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Kurzfassung

Die Integration von Conceptual Modeling (CM) und Machine Learning (ML) hat ein
wachsendes Forschungsfeld hervorgebracht, das als Machine Learning for Conceptual
Modeling (ML4CM) bekannt ist. In diesem werden ML-Techniken zur Unterstützung von
Modellierungsaufgaben wie Klassifizierung, Vervollständigung oder Reparatur eingesetzt.
Ein entscheidender Faktor bei diesen Anwendungen ist die Transformation konzeptueller
Modelle in ML-kompatible Repräsentationen, sogenannte Encodings. Dabei gibt es eine
Vielzahl an Encoding-Strategien, die je nach Anwendungsfall auf unterschiedliche Infor-
mationsquellen innerhalb der Modelle zurückgreifen. Bestehende Arbeiten im ML4CM
Bereich neigen jedoch dazu, Encodings als fixiert zu behandlen und konzentrieren sich
vorwiegend auf die Optimierung von ML-Algorithmen und deren Hyperparametern. Folg-
lich werden Encodings und deren interne Konfigurierbarkeit kaum systematisch evaluiert,
was die Auswahl und Anpassung geeigneter Encodings für spezifische Aufgaben erschwert.

Diese Arbeit schließt diese Lücke durch die Entwicklung und Evaluierung konfigurierbarer
semantischer Encodings für konzeptuelle Modelle. Insbesondere wird untersucht, wie
sich semantische Informationen systematisch extrahieren und in ML-kompatible Reprä-
sentationen überführen lassen. Dazu wird die Methodik der Design Science Research
angewandt und das bestehende CM2ML Framework um einen ArchiMate Parser sowie
vier Encoder erweitert: Bag-of-Words (BoW), Term Frequency (TF), Embeddings und
Triples. Jeder Encoder erfasst unterschiedliche semantische Aspekte und unterstützt
umfangreiche Konfigurationsmöglichkeiten, um Experimente und aufgabenspezifische
Anpassungen zu ermöglichen. Darüber hinaus lassen sich alle Encodings im Framework
interaktiv visualisieren, wodurch sich Parametereffekte in Echtzeit nachvollziehen und
die codierten Merkmale den Bestandteilen im Modell zuordnen lassen.

Zur Evaluation kombiniert die Arbeit einen qualitativen Vergleich anhand definierter
Kriterien mit einer quantitativen Analyse in zwei repräsentativen ML-Aufgaben. Die erste
Aufgabe, Dummy-Klassifizierung, nutzt TF-Encodings um Dummy Views von gültigen
Views zu unterscheiden und untersucht die Auswirkung gängiger NLP-Parameter. Die
zweite Aufgabe, Node-Klassifizierung, zielt auf die Vorhersage von Elementtypen basierend
auf lokalem Kontext und verwendet Triple-Encodings, angereichert mit Embeddings
für Namen und One-Hot-Vektoren für Typen. Die Ergebnisse zeigen die Eignung der
Encodings für spezifische ML4CM-Aufgaben und belegen, dass bestimmte Konfigurationen
die Modellleistung signifikant beeinflussen können.
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Abstract

The integration of Conceptual Modeling (CM) and Machine Learning (ML) has given
rise to a growing research field known as Machine Learning for Conceptual Modeling
(ML4CM), where ML techniques are applied to support modeling tasks such as classifica-
tion, completion, or repair. A crucial factor in these applications is the transformation
of conceptual models into ML-compatible representations, called encodings. A wide
variety of encoding strategies exist that draw on different information sources within
conceptual models, depending on the specific use case. However, existing ML4CM studies
tend to treat encodings as fixed and focus predominantly on tuning ML algorithms or
hyperparameters. Consequently, encoding strategies and their internal configuration
options receive limited scrutiny during evaluation, making it difficult for researchers and
practitioners to select and adapt optimal encodings for specific tasks.

This thesis addresses this gap by developing and evaluating a set of configurable semantic
encodings for conceptual models. Specifically, it investigates how semantic information
(e.g. names, types, contextual relationships) within models can be systematically extracted
and transformed into ML-compatible representations. The work adopts the Design Science
Research methodology and extends the CM2ML framework with an ArchiMate parser
and four semantic encoders: Bag-of-Words (BoW), Term Frequency (TF), Embeddings,
and Triples. Each encoder captures distinct semantic aspects and supports extensive
configurability to enable experimentation and task-specific adaptation. Furthermore, all
encodings can be interactively visualized within the framework, offering real-time insight
into parameter effects and traceability to link encoded features back to their source model
elements.

To evaluate the proposed encodings, the thesis combines a qualitative comparison based
on defined criteria with a quantitative assessment through two representative ML tasks.
The first task, dummy classification, employs TF encodings to distinguish dummy views
from valid ones and explores the impact of common NLP parameters and weighting
schemes. The second task, node classification, aims to predict element types based on
local context, using triple encodings enriched with word embeddings for element names
and one-hot vectors for types. The results demonstrate the suitability of the encodings
for specific ML4CM tasks and that certain encoding configurations can have a substantial
influence on model performance.
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CHAPTER 1
Introduction

Conceptual Modeling (CM) is a foundational technique used in various scientific dis-
ciplines to create abstract, often graphical, representations of real-world domain ob-
jects [RAB+15, MBWM24]. A conceptual model provides a structured way to describe
entities, relationships, and constraints within a specific domain, aiding in the analysis,
design, and communication of complex systems [DLPS18]. CM is widely used, for exam-
ple, in information system design [Oli07], data modeling [Tha13], and business process
modeling [RRIG09]. Models also play an essential role in the field of Model-Driven
Engineering (MDE), where they serve as central artifacts throughout the entire software
development lifecycle [BCW17], supporting tasks such as code generation, validation,
and system integration. Models in this context are typically expressed using elements of
formal modeling languages such as the Unified Modeling Language (UML) [MRRR02]
or ArchiMate [LPJ10], which, in turn, conform to platform-specific metamodels such as
Ecore [SBMP08] or ADOxx [FRK12].
Parallel to advances in CM, Machine Learning (ML) has gained significant traction in
various fields due to its ability to identify patterns, classify data, and make predictions
from large datasets without explicit rule-based programming [JM15]. ML techniques have
been successfully applied in areas such as Natural Language Processing (NLP) [OMK20]
or image recognition [PK17]. As both fields continue to evolve, their convergence has led
to new interdisciplinary applications and research opportunities.
Recently, the intersection of CM and Artificial Intelligence (AI), particularly ML, has
become a growing research focus [BAR23, MS21], leading to three different research
streams: (i) Conceptual Modeling for Machine Learning (CM4ML), where CM techniques
are used to enhance ML applications, (ii) Machine Learning for Conceptual Modeling
(ML4CM), where ML techniques are applied to improve CM tasks, and (iii) CM &
ML, where existing solutions from both fields are combined to solve specific problems.
This thesis is focused on ML4CM research, specifically in leveraging ML techniques to
assist with modeling-related tasks such as model classification [NRR+19] (categorizing
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1. Introduction

models into predefined classes), model completion [BCG+21, WSS22] (predicting missing
elements in incomplete models), or model repair [BHI+20] (identifying and correcting
inconsistencies within models).

Although ML has shown promising results in these applications, the effectiveness of
ML is highly dependent on the way conceptual models are encoded for learning tasks.
Since ML algorithms require structured machine-readable input (e.g., feature vectors),
conceptual models must first be transformed into appropriate representations, known as
encodings. An encoding defines how information from different information sources within
conceptual models is represented, affecting how well an ML algorithm can learn from
and generalize over the data. A recent literature review [AGPB23] categorizes existing
ML4CM encodings into two types: structural encodings, focusing on graph-based features,
capturing model topology and relationships, and semantic encodings, which incorporate
textual and semantic content such as lexical terms, metamodel semantics, and ontologies.

The review also reveals inconsistencies in existing encoding strategies, partly due to
the diversity of ML tasks and application domains, leading to heterogeneous and often
ad hoc approaches. The evident lack of standardized transformation approaches limits
the generalizability of models and results in crucial knowledge being overlooked during
training. This highlights the need for a systematic approach to encoding, particularly in
capturing semantic aspects. This gap forms the underlying motivation and constitutes
the main problem addressed in this thesis, namely, how to effectively encode semantic
information in conceptual models for ML applications.

1.1 Methodology

This thesis adopts the Design Science Research (DSR) paradigm as its methodological
foundation. DSR is well suited for research that aims to create and evaluate purposeful
artifacts in response to identified problems, especially in engineering disciplines such
as software engineering and information systems [HMPR04, PTRC07]. The process
follows an iterative cycle of problem identification, artifact construction, evaluation, and
refinement. In the context of this thesis, the artifacts are a set of semantic encoders
integrated into the Conceptual Models to Machine Learning (CM2ML) framework,
designed to transform conceptual models into ML-compatible representations. In the
following, we describe the key steps of the applied DSR process.

1.1.1 Problem Identification

This research is motivated by the observation that the encoding of conceptual models
for ML is often inconsistent, underexplored, and underutilized. Although there are
various encoding approaches, they are typically adjusted to specific tasks, and different
configurations or other encodings are rarely evaluated. In many cases, studies focus
on comparing ML models but neglect to examine the effects of encoding strategies
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1.1. Methodology

themselves. As a result, the full potential of information embedded in conceptual models
is not utilized effectively.

This thesis addresses this gap by focusing on semantic encodings, i.e., encodings that
extract and transform lexical content from conceptual models. A preliminary review
of the literature and discussions with conceptual modeling experts (thesis supervisors)
helped define a set of concrete research questions (see Section 1.2) that guide this work.

The main goal is to develop a set of semantic encoders that transform conceptual models
to ML-compatible representations. In addition, the semantic encoders should be highly
configurable and generic to support experimentation and broader applicability. For
explainability and manual inspection, the encodings should be visualizable and provide
traceability to trace encoded information back to originating model elements.

1.1.2 Solution Design

The solution was implemented in two main stages. First, a parser for ArchiMate models
was developed and integrated into the CM2ML framework. It supports two commonly
used Extensible Markup Language (XML) formats and transforms models into the
framework’s graph-based Intermediate Representation (IR), which serves as the basis for
subsequent encoding steps.

In the second stage, four semantic encoders were implemented: Bag-of-Words (BoW),
Term Frequency (TF), Embeddings, and Triples. Each encoder captures different aspects
of model semantics, including lexical, structural, distributional, and contextual infor-
mation. The encoders were iteratively extended to support a variety of configuration
parameters and to ensure compatibility with all supported execution environments of
CM2ML, including the interactive visualizer. Furthermore, a common term extractor
was implemented, serving as a reusable preprocessing component for nearly all semantic
encoders.

1.1.3 Evaluation

The evaluation assessed the developed artifacts from two complementary perspectives.
First, functional validation was performed through automated unit tests to ensure the
correctness of the implemented parser and encoders. All components were tested on a
real-world dataset of ArchiMate models to verify compatibility.

Second, a qualitative comparative analysis was performed to assess the characteristics and
suitability of each encoder. A set of comparative criteria was defined to systematically
describe and contrast the encoders. Additionally, two encoders were evaluated in the
context of two illustrative ML tasks to demonstrate their practical effectiveness and to
explore the effects of selected parameter configurations on encoding behavior and ML
performance.

3



1. Introduction

1.2 Research Questions
This thesis is guided by two Research Questions (RQs) that address the feasibility and
characteristics of semantic encodings for conceptual models in the context of ML.

RQ1: To what extent can semantic information in conceptual models be extracted
and encoded into suitable representations for machine learning applications?

This question examines the feasibility of capturing different forms of semantic information
and transforming them into ML-compatible representations. It is addressed through the
implementation of four semantic encoders that reflect different encoding strategies. The
results are discussed in Section 4.6, particularly in relation to the types of semantics each
encoder captures and how they contribute to ML applicability.

RQ2: How do semantic encoding strategies compare in terms of their ability to
preserve information and support machine learning tasks?

This question focuses on comparing the implemented encoders in terms of different
characteristics and on investigating their strengths and weaknesses for ML applications.
It is addressed through a comparative analysis presented in Section 4.6, followed by
an evaluation in Chapter 5, where selected encoding configurations are assessed in two
representative ML tasks.

1.3 Scope
This thesis is situated within the field of ML4CM, specifically addressing the challenge of
encoding conceptual models for ML applications. The work does not aim to develop new
ML algorithms or optimize existing models for specific CM tasks. Instead, it is concerned
with the encoding process itself, a necessary prerequisite to any ML-based pipeline. The
aim is to enable conceptual models to be effectively used in ML applications and provide
configurable transformation mechanisms for experimentation.

The research concentrates on semantic encodings, which are designed to capture the
meaning of model elements by leveraging lexical terms, contextual usage, and metamodel-
level semantics. These encodings contrast with structural encodings, which focus primarily
on graph-based topology and connectivity of elements. Structural encodings have been
addressed in prior work, notably by Müller [Mül24], and are not the focus of this thesis.

Furthermore, this work mainly targets ArchiMate models, a modeling language widely
used in enterprise architecture. Although the semantic encoders are implemented generi-
cally within the CM2ML framework and could, in principle, be applied to other modeling
languages such as UML or Ecore, this thesis limits its scope to ArchiMate.

Finally, due to the extensive configuration space introduced by the implemented encoder
parameters, a full combinatorial evaluation of all parameter settings is out of scope.
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1.4. Contributions

Instead, selected configurations were varied in the evaluation to illustrate their effects on
encoder behavior and ML performance.

1.4 Contributions

This thesis makes several contributions at the intersection of CM and ML, focusing on
the encoding of semantic information in conceptual models and the evaluation of such
encodings.

First, the CM2ML framework was extended to support a new modeling language and
multiple encoding strategies. A dedicated ArchiMate parser was developed, supporting
two common XML serialization formats and offering configurable parameters (e.g., for
processing relationships/views or filtering certain types). The extension of the framework
also includes a set of reusable components, such as a shared term extractor and a utility
module that provides common NLP functionality (e.g., tokenization, embedding retrieval,
word similarity).

Second, the thesis introduces a set of semantic encoders, implemented as part of
CM2ML and grounded in encoding strategies from the existing literature. These include:
(i) a BoW encoder for token- and sentence-based representations, (ii) a TF encoder
supporting uni-, bi-, and n-gram variants with flexible aggregation, (iii) an embeddings en-
coder using pre-trained word vectors with optional pooling, and (iv) a triples encoder that
captures relational structure, enriched with type encodings and embeddings. All encoders
are highly configurable to support systematic experimentation and customization.

Third, the thesis presents both a qualitative and quantitative comparison of
semantic encodings. The qualitative comparison applies a defined set of criteria (e.g.,
granularity, structure, interpretability, ML suitability) to assess the strengths and trade-
offs of each encoder type. Quantitatively, two representative ML tasks are implemented
to evaluate and compare selected encoding configurations: (i) dummy view classification
using TF encodings, and (ii) node classification using triple encodings with embeddings
and one-hot vectors for types. These tasks are evaluated on a (labeled) dataset of
ArchiMate models to demonstrate how specific parameters influence learning performance
and provide a blueprint for future benchmarking.

Finally, the thesis answers two research questions, showing how semantic information
in conceptual models can be systematically extracted and encoded into ML-compatible
formats, and how different encoding strategies compare in their ability to preserve relevant
information and support learning tasks.

1.5 Thesis Structure

The thesis is organized as follows:

5



1. Introduction

• Chapter 2 introduces relevant background and related work, including core
concepts from CM, the ArchiMate language, and ML. It also reviews the related
literature on semantic encoding strategies, establishing a foundation for the encoder
designs and evaluations presented in later chapters.

• Chapter 3 presents the CM2ML framework, detailing its usage modes, technical
architecture, and the newly developed ArchiMate parser. This chapter establishes
the implementation basis for the semantic encoders.

• Chapter 4 describes the implemented semantic encoders. It introduces the
shared term extractor, followed by a presentation of each encoder with details on
implementation, output, parameters, and visualization. The chapter concludes with
a qualitative comparison of the encoders using defined evaluation criteria.

• Chapter 5 reports the evaluation of selected encoders. It introduces the experi-
mental setup and dataset, followed by two evaluation tasks: dummy classification
using TF encodings, and node classification using triple encodings. Both tasks
quantitatively assess the impact of encoding configurations on ML performance.

• Chapter 6 concludes the thesis with a summary, answers to the research questions,
and a discussion of limitations and future work.
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CHAPTER 2
Background & Related Work

This chapter provides the theoretical foundation for the work presented in this thesis. It
introduces the key concepts and formalisms to understand the problem domain and the
proposed solutions. In addition, it contextualizes the thesis within existing research by
reviewing relevant literature.

This chapter is structured as follows. Section 2.1 introduces CM and discusses the
ArchiMate language, which forms the basis for the models processed in this thesis.
Section 2.2 presents relevant ML principles, with a particular focus on the ML models
used in the evaluation of this thesis. Section 2.3 reviews related work in the field of
ML4CM, with a focus on semantic encoding strategies.

2.1 Conceptual Modeling
CM is an abstraction technique for representing knowledge about a system, domain,
or process using formally defined notation and semantics. Its purpose is to capture
relevant information in a way that provides a shared understanding of complex domains
and supports communication between stakeholders, analysis, and automation. CM has
relevance in various engineering disciplines, such as information system design [Oli07],
data modeling [Tha13], or business process management [DRMR13]. CM underpins
MDE, a software engineering approach in which models are treated as first-class artifacts
throughout the software development lifecycle [BCW17]. In MDE, conceptual models
serve not only as documentation, but also as sources for code generation, validation,
transformation, and simulation.

A typical conceptual model is composed of entities (or elements), relationships between
those entities, attributes that describe their properties, and potentially additional con-
straints that restrict valid configurations. Models are expressed using formal modeling
languages, defined by a metamodel that specifies the allowed constructs, their types, and
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2. Background & Related Work

relations. The most prevalent metamodel is Ecore from the Eclipse Modeling Framework
(EMF) [SBMP08], which provides an entire ecosystem of modeling tools, such as the
Object Constraint Language (OCL) [CG12] or the ATLAS Transformation Language
(ATL) for model transformations [JAB+06]. Well-known modeling languages include
UML for designing software architectures [OE20], Business Process Model and Notation
(BPMN) for process modeling [CT12], and Entity-Relationship (ER) diagrams for data
modeling [Che76].

In the remainder of this section, we discuss ArchiMate, a widely used modeling language
to represent Enterprise Architecture (EA).

2.1.1 ArchiMate

In the context of this thesis, ArchiMate serves as the main modeling language for the
parser and semantic encoders developed and evaluated as part of this work. ArchiMate
is a modeling language specifically designed for EA, providing a standardized notation to
represent and analyze alignment between business processes, application systems, and
technological infrastructure.

ArchiMate originated from a research project and has since been adopted and maintained
by the ArchiMate Forum from The Open Group1, a global consortium focused on
developing open standards. Over the years, several extensions have been made to
ArchiMate to accommodate evolving modeling needs. Extensions include the addition of
motivation modeling, implementation and migration concepts, and physical elements. As
of now, the most recent version is ArchiMate 3.2 [Gro], which is also used in this thesis.

The goal of ArchiMate is to provide a coherent and integrated modeling language for
describing different aspects of EA [LPJ10]. It supports the specification of multiple
interrelated architectural domains (e.g., business, application, technology) and allows
the creation of viewpoint-specific representations for various stakeholders. Through its
layered and aspect-oriented structure, ArchiMate enables architects to address both
strategic and operational concerns across business and IT systems [Lan17].

The full ArchiMate framework is shown in Figure 2.1 and is organized along two di-
mensions: layers and aspects. The language defines six layers (Strategy, Business,
Application, Technology, Physical, and Implementation & Migration), each represent-
ing a different level of abstraction within the enterprise. These layers are intersected
by aspects that classify elements based on layer-independent characteristics: Active
Structure (structural elements that display behavior), Behavior (activities, functions, and
processes), and Passive Structure (objects on which behavior is performed). Composite
elements are not directly tied to a single aspect and may combine two or more aspects.
An additional Motivation aspect spans over all layers and captures the reasoning behind
architectural decisions.

1https://www.opengroup.org/archimate-forum/ (Accessed: 28.05.2025)
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2.1. Conceptual Modeling

Figure 2.1: ArchiMate Full Framework (from [Gro])

An example ArchiMate model is shown in Figure 2.2. The model is an excerpt from the
ArchiSurance case study [JBQ12], providing a layered view of various business processes
to handle insurance claims. Elements are colored by layer: yellow for business, blue for
application, and green for technology. Arrows between elements indicate relationships
such as Triggering, Assignment, or Access. The view shows different business actors
(e.g., Customer) assigned to business roles (e.g., Insurant), which are being served
business services (e.g., Claims Registrations) that are realized by business processes (e.g.,
Register). In the lower layer, business processes are supported by application services
(e.g., Customer Data Management) that are realized by application components (e.g.,
CRM System). The lowest layer shows how technology services support the application
layer through technology services (e.g., Database Management), system software (e.g.,
Database Management System), and devices (e.g., Blade System). Information can also
be represented on different abstraction levels, for example, as artifacts (e.g., Customer
Database Tables), data objects (e.g., Customer Data), and business objects (e.g., Customer
Information). Note that the example only shows a single view and, in practice, multiple
viewpoints are used to represent an EA.

ArchiMate models are typically stored in XML files, however, the XML schema is often
tool-specific. In this thesis, we focus on two XML formats: (i) the Archi Tool Storage
Format (file extension .archimate), used by the open-source modeling tool Archi2, and

2https://www.archimatetool.com/ (Accessed: 28.05.2025)
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2. Background & Related Work

Figure 2.2: ArchiMate Example Model (excerpt from [JBQ12])

(ii) the Open Group ArchiMate Model Exchange Format3 (file extension .xml), which
provides a standardized exchange format for interoperability between modeling tools.

2.2 Machine Learning

ML has become a central paradigm in data-driven problem solving and has been in-
creasingly applied to CM tasks in recent years. To understand how semantic encodings
contribute to these tasks, it is essential to understand the basic principles and assumptions
that underlie ML.

ML is a subset of AI and refers to the study of algorithms that enable computers to improve
their performance on a given task through experience, typically by learning from data
rather than relying on explicitly defined rules [Mit97]. Unlike traditional programming,
ML models discover patterns in data representations, making the choice and quality of
those representations, known as encodings, a critical factor in their effectiveness.

3https://www.opengroup.org/xsd/archimate/ (Accessed: 28.05.2025)
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2.2. Machine Learning

ML methods are commonly grouped into three categories: supervised learning, where
models are trained on labeled examples to perform tasks such as classification or regression,
unsupervised learning, which infers patterns from unlabeled data, e.g., through clustering
or dimensionality reduction, and reinforcement learning, where agents learn optimal
behavior through feedback signals. Supervised and unsupervised methods are directly
relevant to the evaluation of semantic encodings, whereas reinforcement learning plays
only a minor role in this thesis.

The remainder of this section introduces the ML models used in the evaluation of this
thesis.

2.2.1 Machine Learning Models

This subsection provides a high-level overview of the ML algorithms used in the evaluation
presented in Chapter 5. The selected models are commonly used in traditional ML
approaches and cover a range of learning paradigms, from linear and probabilistic
classifiers to non-linear ensemble methods and basic Neural Networks (NNs).

For each model, the underlying principles, characteristics, advantages, and limitations
are discussed. This background should help in understanding evaluation results and
interpretation of performance differences between models and encoding strategies.

Logistic Regression

Logistic Regression (LR) is a supervised learning algorithm used for binary classification
and, by extension, for multi-class classification problems. It is one of the most widely
used classification models due to its simplicity and interpretability.

The algorithm models the probability that a given input belongs to a certain class
by applying the logistic (sigmoid) function to a linear combination of input features.
Formally, the predicted probability is given by:

P (y = 1 | x) = 1
1 + e(wx+b) (2.1)

where x is the input vector, w is the weight vector and b the bias term. During training,
the model minimizes the logistic loss (cross-entropy loss) using optimization techniques
such as gradient descent to learn feature weights. For multiclass classification, it is
extended using the softmax function.

LR is a linear, parametric model that is computationally efficient and works well for
linearly separable data. However, it struggles with non-linear relationships and is sensitive
to outliers, as the magnitude of feature values influences both the convergence speed and
the learned coefficients.
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Support Vector Machines

Support Vector Machines (SVMs) are supervised learning algorithms mainly used for
classification, and to some extent for regression. The idea is to find a decision boundary
(hyperplane) that maximally separates the classes in the feature space. For linearly
separable data, this hyperplane is chosen to maximize the margin (i.e., the distance
between the hyperplane and the nearest data points from each class).

For linearly separable data, the hard-margin SVM is used, which solves the following
optimization problem:

min
w,b

1
2∥w∥2 such that yi(wxi − b) ≥ 1, for all i = 1, . . . , n (2.2)

For non-linearly separable data, soft-margin SVMs can be used which optimize using the
hinge loss function, controlled via a regularization parameter C. In addition, SVMs can
also use kernels (e.g., linear, polynomial, radial basis function) to project input data into
a higher-dimensional space to work with data that cannot be separated by a hyperplane
in its original space (i.e., find non-linear decision boundaries).

In contrast to LR, SVMs are deterministic and can be linear or non-linear depending on
the chosen kernel. They can model complex decision boundaries and are robust against
overfitting (especially in high-dimensional spaces) with proper regularization, but they
can be difficult to tune. SVMs also scale poorly with very large datasets, however, the
final model is typically sparse, depending only on a subset of the training data.

Random Forests

Random Forests (RFs) are supervised learning algorithms suitable for both classification
and regression tasks. They are an ensemble method using multiple decision trees, each
trained on a random subset (bootstrap) of the training data and features. The final
prediction is made by aggregating the outputs of individual trees (majority voting for
classification and averaging for regression). This combination of bagging (bootstrap
aggregation) and feature randomness helps prevent overfitting and improves accuracy.

RFs are non-linear, non-parametric, and deterministic. They are not sensitive to feature
scaling, as decision trees rely on relative feature comparisons and split on thresholds, not
absolute distances. Training is computationally expensive and memory-intensive with
a large number of trees, but this can often be parallelized and inference is fast. RFs
generally work well with minimal parameter tuning and can deal with high-dimensional
or missing data.

k-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm is a simple instance-based method, mainly
used for classification but also applicable to regression tasks. It relies on similarity
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between data points and makes predictions based on the closest examples in the training
data. In particular, the algorithm stores all training data and, at prediction time, it finds
the k closest instances to a given input using a distance metric (e.g., Euclidean or cosine).
For classification, the predicted label is the most frequent one among the k neighbors
(majority class). For regression, the prediction is the average of their target values. There
is no explicit training phase, and all computation is performed at prediction time, making
it a lazy learning algorithm.

KNN is non-linear, non-parametric, and deterministic unless ties are broken randomly.
It is highly sensitive to feature scaling, since distance calculations are affected by the
magnitude of features. Therefore, normalization or standardization is typically required
for good performance. It is a lazy learning algorithm with no explicit training phase,
but inference can be computationally expensive for large datasets, as the distance to
all training points must be computed at prediction time. Tuning can also be difficult
with the choice of an appropriate distance metric and the tuning of the parameter k, the
number of neighbors considered, which strongly influences model bias and variance.

Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is a type of Feedforward Neural Network (FNN) used
for classification and regression tasks. It is composed of an input layer, one or more
hidden layers, and an output layer. Each neuron in a layer is connected to all neurons in
the subsequent layer through weighted edges. The model learns by adjusting these weights
during training using backpropagation and stochastic gradient descent to minimize a
loss function (e.g., cross-entropy for classification). MLP can model complex decision
boundaries through non-linear activation functions (e.g., ReLU, sigmoid) between layers.

Multi-Layer Perceptrons (MLPs) are non-linear, parametric, and typically deterministic
unless dropout or stochastic components are used. They are sensitive to feature scaling,
therefore, normalization of inputs is strongly recommended. Training can be computa-
tionally expensive, especially with large networks or datasets, but inference is generally
fast once the model is trained. MLPs require large amounts of data to generalize well and
are prone to overfitting on small datasets. They are flexible, but several hyperparameters
have to be carefully tuned to achieve optimal performance, such as the number of hidden
layers, the number of neurons per layer, activation functions, or learning rate.

2.3 Related Work
The application of ML techniques to conceptual models has gained increasing attention
in recent years, giving rise to the field of ML4CM. In this context, conceptual models
are first transformed into ML-compatible representations, i.e., encodings, which are then
used as input to train ML algorithms for specific tasks, such as classification, clustering,
recommendation, or anomaly detection. The choice of encoding directly constrains the
type and amount of information from which an ML model can learn and generalize.
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Figure 2.3: Semantic Encodings in ML4CM Applications (from [AGPB23])

Thus, a challenge in ML4CM is determining which sources of information from conceptual
models should be included in the encodings and how this information should be encoded
to support effective learning. The work in [AGPB23] addresses these challenges by
conducting a systematic literature review of encoding strategies for conceptual models in
ML-based applications. The authors distinguish between structural information (e.g.,
graph-based features) and semantic information (e.g., lexical terms, metamodel semantics,
or ontological semantics) as main sources of information. They also highlight a lack
of systematic comparison between different encodings and note that many ML4CM
studies focus narrowly on specific tasks, using isolated, custom encoding variants. The
different semantic encoding variants commonly used in ML4CM applications are shown
in Figure 2.3.

In this section, we build on the previous work and provide a focused review of semantic
encoding approaches as relevant to this thesis. This section structures the literature into
three categories: term frequency encodings (Section 2.3.1), embedding-based encodings
(Section 2.3.2), and other semantic encoding strategies (Section 2.3.3).

Complementary to task-specific works which are reviewed in the remaining sections,
several recent studies assess ML4CM methods more holistically. For example, the
authors in [LRCR22] built a framework for model classification that systematically
evaluates different ML models in combination with multiple encoding variants. The work
in [MIL+24] systematically reviews the use of ML to solve MDE problems, discussing
trends, remaining research gaps, and open challenges. The authors in [ARR25] extend
common ML-assisted modeling tasks with eXplainable Artificial Intelligence (XAI) to
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aid in understanding and interpretation of results.

2.3.1 Term Frequency Encodings

A large body of prior work has relied on TF encodings to transform models into feature-
based vector representations. These encodings typically follow a BoW approach, where
models are represented as sets of terms, extracted from element names, types, or other
attributes, which are encoded as sparse vectors containing the frequency of each term.
When limited to individual terms, such representations are referred to as uni-grams.
Extensions include bi-grams and n-grams, which typically capture short structural
sequences by combining connected model elements. These extensions allow the encoding
to include not just lexical, but also contextual and structural information.

To improve term quality and reduce noise, standard NLP techniques such as tokenization,
stemming, lemmatization, stop-word removal, and synonym detection are commonly ap-
plied. In many cases, Term Frequency-Inverse Document Frequency (TF-IDF) weighting
is used to scale term frequencies by their Inverse Document Frequency (IDF), empha-
sizing terms that rarely occur in models. TF-based encodings have the advantage of
being interpretable, are often simple to compute, and are compatible with a variety of
unsupervised and supervised ML algorithms.

The earliest application of TF encodings in CM, is the work in [BCVvdB16], which
proposes bi-grams of connected elements combined with a type-based weighting scheme.
These representations can be used for statistical comparison of models in large-scale
respositories, e.g., clustering, outlier detection, or identification of representative models.
The authors apply standard distance metrics (e.g., Manhattan) along with k-means and
hierarchical clustering, offering improvements to traditional pairwise comparisons.

A closely related approach is presented in [BCvdB16], where uni-gram encodings of
element names, enriched by basic NLP techniques, are used. The resulting vectors are
used for Hierarchical Agglomerative Clustering (HAC) with cosine similarity and results
are visualized using dendrograms to support comparative analysis of large metamodel
repositories.

The use of n-gram encodings for models is further explored in [BC17], where uni-, bi-, and
tri-grams of connected elements are extracted to better capture structural context. Token
normalization and compound-word similarity further improve clustering performance.
HAC with cosine similarity is used again for grouping similar models.

While the above works focus on unsupervised analysis, TF encodings have also been
successfully applied in supervised learning contexts. The AURORA framework, introduced
in [NRR+19], uses uni-, bi-, and n-grams enriched with properties such as typing and
cardinality. These features serve as input to a FNN trained to classify metamodels
into predefined categories. A more detailed evaluation of this approach is provided in a
follow-up work [NDRI+21].
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Clone detection has also benefited from frequency-based encodings. In [BCVDB19],
n-grams are used in conjunction with subtree extraction and modified tree edit distance
(APTED) to identify similar metamodel fragments. The combination of structural and
lexical features together with NLP techniques such as synonym detection (e.g., via
WordNet) and typo correction improve the precision of the method.

A lightweight and unsupervised alternative for automated classification and clustering
of metamodels is explored in [RRR+21]. Here, Apache Lucene is used to index lexical
terms and apply TF-IDF scoring. Despite its simplicity and no training being required,
the method achieves competitive results in classification and clustering.

Another advancement is MemoCNN introduced in [NDRP+21]. It builds on tradi-
tional TF-IDF encoding of n-grams and reshapes the resulting feature vectors into
two-dimensional matrices, allowing metamodels to be processed by Convolutional Neu-
ral Networks (CNNs). This deep learning-based model outperforms AURORA and
demonstrates the potential of frequency-based encodings in combination with neural
architectures.

Lastly, the work in [LC22] presents MAR, a search engine for models. Their approach
focuses on model retrieval rather than classification. Models are encoded as Bag-of-Paths
(BoP) of varying length and indexed using Apache HBase with frequency statistics.
Although no learning algorithm is used, the frequency statistics enable efficient keyword-
based and query-by-example search functionalities.

2.3.2 Embedding-based Encodings
Another common approach to encode semantic information in conceptual models is
through embedding-based encodings. Embeddings can capture semantic similarity,
contextual usage, or structural properties in a format compatible with ML algorithms.
Single terms or larger model fragments are mapped into dense, real-valued vector spaces,
typically using pre-trained language models or neural embedding techniques. Unlike
sparse one-hot or frequency vectors, embeddings preserve semantic proximity by placing
similar concepts closer together in the vector space.

Embedding approaches in CM typically fall into three categories. First, static word
embeddings such as Word2Vec [MSC+13] or GloVe [PSM14] are used to represent tokens
extracted from element names or other attributes. Second, contextual language mod-
els (e.g., BERT [DCLT19] or RoBERTa [LOG+19]) generate embeddings based on the
surrounding context of model fragments. Third, structure-aware neural networks (e.g.,
Graph Neural Networks (GNNs) [WPC+20] or Long Short-Term Memory (LSTM) [HS97]
NNs) derive embeddings by learning directly from model graphs. All three representa-
tions are well suited for similarity-based retrieval, recommendation, classification, and
transformation tasks.

An example of embedding-based recommendation is the system introduced in [GG21],
which supports semantic autocompletion of BPMN models. The method slices models
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into process fragments, encodes them using the Universal Sentence Encoder [CYK+18],
and retrieves similar model sequences based on cosine similarity for recommendation.
The embeddings allow the system to identify semantically similar model fragments even
when labels differ lexically.

Another example with a recommendation use case is the work in [BCG+21], which
presents an NLP-based architecture for semantic autocompletion of partial domain
models. Their system integrates both general-purpose (GloVe) and project-specific
contextual embeddings to suggest candidate elements based on vector similarity. This
allows for personalized context-aware model suggestions that improve over time.

A similar goal is pursued in [WSS22], where the RoBERTa language model is used for
concept recommendation. Metamodels are represented as hierarchical tree structures and
serialized into token sequences through model-to-text transformations. Then, a RoBERTa
model is trained on these sequences using masked language modeling to predict masked
tokens based on context, enabling context-sensitive recommendations during design time.

The application of state-of-the-art NLP techniques to improve partial model-to-model
transformations is explored in [DS22]. BERT-based embeddings with Conditional Random
Field (CRF) sequence tagging and dependency parsing are used to extract semantic
relations (e.g., verb/noun phrases, conjunctive statements, acronyms) from UML and
BPMN models. Embeddings guide the transformation process, enabling more accurate
and context-aware mappings between source and target models. Additional tasks such as
acronym detection are handled using ML classifiers with morphological and contextual
features.

Another work focusing on model transformations is [BCLG22], which proposes a generic
encoder–decoder architecture [CvMG+14] based on LSTM NNs to automate heteroge-
neous model transformations. Models are encoded as trees and embedded using Tree-Long
Short-Term Memorys (LSTMs) into fixed-size vectors. An attention-based LSTM decoder
then learns to generate the target models from examples.

Graph embeddings are used in [LC21] to evaluate the realism of synthetic models generated
through model generators. Real and synthetic models are represented as labeled, directed
graphs, and encoded into graph embeddings through GNN-based message passing and
attention-based aggregation. A GNN classifier is trained to distinguish real from synthetic
models.

Another GNN-based representation learning approach is used in [AGB23] to automate
the ontological stereotyping of UML class diagrams using OntoUML [GWAG15] models.
A conceptual model is transformed into a Conceptual Knowledge Graph (CKG), where
textual features are embedded using a domain-specific GloVe model, which is combined
with meta-properties and ontological stereotypes for node-level representations. The
graphs are input to a GNN, which learns the embeddings for stereotype prediction. The
approach has been further developed in [AB24], which uses the CKG to create BoP
encodings that incorporate node-specific contextual information.
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In the context of bug localization, [LOZ+21] proposes IdentiBug, a deep learning-based
tool that predicts links between bug reports and model elements in UML class diagrams.
They combine Word2Vec embeddings for textual encoding and GraphSAGE [HYL17] for
structural embeddings, framing the task as link prediction between model and bug nodes.

Finally, there has also been work on addressing the limitations of general-purpose
embeddings in [LDC23]. They present WordE4MDE, a set of word embeddings trained
on a corpus of modeling texts using GloVe and skip-gram Word2Vec models. In a follow-
up work [LDC24], they further extend the modeling-specific embeddings by introducing
subword models (FastText), contextual embeddings (BERT), and corpus augmentation
using community data from StackOverflow and StackExchange. Embeddings are evaluated
directly by plugging them into simple ML tasks (e.g., SVM for classification, k-means
for clustering) and they show that WordE4MDE outperfoms standard embeddings in
modeling contexts.

2.3.3 Other Semantic Encodings
In addition to TF and embedding-based approaches, several alternative encoding strategies
have been applied to support ML applications in CM. These approaches differ significantly
in how they represent models and the types of information they include, ranging from
logic-based axiomatic encodings and manually crafted metrics to similarity measures
and specific reinforcement learning encodings. These encodings are less common than
frequency- or embeddings-based encodings as they are often tailored to specific use cases,
but still offer interesting perspectives.

For example, the work in [FSG20] proposes a semi-automated framework to assist in
diagnosing and repairing faulty OntoUML models. Axiomatic encodings are used as
models are transformed into logic-based Alloy specifications, which are used to generate
simulations (model instances). These simulations are annotated by domain experts and
propositionalized into feature matrices, which are used as training data. The main
learning method is a decision tree trained using gain ratio for feature selection and
subgroup discovery is used to extract interpretable repair rules from the annotated
simulations.

Several studies use manually defined metrics as their encoding approach for conceptual
models. Each metric is assigned a value (e.g., how many elements exist in a model)
and combined they form a feature vector that can be used in ML applications. For
example, the work in [OCvdP13] presents an automated method to identify key classes
in reverse-engineered UML class diagrams using supervised ML. Each class is represented
as a feature vector based on 11 class-level metrics (e.g., number of operations, coupling
measures) that serve as predictors. Another work [BSF+18], encodes intermediate BPMN
models using 10 pragmatic features (e.g., edge layout, gateway usage). A FNN is trained
on these features to distinguish novices from experts with high accuracy. The authors
in [SSS22] encode class diagrams as feature vectors based on 17 structural and quality-
related metrics. A deep NN is trained to classify flawed models and guide refactoring.
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Another frequently used encoding approach is using similarity as a central representation
mechanism. The work in [EGB16] presents a system that recommends UML classes in
the design phase, by computing similarities between class elements and using a clustering
algorithm for recommendation. Another work [AAZZ22] trains an FNN to predict
similarity scores between UML diagrams based on vectorized representations of class
names, attributes, and relationships. Finally, the authors in [BRR+16] encode metamodels
either textually (via serialization and bi-grams) or structurally (via EMFCompare), which
are then transformed into proximity matrices (using different similarity measures) for
hierarchical clustering.
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CHAPTER 3
CM2ML Framework

This chapter introduces the CM2ML framework, which provides a modular infrastructure
to transform conceptual models into different ML-compatible encodings. The framework
was originally developed by Müller [Mül24], focusing on structural encodings and UML
models. This thesis extends the previous work on the framework with additional Archi-
Mate support and several semantic encoders. CM2ML is open source and is available as
a monorepo on GitHub 1. In addition, the visualizer is deployed to a website that can be
accessed in the browser 2.

This chapter is organized into three sections, structured as follows. Section 3.1 describes
the usage modes of CM2ML, demonstrating how it can be used in different environments
and use cases. Section 3.2 describes the technical architecture of the framework, including
the key components, the underlying IR for processing models, and the technologies used.
Section 3.3 focuses on the ArchiMate parser, which was developed as part of this thesis to
extend CM2ML with support for ArchiMate models and enable their use in subsequent
encoding steps.

3.1 Usage
This section provides an overview of the usage modes supported by the CM2ML framework.
CM2ML is designed to be modular and accessible in different application contexts, ranging
from interactive encoding exploration of a single model to automated large-scale model
processing. To accommodate these needs, the framework offers multiple interfaces: a
CLI for scripting and reproducibility, a REpresentational State Transfer (REST) API for
integration into web-based environments, a programmatic library for direct use in Node.js
applications, and a visual interface for interactive inspection. The following subsections
describe each usage mode in detail.

1https://github.com/borkdominik/CM2ML
2https://cm2ml.vercel.app/
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3.1.1 CLI
The CLI of CM2ML provides a scriptable way to process conceptual models and generate
encodings. It is the recommended interface for headless execution, automation, and
large-scale dataset processing scenarios, and forms the basis of all experiments conducted
in this thesis (see Chapter 5). Users specify the input models, the desired encoding
method, and configuration parameters directly via command-line arguments. Both, a
single model and a batch of models, can be processed.

A typical CLI command consists of the cm2ml keyword followed by a specific command
name and parameters. An example invocation of a CM2ML CLI command is shown in
Listing 3.1. Here, a batch of ArchiMate models is encoded using the BoW encoder. The
input is a directory containing models (line 1) and the output is written to a JavaScript
Object Notation (JSON) file (line 2). The command also includes flags to control the
general behavior (line 3), a parser-specific parameter (line 4), and an encoder-specific
parameter (line 5). The help text for this command, displaying all supported parameters,
is shown in Figure 3.1.

1 cm2ml batch-archimate-bag-of-words ./models/
2 --out output/encoding-output.json
3 --strict --debug --pretty
4 --relationships-as-nodes
5 --include-types

Listing 3.1: Example CM2ML CLI Command

All commands follow a consistent pattern in terms of input/output and parameter
specification. Each supported modeling language is associated with a set of CLI commands,
organized by encoder type and processing mode. Input models must be provided either
as individual files (for single-mode commands) or as directories containing multiple
models (for batch commands). For example, the command archimate-embeddings
processes a single ArchiMate file, while batch-archimate-embeddings encodes an
entire directory of ArchiMate models. With three modeling languages (ArchiMate, Ecore,
and UML), five structural encoders, four semantic encoders, and two modes of execution
(i.e., single or batch), CM2ML currently provides a total of 54 unique commands. A full
list of available commands can be obtained using cm2ml --help.

The output is produced in JSON format, by default written to standard output, or
optionally saved to a file via the --out flag. Each CLI command exposes parser and
encoder-specific parameters, together with shared flags to control general behavior. These
flags include:

• --out <file>: Path to output file (default: stdout).

• --pretty: Enable pretty-printed JSON output.

• --strict: Enforce strict validation and fail on invalid or unknown input.
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• --debug: Log debug information and validate results (if --strict is also en-
abled).

• --help: Display help message for the selected command.

In batch mode, all files in a directory are processed by default. Thus, the batch commands
additionally support parameters for selective processing:

• --start <n>: Index of the first model to encode.

• --limit <n>: Maximum number of models to encode.

• --continue-on-error If true, the execution will continue when encountering
an error.

Figure 3.1: Help Text of a CM2ML CLI Command

3.1.2 REST API
CM2ML exposes a REST API that enables remote programmatic access to its encoders.
It is stateless, language-agnostic, and built to support dynamic discovery and invocation
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of available encoders. This makes the REST interface particularly useful for integrating
CM2ML into web applications, modeling tools, or external services that require on-demand
encoding capabilities.

The API provides the following endpoints for interaction with plugins:

• GET /health: Returns the number of registered plugins in the framework. This
endpoint is useful for checking the server status.

• GET /plugins: Lists all available encoding plugins, including their parameter
metadata (i.e., parameter name, type, description, and default value).

• POST /plugins/{name}: Invokes the specified encoder plugin with a user-
provided JSON request body. The plugin name corresponds to a parser–encoder
combination (e.g., archimate-term-frequency).

To invoke an encoder, a POST request is sent to the corresponding plugin endpoint.
The request body must be a valid JSON object containing at least the key "input",
which holds an array of serialized models (in plain-text format, e.g., ArchiMate XML).
Plugin-specific parameters can optionally be included as additional top-level keys in the
request body. Unlike the CLI, the REST API does not distinguish between single or
batch input (a single model or more can simply be passed in the input array).

An example request is shown in Listing 3.2 where two serialized ArchiMate models are
processed using the TF encoder with type inclusion enabled (encoder-specific parameter).
For readability, the serialized model inputs are simplified as <model1> and <model2>.
curl http://localhost:8080/plugins/archimate-term-frequency

--header "Content-Type: application/json"
--request POST
--data '{

"input": ["<model1>", "<model2>"],
"includeTypes": true

}'

Listing 3.2: Example CM2ML REST API Request (using cURL)

The response contains the encoding result in JSON format, consistent with the output of
the corresponding CLI command.

In addition to interacting with plugins, the API provides endpoints related to embeddings,
as used, e.g., for visualization of the embeddings encoder (see Section 4.4):

• GET /embedding/{model}/{term}: Returns the word embedding vector for
a specified term from the given model. If the model is not supported, the server
responds with status code 400 (Bad Request), and if the term is not found in the
model’s vocabulary, status 404 (Not Found) is returned.
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• GET /embedding/{model}/{term}/similar: Retrieves the term most simi-
lar to the given term, based on the specified embedding model. Similarly to the
previous endpoint, unsupported models yield status codes 400.

• POST /embedding/pooled/: Accepts a request with a JSON body containing
an array of embedding vectors and a pooling strategy (either mean or max). The
request is validated, and a pooled vector is returned based on the provided strategy.

3.1.3 Library
CM2ML is distributed as a set of modular Node.js libraries, making it easy to integrate
into custom JavaScript or TypeScript applications. The library provides direct program-
matic access to parser and encoder functions, including additional utility functions. All
components of the framework are published as standalone npm packages and are provided
under the cm2ml namespace3. Two additional bundles are provided for convenience:

• @cm2ml/builtin: Exports all built-in parser and encoder plugins, along with
utility functions to compose available plugins. It also includes a pre-configured list
of plugin combinations covering all supported parser–encoder pairs. This package
is browser-compatible and does not include the CLI or REST adapters.

• @cm2ml/cm2ml: Includes all internal modules of the framework, along with the
two pre-configured CLI and REST adapters and their executables.

Developers can import any parser or encoder and invoke it directly in code. Listing 3.3
shows a simple example of using the library to parse and encode an ArchiMate model.
After installing the library, the CM2ML components can be simply imported (line 2).
The model is first loaded from disk (line 5) and parsed into the IR (line 7). The resulting
GraphModel is then passed to the term frequency encoder, which computes the encoding
with TF-IDF weighting enabled (line 9).

1 import fs from 'fs'
2 import { ArchimateParser, TermFrequencyEncoder } from "@cm2ml/builtin";
3
4 // read XML
5 const model = fs.readFileSync("example.archimate").toString();
6 // parse to GraphModel
7 const graphModel = ArchimateParser.invoke(model, { debug: true })
8 // encode model
9 const output = TermFrequencyEncoder.invoke(graphModel, { tfIdf: true })

Listing 3.3: Example CM2ML Library Usage

Advanced users of the library can also use lower-level utility packages, such as @cm2ml/
plugin to define custom encoders or @cm2ml/ir to work directly with the IR.

3https://www.npmjs.com/~cm2ml
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3.1.4 Visualization

CM2ML provides a browser-based interface to visualize the encoding output and parsed
IR of a conceptual model. The visualization is useful to interactively explore parser
behavior, observe effects of encoder parameters in real-time, and understand how model
elements are transformed into ML-compatible formats. The visualizer operates on a
single model at a time and does not support batch processing. However, its strength lies
in the ability to inspect, debug, and understand individual encoding results and trace
them back to their source elements.

Figure 3.2 shows the main view of the CM2ML visualizer. On the left, users can select a
parser and configure its parameters. Below that, the raw input model (e.g., an ArchiMate
XML file) is displayed, along with options to load a model from a local file or remote
URL. The center panel visualizes the parsed IR as a graph and selecting a node highlights
its details, including attributes and links to other elements, in the lower property panel.

Figure 3.2: CM2ML Visualization Interface

On the right, users can choose an encoder and adjust its parameters. The encoding
output is shown below in a panel that changes depending on the selected encoder (e.g.,
BoW list, term-document matrix, embedded vectors, etc.). This visualization allows
users to inspect how specific parameters (e.g., term filters or normalization options)
influence the resulting encoding in real-time. All parser and encoder settings can be reset
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to defaults by using the corresponding reset buttons.

In addition to the graph-based view, the IR can also be rendered as a tree, which can
be more helpful to inspect containment hierarchies and understand the overall model
structure. Figure 3.3 shows the tree layout, where each child node represents a direct
containment or relationship from its parent (i.e., the model).

Figure 3.3: CM2ML Visualization: Tree View of the IR

3.2 Architecture
Figure 3.4 illustrates the overall architecture of the CM2ML framework. The architecture
follows a modular, plugin-based design that separates concerns of parsing, encoding, and
integration layers. At its core, CM2ML transforms conceptual models into encodings
by parsing input data into an IR and applying configurable encoder plugins. Input and
output interactions are handled by adapter components, which expose the framework
through various interfaces such as the CLI, REST API, library, and visualization.

In the remainder of this section, we describe the key components (Section 3.2.1), the IR
(Section 3.2.2), and the enabling technologies (Section 3.2.3) of the framework.

3.2.1 Components
The architecture is built around three central component types: parsers, encoders, and
adapters. Each of these is implemented as a typed plugin that conforms to the interface
provided by the @cm2ml/plugin package. A plugin in CM2ML is a reusable, typed
execution unit with a defined input/output structure and parameter schema. This enables
robust composition and integration within different execution environments.

Plugin composition is a central mechanism in CM2ML to allow flexible combination of
functionality without duplicating logic. It allows two compatible plugins to be chained into
a new plugin, where the output of the first becomes the input of the second. Parameter
schemas are automatically merged during composition, and naming conflicts are resolved
at runtime.

Parsers are responsible for transforming serialized conceptual models (e.g., string content
of XML files) into the framework’s internal graph-based IR. Each parser is specific to
a modeling language (e.g., UML, ArchiMate, Ecore) and serves as the entry point for
encoders. By composing a parser with an encoder, a complete pipeline is formed that
supports the application of any available encoding to a given modeling language. This
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Figure 3.4: CM2ML Architecture

thesis contributes a parser for ArchiMate models, which is described in more detail in
Section 3.3.

Encoders operate on the IR and transform it into structured JSON output. Structural and
semantic encoders are implemented as plugins and support composition, customization,
and batch execution. Batch support is provided by a utility wrapper that applies a given
plugin to every model in an input collection.

Plugins expose typed configuration parameters that include metadata such as name,
description, type, default value, and optional grouping. Supported parameter types
include boolean, number, string, and list<string>. From these declarations, a
validation schema is automatically derived and made available to adapters for validation
and user interaction.

Adapters provide access to plugins in different runtime environments. The @cm2ml/
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plugin-adapter package provides a generic interface for executing and serializing
plugin outputs. Currently, the supported adapters include a CLI, a REST API server, a
browser-based visualizer, and a programmatic library interface for Node.js applications.
Custom adapters can also be defined. All adapters rely on the same plugin interface and
produce encoding outputs in JSON format.

3.2.2 Intermediate Representation

A central design goal of the CM2ML framework is to decouple encoders from the specifics
of modeling languages. This is achieved through a unified IR that provides a common
abstraction layer for conceptual models. Encoders operate exclusively on this IR, making
them agnostic to the input language and reusable across different model types. Thus,
the IR acts as a bridge between language-specific parsers and encoder logic.

The IR is designed to be expressive enough to capture both structural and semantic
information in diverse modeling languages, while remaining simple enough to be processed
efficiently. While it is not possible to anticipate all future modeling scenarios, the IR
aims to generalize over the most common constructs such as elements, relationships,
attributes, and containment. To support extensibility, the IR allows parsers to embed
language-specific metadata where needed.

Each IR instance includes a reference to a language-specific metamodel configuration.
This configuration defines how key attributes, such as identifiers, types, and names, are
accessed in models. It also specifies the list of valid element and relationship types,
which is used for validation and type-sensitive encoding logic. Through this abstraction,
encoders can interact with model elements generically, without hard-coding language-
specific assumptions.

The main view of a model in the IR is a directed, attributed graph. Model elements
are represented as nodes, and their relationships (e.g., associations or connectors) as
edges. Both nodes and edges support arbitrary attributes, each with a declared type
(e.g., string, number, boolean, category). Each node and edge also has a tag, which is
typically initialized based on the source model’s serialization (e.g., the XML tag name)
for traceability. Nodes are uniquely identified and indexed internally to support efficient
lookup. Edges are directed and reference their source and target nodes, with bidirectional
references maintained for fast traversal.

In addition to the graph view, the IR exposes a tree structure over the nodes to represent
containment hierarchies. Each model is required to have a single root node, and any
model without a natural root must define a virtual one. Containment is explicitly tracked
through parent and child references between nodes, and is automatically maintained
when adding or removing nodes.
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3.2.3 Technologies
CM2ML is implemented in the TypeScript programming language [Mic], a statically
typed superset of JavaScript. TypeScript offers several advantages, including improved
maintainability, early error detection, and stronger guarantees of correctness through
static type checking. These benefits are relevant in complex software systems and
have been shown to reduce code smells and improve long-term code quality [BM22].
Compatibility with Node.js [Foub] (or Bun [Ove] as an alternative runtime) enables the
framework to be used in various application scenarios, and since TypeScript transpiles to
JavaScript, the framework can run in both server-side and browser environments.

The project is organized as a monorepo [JJK+18] and managed by Turborepo [Ver],
a high-performance build system optimized for JavaScript and TypeScript codebases.
Turborepo simplifies the configuration and orchestration of development workflows such
as building, linting, and testing. Vite [Inc] and Vitest [AFc] are used for front-end tooling
and unit testing, while Zod [McD] is used to define and validate schemas, particularly
for plugin parameters.

Model files are typically provided in XML format and parsing of these files is handled
by the lightweight and fast htmlparser2 library [Bö]. The CLI is implemented using the
CAC framework [EGO] and the REST API is built with Fastify [Foua], a web server
optimized for speed and low overhead.

The browser-based visualizer is implemented using React [MP] and supported by the
shadcn/ui component library [sha] for modern and accessible User Interface (UI)
elements. It is deployed as a Progressive Web Application (PWA) [FKNW22], with all
data processing and rendering handled client-side. No backend connectivity is required,
and all application state is managed in-browser using the zustand state management
library [Kat] and persisted via the localStorage API4. Graph-based visualizations of
the IR are rendered using the vis-network library [vis] and for tree-based visualizations,
React Flow [wG] is used.

3.3 ArchiMate Parser
The ArchiMate parser extends CM2ML with support for processing ArchiMate models
and transforming them into the framework’s IR. It is implemented as a plugin and through
composition it can be combined with all available semantic and structural encoders.

This thesis implements a parser for ArchiMate models, supporting two XML formats: (i)
Archi Tool Storage format (*.archimate), which is used as the main storage format
in the Archi5 tool, and (ii) The Open Group ArchiMate Model Exchange File Format
(*.xml), which is a standard file format for the exchange of ArchiMate models between
different tools.

4https://developer.mozilla.org/docs/Web/API/Window/localStorage (Accessed:
29.05.2025)

5https://www.archimatetool.com/ (Accessed: 01.06.2025)
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3.3.1 Implementation

The overall pipeline of the ArchiMate parser is defined through plugin composition,
which combines a generic XML parser with a metamodel-specific refinement component.
This modular design separates language-independent parsing logic from language-specific
transformations. The processing steps of the ArchiMate parser are described below.

1) XML Parsing: The generic XML parser is a reusable plugin that converts raw XML
input into an initial instance of the framework’s IR. It is modeling language-agnostic and
performs basic parsing tasks such as:

• For each XML element, an IR node is created with its tag name.

• XML attributes are extracted and converted into typed IR attributes (e.g., string,
number, category)

• Parent-child relationships are established between elements to form a tree structure.

• XML nodes containing text are ignored by default, but a configurable handler
allows parser authors to process these as needed. In the case of ArchiMate, this
is only relevant for models that contain text within purpose, documentation,
and name nodes.

The output of this stage is an unrefined IR object that reflects the document structure but
lacks language-specific semantics such as relationships, types, or metamodel constraints.
No edges are created in the initial IR and it consists only of nodes and their hierarchical
structure.

2) Node Filtering & Cleanup: Irrelevant XML elements such as style (containing
font and color information), layout bounds (i.e., x-and y-coordinates in the diagram),
or other unused tags (e.g., property or profile) are removed. Diagram views may
optionally be preserved or discarded based on the configuration.

3) Format-Specifc Preprocessing: The parser supports two ArchiMate XML serial-
ization formats, each requiring specific preprocessing. A format-detection step dispatches
the model to the appropriate restructuring function. For models in format (i), child
nodes stored in nested <folder> elements are lifted to the root. Text content from
<documentation> or <purpose> children is added to attributes of their parent el-
ement. For models in format (ii), ID attributes are renamed (identifier to id),
container elements (e.g., <elements>, <relationships>) are flattened, and relation-
ship tags are renamed to match a uniform format.
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4) Type Normalization: To ensure compatibility with the current ArchiMate specifi-
cation, the parser replaces deprecated type names with their updated equivalents. For
example, UsedByRelationship is renamed to ServingRelationship or types with
the outdated prefix Infrastructure are replaced with the prefix Technology. In ad-
dition, British is normalized to American spelling (e.g., RealisationRelationship to
RealizationRelationship). The replacements are applied directly to the xsi:type
attribute of relevant elements.

5) Refinement via Handlers: The refinement phase converts the initial IR tree into
a semantically enriched model based on the ArchiMate metamodel. The main task of
the refiner is to hierarchically process the IR and to create relevant edges between nodes.
Each node is matched to a handler in a registry based on its xsi:type or tag. If no
handler is found and strict mode is enabled, an error is thrown, otherwise, the node
is discarded. Element handlers inject default attributes, infer derived properties (e.g.,
layer), and ensure metamodel compliance. Relationship handlers convert nodes into edges
between source and target elements. Optionally, relationships can be represented as
nodes, with explicit source and target edges connecting them to their endpoints. Diagram
handlers optionally connect elements to their respective views.

6) Pruning and Validation: A final pruning step removes unwanted nodes and edges
according to user-specified whitelists or blacklists. These filters support inclusion or
exclusion based on ArchiMate type, allowing fine-grained control over model content. After
pruning, the model is validated against basic constraints, depending on configuration.

Finally, the refined model is returned as a complete IR instance, which is ready for further
processing by the encoders.

3.3.2 Parameters
The parameters of the ArchiMate parser are listed in Table 3.1.
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Parameter Description Type Default

debug If enabled, log debugging informa-
tion.

boolean false

strict If enabled, perform validations and
do not accept invalid models.

boolean false

relsAsNodes Treat relationships as nodes. boolean false

viewsAsNodes Include views and link their respec-
tive elements.

boolean false

nodeWhitelist Whitelist of ArchiMate element
types to include in the model. Root
nodes will never be removed. Ig-
nored if empty.

list<string> []

nodeBlacklist Blacklist of ArchiMate element
types to exclude from the model.
Root nodes will never be removed.

list<string> []

edgeWhitelist Whitelist of edge types to include
in the model. Ignored if empty.

list<string> []

edgeBlacklist Blacklist of edge types to exclude
in the model.

list<string> []

Table 3.1: ArchiMate Parser Parameters
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CHAPTER 4
Encoders

This chapter presents the semantic encoding methods implemented in CM2ML to trans-
form conceptual models into ML-compatible representations. The encoders extract,
quantify, and structure semantic information from conceptual model artifacts in different
ways, which can be controlled through parameters. Four different semantic encoders are
implemented:

• The BoW Encoder (see Section 4.2) extracts raw terms from conceptual models
based on element names, types, or other attributes. The output is a list of
unweighted terms that might require additional preprocessing to be used in ML
scenarios.

• The TF Encoder (see Section 4.3) extends the BoW encoder by quantifying term
occurrences. It optionally computes TF-IDF weights and can produce more ad-
vanced representations such as bi-grams or n-grams that partially include structural
information.

• The Embeddings Encoder (see Section 4.4) maps extracted terms to pre-trained
word embeddings. This encoder supports several general and domain-specific
embedding models and provides fallback strategies to deal with Out-Of-Vocabulary
(OOV) terms.

• The Triples Encoder (see Section 4.5) extracts all element–relationship–element
triples from models. These triples may optionally include element type information
and vector representations, such as embeddings for names or one-hot vectors for
types.

A concept shared by all encoders, except the triples encoder, is the use of a Term
Extractor that serves as a common preprocessing layer. This layer extracts textual
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information from parsed models and applies optional normalization techniques such as
tokenization, stemming, or lowercasing. The term extractor is implemented as a reusable
plugin and is configurable through a set of parameters that define which elements to
include or filter out, how to normalize them, and how to format the output. These
parameters are reused across the encoders. The first section of this chapter (Section 4.1)
describes the term extractor in more detail.

In the remaining sections, the realized semantic encoders are described in more detail.
For each encoder, the following aspects are described: (i) the processing steps of the
transformation, (ii) a sample JSON output created via the CLI, (iii) an overview of
configuration options, focusing on encoder-specific parameters (i.e., without the shared
term extractor parameters), and (iv) a visualization example to demonstrate how encoding
results can be explored interactively in the browser.

To illustrate the encodings, two small example ArchiMate models are used throughout
this chapter, as depicted in Figure 4.1. To demonstrate the visualization examples,
the model in Figure 4.1a is used. Both models are simplified extracts taken from the
ArchiSurance case study [JBQ12] and are designed to contain a representative subset of
elements, relationships, and naming conventions, as present in real-life models.

(a) Example Model A (b) Example Model B

Figure 4.1: ArchiMate example models used throughout this chapter

The final section of this chapter (Section 4.6) provides a comparison of the implemented
semantic encoders and addresses the RQs of this thesis.

4.1 Common Term Extraction
The term extractor serves as a central component in the encoding process and is reused
in several encoders. Its purpose is to extract, filter, normalize, and structure textual
information from conceptual models to prepare it for further transformation. It is
implemented as a reusable plugin in CM2ML and is configured through its own set
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of parameters, which are shared among encoders, in addition to their encoder-specific
configurations.

Figure 4.2 illustrates the role of the term extractor within the overall encoding pipeline.
Initially, raw conceptual models are parsed into an IR that captures their structure as
directed graphs. The term extractor operates directly on this graph-based representation
to selectively extract lexical information and produce a list of terms. Its behavior can
be customized to determine what information to include (e.g., names, types, or other
attributes), how to filter it (e.g., based on term length or stop word lists), how to
normalize it (e.g., tokenization, lowercasing, or stemming), and how to format the output
(e.g., including node identifiers for traceability). The extracted and processed terms are
provided in a standardized data structure that forms the basis for individual encoding
steps. The BoW, TF, and embeddings encoders all internally invoke the term extractor
to obtain terms as input and then apply their encoder-specific transformations (e.g.,
frequency counting in the TF encoder or mapping terms to embedding vectors in the
embeddings encoder) to produce the final encoding output.
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Figure 4.2: Term Extraction Process

The remainder of this section describes the term extractor component in more detail. First,
the internal data structures for representing extracted terms are shown (Section 4.1.1).
Then we describe the individual processing steps (Section 4.1.2), and finally, we describe
the configurable parameters along with examples to illustrate their effect (Section 4.1.3).

4.1.1 Data Structures

To ensure a consistent and extensible representation of extracted lexical content, the
term extractor and related encoders rely on a set of interfaces. These interfaces define
a uniform format for representing extracted terms and their transformations, allowing
reuse across different encoder components. Figure 4.3 shows the main interfaces involved.
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Figure 4.3: Data Structures to represent Terms and Encodings

The central data type used across encoders is the Term interface, which contains two
fields: name, representing the extracted string (i.e., a token), and an optional nodeId,
which preserves traceability by linking the term to its originating model element. This
interface forms the basis for all term-based encodings (highlighted in bold in the figure),
namely:

• BoWEncoding: A simple wrapper that associates a modelId with a list of ex-
tracted Term objects. No transformations are applied beyond the term extraction
phase. This interface is used in the BoW encoder (see Section 4.2).

• TFEncoding: Represents a list of TermFrequency entries, each containing the
term string and its corresponding frequency (which can additionally be weighted
and normalized, e.g., through TF-IDF). This interface is used in the TF encoder
(see Section 4.3).

• EmbeddingsEncoding: Extends the basic Term interface by adding an embed-
ding vector to each term, represented by the TermEmbedding interface. Embed-
dings are fixed-length numeric arrays derived from pre-trained language models.
This interface is used in the embeddings encoder (see Section 4.4).

In contrast to these term-based encodings, the TriplesEncoding interface is specific
to the triples encoder (see Section 4.5) and is used to represent structural element-
relationship-element triples. Each Triple object includes source and target names, a
relationship type, and optionally, source/target types and embeddings. Types may be
represented as strings, indices (number), or one-hot vectors (number[]), depending on
the encoding configuration.
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4.1.2 Processing Steps
The term extractor operates through four sequential processing steps, reflected in the four
parameter groups (see Section 4.1.3), to prepare textual information for the encoders:
inclusion, filtering, normalization, and output.

Inclusion: Determines which textual information from the IR of models is selected
for extraction, including model element names, types, and additional user-specified
attributes.

Filtering: Removes terms that are unlikely to contribute meaningfully to subsequent
encoding tasks. The term extractor performs two main filtering operations: term length
filtering and stop word removal. Terms shorter or longer than user-defined thresholds
are discarded, and by default common English stop words (e.g., a, an, the, are, etc.)
are excluded, as these terms typically carry minimal semantic content. Additional stop
words can be specified, e.g., to include domain-specific words.

Normalization: Normalization harmonizes the extracted terms to improve consistency in
subsequent processing steps. Three basic normalization steps are supported: tokenization,
lowercasing, and stemming. Tokenization splits text into separate terms using predefined
delimiters such as spaces, hyphens, and underscores. Lowercasing ensures uniformity
by simply converting terms to lowercase. Stemming reduces variations of words to a
common root form using the Porter-Stemmer algorithm [Por80]. Future enhancements
could include more advanced NLP techniques, such as context-sensitive tokenization or
lemmatization.

Output: The final processing step generates structured output, optionally including
traceability via node identifiers. Traceability is relevant, for example, for visualization, to
link encoded representations directly back to the original model elements. The current
output format is kept minimal to reduce the overall data being processed and to provide
sufficient flexibility for subsequent encoder processing steps.

4.1.3 Parameters
The behavior of the term extractor is controlled by a set of parameters that control
which textual elements are included, how they are preprocessed, and how the output
is structured. These parameters are shared between all encoders that internally invoke
the term extractor (i.e., BoW, TF, and embeddings encoder) to ensure consistent term
extraction. Table 4.1 summarizes all available parameters, grouped by functional category.
Their effects are described in more detail below.

Inclusion: The inclusion parameters control which textual information is extracted
from the models. When includeNames is enabled, the names of model elements (e.g.,
Customer Database) are extracted as terms. If includeTypes is enabled, the type of
each element (e.g., ApplicationComponent) is also extracted and added to the set of terms.
Additionally, includedAttributes allows specifying any custom element attributes
to be treated as terms (e.g., id or layer attributes in ArchiMate models).
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Parameter Description Type Default

Inclusion
includeNames Extract element names as terms boolean true

includeTypes Extract element types as terms boolean false

includedAttributes Attributes to include as terms list<string> []

Filtering
minTermLength Minimum length of terms number 1

maxTermLength Maximum length of terms number 100

stopWords Stop words to exclude from
terms

list<string> DEFAULT†

Normalization
tokenize Split and clean terms into to-

kens
boolean false

termDelimiters Delimiters used for splitting to-
kens

list<string> [ , -, _]

lowercase Convert terms to lowercase boolean true

stem Apply stemming to terms boolean false

Output
includeNodeIds Include node IDs in output boolean true

separateViews Treat each view separately boolean false

† DEFAULT includes common English stop words such as the, an, of, etc.

Table 4.1: Term Extractor Parameters

Filtering: Filtering parameters are used to exclude irrelevant or undesirable terms.
minTermLength and maxTermLength define the allowed term length range to pos-
sibly remove overly short terms (e.g., single characters) or unusually long ones. The
stopWords parameter specifies a list of words that should be ignored during extraction.
If not explicitly provided, a default list of common English stop words (e.g., the, and, of,
etc.) is used to eliminate high-frequency but low-information terms.

Normalization: Normalization parameters control how the extracted strings are pro-
cessed before being returned as terms. When tokenize is enabled, names are split into
smaller tokens based on defined termDelimiters (e.g., whitespace, hyphens, under-
scores), allowing multi-word names to be represented as multiple terms. lowercase
ensures that all tokens are transformed to lowercase, avoiding mismatches caused by
inconsistent casing. If stem is enabled, the tokens are reduced to their root forms (e.g.,
processing becomes process), helping to generalize the inflections of words.

Output: The output parameters influence how the extracted terms are structured in the
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final output. If includeNodeIds is enabled, each term is linked to the corresponding
node identifier in the model by adding an additional sourceId attribute to each term
in the output. For ArchiMate models, setting separateViews to true causes the
extraction process to treat each view within a model separately, producing distinct term
lists per view instead of aggregating all terms at the model level.

4.2 Bag of Words Encoder
The BoW encoder transforms conceptual models into a list of textual terms that represent
the semantic content of the model. Unlike more advanced encoding techniques, the BoW
encoder does not apply any weighting or additional transformation to the terms. It
simply extracts and outputs them, optionally removing duplicates or formatting them as
sentence-like strings. This encoder is useful for simple ML applications such as model
classification or clustering based on textual features, or it can be used with additional
preprocessing in more advanced ML scenarios.
Technically, the BoW encoder acts as a thin wrapper around the term extractor plugin
(see Section 4.1). The term extractor is invoked internally, providing reusable logic
for term inclusion, filtering, normalization, and output formatting. The underlying
parameters of the term extractor are reused, and additional encoder-specific parameters
are added. This includes duplicate removal, where terms can be deduplicated within a
model, and sentence encoding, where instead of emitting isolated terms, the encoder can
represent elements and relationships as full sentences, similar to the work in [GG21].

4.2.1 Processing Steps
The BoW encoder transforms conceptual models into lists of extracted terms or sentences.
The following steps summarize the internal processing logic:
Input Handling & Term Extraction: The encoder receives a batch of models, each
already parsed into the graph-based IR with invalid inputs filtered out. If sentence
encoding is disabled, the encoder delegates term extraction to the term extractor plugin,
passing along all relevant parameters (e.g., which terms to include, how to normalize,
etc.).
Duplicate Removal (Optional): If enabled, the encoder removes duplicate terms to
ensure that each term appears only once per model. This can be useful for purely
symbolic or presence-based representations.
Sentence Encoding (Optional): If enabled, the encoder bypasses the term extractor
and instead constructs a list of sentences. Depending on the provided parameters, the
following types of sentences are constructed:

• Entity-based Sentences: For each model element, a sentence is generated from
its name, and optionally its type is prepended (e.g., Application Component: CRM
System.).
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• Relationship-based Sentences: If encodeRels is also enabled, the encoder
traverses the model’s relationships and maps them to predefined verb phrases (e.g.,
Serving relationship becomes serves). Sentences are then constructed by combining
the connected source and target elements of the relationship with the verb phrase
(e.g., Customer Portal serves Order Processing.). This parameter is currently only
supported for ArchiMate relationship types via a hard-coded verb mapping, but
can be easily extended to accommodate additional modeling languages.

Output Formatting: The final output consists of a list of entries, each containing a
modelId and a list of associated Term objects. Each term includes a name (i.e., word
or sentence) and, optionally, a nodeId for traceability. All extracted terms are stored as
unordered lists, without frequency information or vector representations. This design
makes it a lightweight and interpretable encoding method that can serve as a foundation
for further transformation.

4.2.2 Example Output
Listing 4.1 shows a sample encoding result for the model from Figure 4.1b, using default
parameters. For readability, the output and node identifiers have been simplified. The
output consists of a JSON object for each processed model, which contains a model
identifier (modelId) and a list of terms. Each term includes a name (the extracted
word or token) and an optional nodeId referencing the originating element in the model.
1 {
2 "modelId": "model-a",
3 "terms": [
4 { "nodeId": "a-1", "name": "example" },
5 { "nodeId": "a-2", "name": "customer" },
6 { "nodeId": "a-2", "name": "data" },
7 { "nodeId": "a-3", "name": "customer" },
8 { "nodeId": "a-3", "name": "data" },
9 { "nodeId": "a-3", "name": "management" },

10 { "nodeId": "a-4", "name": "crm" },
11 { "nodeId": "a-4", "name": "system" },
12 { "nodeId": "a-5", "name": "customer" },
13 { "nodeId": "a-5", "name": "database" },
14 { "nodeId": "a-5", "name": "tables" },
15 { "nodeId": "a-6", "name": "database" },
16 { "nodeId": "a-6", "name": "management" },
17 { "nodeId": "a-7", "name": "blade" },
18 { "nodeId": "a-7", "name": "system" },
19 { "nodeId": "a-8", "name": "database" },
20 { "nodeId": "a-8", "name": "management" },
21 { "nodeId": "a-8", "name": "system" }
22 ]
23 }

Listing 4.1: BoW Encoder Example Output

As shown, multiple terms can originate from the same node (e.g., customer, data, and
management from the node with ID a-3 ), since tokenization is enabled by default.
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In addition, identical terms may appear multiple times across different nodes, since
deduplication is disabled by default.

4.2.3 Parameters
The BoW encoder builds on the parameters of the term extractor and introduces addi-
tional encoder-specific parameters to control deduplication and sentence-based output
formatting. Table 4.2 lists the BoW-specific configuration options. The parameters of
the term extractor are inherited and can also be configured (see Section 4.1.3). In the
following, we describe each parameter, specific to the BoW encoder, in more detail.

Parameter Description Type Default

removeDuplicates Remove duplicate terms so that each
term appears only once per model

boolean false

encodeAsSentence Encode entities as sentences boolean false

includeRels Include relationships in sentences boolean false

Table 4.2: BoW Encoder Parameters

removeDuplicates: If enabled, ensures that each unique term appears only once
per model. This is useful for producing a strict set-based representation rather than a
multiset. For example, if a term like database occurs multiple times within a model, only
one instance is retained.

encodeAsSentence: Switches the output format from individual terms to full sentences.
Instead of raw terms (e.g., [customer, data]), the encoder emits sentences consisting
of element types and names (e.g., Business Object: Customer Data.). This option is
particularly useful when using the output as training input for language models (e.g.,
Universal Sentence Encoder [CYK+18]).

encodeRels: Used in combination with encodeAsSentence, this parameter enables
the inclusion of inter-element relationships in the generated sentences. Relationships are
mapped to predefined verbs (e.g., serves, triggers), creating sentences like Application
Service: Billing Service serves Business Process: Payment Processing.. This parameter
is currently only supported for ArchiMate relationship types.

4.2.4 Visualization
Figure 4.4 shows the visualization of the BoW encoder, using default parameters. On
the left, the model is rendered as a graph (or tree) using the internal IR. On the right,
the encoder panel displays the selected encoder, along with its parameters, grouped into
categories. Below this, the visualization of the encoding output for the selected model or
view (depending on the separateViews parameter) is shown. Each term appears as a
single word, reflecting the default configuration in which only names are included, and
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basic normalization (i.e., lowercasing and tokenization) is applied. Each item in the list
supports traceability, that is, clicking on a term highlights the corresponding element in
the model graph, as shown in the figure for the term insurant.

Figure 4.5 shows the output when the encodeAsSentence parameter is enabled to-
gether with encodeRels. Instead of isolated words, the encoder now produces full
sentences derived from model elements and relationships, allowing structural connec-
tions in the model to be represented as natural language expressions. The generated
sentences combine element types and names with a verb phrase using fixed templates
(e.g., BusinessService: Claims Registrations serves BusinessRole: Insurant.).

Figure 4.4: BoW Encoder Visualization (Default Parameters)

4.3 Term Frequency Encoder
The TF encoder transforms conceptual models into a representation that captures the
frequency of extracted terms within models. More specifically, it produces a term-
document matrix, where rows correspond to model identifiers, and columns to unique
terms derived from the input corpus. The value at each position reflects the frequency
of the corresponding term in the given model. Depending on the configuration, this
frequency can be raw, normalized, or weighted using the TF-IDF scheme. This encoding
format makes the TF encoder useful for ML scenarios that benefit from feature-based
vector representations, such as classification, clustering, or similarity-based analysis.
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Figure 4.5: BoW Encoder Visualization with Sentence Encoding

The TF encoder builds on the common term extractor (see Section 4.1), reusing its
capabilities and parameters for term extraction and preprocessing. Beyond standard term
extraction, the encoder also supports bi-gram and n-gram representations to capture
richer contextual semantics. Bi-grams are constructed by combining two attributes of
model elements (e.g., name and type), joined with a configurable separator. N-grams,
on the other hand, are derived from paths of a specified length within the model graph,
optionally treating edges as undirected or allowing shorter paths to also be included in
the output.

4.3.1 Processing Steps

The TF encoder receives a batch of conceptual models in the graph-based IR, with
invalid models filtered out, as input. Depending on the configuration, one of three term
extraction strategies is applied. If bi-gram encoding is enabled, the encoder generates
composite terms by combining two element-level attributes (e.g., type and name) into a
single string. If n-gram encoding is enabled, it constructs structural paths through the
model graph (i.e., sequences of connected nodes of configurable length), which are then
represented as terms. If neither strategy is selected, the encoder falls back to standard
single-term extraction using the term extractor plugin and its configured parameters.

After term extraction, the encoder aggregates terms per model and computes their
frequencies. These are stored as lists of term-frequency pairs, optionally linked to their
source elements via node identifiers. A frequency cut-off can be applied at this stage to
exclude infrequent terms from further processing. Once all term frequencies are collected,
a global vocabulary is constructed from the union of terms across all models. This
vocabulary defines the columns of the resulting term-document matrix, while models or
views constitute the rows. The values in the matrix are determined by the configuration
parameters normalizeTf and tfIdf, which control whether the frequencies are scaled
or reweighted.
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By default, if neither normalization nor TF-IDF is enabled, the matrix contains raw term
counts (e.g., a value of 2 if a term occurs twice in a model). If normalization is enabled,
these counts are scaled by the total number of terms in the model. The normalized term
frequency TF (t, d) for a term t in model d is computed as:

TF (t, d) = ft,d∑︁
t′∈d ft′,d

(4.1)

where ft,d is the number of occurrences of term t in model d, and the denominator sums
over all term occurrences in that model. If normalization is disabled, the encoder uses
the raw count ft,d directly.

If TF-IDF weighting is enabled, each normalized term frequency is further scaled by
the IDF of the term. The IDF score downweights terms that are common across many
models and highlights those that are locally frequent but globally rare. The IDF for a
term t is calculated as:

IDF (t) = log
(︃

N + 1
DF (t) + 1

)︃
+ 1 (4.2)

where N is the total number of models and DF (t) is the number of models containing
term t. The smoothing constants (+1) are used to avoid division by zero and ensure
numerical stability. The final TF-IDF weight is then given by:

TF − IDF (t, d) = TF (t, d) · IDF (t) (4.3)

This weighting scheme emphasizes the most informative terms, i.e., those that occur
frequently within a model but not across all models. The final output includes the
term-document matrix (mapping model IDs to their corresponding term vectors), the
ordered list of terms (defining the matrix columns), and the list of processed model
identifiers (corresponding to the matrix rows).

4.3.2 Example Output
Listing 4.2 shows an example output of the TF encoder, using the two models from
Figure 4.1 as input. For readability, the output and node identifiers have been simplified.

The output of the TF encoder consists of three components: the list of model identifiers
from the models that have been processed, the global vocabulary of extracted terms,
and the corresponding term-document matrix. Each model is represented as a row
vector aligned with the shared vocabulary, and each entry denotes the frequency of the
corresponding term within the model. Depending on the parameters, the cell values can
alternatively be normalized frequencies or computed TF-IDF scores. For a single model,
the output includes a list of extracted TermFrequency objects (see Section 4.1.1) to
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1 {
2 "modelIds": ["model-a", "model-b"],
3 "termDocumentMatrix": {
4 "model-a": [2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1],
5 "model-b": [3, 2, 3, 1, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0]
6 },
7 "termList": [
8 "customer", "data", "management", "crm", "system", "database",
9 "tables", "blade", "insurant", "information", "register",

10 "accept", "claims", "registration", "acceptance"
11 ]
12 }

Listing 4.2: Encoder Example Output

provide traceability, e.g., for the visualization. Note that traceability is partially lost for
terms that occur more than two times.

Table 4.3 displays the same term-document matrix in tabular format for better readability.
Each cell indicates how often a term appears in the respective model. For instance, the
term customer appears twice in model-a and three times in model-b. Conversely,
register, accept, and claims are specific to model-a, while crm and blade occur only in
model-b. This representation can be used for various vector-based ML techniques, such
as classification or clustering.
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model-a 2 0 0 0 0 0 0 0 1 1 1 1 2 1 1
model-b 3 2 3 1 3 3 1 1 0 0 0 0 0 0 0

Table 4.3: Term-Document Matrix for the output in Listing 4.2

4.3.3 Parameters
Table 4.4 lists the available parameters of the TF encoder. The parameters listed
here control the encoding behavior related to term frequency computation and term
composition strategies, such as bi-grams and n-grams. The parameters of the term
extractor are inherited and can also be configured (see Section 4.1.3). In the following,
we describe each parameter, specific to the TF encoder, in more detail.

TF Parameters: The normalizeTf parameter controls whether raw term counts are
normalized by the total number of terms in each model (see Equation (4.1)). When
enabled, term frequencies are converted to relative values, reducing the impact of model
size. If tfIdf is set to true, the encoder computes TF-IDF weights instead of raw or
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Parameter Description Type Default

TF Parameters
normalizeTf Normalize term frequency by total num-

ber of terms
boolean false

tfIdf Compute TF-IDF scores for terms boolean false

frequencyCutoff Minimum frequency for a term to be
included

number 1

Bi-gram Parameters
bigramEnabled Enable Bi-gram extraction boolean false

bigramSeparator Separator for Bi-gram terms string .

bigramFirstTerm First term of the Bi-gram string name

bigramFirstTermAttr Attribute name for the first term if type
is attribute

string

bigramSecondTerm Second term of the Bi-gram string type

bigramSecondTermAttr Attribute name for the second term if
type is attribute

string

N-gram Parameters
nGramEnabled Enable N-gram extraction boolean false

nGramLength Length of N-gram paths number 2

keepLowerPaths Keep lower length paths in N-gram ex-
traction

boolean false

undirected Consider the graph as undirected when
extracting paths

boolean false

Table 4.4: TF Encoder Parameters

normalized frequencies (see Equation (4.3)). This emphasizes terms that are common
within a model but rare across the entire batch. The parameter frequencyCutoff sets
a threshold to exclude globally rare terms. Terms with total frequency across all models
below this threshold are omitted from the vocabulary and corresponding term-document
matrix.

Bi-gram Parameters: The TF encoder supports bi-gram construction, where two
element-level attributes are combined into a single composite term. Enabling the param-
eter bigramEnabled activates this mode. The parameters bigramFirstTerm and
bigramSecondTerm define which attributes to use as term components. Supported
values are name, type, or attribute. If the value is attribute, the corresponding at-
tribute name must be specified via bigramFirstTermAttr or bigramSecondTermAttr.
The bigramSeparator determines how the two components are joined (e.g., a period
or dash).
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N-gram Parameters: Alternatively, the encoder can extract structural n-grams from the
model graph. This is enabled via the nGramEnabled parameter. The nGramLength
parameter specifies the length of the paths to extract, where each path corresponds to a
sequence of connected nodes. If keepLowerPaths is enabled, the encoder also retains
shorter paths encountered during traversal. The parameter undirected determines
whether the graph is traversed in a bidirectional manner, leading to more paths, or
follows the directed edges.

4.3.4 Visualization

Figure 4.6 shows the visualization of the TF encoder, using its default parameters. On the
left, the conceptual model is displayed as a graph using the IR. On the right, the encoder
interface displays the selected encoder, its configurable parameters, and the resulting
output. The encoding result is visualized as a term-document matrix, containing the
frequency of each extracted term within the current model.

Figure 4.6: TF Encoder Visualization (Default Parameters)

In this matrix, rows correspond to terms and columns to documents (in this case, a
single model). The cell values indicate the raw term frequencies. For example, the term
customer appears with a frequency of 2, since it occurs twice in the model. Since no
additional encoding is enabled, terms are extracted using the standard term extractor as
uni-grams, i.e., plain lexical tokens without contextual composition.

49



4. Encoders

Figure 4.7a illustrates the visualization with bi-gram encoding enabled. Here, each term
is a composition of two element-level attributes, in this case, name and type, joined
using the default separator (e.g., Customer.BusinessActor). This representation allows
for a more fine-grained differentiation between elements with similar names but different
types, or vice versa.

Figure 4.7b shows the visualization under n-gram encoding with a path length of two,
together with keepLowerPaths and undirected disabled. In this mode, the encoder
traverses the model graph and extracts linear paths of connected nodes, treating each
path as a compound term. For example, the pair (Register, Accept) represents a sequence
of two connected elements. This approach encodes not only lexical content but also
structural information. If the path length were increased to three, only three terms
would be included: (Register, Accept, Claims Acceptance), (Register, Claims Registration,
Insurant), and (Accept, Claims Acceptance, Insurant), as these represent the only directed
paths of length three in the model graph.

(a) TF Encoder Bi-gram Visualization (b) TF Encoder N-gram Visualization

Figure 4.7: TF Encoder Bi-gram & N-gram Visualization

4.4 Embeddings Encoder
The embeddings encoder maps extracted model terms to vector representations using pre-
trained word embeddings. This transformation enables conceptual models to be processed
using vector-based ML approaches that rely on semantic similarity between terms. Each
extracted term is extended with an embedding vector, resulting in a dense encoding
format that captures latent semantics derived from large external corpora [AX19].

Unlike previous encoders, which rely entirely on internal computations, the embeddings
encoder requires access to external resources, namely pre-trained word embeddings stored
in large text files. These resources are not loaded in full during runtime, instead, a
preprocessed index is created using an external Python script to allow efficient lookup of
term vectors at runtime. While the batch transformation interface (e.g., CLI or REST

50



4.4. Embeddings Encoder

server) accesses these files via Node.js, the visualization interface in the browser operates
differently. In this case, fallback vectors (e.g., zero vectors) are initially returned, and
the actual embedding lookup is delegated to a REST backend.

CM2ML currently supports several pre-trained embedding models: general-purpose
embeddings such as Word2Vec [MSC+13] and GloVe [PSM14], as well as domain-specific
embeddings like WordE4MDE [LDC23], trained on modeling-related corpora. All stan-
dard term extraction parameters are reused, and embedding-specific configuration options
allow users to select the model, set the embedding dimension, choose strategies for han-
dling OOV terms, and optionally encode entire models as single vectors by pooling term
embeddings.

4.4.1 Processing Steps
The embeddings encoder transforms conceptual models into dense vector representations
using pre-trained word embeddings. Due to technical limitations related to file system
access in the browser environment, the encoder distinguishes between two execution
modes: batch processing and single-model processing. Figure 4.8 illustrates the
workflow of both execution modes within the framework.

Figure 4.8: Embeddings Retrieval Process for a Batch of Models and a Single Model

Before using the encoder, the required embedding files must be downloaded and indexed.
This can be achieved through an external Python script that leverages the gensim
library [Řeh10] to download embeddings and generate an index file. The index maps
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vocabulary terms to their byte offsets within the embedding files, allowing efficient
retrieval during encoding.

In batch mode (top part of Figure 4.8), a set of models is first processed through
the term extractor to obtain a list of relevant terms for each model. For each term,
the encoder accesses the index to locate the corresponding byte offset with which the
associated embedding vector can be retrieved directly from disk. These vectors are then
attached to the terms, resulting in a list of term-embedding pairs per model as the final
output.

In single-model mode (bottom part of Figure 4.8) direct file access via Node.js
(e.g., fs.readFileSync) is not available due to browser environment restrictions.
As a workaround, the encoder initially assigns fallback embeddings (e.g., zero vectors)
to all terms. These placeholder vectors are passed to the visualization layer, which
asynchronously retrieves the actual vectors by querying a REST server. The server uses
the same index and offset-based retrieval as in batch mode to return the true embedding
vectors to the browser for visualization.

The main operation of the encoder is the embedding lookup. If a term is present in the
index, its corresponding vector is simply read and added to the output. Otherwise, if a
term is OOV, the encoder applies an OOV strategy as configured. Supported strategies
include substituting with a zero vector, generating a random vector in range [−1, 1], or
retrieving the vector of the most similar known word based on Levenshtein distance.

Additionally, the encoder optionally supports model-level vector pooling, whereby a single
embedding is computed for an entire model by aggregating the individual term vectors.
Supported pooling strategies include element-wise mean and maximum. The resulting
pooled vector is included alongside the per-term embeddings in the output.

4.4.2 Example Output

Listing 4.3 shows an example output of the embeddings encoder applied to the two models
shown in Figure 4.1. For readability, the output has been simplified: term vectors are
truncated (actual dimensionality is 300), numerical values are rounded to four decimal
places, and node identifiers of terms have been omitted.

Each model in the output is represented by its unique modelId. The corresponding
object contains a list of embeddings, each associating a term extracted from the model
with a pre-trained embedding vector. Furthermore, since the parameter modelEncoding
is enabled in this example, a pooledVector is included for each model, representing
the semantic content of the entire model. In this case, the pooled vector is the average of
all individual term vectors, including duplicates and zero vectors if present, since the
poolingStrat is set to avg.

The term insurant is not part of the embedding vocabulary and is therefore treated as
OOV. Given that the oovStrategy is set to zero, its embedding is represented by a
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1 {
2 "modelIds": ["id-1", "id-2"],
3 "modelEmbeddings": [
4 {
5 "modelId": "model-a",
6 "pooledVector": [-0.1030, -0.0076, ...],
7 "embeddings": [
8 { "term": "insurant", "embedding": [0, 0, ...] },
9 { "term": "customer", "embedding": [-0.1484, 0.1289, ...] },

10 { "term": "information", "embedding": [-0.0718, -0.2656, ...] },
11 { "term": "register", "embedding": [0.0040, -0.1934, ...] },
12 { "term": "accept", "embedding": [-0.2314, -0.0928, ...] },
13 { "term": "claims", "embedding": [-0.0918, 0.1690, ...] },
14 { "term": "registration", "embedding": [0.0557, -0.0776, ...] },
15 { "term": "claims", "embedding": [-0.0918, 0.1690, ...] },
16 { "term": "acceptance", "embedding": [-0.3066, -0.0430, ...] },
17 { "term": "customer", "embedding": [-0.1484, 0.1289, ...] }
18 ]
19 },
20 {
21 "modelId": "model-b",
22 "pooledVector": [-0.0860, -0.0748, ...],
23 "embeddings": [
24 { "term": "customer", "embedding": [-0.1484, 0.1289, ...] },
25 { "term": "data", "embedding": [-0.1729, -0.1426, ...] },
26 /* Other terms with embeddings ... */
27 ]
28 }
29 ]
30 }

Listing 4.3: Embeddings Encoder Example Output

zero vector. Also note that identical terms occurring more than once (e.g., claims or
customer) are preserved in the output as repeated entries.

4.4.3 Parameters
Table 4.5 lists the encoder-specific parameters of the embeddings encoder. In addition
to these, the shared parameters of the term extractor (see Section 4.1.3) can also be
configured to influence which terms are extracted and how they are processed before
retrieving their embeddings.

The embeddingsModel parameter specifies which pre-trained word embedding model
to use for lookup. Supported values include word2vec, glove, as well as variants
adapted to the modeling domain word2vec-mde and glove-mde. The files of these
models must be downloaded in advance, including their index files, which enable efficient
byte-level access to individual vectors.

The dimension parameter controls the dimensionality of the embedding vectors. If the
selected embedding model provides vectors with higher dimensionality, they are simply
truncated to the specified size. All currently supported models include vectors of 300
dimensions.
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Parameter Description Type Default

embeddingsModel The pre-trained word embedding model to
use (download of files required)

string word2vec

dimension The dimensionality of the embeddings number 300

oovStrategy The strategy to handle OOV terms string zero

modelEncoding Encode the whole model as a single vector boolean false

poolingStrat Strategy to pool the embeddings of the model
terms if modelEncoding is enabled

string mean

Table 4.5: Embeddings Encoder Parameters

OOV terms, i.e., words not found in the embedding index, are handled according to the
oovStrategy. Available options include:

• zero: assign a vector of all zeros.

• random: generate a random vector in the range [−1, 1].

• discard: skip the term entirely.

• most-similar: substitute the term with its nearest known word based on Leven-
shtein distance.

The modelEncoding flag enables generation of a single vector representation per
model by aggregating all individual term embeddings. If activated, the poolingStrat
parameter defines how this aggregation is performed. Supported pooling strategies include
mean (element-wise average over all term vectors) and max (element-wise maximum
value across all vectors).

4.4.4 Visualization
Figure 4.9 shows the visualization of the embeddings encoder in the browser, using default
parameters. The left-hand side displays the input model (from Figure 4.1a) as a graph.
On the right-hand side, the encoder parameters can be configured (not visible in the
figure), and the output is presented as a matrix, where each row corresponds to a term
and each column to a vector dimension.

The embedding values are displayed numerically, with color-coded background to reflect
magnitude. Terms that are OOV and could not be mapped to any pre-trained embedding
(e.g., insurant) are displayed with zero vectors and visually highlighted in red. Clicking
on a term reveals its source element in the intermediate representation. When model-level
encoding is enabled, a pooled vector is added above the term matrix.
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Figure 4.9: Embeddings Encoder Visualization

4.5 Triples Encoder

The triples encoder transforms conceptual models into sets of triples, each capturing
a relationship between two model elements. Unlike the encoders described in previous
sections, this encoder does not use the common term extractor (see Section 4.1) and
instead directly encodes each edge in the model graphs as subject-relation-object triples.
A triple consists of the source and target element names, the relationship type between
these two elements, and optionally additional type encodings or embedding vectors.

The main motivation behind this encoder is to retain structural semantics that are lost in
standard term-based encodings. By explicitly capturing relationship types and connected
elements, the resulting representation is more suitable for ML tasks that require structural
awareness and relational reasoning, such as link prediction, node classification, or other
graph-based learning methods.

The triples encoder supports different encoding strategies for node and relationship types,
including symbolic, numerical, and one-hot representations. Furthermore, if enabled,
element names can be enriched with pre-trained word embeddings. In that case, multi-
word names are handled using various strategies (e.g., averaging or concatenation of
individual token embeddings), and OOV terms are handled via configurable fallback
mechanisms.
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4.5.1 Processing Steps
The triples encoder processes a batch of conceptual models by iterating over their
relationships and converting them into subject-relation-object triples. It operates directly
on the graph-based IR, bypassing the common term extractor used by other encoders, as
it is designed to explicitly capture relationships between elements rather than individual
lexical terms.

Each model is first filtered to ensure that it is valid. The encoder then iterates over
the model’s edges to extract the involved source and target nodes. If either node is
missing or lacks a valid name attribute, the edge is skipped. For each valid edge, a
triple is created consisting of the source and target element names and the type of the
relationship connecting them. The relationship type is encoded either as a raw symbolic
string, a numerical value, or a one-hot vector, depending on the configuration. Optionally,
the encoder may include the source element’s identifier for traceability, specified by the
includeSourceId parameter. Furthermore, if includeTypes is enabled, the source
and target types are also included in the triple. These types can be encoded again either
as raw symbolic strings, numeric values, or one-hot vectors.

When useEmbeddings is enabled, triples are enriched with embedding vectors for
source and target element names. Similarly to the embeddings encoder (see Section 4.4),
this process begins by loading a pre-computed word embedding index file from disk.
Each element name is tokenized and normalized into tokens, and for each token, the
corresponding embedding vector is retrieved using byte offsets from the index.

The tokenizer applied before embedding lookup performs several normalization steps to
ensure consistency with the token format of most embedding models: numeric characters
are replaced with their textual representation (e.g., 123 becomes one two three),
camelCase and acronyms are split into separate tokens, punctuation and delimiters are
removed, and stop words and non-alphabetic tokens are filtered out.

If a word is not found in the index, an OOV strategy is applied, such as using a zero
vector, sampling a random vector, or selecting the most similar word based on Levenshtein
distance. For multi-word names, embeddings are combined using a configurable strategy
(e.g., averaging, concatenation, or selecting the first token).

4.5.2 Example Output
An example output of the triples encoder is shown in Listing 4.5, encoding the two models
shown in Figure 4.1. For readability, the list of triples is abbreviated, identifiers are
simplified, and vector contents are truncated. Comments indicate the active positions in
the one-hot vectors, e.g., one-hot @ index 30 means that only the value at position
30 (starting at 0) is set to 1 and all other values are set to 0.

The output was created using the CLI command shown in Listing 4.4. The following
parameters are applied: types are included and encoded as one-hot vectors, word embed-
dings are enabled using the GloVe model, multi-word names are combined by averaging
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token embeddings, and the OOV strategy is set to zero, meaning unknown words are
mapped to zero vectors.
cm2ml batch-archimate-triples ./models/testing/

--include-types --types-as-one-hot
--use-word-embeddings --embeddings-model glove
--combine-words-strategy average --oov-strategy zero

Listing 4.4: CM2ML CLI command used to create the output in Listing 4.5

1 [
2 {
3 "modelId": "model-a",
4 "triples": [
5 {
6 "sourceName": "Database Management",
7 "relationshipType": [0,0,0,0,0,0,0,0,0,0,1],
8 "targetName": "Customer Database Tables",
9 "sourceEmbedding": [-0.493048, 0.231377, ... ],

10 "targetEmbedding": [-0.617787, 0.331407, ... ],
11 "sourceType": [0, 0, ..., 1, 0, ...], // one-hot @ index 30
12 "targetType": [0, 0, ..., 1, 0, ...], // one-hot @ index 32
13 "sourceId": "a-1"
14 },
15 /* Other triples... */
16 ]
17 },
18 {
19 "modelId": "model-b",
20 "triples": [
21 {
22 "sourceName": "Claims Registration",
23 "relationshipType": [0,0,1,0,0,0,0,0,0,0,0],
24 "targetName": "Insurant",
25 "sourceEmbedding": [0.256355, 0.12046, ...],
26 "targetEmbedding": [0, 0, ...],
27 "sourceType": [0, 0, ..., 1, 0, ...], // one-hot @ index 7,
28 "targetType": [0, 1, 0, ...], // one-hot @ index 1,
29 "sourceId": "b-1"
30 },
31 /* Other triples... */
32 ]
33 }
34 ]

Listing 4.5: Triples Encoder Example Output

In the output, each model contains a list of triple objects, consisting of various attributes.
A minimal triple object includes the source and target names as strings together with the
relationship type, in this case, encoded as a one-hot vector. Type inclusion is enabled,
thus, the sourceType and targetType are also included and again, encoded as one-
hot vectors. Since embeddings are enabled, the object also contains embedding vectors
(300 dimensions) of the source and target names. For the name Insurant, no embeddings
were found (i.e., OOV) and, since we use zero as an OOV strategy, the embedding vector
is filled with 0s. Multi-word names (e.g., Database Management) are combined into single
vectors by averaging the embedding vectors of individual tokens (e.g., Database and
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Management). Finally, since the parameter includeSourceId is enabled by default,
sourceId is also included, linking each triple to the corresponding source element node.

4.5.3 Parameters
The triples encoder defines its own set of parameters and does not reuse any term
extraction parameters. All available parameters of the triples encoder are summarized in
Table 4.6. In the remainder, we discuss each of the parameters and their effects.

Parameter Description Type Default

includeSourceId Include source IDs of elements in the
encoding output for traceability

boolean true

includeTypes Include type encodings for source and
target

boolean false

typesAsNumber Encode types as a numerical value boolean false

typesAsOneHot Encode types in form of one-hot vec-
tors

boolean false

useEmbeddings Use pre-trained word embeddings for
element names

boolean false

embeddingsModel The pre-trained word embedding
model to use (download of files re-
quired)

string word2vec

combineStrategy Strategy to combine embeddings for
multi-word names

string avg

oovStrategy Strategy to handle OOV terms string zero

Table 4.6: Triples Encoder Parameters

Similarly to the other encoders, the includeSourceId parameter, enabled by default,
controls whether the identifier of the source node is included in each triple for traceability.

The includeTypes parameter determines whether the element types of the source and
target nodes are included in the triples. When enabled, these types are represented
either as symbolic strings, numeric values, or one-hot encoded vectors. The encoding
format is controlled by the parameters typesAsNumber and typesAsOneHot. If both
are disabled, the type remains a plain string. If typesAsNumber is enabled, each
type is mapped to a unique integer index. If typesAsOneHot is enabled, the type is
represented as a one-hot vector whose length corresponds to the full type vocabulary.
These options are mutually exclusive, and enabling both results in a one-hot encoding.

The useEmbeddings parameter enables embedding lookup for the source and target
element names. If enabled, each name is tokenized and mapped to word vectors from a pre-
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trained embedding model specified via the embeddingsModel parameter. Supported
models include glove, word2vec, glove-mde, and word2vec-mde. All embeddings
are stored locally and must be pre-downloaded.

Multi-word names are tokenized into words, and their embeddings are then combined
using the strategy specified by the combineWordsStrategy parameter. Supported
strategies include:

• average: Compute the mean of all token embeddings.

• first: Use only the first token’s embedding.

• concat: Concatenate all token embeddings (note that this increases vector dimen-
sionality).

• skip: Skip all multi-word terms and only embed single-word names.

If a token cannot be found in the embedding index, the encoder applies an OOV strategy,
configured by the oovStrategy parameter with the following options:

• zero: Use a vector of zeros.

• random: Sample a random vector in the range [−1, 1].

• discard: Skip the token entirely.

• most-similar: Replace the unknown word with the most similar one found in
the vocabulary, using Levenshtein distance.

4.5.4 Visualization

Figure 4.10 shows the visualization of the triples encoder in the browser, using default
parameters. The left-hand side displays the input model (from Figure 4.1a) as a graph.
On the right-hand side, the encoder parameters can be configured, and the output is
shown in a table with three columns: source name, relationship type, and target name.

As a more complex example, Figure 4.11 shows the result when type encodings and word
embeddings are enabled. Here, the tabular view is extended with additional columns,
including source and target types (numerically encoded), as well as source and target
embedding vectors (truncated for readability).
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Figure 4.10: Triples Encoder Visualization

Figure 4.11: Triples Encoder Visualization including Types (Numeric Encoding) and
Embeddings
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4.6 Comparison of Encoders
This section compares the different encoder types introduced in the previous sections
with the goal of evaluating their ability to extract and represent the semantic content of
conceptual models in ML-compatible formats. The comparison addresses the two RQs of
this thesis:

RQ1: To what extent can semantic information in ArchiMate models be
extracted and encoded into suitable representations for machine learning
applications?
RQ2: How do semantic encoding strategies compare in terms of their ability
to preserve information and support machine learning tasks?

To answer these questions, we compare the following encoder variants:

• BoW Encoder: Extracts plain lexical terms or sentences without any weighting
or numerical representation. Two variants are considered: (i) plain BoW using
individual lexical tokens, and (ii) sentence-based encoding where sentences are
generated from elements and relationships.

• TF Encoder: Produces frequency-based vectors for terms through term-document
matrices. We distinguish between (i) standard uni-grams, (ii) bi-grams composed
of multiple element attributes, and (iii) n-grams based on structural paths in the
model graph.

• Embeddings Encoder: Maps terms to pre-trained word embeddings. We con-
sider: (i) encoding each individual term with embedding vectors, and (ii) pooled
representations that aggregate individual term vectors into a single model-level
embedding.

• Triples Encoder: Captures structural relationships in the form of subject-relation-
object triples. We consider the variant where triples are enriched with both, type
encodings and word embeddings.

First, we conduct a comparative analysis of these encoders to characterize their strengths
and weaknesses, and their suitability for ML tasks (Section 4.6.1). The results of the
comparison serve as a basis for answering the RQs (Section 4.6.2).

4.6.1 Comparative Analysis
The purpose of this comparison is to characterize how different encoders represent the
underlying model semantics and to assess their readiness and expressiveness for ML
applications. For this, we define a set of comparative criteria and analyze each encoder
across those dimensions.
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Comparative Criteria

To compare the different encoder variants introduced in this chapter, we define a set of
comparative criteria that capture both the semantic depth of the encodings and their
properties relevant to ML applications. Table 4.7 lists the criteria, along with descriptions,
used for the comparative analysis.

Criteria Description
Granularity The level at which information is encoded, e.g., individual

terms, complete sentences, structural paths, or triples.
Lexical Coverage Whether and to what extent the encoder extracts and uses

lexical properties such as element names, types, and at-
tributes.

Structure The degree to which the encoder captures structural rela-
tionships (e.g., edges, paths, dependencies).

Context Whether the encoder captures meaning from context, e.g.,
co-occurrence, term frequency, embedding similarity.

Dimensionality The size and density of the output vectors (None / Low-
dimensional sparse / High-dimensional dense).

Traceability Can individual elements in the output be traced back to
specific elements in the original model?

Interpretability Can a human understand the meaning or origin of the en-
coded features?

ML Suitability Is the output readily usable as input for standard ML meth-
ods (e.g., classification, clustering)?

Table 4.7: Criteria used for Encoder Comparison

Encoder Comparison

Table 4.8 provides a comparative overview of the encoders, evaluated against the defined
criteria. Overall, the comparison reveals that no single encoder captures all semantic
aspects. Instead, each encoder variant emphasizes different model semantics and has
trade-offs in terms of dimensionality, interpretability, and ML suitability. This highlights
the need for careful encoder selection based on task-specific requirements.

The BoW encoders operate at the surface level. The plain variant extracts individual
terms from element names, types, or other attributes, without structural or contextual
information. It excels in simplicity and interpretability, but lacks any notion of meaning or
quantification beyond isolated words. The sentence-based variant adds limited structural
and contextual cues by including relationships in the generated natural language sentences,
however, only names and types are extracted. Both BoW variants produce purely symbolic
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BoW (Plain) Term ✓ ✗ ✗ None ✓ ✓ ∼
BoW (Sentence) Sentence ∼ ∼ ∼ None ✓ ✓ ∼
TF (Uni-gram) Term ✓ ✗ ∼ Low ∼ ✓ ✓

TF (Bi-gram) Element ✓ ✗ ✓ Low ∼ ✓ ✓

TF (N-gram) Path ∼ ✓ ✓ Low ∼ ✓ ✓

Embeddings (Plain) Term ✓ ✗ ✓ High ✓ ∼ ✓

Embeddings (Pooled) Model ✓ ✗ ✓ High ✗ ✗ ✓

Triples Triple ∼ ✓ ✓ High ✓ ∼ ✓

Table 4.8: Comparison of Encoders

encodings (no dimensionality) and require additional transformation (e.g., vectorization)
for ML applications.

The TF encoders expand on BoW by incorporating frequency-based information and
term co-occurrence patterns. The uni-gram variant captures term counts and thus
supports basic contextual reasoning, though structural information remains absent. Bi-
grams enrich the representation by combining element-level attributes (e.g., type and
name), enabling finer-grained distinctions and shallow context modeling. N-grams go a
step further by capturing structural paths of configurable length, embedding structural
semantics into the representation, however, only element names are used. All TF
variants produce sparse, interpretable vectors that are suitable for standard ML models.
Traceability is partially lost due to aggregation.

The embeddings encoder transforms lexical terms into dense, fixed-size vectors based
on pre-trained embeddings. The plain variant maintains term-level granularity and
supports traceability but sacrifices interpretability due to large embedding dimensions.
It is suitable for similarity-based ML tasks and benefits from distributional context
captured by the underlying embedding model. If model-level pooling is enabled, the
encoder outputs a single dense vector per model, which is efficient for classification or
clustering tasks, but eliminates traceability and interpretability.

The triples encoder provides a structured representation by directly encoding relation-
ships with their source and target elements as subject-predicate-object triples. It partially
captures lexical information (element names and optionally types) and explicitly encodes
the model structure. If embeddings are included, contextual information is also preserved.
Triples strike a balance between structure and context but introduce complexity due
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to their multi-field output format. The triples are useful, for example, for graph-based
learning tasks or tasks requiring relational reasoning.

Suitability for ML Applications

The different encoder variants exhibit varying degrees of suitability for specific ML tasks,
depending on the type of information they capture and the form of their output. This
subsection outlines typical ML tasks and discusses which encoders are most appropriate
for each.

For classification tasks, such as assigning categories to models, numerical vector
representations are essential. The TF encoders (uni-gram, bi-gram, n-gram) and the
embeddings encoder (with pooled embeddings) are best suited in this context. They
provide compact, fixed-size vectors per model, which are compatible with traditional
classifiers (e.g., LR, SVMs, or NNs). Pooled embeddings, in particular, offer a dense
representation that is suitable for gradient-based optimization, though interpretability is
limited.

For similarity-based tasks, such as model retrieval or clustering, the embeddings
encoder is most appropriate. The use of pre-trained word embeddings enables semantic
similarity to be measured in a continuous space, even for terms that differ lexically but
are semantically related. Plain embeddings maintain term-level granularity, allowing
fine-grained similarity comparisons, while pooled vectors support similarity measures at
the model level.

Relational reasoning tasks (e.g., link prediction or node classification based on
relations) benefit most from the triples encoder, which explicitly encodes relations
between elements within the model.

4.6.2 Addressing the Research Questions
The comparative analysis in Section 4.6.1 shows that different types of semantic informa-
tion present in conceptual models can indeed be captured and encoded into representations
suitable for ML applications. The encoders developed and evaluated in this work are
not limited to ArchiMate, but are designed to handle conceptual models in general, as
long as they follow a graph-based structure with named elements and typed relationships.
ArchiMate models constitute a subset of such conceptual models, and thus benefit directly
from the same encoding mechanisms. The only encoder behavior specific to ArchiMate is
the optional separation of views, where each view is treated as a distinct model instance
during encoding.

Each encoder contributes to capturing a different aspect of model semantics, namely:

• Lexical semantics, such as names and types of model elements, are extracted by
all encoders, with varying degrees of normalization and coverage (e.g., attribute
inclusion).
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• Distributional semantics, represent meaning through co-occurrence patterns
and statistical frequency. This is captured by the TF and embeddings encoders.

• Structural semantics, including the relational topology of the model graph, are
encoded by the triples encoder and, to a lesser extent, by the n-gram variant of the
TF encoder or the sentence-based BoW encoder.

• Contextual semantics, such as the usage and ordering of terms, are incorporated
through sentence encoding, path-based n-gram sequences, and embedding models
trained on large textual corpora.

Although each encoder captures only a subset of the overall model semantics, the results
show that various aspects can be systematically extracted and transformed into ML-
compatible formats. However, certain limitations remain. For example, ArchiMate
semantics, such as metamodel- or ontological semantics, are not yet fully captured by
current encoders. Furthermore, trade-offs exist between interpretability, dimensionality,
and representational richness. A subset of the encoders and parameters is quantitatively
evaluated in Chapter 5.

In conclusion, semantic information from ArchiMate and related conceptual models can
be effectively encoded for ML purposes, but the encoding strategy must be chosen with
the desired type of semantic content and the target ML task in mind. Hybrid approaches
that combine complementary encoders (including existing structural encoders) may offer
a promising direction to capture richer representations.
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CHAPTER 5
Evaluation

This chapter presents the experimental evaluation conducted to assess the effectiveness
of selected semantic encoders in practical ML scenarios. The goal is to show how the
encoders can be used for a specific task and how different parameter configurations can
be systematically evaluated to assess their influence on ML performance.

Section 5.1 outlines the dataset and experimental setup used for the two ML tasks
in this evaluation, including model selection, annotation process, evaluation metrics,
and tooling. The two classification tasks are then introduced and described in detail.
Section 5.2 focuses on the dummy classification task, where TF-based encodings are used
to distinguish dummy from non-dummy views. Section 5.3 evaluates a node classification
task, using the triples encoder to predict the type of an element given its partial local
context. Both tasks evaluate encodings under varying parameter configurations and using
different ML models.

5.1 Dataset & Experimental Setup
This section describes the dataset and experimental setup used for the two evaluation
tasks. The aim is to ensure reproducibility and provide context for interpreting the
results. Section 5.1.1 presents the dataset used in the experiments, including how models
were selected and annotated to provide ground truth labels for the two classification
tasks. Section 5.1.2 details the experimental setup of both tasks, including the evaluation
metrics and the tools and hardware used during execution.

5.1.1 Dataset
Data-driven approaches in CM, particularly those involving ML, rely heavily on the
availability of curated and labeled datasets. While general-purpose ML has benefited
from large-scale labeled datasets across domains [GLX+23], conceptual modeling lacks
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openly available domain-specific resources that support empirical evaluation and repro-
ducibility [BCPP20]. Recent efforts in the modeling community have begun closing this
gap by providing curated datasets of models. Examples include, MAR [LC20, LC22], a
search engine for models in various languages (e.g., Ecore, BPMN, UML, or Petri nets),
ModelSet [LCIC22, LIC22, LIC24], a labeled dataset of Ecore and UML models, or the
Findable, Accessible, Interoperable, Reusable (FAIR) OntoUML/UFO Catalog [SBF+23].

Recently, for the enterprise modeling domain, the EA ModelSet was introduced as
a curated dataset of ArchiMate models [GSB23, GSB25]. It aligns with FAIR prin-
ciples [WDA+16] and was designed to support reproducible research, empirical and
statistical analysis, and training of ML models in the EA domain. In this thesis, a
filtered subset of the EA ModelSet is used to evaluate the semantic encoders and different
parameter configurations on concrete ML tasks.

In the following, we describe the dataset used for both evaluation tasks in more detail,
including how models were selected to obtain a representative subset and the annotation
process to derive suitable labels for the two classification tasks.

Model Selection & Characteristics

The evaluation in this thesis is based on a curated subset of models extracted from the
EA ModelSet dataset (version 0.0.3). The dataset in its original form contains 977 models
of varying sizes and languages. To ensure compatibility with the embedding models used
in the encoders, which are trained on English corpora, only models tagged as English
were retained. This also aligns with the NLP components of the semantic encoders (e.g.,
tokenization), which are optimized for English. In addition, English-language models
simplify the subsequent annotation process, as the involved annotators are fluent in this
language. All selected models conform to the Archi XML serialization format and are
valid input for the ArchiMate parser implemented as part of this thesis.

After filtering, 564 models remained, which form the basis for all evaluation experiments
presented in this thesis. The selected models vary significantly in size, making them a
representative sample for evaluating semantic encodings. The number of elements per
model ranges from 10 to 4003, with an average of 102.13. The number of relationships
spans from 0 to 5641, averaging 126.92 per model. The number of diagram views ranges
from 1 to 328, with a mean of 6.97.

Annotation Process & Label Availability

Two types of classification tasks are addressed in this thesis, each requiring different
forms of label acquisition. For the dummy view classification task (see Section 5.2), labels
were created manually through an annotation process. In contrast, the node classification
task (see Section 5.3) relies on automatically derived labels based on the model structure,
without requiring human annotation.
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The annotation process for dummy view classification involved six annotators with
experience in CM. Each model view was annotated by two independent annotators to
ensure label reliability. The annotation workload was split into primary and secondary
assignments. The primary assignment evenly distributed the set of models among
annotators, while the secondary assignment selected a subset from other annotators’
primary sets to guarantee overlap and that each model is reviewed by more than one
annotator.

Each diagram to be annotated corresponds to a view in a model and is uniquely identified
by the filename pattern <modelId>.png__-__<viewId>.png. Up to five views per
model were exported and included in the annotation set. Given that some models
contain more than 100 views, this selection strategy prioritized coverage while ensuring
feasibility. Views were exported as PNG images (using the Archi CLI), compressed
using pngquant1, and integrated into a custom LabelStudio2 setup deployed via Docker.
Each annotator worked on an isolated branch of the annotation project, with individual
labeling environments containing the assigned diagrams.

The labeling interface supported three categories: Yes (dummy view), No (valid view),
and Pattern (view containing generic patterns or templates). In total, 1450 views were
annotated across 564 models. 1737 labels of type No, 706 of type Yes, and 216 of type
Pattern were created. Of the annotated views, 1178 (81.2%) showed agreement between
annotators, while 272 (18.8%) contained conflicting labels. Furthermore, 241 views were
labeled by only one annotator.

To derive the final binary labels, all Pattern annotations were reclassified as Yes. Models
with inconsistent annotations across views were manually reviewed. In cases of ambiguity
or irreconcilable disagreement, the affected models were excluded from the dummy
classification dataset. After this cleanup step, 573 views were labeled as Yes and 839 as
No. This set of binary labels exhibits moderate class imbalance and forms the basis for
the dummy classification task.

For the node classification task, labels were automatically derived from the encoded
models. Specifically, each triple extracted from a model encodes a source node (with
name and type), a relationship type, and a target node (with name and type). The
type of the target node serves as the classification label, eliminating the need for manual
annotation. The resulting corpus contains 69,890 triples, with 57,592 unique triples. The
number of triples per model varies considerably, ranging from 7 to 5641, with a mean of
127.30 and a standard deviation of 321.98.

The class distribution of target types is shown in Figure 5.1 with classes on the y-
axis (colored by ArchiMate layer) and the number of instances on the x-axis. The
distribution is highly imbalanced, with a few dominant classes and several infrequent
ones. For instance, ApplicationComponent and BusinessProcess account for nearly 8%
each of the labeled instances, whereas some types occur fewer than 20 times (e.g.,

1https://pngquant.org/ (Accessed: 04.06.2025)
2https://labelstud.io/ (Accessed: 04.06.2025)
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TechnologyInteraction, AndJunction, and OrJunction). This imbalance poses challenges
for ML training, particularly for generalization and performance on underrepresented
classes. Strategies to mitigate this are considered in the evaluation, such as sampling or
class weighting.
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Figure 5.1: Class Distribution of Target Types (for Evaluation 2)

5.1.2 Experimental Setup
This subsection describes the experimental setup used for both evaluation tasks. First,
we provide a high-level overview of the two evaluation scenarios with a diagram that
illustrates the overall workflow. Then, we describe the evaluation metrics used to assess
model performance, tailored to the binary and multi-class nature of the respective tasks.
Finally, we detail the hardware environment and tools used to conduct the experiments
for reproducibility.
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Setup Overview
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Figure 5.2: Experimental Setup Overview

Figure 5.2 illustrates the overall workflow used to evaluate the semantic encodings
developed in this thesis. The process is structured around two ML tasks: dummy
classification and node classification. Both serve to empirically assess the usefulness of
the encodings under different parameter settings. The tasks are described in more detail
in the corresponding subsections (see Section 5.2 and Section 5.3)

The workflow begins with a subset of ArchiMate models from the EA ModelSet (see
Section 5.1.1). These models are encoded using the CM2ML CLI with different parameter
configurations. For the dummy classification task, the TF encoder is used to generate
a term-based numerical representation of each model view. For node classification, the
triples encoder extracts element–relationship–element structures enriched with semantic
features such as word embeddings and type encodings.

The encoded representations are stored as JSON files and serve as input to each task-
specific evaluation pipeline. In both tasks, a set of ML models is trained using the encoded
data, and grid search with cross validation is used to find the best hyperparameters for
each ML model.

For dummy classification, manually annotated binary labels are used to train classifiers
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that distinguish between dummy and non-dummy views. In the node classification task,
the goal is to predict the element type of the target node in each triple, formulated as a
multi-class classification problem. The target labels are directly derived from the model
structure.

Each evaluation pipeline consists of four stages: loading and preprocessing the encoded
data, training and tuning classifiers, evaluating predictions using standard metrics, and
reporting results. The final report provides a comparison of ML models with the best
hyperparameters and performance metrics, from which insights can be derived on how
different encoder configurations affect predictive accuracy.

Evaluation Metrics

This section describes the set of metrics used to evaluate both ML tasks in this thesis. All
metrics are standard in classification tasks and provide complementary perspectives on
model performance. Their values vary in the interval [0, 1], where higher values indicate
better performance.

The first evaluation task, dummy classification (see Section 5.2), is a binary classification
problem, where each model view is classified as either valid (negative class) or dummy
(positive class). The following metrics are used:

Precision = TP

TP + FP
(5.1)

Precision measures the proportion of predicted dummy views that are indeed dummy.
TP (true positives) denotes the number of correctly predicted dummy views, and FP
(false positives) denotes the number of valid views incorrectly predicted as dummy. High
precision indicates that valid views are rarely misclassified as dummy.

Recall = TP

TP + FN
(5.2)

Recall measures the proportion of actual dummy views that are correctly identified. FN
(false negatives) refers to dummy views that were incorrectly predicted as valid. High
recall indicates that the model successfully identifies most dummy views and avoids false
negatives.

Accuracy = TP + TN

TP + TN + FP + FN
(5.3)

Accuracy measures the overall correctness of the predictions. It is the proportion of
correctly classified instances (both positive and negative) over all instances. TN (true
negatives) represents valid views correctly classified as such. In the presence of class
imbalance (i.e., one class has more instances than the other), accuracy can be misleading,
as it generally favors the larger class.
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F1 = 2 · Precision · Recall
Precision + Recall (5.4)

The F1 score is the harmonic mean of precision and recall. It provides a more balanced
metric than accuracy when classes are imbalanced and it accounts for both false positives
and false negatives.

The second evaluation task, node classification (see Section 5.3), is a multi-class classifi-
cation problem. The objective is to predict the correct type of a target node based on its
context. Due to the multi-class setting and class imbalance in the dataset, additional
metrics are used to assess per-class performance and account for label skew.

Accuracy = Number of correct predictions
Total number of predictions =

∑︁N
i=1 1(yi = ŷi)

N
(5.5)

Accuracy in the multi-class setting measures the proportion of correctly predicted labels
over all N instances. yi is the true label and ŷi is the predicted label for instance i.
However, as in the binary case, accuracy is sensitive to class imbalance and may be biased
toward dominant classes.

Balanced Accuracy = 1
C

C∑︂
i=1

TPi

TPi + FNi
(5.6)

Balanced accuracy computes the average recall (true positive rate) of all C classes.
TPi and FNi denote the number of true positives and false negatives for each class i,
respectively. This metric compensates for imbalances by giving equal weight to all classes.

F1-Macro = 1
C

C∑︂
i=1

F1i (5.7)

Macro-averaged F1 computes the unweighted mean of all per-class F1 scores, treating all
classes equally regardless of their frequency.

F1-Weighted =
C∑︂

i=1
wi · F1i (5.8)

The weighted F1 adjusts each class-specific F1 score by its support wi (i.e., the proportion
of instances belonging to class i). This metric balances class performance while accounting
for the true class distribution.

Precisionmacro = 1
C

C∑︂
i=1

TPi

TPi + FPi
(5.9)
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Macro-averaged precision calculates the average precision over all classes, where FPi

denotes the false positives for class i. It reflects how well each class is identified indepen-
dently of frequency.

Recallmacro = 1
C

C∑︂
i=1

TPi

TPi + FNi
(5.10)

Macro-averaged recall measures the average sensitivity across classes, showing how
thoroughly each class is captured by the model.

Hardware & Tooling

All experiments were conducted on standard consumer-grade hardware to demonstrate
practicality. The used machine has an Apple M1 Pro processor and 16 GB of RAM,
running macOS Sequoia (version 15.3.2). GPU acceleration was not used during model
training.

For encoding the ArchiMate models, the CM2ML CLI was used with Node.js version
20.11.0. All encodings were created with the corresponding encoding command and
respective parameters, with each configuration of encoder parameters resulting in a
dedicated JSON output file. If the encoded output exceeded practical file size limits,
it was split across multiple files. More details on the exact CLI commands used are
provided in the respective evaluation sections. In the second evaluation scenario (node
classification), the triples encoder was used with word embeddings, which requires
downloading pre-trained embedding files. This is supported via an auxiliary script
included in the repository.

For model training and evaluation, Python 3.12.9 was used together with libraries from
the Python data science ecosystem: scikit-learn for model implementation and
evaluation, NumPy and pandas for data handling, and matplotlib and seaborn
for generating visualizations and plots. To ensure reproducibility, all experiments were
executed with fixed random seeds, where applicable. The entire evaluation workflow is
implemented via standalone Python scripts, which are available in the public GitHub
repository accompanying this thesis.

5.2 Evaluation 1: Dummy Classification
The first evaluation investigates how well TF-based semantic encodings can be used to
automatically identify dummy views in ArchiMate models. Dummy views are diagrams
that do not convey meaningful information but instead serve as placeholders, incomplete
drafts, or artifacts created for testing purposes. Automatic detection of such views can
be beneficial for large-scale model repository management, quality assurance, and data
preprocessing.

74



5.2. Evaluation 1: Dummy Classification

The task is formulated as a binary classification problem, where each view is classified
as either valid or dummy, based on its encoding. The evaluation explores how different
encoder configurations and ML models perform on this task. In particular, it analyzes the
effect of various parameter settings on classification accuracy, using a manually annotated
subset of the EA ModelSet dataset as ground truth.

The following subsections detail the task setup, parameter configurations, and evaluation
results.

5.2.1 Task Definition & Evaluation Setup
The goal of this evaluation is to assess how well term-frequency-based encodings of model
views can be used to automatically distinguish between valid and dummy views. Dummy
views are placeholders that do not reflect meaningful enterprise architecture content
and are commonly introduced for quick sketches or testing purposes. Automatically
detecting such views enables improved filtering and quality assurance in large-scale model
repositories.

The task is formulated as a binary classification problem with supervised learning, where
the input is a frequency-based term representation of a model view, and the output is a
binary label indicating whether the view is considered a dummy (1) or valid (0). The
labels used for this evaluation were manually annotated by modeling experts as part of
the dataset construction process (see Section 5.1.1).

The input representations are generated using the TF encoder (see Section 4.3), which
transforms each model view into a vector of term frequency values. Only uni-gram
terms are considered in this evaluation with different parameter configurations of the
encoder to examine the impact of various preprocessing and feature selection steps, such
as stemming, tokenization, normalization, or the inclusion of type terms from elements
and relationships.

Each encoding configuration is applied on the same set of models, and the output encoding
is stored as a JSON file that contains the term-document matrices. In a classification
pipeline, the output JSON files are loaded and used as input to various ML models. In
particular, the classification pipeline involves the following steps:

1. Loading and preprocessing: Encoded term-document matrices and label files are
loaded into pandas data frames. Views without labels are excluded and missing
term values are replaced with zeros.

2. Data splitting: Each configuration is split into training and test sets using
stratified sampling (80/20 split) to preserve class distribution.

3. Hyperparameter tuning: For each ML algorithm, relevant hyperparameters
are optimized via 5-fold cross-validated grid search using F1-score as the primary
metric.
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4. Model training and evaluation: The best model for each algorithm from the
previous step is evaluated again, using 5-fold cross-validation on the training set.
Reported metrics are stored in a CSV file, including F1-score, accuracy, precision,
and recall.

Four basic classifiers with different hyperparameters are evaluated for this task. The
evaluated ML models and hyperparameter combinations are listed in Table 5.1.

ML Model Hyperparameter Values

Logistic Regression
C { 0.01, 0.1, 1, 10, 100 }
solver { liblinear, lbfgs }

Support Vector Machine
C { 0.01, 0.1, 1, 10, 100 }
kernel { linear, rbf }

Random Forest
n_estimators { 50, 100, 200 }
max_depth { None, 10, 20, 30 }

K-Nearest Neighbors
n_neighbors { 3, 5, 7, 9 }
weights { uniform, distance }

Table 5.1: ML Models and Hyperparameters used for Evaluation 1

5.2.2 Parameter Configurations
In this task, different configurations of the TF encoder were evaluated to explore how
the parameters affect classification performance. The tested configurations are organized
into two levels: (i) configuration groups, which define the types of semantic information
included in the term representation, and (ii) parameter variants, which define how this
information is processed and weighted. Each configuration group defines a different set of
encoded concepts (e.g., element names, element types, and relationship types), while the
parameter variants apply different normalization, preprocessing, and weighting techniques.
This two-dimensional organization enables an isolated analysis of how higher-level content
and lower-level transformations each contribute to model performance.

Three configuration groups were defined, as summarized in Table 5.2. For each group, 16
parameter variants were applied, which are listed in Table 5.3. This combination results
in 48 total configurations (3 groups × 16 variants). For example, the configuration ID
C_n_1 only includes element names and does not apply any additional parameters, while
C_ntr_16 includes element names, types, and relationships with all four parameters
applied. Also note that each configuration is evaluated on all four ML models with
different hyperparameter configurations, resulting in even more combinations and longer
execution time.
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Group Prefix Names as Terms Types as Terms Relationships as Nodes

C_n_<ID> ✓ ✗ ✗

C_nt_<ID> ✓ ✓ ✗

C_ntr_<ID> ✓ ✓ ✓

Table 5.2: Configuration Groups of Evaluation 1

Config ID Normalize TF Stem Tokenize TF-IDF

C_<group>_1 ✗ ✗ ✗ ✗

C_<group>_2 ✓ ✗ ✗ ✗

C_<group>_3 ✗ ✓ ✗ ✗

C_<group>_4 ✗ ✗ ✓ ✗

C_<group>_5 ✗ ✗ ✗ ✓

C_<group>_6 ✓ ✓ ✗ ✗

C_<group>_7 ✓ ✗ ✓ ✗

C_<group>_8 ✓ ✗ ✗ ✓

C_<group>_9 ✗ ✓ ✓ ✗

C_<group>_10 ✗ ✓ ✗ ✓

C_<group>_11 ✗ ✗ ✓ ✓

C_<group>_12 ✓ ✓ ✓ ✗

C_<group>_13 ✓ ✓ ✗ ✓

C_<group>_14 ✗ ✓ ✓ ✓

C_<group>_15 ✓ ✗ ✓ ✓

C_<group>_16 ✓ ✓ ✓ ✓

Table 5.3: Parameter Variants of Evaluation 1

5.2.3 Results & Discussion
The results of the dummy view classification evaluation are summarized in Figure 5.3.
The figure shows the F1 scores for all encoder configurations and ML models. Each
subplot corresponds to one ML model, and each line represents the F1 scores (y-axis)
achieved by one of the three encoder configuration groups (C_n, C_nt, and C_ntr),
plotted over the 16 parameter variants (x-axis). In total, 192 combinations (48 encoder
configurations × 4 ML models) were evaluated.

The evaluation confirms that the choice of encoding configuration has a substantial
impact on classification performance. Across all ML models, configurations that include
semantic type information (C_nt and C_ntr) consistently outperform the baseline group
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Figure 5.3: Evaluation 1 Results

C_n, which encodes only element names. This trend holds for nearly all parameter
variants, suggesting that the inclusion of element and relationship types is beneficial for
distinguishing dummy views.

Parameter Influence: Among the evaluated encoder parameters, tokenization appears
to be the most influential. Configurations where tokenization is disabled (i.e., parameter
variants 1-3, 5-6, 8, 10, and 13) consistently performed worse, particularly within the
C_n group, as can be seen through the lower spikes in the plots. This suggests that
breaking down element names into smaller lexical units significantly improves model
performance, likely by reducing sparsity and improving generalization. TF-IDF weighting
also proved beneficial, particularly in combination with tokenization and type information
as evidenced by consistently high performance in later parameter variants (especially
IDs 11–16). In contrast, normalization and stemming showed less consistent impact,
contributing marginal improvements in some configurations but not significantly affecting
ranking in the top results.

Best Performing Configurations: Table 5.4 lists the top 10 configurations sorted
by F1 score. The best result was achieved using LR with configuration C_n_16 (F1
= 0.7854), followed closely by C_n_11 and C_nt_16. Notably, 10 out of the top 10
configurations apply tokenization and 9 apply TF-IDF weighting, confirming the positive
effect of these parameters. Although one might expect richer configurations like C_ntr
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to dominate, several top results come from C_n and C_nt, suggesting that optimal
parameter tuning can sometimes compensate for less semantic input.

Config ID ML Model F1 Accuracy Precision Recall
C_n_16 LR 0.7854 0.8305 0.8031 0.7693
C_n_11 LR 0.7838 0.8197 0.7591 0.8114
C_nt_16 SVM 0.7811 0.8251 0.7948 0.7693
C_nt_15 LR 0.7788 0.8323 0.8345 0.7315
C_n_12 SVM 0.7772 0.8242 0.7952 0.7604
C_nt_14 LR 0.7758 0.8143 0.7580 0.7958
C_ntr_11 LR 0.7741 0.8135 0.7578 0.7915
C_nt_11 LR 0.7706 0.8117 0.7594 0.7826
C_n_15 LR 0.7703 0.8072 0.7408 0.8047
C_ntr_16 LR 0.7702 0.8135 0.7670 0.7737

Table 5.4: Top 10 Configurations by F1 Score of Evaluation 1

ML Model Comparison: LR was the overall best-performing model, achieving the
highest F1 scores in 7 of the top 10 configurations and in 32 out of 48 configurations
overall. SVMs also performed well and frequently matched or approached the performance
of LR (highest F1 score in 13 out of 48 configurations). RFs produced more variable
results, achieving competitive scores in a few configurations but rarely outperforming
the top linear models (highest F1 score in 3 out of 48 configurations). The KNN
algorithm consistently underperformed, which is expected given its sensitivity to feature
dimensionality and sparsity of the data.

In summary, the results indicate that both semantic content and text processing pa-
rameters substantially influence classification performance. The inclusion of element
and relationship types generally improves accuracy in all models, and tokenization and
TF-IDF weighting are critical parameters for effective feature construction. Although
LR and SVMs are the most effective models, the encoder configuration itself is the main
determinant of success.

5.3 Evaluation 2: Node Classification
The second evaluation investigates the effectiveness of semantic encoding strategies for
supporting multi-class classification tasks in conceptual models. Specifically, the task
focuses on predicting the correct type of a target node within an ArchiMate model, given
the structural and semantic context provided by a triple (source element, relationship,
target element). This type of prediction has practical applications in modeling tools,
where it could assist users during model construction by recommending element types
based on partial input.
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The evaluation is conducted using the triples encoder, which transforms each triple into
a fixed-length feature vector that includes word embeddings and one-hot representations
of structural metadata. The resulting dataset is used to train and evaluate different
ML classifiers. Eight encoder configurations are tested, varying in the choice of word
embeddings and OOV handling strategies. Three ML models are considered: LR, RF,
and MLP.

The following subsections detail the task setup, parameter configurations, and evaluation
results.

5.3.1 Task Definition & Evaluation Setup

The second evaluation task focuses on node classification in ArchiMate models with the
goal to predict the type of a target node based on its structural and semantic context.
This task is framed as a multi-class classification problem and is relevant both from
a modeling and encoding perspective. From a modeling perspective, the classification
can be integrated as a lightweight approach into practical applications such as model
auto-completion or intelligent modeling assistants. From an encoding perspective, the
task evaluates whether the semantics and context of a model element can be effectively
captured and what impact different embedding models and OOV strategies have.

Each prediction instance is derived from a triple consisting of a source node, a relationship,
and a target node. The triples encoder (see Section 4.5) is used to transform each triple
into a fixed-length feature vector. The resulting vector encodes: (i) the embedding of
the source node’s name, (ii) a one-hot vector for the source node’s type, (iii) a one-hot
vector for the relationship type, and (iv) the embedding of the target node’s name. These
components are concatenated into a single input vector. The target label is the type of
the target node, which can be one of 63 ArchiMate types and is also represented as a
one-hot vector.

In the evaluation procedure, the dataset is prepared by parsing all triples from the
encoded models. Only triples with complete information are retained and classes with
fewer than five samples are excluded to ensure sufficient quantity for supervised learning.
The resulting dataset is then stratified and split into training and test sets (80/20). All
ML models are evaluated using 5-fold stratified cross-validation on the training set, with
grid search for hyperparameter optimization. Macro-averaged F1 score is used as the
primary selection metric.

Three classifiers are considered for this task: LR, RF, and MLP. Table 5.5 lists the
models and hyperparameters used in the grid search for each model. Standardization is
applied where appropriate, and early stopping is enabled with an adaptive learning rate
for MLP training.
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ML Model Hyperparameter Values

Logistic Regression

C { 0.1, 1.0 }
penalty { l2 }
solver { lbfgs }
class_weight { None, balanced }

Random Forest
n_estimators { 100 }
max_depth { None, 20 }
class_weight { None, balanced }

MLP Classifier
hidden_layer_sizes { (256,), (512, 256) }
alpha { 1e-4 }

Table 5.5: ML Models and Hyperparameters used for Evaluation 2

5.3.2 Parameter Configurations

All models in this evaluation are encoded using the triples encoder (see Section 4.5). The
evaluation specifically focuses on the influence of word embedding parameters, which are
expected to impact how well semantic information is captured in the resulting feature
vectors.

Table 5.6 lists the evaluated configurations and their corresponding parameter combi-
nations. Two parameters were varied to examine their influence on model performance.
The first parameter, embeddingsModel, determines which pre-trained word embedding
model is used to encode element names. Four models, as currently supported in the
encoder, were evaluated: glove and word2vec, both trained on general-domain corpora
(Wikipedia + Gigaword and Google News, respectively), and two domain-specific variants,
glove-mde and word2vec-mde, trained on modeling-specific texts (i.e., papers from
well-known modeling conferences, e.g., MODELS, SoSyM, ER). The second parameter,
oovStrategy, controls how OOV terms are handled during encoding. Two strategies
were tested: the zero strategy, which replaces unknown terms with a zero vector, and
the most-similar strategy, which substitutes an OOV token with the embedding of
the most similar known word based on Levenshtein distance.

In addition to the varied parameters, a set of base parameters was used in all configurations.
In particular, type information for both source and target elements is included through
includeTypes. This type information is encoded using one-hot vectors over the
complete set of 63 ArchiMate types, through typesAsOneHot. Word embeddings are
enabled for both source and target element names through useEmbeddings. For multi-
word names, average is used as the combineWordsStrategy, where individual word
embeddings are combined by averaging to produce a single fixed-length vector. The
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Configuration Embeddings Model OOV Strategy
C1 glove zero
C2 glove most-similar
C3 word2vec zero
C4 word2vec most-similar
C5 glove-mde zero
C6 glove-mde most-similar
C7 word2vec-mde zero
C8 word2vec-mde most-similar

Table 5.6: Encoding Configurations of Evaluation 2

option includeSourceId was disabled in all configurations, as traceability was not
required and its exclusion reduced file sizes.

Each configuration was applied to the full dataset using the CM2ML CLI. To manage
memory and file size constraints, each run was split into three segments using the
--start and --limit flags. An example command to encode the first segment of
configuration C1 is shown in Listing 5.1.

1 cm2ml batch-archimate-triples ./models/
2 --start 0 --limit 200
3 --out ml/.output/triples/C1/C1_1.json
4 --strict --continue-on-error
5 --no-include-source-id
6 --include-types
7 --types-as-one-hot
8 --use-word-embeddings
9 --embeddings-model glove

10 --combine-words-strategy average
11 --oov-strategy zero

Listing 5.1: CLI Command to create the first segment of Configuration C1

Since word embeddings rely on vocabulary lookups, vocabulary coverage of tokens from
the dataset plays a critical role in the quality of the resulting vector representations.
Table 5.7 shows the coverage of each embedding model on the dataset vocabulary. The
Tokens column refers to the total number of tokens in the corpus used for training, whereas
Vocab. Size denotes the final vocabulary, containing only unique tokens. The Coverage
column shows how many tokens of the dataset vocabulary are covered, which includes
405,825 tokens in total. All models achieve coverage above 95%, with general-domain
models (glove and word2vec) performing slightly better due to their larger vocabulary
size. The domain-specific models (glove-mde and word2vec-mde), however, may
offer improved semantic alignment with modeling-specific terminology.
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Model Corpus Tokens Vocab. Size Coverage
glove Wikipedia+Gigaword ∼6B 400,000 396,188 (97.63%)
word2vec Google News ∼100B 3,000,000 391,294 (96.42%)
glove-mde Modeling Texts ∼40M 55,519 388,416 (95.71%)
word2vec-mde Modeling Texts ∼40M 55,519 388,416 (95.71%)

Table 5.7: Vocabulary Coverage of Word Embedding Models

5.3.3 Results & Discussion
The results of the node classification task are summarized in Table 5.8, which presents the
performance metrics for all eight encoder configurations and three ML models. Overall,
the evaluation shows that the choice of ML model has a significantly larger influence on
performance than the specific encoder parameters. RF classifiers consistently outperform
the other models in all configurations, achieving the highest scores for accuracy, macro
F1, and weighted F1. MLP classifiers perform slightly worse, but still deliver competitive
results. LR, while simpler and faster, consistently ranks lowest, due to its limited ability
to capture the complex relationships within the input representations.

The best-performing result is achieved with configuration C4 using a RF classifier. This
configuration reaches a weighted F1 score of 0.884 and an accuracy of 0.884, making it
the most effective overall. However, the differences between configurations are generally
small. In fact, most configurations using RF achieve a weighted F1 score greater than
0.87 with variations rarely exceed 0.02. These findings suggest that the models are robust
to small changes in encoder parameters, and that the inclusion of semantic and structural
features via the triples encoder provides a sufficiently rich signal for classification.

When looking at the impact of encoder parameters, no clear pattern emerges. Configura-
tions using general-purpose embeddings (glove and word2vec) often slightly outperform
those using domain-specific embeddings (glove-mde and word2vec-mde). This may be
attributed to the larger vocabulary coverage of general-purpose models, which can better
encode rare or compound terms. Although domain-specific embeddings might capture
semantic similarity better, their smaller vocabulary may lead to higher rates of OOV
tokens, reducing their practical advantage in this setting.

Similarly, the choice of oovStrategy (i.e., zero vs. most-similar) shows no consistent
effect on performance. In some cases, the most-similar strategy slightly decreases
performance, likely due to introducing noise when replacements with similar terms are
semantically not aligned. Nevertheless, the differences are minimal, often within a
0.001–0.003 range in weighted F1. This suggests that the classifiers are relatively robust
to the handling of unknown tokens, provided that a sufficient amount of contextual
information is available through the remaining input features.

To better understand model behavior, Figure 5.4 shows per-class F1 scores and support
values for the "best configuration" (C4 with RF). Note the use of two different x-
axis for Support (top x-axis) and F1 Score (bottom x-axis). The plot shows a wide
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Configuration Model Acc Bal Acc F1-Ma F1-W Prec Rec

C1
(glove, zero)

LR 0.778 0.715 0.732 0.777 0.753 0.715
RF 0.881 0.801 0.841 0.880 0.904 0.801

MLP 0.860 0.772 0.784 0.860 0.812 0.772
C2
(glove,
most-similar)

LR 0.770 0.702 0.724 0.769 0.759 0.702
RF 0.881 0.790 0.829 0.881 0.892 0.790

MLP 0.853 0.753 0.776 0.852 0.812 0.753

C3
(word2vec, zero)

LR 0.780 0.718 0.737 0.779 0.764 0.718
RF 0.883 0.794 0.832 0.882 0.894 0.794

MLP 0.860 0.770 0.786 0.860 0.813 0.770
C4
(word2vec,
most-similar)

LR 0.771 0.684 0.705 0.770 0.734 0.684
RF 0.884 0.788 0.830 0.884 0.889 0.788

MLP 0.855 0.724 0.755 0.854 0.809 0.724

C5
(glove-mde, zero)

LR 0.779 0.717 0.740 0.778 0.774 0.717
RF 0.882 0.789 0.830 0.882 0.892 0.789

MLP 0.850 0.759 0.778 0.849 0.809 0.759
C6
(glove-mde,
most-similar)

LR 0.769 0.712 0.733 0.768 0.774 0.712
RF 0.881 0.799 0.843 0.881 0.906 0.799

MLP 0.852 0.771 0.786 0.852 0.811 0.771
C7
(word2vec-mde,
zero)

LR 0.778 0.723 0.738 0.778 0.758 0.723
RF 0.878 0.800 0.840 0.877 0.903 0.800

MLP 0.858 0.770 0.780 0.858 0.799 0.770
C8
(word2vec-mde,
most-similar)

LR 0.770 0.671 0.695 0.769 0.732 0.671
RF 0.878 0.771 0.818 0.877 0.886 0.771

MLP 0.850 0.736 0.753 0.849 0.787 0.736

Table 5.8: Evaluation 2 Results

variation in prediction performance per classes. While some classes with higher support
also achieve high F1 scores, this is not always the case. For example, classes such as
ApplicationComponent or BusinessProcess have support values greater than 1000, but
still exhibit relatively low F1 scores. Conversely, some classes with moderate or low
support show comparatively strong performance. This indicates that the model’s ability
to correctly classify a type is influenced by more than just class frequency, including
factors such as feature distinctiveness and semantic overlap with other types.

In summary, this evaluation demonstrates that the triples encoder provides effective
input representations for multi-class node classification, without requiring manually
labeled data. RFs are the most robust classifier in this setting, with minor sensitivity
to embedding parameters. Domain-specific embeddings and OOV handling strategies
show limited influence on overall results, and class-level prediction remains difficult in
the presence of overlapping semantics and imbalanced label distributions.
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Figure 5.4: Evaluation 2: Per-class F1 Scores and Support for Configuration C4
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CHAPTER 6
Conclusion

This chapter concludes the thesis by summarizing the main findings and reflecting on its
contributions, limitations, and implications for future research. Section 6.1 revisits the
motivation, technical developments, and key results, providing a consolidated overview
of how the thesis addressed the problem of encoding semantic information in conceptual
models. Section 6.2 discusses current limitations and proposes directions for future work.

6.1 Summary
This thesis addressed the problem of how to systematically encode semantic information
in conceptual models for use in ML applications. Although conceptual models contain
diverse information sources (e.g., names, types, context, metamodel semantics, etc.),
existing ML4CM approaches often focus on narrow use cases that ignore different types
of information in their evaluation. This work aims to close this gap by introducing
configurable semantic encoding strategies that can be systematically evaluated to ensure
optimal performance during training.

To support this goal, the CM2ML framework was extended in several ways. An Archi-
Mate parser was developed to process two widely used XML formats with support for
configurable parameters, such as view separation, element filtering, and relationship
handling. The framework was also enhanced with reusable NLP utilities, including a
term extractor and helper modules for tokenization, embedding retrieval, and similarity
matching.

Building on this foundation, four semantic encoders were implemented: (i) a BoW
encoder (supporting tokens and sentences), (ii) a TF encoder (supporting uni-, bi-, and
n-grams), (iii) an embeddings encoder (mapping terms to pre-trained word vectors, with
optional pooling), and (iv) a triples encoder (extracting relational triples with optional
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type encodings and embedding vectors). These encoders were compared in Section 4.6
using a set of qualitative criteria that reveal their respective strengths and trade-offs.

To complement the qualitative analysis, two quantitative experiments were conducted
(Chapter 5), showing the feasibility of the implemented encoders for practical ML tasks and
how parameter choices influence performance. The first task, dummy view classification,
evaluated TF-based encodings and showed that configurations including tokenization
and TF-IDF weighting achieved the best results. The second task, node classification,
used the triples encoder to predict element types based on their relational context,
combining one-hot type vectors and word embeddings. While performance differences
across configurations were minor, the experiment demonstrated how the triples encoder
supports multi-class classification without requiring manually labeled data.

6.2 Limitations & Future Work
While this thesis establishes a foundation for semantic encoding of conceptual models for
ML, several limitations remain that offer promising directions for future work.

One limitation concerns the coverage of semantic aspects. The realized encoders
target selected types of semantics (e.g., lexical, structural, distributional, contextual)
but do not exhaustively capture all possible semantic dimensions present in conceptual
models. For instance, metamodel semantics, domain ontologies, or behavioral/temporal
aspects are not currently addressed. However, the relevance of specific semantic features
is highly dependent on the target ML task, making it difficult to define a universally
complete encoding. Future work should explore additional semantic dimensions and
assess their usefulness in more diverse tasks.

Similarly, the parameter space of the implemented encoders is not comprehensive.
Although key parameters were supported (e.g., basic tokenization, embedding model,
n-gram configuration, etc.), many other options, such as zone-based term weighting, ad-
vanced OOV strategies, or alternative pooling techniques remain unexplored. Expanding
the parameter space would allow for more fine-grained control and performance tuning.

Another conceptual limitation is the separation of structural and semantic encod-
ings. In practice, many ML tasks benefit from hybrid representations that combine
structural and semantic information. While this thesis focused on isolated encoder types
to allow clearer comparison, future research should investigate multi-encoder or hybrid
encoding strategies that combine, for example, graph-based representations with semantic
vectors to leverage complementary strengths.

The CM2ML framework itself poses certain limitations in terms of integration and
extensibility. It is implemented in TypeScript within a Node.js environment, which
restricts compatibility with the broader ML ecosystem that is predominantly Python-
based. Moreover, on-demand encoding is often necessary in ML workflows, and many
advanced NLP or embedding libraries are not available in the JavaScript ecosystem. As
a result, the implementation of components such as the embeddings encoder required
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workarounds. A future reimplementation in Python could alleviate these limitations and
better support experimentation with state-of-the-art ML tools.

In terms of evaluation scope, this thesis quantitatively assessed only two encoders (TF
and triples) and explored a limited set of parameter configurations. A broader evaluation
involving all encoder types, a more comprehensive parameter grid, and additional datasets
would provide deeper insight into the generalizability and robustness of each encoding
strategy. Also, the ML models used in the experiments were limited to traditional
approaches (e.g., LR, SVM, RF, KNN, MLP). Future work could include more advanced
models, such as transformer-based classifiers or GNNs, particularly for encoders that
capture sequential or relational information.

Furthermore, the evaluation included only two ML tasks, dummy view classification
and node classification, both based on supervised learning methods. Other relevant tasks
such as clustering, link prediction, or anomaly detection remain untested. Extending the
evaluation to these tasks could help uncover additional strengths or weaknesses of the
encoders.

Finally, there are limitations related to the dataset. The first classification task
relied on a subset of labeled models, and label coverage was incomplete. Moreover, since
the semantic encodings depend heavily on element names, the quality and consistency of
these names can directly influence performance. Inconsistent or poorly named elements
may lead to degraded results. Future work should involve curating and annotating richer
datasets with high-quality naming conventions and labels, and testing the encoders on
additional modeling languages such as UML or Ecore to validate their generalizability
beyond ArchiMate.
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Overview of Generative AI Tools
Used

ChatGPT1 (GPT-4o model) was used during the preparation of this thesis to improve
writing quality, specifically in terms of language clarity and stylistic refinement.

The use of ChatGPT did not affect the originality or academic integrity of the work,
since it functioned solely as a writing assistant, comparable to advanced language editing
software. All conceptual work, critical analysis, and final formulations were carried out
independently by the author.

1https://chatgpt.com/ (Accessed: 30.05.2025)
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