrestricted adversarial examples not as attacks but as indicators
of insufficient generalization, which cannot always be measured by accuracy on a predefined test set
alone.
The most promising path forward may not lie in defending against these examples, but rather in
fundamentally reimagining model architectures with reliability, robustness and interpretability as core
design principles. This way, robustness becomes a natural byproduct of the model’s structure, at no
additional cost.
This perspective suggests that enhancing adversarial robustness requires developing new architectures
from the ground up that inherently exhibit these properties, rather than patching existing systems.



Chapter 2

Experiments: HCaptcha Inspired
Geometric Masks

When studying adversarial examples in computer vision, we are essentially dealing with a black box.
Top-performing models are all deep neural networks, which are notoriously hard to interpret. This
lack of interpretability means we cannot easily pinpoint why these models make certain decisions or
more importantly, why they fail. This presents a challenge when trying to understand and mitigate
adversarial vulnerabilities.
To address this challenge, we’ve adopted two guiding principles: (1) keeping it simple by using basic
geometric shapes to overlay on images and (2) leveraging intermediary layers of neural networks, all
to enhance interpretability.
Each principle will be discussed in a separate chapter.

2.1 Research Motivation

We noticed a gap in research when it comes to unrestricted adversarial examples that exploit the
human-machine vision gap. One practical application for these types of attacks is in developing
robust CAPTCHAs1, which are widely used to differentiate between humans and bots. The aim is
to create images that machines struggle or ideally fail to recognize, while remaining easily solvable
by humans, to prevent denial-of-service attacks, spam, open-source intelligence scraping and other
malicious activities.
Leveraging CAPTCHAs for adversarial research offers several key benefits: (1) Their real-world ef-
fectiveness is well-established, as demonstrated by widespread adoption from major providers like
Google’s reCAPTCHA and hCaptcha. Studying these systems provides a robust baseline with proven
resilience, allowing researchers to build on existing strengths rather than starting from scratch. (2)
CAPTCHAs present a well-defined challenge with clear success criteria, facilitating future studies on
their transferability to human users. Moreover, this research can be conducted with fewer ethical,
legal, and financial constraints compared to many other experimental setups.
A demo, shown in Figure 2.1, was built to showcase the potential of adversarial examples in CAPTCHAs
and provide an emulation framework of reCAPTCHAv2 for penetration testing purposes. It is com-
posed of two containers responsible for the challenger and the solver, respectively.
The first step in this direction was studying the effectiveness of CAPTCHA solvers for each provider,
in the order of their market share.
Despite Google’s reCAPTCHA having a global market share of at least 99% [147], they have been
shown to be solvable with 100% accuracy using publicly available computer vision models on consumer
hardware, by Plesner et al. [148].

1Completely Automated Public Turing test to tell Computers and Humans Apart
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Figure 2.1: ReCAPTCHAv2 cybersecurity emulation framework
https://github.com/ETH-DISCO/captcha-the-flag

HCaptchas, on the other hand, have remained undefeated in the ongoing attack-defense arms race. In
fact, several dedicated open-source communities collaborating on building a solver for hCaptcha report
low success rates [149,150]. This is coupled with our observation on sophisticated defenses being rolled
out by hCaptcha on an almost weekly basis. Within the last 6 months we were studying hCaptcha, we
observed the obfuscation of metadata and payloads, the introduction of new reasoning-based challenges
through question answering and the introduction of new classification and segmentation challenges.
This leads us to believe that hCaptcha is the most robust CAPTCHA provider on the market today.
Two hCaptcha challenges were selected for our experiments: a classification challenge and a segmenta-
tion challenge. The classification challenge overlays images with simple, predictable patterns like grids
of colored geometric shapes (e.g., circles or squares). The segmentation challenge works by embedding
images within a Perlin-noise-like pattern and overlaying various unrestricted perturbations.
In this scenario, the solver / identity provider acts as the adversary, while the CAPTCHA provider is
the challenger. The adversary aims to bypass the CAPTCHA, and the challenger’s goal is to prevent
this. The adversary’s success is gauged by the solver’s accuracy, whereas the challenger’s success is
measured by the CAPTCHA’s effectiveness.
However, in traditional settings like automated content moderation on social media, the adversary
aims to bypass the system by posting harmful content. Discovering simple geometric masks as robust
black-box adversarial examples that transfer well between moderation systems would enable mass
scale evasion at a fraction of the cost of traditional adversarial examples.

Idea: Evaluation on Synthetic Data

One interesting idea we explored but ultimately set aside was the use of synthetic images for

https://github.com/ETH-DISCO/captcha-the-flag
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Figure 2.2: Evaluation on synthetic data.

adversarial training and evaluation of (natural unrestricted) adversarial examples. Although
promising, it did not quite align with our primary goals. We developed a pipeline that chains
together several advanced models: starting with stable diffusion to generate an image, then
using GPT-2 to caption it. These captions were used as text queries for zero-shot classification
and detection models like CLIP and ViT, which perform exceptionally well but need a prompt
to work. Finally, we used SAM1 for segmentation. This process is illustrated in Figure 2.2.
This is an exciting direction, especially with the advancements brought by FLUX.1 [151], not
sufficiently explored in the current literature, based on our preliminary review.

img = gen_stable_diffusion("an astronaut on mars riding a horse")
query = caption_gpt2(img)
probs = classify_clip(img, query)
boxes, scores, labels = detect_vit(img, query, 0.1)
masks = segment_sam1(img, boxes)

2.2 Experimental Setup

The first series of experiments focused on evaluating the performance of state-of-the-art computer
vision models on hCaptcha challenges. The goal was to assess the performance of solvers and identify
potential vulnerabilities that could be exploited to generate CAPTCHA based adversarial examples.
We targeted a single type of challenge: The classification challenge, which involves overlaying images
with simple, predictable patterns like grids of colored geometric shapes (e.g., circles or squares).
We also studied and reconstructed the segmentation challenge, which embeds images within a Perlin-
noise-like pattern, smooths the edges, adds a slight blur and sometimes incorporates the geometric
masks from the classification challenge on either individual segments or the entire image. However,
given the number of variables involved, we decided to focus on the classification challenge for our initial
experiments and leave the other tasks for future work. Our goal was to establish a reliable baseline, not
to exhaustively explore all possibilities. However, we noticed through small-scale experiments using
SAM1 and SAM2 that it was significantly more difficult to solve than the classification challenge.

Mask Generation. We generated adversarial examples using 4 geometric shapes.
We developed a sublibrary that allows for the parametrizable reconstruction of geometric masks used
in the classification task using the rendering engine pycairo. We created four distinct masks to overlay
on images at varying intensities: “Circle”, “Diamond”, “Square” and “Knit” (the “Word” mask was
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also reconstructed, but omitted as they have been proven to be easy to mitigate [152–154]).
These masks were chosen based on an experiment where we hand-labeled 1600 images from hCaptcha2.
The opacities (alpha values) and densities of these masks were determined through an initial hyperpa-
rameter search, which we’ll discuss later. Figure 2.3 showcases the optimized reconstructions we used
to benchmark the models.
For the segmentation task, we experimented with various background textures, including Perlin noise
and color-encoded multivariate Gaussian distributions. Figure 2.4 shows both a selected example and
its reconstruction. But as mentioned earlier, we decided to focus on the classification challenge for
our initial experiments.

(a)“Circle” mask (b)“Diamond”
mask

(c)“Square” mask (d)“Word” mask

(e)“Circle” mask
(reconstructed)

(f)“Diamond”
mask
(reconstructed)

(g)“Square” mask
(reconstructed)

(h)“Knit” mask
(custom)

(i)Original image
(for reconstruc-
tions)

Figure 2.3: Selected examples by hCAPTCHA and their optimized reconstructions. The “Word”
overlay was omited and replaced with a custom “Knit” mask.

Figure 2.4: Segmentation Challenge. Figure 2.5: Reconstruction (arbitrary parame-
ters).

2Credits to Turlan Kuzhagaliyev.
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Model Selection. We benchmarked 5 SOTA models, that can run on consumer hardware.
To identify the best zero-shot open vocabulary classification, object detection and segmentation mod-
els that can run on consumer hardware, we did a near exhaustive literature review. We looked at
focused research papers [155, 156] and checked out public leaderboards from HuggingFace, TIMM,
PapersWithCode, GitHub Trends, PyTorch benchmarks and more. Our goal was to ensure that the
solver could break CAPTCHAs on any machine with minimal setup.
After the literature review we clustered the models by their architecture family and clustered them
on a scatter plot based on their performance, inspired by [157]. We then selected the top models
from each family and attempted to run them on a consumer machine, assuming that they are publicly
available. This was to test the feasibility of running these models in a real-world scenario.
We chose several models to test, including “ConvNeXt_XXLarge” [158], Open CLIP’s “EVA01-g-14-
plus” [159] and “EVA02-L-14” [160], the original “ViT-H-14-378-quickgelu” [161] and “ResNet50x64” [162].
We highlight results for a subset of these models, specifically ConvNeXt, EVA01, EVA02, ViT-H-
14 and ResNet50. These models were picked to cover key architectures in both convolutional and
transformer-based approaches, allowing us to see how well our masks work across different architec-
ture families. Additionally, we also evaluated a custom adversarially trained ResNet-50, but due to
its poor performance, we decided to exclude it from the final results.
When specific models are not mentioned in tables, experiments or figures, we are implicitly referring
to the average performance of all the models listed.

Dataset Selection. We evaluated against an enriched ImageNet dataset.
For experiments we utilized the enriched ImageNet dataset provided by “visual-layer” on Hugging-
Face. This dataset includes 1,000 distinct classes, offering a comprehensive range of categories for our
experiments.

Evaluation Metrics. We measured accuracy drop and perceptual quality using a proxy metric.
Perceptual quality is about how visually similar the adversarial examples are to the original images.
We used a weighted average metric to get a comprehensive view of image quality. This metric combines
cosine similarity (15% weight) [163], Peak Signal-to-Noise Ratio (PSNR, 25% weight) [164], Structural
Similarity Index (SSIM, 35% weight) [165] and Learned Perceptual Image Patch Similarity (LPIPS,
25% weight) [166]. These weights were chosen to balance the importance of each component in
assessing overall image quality. We decided to omit the Fréchet Inception Distance (FID), due to its
high computational cost. Overall, we want this number to be as high as possible.

Perceptual Quality = 0.15× Cosine Similarity + 0.25× PSNR + 0.35× SSIM + 0.25× LPIPS

On the accuracy front, we looked at how well the models performed in predicting the correct class.
The models output a list of classes sorted by likelihood. We measured accuracy using the top-k
accuracy metric, specifically accuracy@1 (Acc@1) and accuracy@5 (Acc@5). This tells us how often
the correct label is in the top 1 or top 5 predicted classes, respectively. Finally, we calculated the
adversarial accuracy (AdvAcc) as the difference in accuracy between adversarial and benign examples.
This metric gives us a sense of how much the performance decreases relative to the original accuracy.
We want this number to be as low as possible.

Adversarial Accuracy =
(Acc@1adv + Acc@5adv)/2− (Acc@1 + Acc@5)/2 + 1

2
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This brings us to our final evaluation metric, the final score (Score). It is calculated as the difference
between perceptual quality and adversarial accuracy. Ideally, we want this number to be as high as
possible.

Final Score = Perceptual Quality − Adversarial Accuracy

Hyperparameter Search. A grid search attempted to find the best mask parameters.
Having determined our evaluation metrics, dataset and models, we moved on to the hyperparameter
search to find the optimal adversarial masks to benchmark with. We parameterized three variables:
“opacity” (alpha value of the overlay), “density” (shapes per row/column and nesting, ranging from
0-100) and “epsilon” (for white-box FGSM attacks with CLIP-ViT on ImageNet). Using a grid search,
we aimed to find the optimal values for these parameters.
We ran a hyperparameter grid search using the “visual-layer/imagenet-1k-vl-enriched” dataset on Hug-
gingFace, testing 5-20 examples per combination on the validation set. For this phase, we exclusively
used the CLIP ViT model due to its strong adversarial robustness, as highlighted by [167].
Our optimization metric combined the difference in model accuracy before and after applying the
mask with an average of three perceptual quality metrics. To find the best parameters, we selected
examples with the highest perceptual quality for each level of accuracy difference and performed a
linear regression. We then focused on samples above the regression line in multidimensional space.
This approach was more manageable than our attempts with multi-objective optimization involving
multiple variables.
Our initial grid search revealed some interesting patterns. We found that achieving high perceptual
quality generally required a combination of low opacity and high density. Specifically, the optimal
opacity range appeared to be between 50 and 200. Additionally, higher density values consistently
yielded better results. Among the various masks we tested, the diamond mask stood out as offering
the best balance between effectiveness and perceptual quality. Based on these findings, the diamond
mask seemed most promising for the following steps of our experiments. Figure 2.6 shows the trade-off
between accuracy and perceptual quality for the strongest masks, where masks are visually encoded
through shapes, opacities through alpha values and densities through the size of the shapes. A linear
regression line is shown to highlight the areas of interest.
Our second grid search, which combined FGSM perturbations with the chosen masks, revealed some
interesting insights. We found that combining perturbations with the masks generally led to worse
results. The best results were obtained using the diamond mask with FGSM disabled, a density of
50 and opacities of 150 or 170. This further validated our previous findings and hinted that FGSM
should be used with caution when combined with masks. Figure 2.7 shows the trade-off between
accuracy and perceptual quality for the diamond mask combined with different opacities, densities
and perturbation settings.
While these results are not representative of the entire dataset or model space, they provide a good
starting point for our experiments. We can conclude not to use perturbations with the masks. These
initial findings also helped us identify the best configurations in opacity and density, to be used in the
following experiments. The final configurations of each mask are shown in figure 2.3.

2.3 Results

Attack Transferability. We evaluated the individual masks for their transferability between dif-
ferent models by averaging the “final score” across all models. This score serves as a proxy for the
trade-off between adversarial effectiveness and perceptual quality. We found that opacity was the most
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Figure 2.6: Accuracy-perceptibility trade-off: We compare the strength of all our masks with different
opacities and densities against their perceptibility based on our proxy metric.
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Figure 2.8: Accuracy vs. Perceptual Quality Trade-off

significant parameter, regardless of mask specifics. Therefore, we chose the best-performing density
parameter from the hyperparameter search and applied different masks and opacities to the models.
The results of our experiment are visualized in Figure 2.8 and summarized in Table 2.1. The figure
shows a clear trend in the trade-off between adversarial effectiveness and perceptibility. The plot
highlights an inverse relationship between these two factors, as indicated by the polynomial regression
curve of degree 1. This relationship suggests that as the effectiveness of the adversarial attack increases
(lower Δ Accuracy Rank), the perceptual quality of adversarial examples tends to decrease. While
this is somewhat expected, we do see instances where there’s a significant drop in rank (>10) while
maintaining relatively high perceptual quality (>0.4).
The different mask types (circle, square, diamond and knit) and opacity levels show a range of per-
formance across this trade-off spectrum. The scatter plot highlights clusters of points for each mask
type, with some masks consistently striking a better balance between attack effectiveness and percep-
tual quality. Most importantly, these geometric pattern masks transfer well between state-of-the-art
models.
The circle masks, contrary to our initial hyperparameter search, seem the most effective at reducing
accuracy across all models and opacities. The knit mask, on the other hand, has a much smaller
impact on accuracy.
These results demonstrate that using geometric masks is a practical method for generating adversarial
examples with minimal computational demands for benchmarking in future experiments.

Model Robustness. We inspected individual models, examining both the drop in acc@1 and acc@5.
This will give us a more detailed understanding of how the masks impact the individual models. The
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Opacity Mask Δ Acc Rank Quality Score

50

Circle -14.57 0.45 15.02
Diamond -3.27 0.50 3.76
Knit -0.66 0.54 1.19
Square -5.04 0.49 5.54

80

Circle -52.72 0.31 53.03
Diamond -13.72 0.36 14.08
Knit -2.03 0.41 2.44
Square -22.01 0.37 22.37

110

Circle -113.07 0.21 113.27
Diamond -39.55 0.26 39.81
Knit -3.62 0.32 3.93
Square -60.57 0.27 60.84

140

Circle -203.89 0.12 204.01
Diamond -90.79 0.18 90.97
Knit -5.47 0.24 5.71
Square -134.75 0.18 134.94

170

Circle -310.80 0.07 310.88
Diamond -188.92 0.12 189.04
Knit -9.21 0.18 9.39
Square -264.90 0.12 265.02

Table 2.1: Transferability of Masks

results are summarized in Table 2.2 and Table 2.3 for top-1 and top-5 accuracy, respectively.
A negative value indicates an improvement in accuracy, while a positive value indicates a decrease.
Larger values indicate a stronger effect of the adversarial examples.
While the previous perspective on the data compared masks against each other, this view allows us
to compare the models against each other. We can see that while all models show very similar overall
trends in their behavior, the ResNet model seems particularly sensitive to the Diamond and Knit
pattern in contrast to the others. This is particularly interesting, given that the Knit pattern is the
least effective mask overall, as seen in the previous step.

2.4 Conclusion

In our first set of experiments, we tested geometric masks against state-of-the-art models. While the
results yielded several insights, two key takeaways stand out as especially relevant for the rest of this
work.

Geometric mask attacks are simple, effective and transferable. Our experiments show that
hCAPTCHA-inspired geometric masks are (1) simple, (2) effective, noticeably reducing model accu-
racy, and (3) transferable, as they perform similarly across different models. The advantage they
offer over traditional imperceptible black-box adversarial examples is their simplicity, which makes it
feasible to reason about their influence on models, even in latent spaces. This enables us to break
down the complexity of adversarial vulnerabilities and understand the underlying mechanisms that
make them effective.
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Opacity
Model Mask 19% 31% 43% 54% 66%

ConvNeXt

Circle 13.0 33.6 51.2 64.6 69.2
Diamond 4.8 13.6 31.8 49.6 64.6
Knit 2.2 3.2 8.0 11.4 18.0
Square 6.8 18.4 36.4 52.0 65.6

EVA01

Circle 7.2 15.4 33.0 49.2 65.0
Diamond 2.6 8.6 19.6 33.0 54.8
Knit 1.2 1.2 4.4 6.6 10.6
Square 4.2 9.0 17.4 31.4 55.8

EVA02

Circle 9.4 19.0 31.4 50.4 63.8
Diamond 2.4 5.6 10.6 19.0 38.0
Knit 2.8 4.8 5.2 6.8 8.8
Square 6.8 12.4 20.8 37.4 61.8

ResNet

Circle 31.0 54.6 60.0 62.4 63.4
Diamond 13.2 31.6 50.4 59.4 62.2
Knit 5.0 11.2 14.4 19.4 27.6
Square 15.2 38.8 56.0 62.2 63.4

ViT-H-14

Circle 5.8 20.6 48.2 70.8 80.2
Diamond 2.0 5.4 15.2 34.4 61.8
Knit 1.6 2.4 2.8 6.2 8.0
Square 3.2 9.6 25.0 54.2 77.2

Table 2.2: Change of Acc@1 in [%].

Opacity
Model Mask 19% 31% 43% 54% 66%

ConvNeXt

Circle 7.60 29.60 54.80 73.40 85.00
Diamond 2.60 8.80 24.20 51.40 71.60
Knit 1.80 2.20 4.60 7.80 13.20
Square 4.80 13.20 28.80 54.80 76.80

EVA01

Circle 4.80 14.00 27.80 50.60 75.40
Diamond 2.40 6.60 14.80 31.00 57.60
Knit 1.40 2.80 4.60 6.20 8.00
Square 3.40 7.00 12.60 28.20 61.00

EVA02

Circle 4.60 12.20 24.40 44.60 65.00
Diamond 1.40 3.60 6.60 14.80 34.80
Knit 0.40 0.40 1.80 3.20 4.80
Square 2.20 6.60 15.00 31.40 63.60

ResNet

Circle 34.20 67.40 80.40 85.40 86.20
Diamond 12.20 28.80 56.00 75.60 85.00
Knit 4.40 8.00 10.20 15.00 20.80
Square 15.20 40.20 66.40 82.20 86.60

ViT-H-14

Circle 2.60 16.20 46.00 77.60 90.80
Diamond 0.20 2.20 10.60 28.60 61.20
Knit -0.60 0.60 1.00 2.00 3.20
Square 1.40 6.40 18.60 50.20 82.80

Table 2.3: Change of Acc@5 in [%].

ResNet is an outlier. We observed that most state-of-the-art architectures exhibited similar ac-
curacy distributions when subjected to geometric masks. However, ResNet stood out as unusually
sensitive to the Diamond and Knit pattern – a curious finding, given that this pattern is the least
effective mask overall when averaged across all models. This suggests that the ResNet model results
should be interpreted with caution, as they may not fully represent the behavior of other models under
geometric mask attacks.



Chapter 3

Experiments: Self-Ensembled ResNet

In this chapter, we present our findings on the self-ensembled ResNet model.

3.1 Research Motivation

The self-ensembled ResNet [146], as presented in the introduction, is a novel approach to enhancing ad-
versarial robustness. It combines multi-resolution inputs with dynamic self-ensembling of predictions
from intermediate layers of the neural network. The multi-resolution input strategy involves feeding
the model multiple versions of an image at different resolutions, inspired by biological mechanisms
like eye saccades, which enhances robustness by forcing the network to process diverse representations
simultaneously. The self-ensembling aspect leverages the inherent robustness of the intermediate layer
predictions, which are less affected by adversarial attacks targeting the final classifier. These predic-
tions are aggregated using a consensus algorithm called “CrossMax”, inspired by Vickrey auctions,
which dynamically selects consistent outputs across layers:

def get_cross_max_consensus_logits(outputs: torch.Tensor, k: int) -> torch.Tensor:
# subtract the max per-predictor over classes
Z_hat = outputs - outputs.max(dim=2, keepdim=True)[0]
# subtract the per-class max over predictors
Z_hat = Z_hat - Z_hat.max(dim=1, keepdim=True)[0]
# get highest k values per class
Y, _ = torch.topk(Z_hat, k, dim=1)
# get the k-th highest value per class
Y = Y[:, -1, :]
assert Y.shape == (outputs.shape[0], outputs.shape[2])
assert len(Y.shape) == 2
return Y

Architecturally, what makes this approach interesting is its ability to use a single ResNet model to
create a “self-ensemble” by decoupling and aggregating predictions from intermediate layers. This
eliminates the need for multiple independent models while still achieving ensemble-like robustness.
Additionally, the use of multi-resolution inputs and stochastic augmentations reduces the attack sur-
face for adversarial perturbations.
To the best of our knowledge, we are the first team to reproduce, evaluate and improve upon this
approach.

3.2 Experimental Setup

We conducted a series of experiments on the self-ensembled ResNet and the standard ResNet-50 as
a baseline with the same weights, trained on ImageNet to evaluate the new architecture against. We
build upon our findings from the previous chapter.
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Figure 3.1: Hyperparameter search on the reproduced architecture.

Reproduction. We discarded our reproduction after the authors shared their code.
We chose to recreate the architecture1, the CrossMax consensus algorithm and our own distributed
multi-GPU training setup from the ground up, as the authors had not yet shared their codebase, when
we started our experiments. This allowed us to gain a deeper understanding of the model and validate
the hyperparameters used in the original paper.
We ran a set of experiments on CIFAR10 and CIFAR100 to confirm our reproduction was sensible
and to find the best hyperparameters. We used the same ResNet architecture as the authors but
slightly adjusted the training pipeline. Our hyperparameter search space consisted of: the dataset
(CIFAR10, CIFAR100), learning rate (1e-1, 1e-4, 1e-5, 1.7e-5, 1e-6, 1e-7), number of epochs (4, 8, 16)
and CrossMax k (2, 3).
We found the best results with a learning rate of 1e-4, running for 16 epochs and setting CrossMax k
to 2. Interestingly, running more epochs only bumped up performance by less than 1%, so we stuck
with 16 epochs. For CrossMax k, 2 was the sweet spot for both datasets, although CIFAR10 showed
a tiny edge with k = 3 by just 0.1%. These results are visualized in Figure 3.1. When the authors
later shared parts of their implementation and hyperparameters, our findings were in line with theirs,
except for slight differences in the learning rate (3.3e-5 vs 1e-4) and the number of epochs (6 vs 16).
We believe these differences to be due to the computational limits they set for their experiments.
Figure 3.1 shows the results of our hyperparameter search on our reproduction of the self-ensembled
ResNet.
After the authors shared their codebase, we transitioned to their implementation to maintain consis-
tency and ensure our results were directly comparable.

Training Strategy Selection. We compared 23 training configurations.
The author’s code included several improvements not mentioned in the paper, such as random reso-
lution shuffling, which were recommended in the code comments for better results.
We aimed to keep as many hyperparameters unchanged as possible while comparing the impact of
three specific training enhancements: (1) nature-inspired noise, (2) channel shuffling and (3) light
FGSM adversarial training, resulting in 23 possible training configurations.
The nature-inspired noise works by adding noise, applying contrast adjustments, shifting pixel posi-

1Credits to Andreas Plesner.
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tions (jittering) and modifying resolutions. In the last step it combines these augmented outputs into
a multichannel input to enhance training. The random channel resolution shuffling randomly shuf-
fles the resolutions in the stack, while the light FGSM adversarial training applies FGSM adversarial
training for a few epochs to improve adversarial robustness.
Initially, we experimented with each technique independently to evaluate their effects. For exam-
ple, applying random shuffling alone reduced adversarial robustness, whereas combining all three
consistently produced the best results. We did not observe any negative interactions between these
techniques, as they all seemed to complement each other. The results of these experiments are visu-
alized in Figure 3.2 and Figure 3.3. This led us to either exclusively use all three techniques or none
at all in our subsequent experiments. We simply refer to this enhanced training strategy as “natural
training” (or just adversarial training) in the following.
Our initial evaluations of the training strategies focused on CIFAR-10 and CIFAR-100, as specified
in the authors’ codebase. While the original paper also utilized MNIST, we opted for Imagenette due
to its relevance to higher-resolution tasks. However, the aggressive downsampling and upsampling in
the code proved problematic for Imagenette, leading us to exclude it from our preliminary evaluation.
These issues were addressed in our codebase for future experiments.

Dataset Selection. We evaluated on CIFAR-10 only.
Despite implementing and configuring our evaluation pipeline for 3 datasets (CIFAR-10, CIFAR-100
and Imagenette), we only evaluated CIFAR-10 due to time constraints. These constraints were due to
the limited availability of GPUs with at least 80 GB memory, which is required by the self-ensembled
ResNet model. We were unable to reduce the model’s memory requirements, but we did identify
compute bottlenecks in the codebase, some of which we also addressed as a pull request to the authors.
However, as visible in Figure 3.2 vs. Figure 3.3, classifying CIFAR-10 is clearly less challenging than
other datasets for the self-ensembled ResNet and not representative. Therefore, our results should be
taken with a grain of salt and further evaluation is necessary for a comprehensive understanding of
the model’s performance. This should however not diminish the value of our findings on CIFAR-10
and our methodological contributions.

Attack Selection. We attacked the model with FGSM, PGD and 3 geometric masks.
The authors use a general benchmarking suite and visualize their attacks against FGSM. However,
after some consultation2 and manual inspection, we decided to also include Projected Gradient Descent
(PGD) attacks in our evaluation.
For the geometric masks, we extended our rendering pipeline from previous experiments. Building on
the observation that opacity and density of a mask are generally relevant across all models and the
effectiveness of the “Knit” mask on the vanilla ResNet architecture (which we also kept, see Figure
3.4), we parametrized our mask generator with the following parameters: the number of sides (3, 4,
6, 10), the shapes per row and column (2, 4, 10), the number of concentric shapes (1, 2, 3, 4) and
colors (True, False). We generated masks for all combinations of these parameters for our experiments.
Selected examples of these masks are shown in Figure 3.4.
To narrow down the 96 geometric mask attacks, we did a preliminary exploratory analysis. We
focused on the stronger ensemble accuracy (with and without natural training) since the ensemble
consistently outperformed the last layer in all challenging experiments. This is further discussed in
the results section. Figure 3.5 shows the visual results of this analysis. We found that having 4
shapes per column and row, combined with 2 concentric shapes, was the most effective. Surprisingly,
the number of sides had little impact on the mask’s effectiveness, although triangles performed best

2Thanks to Nicholas Carlini for his advice.
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Attack: FGSM targeting Ensemble
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Attack: FGSM targeting combined layers (20, 30, 35)
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Dataset:  cifar10

Figure 3.2: Training strategy combinations on CIFAR10, with the red dotted line for the ensemble.
The X-axis shows layers, the Y-axis shows accuracy, the X-grid shows train configs and the Y-grid
shows different attacks.
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Attack: None
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Attack: FGSM targeting Ensemble
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Attack: FGSM targeting combined layers (20, 30, 35)
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Attack: FGSM targeting layers
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Dataset:  cifar100

Figure 3.3: Training strategy combinations on CIFAR100, with the red dotted line for the ensemble.
The X-axis shows layers, the Y-axis shows accuracy, the X-grid shows train configs and the Y-grid
shows different attacks.
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(a)Triangle mask (b)Square mask (c)Hexagon mask (d)Decagon mask

Figure 3.4: Selected samples of all geometric masks used in our experiments. Masks have varying
sides, count of shapes per row/column, number of concentric shapes and colors.

overall. In every opacity, color, and side combination we tested, using colored masks (like those used by
hCAPTCHA) outperformed monochrome masks by a wide margin. The most important parameters
to vary in the remaining analyses were opacity, the number of shapes per row/column and whether
the model was naturally trained. This leaves us with 3 masks to evaluate on, shown in Figure 3.6.

Backbone Evaluation. We attacked the backbone with the same 3 geometric masks.
The self-ensembler uses the default ResNet-50 implementation from torchvision, pretrained on Ima-
geNet, as its backbone. To provide a reference point for the self-ensemble, we evaluated the backbone
independently with the three masks to which the self-ensemble showed the highest sensitivity, applying
the same range of opacities.
For each mask and opacity combination, we evaluated 9 variants of the backbone by varying the
training conditions. Specifically, we used 3 training epochs (0, 2, 6) and 3 adversarial training fractions
(0, 0.5, 1.0). Each variant was tuned and evaluated with the same opacity. The results of these
experiments are presented in Figure 3.9. We believe that these adjustments, including adversarial
training and tuning, create a fair comparison. This aligns with the self-ensemble, where tuning is
required and linear probes for each intermediate layer are retrained from scratch on the dataset for
each experiment.

3.3 Results

The experiments discussed in this section are illustrated in Figures 3.7, 3.8 and 3.9.

Natural Training. Natural training was not given much attention in the original paper we repro-
duced, even though our experiments consistently show that it plays a key role in achieving robust-
ness. When comparing naturally trained models to non-naturally trained ones, an interesting pattern
emerges: initially, the non-naturally trained model underperforms on benign datasets by around 10%.
However, as attack strength increases—whether through FGSM, PGD, or masks with opacity above
32 – we see the naturally trained model gain a substantial advantage. This is particularly striking
in PGD attacks, where the accuracy of non-naturally trained models can drop close to zero when
targeting the final or intermediate layers. Meanwhile, naturally trained models experience only minor
accuracy reductions under the same conditions.
That said, this does not undermine the value of self-ensembling. In fact, it’s highly effective in most
scenarios, with the ensemble consistently outperforming the final layer. Only a few cases deviate from
this trend. Attacks specifically targeting the ensemble itself are generally ineffective and combining
natural training with self-ensembling produces exceptional results. When natural training is used, the
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Figure 3.5: Limiting mask parameters to the most effective ones for CIFAR10. The lower most plot
encodes the opacity in the x-axis, the better performing ensemble accuracy in the y-axis, the number
of sides in the individual subplots and whether masks are colored or not as the color.
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(a)Two shapes per
row/column

(b)Four shapes per
row/column

(c)Ten shapes per
row/column

Figure 3.6: The 3 most effective geometric masks against the self-ensembled ResNet, based on pre-
liminary analysis. All masks are colored triangles with 2 concentric shapes and a varying number of
per row and column.

ensemble’s accuracy declines much more gradually as attack strength ramps up, compared to models
lacking natural training.
However, we had hoped that this new architecture alone might achieve state-of-the-art robustness
without requiring any form of adversarial training – a concept we refer to as “zero-cost robustness”.
This represents an exciting vision for the future of adversarial robustness research. Unfortunately, our
findings suggest we are not there yet. While self-ensembling with ResNet is a promising step forward,
it’s not sufficient on its own to achieve state-of-the-art robustness without adversarial training.

FGSM vs. PGD. As expected, the PGD attack proves a lot stronger than FGSM when tested
against the self-ensembled ResNet. Despite this, both attacks exhibit similar patterns in terms of
which intermediary layers they impact and the overall shape of intermediary accuracy, as shown in
Figure 3.7. While FGSM reduces accuracy to around 25%, PGD pulls it nearly to zero. This disparity
is most pronounced in the final layer, where PGD leads to a drop in accuracy exceeding 40%.

Geometric Masks. In this set of experiments, we did not rely on perceptibility proxy metrics.
Instead, we manually inspected the masks to evaluate their perceptibility. We observed that the
unrestricted geometric adversarial examples used as masks were not only clearly perceptible but also
caused information loss. Specifically, with an opacity of 128, which left only the contours and rough
edges of shapes visible. Nonetheless we could consistently and accurately identify the underlying class
of the image in every case. The opacity of 128 (in a range from 0 to 255) was the highest exponent of
2 that we could safely identify the underlying class with in every case.
Among the variables involved in geometric mask attacks – such as the number of shape sides, number
of shapes per row and column, number of concentric shapes, enabling or disabling colors and opacity
– we identified the three most effective masks through exploratory analysis. We then fixed those
variables as constants and focused our investigation on two variables: the number of shapes per row
and column and opacity, as they had the most significant impact.
Interestingly, while varying the number of shapes per row and column yielded only marginal differences
of 1-5% in accuracy (as shown in Figure 3.8), changes in opacity consistently led to noticeable drops
in accuracy. Doubling the opacity always resulted in at least a 10% drop in accuracy within our tested
range. Additionally, we observed a “flipping” effect between naturally trained and non-naturally
trained models, which consistently occurred at opacity levels between 32 and 64. This behavior stood
out as the most intriguing finding in this set of experiments and aligns with our current understanding
of the “robustness-accuracy trade-off”, explained in the introduction.
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Figure 3.7: Comparing FGSM and PGD attacks on CIFAR10. The X-axis shows intermediary layers,
the Y-axis shows accuracy, the black line indicates light natural training, dotted horizontal lines show
ensemble performance.
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Figure 3.8: Evaluating the most effective masks on CIFAR10. The X-axis shows intermediary layers,
the Y-axis shows accuracy, the black line indicates natural training, dotted horizontal lines show
ensemble performance.
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Improvements over the Backbone. Similar to the large accuracy drop observed in the self-
ensembled ResNet, especially from opacity 32, we find that simply tuning the backbone on the CI-
FAR10 dataset without incorporating adversarial examples also results in a noticeable accuracy decline.
However, when the backbone is adversarially trained using the same masks it is later evaluated on,
its accuracy significantly improves, outperforming the self-ensembled ResNet and reaching nearly 80%
accuracy. This trend is illustrated in Figure 3.9.
The key insight here is that when adversaries gain access to the mask used for generating adversarial
examples and train their model against it, the effectiveness of the attack diminishes considerably. This
highlights that a “robustified” backbone, trained with adversarial examples in its tuning set, is not
directly comparable to the self-ensembled model in a fair manner.
The self-ensembling approach and naturally trained self-ensemble exhibit an additional advantage:
robustness across all masks, regardless of their specific properties. In contrast, the robustified backbone
shows robustness only to the masks it was specifically tuned with. This finding underscores the
versatility of the self-ensembled ResNet.
However, in a specific case – using 3-sided shapes, 10 shapes per row/column, 2 concentric shapes, with
colors enabled – we observe an anomaly among the high-opacity experiments. Here, even the naturally
trained ensemble underperforms compared to the tuned but non-robustified backbone. While such
exceptions exist, they were observed in less than 1% of all experiments and only under particularly
strong attacks.

3.4 Conclusion

Our key takeaways can be summarized in two important concepts.

Limited Zero-Cost Robustness. One of the central aspirations of this research was to assess
whether self-ensembling architectures could achieve state-of-the-art adversarial robustness without
incurring the computational expense of adversarial training – a concept we refer to as “zero-cost
robustness”. We observed that the accuracy of non-naturally trained models plummeted close to
zero under stronger attacks such as PGD, emphasizing the need for additional mechanisms beyond
architectural improvements for ResNet. Although natural training improved the model’s resilience
massively (maintaining accuracy by over 50% for the highest tested mask opacity), it alone could not
bridge the gap entirely. This suggests that while self-ensembling remains a promising approach, the
vision of achieving robust, attack-resistant models without adversarial training is not yet a reality.

Accuracy Flipping through Natural Training. One of the most intriguing discoveries in our ex-
periments was the “accuracy flipping” phenomenon observed under increasing attack strength. When
comparing naturally trained and non-naturally trained models, we identified a consistent pattern:
non-naturally trained models initially performed better on benign datasets but suffered dramatically
under attack. Naturally trained models, on the other hand, demonstrated great resilience. This be-
havior was especially pronounced when varying the opacity of geometric masks. A critical threshold
emerged between opacity levels of 32 and 64, where naturally trained models began outperforming
their non-naturally trained counterparts.
This “flipping” of accuracy aligns with the broader “robustness-accuracy trade-off”, suggesting that
natural training manipulates a model’s ability to generalize across both benign and adversarial exam-
ples.

Outlook. Future work could explore the use of MINE [168] and Rényi’s α-order matrix-based func-
tional [169] to estimate mutual information between self-ensemble layers and track the movement of
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Figure 3.9: Evaluating the most effective masks on the Backbone. The X-axis shows the ratio of
perturbed masks in the tuning set, the Y-axis shows the number of epochs the model was tuned with.
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latent representations across these intermediate layers. Ideally, these finer-grained metrics, combined
with simple and effective black-box attacks, could lay the groundwork for foundational research in the
intersection of machine learning interpretability and adversarial robustness.
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Overview of Generative AI Tools Used

In this work language models were not used to generate original content. Instead, they solely enhanced
spelling, grammar and style.
The ACM guidelines [170] suggest that using generative models for editing – such as improving gram-
mar, clarity or engagement – does not require disclosure, likening it to traditional tools like Gram-
marly3. However, in the spirit of transparency, we disclose the specific models used and the prompt
given to them for each paragraph.
The following models were used:

• JetBrains Grazie (version 1.7.3)

• Microsoft Github Copilot Pro (version 0.23)

• Antrophic Claude Sonnet 3.5, wrapped by Perplexity (version 2)

• OpenAI GPT-4o, wrapped by Perplexity (version omni)

In almost all cases, the following prompt was used, before minor adjustments were made:

rewrite.
do not alter the meaning of this text.

use full sentences.
do not use enumerations, itemizations, headings

use a simple, clear, to the point style.
do not use useless technical jargon.
do not use flowery language.
prefer transitive phrasal (noun comes inbetween the verb and the preposition).
do not use standard inversions.
do not use semicolons.
do not use serial commas / oxford commas.

do not use dancing metaphores.
do not use the words: AI, significant, delve, dive, deep, uncover, discover, explore, revolutionize, tapestry, intriguing, holistic, intersection, ethical considerations, area, realm, boasts, emerge, embrace, realm, underscore, embody, nestled, vibrant, blend, ample, capture, synergy, in the realm of, paramount, employed.

Alternatively, for quick edits, the following prompt was used:

rewrite. use a casual but academic tone.

3Credits to Maximilian Kleinegger for this finding.
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