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Abstract
The increasing demand for reliable and high-speed wireless connectivity in railway
transportation has driven research into optimizing mobile network performance in train
environments. This dissertation presents a comprehensive benchmarking methodology
for evaluating cellular network performance on moving trains, addressing the unique
challenges posed by high mobility, vehicle penetration loss, and trackside infrastructure
limitations.

A structured approach is developed for data collection, processing, and analysis,
utilizing controlled measurement campaigns on various train types. Network key
performance indicators are examined to assess the impact of train design, network
infrastructure, and environmental factors on connectivity.

Furthermore, the study compares different onboard connectivity enhancement so-
lutions, such as repeater systems and frequency-selective surface window coatings,
analyzing their effectiveness in mitigating signal attenuation. Advanced statistical meth-
ods and geospatial modeling techniques are applied to improve measurement strategies
and ensure accurate evaluations. Additionally, this research integrates the digital twin
concept by modeling railway environments, cellular network deployments and train
properties in a virtual framework. This approach enables a comprehensive evaluation
and optimization of mobile connectivity onboard trains.

The findings contribute to a better understanding of mobile network performance
in railway scenarios and provide insights for optimizing future deployments. The
methodologies developed in this thesis can serve as a foundation for railway operators and
mobile network providers to enhance passenger connectivity and operational efficiency.



Kurzfassung
Die zunehmende Nachfrage nach Konnektivität im Schienenverkehr hat die Forschung
im Bereich zuverlässiger und schneller Mobilfunknetze in diesem Kontext maßgeblich
vorangetrieben. In der vorliegenden Arbeit wird eine umfassende und skalierbare
Benchmarking-Methode präsentiert, die dazu dient, die Leistungsfähigkeit zellularer
Netzwerke in fahrenden Zügen zu evaluieren. Ein besonderes Augenmerk liegt dabei auf
den spezifischen Herausforderungen, die durch hohe Mobilität, Fahrzeugdurchdringungs-
verluste (Vehicle Penetration Loss, VPL) sowie die Einschränkungen der streckenseitigen
Infrastruktur entstehen.

Zu diesem Zweck wird ein strukturierter Ansatz zur Datensammlung, -verarbeitung
und -analyse entwickelt, der auf kontrollierten Messkampagnen verschiedener Zugtypen
basiert. Im Rahmen der Untersuchung werden wesentliche Netzwerkschlüsselkennzahlen
(Key Performance Indicators, KPIs) systematisch analysiert, um den Einfluss von Zugde-
sign, Netzwerkinfrastruktur sowie umgebungsbedingten Faktoren auf die Konnektivität
zu bewerten.

Darüber hinaus vergleicht die Studie verschiedene Lösungen zur Verbesserung der
Konnektivität an Bord, wie Repeater-Systeme und frequenzselektive Oberflächenbe-
schichtungen (Frequency Selective Surfaces, FSS) an Fenstern, und analysiert deren
Wirksamkeit bei der Minderung von Signalabschwächung. Fortschrittliche statistische
Methoden und geospatiale Modellierungstechniken werden angewendet, um die Mess-
strategien zu verbessern und genaue Bewertungen sicherzustellen. Zusätzlich integriert
diese Dissertation das Konzept des Digitalen Zwillings (Digital Twin, DT), bei dem
Schienenumgebungen, zellulare Netzwerke sowie spezifische Zugmerkmale in einem virtu-
ellen Rahmen modelliert werden. Dieser Ansatz gestattet eine umfassende Evaluierung
und gezielte Optimierung der mobilen Konnektivität an Bord von Zügen.

Die gewonnenen Erkenntnisse tragen zu einem vertieften Verständnis der Mobilfun-
knetzleistung im Schienenverkehr bei und liefern wichtige Einblicke zur Optimierung
zukünftiger Netzbereitstellungen. Die in diesem Rahmen entwickelten Methoden stel-
len eine Grundlage für Bahnunternehmen und Mobilfunkanbieter dar, um sowohl die
Passagierkonnektivität als auch die betriebliche Effizienz nachhaltig zu verbessern.
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Chapter 1

Introduction
The demand for reliable, high-speed wireless connectivity in railway transportation has
surged in recent years, driven by growing passenger expectations and the increasing
integration of digital services. Trains play a crucial role in modern transportation
infrastructure, providing efficient and sustainable mobility across regions. Today’s
passengers expect seamless mobile connectivity not only for communication but also
for work, streaming, and entertainment during their journeys. Simultaneously, railway
operators rely on robust wireless networks for safety-critical applications, real-time
infrastructure communications, and remote diagnostics. As a result, ensuring stable and
high-quality mobile connectivity inside trains has become a priority for both railway
operators and mobile network providers.

Delivering consistent wireless performance along rail tracks remains a significant
challenge. Trains travel through diverse geographical environments with varying network
coverage, making uninterrupted connectivity difficult to maintain. To address this,
mobile network operators are continuously upgrading infrastructure, including Base
Station (BS) deployments along railway corridors, to enhance coverage and capacity.

Global System for Mobile Communications - Railway (GSM-R) has long been the
standard for providing circuit-switched voice and packet-switched data services in railway
connectivity [1]. Currently, 75% of Österreichische Bundesbahnen (ÖBB) - Infrastruktur
AG’s railway network in Austria is covered by GSM-R, though it is set to be gradually
phased out by 2030 [2]. This transition highlights the increasing importance of advanced
wireless connectivity in railway environments, leading to the development of the Future
Railroad Mobile Communication System (FRMCS) [3]. Designed to fully digitalize
railway operations, support higher levels of Automatic Train Operations (ATO), and
leverage Fifth Generation (5G) technology, FRMCS is set to play a pivotal role in
ensuring reliable and efficient wireless communication for modern railway systems.

Furthermore, as outlined in International Telecommunication Union (ITU) Report
M.2442 [4], radiocommunication systems in railways are increasingly essential for safety-
critical applications such as real-time diagnostics, emergency communications, and
control systems. As railways transition to next-generation communication systems, the
demand for enhanced onboard wireless performance will continue to grow, driving the
need for fair and efficient benchmarking and optimizing cellular connectivity in railway
scenarios.



1 Introduction

1.1 Challenges in Railway Connectivity
Ensuring reliable cellular network connectivity onboard trains presents challenges that
distinguish it from typical deployments in urban or rural areas. Unlike stationary or
pedestrian environments, trains require specialized solutions due to their high mobility,
metal structures, and varying environments through which they travel.

One of the critical issues affecting wireless communication in trains is high Vehicle
Penetration Loss (VPL) or train cabin attenuation1. VPL refers to the attenuation of
wireless signals as they pass through the materials and structures of a vehicle, leading to
significant degradation in signal quality. This phenomenon is particularly pronounced
in railway environments, as trains have mostly metallic bodies and specialized window
coatings designed for energy efficiency and passenger comfort. These coatings are
designed to reduce heat dissipation, which significantly lowers heating and cooling costs,
while also providing protection against Ultraviolet (UV) radiation. However, the very
properties that make these materials beneficial also substantially hinder wireless signals,
necessitating effective mitigation solutions.

Traditional cellular network deployments in cities and rural areas rely on fixed BSs
and relatively predictable user mobility patterns. In contrast, trains traverse diverse
environments with fluctuating coverage, including tunnels, remote locations, and densely
urbanized areas. Therefore, the cellular infrastructure designed for trains must account
for both the mobile nature of the vehicle and the confined environment within the train
cabin. Furthermore, the varying passenger load introduces dynamic Cell Load (CL),
significantly affecting network performance. In Austria, a typical intercity train can
accommodate up to 400 passengers during peak times, while in some countries, this
number can be tripled. Every Mobile Network Operator (MNO) must consider this
high passenger density when deploying infrastructure along railway corridors, as each
connected user shares the available bandwidth and capacity within a sector. This shared
nature of network resources can lead to congestion, affecting the quality of service for
all users on board.

Given that trains travel through diverse environments with varying network coverage,
it is essential to analyze these use cases separately due to the distinct propagation
conditions they present. The propagation of wireless signals can be significantly affected
by the environment, with urban areas often experiencing multipath propagation due to
buildings, while rural areas might have less obstruction but suffer from longer distances
between BSs. Tunnels, on the other hand, can create complete signal loss, necessitating
specialized solutions for maintaining connectivity. By examining each environment
individually - urban, rural, tunnels, and stations - we can better understand the specific
challenges and develop targeted solutions for optimizing wireless communication in
railroad scenarios. This approach allows for tailored strategies that consider unique
propagation characteristics of each scenario, ensuring more reliable connectivity for
passengers and operational efficiency for train operators.

1These two terms are used interchangeably throughout this thesis.
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1.2 Motivation for Research

1.2 Motivation for Research
Investigating cellular network connectivity on board trains presents a distinct set of
limitations compared to typical deployments in urban, rural, or highway environments.
The fundamental difference lies in the operational and structural constraints imposed
by trains, which make traditional network performance measurement approaches, such
as drive tests, significantly harder to implement.

Unlike drive tests in cars, where continuous measurements can be collected relatively
easily and cost-effectively, conducting tests inside trains is a more complex and resource-
intensive process. Additionally, drive tests benefit from widespread accessibility -
anyone can purchase a car and freely conduct measurements along highways or urban
streets. In contrast, trains represent highly controlled environments with restricted
access, making independent or frequent measurement campaigns impractical. The use
of dedicated rooftop antennas for network measurements, which is typical in car-based
tests, is not feasible on trains. Instead, measurements must rely on existing onboard
infrastructure, which is primarily designed to provide internet access to passengers rather
than facilitate controlled network evaluations. This reliance on shared infrastructure
introduces logistical constraints, as measurements must be conducted when the train
is empty to avoid disrupting passenger services. However, opportunities to access an
empty train dedicated solely to experimentation are rare and often limited to one or
two test runs, making data collection a one-time opportunity with little room for error.

Moreover, the unidirectional nature of train routes makes repeating measurements
in the same location exceedingly difficult. Unlike cars, trains cannot simply reverse
direction to revisit specific areas of interest, limiting the ability to capture repeated
data and conduct comprehensive comparisons across different sections of track. These
constraints highlight the need for efficient methodologies that allow for meaningful
comparisons between different train configurations, even when measurements cannot be
conducted under identical conditions.

Despite advancements in cellular network evaluation, a standardized approach for
benchmarking connectivity on trains remains absent. Existing methods, such as crowd-
sourced data collection and simulations, are informative, but often fail to capture
the full complexity of real-world conditions onboard moving trains. These limitations
underscore the need for dedicated measurement campaigns to systematically assess
different connectivity solutions.

The primary motivation for this research is to provide actionable guidance for both
network operators and railway companies seeking to enhance onboard connectivity. For
network operators, understanding connectivity challenges along train routes can inform
decisions on infrastructure improvements, such as optimizing cell tower placements
or modifying network configurations. For railway operators, understanding how train
design, seating arrangements, and window materials impact connectivity can guide
decisions on fleet upgrades and new train designs to improve passenger experience.

Train operators, in particular, are eager to evaluate how different wagon designs
perform in terms of mobile connectivity before making significant capital investments.
Additionally, understanding the impact of cabin loss - the attenuation of signals caused
by train materials such as walls, windows, and coatings - is crucial for accurately

3



1 Introduction

assessing onboard connectivity. Since testing all potential train configurations on the
same tracks is impractical, it is essential to develop a benchmarking methodology that
allows for fair and reliable comparisons across diverse environments. This is especially
relevant given that train characteristics - such as window coatings, materials, and
onboard antenna placements - play a critical role in determining connectivity quality.

Recent advancements in onboard connectivity solutions, such as passive frequency-
selective window coatings, have introduced new challenges in evaluating their perfor-
mance across different train types and routes. Older solutions, such as active repeaters,
offer internal signal enhancement but involve higher maintenance requirements and
present operational limitations. In contrast, emerging passive solutions modify train
window coatings to improve signal penetration without ongoing maintenance. These
different solutions directly influence the behavior of User Equipment (UE) once inside
the cabin. Depending on the solution in place, the UE may switch between relying
on external macro networks or onboard signal relays, affecting its performance, power
consumption, and handover behavior. This dynamic is crucial for operators to under-
stand, as it has implications not only for coverage but also for network planning and
resource allocation. However, the effectiveness of these technologies varies depending on
external signal conditions, highlighting the need for reliable methods to compare their
performance across different scenarios.

We seek to address these challenges by developing systematic methodology for bench-
marking cellular network performance onboard trains. Furthermore, we apply the
proposed methodology to compare existing connectivity solutions in the Austrian rail-
way fleet, enabling a data-driven evaluation of different approaches. To further support
this research, we investigate strategies for collecting these measurements, ensuring that
data is gathered efficiently and in sufficient quantity to make informed decisions about
where further measurements are needed. By leveraging sampling theory, we aim to
determine the necessary amount and distribution of data points, allowing for targeted
and resource-efficient measurement campaigns. By exploring how train characteristics -
such as window materials, antenna placements, and route conditions - affect connectivity,
this study aims to provide a foundation for improving onboard mobile service. The
insights gained will support railway operators in selecting appropriate connectivity
solutions and assist MNOs in optimizing their network deployments along railway
routes, contributing to a broader understanding of network performance in complex and
dynamic transportation environments.

1.3 Digital Twin in Mobile Communications for Railways
Digital Twin (DT) technology enables the creation of virtual replicas of railway environ-
ments, offering a powerful tool for simulating and analyzing cellular network performance
across diverse real-world conditions. This reduces the need for extensive physical testing
and supports data-driven optimization strategies in rail communications. Studies have
demonstrated the effectiveness of model-based DT platforms in integrating railway
infrastructure components - such as trackside deployments, trains, and environmental
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factors - into unified systems that support monitoring, diagnostics, and predictive
maintenance [5–7].

While DTs are still in the early stages of adoption within the railway industry, a
comprehensive survey has highlighted the potential of DTs in real-time operational
applications [8]. The authors outline the foundational technologies and discuss potential
applications, challenges, and the future directions for DT development in railway systems.
This thesis builds on that perspective by applying the DT concept to better understand
network behavior in complex railway scenarios and to support the optimization of
deployment strategies.

DTs have proven to be versatile beyond communications and operational monitoring.
For example, a DT for railway station buildings has been developed to help manage
maintenance and assess environmental impacts like carbon emissions [9]. This shows
the broader applicability of DTs across different railway applications - from boosting
network performance to supporting sustainability efforts in station management.

One of the primary advantages of DTs lies in their capacity to dynamically model
interactions between trackside infrastructure, train cabins, and surrounding environ-
ments, enabling real-time understanding of how these factors impact cellular network
performance. While DTs in railway networks have traditionally focused on infrastructure
and operational efficiency, recent work has also explored the use of augmented DTs for
safety-critical applications. An augmented DT has been introduced to assess derailment
risk in real-time using machine learning and multibody dynamics in [10]. Recent de-
velopments also highlight the opportunity to extend DT capabilities by incorporating
service models that describe user experience metrics such as throughput, latency, and
reliability. This approach highlights the broader potential of DTs in optimizing various
aspects of railway operations, including safety and operational efficiency, which could be
relevant when integrating network performance monitoring. Ultimately, the objective of
using DTs in this domain is to improve the design, testing, and maintenance of railway
communication systems, achieving greater accuracy, resilience, and efficiency in network
performance.

Fig. 1.1 illustrates our concept of the DT for railway connectivity, composed of three
components: Environment and Rail Track DT, Cellular Network DT, and Train DT.

Environment and Rail Track DT
The environmental conditions along a train’s route, including topography, vegetation,

and urban infrastructure, significantly influence wireless connectivity. Furthermore, the
characteristics of the railway track itself, such as curves, tunnels, noise barriers, or other
physical obstacles, influence signal propagation.

A DT of the environment and track integrates topographical and environmental data
to simulate the effects of these factors on signal quality. For instance, tunnels and
mountainous regions are known to cause significant signal loss. The DT can also include
dynamic environmental features like CL changes around residential areas or villages
along the route, which impact available capacity and service quality. By replicating the
physical environment in a DT, railway operators can simulate how the network will
perform in these challenging conditions. This model ensures that potential solutions are
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Figure 1.1: Components of DT for Railway Connectivity.

tested and optimized specifically for the railway environment, rather than applying gen-
eralized network configurations. The integration of Internet of Things (IoT) technology
has been proposed as a key enabler for the development of DTs in the railway sector,
supporting predictive maintenance and intelligent data acquisition for onboard systems
[11].

Cellular Network DT
Cellular network trackside deployment refers to the cellular infrastructure, such as

BSs signal towers, positioned along railway routes to provide consistent connectivity.
This deployment is crucial for ensuring uninterrupted service, particularly in high-speed
rail environments where trains must maintain continuous connections despite rapidly
moving between cells.

A DT of the trackside deployment digitally replicates BS locations, antenna orienta-
tions, tilts, transmit powers and handover mechanisms. It allows network engineers to
simulate the impact of changes in BS placement, antenna tilt, and network configuration.
Additionally, real-time data from BSs can be incorporated into the DT to model the
effects of terrain, weather, or obstacles such as tunnels on signal propagation. This
virtual network model can also simulate how different traffic distributions, including
the number of users per cell or temporary spikes in commuter density, affect quality of
service. Through this virtual model, railway operators can evaluate the efficiency of
current network setups and predict how future infrastructure modifications will influence
network performance [7, 12].

Train DT
The train itself presents distinct challenges for mobile connectivity due to its physical

properties, including its metal frame, window materials, and interior layout. These
characteristics contribute to high VPL, which reduces the quality of the mobile signals
inside the train.

A DT of the train would digitally replicate various parameters such as the train’s
body structure, window materials (e.g., coated or uncoated), and the configuration of
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onboard antennas or repeaters. Simulating these parameters helps engineers understand
how external signals are influenced by different train design choices. Furthermore, the
DT could simulate the effect of different user densities inside the cabin - e.g., simulating
peak vs. off-peak hours - on internal signal quality and traffic management. Moreover,
train modifications - such as changing window coatings or repositioning antennas - can
be tested virtually before implementing physical changes, saving time and resources.
This DT allows engineers to experiment with different configurations to identify the
optimal combination for reducing VPL and improving connectivity [7, 8].

Towards a Holistic DT for Railways
A comprehensive DT for railways would integrate the DTs of trackside deployments,

train characteristics, and the surrounding environment. This holistic approach offers a
complete understanding of how various elements interact to influence the onboard mobile
experience. More importantly, this integration would allow virtual reconfiguration of
the system - such as adjusting antenna placements, testing new onboard technologies, or
reallocating network resources based on simulated commuter density or traffic demand.
Such a model enables railway operators to simulate and evaluate network performance
under different conditions and identify potential issues before they arise. It also would
also facilitate iterative testing of "what-if" scenarios, supporting long-term planning and
optimization for both service quality and operational efficiency.

This research aims to contribute to the development of such a holistic DT by exploring
how trackside BS configurations, train design, and environmental factors interact to
influence mobile connectivity. By developing innovative methodologies for benchmarking
cellular network performance in railway environments, this work aims to support
improvements in wireless communication systems for high-speed rail.

1.4 Objectives of the Research
This thesis provides solutions to key challenges and complexities associated with bench-
marking cellular connectivity in high-speed railway environments. The following objec-
tives guide the study:

• Design and Validate a Scalable and Repeatable Benchmarking Methodology for
Wireless Connectivity in Railway Environments: A key objective is to create and
validate a scalable framework for measuring and evaluating wireless performance
in railway scenarios. Despite the inherent limitations of train-based measurements
- such as differences in railway tracks, varying network deployments, fluctuations
in passenger load and train speed, and environmental factors like terrain and
weather - this benchmarking framework is designed to be repeatable, transpar-
ent, and adaptable across diverse contexts. By deliberately incorporating these
features, we enable consistent evaluation of different connectivity solutions in
trains, ensuring that assessments are meaningful, data-driven, and applicable to
real-world deployments.
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• Assess the Influence of Trackside BS Deployment Strategies on Signal Strength
and Connectivity Performance: We design a framework for calculating the Angle
of Arrival (AoA) of signals on moving trains under real-world conditions, deliber-
ately omitting controlled laboratory measurements. As full-train lab setups are
impractical due to the size and complexity of railway environments, the framework
is developed for direct application across different train types and tracks. Using
this framework, we assess how the design and placement of trackside infrastructure
influence network performance. We focus on AoA analysis because, in newer on-
board connectivity solutions such as modified windows, external signals primarily
enter through the windows, and signal strength strongly depends on the AoA and
the BS position relative to the track.

• Evaluate the Role of Train Design in VPL and its Effect on Cellular Connectivity:
We examine how VPL impacts wireless communication inside trains, with a
particular focus on window coatings, patterns, and design elements. By quantifying
signal degradation due to VPL, we aim to identify strategies to mitigate these
losses and improve connectivity. Understanding the influence of train features on
cellular connectivity is essential for optimizing DT representations of trains and
enhancing overall network performance.

• Optimize Measurement Strategies for Enhanced Data Accuracy and Benchmark-
ing Reliability: We investigate various sampling strategies, including Stratified
Sampling (SS) and its application to crowdsourced data analysis, to improve
the granularity and accuracy of collected data and estimated Key Performance
Indicator (KPI) of interest. By integrating optimized measurement strategies
informed by sampling theory, this approach ensures that the collected data ac-
curately reflects real-world conditions, ultimately contributing to more reliable
benchmarking.

The following publications document the work we conducted towards these four
objectives, respectively:

• S. Tripkovic, P. Svoboda, M. Rupp, Benchmarking of Mobile Communications in
High-Speed Scenarios: Active vs. Passive Modifications in High-Speed Trains [13].

• S. Tripkovic, P. Svoboda, M. Rupp, Measuring the Effects of AoA on Vehicle
Penetration Loss in Cellular Networks [14].

• S. Tripkovic, P. Svoboda, M. Rupp, Enhancing Mobile Communication on Rail-
ways: Impact of Train Window Size and Coating [15].

• S. Tripkovic, L. Eller, P. Svoboda, M. Rupp, Unbiased Benchmarking in Mobile
Networks: The Role of Sampling and Stratification [16].

By achieving these objectives, this work makes significant contributions to the field
of railway connectivity, supporting improvements in both passenger experience and
operational efficiency in train systems.
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1.5 Structure of the Thesis
This thesis is structured to systematically address the research objectives outlined above.
The document is organized as follows:

• Chapter 1: Introduction - In this chapter, after discussing the challenges of
cellular communication in high-speed railway environments, we introduced DTs as
a promising tool for addressing these challenges and outlined its key components.
While a fully integrated, holistic DT for railway connectivity is beyond the scope of
this thesis, several elements - such as environment modeling, train characteristics,
and network deployment parameters - are used to inform and contextualize the
benchmarking approach developed in this work.

• Chapter 2: Metrics, Measurements, and Methodologies in Network
Optimization - This chapter presents the measurement framework and data
processing methodology for evaluating wireless connectivity in railway environ-
ments. It begins by introducing key performance metrics and then addresses
the shortcomings of existing approaches, such as the limited accuracy of Ray
Tracing (RT) simulations, thereby motivating the need for dedicated measurement
campaigns. Key aspects include measurement design, equipment selection, and
geospatial data integration to precisely align data with railway tracks. Techniques
such as Global Positioning System (GPS) interpolation, data segmentation and
stratification ensure ensure repeatability, transparency, and contextual relevance
across different train configurations and network conditions. By applying this
structured approach, the research enables reliable benchmarking and optimization
of railway connectivity.

• Chapter 3: Railway Measurement Datasets - This chapter provides an
overview of the datasets collected on board moving trains in Austrian railways and
used throughout this thesis. Measurement campaigns were conducted on three
distinct ÖBB train types - Talent, Railjet, and Nightjet - to assess the impact
of various connectivity solutions and cabin configurations on mobile network
performance. These datasets form the foundation for the subsequent analyses in
this dissertation, enabling a comparative evaluation of different window coating
modifications and signal enhancement strategies.

• Chapter 4: Evaluation of Mobile Connectivity Solutions in Trains -
This chapter assesses two connectivity solutions - Amplify-and-Forward (AAF)
repeaters and Frequency Selective Surface (FSS) window coatings - using real-
world railway measurements. We evaluate their effectiveness under different train
configurations and highlight practical trade-offs between active signal amplification
and passive enhancement strategies. By leveraging rail, environment, and cellular
datasets, we provide a comparative assessment of these solutions, highlighting
their strengths and limitations. This analysis serves as a foundation for optimizing
onboard connectivity strategies in high-speed rail networks.
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• Chapter 5: Impact of Train Characteristics on VPL - This chapter
investigates how various train characteristics impact VPL, focusing on factors
such as AoA, window size and coating, and the position dependency of devices
within the train. The findings from these measurements contribute to models
that can be applied for building the train DT, and offer guidance for optimizing
wireless connectivity in railway systems.

• Chapter 6: Optimizing Measurement Strategies through Sampling -
This chapter explores the application of SS to improve measurement strategies
in the context of big data and crowdsourcing. It introduces the theory behind
stratification, proposes its application in determining minimal measurement re-
quirements, and presents case studies involving simulated and Minimization of
Drive Test (MDT)-based datasets. These methods help identify optimal data
collection strategies while minimizing campaign effort.

• Chapter 7: Future Directions - This chapter outlines opportunities for further
research, including the integration of crowdsourced data into railway benchmarking
workflows and the use of the developed tools to support simulation calibration
and coexistence studies for emerging technologies like FRMCS. It emphasizes the
need for ongoing evaluation as networks and train technologies evolve.

• Chapter 8: Conclusion - This chapter summarizes key contributions to eval-
uating and optimizing cellular connectivity on trains through measurements,
simulations, and scalable methodologies.
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Chapter 2

Metrics, Measurements, and
Methodologies in Network
Optimization
In this chapter, we begin by examining the KPIs used to evaluate cellular network
performance within railway environments. We discuss their relevance and application
in capturing the spatiotemporal variability of network conditions. Subsequently, we
explore the role of simulations in evaluating cellular network performance within railway
environments, highlighting their strengths and limitations, particularly in comparison
to real-world measurements. Subsequently, we introduce a proposed measurement
methodology along with a post-processing framework designed to facilitate accurate
and fair benchmarking of various train types, cabin configurations, track segments,
and environmental conditions. This methodology ensures that network evaluations are
rooted in real operational conditions, supporting meaningful analysis and comparison of
connectivity solutions.

2.1 Cellular Network Performance: Technical Background
and Propagation Effects

In railroad scenarios, evaluating network performance is particularly critical due to the
unique challenges posed by high-speed mobility, frequent cell handovers, and variable
user density. Trains carrying hundreds of passengers impose a substantial load on
the serving BS, while continuous transitions between coverage areas introduce delays,
increased signaling overhead, and potential connectivity disruptions [17].

2.1.1 LTE and 5G: The Role of OFDM in Performance Metrics
Railway environments in Austria currently rely on Long Term Evolution (LTE) networks,
with future expansion toward 5G networks. Both LTE and 5G, which includes the
5th Generation New Radio (5G NR) standard, employ Orthogonal Frequency-Division
Multiplexing (OFDM) as their primary modulation scheme, ensuring efficient spectrum
utilization and robustness against multipath fading, which is particularly beneficial in
high-mobility scenarios like train-based connectivity.
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OFDM divides the available spectrum into multiple orthogonal subcarriers, minimizing
Inter-Symbol Interference (ISI) and providing high spectral efficiency. In the Downlink
(DL), LTE utilizes Orthogonal Frequency-Division Multiple Access (OFDMA), where
the fundamental scheduling unit is the Physical Resource Block (PRB), consisting of
12 subcarriers over a 0.5 ms time slot. In 5G NR, a flexible subcarrier spacing system
enables scalability across various deployment scenarios.

A critical enabler of LTE and 5G’s OFDM-based transmission is the Cell-specific
Reference Signal (CRS). The CRS is embedded within the OFDM time-frequency
grid, providing a dedicated signal for channel estimation, mobility management, and
computation of KPIs.

Following 3rd Generation Partnership Project (3GPP) TS 36.214 guidelines [18], the
CRS enables UEs to:

• Measure Reference Signal Received Quality (RSRQ) to assess interference and
congestion.

• Estimate Reference Signal Received Power (RSRP) for cell selection and handover
decisions.

• Derive Signal-to-Interference-plus-Noise Ratio (SINR), which impacts link adapta-
tion and scheduling.

In practical measurement campaigns, such as drive tests and scanner-based evaluations,
the CRS serves as a stable reference signal that enables consistent estimation of KPIs
like RSRP and RSRQ, making it fundamental to the assessment of LTE and early 5G
networks.

2.1.2 Key Performance Indicators in Cellular Networks
Evaluating cellular network performance in railway environments requires analyzing
several KPIs that reflect signal quality, interference, and network capacity.

1. Received Signal Strength Indicator (RSSI) - measure of total received power
within the measurement bandwidth:

RSSI (dBm) = 10 log10 (Psignal + Pinterference + Pcontrol + Pnoise) . (2.1)

It includes
• power from the serving CRS,
• power from other interfering cells,
• power from control channels and data transmissions,
• thermal noise and background interference [18].

All power-related quantities PX in this context are expressed in Milliwatts (mW).
Since it therefore represents an absolute power level referenced to 1 mW, it is
typically expressed in dBm.
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2. Reference Signal Received Power (RSRP) - defined as the linear average of
the power contributions of Resource Elements (REs)1 carrying CRS within the
measurement bandwidth:

RSRP (dBm) = 10 log10

)︃
1
N

N[︃
i=1

Pi

]︃
, (2.2)

where
• Pi is the received power of the i-th reference signal resource element (in mW),
• N is the number of REs used for RSRP computation.

Unlike RSSI, which includes power from all sources (e.g., interference and noise),
RSRP focuses only on the power of reference signals, making it a more precise indi-
cator of cell selection, handovers, and signal quality in LTE networks. Analogously
to RSSI, it is typically expressed in dBm.

3. Reference Signal Received Quality (RSRQ) - defined as the ratio of RSRP
to the RSSI, measured over the same bandwidth [18]:

RSRQ (dB) = 10 log10

)︃
N · 10RSRP (dBm)/10

10RSSI (dBm)/10

]︃
, (2.3)

where
• N represents the number of PRBs over which RSSI is measured,
• RSSI is the total power received, including reference signals, control signals,

interference, and thermal noise.
RSRQ is essential for assessing signal quality in loaded networks, particularly in
scenarios where congestion, co-channel interference, or poor scheduling impact
performance. As it represents the ratio between two power levels it is typically
expressed in dB.

4. Signal-to-Interference-plus-Noise Ratio (SINR) - quantifies the strength of
the desired signal relative to noise and interference, defined as:

SINR (dB) = 10 log10

⌊︃
Psignal

Pinterference + Pnoise

⌋︃
, (2.4)

and is typically expressed in dB.
Unlike RSRP and RSSI, which focus primarily on signal strength, SINR provides a
more comprehensive indication of signal quality by accounting for interference and
noise. As such, it is a crucial metric for evaluating network performance, handover
decisions, and overall user experience in LTE networks. SINR is a key parameter
for channel quality assessment, influencing the Channel Quality Indicator (CQI)

1In LTE and 5G NR, a Resource Element (RE) is the smallest unit of time-frequency resource that
can carry data or control information.
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reported by the UE to the Evolved Node B (eNB). This feedback helps optimize
link adaptation and resource scheduling, ensuring efficient utilization of network
capacity.

5. Throughput (T) - refers to the actual data transmission rate achieved by a user
[19].
In 3GPP LTE networks, T is measured at multiple protocol layers, each repre-
senting different aspects of data transmission as defined in 3GPP specifications
(TS 36.321 for Medium Access Control (MAC) [20], TS 36.322 for Radio Link
Control (RLC) [21], TS 36.323 for Packet Data Convergence Protocol (PDCP)
[22], and TS 36.331 for Radio Resource Control (RRC) [23]).
At the Physical layer (PHY), T is determined by the number of PRBs allocated per
Transmission Time Interval (TTI), the Modulation and Coding Scheme (MCS),
and the Multiple-Input Multiple-Output (MIMO) configuration. The achievable
PHY T is directly dependent on CQI reports, which guide the eNB scheduler in
resource allocation. The theoretical peak T is specified in 3GPP TS 36.213 [24]
and depends on factors such as carrier aggregation and higher-order MIMO.
At the MAC layer, T is influenced by scheduling algorithms (Proportional Fair,
Round Robin, Max C/I), Hybrid Automatic Repeat Request (HARQ) retransmis-
sions, and Quality of Service (QoS) prioritization. While PHY T represents raw
transmission capacity, MAC T reflects effective data delivery, accounting for error
recovery and resource scheduling, as defined in 3GPP TS 36.321 [20].
The RLC layer further impacts T through segmentation, reassembly, and re-
transmission mechanisms, using Acknowledged Mode (AM) for reliability or
Unacknowledged Mode (UM) for low-latency applications. Overhead is intro-
duced at the PDCP layer, which provides header compression, ciphering, and
integrity protection, as defined in 3GPP TS 36.323 [22].
At the Internet Protocol (IP) layer, T represents the actual end-user data rate,
shaped by network congestion, backhaul limitations, and QoS policies (as per 3GPP
TS 23.203 [25] on Policy and Charging Control (PCC)). While PRB allocation
directly influences PHY and MAC T, factors such as HARQ retransmissions,
protocol overhead, and scheduling efficiency determine the final user-perceived T.
Effective LTE network optimization requires balancing these factors to maximize
spectrum efficiency and Quality of Experience (QoE), following 3GPP guidelines
for LTE and LTE-Advanced.

6. Cell Load (CL) - defined as the fraction of available PRBs that are occupied by
active users in a given time interval:

L = Nused PRBs
Ntotal PRBs

, (2.5)

where
• Nused PRBs is the number of PRBs allocated to active UEs,
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• Ntotal PRBs is the total PRBs available in the cell.
A CL of one indicates that all available PRBs are currently in use, meaning the
cell is fully utilized at that moment. However, new users may still be scheduled
depending on priority and traffic demand, although overall capacity for additional
data transmission is limited [17].
In 3GPP LTE networks, CL has a significant impact on key T parameters across
different protocol layers, influencing overall network efficiency and QoS. According
to 3GPP TS 36.213, TS 36.321, and TS 36.331 [20, 23, 24], increasing CL leads
to reduced PRB availability per user, directly affecting PHY layer T. As more
users compete for resources, the eNB scheduler (TS 36.321 [20]) must dynamically
allocate PRBs. Overall high CL in neighboring cells causes interference, often
resulting in the selection of lower MCS due to reduced SINR.
At the MAC Layer, a high CL results in increased HARQ retransmissions, as
interference and congestion lead to packet errors, reducing effective T. Additionally,
scheduling algorithms (e.g., Proportional Fair, Round Robin, TS 36.321 [20]) must
prioritize users based on CQI feedback (TS 36.213 [24]), leading to potential
latency variations and reduced T for edge users.
At the RLC Layer, congestion-induced delays impact AM retransmissions, further
lowering effective T and increasing latency, as specified in 3GPP TS 36.322 [21].
Similarly, at the PDCP layer, increased load results in additional processing
overhead due to higher encryption and integrity protection demands (TS 36.323
[22]), affecting T efficiency.
At the IP Layer, a high CL exacerbates packet queuing delays and packet loss,
reducing user-perceived T. Backhaul constraints also become critical under heavy
load, as defined in 3GPP TS 23.203 [25], impacting QoS enforcement and limiting
guaranteed bit rate traffic performance.
In summary, increased CL reduces PRB availability, lowers MCS selection, in-
creases retransmissions at MAC/RLC layers, and degrades IP T due to congestion
and queuing delays. Effective load balancing, Inter-Cell Interference Coordina-
tion (ICIC) (TS 36.423 [26]), and QoS-aware scheduling are essential for mitigating
these effects in LTE and LTE-Advanced networks.

Metrics such as RSRP and SINR are key indicators of link quality and play a critical
role in various radio resource management tasks, including mobility management,
scheduling, and link adaptation. In the context of handovers they help determine the
optimal time and target cell for transition to maintain service continuity. Additionally,
information about the number of active UEs and CL - both in the serving and neighboring
cells - supports analysis of traffic distribution, aiding in load balancing and resource
optimization.

Spatiotemporal variability in network conditions along the railroad route - affected by
terrain, interference, and fluctuating user activity - further underscores the importance
of combining KPIs, such as RSRP, T and CL, to adaptively evaluate and maintain
service quality. Passengers’ increasing expectations for reliable, high-speed internet for
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work and entertainment add to the necessity of accurate T estimation and proactive
optimization.

2.2 Focus on Path Loss and Reference Signal Received
Power in Railroad Scenarios

Our objective is to model network KPIs, denoted by I(t, x, T , S), where t denotes time,
x represents geographic location, T characterizes the train type, and S corresponds to
the seating position within the train.

A comprehensive evaluation of network performance requires a focus on two funda-
mental indicators: Path Loss (PL) and signal strength. PL characterizes the attenuation
of the signal as it propagates through the environment, revealing the spatial factors
contributing to connectivity degradation. Signal strength, commonly represented by
the RSRP, is critical for assessing connectivity quality. Due to the single-pass nature of
train-based measurement campaigns, we have limited control over dynamic network-side
variables like CL, which fluctuate throughout the day. As it is not feasible to capture
identical track conditions under varying loads, we prioritize RSRP as a stable and
reproducible metric, which excludes noise and interference terms and is invariant to
traffic patterns [27]. This makes RSRP particularly suitable for isolating the effects
of large-scale propagation. Its independence from traffic conditions makes it a reliable
baseline for analyzing large-scale propagation effects and for comparing different train
configurations and deployment environments. The relationship between RSRP and PL
is crucial - as PL increases due to factors like distance, environmental obstructions, or
the train’s physical structure, the RSRP decreases, indicating a weaker signal at the
receiver. This connection can be mathematically expressed as:

RSRP = Pt − PL + Gt + Gr, (2.6)

where
• Pt is the transmitted power of the reference signal,

• PL is the signal attenuation over the distance and through obstacles, and in indoor
train scenario it consists of indoor and outdoor PL, as well as the VPL

PL = PLoutdoor + PLindoor + VPL, (2.7)

• Gt is the transmitter antenna gain,

• Gr is the receiver antenna gain.
Therefore, to measure the influence of the cabin structure we can measure RSRP

inside and outside the cabin, where their difference provides a direct measure of how
much the signal is attenuated as it passes through the train’s cabin materials, including
windows, walls, and other structural elements. Understanding VPL is essential for
evaluating the performance of the network inside the train and optimizing solutions to
mitigate this additional signal degradation.
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2.2.1 Link Budget and Key Metrics
The link budget in a railroad scenario accounts for the cumulative gains and losses that
determine the signal strength received by the UE inside a train. It provides a structured
approach to quantifying how various propagation effects impact the signal from the BS
to the UE. Signal propagation is influenced by multiple factors that can be broadly
categorized into large-scale and small-scale effects:

• Large-Scale Effects:
– Path Loss (PL): The deterministic component of signal attenuation caused

by the spreading of electromagnetic waves as they propagate through free
space or obstructed environments. This is typically modeled using models
like Free-Space Path Loss (FSPL), COST Hata, or other empirical models
[28].

– Shadow Fading (SF): The stochastic component of large-scale fading, caused
by obstacles such as buildings, trees, or terrain blocking or scattering the
signal. SF is often modeled as a log-normal random variable with a specific
standard deviation σ and spatial correlation distance dcorr [27].

• Small-Scale Effects:
– Small-Scale Fading (SSF): Caused by multipath propagation, where the

signal reaches the receiver through multiple paths, leading to constructive
or destructive interference. This type of fading is highly dependent on the
surrounding environment and the relative motion of the transmitter, receiver,
and scatterers [29]. In dynamic scenarios like a moving train, Doppler effects
may also contribute to small-scale variations, depending on the velocity and
scatterer distribution [28]. However, in our analysis, we focus on PL as the
dominant factor, as SSF effects are averaged out over large spatial scales.

In wireless communications, understanding and modeling both large-scale and small-
scale effects are critical for accurate network analysis [30]. However, the relevance of
each component depends on the measurement conditions and objectives.

We focus on large-scale PL, leveraging the positional diversity of the moving train
to ensure that SF effects are averaged out across the measurements. SF, the random
variation in signal strength caused by obstructions such as buildings and terrain, naturally
averages out in this scenario due to the extensive range of environments traversed by
the train. Hence, the primary components of the link budget include:

• Free-Space Path Loss (FSPL): Represents the attenuation of the signal as it
propagates over distance in free space from BS to the train exterior (or train
rooftop antenna), modeled as in [31]:

FSPL (dB) = 20 log10
4π

c + 20 log10 f + 20 log10 d, (2.8)

where f is the carrier frequency in Hz, d is the distance in meters, and c is the
speed of light in vacuum.
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• Vehicle Penetration Loss (VPL): Accounts for the loss as the signal penetrates
the train’s exterior, influenced by window properties, materials, and geometry.
Expressed as the difference between RSRP measured outside and RSRP measured
inside the train:

VPL (dB) = RSRPoutside (dBm) − RSRPinside (dBm). (2.9)

• Indoor Path Loss (Indoor PL): Reflects the signal degradation as it travels within
the train cabin, often dependent on passenger density, internal reflections, and
obstructions [32].

Throughput Estimation: Higher SINR allows for higher-order modulation and more
efficient coding, thereby increasing spectral efficiency and the achievable throughput, as
depicted in Fig. 6.3 of [17]. The impact of SINR on MCS is reflected through the CQI,
which directly influences the achievable T. Fig. 18 in [33] illustrates the relationship
between Reference Signal (RS)-SINR and the reported CQI in crowdsourced data. Since
CQI determines the selection of MCS, which in turn dictates the spectral efficiency and
data rate, understanding this relationship is crucial for T estimation. While for a UE
in an empty train connected to an unloaded cell, the Shannon-Hartley Theorem [34]
provides a theoretical upper bound on channel capacity for a channel of bandwidth W :

Tmax = W · log2(1 + SINR), (2.10)

in practical LTE deployments, T is constrained by standardized modulation and coding
schemes. For example, with 64-Quadrature Amplitude Modulation (QAM), 2 × 2
MIMO, and a 20 MHz bandwidth, the DL peak T reaches approximately 150 Mbps.
Thus, Eq. (2.10) serves only as a broad upper bound that scales with SINR, which is
itself limited by propagation conditions, interference, and device capabilities.

Under loaded conditions, T scales with the available PRBs, which are determined by
the CL:

T = Tmax · (1 − L), (2.11)

where L ∈ [0, 1] represents the CL. Consequently, CL is a critical factor in deter-
mining the actual T available to users. In addition to reducing available resources, a
higher CL also increases interference for neighboring cells, as more users and transmis-
sions contribute to inter-cell interference, degrading signal quality and overall network
performance.

In our measurements, we focus on the RSRP due to its temporal stability and
independence from traffic patterns. Conducting measurements in an empty test train is
essential as it provides a baseline reference for T under ideal conditions. This reference
can then be adjusted to reflect the expected CL during typical operations, enabling
accurate predictions of T in real-world scenarios.

Modeling Pathloss: In the context of modeling PL for railroad scenarios, the COST
Hata model and the FSPL model are frequently utilized due to their foundational roles
in predicting signal attenuation in various environments.
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FSPL Model: The FSPL model calculates the idealized PL assuming a clear, un-
obstructed Line-of-Sight (LOS) between the transmitter and receiver [35]. It serves
as a baseline, representing the minimum possible PL in the absence of obstacles and
environmental factors. While actual environments introduce additional losses due to
obstructions, reflections, and diffractions, the FSPL model is essential for understanding
the fundamental limits of signal propagation. The formula for FSPL, where d is the
distance in km and f is the frequency in MHz, is given by:

LFSPL = 32.45 + 20 log10
f

MHz + 20 log10
d

km , (2.12)

where the constant 32.45 accounts for free-space propagation at a frequency of 1 MHz
and a reference distance of 1 km. This model serves as a lower bound for PL in ideal
propagation conditions.

COST Hata Model: COST 231 [36] extended the Hata model [37], based on Okumura’s
correction functions [38], to accommodate frequencies up to 2 GHz, making it applicable
for modern cellular communications. It is particularly suited for urban and suburban
environments, providing a practical estimation of PL by considering factors such as
frequency, BS height, mobile station (or UE) height, and the distance between them.
The model’s empirical nature, derived from extensive measurements, offers a balance
between complexity and accuracy, which is beneficial for initial network planning
and assessments. It considers a variety of urban characteristics, making it a realistic
estimation for Non-Line of Sight (NLOS) propagation scenarios. In original Hata model,
the basic transmission loss is defined for frequencies [150-1000] MHz as:

Lb =69.55 + 26.16 · log10
f

MHz − 13.82 · log10
hB
m − a (hM)

+
⌊︃

44.9 − 6.55 · log10
hB
m

⌋︃
· log10

d
km .

(2.13)

COST 231 extended this model to the frequencies [1500-2000] MHz as:

Lb = 46.3+33.9 log10
f

MHz − 13.82 log10
hB
m − a (hM)

+
⌊︃

44.9 − 6.55 log10
hB
m

⌋︃
log10

d
km + Cm,

(2.14)

where

• hB: height of the BS antenna (in meters),

• hM: height of the mobile station antenna (in meters),

• a (hM): a correction factor for mobile antenna height, which is defined depending
on frequency as

a (hM) =
⌊︃

1.1 · log f
MHz − 0.7

⌋︃ hM
m −

⌊︃
1.56 · log f

MHz − 0.8
⌋︃

, (2.15)
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Figure 2.1: Comparison of PL models and measurements in a railroad scenario.

• Cm: a correction factor for the propagation environment, with values of 0 for
medium cities and suburban areas, and 3 dB for metropolitan areas.

Several studies have evaluated the applicability of the COST Hata and FSPL models in
railroad scenarios. These models are often used as benchmarks due to their foundational
roles in predicting signal attenuation. However, research indicates that these traditional
models, that have been used for their simplicity and standardization, may not accurately
capture the unique propagation characteristics of railway environments [39], necessitating
the development of specialized models.

For instance, in [40] authors conducted measurements in high-speed railway envi-
ronments and found that both the FSPL and COST Hata models did not align well
with empirical data. They proposed tuned PL models specifically for viaduct and plain
scenarios, demonstrating improved accuracy over traditional models.

Similarly, in [41] introduced an empirical PL model tailored for high-speed railway
viaduct scenarios. Their study highlighted the limitations of conventional models and
emphasized the need for models that consider factors such as viaduct height and BS
distance to accurately predict PL in these environments.

Figure 2.1 compares the measured PL values with predictions from the COST Hata
and FSPL models, based on data collected along a suburban railway track. During the
campaign, a measurement scanner connected to the train’s rooftop antenna captured
signal strength at 800 MHz and 1800 MHz. The PL was calculated using the known
antenna gains of both the BS and the train antenna, together with the calculated
distance to each BS.

To contextualize the results, we simulated both propagation models under appropriate
conditions. For the COST Hata model, we set Cm = 0 (representing a suburban/ur-
ban environment) and applied the frequency-dependent correction factor a(hM) for
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both frequencies2. A polynomial fit was also introduced to the measurement data to
approximate the large-scale trend while smoothing out SSF effects.

Rather than displaying a standard scatter plot - which is less informative due to
significant overlap of measurement points - we employ a density plot in Fig. 2.1 to better
visualize the distribution of measurements. The density plot reveals dominant trends
in the PL with respect to BS distance while mitigating visual clutter and emphasizing
discrepancies between theoretical models and empirical observations.

From the figure, it is evident that both the FSPL and COST Hata models show
substantial deviation from the measured values. The FSPL model significantly un-
derestimates the PL, as it assumes free-space conditions without obstructions. The
COST Hata model, while more realistic, still fails to capture the propagation character-
istics accurately - particularly in mid-to-long range distances along the suburban rail
environment.

These discrepancies underscore the limitations of existing PL models in dynamically
varying railway environments, where spatiotemporal effects play a crucial role. As
an alternative, RT simulations can be employed to model complex propagation more
accurately and to predict expected RSRP and achievable T under ideal conditions.

In Section 2.3, we will delve into one such simulation approach, discussing its method-
ology, advantages, and limitations.

2.2.2 Small-Scale Fading in Train
To analyze the impact of SSF, we conducted indoor measurements at 12 distinct seats
within the train cabin, in a static scenario. At each seat, measurements were performed
twice by placing the antenna on the fold-down table, once shifted toward the left side
and once toward the right side, as illustrated in Figure 2.2. This figure also shows the
scanner used for the measurements - a PCTEL IBflex scanner [42]. At each position,
measurements were conducted for several minutes, enabling repeated sampling to average
out SSF effects. This study focuses on a single BS sector and a single frequency band,
under the assumption that the device remains connected to the same BS for all positions.
This consistency allows us to evaluate the influence of measurement position within the
cabin. Such analysis would not be feasible if connections to different BSs or frequency
bands occurred across positions, as it would introduce additional variability unrelated
to the positional effects.

To process the collected data, we applied Gaussian Process Regression (GPR), a
non-parametric statistical method used for interpolation and prediction. GPR models
the data by assuming a prior distribution over functions, which is updated with observed
data to produce posterior predictions, for more details, see Appendix A1. The steps
involved in applying GPR are as follows:

• Measurements were conducted at 24 positions, each corresponding to one of two
sides of 12 seats.

2Simulations were conducted for both 800 MHz and 1800 MHz frequencies, corresponding to the
measurements taken on this track.
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Figure 2.2: Measurement setup in a static train scenario, where the antenna was
mounted on the fold-down table. The sketch illustrates the train plan,
with the measurement positions highlighted in blue. Measurements were
conducted across 12 designated seats, with the antenna positioned at
two distinct locations on each table: once closer to the window and once
farther from it. This configuration resulted in a total of 24 measurement
positions. The antenna was connected to a scanner to perform network
measurements.

• At each position, multiple RSRP values were recorded over several minutes.

• For each position, the mean µi and standard deviation σi of the measured RSRP
values were calculated:

µi = 1
N

N[︃
j=1

RSRPij , σi =

⌈︃⌉︃⌉︃{︃ 1
N − 1

N[︃
j=1

(RSRPij − µi)2, (2.16)

where N is the number of measurements at position i, and RSRPij is the j-th
measurement at position i.

• These µi and σi values were used as inputs to the GPR model, which generated
a reconstructed map by interpolating both the mean RSRP values and their
associated variability, while also providing confidence intervals.

GPR is particularly well-suited for this application as it provides both predicted mean
values and a measure of prediction uncertainty, ensuring a robust representation of the
spatial signal distribution.

Fig. 2.3 and Fig. 2.4 show the GPR interpolation results for 800 MHz and 1800 MHz
bands respectively. Several observations were made from the GPR analysis and mea-
surements:
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Figure 2.3: RSRP measurement mean µi (left), standard deviation σi (middle) at
each position i, and GPR interpolation using the mean and standard
deviation of measurements (right) for single BS in 800 MHz frequency
band. Root Mean Squared Error (RMSE) between interpolated mean
RSRP and measured mean RSRP is 2.03 dB.

Figure 2.4: RSRP measurement mean µi (left), standard deviation (middle) σi at each
position i, and GPR interpolation using the mean and standard deviation
of measurements (right) for single BS in 1800 MHz frequency band. RMSE
between interpolated mean RSRP and measured mean RSRP is 2.06 dB.
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• SSF Effects: Rapid signal fluctuations due to multipath propagation were
observed, caused by reflections from cabin walls, seats, and other obstructions -
a typical characteristic of indoor environments with dense multipath conditions.
However, the GPR-generated signal map exhibited a smooth and continuous spatial
variation with modest variation (on the order of 3 dB) across all 24 positions. This
indicates that while individual measurements are impacted by SSF, averaging
multiple samples at each position effectively suppresses small-scale fluctuations in
this static scenario, allowing GPR to capture primarily the Large Scale Fading
(LSF) effects.

• Smoothing via Measurement Averaging: By averaging repeated measure-
ments at each position, the mean impact of SSF fluctuations was reduced, while
the remaining variability, attributed to multipath propagation, was still captured
through the standard deviation (σi), which was incorporated into the GPR model.
This highlights the value of repeated measurements for improving signal stability
estimates.

• Minimal Spatial Variability: The reconstructed signal map shows limited but
noticeable spatial variability, suggesting that while SSF effects exist at individual
measurement points, their impact is reduced when averaged over time and inter-
polated. This indicates that localized differences in measurement positions have a
limited influence on the overall signal strength distribution within the cabin.

• Implications for Coverage Planning: The smooth RSRP variation in the
reconstructed map suggests that, at a static level, signal strength inside the cabin
is relatively stable across small positional changes. In a dynamic scenario, SSF
effects would average out over time, potentially leading to an even more stable
RSRP distribution, though larger-scale variations due to mobility effects would
need further investigation.

The results confirm that while SSF introduces significant local variations, these effects
are not critical for overall performance evaluations when measurements are spatially
averaged. Furthermore, the negligible variability in the GPR results suggests that the
precise measurement location within a seating cabin does not significantly impact the
quality of signal strength.

2.3 Ray Tracing Simulations for Railway Connectivity
Modeling

RT simulations play a key role in modeling and optimizing cellular network perfor-
mance in railway environments. While train connectivity is often challenged by signal
degradation in tunnels, stations, and dense urban areas, the majority of railway tracks -
especially in Austria - run through rural and open areas where LOS conditions dominate.
This characteristic makes RT particularly well suited for simulating signal propagation
and assessing network coverage along railway corridors.
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RT models the propagation of electromagnetic waves as rays and accounts for physical
phenomena such as reflection, diffraction, and transmission [43]. This enables accurate
predictions of signal behavior, especially in geometrically complex areas. Prominent RT
tools include Sionna RT, CloudRT, RemCom, and MATLAB’s 5G toolbox [44–47]. In
the context of DT use cases for railways, RT simulations enable:

• Network coverage planning: Identifying coverage gaps and optimizing the
placement of BSs along railway tracks.

• Signal interference management: Predicting signal scattering and reflection
in urban environments to mitigate interference.

• Tunnel and station optimization: Determining optimal antenna and signal
booster placement to maintain connectivity in confined spaces.

While RT simulations provide significant benefits for the optimization of cellular
networks in railway systems, one key challenge remains: the accuracy of RT simulations
is highly dependent on the calibration of their underlying parameters. These parameters,
such as material properties, signal scattering, reflection, diffraction, and transmission
characteristics, can vary greatly depending on the specific environment being modeled.
Without accurate calibration, simulations may fail to reflect real-world conditions,
resulting in suboptimal network performance and coverage predictions.

To ensure simulation accuracy, these parameters must be calibrated using real-world
measurements taken in the specific environment. For instance, signal behavior in an
urban area with dense steel and concrete structures will differ from that in a rural
agricultural or mountainous setting. By using real-world measurements, these parameters
can be adjusted to allow the RT model to accurately predict signal propagation in the
environment.

This calibration process is essential for generating precise results. Without it, RT
simulations may produce inaccurate outcomes, leading to wrong assumptions about
network coverage, signal strength, and interference. Measurements form the foundation
upon which RT simulations are calibrated, ensuring that they accurately reflect the
unique characteristics of each environment and are, therefore, reliable for practical
applications.

We investigate an example scenario using the Sionna RT simulator [48] to assess
the impact of RT parameter calibration on the accuracy of signal predictions. The
measurements were conducted in an urban environment within the city of Vienna,
Austria. To construct the underlying 3D model, we utilized the 3D city map of Vienna
from Geodatenviewer der Stadtvermessung Wien (GSW), which provided the necessary
data to generate a detailed 3D representation of the area of interest. Specifically,
we obtained the generalized roof model (LOD2.1) and the terrain model from the
City of Vienna’s official platform [49]. These models were subsequently imported into
Blender [50], where we leveraged several predefined materials available within the Sionna
RT [48] framework. The material itu_brick was assigned to the building structures,
itu_medium_dry_ground to the terrain, and itu_meta to the train. A top-down view
of the scene, showing the layout of the measurement and BS locations, is presented in
Fig. 2.5 (bottom).
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Figure 2.5: Comparison of measurements and RT simulations for a single BS operating
in the 800 MHz band. Top: Observed measurements contrasted with
simulated results. Bottom: Visualization of rail tracks with measurement
data used for parameter training.

Fig. 2.5 (top) compares RSRP measurements on the rail track with simulated RSRP
values at the same locations, using both an untrained RT model (Basic RT) and its
calibrated version (Calibrated RT). As shown in Table 2.1, the calibration significantly
reduces the MAE across all locations, particularly in NLOS conditions, where the error
decreases from 24.2 dB to 6.77 dB.

Beyond the reduction in MAE, calibration also improves the correlation between
measurements and simulations, indicating a stronger alignment between the modeled
and real-world propagation characteristics. The correlation coefficient increases from
0.747 to 0.827 overall, with the most notable improvement in NLOS conditions (from
0.459 to 0.509). A higher correlation coefficient in these scenarios suggests that the
calibrated model better captures variations in the measured data, though discrepancies
remain.
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Table 2.1: Mean Absolute Error (MAE) and correlation coefficient values for trained
(calibrated) and untrained (basic) RT simulator.

MAE [dB] Correlation Coefficient
All Locations LOS NLOS All Locations LOS NLOS

Basic RT 13.2 9.2 24.2 0.747 0.869 0.459
Calibrated RT 5.1 4.6 6.77 0.827 0.871 0.509

The NLOS scenarios particularly influence the high error observed in the untrained
model. These scenarios are characterized by complex signal propagation due to obstacles
blocking the direct line of sight between the transmitter and receiver. The NLOS error
significantly decreases after calibration, demonstrating the importance of accurately
modeling the environment to improve simulation accuracy. For instance, MAE for
NLOS locations drops from 24.2 dB in the untrained model to 6.77 dB in the calibrated
model, illustrating the substantial improvement calibration brings to RT simulation
accuracy in these challenging conditions.

However, the remaining high errors highlight the critical need for real-world measure-
ments and highly accurate 3D environment models for the calibration of simulation
parameters. Despite the improvements made through calibration, the RT simulations
still fall short of fully replicating real-world conditions. While these simulations are
informative, they do not yet provide a complete picture of the network’s behavior under
actual operating conditions. To truly capture the complexities of real-world networks,
large-scale measurement campaigns remain indispensable. In the following section, we
propose a methodology for collecting and post-processing such measurements, as well
as for analyzing network performance based on real-world data, which will help bridge
the gap between simulation and reality.

2.4 Integrated Framework for Data Collection and
Analysis

In this section, we present the data collection and postprocessing framework that we
developed and applied across multiple measurement campaigns to benchmark cellular
connectivity performance in railway environments. The framework covers the design
and planning of the campaigns, the selection and configuration of measurement equip-
ment, and the postprocessing of collected data. A key aspect of our approach is the
systematic combination of different datasets during the analysis phase, enabling a more
comprehensive and accurate evaluation of connectivity performance.

2.4.1 Designing the Measurements and Measurement Equipment
Collecting measurements onboard trains is a time- and cost-intensive process. Train
operators cannot afford to run trains empty along the tracks solely for measurement
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purposes, as this would disrupt their operations and increase costs. For network
performance assessments, it is critical to conduct measurements in an empty train, as
this provides a baseline of the network’s capacity without passenger-induced resource
sharing. These measurements can later be scaled to account for real-world network load
conditions, where passengers onboard share the available resources.

To address these challenges, we leverage the time during train operator’s mandatory
safety tests, tagging along on test drives in empty trains to perform cellular network
measurements in parallel. This is made possible through our industry collaboration
projects with ÖBB (Austrian Federal Railways), enabling access to these test runs while
minimizing additional operational disruptions.

Modern trains utilize multiple cellular modems to maintain continuous connectivity
with local mobile networks, supporting various onboard systems. These modems are
typically mounted on the train roof and connected to pre-installed antennas designed for
reliable signal reception, even in rural or weak coverage areas. For our measurements,
we connect directly to the output of these existing antennas, as we are not permitted to
install our own antennas on trains in operation. This setup requires authorization from
the train operator and means that we must work with the technical specifications of the
pre-installed antennas rather than selecting our own.

The measurement setup leverages both outdoor and indoor configurations to capture
a comprehensive picture of network performance under real-world conditions.

For outdoor measurements, the train’s rooftop antenna, originally used to provide
Wireless Local Area Network (WLAN) connectivity onboard through cellular networks,
can be repurposed. During measurement campaigns, one of the WLAN modems
is bypassed, and a network scanner is directly connected to the antenna’s output.
Alternatively, a UE with an external antenna can be used for network measurements.
This setup allows us to measure the cellular network coverage along the track as provided
by the MNO, capturing signal conditions along the route. To ensure continuous operation,
the network scanner is powered through an Uninterruptible Power Supply (UPS),
preventing interruptions in case of short power outages, which are common on trains.
Additionally, the network scanner is connected to both the train’s GPS antenna and an
external u-blox Global Navigation Satellite System (GNSS) module [51] for enhanced
GPS accuracy. The measurement setup is presented in Fig. 2.6. By combining reported
GPS data with network measurements through timestamp alignment in postprocessing,
we ensure accurate mapping of network performance relative to the train’s location
along the track.

For indoor measurements, which focus on the signal quality experienced by passengers,
we deploy additional equipment. Specifically, we can use either a network scanner or
UEs inside the train. When using a scanner for indoor measurements, it is connected
to an external antenna that is placed on a fold-down table, seat, or another suitable
surface inside the train. This setup allows the scanner to passively capture detailed
network information across multiple frequency bands simultaneously. Alternatively, we
use UEs to actively generate user-like traffic by performing constant downloads inside
the train. Our measurement setup, shown in Fig. 2.7, consists of multiple smartphones
running Nemo Handy Handheld Measurement Solution by Keysight [52], which records
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Scanner

Antenna
connectors

Analysis
software

UPS

U-blox

PCTEL MXflex® Scanner

UE with external antennas

Figure 2.6: Measurement setup for outdoor train measurements. The left side illus-
trates the connection of a scanner to the train’s rooftop antenna. The
system is supported by UPS to prevent data loss during short power out-
ages and utilizes a u-blox GNSS module for improved GPS accuracy. The
right side (top) shows a UE with an external antenna, which can be used
as an alternative to the scanner, while the right side (bottom) displays the
PCTEL MXflex scanner.

AntennaTablet UEs

Figure 2.7: Measurement setup for indoor train testing. On the left side, a tablet
acts as the master unit, automatically triggering measurement scripts on
all connected UEs. On the right side, an external antenna is positioned
as an alternative setup option and used for scanner-based measurements
(though the scanner itself is not visible in the image).
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signal metrics and network performance data. A central tablet serves as the master
unit, automatically triggering the measurement scripts on all connected UEs. This
ensures synchronization and minimizes manual intervention during data collection.
Our measurement campaigns typically involve up to six smartphones operating in
parallel. This approach ensures measurement repeatability under realistic conditions,
since train-based measurements, unlike car-based drive tests, cannot easily be repeated
over the same track segment. By capturing data from multiple devices simultaneously,
we enhance the reliability and robustness of the collected data. The measurement
campaigns aim to collect KPIs such as RSRP, T, and voice quality metrics, alongside
geographical positioning data and timestamps. This data forms the basis for subsequent
analysis. The choice of measurement equipment significantly impacts the type and
quality of collected data. Network scanners, such as the PCTEL MXflex, and UEs
(smartphones) each have distinct advantages and limitations, making them suitable for
different aspects of cellular network analysis.

Network scanners provide a high level of granularity and accuracy in signal mea-
surements. They can simultaneously scan multiple frequency bands, including those
not actively used by a particular UE, offering a full picture of the available network
spectrum. For example, the PCTEL MXflex3 can monitor up to 48 channels across
different frequency bands and perform blind scans to detect all available signals. Addi-
tionally, scanners support advanced antenna configurations such as 4 × 4 MIMO and
deliver high-precision measurements, with an RSRP accuracy of ±1 dB and a minimum
detection level as low as -140 dBm. These characteristics make scanners particularly
useful for benchmarking network coverage and detecting interference or weak signal
areas with high accuracy. Since scanners operate passively and do not generate traffic,
they are unable to capture performance metrics that depend on active user behavior,
such as T or latency.

In contrast, UE-based measurements focus on the user experience. Smartphones
operate under real-world conditions, connecting to a BS and dynamically selecting
frequency bands based on network conditions and resource allocation strategies. With
carrier aggregation, UEs can be connected to one Primary Serving Cell (PCell) and
more than one Secondary Cell (SCell) simultaneously, enabling higher T and increased
bandwidth utilization. This provides a more realistic representation of network per-
formance for mobile users. While UEs reflect real-world performance, including signal
strengths and T, they have significant limitations in measurement accuracy compared
to scanners. As shown in Table 2.3, UEs have an RSRP accuracy of ±8 dB, much
lower than the ±1 dB precision of scanners. Additionally, UEs are limited by their
chipset capabilities, supporting fewer simultaneous frequency bands and typically only
lower-order MIMO configurations (e.g., 2 × 2 or 4 × 4). Moreover, the GPS accuracy of
UEs, ranging between [10-50] m, is considerably worse than the 2.5 m accuracy achieved
by the scanner, which affects location-based analyses.

Scanners can measure signals from multiple networks with high accuracy, making
them valuable for coverage mapping and interference analysis. However, they are
expensive, require specialized software, and do not reflect real user experience. In

3Table 2.2 shows LTE Measurement Parameters in PCTEL MXflex scanner.
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Table 2.2: LTE Measurement Parameters in PCTEL MXflex scanner [53].

Measurement Modes

Top N Sync Channel RS (P-SCH/S-SCH),
Resource Block (Wideband, Subband),

Dynamic Spectrum Sharing (DSS),
Blind Scan, eMBMS Multicast RS

Data Modes

RSRP (Received Power),
RSRQ (Received Quality),

CINR (Carrier-to-Interference Ratio),
Cyclic Prefix, Time Offset, Delay Spread,

Layer 3 Analysis, LTE MIMO (ECQI, Est. Throughput)
Channel Bandwidths [1.4, 3, 5, 10, 15, 20] MHz
Max Channels 48 total (FDD + TD-LTE)
Antenna Techniques SISO, MISO, MIMO (4 × 4, 4 × 2, 2 × 2)

Measurement Rate LTE FDD: 48/sec, 2 × 2 MIMO: 24/sec,
4x4 MIMO: 3/sec, TD-LTE: 19/sec, eMBMS: 2/sec

RSRP Min Detection Level −140 dBm @ 15 kHz
RSRP Accuracy ±1 dB
GPS Accuracy 2.5 m
Max PCIs 16

Table 2.3: LTE measurement parameters for a typical UE [54].

Measurement KPIs RSRP, RSRQ, CINR, throughput
Timing Advance, Layer 3 Signaling, etc.

Channel Bandwidths [1.4, 3, 5, 10, 15, 20] MHz
Antenna Techniques SISO, MIMO (2 × 2, 4 × 4)

Measurement Rate
Depends on UE sampling rate and

network conditions
(typically 2/sec in connected state)

RSRP Range −140 dBm to −44 dBm
RSRP Accuracy ±8 dB
GPS Accuracy 10 m-50 m
Max PCIs Limited by UE chipset capabilities

contrast, commercial phones or test UEs are cost-effective, easy to deploy at scale, and
capable of generating traffic like actual users, but they are less accurate and limited
in the frequency bands they can observe. In our setup, we use scanners mounted on
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the train roof to measure outdoor coverage, while UEs are placed inside the train
to assess performance from a passenger perspective. This hybrid approach provides
a comprehensive view of network performance, combining coverage potential with
real-world user experience.

2.4.2 Geospatial Data Integration for Environment Digital Twin
Development

Accurate geographical data is fundamental for mapping measurements to their respective
locations, ensuring precise contextual analysis. To apply the DT concept in practice,
we built an Environment and Rail Track DT model by fusing GPS, topography, and
land cover data - serving as the foundation for realistic simulation of signal propagation
scenarios along the rail tracks.

Open Street Maps (OSM) [55] is a collaborative, open-access geographic database
that provides detailed, up-to-date information on transportation networks, including rail
tracks, roads, and other infrastructure. Known for its flexibility and community-driven
accuracy, OSM offers a comprehensive and continuously updated representation of
transportation infrastructure. This makes it a crucial resource for modeling the railway
network on which the DT of the train operates. We use OSM data to define the network
layout, including the positioning of rail tracks, tunnel data and the broader urban
environment, providing the foundational geographic framework for simulating wireless
signal propagation in the railway system.

Geodatenviewer der Stadtvermessung Wien (GSW) is a platform that offers access
to 3D building models, specifically for the city of Vienna, Austria [49]. These models
are provided in shapefile format and include detailed representations of buildings
and other urban features. This data is invaluable for simulating signal behavior in
complex urban environments, where factors such as diffraction, reflection, and shadowing
play a significant role in wireless communication. The 3D models allow for precise
environmental modeling, which is necessary to simulate the propagation of wireless
signals in dense urban areas, such as those found in Vienna. These 3D models contribute
to the digital representation of the railway environment used in this work.

Digital Terrain Model (DTM) [56] is a high-resolution model that provides detailed
elevation data for the entire Austria. Produced through airborne laser scans as part of
the Geoland project, the DTM offers a 10 m resolution, capturing terrain features, such
as mountains, valleys, and other natural geographical structures, which significantly
impact the propagation of wireless signals. In rural areas, where urban 3D models are
unavailable, the DTM serves as the primary source of geographic data, helping to model
how terrain features influence wireless signal behavior.

Corine Land Cover (CLC) [57] is a dataset provided by the Copernicus Land Moni-
toring Service, which classifies land cover across Europe into 44 categories, including
forests, agricultural land, wetlands, and urban areas. Based on satellite imagery and
field data, the CLC dataset helps to understand the influence of land use patterns on
signal propagation. In rural areas, where the DTM provides terrain elevation data, the
CLC dataset adds essential context regarding land cover, helping to model how different
land types - such as forests or agricultural zones - affect signal strength and propagation.
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Use Cases for Jointly Using These Datasets
The combination of these datasets creates a comprehensive framework for simulating
wireless signal propagation in both urban and rural environments. In urban scenarios,
the integration of the GSW 3D building models, OSM data, and the DTM allows for
the creation of a highly accurate Environment and Rail Track DT of the railway system.
This DT represents a precise model of the physical environment, including terrain
features and infrastructure, which can be used to simulate the real-world propagation of
wireless signals. Additionally, railway network details, including rail tracks and tunnel
data obtained from OSM, are mapped to train locations using GPS and interpolation
techniques, ensuring accurate representation of train movements within the DT. By
merging this DT with Cellular Network DT, containing network information-such as
BS positions, heights, transmission power, and other network parameters-obtained
from the MNO, we can build a complete environment for simulating cellular signal
propagation. This combined model can then be used in RT simulations, as demonstrated
in Section 2.3.

The data processing workflow applied for creating DT for Railway Connectivity is
summarized in Fig. 2.8. The flowchart illustrates the sequential integration of geospatial
datasets, starting from collecting raw train measurements to embedding the environment.
It highlights key processes such as GPS mapping, network data association, land cover
classification, and embedding of 3D surroundings. These steps ensure that both train
connectivity and surrounding environmental conditions are accurately represented in
the model.

In rural environments, the DTM and CLC datasets are combined to account for
terrain elevation and land use, providing sufficient information to evaluate the effects
of terrain and land cover on signal propagation. By integrating these datasets, the
methodology ensures that the simulation of signal propagation accounts for both the
physical terrain and the land cover, which are critical factors in determining signal
strength and coverage.

Furthermore, the OSM and CLC datasets are employed to classify the measurement
data into urban and rural categories, which helps optimize the measurement strategy.
The goal of this classification is to tailor the measurement approach to the specific
characteristics of each environment, as will be discussed in Chapter 6.

In the context of AoA calculations, the DTM, OSM, and Cellular Network DT
providing the network layout are used to model the environment in such a way that
the direction of the incoming signal can be accurately determined. This is particularly
important for network optimization, where precise knowledge of signal angles is crucial
for effective beamforming and antenna placement.

By leveraging the strengths of each dataset, this work aims to create a robust and
flexible framework for simulating wireless connectivity across a wide range of geograph-
ical environments. The combination of detailed terrain data, land use information,
and railway infrastructure allows for more accurate simulations of signal propagation,
ultimately improving the understanding and optimization of wireless networks in both
urban and rural railway scenarios.
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Figure 2.8: Workflow for constructing the DT for Railway Connectivity, integrating
geospatial, network, and environmental data for signal propagation model-
ing.
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2.4.3 Data Fusion and Spatial Interpolation Using Rail Track
Proximity Mapping

The raw GPS data collected during measurement campaigns often contains inaccuracies
or missing values, particularly in challenging environments such as tunnels, where
satellite signals are obstructed. To address this issue, the raw measurements are
mapped to a known reference path using proximity mapping techniques. This approach
is conceptually similar to dead reckoning [58], where position estimation relies on
previous location data and movement assumptions. For rail tracks, the exact location
of each measurement track is queried from OSM data, allowing for precise alignment of
measurement points with the rail track. This alignment is achieved by projecting each
measurement point location, as reported by the device’s GPS, to the closest point on
the reference rail track, ensuring that the spatial accuracy of the GPS data is improved.
Unlike general dead reckoning methods, this approach benefits from the fixed-path
nature of railways, simplifying the correction process.

While proximity mapping improves GPS accuracy, it’s important to acknowledge
that no solution is perfect. The effectiveness of mapping techniques depends on specific
measurement scenarios, and there will always be cases where inaccuracies persist due to
environmental constraints, interpolation limitations, or insufficient reference data [59].

Let Pi = (xi, yi) represent the GPS coordinates of a measurement point at timestamp
ti, where i = 1, 2, . . . , n. The rail track is represented as a line geometry, R(s),
parameterized by the track traversed distance s from the track starting point P0 =
(x0, y0). Each GPS point Pi is projected onto the track by finding the point R(si) that
minimizes the orthogonal distance:

si = arg min
s

↔Pi − R(s)↔. (2.17)

This ensures all GPS points are aligned to the closest positions on the track.
For intervals where GPS data is missing (e.g., in tunnels), the positions and times-

tamps are interpolated along the track geometry based on the time elapsed between
measurement points and the traversed distance along the track, assuming constant
speed. This approach simplifies the interpolation process by reducing the problem to a
one-dimensional interpolation, as opposed to interpolating separately for latitude and
longitude coordinates. Given that all measurements are associated with timestamps,
the traversed distance along the rail track can be computed based on the GPS positions
and timestamps. The following steps are undertaken in the process:

• Identification of gap boundaries:
– Start point - defined as the last known GPS position immediately preceding

the gap, characterized by its timestamp t1 and the distance traversed along
the track d1 (from the track start to that point).

– End point - defined as the first known GPS position immediately following
the gap, characterized by its timestamp t2 and the distance traversed along
the track d2 (from the track start to that point).
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The gap is thus defined by these two points, encompassing all missing positional
data between them.

• Let:
– Δt = t2 − t1 represent the elapsed time between the start and end points of

the gap.
– Δd = d2 − d1 denote the distance along the track between the start and end

points of the gap.
– ti indicate the timestamp of the measurement within the gap.

The interpolated distance from the track start, denoted as di, is then computed
using the following formula:

di = d1 + (ti − t1)
Δt

· Δd. (2.18)

• Once the distance di for each measurement point is determined, the corresponding
longitude and latitude coordinates along the track can be calculated as a function
of the track geometry and the traversed distance. This is given by:

(loni, lati) = f(R(s), di). (2.19)

By following these steps, we interpolate missing GPS measurements along the railway
track using the known boundaries of the gap and the time-distance relationship. Our
approach assumes a constant velocity between consecutive mapped points, a reasonable
assumption based on existing literature. This method ensures a structured reconstruction
of missing positions by leveraging both temporal and spatial track information, though
further validation could be conducted to quantify its accuracy under varying train
dynamics. Once the traversed distances are calculated, the corresponding geographic
coordinates are derived, allowing for a precise reconstruction of the missing GPS data,
which can then be used for further analysis or modeling of the train’s trajectory.

2.4.4 Mitigating Spatial Confounding in Measurement Campaigns
Train speed and irregular stops can lead to spatial confounding, with varying numbers
of measurements collected along the track. In measurement campaigns with constant
measurement sampling intervals, the impact of train speed becomes particularly pro-
nounced. The measurement frequency remains fixed, so for sections where the train
is moving slowly, the space intervals between samples are smaller, resulting in higher
spatial density of data points. This can lead to an overrepresentation of such track
segments in the dataset, potentially skewing the analysis if not properly addressed. In
contrast, track segments in which the train is moving with higher speed will have fewer
data points, which may underrepresent the true signal behavior in these areas. To
mitigate this, our framework segments the measurement path into fixed-length GUs,
such as the 100 m intervals recommended by ITU guidelines in [60] for measurement
aggregation in terrestrial mobile networks. While ITU specifically applies this approach
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to environmental field strength predictions and coverage assessments, the analogy is
valid for rail tracks, where consistent measurement intervals allow for more reliable
analysis of connectivity.

The ITU suggests the use of 100 m × 100 m segments for aggregating measurements,
particularly in urban and rural settings, to ensure consistency and comparability
across measurements collected in different locations and conditions. In line with these
recommendations, we apply 100 m length segments to the rail tracks for this study,
leveraging their practical utility in minimizing the effects of train speed variations and
enabling uniform data collection. Alternatively, we also incorporate 100 m × 100 m
segments from the Statistik Austria raster [61], which is a widely used grid for mapping
statistical data across Austria. These standardized grid-based segments align well with
the ITU’s suggestion for measurement aggregation.

By averaging measurement samples within each Geographical Unit (GU), the influence
of the train speed is neutralized, resulting in a spatially uniform dataset. This process
facilitates cross-campaign comparisons and ensures that the data is representative across
different landscape types, network conditions, and infrastructure environments, such as
rural and urban rail sections. In doing so, it also accommodates the temporal and spatial
dynamics of train operations, ensuring that data is captured and analyzed in a way that
reflects real-world conditions without introducing bias from measurement discrepancies
caused by speed fluctuations. In addition, this approach provides confidence intervals
for each segment, offering a measure of uncertainty and enhancing the reliability of the
dataset.

The use of GUs as a basis for aggregation aligns with the ITU’s approach, which
emphasizes consistency in measurement methods to enhance the comparability and ac-
curacy of data used for predicting field strength and mobile network coverage. Although
ITU’s guidelines were initially developed for more general mobile communications rather
than rail tracks, the principles of segmentation and aggregation can be applied to rail
environments, where factors such as terrain, infrastructure, and train movement affect
signal propagation.

By implementing this approach, we ensure that the collected measurement data
maintains consistency, reduces the impact of irregular train operations, and aligns with
internationally recognized standards for geographic data aggregation.

2.4.5 Spatiotemporal Stability and Measurement Aggregation
When analyzing measurements in train environments, it is crucial to consider how data
can be aggregated over multiple days and/or opposite driving directions to increase
confidence in the results. This is particularly relevant for metrics such as RSRP, which
is known to exhibit high stability over time. To validate this approach, we conducted a
test drive over two consecutive days along the same track between Vienna and Bregenz,
with the second day’s drive performed in the opposite direction.

For consistency, we used the same UE for measurements on both days. The results
were compared by evaluating the Empirical Cumulative Distribution Function (ECDF)
of the RSRP values. To ensure a meaningful comparison, we filtered the measurements
to include only those BSs sectors that were registered on both days. This filtering
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Figure 2.9: RSRP distribution from drive tests conducted in forward and backward
driving directions on two consecutive days for two frequency bands:
800 MHz (left) and 1800 MHz (middle). The RSRP along the track is
shown for a single BS sector in the forward direction on the first day and
the backward direction on second day (right).

step was essential to focus the analysis on the relevant data and avoid the inclusion of
unrelated measurements that could introduce noise.

The comparison of the ECDFs, as illustrated in Fig. 2.9, provides further validation
of the measurement repeatability:

• The left two plots in Fig. 2.9 depict the ECDF of RSRP for the 800 MHz and
1800 MHz frequency bands, respectively. These results represent all common PCIs
observed across both days, comparing the test drives conducted in forward and
backward directions. A single UE was used for measurements, positioned at the
same location in the train on both days to ensure consistency.

• The third plot in Fig. 2.9 (right) demonstrates an example BS sector, showing
how the RSRP curve evolves over 1 km of the traversed track. The general trend
of RSRP remains stable over time, with minor fluctuations likely caused by SSF
within the train cabin. Importantly, the forward and backward directions exhibit
excellent alignment.

The ECDF results confirm three key observations:

1. Directional Consistency: The measurements are not significantly affected by
the direction of travel. Whether traveling from Vienna to Bregenz or in the reverse
direction, the RSRP values remain stable.

2. Feasibility of Aggregation: The high degree of overlap indicates that mea-
surements from multiple days can be aggregated to improve statistical confidence
without compromising the accuracy of the results.

3. Significance of Spatial Confounding: On Day 2, both the 800 MHz and
1800 MHz curves in the ECDFs exhibit a noticeable jump, which can be attributed
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to the train remaining stationary for an extended period while measurements
continued. This highlights the importance of mitigating such artificial effects
through proper data segmentation and averaging, as previously discussed, to
ensure a more accurate representation of network performance.

To verify the validity of aggregating measurements from forward and backward
directions for future analyses, we performed a two-sample Kolmogorov-Smirnov (KS)
similarity test (see Appendix A2 for a detailed explanation). This test was applied
to segment-averaged RSRP distributions to assess whether they originate from the
same underlying distribution. The resulting p-values were 0.409 for the 1800 MHz
band and 0.956 for the 800 MHz band, indicating no significant differences between
the distributions collected in opposite driving directions. A p-value represents the
probability of observing a test statistic as extreme as, or more extreme than, the one
calculated from the data, under the assumption that the null hypothesis H0 is true.
When the p-value is greater than 0.05, it suggests that there is insufficient evidence to
reject the null hypothesis. In this context, the high p-values indicate that the RSRP
distributions for the forward and backward directions are statistically similar. These
findings confirm that aggregating RSRP measurements from both directions and over
different time periods is statistically sound and introduces no bias in the analysis.

We have shown that multiple test drives can be aggregated to enhance the robustness
of evaluations and modeling in train scenarios. This is possible because the distributions
of key metric, i.e.RSRP, does not change significantly over time. By aggregating multi-
day data, we enhance the robustness of evaluations and modeling in train scenarios,
reducing variability and providing a stronger basis for identifying trends and making
informed decisions.

2.4.6 Filtering the Dataset
The data is filtered to focus on specific KPIs of interest, such as RSRP, T, and other
network performance metrics, while ensuring that measurements are collected under
relevant conditions. Filtering criteria are applied to exclude irrelevant or secondary
data that could obscure meaningful patterns. Specifically, we can choose to retain only
measurements from PCell to ensure that the analysis accurately reflects the end-user
experience.

This approach is particularly relevant because the PCell serves as the main com-
munication link between the UE and the network, providing a stable and continuous
dataset for analysis. In contrast, SCells, which are utilized in carrier aggregation, are
activated dynamically based on network conditions and may not always be present. Since
their availability depends on scheduler decisions, network load, and signal conditions,
including them in general performance analysis could introduce inconsistencies.

Given the diverse railway environments - urban, rural, and tunnels - filtering for
PCells helps maintain propagation consistency and prevents measurements from being
skewed by transient SCell activity. This filtering improves the reliability of the data
for propagation analysis and enables more accurate assessment of network performance
across different railway scenarios.
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2.4.7 Stratifying the Dataset
Stratification is a systematic method for partitioning a dataset into meaningful subsets
based on predefined criteria. In railroad measurement campaigns, this typically involves
categorizing environments - such as urban, rural, forest, water, and tunnel areas -
using landscape classes derived from databases like the CLC. This approach enables
precise comparisons within similar environmental settings and ensures that key factors
affecting wireless communication performance are accounted for. By isolating the unique
propagation characteristics of each environment, stratification enhances the reliability
and relevance of the analysis.

Stratification is particularly important in railroad contexts due to the diverse and
challenging environments rail corridors traverse. Urban areas, for example, are charac-
terized by dense infrastructure and multipath reflections, while tunnels require specific
solutions for severe signal attenuation. Rural and forested areas, on the other hand,
face challenges such as sparse infrastructure and vegetation-induced losses. Stratifying
measurements helps ensure that performance is evaluated comprehensively across these
varied conditions, enabling environment-specific evaluations and optimization strategies.

Moreover, stratified sampling improves efficiency by reducing the number of mea-
surements required while preserving representativeness. Instead of exhaustive data
collection, well-defined strata allow researchers to focus on key areas, ensuring balanced
coverage of different environments. This is crucial for benchmarking performance in
diverse scenarios and optimizing resource allocation during measurement campaigns.

In Chapter 6, we will explore how stratification can optimize measurement collection
strategies by identifying the minimum number of measurements or areas needed to ensure
accurate performance estimates. This approach not only streamlines data collection but
also ensures robust evaluations of wireless communication systems.

2.4.8 Summary
The framework discussed in this chapter offers a systematic and comprehensive approach
to the design, execution, and analysis of cellular connectivity measurement campaigns.
By incorporating tools and datasets for precise mapping and spatial context, the
framework ensures accurate alignment of measurements with real-world geography. It
addresses spatial confounding by employing GU-segmentation, which enables localized
analyses and reduces biases caused by environmental variability. Furthermore, the
integration of data filtering and stratification techniques allows for focused analyses by
isolating key KPIs, environments, or frequency bands, ensuring the data remains relevant
and representative. These elements collectively enhance the robustness, reproducibility,
and scalability of the methodology, making it suitable for a wide range of benchmarking
scenarios, from urban performance comparisons to evaluations in complex environments
like tunnels or rural areas. This structured approach not only optimizes resource use
but also ensures that the results support effective network optimization and future
deployments.
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Chapter 3

Railway Measurement Datasets
Ensuring reliable mobile connectivity aboard trains is essential for both passengers
and railway operators. Modern trains are typically equipped with rooftop antennas
to facilitate mobile communication services, including eCall functionality [62]. These
antennas receive mobile signals, which are then distributed within the cabin via onboard
WiFi infrastructure1. However, the quality of the connectivity experienced by passengers
is influenced by multiple factors, such as high VPL, frequent handovers due to mobility,
and fluctuating network coverage along railway routes.

To capture and understand these challenges, we conducted a series of controlled mea-
surement campaigns aboard moving trains under realistic conditions. These campaigns
enabled the systematic collection of both indoor and outdoor RSRP measurements
using a combination of professional scanners and UEs. The resulting datasets were
then cleaned and postprocessed using the framework outlined in Section 2.4 to ensure
consistency and usability for further evaluation.

Compared to simulation-based studies or purely crowdsourced approaches, controlled
campaigns offer higher reliability and precision. While simulation tools, such as data-
driven methods [63] or deterministic RT models [64], are valuable for estimating outdoor
signal strength, they cannot fully capture real-world complexities - especially in outdoor-
to-indoor propagation scenarios. Crowdsourced data via MDT [65] offers scale, but
suffers from limitations such as lower localization accuracy and difficulty in differentiating
between indoor and outdoor reception. These limitations are further discussed in
Section 7.1. We prioritize precise data collection under known conditions, which is
essential for evaluating and comparing connectivity solutions onboard trains.

One key focus of our measurement efforts was VPL, which significantly affects the
signal levels observed inside the train. While the most accurate way to analyze VPL
would involve full-scale anechoic chamber testing - potentially with 3D scanning to
account for complex train geometries - this approach is infeasible in practice. Instead,
we assessed penetration loss directly over operational cellular networks by comparing
signal strength at the rooftop antenna and within the cabin, offering a realistic and
scalable alternative.

Data collection was made possible through collaboration with ÖBB, which granted
access to a variety of train types and enabled efficient campaign execution. Since
installing custom rooftop antennas was not permitted due to safety regulations, we

1https://nomad-digital.com/solutions/connect/broadband-wifi-rail-connectivity
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utilized the preinstalled antennas on each train. As a result, rooftop measurement
conditions varied across train types.

To enable geospatial and propagation-related analysis, access to BS location data
was critical. This was made possible through collaboration with A1 Telekom Austria,
who provided anonymized BS location data. Although this information is not publicly
shared, it was essential for enriching the datasets - for example, by allowing us to
compute the distance from each measurement point to the serving BS.

The datasets were collected on three distinct ÖBB train types - Talent, Railjet, and
Nightjet - across different railway routes and cabin configurations. Our measurements
cover a range of connectivity solutions, including standard and modified windows as
well as onboard repeaters. The resulting datasets are not only used throughout this
thesis but also represent a valuable contribution to the research community. A subset
of the data has been made publicly available, facilitating reproducibility and further
studies on mobile connectivity in railway environments.

A summary of all datasets used in this thesis is provided in Table 3.5, including
information on train types, tracks, measurement equipment, connectivity solutions, and
sample counts. An illustration of the tested trains and their respective window coating
types is shown in Fig. 3.6.

3.1 Dataset 1: ÖBB Talent
The first dataset was collected on an ÖBB Talent railcar (pictured in Fig. 3.6a) operating
along the 65 km-long Nordbahn track, as shown in Fig. 3.1c. This track was chosen due
to the absence of repeater chains along its path, ensuring that the reported Physical
Cell Identifier (PCI) values corresponded directly to distinct BS antennas. This was
essential for accurately computing the AoA from the BS antenna to the train antenna
and the user, as detailed in Section 5.1.1, and based on the work originally published in
[14]. The train reached speeds of up to 230 km/h. Its cellular connectivity setup did
not include a repeater but featured prototypical Modified Windows Type 1 (MW1), as
depicted in Fig. 3.6d.

This dataset captures detailed signal strength measurements collected from four
UEs strategically positioned inside the moving train. It also includes signal strength
measurements obtained from an external reference source using the rooftop train
antenna, systematically interpolated on a cell and frequency basis. In addition, it
contains calculated elevation and azimuth AoA, along with all supporting variables
necessary for their computation, including UE location data, frequency bands, BS
identification, and geometric relationships between the train and BSs. Environmental
factors such as BS antenna height, ground elevation differences, and distance metrics
are also included to enhance the accuracy of the analysis. We have made this dataset
publicly available in [66] to support further research on railway connectivity and to
enable reproducible analysis.
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3.1 Dataset 1: ÖBB Talent

Table 3.1: BS count and sample share per frequency band in ÖBB Talent.

Frequency Band BS Count Sample share (%)
1800 MHz 63 83
800 MHz 13 17

[km]
[k
m
]

(a) (b) (c)

Figure 3.1: Measurement setup in ÖBB Talent with MW1. (a) The scanner was linked
to the external rooftop-mounted railcar antenna. (b) Inside the railcar,
four UE devices were strategically positioned on seats and fold-down tables.
(c) Traversed Nordbahn track with BS locations.

3.1.1 Measurement Setup
Outdoor Measurements: Conducted using a PCTel MXflex scanner (Fig. 3.1a)
connected to the preinstalled rooftop antenna, capturing a variety of network parameters
in LTE B20 (800 MHz) and B3 (1800 MHz) bands every 200 ms.

Indoor Measurements: Recorded using four Samsung Galaxy Note 4 UEs running
Keysight NEMO software [52], placed on fold-down tables to simulate real passenger
conditions (Fig. 3.1b). UEs ran a scripted download using NEMO software, ensuring
sustained traffic throughout the measurements, while collecting a broad range of KPIs.

GPS Measurements: The phones recorded GPS measurements along the drive.
To ensure accurate localization, railway track coordinates were extracted from OSM,
mapping each measurement to the nearest track location and interpolating missing GPS
data, as described in Section 2.4.3.

The measurements were conducted across multiple BSs operating in two frequency
bands. Table 3.1 provides an overview of the BS count and the distribution of measure-
ment samples between the 1800 MHz and 800 MHz bands. The majority of samples
(83%) were recorded in the 1800 MHz band, which also had a significantly higher number
of BSs compared to the 800 MHz band.
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3.2 Dataset 2: ÖBB Railjet
The second dataset was collected on the 490 km-long the Vienna-Innsbruck railway track
(Fig. 3.2) using an ÖBB Railjet train (Fig. 3.6b) to analyze the impact of different wagon
configurations on mobile network performance [13]. To fairly compare the connectivity
solutions, two measurement positions were selected per wagon: one on a fold-down
table and another at head height. Positional dependency was previously analyzed
in Section 2.2.2 in a static scenario, indicating minimal positional differences inside
the same wagon. The train consisted of three different types of railroad cars: one
with standard windows and no AAF repeater, a second with modified windows [67]
(Fig. 3.6e) and no AAF repeater, and a third with standard windows equipped with an
AAF repeater and a leaky feeder installed on the ceiling. Throughout this thesis, these
configurations characteristic for the Railjet train are referred to as Standard Windows
(SW), Modified Windows Type 2 (MW2), and Repeater, respectively. By maintaining
identical indoor placements across all three wagon types and comparing signal quality
under real-world conditions, this dataset enables a systematic evaluation of different
window modifications and signal enhancement strategies.

The measurements were collected within a single day, with the train operating from
Vienna to Innsbruck in the morning and returning from Innsbruck to Vienna in the
afternoon. Measurements were conducted in both travel directions at identical indoor
locations to ensure repeatability. The number of collected measurements across two
indoor positions in each wagon, combined with the outdoor antenna measurements,
amounted to ≈ 330 000 per trip, resulting in a total of ≈ 660 000 measurement samples.
Table 3.2 summarizes the train speed profile and landscape statistics as defined in the
CORINE project. Table 3.3 presents the frequency band distribution of the dataset.

3.2.1 Measurement Setup
Data collection was carried out using the ACT Rail system, operated by Focus Infocom
GmbH, which served as the UE testbed for the measurement campaign. The UE fleet
included the following phone models: Sony Xperia XZ, Sony Xperia XZ2, and Samsung
Galaxy Note 10+. The phones were connected to a centralized remote controller,
allowing the tester to start and stop all measurement scripts simultaneously. The
testbed setup is depicted in Fig. 3.3. The measurement script executed a continuous
sequence of data transmissions and voice calls to maintain active traffic throughout the
experiment.

Outdoor measurements: The outdoor antenna mounted on the train’s rooftop was
connected to an indoor distribution unit, to which the measurement setup, i.e., another
UE, was connected.

Indoor measurements: To ensure comparability between configurations, testbeds
with UEs were installed at predefined, identical locations inside each of the three railroad
cars. Figure 3.4 illustrates the testbed positions inside the railroad cars.
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Table 3.2: Speed and landscape statistics of the dataset in ÖBB Railjet.

Rail
Length vmax vmean Urban Rural Forest

& Water Tunnel

490 km 230 km/h 115 km/h 47% 40% 7% 6%

Table 3.3: Frequency band statistics of the dataset in ÖBB Railjet.

Band 3
(1800 MHz)

Band 20
(800 MHz)

Band 1
(2100 MHz)

Bands:
7, 8, 28, 32 (combined)

45% 22% 23% 10%

Figure 3.2: 490 km Vienna-Innsbruck track
(ÖBB Railjet).

Figure 3.3: UE testbed
(ÖBB Railjet).

Figure 3.4: Testbeds deployed at identical positions inside three separate wagons of
the ÖBB Railjet, each equipped with a different configuration: SW, MW2,
or Repeater. One UE is located on the seat headrest (blue) and another
UE is located on the table (green).

3.3 Dataset 3: ÖBB Nightjet
The ÖBB Nightjet train was selected to investigate the influence of window size on signal
strength inside cabins. The Nightjet features multiple cabin layouts with varying window
dimensions, making it an ideal test case. Additionally, it employs the latest generation
of window modifications, Modified Windows Type 3 (MW3), allowing comparisons with
the MW1 and MW2 modifications used in the Talent and Railjet trains, respectively.
The seating coach layout across all three trains is similar, facilitating direct performance
comparisons, which are further analyzed in Section 5.2.4.
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Table 3.4: Window sizes and VPL in ÖBB Nightjet cabin types.

Window Size Window Area / Wagon Mean VPL
Seating Coach 1.218 m2 ≈ 22 m2 14.3 dB
Deluxe Cabin 1.044 m2 ≈ 22 m2 17.4 dB
Mini-suite Cabin 0.583 m2 ≈ 17.5 m2 18.4 dB

(a) Seating Coach (left and right) (b) Deluxe Cabin (c) Mini-Suite Cabins

Figure 3.5: Measurement setup in ÖBB Nightjet with MW3.

All cabin types in the train were equipped with MW3 pattern, as shown in Fig. 3.6f,
while the specific window sizes for each cabin type are listed in Table 3.4. The train
contained three different cabin configurations, illustrated in Fig. 3.5:

Seating Coach Seating layout similar across the Talent, Railjet, and Nightjet
trains, with window sizes comparable to the Railjet.

Deluxe Cabin Premium cabin layout featuring a door and moderately sized win-
dows.

Mini-suite
Cabin

Compact sleeping box with a closed door and significantly smaller
windows.

We conducted measurements over two consecutive days, covering the route from
Vienna to Bregenz on the first day and the return journey from Bregenz to Vienna on
the second. Following postprocessing, we made the resulting dataset publicly available
for download at [68] to support further research on railway connectivity.

3.3.1 Measurement Setup
To evaluate cellular network performance inside the train, measurements were performed
using Keysight NEMO software [52] running on six Samsung Galaxy Note 4 smartphones,
each equipped with a Subscriber Identity Module (SIM) card from a major Austrian
operator. Each device was configured specifically for LTE cellular technology.

On the first measurement day, UEs 1-4 were placed inside the Deluxe Cabins, while
UEs 5 and 6 were positioned in the Mini-suite Cabins (Fig. 3.5b and Fig. 3.5c). Phones
were arranged on both upper and lower racks to analyze the impact of height on signal
attenuation. On the second day, UEs 1-4 were relocated to the Seating Coach, with the
phones evenly distributed between the left and right sides of the cabin (Fig. 3.5a).
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3.3 Dataset 3: ÖBB Nightjet

(a) ÖBB Talent railcar (b) ÖBB Railjet railcar (c) ÖBB Nightjet railcar

(d) MW1 (in ÖBB Talent) (e) MW2 (in ÖBB Railjet) (f) MW3 (in ÖBB Nightjet)

Figure 3.6: Top: Three types of trains under test. Bottom: Patterns of metal coating
in modified windows. The white lines indicate perforations in the metallic
shield coating, forming the frequency selective structure.

In addition to the smartphones measuring indoor performance, a reference mea-
surement was obtained using a Keysight NEMO smartphone equipped with external
antennas. This device simultaneously recorded signals from the rooftop antenna at the
MAIN port and a cabin antenna at the MIMO port. Through data preprocessing -
including track alignment and segmentation [13] - these reference signals were analyzed
to assess the attenuation experienced by the distributed test UEs within the cabin. The
impact of UE placement on attenuation is further discussed in Section 5.2.2.
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Table 3.5: Summary of datasets collected on ÖBB trains.

Dataset 1: ÖBB Talent

Track Name Nordbahn (Wien - Breclav)
Track Length 65 km
Wagon Type Wagon 1: Seating Coach
Connectivity Solutions Wagon 1: Modified Windows (MW1)
Frequency Bands LTE B3, B20
Outdoor Measurement Equipment PCTel MXflex scanner with rooftop antenna
Indoor Measurement Equipment 4 × Samsung Galaxy Note 4 (Keysight NEMO)
Total Data Points ≈ 150 000
Publicly Available Yes, at [66]

Dataset 2: ÖBB Railjet

Track Name Westbahn (Vienna - Innsbruck)
Track Length 490 km (980 km round trip)

Wagon Type
Wagon 1: Seating Coach
Wagon 2: Seating Coach
Wagon 3: Seating Coach

Connectivity Solutions
Wagon 1: Standard Windows (SW)
Wagon 2: Modified Windows (MW2)
Wagon 3: AAF Repeater (Repeater)

Frequency Bands LTE B1, B3, B7, B8, B20, B28, B32
Outdoor Measurement Equipment PCTel MXflex scanner with rooftop antenna
Indoor Measurement Equipment Sony XZ, XZ2, Samsung N10+
Total Data Points ≈ 660 000
Publicly Available No (Focus Infocom GmbH ownership)

Dataset 3: ÖBB Nightjet

Track Name Westbahn (Vienna - Bregenz)
Track Length 750 km (1 500 km round trip)

Wagon Type
Wagon 1: Seating Coach
Wagon 2: Deluxe Cabins
Wagon 3: Mini-Suite Cabins

Connectivity Solutions
Wagon 1: Modified Windows (MW3)
Wagon 2: Modified Windows (MW3)
Wagon 3: Modified Windows (MW3)

Frequency Bands LTE B1, B3, B7, B8, B20
Outdoor Measurement Equipment NEMO smartphone with external antennas
Indoor Measurement Equipment 6 × Samsung Galaxy Note 4 (Keysight NEMO)
Total Data Points ≈ 3 800 000
Publicly Available Yes, at [68]
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Chapter 4

Comparative Performance
Analysis of Mobile Connectivity
Solutions on Railways
In recent years, Austrian railways have undergone significant reconstruction and mod-
ernization to meet climate neutrality goals outlined in [69]. This transformation has
coincided with a steady increase in the number of commuters using trains not only as a
means of transportation but also as mobile offices, necessitating reliable internet access
[70, 71]. To meet this demand, train operators and MNOs have focused on improving
network services, including optimizing BS deployments along railway routes. Improving
BS deployment along railways requires analyzing current KPIs, e.g., RSRP, along partic-
ular routes, thus allowing us to tackle problematic signal gap areas. However, even with
railway-dedicated BS deployments, maintaining consistent in-train connectivity remains
a formidable challenge, due to the high VPL. A survey of the challenges associated with
delivering high capacity connectivity to train users is provided in [72].

Train metal structure combined with the metal coating of the windows, used mainly
for isolation to the infrared sunlight, act as a Faraday cage for the electromagnetic
signals. Our measurements demonstrate that this metal structure typically attenuates
mobile signals ≈ 20 dB at the minimum. To address this challenge, two categories of
VPL reduction solutions are explored: active and passive. Active solutions involve
systems that dynamically amplify and redistribute signals, requiring external power
and frequent configuration to adapt to network requirements. Passive solutions, in
contrast, rely on structural modifications, such as specialized coatings on train windows,
to inherently improve signal penetration without the need for external power or ongoing
adjustments.

In this chapter, we analyze these VPL mitigation strategies based on our earlier
work published in [13]. In Section 4.1, we examine active repeater systems, while
Section 4.2 focuses on state-of-the-art window modifications. In Section 4.3, we describe
the experimental setup designed for a fair comparison of both solutions, building on the
framework introduced in Chapter 2. We then present the comparison results and draw
conclusions regarding the effectiveness and practical feasibility of these approaches for
improving in-train connectivity.
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4.1 Repeater Systems in Trains
AAF repeater systems are vital for improving mobile connectivity in trains, where
high VPL hinders signal quality. In recent years, cellular repeaters have become
standard in most intercity trains across Europe. So far, there has been extensive
research focusing on expanding the coverage for cellular users onboard trains using
static repeater deployments [73], [74]. Operated by railway companies, these repeaters
significantly mitigate the signal attenuation caused by the metallic structure of trains,
thereby improving connectivity for both passengers and railway operations. They are
particularly effective in rural areas, where sparse cellular deployment and higher path
loss typically constrain data rates.

The physical architecture of a train repeater system typically consists of a rooftop pick-
up antenna, an amplifier and an interior distribution system. By capturing cellular signals
received via a roof-mounted pick-up antenna and actively amplifying them, repeater
systems overcome the high attenuation problem posed by the metal structure and
metal-coated windows in trains. The amplified signals are then distributed throughout
the train via a leaky feeder cable mounted inside the train, typically on the car ceiling
or floor, as depicted in Fig. 4.1. In the Uplink (UL), signals from passenger UEs are
similarly amplified and sent back to the cellular network via the roof antenna. This
configuration minimizes overall PL while maintaining the transparency required by
mobile operators [75, 76].

Despite their benefits, train-mounted repeaters must operate across multiple countries,
accommodating diverse cellular operators and configurations. To ensure seamless
integration, these systems are generally implemented as simple AAF devices. This
approach avoids advanced functionalities like Integrated Access Backhaul or Non-
Contiguous Radio, which require direct operator control. Instead, AAF-based repeaters
maintain transparency to cellular networks by employing uniform gain in both the DL
and UL directions.

Research into vehicular repeater deployments in trains is limited, as it requires collab-
oration between railway and cellular operators and is highly time and cost demanding.
Nevertheless, a growing body of work provides insights into system models [75, 76],
deployment practices [77, 78], and the non-linear effects associated with AAF repeaters
in railway environments [79–83].

The following sections outline repeater advantages, disadvantages, technical descrip-
tion, and general reasons for industry’s shift toward passive solutions.

4.1.1 Repeater Systems: Benefits and Limitations
Repeater systems offer a promising solution for improving mobile connectivity within
train environments, particularly by addressing the issue of high VPL. One of their
key advantages is the ability to extend network coverage into areas where direct signal
penetration is weak or nonexistent - such as tunnels, remote routes, deep cuttings or
sound barriers - ensuring more continuous service throughout the journey. By amplifying
signals received by rooftop antennas, repeaters mitigate cabin attenuation and help
maintain sufficient indoor signal levels, even under weak outdoor coverage. This signal
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Figure 4.1: Schematic representation of a in-train repeater system.

boosting improves both voice call quality and data throughput, leading to a more stable
and satisfactory passenger experience.

Modern repeater systems also offer multi-operator support, enabling simultaneous
service for passengers using different mobile network operators. This makes them a
viable shared infrastructure solution. Furthermore, their scalability allows the signal
to be distributed across multiple cars, making repeaters adaptable to varying train
configurations and service requirements.

However, these systems are not without drawbacks. Repeaters require an active
power supply, and their energy demand increases with higher output power. Given that
trains must allocate power across many systems - propulsion, climate control, passenger
services - energy efficiency is a key constraint. Additionally, repeaters have a maximum
output power limit. In areas with strong external coverage, the repeater may saturate,
inadvertently degrading the signal quality instead of enhancing it.

Repeaters also demand ongoing maintenance, including recalibration and occasional
hardware replacements, which can increase operational costs. Functionally, they operate
at the physical layer and cannot manage network congestion or allocate bandwidth. As
a result, during peak usage scenarios, passengers may experience degraded performance
due to the lack of traffic-aware optimization.

Their long-term compatibility is another concern. While trains remain in service for
decades, mobile network technologies evolve every ten years. This disparity can lead to
compatibility issues, requiring repeaters to be updated or replaced to support future
technologies and frequency bands.

From a signal-processing standpoint, repeaters introduce a fixed delay (typically
around 4.7 µs), which can exceed the Cyclic Prefix (CP) duration in LTE systems. This
delay introduces ISI, reduces T, and forces UEs to transmit at higher power without
improving the Signal-to-Interference Ratio (SIR). Mitigating this requires costlier design
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measures such as tighter processing delays, increased output power, or improved window
isolation [83, 84].

Finally, repeaters amplify not only the intended signal but also background thermal
noise, particularly in the UL. When the repeater’s gain exceeds the outdoor PL, this
noise can degrade performance not only for onboard users but also for nearby UEs
outside the train. Imperfect window shielding can further allow direct signal leakage
and interference. In such cases, the maximum repeater gain must be reduced to stay
below the isolation threshold - typically by 15 dB - to prevent instability, where isolation
refers to the attenuation between the rooftop pick-up antenna and the internal leaky
feeder system.

In summary, repeater systems can significantly enhance onboard connectivity when
deployed carefully and within operational constraints. However, their energy demand,
limited intelligence, noise amplification, and long-term compatibility challenges require
careful consideration to ensure long-term effectiveness.

4.1.2 Repeater Systems: Architecture and Functionality
The repeater model, as presented in [84] and based on a typical commercial multi-band
repeater [85], is depicted in Fig. 4.2. Like most repeaters, it consists of separate DL and
UL paths, characterized by nominal gain (GX,0), maximum output power (PX,out,max),
and additive noise (Pn,X) 1. While this architecture is common across repeater designs,
the chosen model serves as a representative example for analyzing performance in the
railway environment. The actual gain and output power are expressed as:

GX = min(GX,0, PX,out,max − PX,in), (4.1)
PX,out = min(PX,out,max, PX,in + GX,0). (4.2)

As illustrated in Fig. 4.3, when the input power does not saturate the amplifier (PX,in +
GX,0 ≤ PX,out,max), the actual gain equals the nominal gain. Otherwise, the gain is
reduced to ensure PX,out = PX,out,max. Therefore for strong coverage on the track (or
equivalently low PL) the repeater adjusts its gain in the DL direction to stay withing
its maximum output power. To minimize UL noise, gain trailing dynamically adjusts
the UL gain based on the DL gain:

GUL = min(GDL, PUL,out,max − PUL,in), (4.3)
GDL = min(GX,0, PDL,out,max − PDL,in). (4.4)

Considering a single BS with a transmit power of PTX, the repeater experiences sat-
uration when the outdoor PL (from the BS to the train rooftop antenna), is below
the threshold PBS − PDL,out,max + GDL. This typically occurs in areas of strong signal
coverage. Saturation, along with other limitations such as signal delay, additive noise,
and compatibility issues, can significantly diminish the effectiveness of repeaters in
certain scenarios.

1X stands either for DL or UL, depending on the path taken.
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Figure 4.2: Block diagram of the in-train repeater.

Figure 4.3: Gain control of the repeater shows a region of fixed gain at low and medium
input power, and a region of fixed output power at high output power [84].

Due to these drawbacks, the railway industry is increasingly exploring passive alter-
natives. One promising approach is the implementation of frequency-selective window
patterns, which enhance signal penetration into train cabins without the added com-
plexity and potential inefficiencies of active systems. These passive solutions will be
discussed in greater detail in the Section 4.2.

Additionally, repeater hardware constraints, including output power limitations and
susceptibility to saturation, are further analyzed in Section 4.3. This analysis is based
on real-world measurements we conducted in a live network with a train in operation.
The results provide valuable insights into how these hardware limitations impact overall
system performance and passenger connectivity. Moreover, they offer a comparative
perspective on the benefits of passive window solutions over traditional active repeaters.
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4.2 Frequency Selective Window Coatings
A train can be thought of as a metal box where the primary entry points for wireless
signals are its glass windows. These windows, however, are often coated with metallic
layers to prevent heat dissipation from the cabin and to block harmful UV radiation.
While this design serves energy efficiency and passenger comfort, it introduces a sig-
nificant drawback: the strong attenuation of cellular signals. To address this issue,
manufacturers adopted the concept of patterned coatings, an idea originally developed
for buildings and later applied to trains. This approach involves introducing periodic
patterns into metallic coatings, effectively creating a FSS. These patterns allow specific
frequencies of electromagnetic waves to pass while maintaining thermal and UV protec-
tive properties. Fig. 4.4 illustrates the impact of different types of coatings - plain glass
(no coating), fully coated glass, and glass with a frequency-selective patterned coating -
on cellular signal transmission, UV radiation blocking, and heat dissipation. Metallic
coating is a requirement in terms of energy efficiency for railroad operators. However, it
causes cellular signal attenuation larger than 20 dB [86, 87].

Early studies have demonstrated the feasibility of FSS coatings in reducing signal
attenuation while maintaining energy efficiency in architectural applications [88, 89].
Additionally, the use of FSS in indoor wireless environments to control radio wave
propagation by selectively increasing transmission loss or channeling signals has been
investigated in [90]. Building on these findings, the concept was extended to train
windows, where the challenges of maintaining signal transmission at higher frequencies
became even more pronounced, due to abrupt changes in channel conditions [91].
Studies on FSS for railroad deployment have been increasing in recent years, with the
development - in [92], the authors summarize the representative studies on propagation
loss of rail vehicle window glass. Ongoing research is focused on improving window
modification techniques, specifically by incorporating FSS to optimize signal penetration
[67, 93]. By selectively removing 4 to 5% of the metallic window coating in FSS-based
patterns, this approach enhances wireless signal transmission at specific frequencies while
preserving thermal insulation [88, 94]. In [95], researchers investigated the laser ablation
patterning of glass coatings using both measurements and simulations, with patterns
ranging from 2 to 40 mm grid size. Results demonstrated that a mere 4% removal of the
coating results in a twofold increase in transmission within the infrared domain. In [96]
a theoretical study has been carried out and compared with experimental measurements
of commercial windows.

Depending on the geometry and arrangement of the FSS, these patterns can function
as low-pass, high-pass, band-pass, or band-stop filters [97] - some examples are depicted
in Fig. 4.5. By using more complex designs, combinations of these characteristics can
also be achieved. Even simple structures can be finely tuned for specific frequencies by
adjusting two critical parameters: the periodicity of the pattern, D, and the width of the
pattern elements, w (both denoted in Fig. 4.4d). Smaller D values enable operation at
higher frequencies, while narrower w values minimize the area ablated from the coating,
preserving the optical and thermal properties of the window. The low-pass case in
Fig. 4.5a is one of the patterns we had the opportunity to measure (MW1). This type
of pattern is often used in trains, optimized for frequencies below 5 GHz to act as a
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low-pass filter, allowing signals within this range to pass while effectively attenuating
higher-frequency noise and interference.

Research on FSS window coatings has focused extensively on the development and
simulation of different patterns, including hexagonal structures [88, 94]. Hexagonal
designs, in particular, have demonstrated superior performance in achieving low attenu-
ation across wide frequency ranges while maintaining thermal efficiency. Experimental
studies show that hexagonal patterns, with D = 2 mm and w = 0.035 mm, can reduce
signal attenuation from 20 dB to as low as 1 dB without significantly affecting visible
light transmittance [88]. These findings highlight the potential of FSS coatings in
meeting the dual requirements of energy efficiency and enhanced wireless connectivity.
However, in the context of rail transportation, the effectiveness of FSS window coatings
is limited by the structural characteristics of trains. Unlike buildings, where windows
constitute a significant portion of the facade, a train is largely a metal enclosure, with
only a small fraction of its surface composed of windows. As a result, the potential
benefits of FSS window coatings are inherently restricted to localized areas, primarily
around passenger seating zones. Signal penetration through windows may improve, but
overall connectivity remains constrained by the metallic structure of the train car, which
causes substantial attenuation.

Additionally, BS masts are often placed low and close to the tracks, creating challenges
for coverage and increasing obstruction sensitivity. This placement exacerbates signal
degradation, as the train’s metallic structure obstructs LOS paths, which is particularly
relevant for high-frequency bands used in 5G and future Sixth Generation (6G) networks.

While previous studies primarily focused on the design and performance of FSS
coatings using simulations and measurements, this thesis shifts the focus toward a
comparative evaluation on trains in operation. Specifically, the proposed benchmarking
methodology compares the performance of window patterns with traditional repeater
solutions in a live train network environment. This approach aims to provide a compre-
hensive assessment of the practical benefits and limitations of FSS coatings, contributing
to the broader adoption of this technology in real-world applications.

4.3 Comparative Performance Analysis
The body of literature on measurements conducted inside railroad cars remains sparse,
with several notable works addressing specific aspects. In particular, [98] analyzed KPI
quantiles in train measurements using a modified Harel-Davis method and nonparametric
bootstrap, focusing on AAF repeaters and FSS window technologies. Despite these
efforts, there is a notable gap in studies addressing benchmarking methodologies tailored
to evaluate cellular network performance specifically in train environments.

To address this gap, in [13] we introduced a methodology designed to assess and
compare the performance of repeater, standard metal-coated windows, and windows
featuring coating patterns under three distinct railroad car configurations. By controlling
for measurement confounding, particularly the varying speeds of trains, we ensure that
the resulting dataset reflects an unbiased representation of real-world conditions. This
is achieved by segmenting measurements into 100-meter track segments and utilizing
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Figure 4.6: Processing flow chart: From raw measurement data to KPI statistics of
the unconfounded dataset.

CLC land use classes to define independent strata. These methodological approaches
enable a robust analysis of cellular performance while mitigating potential sources of
variability and ensuring replicability.

4.3.1 Measurement Methodology
In this section, we apply the proposed Integrated Framework for Data Collection
and Analysis from Section 2.4, encompassing the entire process from designing the
measurement setup to post-processing, spatial confounding removal, stratification, and
filtering, before proceeding to the results analysis.

Given the challenges discussed in Section 2.4, we propose the data processing flow
chart illustrated in Fig. 4.6. Starting with the original raw measurement data, we
perform OSM rail-incorporated location interpolation and apply spatial segmentation
into GUs. Depending on the train speed, some GUs contain significantly more samples
than others, leading to a confounded dataset that is not informative for analysis. By
averaging over the spatial segments, the influence of train speed is removed, resulting in
a spatially unconfounded dataset.

When analyzing signal strengths, the PCell is the most relevant as it dictates the UE’s
connection stability, handover performance, and overall network experience, making
it the primary focus for performance evaluations, coverage analysis, and network
optimizations. Therefore, in the subsequent step, we filter the measurements to retain
only the PCell and then apply cell and frequency band filtering before computing the
statistics of the KPI of interest, such as RSRP.

Measurement Setup
Ensuring reliable mobile in-train connectivity remains challenging due to factors such

as location-dependent VPL, high train speeds, and dynamic network load driven by
passenger density. The Railjet dataset, introduced in Section 3.2, was collected on
an ÖBB-operated train along the Vienna-Innsbruck route. To evaluate the impact of
different connectivity solutions, the train included three distinct wagon configurations -
SW, MW, and Repeater - as detailed in Section 3.2.

To mitigate the impact of spatial confounding caused by high train speeds, the dataset
was processed using a rail track segmentation approach, ensuring a consistent spatial
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representation of the measured data. Additionally, measurements were performed in
both travel directions and aggregated to improve robustness, as justified in Section 2.4.5.
Since cellular networks must share available bandwidth among connected users, all
measurements were conducted on an empty train, establishing a baseline independent
of passenger-induced network load. This setup provides a scalable reference for MNOs
when assessing network performance under varying occupancy conditions.

Spatial Interpolation and OSM Mapping
We use GPS for UE positioning despite its moderately high inaccuracy. In addition

to the GPS inaccuracy we face in open regions, many railroad tunnels represent even
more problematic areas. The GPS signal inside the tunnel drops, and the reported GPS
values inside the tunnel are either lost or mapped back to the last known point - the
tunnel start.

Each measurement consists of reported longitude, latitude, GPS speed, various
network parameters, and a timestamp. Accordingly, a significant number of missing
GPS measurements in the recorded dataset requires reconstruction solutions. In [99],
authors used dynamic time warping given a reference path to map the measurements to
the correct locations. In the case of rails, we know the exact rail track location from
our Environment and Rail DT, thus allowing us to map the inaccurate GPS locations
to the closest point on the rail track, see Fig. 4.7. A typical GPS interpolation consists
of performing linear interpolation for longitude and latitude separately based on the
reported timestamp. The linear interpolation formula is given in Eq. (4.5), where x1
and x2 are the timestamps at which the longitude/latitude y1 and y2, respectively, are
reported.

y = y1 + (x − x1) · Δy

Δx
= y1 + (x − x1) · y2 − y1

x2 − x1
. (4.5)

However, mapping the points along the track and then performing the longitude and
latitude interpolation introduces further inaccuracies. The interpolated points no longer
lie on the rail track as the OSM rail information is not considered in this approach.
Hence, we interpolate the traversed distance along the given rail based on the reported
timestamps. Interpolating a single parameter, e.g., traversed distance, reduces the
inaccuracies since all reconstructed points lie on the reference path. We then obtain the
reconstructed GPS locations by mapping the traversed distance back into coordinates
as described in Section 2.4.3.

Spatial Confounding - Track Segmentation
Variable train speed and occasional stops during the measurement campaign can

distort the measurement distribution along the rail track, as discussed in Section 2.4.4.
To mitigate this, we divide the rail track into 100 m segments, or GUs, as proposed
by ITU in [100]. Mapping our measurements to each GU and averaging allows us to
achieve a uniform measurement distribution for each UE and frequency band along the
track.

Landscape Specific Stratification
Clustering according to landscape allows us to benchmark the rails in different country

areas within the same class. This enables us to compare the performance of different
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Table 4.1: Frequency bands statistics containing only PCell.

Band 3
(1800 MHz)

Band 20
(800 MHz)

Band 1
(2100 MHz)

Bands:
7, 8, 28, 32 (combined)

68% 16% 7% 8%

Mapped GPS samples
Original GPS samples

Figure 4.7: GPS mapping example.
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Tunnel
Urban

Figure 4.8: CLC mapping example.

configurations in geographically similar areas, e.g., given two different cities with a
comparable landscape. The BS location and its proximity to the connected user [101],
AoA [102], and multipath propagation properties strongly correlate with the landscape.
To capture these dependencies, we split our measurement dataset into landscape classes
according to the CLC database [57] - see mapping example in Fig. 4.8. We group
the 44 CLC classes into four broad landscape classes: City, Land, Forest, and Water.
Tunnels have very different wireless propagation properties and BS rail side deployments.
Therefore, we define an additional landscape class for tunnels.

Network Specific KPI Filtering
The automatized scripts used in this measurement campaign combine voice calls

and data transmissions. All UEs in our fleet use carrier aggregation to increase data
rate during data transmission. However, many measurements originate from voice
calls, where carrier aggregation is not supported. Hence, we have to separate different
views before proceeding to the analysis. On one side, we could analyze all serving cells
combined to get a bigger picture from the operator’s perspective. However, we choose to
focus exclusively on PCells as we are interested in the actual signal quality experienced
by the user. We filter out all measurements originating from the SCells. The original
frequency band statistics in Table 3.3 now changes as shown in Table 4.1.
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Table 4.2: Mean absolute difference between the ECDF curves of the two routes. The
displayed results are for a single UE positioned on the table in front of seat
53 or the green position in Fig. 3.4.

SW MW2 Repeater
Band 3 0.2 dB 0.9 dB 1.5 dB
Band 20 0.6 dB 0.3 dB 0.6 dB

4.3.2 Data Analysis
In this section, we evaluate the RSRP statistics of the unconfounded dataset to compare
the Repeater, MW2, and SW configurations.

We choose to examine the RSRP as it is the least volatile KPI parameter [103] that
shows no time of day effects, meaning we can combine the measurements originating
from different driving directions that are occurring in the same segment. We calculate
the ECDF for two frequency bands where most of our samples are reported, i.e., Band
3 and Band 20, and all three rail car configurations in order to justify this premise.
The mean absolute difference between the ECDF curves of the Vienna-Innsbruck and
Innsbruck-Vienna train runs for a single UE is given in Table 4.2. Given that the
measurements were conducted using commercial grade UEs, we conclude that the
observed difference is insignificant and occurs mainly due to measurement resolution,
thereby allowing us to combine both train runs, concurring with our previous conclusions
from Section 2.4.5.

We compute the ECDF confidence bounds using the Dvoretzky-Kiefer-Wolfowitz
inequality [104]. The inequality itself states that

P

⌊︃
sup

x
|F (x) − F̂ (x)| > 𝜗

⌋︃
≤ 2 exp

}︃
−2n𝜗2

⟨
= α , (4.6)

where F (x) is the true population Cumulative Distribution Function (CDF), F̂ (x) is
our sample CDF, and n is the number of data points. To get the region that contains
the whole CDF with probability 1 − α, we set the right-hand side of Eq. (4.6) equal
to α and then rearrange, thus yielding the lower and upper bounds L(x) and U(x),
respectively:

L(x) = max{F̂ (x) − 𝜗, 0},

U(x) = min{F̂ (x) + 𝜗, 1},
(4.7)

where

𝜗 =
⟩

1
2n

log
⌊︃ 2

α

⌋︃
. (4.8)

The bounds represented in Fig. 4.9 are computed for α = 0.9, and represent the [5−95]%
confidence interval.

The weaker signal components receive maximum available gain through the repeater,
whereas the repeater’s maximum output power bounds the amplification of stronger
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Table 4.3: Two-sample KS test results comparing mean RSRP distributions for different
wagon configurations. The null hypothesis (H0) assumes that the two sample
sets are drawn from the same distribution. If p > 0.01, H0 is accepted.

UE Location SW vs. MW2 SW vs. Repeater
p-value H0 accepted p-value H0 accepted

UE Head 53 0.62 ↭ 9.0 × 10−50 ×
UE Table 53 0.18 ↭ 2.7 × 10−62 ×

Table 4.4: Two-sample KS test results comparing mean RSRP distributions for different
window configurations with the outside rooftop antenna reference. The null
hypothesis (H0) assumes that the two sample sets are drawn from the same
distribution. If p > 0.01, H0 is accepted.

UE Location SW vs. Rooftop Ref. MW2 vs. Rooftop Ref.
p-value H0 accepted p-value H0 accepted

UE Head 53 7.3 × 10−6 × 2.6 × 10−7 ×
UE Table 53 8.8 × 10−7 × 3.8 × 10−5 ×

signal components. In Fig. 4.10c, where the inner signal strength is plotted against
the outside antenna, we can clearly see the repeater bound of the stronger signals.
Combined with nonlinear repeater behavior, it explains the nonlinear shift between the
rooftop reference and the Repeater curve in Fig. 4.9.

In both SW and MW2 cases, the window configurations possess the same window
size, number, and spacing of glass layers, thus providing the temperature isolation
and causing possible total reflection for AoA larger than Brewster’s angle. The main
difference between these two windows lies in the modified windows’ metal coating, which
provides less attenuation for electromagnetic waves.

We conduct the two-sample KS test [105] (see Section A2) to prove the hypothesis:
"The RSRP samples of the two given configurations originate from the same distribution
with a mean shift." The test statistics are provided in Table 4.3. With significance
level of p > 0.01, we cannot reject the given hypothesis in favor of the alternative [106].
Accordingly, the test rejects the hypothesis between the SW and Repeater configurations
- the difference between these two distributions is also depicted in Fig. 4.9.

However, the MW2 and SW configurations originate from the same distribution after
removing their means. We simply have to shift the distribution depending on the applied
metal coating. In [102], the difference in the VPL of the same windows under test is
5 dB in a static reference measurement for 60◦ AoA. In our measurement campaign
conducted under the real-world scenario of over 490 km railway, the average difference
between the ECDF curves amounts to 5.5 dB. These results match well with the static
measurements. The outside to inside RSRP difference is substantially higher than the
static results, likely due to different antennas and positioning.
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Table 4.5: Mean absolute difference between ECDF curves in Rural and Urban areas
at 1800 MHz. Results are shown for both UEs.

UE Location SW MW2 Repeater
UE Head 53 2.63 dB 2.79 dB 0.42 dB
UE Table 53 2.18 dB 3.74 dB 0.48 dB
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Figure 4.9: ECDFs for different wagon configurations at two indoor UE positions
(blue and green in Fig. 3.4). The black line shows the reference from the
rooftop-connected UE.

This leads to the second significant contribution of our measurement campaign. We
conclude that performing measurements in a single location in one of the windows
configurations is enough to understand the second configuration. Therefore, any im-
provement in the coating seems to shift the distribution. This then allows us to make
predictions for future configurations based solely on the average reference attenuation
measurements. The distribution shift between SW and MW2 can even be observed in
Fig. 4.10a and Fig. 4.10b.

The KS test confirms that in the case of the MW2 and SW configurations, the
different UEs inside a single wagon come from the same distribution - however, their
means are different in this specific measurement campaign. Table 4.4 shows that the
indoor and outdoor RSRP of both window configurations do not originate from the
same distribution.

In the final step, we compare landscape strata. Table 4.5 shows the mean absolute
difference between Urban and Rural ECDFs. Both window configurations exhibit a
difference of approximately 2.5 dB, while the repeater compensates for this variation
through amplification. This highlights the importance of separating scenarios to draw
more definitive scenario-specific conclusions.
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Figure 4.10: Each scatter point represents the segment mean RSRP measured inside
the wagon, plotted against the mean RSRP at the external rooftop
reference antenna, for three wagon configurations: (a) standard windows
without repeater, (b) modified windows without repeater, (c) repeater
with standard windows. Results correspond to the 1800 MHz band.

63



4 Comparative Performance Analysis of Mobile Connectivity Solutions on Railways

4.3.3 Summary of Comparative Findings and Conclusions
In this chapter, we benchmarked two primary strategies for mitigating penetration loss
in trains: AAF repeater systems and FSS window coatings. Using the unified data
processing framework described in Section 2.4, we corrected for spatial confounding
through 100 m segment binning, mapped data onto the rail network, and applied
landscape-based classification. Our key findings are summarized below:

• Measurement Consistency: The ECDFs from both train directions closely
matched, confirming that RSRP is a stable metric unaffected by time-of-day or
travel direction. This allowed for aggregating measurements across multiple runs,
strengthening the robustness of the derived statistics.

• Window Coating vs. Distribution Shape: Hypothesis testing confirms that
modifying the window coating does not alter the zero-mean distribution of the
RSRP values-only the mean shifts. This finding enables a simplified benchmarking
strategy: future window configurations can be evaluated by comparing against a
baseline and analyzing the shift in mean attenuation. Full-system re-measurements
become unnecessary, as the expected performance is inferred through a translation
of the existing distribution.

• Position Independence Within Cabin: Analysis across multiple UE positions
(e.g., headrest vs. table) shows that measurements come from the same distribution,
confirming that measurement location within the wagon has minimal impact post-
averaging and filtering.

• Distinct Behavior of Repeaters: Unlike passive coatings, the repeater con-
figuration did not align with the same distribution under mean shift. Saturation
effects and nonlinear gain response create fundamental differences in performance,
necessitating separate evaluation.

• Landscape Variation: Comparing urban and rural environments revealed up to
3 dB difference in attenuation for window-based solutions, whereas the repeater
compensated for these effects. This underscores the significance of evaluating
different environments separately when analyzing connectivity performance.

In Section 5.2.4, we broaden the analysis by comparing different window coating
patterns across multiple train types. The VPL-oriented benchmarking approach enables
comparison across measurements conducted on different tracks, ensuring consistency
and fairness based on the results presented in this chapter.

In Chapter 6, we build on the observed landscape variation by introducing a stratified
measurement planning methodology. This approach enables a targeted allocation of
measurement resources, focusing efforts on the most variable or underrepresented envi-
ronmental classes to improve the representativeness and efficiency of future measurement
campaigns.
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Chapter 5

Influence of Train Window
Properties on Vehicle Penetration
Loss
Given the growing industry preference for passive window modifications, we set out
to examine their performance in greater depth - specifically how they are influenced
by network deployment conditions and by train-specific factors such as window size
and internal layout. As these solutions are increasingly adopted in modern trains, it is
important to better understand their practical limitations and effectiveness in real-world
scenarios. This chapter integrates and refines two key studies we previously published
in [14] and [15].

In [14], we introduced a practical framework to assess how signal angle of arrival
(AoA) affects vehicle penetration loss (VPL). The method operates with UEs connected
to live networks aboard moving trains, without requiring dedicated infrastructure, and
is applicable even to crowdsourced datasets. It leverages the Environment and Rail DT
as well as the Cellular Network DT, introduced in earlier chapters.

In [15], we evaluated modern permeable window coatings used in Austrian night trains,
comparing their performance to earlier modifications and active repeater systems. Since
the focus lies on VPL, the influence of antenna patterns and BS deployment variations
are omitted. This allows for a fair comparison of connectivity solutions not only across
different tracks, but also across different train types - reflecting how such evaluations are
typically conducted in practice. This approach enables a fair comparison of connectivity
solutions across different train types and tracks without requiring identical deployment
conditions.

5.1 Angle of Arrival
The field of railroad car measurements remains underexplored in the literature. While
some studies, such as [80] and [107], have analyzed radio channel properties both inside
and outside railroad cars, others [108] have focused on wave-guiding effects within
subway tunnels.

In contrast, research on indoor penetration loss in buildings is more extensive, encom-
passing diverse materials and scenarios. The ITU report [109] offers a comprehensive
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collection of results on Building Penetration Loss (BPL), including elevation angle
analyses. [110] outlines a measurement methodology for building wall penetration loss
at 5 GHz, especially for materials like stone or glass. Similarly, [111] provides empirical
results for VPL assessments in various car orientations. In [112], authors present results
from 28 GHz channel sounding campaigns investigating outdoor-to-indoor penetration
loss, showing a significant correlation with AoA. In [89], researchers explore window
attenuation to microwaves of coated, uncoated, and patterned glass using measurements
and simulations in the [1-10] GHz frequency range, while detailing the influence of the
thickness of the air gap in a window, as defined in [113].

In [95] the authors measure the impact of the coated pattern’s size on attenuation
within the frequency range of [0.8-5] GHz . Their findings reveal approximately 6 dB
attenuation at 800 MHz and around 7.5 dB attenuation at 1800 MHz, which exhibits a
strong similarity to the outcomes observed in our own research at 0◦ incidence. Addi-
tionally, they conduct simulations to assess the impact of AoA on window attenuation
at frequencies of 1, 2, and 3 GHz. Moreover, the impact of AoA on signal propagation
characteristics was explored in a static train scenario, through a real-world measurement
campaign conducted in Austria on a stationary train [102]. This involved a compar-
ative analysis of two distinct window configurations spanning the frequency range
[800-2600] MHz, focusing on azimuth AoA within [0-60]◦. The examination of these
configurations revealed a decrease in penetration loss for the prototype setup, attributed
to alternative material treatments employed in the windows. However, unlike our pro-
posed approach, this static measurement method requires considerable time, specialized
equipment, and extended access to the train at a fixed measurement site - precisely the
limitations our in-motion, network-based framework is designed to overcome.

To validate and verify our proposed methodology, we conduct a comprehensive
measurement campaign that includes both interior and exterior train cabin measurements.
Interpolation of RSRP values is used prior to VPL derivation to overcome SSF effects,
as the measurements are collected simultaneously from multiple phones at different
positions. This ensures that only large-scale propagation trends are captured when
comparing indoor and outdoor signal levels. Precise track and BS coordinates - provided
by the Environment and Rail DT and Cellular Network DT - are used for accurate AoA
calculation.

5.1.1 Workflow for Vehicle Penetration Loss Calculation
For analyzing the influence of AoA on VPL in mobile communication for moving vehicles
like trains, we utilize the Talent dataset from Section 3.1. This dataset includes indoor
LTE measurements collected by four UEs, with a scanner connected to a rooftop antenna
serving as an outdoor reference. The DT framework from Fig. 2.8 is employed to assess
VPL by integrating indoor and outdoor measurements, as illustrated in Fig. 5.1. This
approach enables a comprehensive evaluation of VPL caused by train structures and
helps characterize wireless signal propagation dynamics.

Measurement alignment was performed to ensure consistency between indoor and
outdoor data sources. This step is essential across all datasets, allowing accurate VPL
computation on a sample-by-sample basis.
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Measurement
alignment

Outdoor
measurements

Indoor
measurements

VPL calculationGPR interpolation
on rail track

Filtering for
high confidence

Figure 5.1: Workflow for VPL calculation from indoor and outdoor measurements,
encompassing measurement alignment, GPR interpolation, and filtering.

Figure 5.2: Visualization of (a) indoor and outdoor RSRP measurement points for
a specific PCI in the 800 MHz band along a 1 km railway segment, (b)
interpolated RSRP values with 95% confidence intervals, and (c) VPL
calculated as the difference between indoor and outdoor RSRP. In (c),
scatter points represent the difference between original indoor and outdoor
RSRP measurements, while the interpolated values are shown with a 95%
confidence interval.
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As depicted in Fig. 5.1, the VPL computation workflow consists of measurement
alignment, GPR interpolation, and filtering for high-confidence samples. GPR was
selected for interpolation as it provides both the mean and standard deviation at each
interpolation point. The standard deviation serves as an indicator of confidence in the
estimated mean, enabling the retention of high-confidence samples while discarding
potential outliers. Furthermore, interpolation ensures that RSRP values are available
at identical positions for both indoor and outdoor measurements, a crucial requirement
for analyzing the influence of AoA on VPL in Section 5.1.2. A theoretical overview of
GPR is presented in Appendix A1.

To enhance the reliability of signal strength estimations, outdoor and indoor RSRP
values were interpolated at 1 m intervals along the train track. The application of GPR
resulted in smoothed RSRP estimates along with 95% confidence intervals, as depicted
in Fig. 5.2b. To maintain accuracy, samples with a standard deviation exceeding 5 dB
were excluded before computing the VPL:

VPL = RSRPout − RSRPin, (5.1)

depicted in Fig. 5.2c. This calculation captures the impact of the train cabin on signal
attenuation, without dependency on the BS deployment, as both indoor and outdoor
signals experience the same outdoor PL and arrive from the same direction.

5.1.2 Angle of Arrival Estimation
We infer the AoA from each connected BS to the train window closest to the indoor
measurement by performing precise geometric calculations. These calculations are
based on accurate geographic coordinates of the train track in OSM. Due to possible
vertical and horizontal differences in the window pattern, we look at two separate
cases: the azimuth AoA, denoted as α, and the elevation AoA, represented as ε. These
scenarios are visually depicted in Fig. 5.3a and Fig. 5.3b through aerial and lateral
views, respectively.

Azimuth AoA
By overlaying the measurements onto the precise track using the Environment and

Rail DT, we establish the track vector, which functions as a tangent vector aligned
with the track’s orientation. Rotating this vector 90◦ produces the orthogonal vector v,
which is perpendicular to both the track and the window plane.

Furthermore, leveraging exact BS locations provided by the operator, we establish a
vector connecting our measurement point to the connected BS location. In Fig. 5.3a,
we denote this vector as w. By assessing the alignment between the incoming signal
direction w and the orientation that is perpendicular to the train window v, we calculate
the azimuth AoA (α) using the cosine theorem:

α = arccos
⌊︃ v · w

↔v↔↔w↔
⌋︃ 180◦

π
. (5.2)

W.l.o.g we consider both the train and the track to be 1D, having only the length
dimension, and not the width, as one may assume from the Fig. 5.3a. Since the range

68



5.1 Angle of Arrival

(a) Azimuth AoA

(b) Elevation AoA

Figure 5.3: (a) Azimuth AoA α: The rail tracks are depicted as parallel lines, and
the train cabin as a black rectangle. The blue line represents the window
plane from an aerial viewpoint, while the vector v is orthogonal to it and
forms the angle α with the vector w, indicating the direction towards the
connected BS. (b) Elevation AoA ε: A lateral view of the same scenario,
where the elevation angle is computed considering ground elevation at
sender and receiver locations, antenna height, and the 2 m elevation of the
train window.

of arccos is [0, π]rad (or [0, 180]◦ for α), we account for the possibility that the BS is
located on the trackside opposite the direction of the vector v by:

α =
⧸︃

α α ≤ 90◦,

180◦ − α α > 90◦.
(5.3)

Ultimately, α = 0◦ signifies that the incoming signal direction is perpendicular to the
window plane. In contrast, a maximum value of α = 90◦ indicates that the incoming
signal aligns parallel to the window plane. An illustrative example of this mapping for
a single BS is presented in Fig. 5.3b . In this representation, it is evident that at the
point where the track is closest to the BS, the azimuth AoA measures 0◦. Subsequently,
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moving both forward and backward along the track from this point leads to a progressive
increase in the angle, aligning with the anticipated behavior.

Elevation AoA
An alternative perspective is presented in the lateral orientation in Fig. 5.3b. The

calculation of the elevation angle, under which the signal from the BS transmitter
penetrates the train cabin window, necessitates consideration of multiple factors. Beyond
the relative heights of the receiver (RX) and transmitter (TX), the ground elevation at
these respective positions also play a crucial role. To address this, we use the terrain
altitude data provided by the Environment and Rail DT, which incorporates elevation
information from the DTM Austria [56].

We compute the length A = (TXheight + TXGE) − (RXheight + RXGE), where RXheight
approximates 2 m, representing the height above ground level for each UE situated
within the train. The distance to the BS, denoted as B, is the Euclidian distance
between the measurement coordinates and the BS position. Additionally, the distance
to the BS transmitter antenna, C =

⧹︃
(A2 + B2), is determined. The elevation AoA ε

is subsequently calculated using the cosine theorem:

ε = arccos
)︃

B2 + C2 − A2

2B C

]︃
180◦

π
. (5.4)

Ultimately, ε = 0◦ signifies that the incoming signal direction is perpendicular to the
window plane, or in other words that the TX is at the same elevation level as the RX.
In contrast, higher values indicate that the BS TXheight is significantly above the UE
level. The maximum observed elevation AoA in our dataset is 58◦.

Now that we have established the framework for AoA calculation aboard a moving
train, we can apply it to analyze how AoA influences VPL - or any other KPI of interest.
This framework is universally applicable across different train types and tracks, using
either controlled measurement campaigns or crowdsourced data, without requiring a
dedicated test train in a lab or fixed measurement site - both of which are impractical
for large-scale evaluation.

5.1.3 Dataset Description
The processed dataset, detailed in Section 3.1, used throughout this analysis, includes
interpolated indoor and outdoor RSRP values, standard deviations, VPL, longitude,
latitude, BS distance, azimuth AoA, and elevation AoA.

We separately analyze the attenuation in different frequency bands to understand
how AoA impacts VPL across frequencies. We begin by studying the interpolated data
statistics for each band before further investigation.

Statistics of the Interpolated Dataset
Fig. 5.4a and Fig. 5.4b present ECDFs encompassing BS distances, interpolated

RSRPout and RSRPin values, alongside azimuth and elevation AoA for 800 MHz and
1800 MHz frequency bands.
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(a) Measured statistics

(b) Derived statistics

Figure 5.4: Summary of statistics for the interpolated dataset across different channels,
presented specifically for values where the standard deviation of both indoor
and outdoor interpolated RSRP values was less than 5 dB.

Prominent trends emerge from the distribution of BS distances for different frequency
channels, as shown in Fig. 3.1c. Specifically, the 1800 MHz channel exhibits a concentra-
tion of BS distances in close proximity to the track. Contrarily, the 800 MHz channel
reveals a bimodal distribution, also connecting to BSs located further from the track
due to its extended coverage range. This bimodal characteristic of BS distances in the
800 MHz channel is mirrored in the distribution of the RSRP within the same band,
while the RSRP distribution in the 1800 MHz band exhibits reduced variability.

Turning to azimuth AoA, the distribution in 1800 MHz band reveals a fairly uniform
spread below 60◦, with the majority of samples positioned above this threshold. The
dual-peak property of the BS distances within the 800 MHz band imparts a similar
bimodality to the azimuth AoA distribution. The peak at 10◦ in the azimuth AoA
distribution is a direct result of BSs located further away from the track, particularly
pronounced due to the 800 MHz band’s BS distance peak at 12 km.

The elevation AoA is mainly driven by the special topography of the area where
the measurements were taken. It is worth noting that the relatively flat nature of the
landscape had a major effect on this distribution. For both bands, a prominent peak
in the elevation AoA emerges at ≈ 2◦, reflective of the predominantly flat landscape.
An interesting observation arises when examining BSs positioned atop taller building
rooftops in close proximity to the track. This scenario results in the maximum elevation
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Figure 5.5: The color map represents the interpolated measurement locations along the
track, depicting the corresponding computed azimuth AoA α. Additionally,
it shows the position and orientation of the BS sector to which the UE
was connected.

AoA value of 58◦. However, it is essential to stress that this angle is only achieved
when the train is in immediate proximity to the BS. As the train moves away from the
BS, this angle rapidly decreases, with elevation AoA dropping below 10◦ for distances
exceeding 150 m in most cases.

To investigate the individual impacts of elevation and azimuth AoA on VPL, we
analyze their joint distributions in Figs. 5.6a and 5.6b. The scatter plot lines originate
from distinct BSs and exhibit a consistent pattern across both frequency bands. We can
notice that only very few lines (BSs) are falling into the higher elevation angle range,
and most are concentrated within [0-10]◦ range, due to the terrain being relatively flat.
As the train progresses along the track, the azimuth angle tends to be near 0◦ when
it passes the BS, gradually increasing to its peak of 90◦ as the train moves away, as
depicted in the example in Fig. 5.5. At the same time, the elevation angle reaches
its maximum when the train is closest to the BS antenna, typically positioned atop a
high mast or building. As the train travels away, the elevation angle decreases rapidly
and soon falls within the [0, 10]◦ range. This leads to a rarity of scenarios where both
elevation and azimuth angles are simultaneously high. It is important to acknowledge
that the distribution is significantly influenced by the terrain and track layout, which
may vary across different scenarios.
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(a) AoA joint distribution in 800 MHz band.

(b) AoA joint distribution in 1800 MHz band.

Figure 5.6: Elevation and azimuth AoA joint distributions for two frequency bands.
Each line represents one PCI.

5.1.4 Impact of Angle of Arrival on Vehicle Penetration Loss
Our analysis is focused solely on attenuation, thereby excluding the influences of PL, BS
antenna beam pattern, and sector orientation. This deliberate approach stems from the
realization that these factors affect both outdoor and indoor signals equivalently, allowing
us to effectively isolate and examine the attenuation dynamics in our investigation. In
addition, a confidence threshold of 5 dB was established for both indoor and outdoor
RSRP interpolated values, to ensure the exclusion of samples from our analysis that
may lack robust reliability - primarily stemming from the limited number of samples
available for interpolation.

Given that both elevation and azimuth AoA contribute to signal attenuation, it
becomes necessary to fix one parameter while assessing the dependency of the VPL on
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(a) (b)

Figure 5.7: VPL dependency on azimuth AoA (a) and elevation AoA (b), illustrated
as moving averages with the standard deviation intervals ±.

the other. However, exclusively analyzing samples at a fixed value of either α or ε would
yield an insufficient dataset for comprehensive analysis. As an optimal approximation,
in the case of investigating the impact of α on the VPL, we restrict our sample set to
instances within the ε range [0, 5]◦. This 5◦ span in ε is considered as an approximation
for ε = 2.5◦. Conversely, for the assessment of ε influence on the VPL, our sample set
is confined to the α range [80, 90]◦, with this interval serving as an approximation for
α = 85◦. The selection of both values was deliberate, aiming to align with the peaks of
their respective AoA distributions (see Fig. 5.4b).

Upon analyzing Fig. 5.7a, it becomes evident that the minimal attenuation level is
observed at a 0◦ azimuth angle, suggesting optimal signal penetration. Additionally,
a discernible pattern emerges, with attenuation exhibiting a gradual increase as the
azimuth angle approaches its 90◦ maximum value. Note that the ascending trend is
much more prominent at 1800 MHz due to the higher number of samples in the given
band. Overall the data shows [3, 13] dB VPL-range over [0, 90]◦ angle, emphasizing
the significant impact of azimuth AoA on attenuation dynamics. We observe that
positioning BSs exceedingly close to the track leads to higher average signal attenuation,
given that azimuth AoA predominantly falls within the [60, 90]◦ range along most of the
track. However, placing the BSs excessively far from the track could compromise overall
coverage, warranting a delicate balance to achieve optimal BS placement. The findings
underscore the significance of identifying a strategic middle ground between these two
considerations to optimize BS positioning for optimal communication performance.

Examining the influence of elevation AoA on attenuation as shown in Fig. 5.7b, our
analysis is confined to samples within the [80, 90]◦ α-range. Within this range, all
corresponding ε samples remain below the maximum threshold of 15◦, resulting in a
noticeable yet slight reduction in attenuation. The decline in the curves beyond 10◦ can
be attributed to the limited number of remaining samples in this region. Our finding
underscores the limited influence of elevation angle on attenuation within our scenario,
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where terrain flatness minimizes the elevation’s role in signal degradation. Consequently,
our results suggest that elevation angle’s contribution can be predominantly disregarded,
unless specific scenarios necessitate an increased consideration of ground elevation.

At this point, it’s important to consider how the rooftop antenna’s pattern might
affect our measurements. Depending on the employed antenna, the signal strength of
the outside reference alone would face an attenuation level that is dependent on the
elevation AoA, as these antennas tend to be omnidirectional in the azimuth direction,
but have a certain angle-dependent radiation pattern in lateral view, particularly when
placed on top of the metal train, e.g. [114]. A detailed analysis of the rooftop antenna’s
radiation pattern and its potential influence on the results is beyond the scope of this
work but remains relevant for future investigations.

5.1.5 Key Findings
We developed and implemented a comprehensive framework for determining the AoA of
mobile communication signals in moving train environments. Our approach combines
accurate train track geometry, detailed BS position and height data, and ground elevation
information to enable precise calculation of both azimuth and elevation angles. By
aligning and interpolating samples along the rail track at 1 m intervals, we effectively
addressed GPS inaccuracies and captured the dynamic behavior of signal propagation
with high spatial resolution. This interpolation not only reduced location uncertainty
but also provided confidence intervals for each predicted value, allowing us to filter and
analyze only the most reliable data points.

We applied this framework to real-world measurements from the controlled dataset
described in Section 3.1, achieving robust results based on a large sample base. The full
processed dataset has been made publicly available [66] to support further research into
train-based signal attenuation and AoA-aware modeling.

Focusing on VPL allowed us to isolate the influence of the train cabin structure,
avoiding effects from PL, BS antenna patterns, and sector orientation, which impact
both indoor and outdoor signals equally. Our analysis revealed a clear trend: attenuation
increases with azimuth AoA, ranging from approximately 3 dB to 13 dB across the [0-90]◦
range. In contrast, attenuation showed minimal dependence on elevation AoA, likely
due to the flat terrain of the test environment.

Importantly, we uncovered a critical insight for future rail network planning. While
BSs placed close to the track can temporarily provide low azimuth angles when the
train passes directly beside them, the azimuth angle rapidly increases as the train moves
along the track. In practice, most samples fall into the high azimuth range of [80-90]◦,
where attenuation is greatest. This presents a challenge for permeable window solutions,
which are particularly sensitive to signal direction. Placing BSs farther from the track
can reduce the azimuth angle and thus lower the VPL, but at the cost of reduced signal
strength due to increased PL. This trade-off indicates that, in deployments relying
solely on permeable windows, BS placement strategies must be revisited. Optimizing
BS locations along rail corridors with AoA-driven design in mind could significantly
enhance in-train connectivity performance - particularly when repeaters are no longer
an option.
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5.2 Impact of Window Size on Vehicle Penetration Loss
Assessing the effectiveness of wireless connectivity enhancement systems in real-world
train environments, especially those involving FSS modifications to window design,
presents a multitude of challenges, arising from variations in cabin layouts, window
size and composition, orientation and angular dependency, environmental impact, and
dynamic train conditions for trains traversing different routes.

Cabin Layouts and Window Modifications
Cabin layout and window modification differences among trains play a crucial role

in shaping signal propagation within cabins. Window sizes and modifications, such
as tinting or coatings, introduce varying degrees of influence on signal strength and
quality across different train models. Additionally, the overall structural design of trains
can differ significantly, including the number of windows present. Since for passive
solutions, windows serve as the primary entry points for cellular signals into the cabin,
these structural disparities can profoundly affect signal penetration and distribution
within the train environment. To address these challenges, we conduct measurements
in different cabin types of the same train, which feature varying window sizes and
layouts. Since it is the same train, the materials used and window modifications remain
consistent across all tested wagons, allowing us to isolate the impact of cabin layout
variations on signal propagation while controlling for other factors such as materials
and window modifications.

Diverse Track Routes Trains are assigned specific tracks, resulting in diverse cellu-
lar coverage and network setups along diverse routes, complicating the performance
comparison across various train types. A reliable method to address this challenge is
focusing on cabin attenuation. This metric, derived from indoor measurements and
external rooftop references, quantifies signal attenuation within the cabin environment.
By comparing the difference between indoor and rooftop signals, both equally influenced
by BS positioning and orientation, we can accurately assess attenuation across different
trains. This approach effectively minimizes the distinct track impact and network
configurations on the evaluation of cellular performance.

When we evaluate solutions to reduce VPL, we need to consider that the level of
signal loss changes depending on how the waves reach the antenna on the roof or the
window. Building upon Chapter 2, where we introduced a benchmarking methodology
for comparing solutions in an operational network under regular cabin operation, we
utilize presented concepts to eliminate measurement bias, allowing for comparison of
solutions across various trains. We demonstrated in Section 4.3 that, on average, the
active repeater outperforms signal strength through the coated window, but is limited
by the repeater system’s maximum output power. In areas with excellent coverage,
the passive solution of window modification surpassed the performance of the active
repeater (see Fig. 4.10).

Here, we analyze measurements collected on the Nightjet train (see Section 3.3) to
assess the impact of window size on VPL. This train was selected because it featured
three wagons with different layouts and window sizes while maintaining the same window
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pattern across all three, allowing for a focused evaluation of the influence of window
dimensions on signal attenuation.

Additionally, since we have already measured two previous window types, MW1 and
MW2, along with the Repeater solution and the SW baseline, we can now compare all
of them, including the newest window type, MW3. This comparison enables us to assess
which configuration achieves the lowest VPL and to evaluate the relative performance
of different window modifications and repeater-based solutions.

5.2.1 Workflow for Vehicle Penetration Loss Calculation
For analyzing the influence of window size and cabin layout on VPL in mobile commu-
nications on moving trains, we utilize Nightjet dataset from Section 3.3.

This dataset includes LTE measurements collected by 6 UEs on three different wagons
(see Fig. 3.5) all with MW3 solution (see Fig. 3.6f), over two consecutive days. The DT
framework from Fig. 2.8 is employed to assess VPL by integrating indoor and outdoor
measurements, as illustrated in Fig. 5.8. To compare VPL across different Nightjet
wagons we conduct measurements both on the train rooftop, which serves as the outdoor
coverage reference, and indoors to assess the signal quality experienced by passengers.
We align RSRPout and RSRPin measurements based on frequency band, PCI, and the
100 m segments of the track to calculate the VPL as VPL = RSRPout − RSRPin. This
ensures a fair comparison of signal strength originating from the same BS1.

The alignment process depicted in Fig. 5.1 involves the following:

1. For each segment s in each frequency band f and PCI p, take the minimum
RSRPout value across all samples:

RSRP(f ,p,s)
out = min

i
RSRP(f ,p,s,i)

out . (5.5)

For each segment s in each band f , PCI p, and UE u, take the minimum RSRPin
value across all samples:

RSRP(f ,p,s,u)
in = min

i
RSRP(f ,p,s,u,i)

in . (5.6)

The reported RSRP values are already averaged over 1 s intervals, which smooths
out SSF and ensures more stable readings. We select the minimum RSRP per
PCI and 100 m segment to avoid overestimating outdoor and underestimating
indoor signal strength in cases where the train passes directly by the BS. At
such points, the rooftop antenna often has a clear LOS, while the indoor signal -
passing through coated windows - typically loses LOS and experiences significantly
higher attenuation. Focusing on the minimum RSRP also helps keep the analysis
focused on conditions where the repeater is, for the most part, not operating in
saturation [13].

1Comparing this workflow with the one in the previous section, interpolation part can be omitted as
we are focusing on the evaluation on a segment basis, and it is not required to have data samples
indoor and outdoor at exact same positions, as it was the case for AoA calculation.
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UE, PCI, segment
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VPL = RSRPout - RSRPin mean VPL
segment, UE

Figure 5.8: VPL calculation flowchart.

2. We calculate the difference between the outdoor and indoor RSRP to determine
the VPL for a particular band f , PCI p, and UE u in each segment s:

VPL(f ,p,s,u) = RSRP(f ,p,s)
out − RSRP(f ,p,s,u)

in . (5.7)

3. We compute mean VPL over all PCIs in one band observed in the segment to
obtain the expected value of the VPL for each UE along the entire track:

VPL(f ,s,u) = 1
Ns

N[︃
p=1

VPL(f ,p,s,u), (5.8)

where Ns is the number of observed PCIs in band f in segment s.

In the following sections, we present the results obtained by calculating the mean
VPL using this approach.

5.2.2 Attenuation Level Relative to Measurement Position
In Section 2.2.2, we analyzed the RSRP variations across different measurement positions
using repeated measurements conducted in a controlled, stationary environment. Our
findings indicated that, after aggregation and interpolation, differences of up to 3 dB
could be observed among various measurement locations. Building on this analysis, we
now extend our investigation to examine the VPL, which is derived from RSRP, in a
dynamic scenario. Specifically, we assess VPL while the train is in motion, continuously
connecting to multiple BSs throughout the measurement process, rather than a single
BS as in the static case. For this we utilize the two-sample KS test, a nonparametric
statistical method that compares the empirical distributions of two datasets [105],
to test the hypothesis that the attenuation levels of two VPL solutions arise from
identical distributions, with and without mean shift. The KS test reports the maximum
difference between the two cumulative distributions, and gives a numeric value related
to that difference. Our results are presented in Fig. 5.9, where we illustrate the pvalue
corresponding to each position combination from the Nightjet dataset introduced in
Section 3.3. It is noteworthy that the depicted matrix is symmetric. The pvalue serves as
a measure of the significance level of the test. Significance level of pvalue = 1 , indicates
that we cannot reject the proposed hypothesis in favor of the alternative [106]. In
simpler terms, it suggests that the distributions of attenuation levels from the two
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Figure 5.9: pvalues obtained from a two-sided KS test in 1800 MHz band. Note that
the scaling differs between the two plots.

configurations are statistically indistinguishable, which is why diagonal elements of the
matrix in Fig. 5.9 are always equal to one (white). A lower pvalue indicates a higher
probability that two datasets stem from different distributions. Typically, pvalue = 0.1
is chosen as the threshold for accepting or rejecting the hypothesis.

In Fig. 5.9, the colored blocks represent combinations of all positions within a single
cabin type. We compare the mean VPL once without applying the offset correction and
once with applying the offset correction, in order to determine if the mean shift is the
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most relevant, or are the actual distribution differences caused by different curvatures,
and therefore different fading properties within the cabin.

The brown block in Fig. 5.9 corresponds to the Deluxe cabins. Upon examining the
upper plot, it becomes apparent that, according to the pvalue level, the distribution
for all four UEs positioned in that cabin aligns with the hypothesis of having the
same distribution. The same conclusion can be drawn for the Mini-suite block in lilac.
However, for the Seating coach block, depicted in blue, a slight discrepancy is observed
in the distribution of UEs 1 compared to the other three UEs in the same cabin. Possible
reasons for this discrepancy include measurement inaccuracies or potential issues with
the UEs 1 phone itself. Furthermore, it is noteworthy that almost all elements not
belonging to these three blocks have a pvalue below 0.1, indicating that the attenuation
distributions between the UEs in different cabin types are significantly different, at least
when the bias in the distributions is not removed.

After applying the offset correction, by removing the mean at each position, differences
among different positions level out, such that pvalue for most UE combinations falls above
0.1 range, suggesting that we cannot reject the hypothesis for most UE combinations,
that is, their ECDFs are very similar after the bias removal, independent of the cabin
type and positions inside the cabin.

Similarly, this method can be employed on conditional distributions. For instance, we
can compare VPL levels conditioned on observing only segments and PCIs where the
BS was positioned very close to the track or, similarly, very far from the track. This
allows us to differentiate between various cases in the analysis., but requires a larger
sample size for conclusive analysis compared to a single drive test.

5.2.3 Attenuation Differences and Window Size Impact
Fig. 5.10a presents the mean ECDF curves derived from the ECDFs of various UEs
within the same Nightjet cabin type. These curves represent the average values across
multiple UEs, with shaded regions indicating the minimum and maximum ECDF values
for each specific cabin type. The comparison of different Nightjet cabins illustrates the
impact of window size and interior layout on signal attenuation levels.

Table 3.4 presents the window size and corresponding average VPL values for three
different ÖBB Nightjet cabin types. The data show a clear inverse relationship between
total window size and signal attenuation: cabins with larger window areas exhibit
lower mean VPL. The Seating Coach and Deluxe Cabin have nearly identical total
window areas per wagon (≈ 22 m2), yet differ in mean attenuation by over 3 dB. This
deviation underscores the importance of internal cabin geometry. In Seating Coach,
the open-plan design facilitates more direct propagation paths and reduces internal
obstruction losses. In contrast, Deluxe and Mini-suite Cabins incorporate partition
walls and doors, introducing additional barriers to signal propagation. The smallest
windows and most enclosed layout of the Mini-suite configuration correspond to the
highest observed VPL, at 18.4 dB. These results suggest that both window size and
interior structure are critical contributors to in-cabin signal attenuation and must be
jointly considered in future train design and connectivity optimization efforts.
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(a) (b)

Figure 5.10: (a) Mean ECDF - derived from the ECDFs of various UEs within the
same Nightjet cabin type. (b) Bar plot of the average attenuation per
UE.

To further illustrate the variations in attenuation across different UEs, Fig. 5.10b
presents bar plot of the average attenuation per UE. The results show that the
attenuation levels in deluxe and mini-cabins remain relatively consistent, while the
seating coach experiences significantly lower attenuation. This can be attributed to the
larger number of windows and the absence of walls or door barriers that could obstruct
signal propagation.

Additionally, the layout of UEs in the deluxe cabin further emphasizes the impact of
direct window paths. UEs 2 and 3, positioned in the lower rack, benefit by occasionally
having the LOS path through the window and thus experience lower attenuation levels.
In contrast, UEs 1 and 4, located in the upper rack, are always in NLOS, leading to
higher attenuation. This observation reinforces the importance of window placement
and internal cabin structure in determining signal penetration efficiency.

5.2.4 Solution Comparison Across Different Trains
Fig. 5.11 compares attenuation levels across different train configurations, focusing on
various window modification strategies (MW1-MW3), the SW configuration, and the use
of the Repeater. These results highlight how different solutions impact outdoor-to-indoor
signal penetration across Railjet, Nightjet, and Talent trains.

As expected, the highest attenuation levels are observed in the SW (Railjet) con-
figuration, where outdoor-to-indoor attenuation averages around 22 dB. Implementing
window modification MW2 on Railjet reduces attenuation by 5 dB, improving indoor
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Figure 5.11: Attenuation2 levels across different trains and train configurations.

Figure 5.12: Tracks used for comparative measurements across the three train types.

connectivity. In the Nightjet train, the MW3 seating cabin configuration provides
an additional 2.5 dB improvement, attributed to the newer generation of permeable
windows with a larger hexagonal grid.

The Talent train, which uses a regular MW1 window grid, shows a further 4 dB
reduction in attenuation compared to the other trains. This improvement is likely driven
by two factors. First, the Talent train features a larger window area than the Railjet and
Nightjet trains. Second, its lighter construction and less tightly sealed design provide
additional signal entry points, including windows and train doors. These results suggest

2Although attenuation, by definition, cannot be negative, the ECDF curves in the plot may start
slightly below 0 dB. This occurs due to the way attenuation is computed as RSRPout − RSRPin on
a per-segment basis. In rare instances, especially with repeaters, the indoor signal can temporarily
exceed the outdoor reference - caused by repeater gain, measurement mismatch, or local fading -
which results in a negative computed VPL. These artifacts are rare but explain why the ECDF
curve may extend into the negative range.
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that window modifications alone are insufficient to significantly improve indoor coverage.
A more effective approach combines larger window areas with optimized coating designs.

The repeater curve in Fig. 5.11 illustrates the optimal use case for repeaters, particu-
larly in segments with poor coverage. Since the analysis focuses on minimum RSRP
values per segment, the repeater effectively enhances indoor coverage in low-signal
areas. Importantly, the repeater has not yet reached saturation levels, providing an
additional 4 dB improvement over the best-performing window modification (MW3).
This highlights the advantage of active signal enhancement solutions in scenarios where
passive modifications are insufficient.

5.2.5 Key Findings
We conducted a targeted measurement campaign on the ÖBB Nightjet, specifically
designed to evaluate how window size and cabin layout affect signal penetration. This
setup enabled a controlled comparison across three distinct cabin types - Seating Coach,
Deluxe Cabin, and Mini-suite Cabin - within the same train and using identical window
coating pattern. To support further research and validation of our findings, we processed
and published the Nightjet dataset at [68].

We observed that interior cabin layout plays a measurable role in signal attenuation.
Despite having comparable total window areas, Seating Coach exhibited approximately
3 dB lower attenuation than more compartmentalized Deluxe cabin. This difference
is attributed to the presence of internal partitions - such as walls and doors - that
introduce additional propagation loss.

Beyond the controlled study within the Nightjet, we developed a generalizable bench-
marking framework centered on VPL, enabling a fair comparison of different onboard
connectivity solutions - such as repeater systems and modified window coatings - even
when tested on different train types, tracks, and network deployments. By isolating the
cabin-induced attenuation component, the framework allows us to decouple results from
varying network deployments and propagation conditions.

Applying this framework, we quantified the attenuation characteristics across three
ÖBB train types. Standard metal-coated windows consistently introduced high VPL
around 22 dB. This was reduced to approximately 14 dB when modified FSS-based
coatings were used. In trains with larger window areas and lighter construction - such
as local commuter railcars - attenuation was further reduced to approximately 10 dB.
This suggests that simply improving the window coating is not sufficient, and that the
overall cabin design - particularly larger window areas - also plays a significant role in
reducing attenuation.

Active repeater systems achieved the lowest observed attenuation, with average values
as low as 7 dB. While they remain the most effective in absolute terms, window-based
solutions significantly narrow the performance gap. Moreover, advanced window coatings
offer practical benefits: they operate passively, support a broad frequency spectrum,
and are inherently compatible with modern MIMO technologies. This makes them an
attractive alternative in deployment scenarios where active systems are impractical or
undesirable.
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Chapter 6

Optimizing Measurement
Strategies
So far, we focused on benchmarking in-train connectivity solutions in railway scenarios -
such as repeaters and window modifications - that are independent of specific MNOs.
These evaluations were conducted in a way that abstracts from specific BS deployments,
making results applicable across different operators.

In this chapter, we shift our attention from evaluating in-train connectivity technologies
to optimizing measurement strategies for performance monitoring. Our goal is to
determine how many samples - and from which geographical areas - are needed to
accurately estimate network KPIs. This reduces the overall number of measurements
required while maintaining accuracy. Performance monitoring is essential for ensuring
optimal service quality and efficient network operation, especially in modern network
generations such as LTE, 5G, and beyond.

Real-time performance metrics are essential for network optimization and for enabling
features such as network slicing and orchestration, as outlined in [115]. MNOs typically
estimate network performance through large-scale data collection, using methods like
drive tests or crowdsourcing. Commonly sampled KPIs include call drop rates [116] and
RSRP, the latter being widely used by regulators to assess coverage obligations in both
LTE and 5G networks [117]. The 3GPP standards [118, 119] define the relevant KPIs
and measurement methodologies across the PHY, MAC, and service layers.

Obtaining reliable KPI estimates is challenging due to time- and location-dependent
variability, user mobility, and network heterogeneity. While regulatory authorities like
Austria’s Regulatory Authority for Broadcasting and Telecommunications (RTR) enforce
minimum performance standards, MNOs must demonstrate compliance efficiently.

Despite the importance of performance benchmarking, the literature lacks robust
sampling methodologies tailored for cellular data. Few studies address how to mini-
mize sample collection, handle confounding factors, or validate existing data, such as
crowdsourced data. Although there are various experimental and exploratory studies on
network monitoring [120, 121], they often lack comprehensive strategies for real-world
network performance assessments.

To address this gap, we apply sampling theory - specifically, stratified sampling -
to large-scale MDT data. The methodology and findings are drawn from our previ-
ously published work [16], demonstrating how stratified sampling can mitigate key
benchmarking limitations such as user distribution imbalance and sampling bias.
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Although demonstrated using urban and national-scale crowdsourced data, the same
sampling principles can be applied to railway environments. In rail scenarios, static
geographic tiles (e.g., 100 m × 100 m) can be replaced with fixed-length track segments
(e.g., 100 m) representing GUs. Stratification can then be applied to account for tunnels,
open tracks, stations, or high-speed segments. While large-scale rail monitoring data
remains limited, we rely on simulations and MNO-provided crowdsourced data to
illustrate the effectiveness of our approach. These strategies lay the groundwork for
scalable, efficient, and operator-independent benchmarking on railway tracks.

In Section 6.1, we review existing research on benchmarking in cellular networks and
motivate the need for more effective sampling strategies using a simulated example.
Section 6.2 introduces the fundamentals of sampling theory in the context of bench-
marking, explaining potential biases in Simple Random Sampling (SRS) and how SS
can help address them. The theoretical foundations of both SRS and SS are detailed
in Section 6.3. In Section 6.4, we compare their performance in controlled conditions,
illustrating the benefits of stratification in specific scenarios. Section 6.5 demonstrates
the application of our methodology to real-world MDT data - representing, to our
knowledge, one of the first large-scale uses of SS in this context. Finally, Section 6.6
summarizes the main findings.

6.1 State of the Art in Mobile Network Operator
Benchmarking

Benchmarking cellular network coverage is a crucial task in ensuring that mobile
networks provide reliable and consistent service to users, particularly as demand for
high-quality connectivity increases [116, 122]. This process helps operators assess
network performance across various geographic areas, identify service gaps, and optimize
network deployment. Sampling methodologies are essential for this task, allowing
operators to gather accurate and representative data without the need for exhaustive
measurements. Traditional methods, such as drive tests, as well as newer approaches
like crowdsourcing, have been used to collect this data, each offering unique advantages
and challenges [60].

Recent advancements in sampling techniques have been driven by the growing availabil-
ity of high-quality geospatial data and the development of adaptive sampling mechanisms.
These innovations allow for more efficient and targeted data collection, enabling network
operators to focus on areas with specific performance issues or network conditions
[123, 124]. Adaptive sampling, in particular, helps improve the accuracy of coverage
assessments by adjusting in real-time to reflect changing network conditions, further
enhancing the benchmarking process.

6.1.1 Drive Tests
Drive testing is one of the most commonly used methods for benchmarking mobile
networks. In this approach, a vehicle equipped with specialized measurement equipment
travels through a designated geographic area to collect data on network performance [125].
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This method provides highly detailed and accurate data, offering direct measurements
of signal strength and quality at specific locations. However, drive testing has several
limitations. It is expensive and time-consuming, particularly when scaled to cover large
geographic areas. Additionally, challenges such as speed variability, road conditions,
and the repeatability of measurements introduce uncertainties, which can affect the
consistency and reliability of the data [126].

According to 3GPP specifications, network performance measurements are critical for
ensuring compliance with KPIs and service level agreements. For instance, 3GPP defines
methodologies for measuring radio performance, including those related to coverage
and signal strength, which are central to the drive test process [118, 119]. However,
most drive test campaigns focus on a subset of major streets, often neglecting other
important outdoor spaces such as minor streets, parks, and squares, where network
quality is equally important. As a result, the measurements are highly correlated due to
the environmental similarities along major streets, which limits the randomness of the
sampling method. This lack of randomization makes it challenging to compute reliable
and representative mean KPI values based on the restricted data, as it may not fully
reflect the variability in network performance across other areas of interest.

In railroads, these challenges are even more pronounced. Tracks pass through a
wide range of environments - from open rural areas to tunnels and complex station
infrastructure - each with distinct propagation characteristics. It is therefore essential
that drive test campaigns do not focus solely on routes with known good coverage,
as this can lead to overly optimistic assessments. Different tracks often have different
infrastructure deployments and coverage quality, and neglecting those with poorer condi-
tions risks overlooking areas where connectivity issues are most severe. Comprehensive
measurement must include stations, tunnels, and less-optimized segments to ensure
realistic and representative performance evaluations.

6.1.2 Crowdsourcing
On the other hand, mobile crowdsourcing is increasingly recognized as an effective
method for gathering network performance data from end-users through specialized
applications installed on mobile devices. This technique allows for the collection of
performance and location data across a broad geographic area, providing a more
representative picture of network conditions, particularly in areas that drive testing
may overlook. Unlike traditional drive testing, which is confined to predefined routes,
crowdsourcing leverages a distributed network of devices to sample a wider array of
environments, including residential and commercial areas that might not be adequately
represented in targeted measurement campaigns.

In many cases, mobile users can trigger a network measurement at the press of a button
through applications such as OpenSignal, Ookla, or Alladin [127–129]. This enables a
high volume of measurements to be collected in real-time, allowing for more frequent
and extensive data capture. The concept of mobile crowdsourcing was first introduced in
[130], which not only described the principle but also provided examples of its application
in various fields, including network performance monitoring, environmental sensing, and
traffic management. In [131], this concept was further developed to incorporate mobile
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computing, expanding the role of mobile devices from mere data collection points to
active processors of data, allowing for preliminary analysis directly on the device before
transmitting the results.

Despite its growing adoption, crowdsourcing presents certain challenges, particularly
in ensuring a sufficient density of measurements in the desired locations and times. The
success of a crowdsourcing initiative depends heavily on user participation, which can
be uneven across different geographic areas or time periods. As a result, researchers
have proposed various incentive models to motivate users to perform measurements in
locations where data is needed. Studies [132–138] have developed cost functions and
reward optimization strategies that encourage higher user engagement and improve
spatial and temporal coverage of measurements.

Tutela [139], a prominent crowdsourcing platform, incentivizes app developers to
integrate its Software Development Kit (SDK) into their applications. This SDK
then collects anonymized network data from end-users, enabling network operators
and researchers to monitor and evaluate real-world performance across diverse usage
scenarios. While crowdsourced data provides valuable information on network conditions,
it is important to recognize that this data can be subject to several biases. The quality of
crowdsourced data may vary based on factors such as device type, network configuration,
and user behavior. Additionally, crowdsourced data tends to have gaps in certain
locations, particularly in areas where users are less likely to engage with network
measurement apps.

The reliance on devices already in use, such as smartphones or IoT devices, can further
introduce noise into the data, which may be amplified by factors like signal interference
or variability in device performance. As discussed in [140], while crowdsourced data
offers valuable granularity, it may not always align with the high precision typically
achieved by dedicated measurement equipment in drive tests. Additionally, privacy
concerns arise when collecting large-scale data from mobile users, making it essential to
address data security and anonymization, as highlighted by [141].

In Section 7.1 we discuss the use of crowdsourced data for benchmarking in railway
scenarios as part of future work, outlining both its potential benefits and current
limitations.

6.1.3 Crowdsourcing vs. Drive Testing for Mobile Network Operator
Benchmarks

To illustrate the importance of random sampling and evaluate its effectiveness in both
crowdsourced and drive test scenarios, we analyze a simulated map (shown in Fig. 6.1a),
which depicts the received signal strength in a realistic urban network layout. The map
was generated using the Deep Learning Network Planner (DLNP), as described in [63],
with additional simulation details provided in Section A3. The goal of the analysis is to
estimate the mean signal strength over the area represented on the map. In order to
achieve this, we compare two distinct sampling approaches: one based on a targeted
drive test along a single street and the other using crowdsourcing to collect data over
the entire region. Specifically, we consider the following two sampling scenarios:
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↫ Drive test: SRS of n RSRP samples only from the marked red street in Fig. 6.1a
(red curve in Fig. 6.1b),

↫ Crowdsourcing: SRS of n samples from the entire RSRP dataset (green curve in
Fig. 6.1b)

In both cases, the population mean of all simulated RSRP values (1m × 1m tile = one
sample) acts as the ground truth. The number of random samples n (or 1m × 1m tiles
of the simulated map) is depicted on the x-axis in Fig. 6.1b.

(a) (b)

Figure 6.1: (a) Simulated outdoor RSRP map in the third Vienna district. Red
outlined street is the Landstrasser Hauptstrasse. Blue scatter points are
the BS locations. (b) MAE of the RSRP mean estimation based on SRS.

For each n, the sampling process was repeated 500 times independently to compute the
error bounds. The shaded areas in the curves represent the interval [µe − σe, µe + σe],
where µe denotes the MAE and σe refers to the Standard Deviation (SD) of the absolute
error for each sample size n.

Among the total of 567 209 available samples1 from the population, a random sample
of 200 measurements from the entire region is sufficient to estimate the mean with an
error of less than 1 dB. In contrast, focusing solely on a single major street, as might
be the case in a typical drive test campaign, results in a bias of nearly 7 dB in the
mean estimate. This bias persists even when the sample size is increased to cover all
measurements within that street. This analysis highlights that crowdsourced data is
more effective for producing accurate mean estimates compared to drive test data, which
is often biased due to its concentration on specific areas, such as street canyons. In
practical scenarios, the advantage of crowdsourcing is even more pronounced, as it can
incorporate both outdoor and indoor measurements, unlike the simulation presented
here, which omits indoor data.

1The number of samples is not rounded due to the exclusion of indoor building areas in the simulation
(only outdoor measurements were considered).
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Current state-of-the-art sampling methodologies for benchmarking cellular network
coverage offer a variety of approaches that can be tailored to the specific needs and
constraints of MNOs. The choice of methodology depends on several factors, including
the desired level of detail, the geographical scope of the study, and the available resources
for conducting measurements. Consequently, optimizing the sampling strategy to match
the unique characteristics of each propagation environment is crucial for achieving the
most reliable results. As new technologies and analytical techniques continue to evolve,
it is expected that the methodologies for cellular network benchmarking will similarly
advance and improve.

6.2 Benchmarking with Sampling Theory
In cellular network performance evaluation, it is essential to collect representative
measurements from large areas. Sampling theory provides a framework for selecting
subsets of data that allow for accurate population estimates. However, due to factors
like geographic variation and different network deployments, SRS may lead to biased
results. To address this, stratification is used to divide areas into homogeneous strata,
improving accuracy and efficiency in the sampling process.

This section explains the role of sampling theory in benchmarking, potential biases in
SRS, and how stratification helps mitigate these biases.

6.2.1 Sampling Theory and Bias in Cellular Network Benchmarking
Sampling theory is a crucial statistical framework for selecting a representative subset
of samples from a larger population to estimate parameters of the whole population.
The goal is to use a smaller sample of size n from a population of size N to make
reliable inferences about the entire population. This is particularly important in network
performance benchmarking, where acquiring measurements across a wide area is essential
but often impractical due to resource constraints.

In scenarios like cellular network measurements, where conditions vary significantly
(e.g., rural vs. urban, mobile vs. stationary, or close vs. far from the BS), the distribution
of measurements can be skewed. A common approach in such cases is SRS, where
samples are selected randomly from the population, assuming that each sample has an
equal probability of being chosen. However, this method can introduce biases if the
sample distribution does not accurately represent the diversity of the entire population.
For instance, one MNO may have more measurements in rural areas, while another
may have an over-representation in urban locations. Additionally, variations in network
deployments among different operators, such as distances from the BS, can further
distort the results.

To mitigate such biases, one approach is to limit the analysis to regions where all
MNOs have a sufficient number of users or measurements. For example, focusing on
urban areas, highways, or railways, where there is a uniform distribution of users across
different operators, can reduce the risk of bias. Another mitigation strategy involves SS,
which can improve the representativeness of the sample by addressing the heterogeneity
within the population.
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Figure 6.2: SRS of GUs in area of interest can lead to biased sample.

6.2.2 Stratified Sampling: Reduce Bias and Improve Efficiency
Stratification is a statistical technique that partitions the population into distinct,
non-overlapping groups or strata based on specific characteristics, such as geographic
location (urban vs. rural), traffic demand, or propagation conditions. These strata
should be homogeneous within themselves, meaning that the variable of interest should
exhibit low variance within each stratum. By dividing the measurement area into strata,
it is possible to achieve more precise estimates with fewer samples compared to simple
random sampling. The rationale is that, since the variance within each stratum is lower,
fewer samples are needed to achieve the same level of confidence in the mean estimate.

In the context of benchmarking different MNOs across a large-scale area, stratification
can help address distribution bias and improve accuracy. For example, instead of
randomly sampling across the entire country, the area can be divided into smaller
regions or GUs based on factors like population density, BS density, or signal quality.
Each GU is then assigned to a specific stratum, ensuring that each region is represented
proportionally to its importance in the overall analysis. Stratified sampling allows for
more targeted data collection, ensuring that areas with varying propagation conditions
are adequately represented.

Once the population is divided into strata, the next step is to determine how many
GUs should be sampled from each stratum. This can be done using either proportional
allocation or optimal allocation methods. In proportional allocation, the number of
samples taken from each stratum is proportional to the size of the stratum, while optimal
allocation adjusts the sample size based on factors such as the variance within each
stratum and the cost of measurement.

For instance, in the case of a drive test campaign, the area of interest is split into
tiles or GUs, and each tile is assigned to a specific stratum based on predefined criteria,
such as BS density or traffic demand. The measurements taken from each GU are then
averaged to compute a representative value for the entire stratum. This allows for
a more efficient use of resources by ensuring that the number of samples required to
achieve a reliable estimate is minimized.
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Figure 6.3: SS of GUs in area of interest.

Stratified sampling is also valuable for crowdsourced measurement campaigns, where
data is collected by users with mobile devices. In these cases, the measurement points may
be unevenly distributed, leading to biases if not properly accounted for. By grouping and
averaging the data based on the strata, the impact of uneven measurement distribution
can be removed, providing a more accurate map of the performance indicator.

6.3 Sampling Methodologies
This section provides a theoretical overview of two key sampling techniques - SRS and
SS - in the context of cellular network performance benchmarking, including sample
size requirements to achieve a specified level of estimation accuracy. Depending on
the use case in Section 6.5, the population samples may refer to either individual KPI
measurements or their aggregated values at the GU level.

6.3.1 Simple Random Sampling
Consider a population of size N , where each sample from the population is associated
with a value of the variable of interest y. The sample mean of that population µ and
the sample variance σ2 are calculated as:

µ = 1
N

N[︃
i=1

yi, (6.1)

and

σ2 = 1
N − 1

N[︃
i=1

(yi − µ)2. (6.2)
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By drawing n samples at random following a uniform distribution from the given
population, we can define the sample mean as:

y = 1
n

n[︃
i=1

yi, (6.3)

which is an unbiased estimator of the population mean µ [142]. Equivalently, we can
also estimate the population variance σ2, by computing the sample variance s2:

s2 = 1
n − 1

n[︃
i=1

(yi − y)2 . (6.4)

It can again be shown, that s2 is an unbiased estimator of σ2 [142].
Further, we derive expressions for the expected variance of the estimators themselves.

The variance of the population mean estimator y is given by:

var(ȳ) =
⌊︃

N − n

N

⌋︃
σ2

n
, (6.5)

and can be estimated using the following expression:

⧸︁var(ȳ) =
⌊︃

N − n

N

⌋︃
s2

n
. (6.6)

To obtain a confidence interval I for a given estimate, we select a small number α,
which denotes the probability of our population mean being outside of the confidence
interval I. Therefore, for the estimation of the sample mean y, the population mean µ
should lie in the interval I with probability 1 − α, i.e., we require that

P (µ ∈ I) = 1 − α , (6.7)

where we consider all possible samples of size n.
Under the assumption that the population mean estimates are normally distributed

under random sampling, we obtain the interval as:

I =

ȳ − t

⟩⌊︃
N − n

N

⌋︃
s2

n
, ȳ + t

⟩⌊︃
N − n

N

⌋︃
s2

n

 , (6.8)

where t denotes the upper α /2 point of the Student-t distribution with n − 1 degrees
of freedom. In nearly all practical scenarios, Eq. (6.8) holds due to the central limit
theorem. As a rule of thumb, we can replace the Student-t distribution with the standard
normal distribution whenever n > 50. For a more detailed discussion, we refer the
interested reader to [142–144].
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6.3.2 Requirements on Sample Size in Simple Random Sampling
Let θ denote a population parameter of interest, such as the population mean, and let θ̂
be an estimator of θ. Given a basic understanding of SRS, a natural question arises:
What sample size n is required to achieve a specified level of estimation accuracy?

We define a maximum allowable error d, either in absolute or relative terms, between
the estimator and the true parameter value. Furthermore, we allow for a small probability
α that the estimation error exceeds this threshold. Specifically, the probabilities that
the absolute or relative error surpasses d are constrained to be less than α, formally
expressed as:

α >

P
}︃
|θ̂ − θ| > d

⟨
for absolute error,

P
}︃
|θ̂ − θ| > d|θ|

⟨
for relative error.

(6.9)

Under the assumption of an unbiased normally distributed estimator, the distribution
of error normalized by the square root of estimator variance:

θ̂ − θ⎢
var(θ̂)

(6.10)

approaches a standard normal distribution for large n. This allows us to reformulate
the inequalities from Eq. (6.9) into Eq. (6.11), by introducing z as the upper α /2 point
of the standard normal distribution:

P

 |θ̂ − θ|⎢
var(θ̂)

> z

 = P

⌊︃
|θ̂ − θ| > z

⎢
var(θ̂)

⌋︃
= α . (6.11)

For the case of the population mean estimator under SRS, we have θ = µ and θ̂ = y,
we thus need to solve:

z
⎢

var (y) =
⧸︃

d for absolute error,
d|µ| for relative error,

(6.12)

with the variance of our population mean estimator specified in Eq. (6.5). Solving
Eq. (6.12) for n gives us:

n = 1
1/n0 + 1/N

:= nsrs, (6.13)

with

n0 =
⧸︃

z2σ2

d2 for absolute error,
z2σ2

d2µ2 for relative error,
(6.14)

for absolute and relative error respectively. To distinguish n in SRS from n in Sec-
tion 6.3.4, we denote it as nsrs.

Note, that the main challenge in this setup is the selection of the population variance
σ2, which has to be done beforehand.
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6.3.3 Stratified Sampling
Now we consider a heterogeneous population, which we split into a total of L groups
or strata, such that the samples in each individual stratum are as similar as possible.
We denote the number of population samples per stratum h as Nh, such that the total
number of samples in the population is given by:

N =
L[︃

h=1
Nh. (6.15)

Equivalently, we define nh, as the number of randomly drawn samples from stratum h.
Then the total number of drawn samples is given by:

n =
L[︃

h=1
nh. (6.16)

Further, we introduce the mean in a stratum h as µh:

µh = 1
Nh

Nh[︃
i=1

yi. (6.17)

Depending on our use case, yi represents either the KPI of interest in the ith GU or the
ith KPI measurement sample.

By summarizing the estimates for the individual strata we can derive an unbiased
estimator of the population mean µ. We denote this estimate as the stratified sample
mean yst, that is given by:

ȳst = 1
N

L[︃
h=1

Nhȳh. (6.18)

Note, that Eq. (6.18) assumes SRS estimates yh for each stratum.
The variance of the estimator in Eq. (6.18) is given by:

var (ȳst) =
L[︃

h=1

⌊︃
Nh

N

⌋︃2 ⌊︃
Nh − nh

Nh

⌋︃
σ2

h

nh
. (6.19)

The corresponding estimator of this variance can be derived by replacing the population
variance σ2 with the sample variance s2 for each stratum:

⧸︁var (ȳst) =
L[︃

h=1

⌊︃
Nh

N

⌋︃2 ⌊︃
Nh − nh

Nh

⌋︃
s2

h

nh
. (6.20)

Given the total number of samples to be drawn n, we need to specify how to allocate
these samples across different strata. In the following, we distinguish between two
different types of allocation:
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1. Proportional Allocation
If the strata differ in size, the proportional allocation could be used to maintain a
steady sampling fraction throughout the population. Here, we simply select the
number of samples in accordance with the overall units Nh per stratum such that:

nh = nNh

N
. (6.21)

2. Optimal Allocation
Optimal allocation results in the population mean estimate with the lowest variance
for a fixed total number of samples n. Here, we have for the number of samples
per stratum h:

nh = nNhσh⎭L
k=1 Nkσk

. (6.22)

For this, we again have to estimate the stratum variances σ2
h in advance. Typically,

this is done with past data.

6.3.4 Requirements on Sample Size in Stratified Sampling
As in SRS, we begin by specifying a maximum allowable error d between the estimator
and the true value, while permitting a small probability α that this error exceeds the
threshold. When estimating the stratified sample mean µst, this corresponds to requiring
that the population mean µ lies within a confidence interval I with probability 1 − α,
i.e., we require that:

P(µ ∈ I) = 1 − α , (6.23)

where we consider all possible samples of size n.
Assuming yst to be normally distributed, using the central limit theorem the confidence
interval can be constructed as follows:

I =
⎨
yst − z

⎢
var (yst), yst + z

⎢
var (yst)

⎬
, (6.24)

where z is the upper α /2 point of the standard normal distribution. For a more detailed
discussion, we refer the interested reader to [143, 144].
Following the same approach as in Eqs. (6.9) and (6.10) we can derive the required
sample size for fixed choices of d and α. W.l.o.g. we define dabs := d and drel := d|µ|,
and solve for dX = z ·⧹︃

var (yst), where dX denotes either dabs or drel. Thereby, we insert
the expression for variance from Eq. (6.19) and corresponding allocation according to
Eqs. (6.21) and (6.22), to get for:
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1. Proportional Allocation

d2
X

z2 N2 +
L[︃

h=1
Nhσ2

h =
L[︃

h=1

N2
hσ2

h

nh

= 1
n

·
L[︃

h=1
Nhσ2

hN .

(6.25)

Hence, the required number n to achieve the error bound d with probability 1 − α
using proportional allocation is given by:

n =
⎭L

h=1 Nhσ2
hN

d2
X

z2 N2 + ⎭L
h=1 Nhσ2

h

:= nprop. (6.26)

2. Optimal Allocation

d2
X

z2 N2 =
L[︃

h=1
N2

h

⌊︃
Nh − nh

Nh

⌋︃
σ2

h

nh

=
L[︃

h=1

N2
hσ2

h

nh
−

L[︃
h=1

Nhσ2
h,

d2
X

z2 N2 +
L[︃

h=1
Nhσ2

h =
L[︃

h=1

N2
hσ2

h

nh

= 1
n

·
L[︃

h=1
Nhσh ·

)︃
L[︃

k=1
Nkσk

]︃

= 1
n

·
)︃

L[︃
h=1

Nhσh

]︃2

.

(6.27)

Hence, the required number n to achieve the error bound d with probability 1 − α
using optimal allocation is given by:

n =

}︃⎭L
h=1 Nhσh

⟨2

d2
X

z2 N2 + ⎭L
h=1 Nhσ2

h

:= nopt. (6.28)

Finally, by substituting dX with dabs or drel in Eqs. (6.26) and (6.28), depending on
the error measure in question, the number of samples (nprop, nopt) required to remain
below the given error bound is calculated. As was the case in SRS, the main challenge
in stratification setup is the selection of the strata variances σ2

h, which has to be done
beforehand. The main advantage of SS is that it typically requires a smaller sample
size n to achieve the same error bound compared to SRS. This allows MNOs to obtain
accurate estimates of overall network quality using fewer GUs or measurement samples.
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In the following section, we analyze how the strata means, variances, and sizes affect the
performance of SRS, SS with proportional allocation, and SS with optimal allocation.

6.4 Sampling of Simulated Data Set
Three parameters influence the sampling performance with respect to the given error
bound d:

• strata means µh,
• strata variances σ2

h, and
• strata sizes Nh,

where h = 1, 2, . . . , L.
To determine the required number of samples in regions that have not yet been

measured, we must estimate variances based on similar previously measured areas. This
represents a key challenge, as calculating the required sample size in advance depends
on information we typically only obtain after measurements are conducted. While
Section 6.5 distinguishes between the use cases where each sample corresponds either to
a single measurement or to the measurement average within a single GU, the general
simulation results presented in this section are applicable to both.

Despite this challenge, we can investigate how sampling parameters influence esti-
mation accuracy by simulating artificial datasets under controlled conditions. Each
artificial sample may represent either a single measurement or a GU average, depending
on the later application. The simulation-based approach allows us to quantify how
strata means, variances, and sizes affect the required number of samples in different
sampling schemes.

In Sections 6.4.1 and 6.4.2, we examine the impact of these parameters on sampling
performance by analyzing a general use case and two boundary special cases to gain a
comprehensive understanding of their influence.

6.4.1 Sampling Performance: General Use Case
Using a set of parameters S = {µh, σh, Nh} we generate an artificial stratified dataset,
by drawing samples from a normal distribution with mean µh and standard deviation σh

of size Nh for each stratum, finally combining these strata into a full artificial dataset.
Various statistical distributions can be employed in generating the artificial dataset,
e.g., Student-T, Gumball, and even multi-modal Gaussian, provided that the resulting
sample mean is sufficiently close to a normal distribution to justify the use of standard
statistical inference techniques.

W.l.o.g., we show the results simulated using normal distribution. The simulation
parameters we used for generating an artificial RSRP dataset consisting of two strata
are provided in Table 6.1 (General Use Case). Next, we choose α = 0.05 and generate a
range for acceptable sampling error d, which is represented on the x-axis of Fig. 6.4.
For each of the d-values, we use Eqs. (6.13), (6.26) and (6.28) to calculate the required
number of samples for each sampling method (solid curves in Fig. 6.4). Thereby we
assume perfect knowledge of Nh and σh for both strata - something we will need to
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Table 6.1: Simulation parameters for the three use cases shown in Fig. 6.4, listed in
the same order. σ denotes the SD, i.e., the square root of the variance.

Stratum 1 (S1) Stratum 2 (S2)

General Use Case
µ1 = −110 dBm µ2 = −85 dBm
σ1 = 15 dBm σ2 = 5 dBm
N1 = 8 000 N2 = 5 000

Equal Strata Variances
µ1 = −110 dBm µ2 = −85 dBm
σ1 = 10 dBm σ2 = 10 dBm
N1 = 8 000 N2 = 5 000

Equal Strata Means and Sizes
µ1 = −95 dBm µ2 = −95 dBm
σ1 = 15 dBm σ2 = 5 dBm
N1 = 6 500 N2 = 6 500

estimate for real-world data. For proportional and optimal SS we further use Eqs. (6.21)
and (6.22) respectively, to calculate the number of samples required in each stratum
(dashed curves in Fig. 6.4). Horizontal dashed lines illustrate Nh - the population
total for each stratum. Considering Fig. 6.4a, assume we want to predict the mean
value of the simulated RSRP dataset. If we are willing to accept that the absolute
error between the mean estimate (calculated from the sample) and the population
mean is in 95% of the cases (1 − α) below d = 10−1, then we require nsrs ≈ 11 800
samples (≈ 90%) using the SRS method. On the other hand, using the proportional
stratification method, this number reduces to nprop ≈ 10 600 (≈ 80%), while the optimal
stratification method requires only nopt ≈ 9 000 (less than 70%) samples in total (solid
lines in Fig. 6.4a). While in proportional stratification the number of samples in each
stratum proportionally rises until reaching its boundary at respective Nh (red dashed
curves), the optimal scheme exploits the knowledge of strata variances.

For lower strata variance, fewer samples are required for accurate stratum mean
estimation (S2 SS opt curve in Fig. 6.4a). However, if the variance in a stratum is too
high, the algorithm would require more samples than we have available (S1 SS opt curve
overshoots the N1 level). This might represent a problem if we are, for instance, trying
to determine how many tiles need to be measured in the area of interest, as we cannot
simply introduce more tiles in that area. However, if we are determining the number of
required measurements, we merely would have to measure more in those areas where
the variance is high. The dotted part of the nopt (total SS opt curve in Fig. 6.4a) curve
symbolizes the overshot of one of the stratum curves.

For verifying that under SRS of nh samples in each stratum, we truly remain under
set estimate error level d in (1−α)100% of the cases, we apply the verification algorithm
provided in Section A5.
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6.4.2 Special Cases
To assess under which conditions the added complexity of SS is justified, and when SRS
remains preferable, we consider the following specific scenarios.

Scenario I: Equal Variances Let us assume all strata variances are equal, i.e., the
SD are equal:

σ1 = σ2 = · · · = σL := σs, (6.29)

then we can simplify Eqs. (6.26) and (6.28) to:

nprop =
⎭L

h=1 Nhσ2
hN

d2
X

z2 N2 + ⎭L
h=1 Nhσ2

h

= N σ2
s

⎭L
h=1 Nh

d2
X

z2 N2 + σ2
s

⎭L
h=1 Nh

= σ2
sN2

d2
X

z2 N2 + σ2
sN

,

(6.30)

nopt =

}︃⎭L
h=1 Nhσh

⟨2

d2
X

z2 N2 + ⎭L
h=1 Nhσ2

h

=
σ2

s

}︃⎭L
h=1 Nh

⟨2

d2
X

z2 N2 + σ2
s

⎭L
h=1 Nh

= σ2
sN2

d2
X

z2 N2 + σ2
sN

.

(6.31)

From Eqs. (6.30) and (6.31), we notice that nprop and nopt are equal as long as there
is no difference in variance among strata. This is also supported by the results of our
simulations, as illustrated in Fig. 6.4b and based on the simulation parameters outlined
in Table 6.1 (equal strata variances). In this simulation, two strata were used, each
characterized by different means and sizes, but identical variances. The maximum
number of available samples per stratum - i.e., the upper sampling limit - is indicated
by horizontal dashed lines. The plotted curves show the number of samples required
to remain within a specified absolute error bound d. In situations where the variances
of the strata are identical, the nprop and nopt curves coincide, and both outperform
the SRS approach. Thus, when the variances of all strata are equal, the use of an
optimal allocation scheme - which is computationally more demanding than proportional
allocation - is not beneficial. However, employing stratification in cases where the strata
means and sizes differ surpasses the simple SRS approach.

Scenario II: Equal Means and Sizes
Let us now assume that strata variances are not equal, but strata means and strata
sizes are, i.e.,

µ1 = µ2 = · · · = µL, (6.32)

N1 = N2 = · · · = NL = N

L
. (6.33)
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By substituting Eq. (6.33) into Eq. (6.26) we get:

nprop =
⎭L

h=1 Nhσ2
hN

d2
X

z2 N2 + ⎭L
h=1 Nhσ2

h

=
⎭L

h=1
N
L N σ2

h

d2
X

z2 N2 + N
L

⎭L
h=1 σ2

h

= 1
d2

X
z2

L⎭L

h=1 σ2
h

+ 1
N

.

(6.34)

Since the means µh and strata sizes Nh are equal, we can prove that under the assumption
of large Nh, the averaged variances of different strata will amount to the variance of the
entire combined sample (see Appendix A4), i.e.:

σ2 =
⎭L

h=1 σ2
h

L
. (6.35)

By inserting Eq. (6.35) into Eq. (6.34) the SRS result from Eq. (6.13) is again obtained:

nprop = 1
d2

X
z2σ2 + 1

N

= nsrs. (6.36)

It follows that the proportional stratification provides no benefit to SRS in cases where
the means and sizes of strata are identical. Hence, in such a scenario, proportional
stratification is unnecessary as it does not improve estimate accuracy while only bringing
higher computational costs. The optimal allocation remains the only viable option that
can bring further improvement, as it still depends on different strata variances.

This behavior is also noticed in our simulation results in Fig. 6.4c with two strata
S1 and S2. Simulation parameters are given in Table 6.1 (Equal Strata Means and
Sizes). Here, the nsrs and nprop curves overlap. However, nopt outperforms them both
as it requires fewer samples in total to achieve the same estimate. The dotted part of
nopt, where d < 10−1, results from high variance in strata S2. The optimal scheme here
requires more sampled segments than we have available in that strata, making such
sampling unfeasible. However, for d > 10−1 the performance of the optimal scheme is
better than the proportional one. Thus, depending on the mean estimate error d we are
willing to accept, we can use simulations to choose the sampling scheme for a specific
use case at hand.

If we additionally assume equal variances across all strata (Table 6.1 (Equal Variances),
the sampling methods - SRS, SS with optimal allocation, and SS with proportional
allocation - can be reduced to a common formulation. In this special case, all three
approaches yield equivalent performance in terms of error bounds. However, they still
differ in terms of implementation complexity. Given this, it is generally advisable to
select the simplest method, namely SRS.
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(a)

(b)

(c)

Figure 6.4: Simulation results for two strata (S1 and S2): (a) General Use Case, (b)
Equal Variances, and (c) Equal Means and Sizes. Simulation parameters
are given in Table 6.1. N1 and N2 are the total samples in each stratum,
with N1 + N2 = N as the total. Curves and vertical lines are normalized
by N to show n/N as a fraction.

102



6.5 Sampling the Crowdsourced Data Set

6.5 Sampling the Crowdsourced Data Set
This section demonstrates the practical applicability of the proposed sampling method-
ologies by applying them to a real-world crowdsourced MDT dataset. Section 6.5.1
provides an overview of the dataset and its characteristics. In Sections 6.5.2 and 6.5.3, we
evaluate and compare the sampling methods at both the individual measurement level
and the GU level, respectively. Our results demonstrate how the methods perform under
real network conditions and validate their effectiveness beyond synthetic simulations.

6.5.1 Crowdsourced Data Set
We evaluated the sampling methods on real-world data using MDT datasets from a
live LTE network provided by a major Austrian MNO, offering extensive coverage
and spatial diversity. The sampling algorithms were applied directly to the data in a
secure, on-premise environment, ensuring that all data remained within the operator’s
infrastructure in compliance with data protection requirements. The first dataset
contains only measurements in the city of Vienna, Austria, consisting of a total of
10 000 000 samples. The second dataset contains 10 000 000 samples in the entire country
of Austria in the same network. Features of both datasets are summarized in Tables 6.2
to 6.4.

Both datasets contain only measurements from the UEs connected to LTE macro
BSs in the area of interest. Before applying sampling algorithms, we first clean up the
data, by removing all measurements with erroneous or inaccurate attributes. To this
end, we apply the following data processing:

• Using the reported GPS location, we filter out points outside the area of interest,
even if they are connected to a BS within it. Since our goal is to estimate the
mean KPI within a specific region, we apply geographic filtering based on city
and country boundaries, respectively.

• Next, we filter out all points where the in meters reported Timing Advance (TA)
is smaller than the calculated LOS Euclidean distance to the BS. TA corresponds
to the time a signal takes to reach the BS from a mobile phone. The BS can
use precise arrival time to determine the distance to the UE [145]. Since it is
physically impossible for the TA values to be smaller than the minimum LOS
distance, we exclude such measurement points from our datasets. For calculating
the distance to the serving BS, we use Cellular Network DT.

• Since the operator’s indoor/outdoor classification relies on GPS accuracy, we
exclude measurements with high positional uncertainty by filtering out those with
a reported GPS uncertainty greater than 45 m.

• Finally, we split the datasets by frequency band to account for the differing
propagation characteristics across bands.

To test and compare different sampling methodologies on each of the MDT datasets,
we have to split the data into statistically meaningful strata. Our goal is to obtain
an accurate mean RSRP estimate with a minimum number of measurements and/or a
minimum number of GUs used for the mean estimate calculation in each method. We
investigate both alternatives in the following sections.
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Table 6.2: Overview of Vienna and Austria MDT datasets.

Vienna Austria
Frequency [MHz] 800/1800/2600 800/1800/2600
Duration [days] 8 3
Area [km2] 414 83 871
Total Samples 10 000 000 10 000 000
Filtered Samples 5 771 426 4 592 394
BS type Macro cells Macro cells
Number of Cells 693 3 468

Table 6.3: Austria, RSRP statistics per frequency band.

800 MHz 1800 MHz 2600 MHz
RSRP Mean −98.66 dBm −94.96 dBm −95.48 dBm
RSRP SD 12.33 dBm 10.95 dBm 11.29 dBm
Measurement Count 1 476 179 2 560 008 556 207

Table 6.4: Vienna, RSRP statistics per frequency band.

800 MHz 1800 MHz 2600 MHz
RSRP mean −96.77 dBm −93.88 dBm −96.21 dBm
RSRP SD 11.85 dBm 10.87 dBm 10.73 dBm
Measurement Count 1 100 826 3 546 656 1 123 944

6.5.2 Required Number of Measurements
In a real-world context, effectively leveraging the benefits of stratification necessitates
identifying the specific conditions that strongly influence the reported KPI values. To
achieve a suitable separation of strata, it is important to base the split on the statistical
characteristics of the KPI in question. For the case of RSRP, one possible approach
is splitting the data into groups based on factors such as radio conditions, position,
and motion of the UE, since the reported value correlates with these parameters. The
resulting groups exhibit distinctive RSRP statistics with different means and smaller
standard variations when compared to the full dataset. On the other hand, for other
KPIs such as reported T value, the relevant parameters for the stratification split
decision are expected to be user tariffs, available bandwidth, and CL. If there is no prior
knowledge regarding the statistics and dependencies of the KPI, clustering methods
can be employed to identify underlying correlations in the dataset and determine the
groups or strata. In a practical realization, the split can be based on the various regions
of interest (e.g. tunnels, stadiums, stations, industry sites, rural and urban areas) that
share common propagation conditions.
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(a) Austria (b) Vienna, Austria

Figure 6.5: Filtered MDT measurement datasets of a large MNO in Austria. In the
map on the left, the red square marks the city of Vienna. Different colors
represent TrueCall Netscouts’ radio condition-dependent environment
classification, with the following categories: Indoor, Mobile, and Outdoor
Stationary. We use these classes as three separate strata in the following.

Figure 6.6: RSRP distribution per environment and dataset in 1800 MHz frequency
band. Marked green points represent the mean RSRP values. Strata
tendencies observed in the 800 and 2600 MHz bands are similar.

Figure 6.7: Speed profile per environment strata and dataset for all three frequency
bands combined.

Fig. 6.5 depicts the filtered measurement datasets. Classification to Indoor, Mobile,
and Outdoor Stationary measurements is provided by the operator and is based on radio
conditions at the time of the measurement, as well as the GPS details. We use this
classification to separate our measurement datasets into three corresponding groups
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or strata. Figs. 6.6 and 6.7 provide more detailed characteristics of the measurement
datasets in the form of boxenplots [146]. Since we are only considering UEs connected
to LTE macro BS, the lowest mean RSRP value is observed in the Indoor scenario, due
to high BPL [147, 148]. In the Mobile scenario, UEs frequently undergo BS handovers,
along with numerous PCI changes, especially near cell edges where signal quality is
lower. Conversely, the Outdoor Stationary case provides the best signal quality, as it
avoids handovers and BPL. This trend is visible in Fig. 6.6 for both Austria and Vienna
datasets, where indicated values represent the mean in the particular stratum. The
speed profiles in Fig. 6.7 further illustrate that only Mobile stratum has average speeds
higher than 5 km/h, with few outliers in both static strata. We can also notice the
speed difference between the country and city dataset, with the city (right) having lower
average speeds compared to the country (left) as expected.

We use these three strata, to calculate how many measurements from each group
and in total are required to achieve a mean RSRP estimate with an error below level
d in over 95% of the cases (α = 0.05). The statistics of each stratum are provided in
Tables 6.5 and 6.6.

Fig. 6.8 shows the comparison between different sampling methods. The x-axis
represents the acceptable error d, while the y-axis indicates how many measurements
are required per strata (dashed) and in total (solid curves) to achieve the mean RSRP
estimate under the error bound d with 95% accuracy. Notice that in Tables 6.5 and 6.6
for both datasets, the Mobile stratum has the highest SD. Therefore, to achieve the
estimation error of less than 10−2 dB we require more samples than we have available in
that stratum in our crowdsourced datasets, which is why we have an overshoot over N2
level in both cases for optimal allocation scheme. On the other hand, the Indoor stratum
has the lowest SD in both datasets. Therefore, the optimal scheme does not require all
available Indoor measurements for any requested estimation error level and remains
well below the N1 level. On the total (solid lines), proportional (red) and optimal (blue)
allocation schemes performed almost identically since the difference among the SD levels
in all three strata was much smaller compared to our simulated dataset in Section 6.4.
However, both stratification schemes outperform the SRS (green). Considering that the
performances of proportional SS and SRS would overlap for equal strata means and
sizes, we notice that this difference originates in the discrepancy among different strata
means. However, since their discrepancy is not as high as in the simulated scenario,
we see only a minor advantage to SRS, which is valid for both city and country levels.
Note, however, by finding an even better-suited strata split, than the one the operator
is providing, the strata mean differences may increase, such that stratification schemes
show a higher advantage to SRS than the one we are currently seeing. The findings
demonstrate that, in the present configuration, obtaining a mean RSRP estimate with a
mean absolute estimation error lower than 10−2 dB requires the utilization of 50-65% of
the available measurements in both datasets. The specified threshold for mean absolute
estimation error of 10−2 dB was chosen as an indication of a substantially high degree
of accuracy in the RSRP estimation.
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Figure 6.8: Required fraction of samples n plotted over acceptable estimation error
d for different sampling schemes in Austria (top) and Vienna (bottom)
dataset (1800 MHz), based on radio-condition and speed-dependent strata
split. All curves are normalized by N .
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Table 6.5: Strata RSRP statistics for Austria dataset in the 1800 MHz band.

Austria Data Set in 1800 MHz Frequency Band
Indoor Mobile Outdoor Stationary
µ1 = −103.5 dBm µ2 = −95.76 dBm µ3 = −91.28 dBm
σ1 = 6.87 dBm σ2 = 11.49 dBm σ3 = 9.82 dBm
N1 = 442 864 N2 = 884 781 N3 = 1 232 363

Table 6.6: Strata RSRP statistics for Vienna dataset in the 1800 MHz band.

Vienna Data Set in 1800 MHz Frequency Band
Indoor Mobile Outdoor Stationary
µ1 = −102.35 dBm µ2 = −94.02 dBm µ3 = −88.71 dBm
σ1 = 6.99 dBm σ2 = 11.12 dBm σ3 = 9.25 dBm
N1 = 885 728 N2 = 1 180 224 N3 = 1 480 704

6.5.3 Required Number of Geographical Units
Given a measurement dataset, whether it is crowdsourced, drive- or train-test data, it
often happens that measurements get accumulated in certain areas, and are infrequent
in others. For illustration, a driving train in an ongoing measurement campaign makes
longer stops at train stations, while on some parts of the tracks, it reaches speeds of
250 km/h. Under such conditions measurement dataset gets very confounded in time
[126]. To solve this problem, we can bin the measurement data into GUs, take the
average, and get representative KPI values per train length, independent of the train
speed [13]. To remove measurement bias created by having more measurements in
very crowded areas, compared to very few measurements in suburban/rural regions, we
can apply the same binning strategy with crowdsourced data and then work with GU
averages instead of the measurement samples.

Stratification sampling can also be used to determine which environment types and
in what amount should be covered in a measurement campaign. For instance, rural and
urban regions have different BS deployments, in terms of BS density, propagation loss,
and LOS connectivity. This fact is particularly relevant in developing countries, where
the population is more concentrated in rural areas despite poorer BS deployment [149].
To have a better understanding of the overall network quality in such conditions, and
to be able to plan a measurement campaign more efficiently, we can split the area of
interest, e.g. country, into fixed-sized GUs, and assign rural or urban property (strata)
to each. With an estimate of the KPI SD in each stratum, we can determine how many
GUs of each stratum we should cover to gain an accurate KPI benchmark.

We test sampling techniques on a GU-level, and we only take a look at a single dataset
- Austria. To reduce the influence of the BPL we split the data into Indoor and Outdoor
datasets and look at these scenarios separately. By splitting the entire country area
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Table 6.7: Strata RSRP statistics for Austria Outdoor (left) and Austria Indoor (right)
dataset in the 1800 MHz frequency band.

Austria Outdoor (1800 MHz) Austria Indoor (1800 MHz)
S1(BS-sparse GUs) S2(BS-dense GUs) S1(BS-sparse GUs) S2(BS-dense GUs)
µ1 = −102.75 dBm µ2 = −96.49 dBm µ1 = −109.29 dBm µ2 = −105.11 dBm
σ1 = 9.41 dBm σ2 = 7.79 dBm σ1 = 6.62 dBm σ2 = 5.10 dBm
N1 = 23 102 N2 = 7 778 N1 = 5 791 N2 = 5 177

Figure 6.9: Filtered MDT measurement dataset of a large MNO in Austria. Different
colors represent measurement classification based on the BS-density in a
2 km radius of the measurement GU. BS-dense deployments in red overlap
with larger cities in Austria (denoted by black squares), while the blue
corresponds to more suburban and rural areas.

into, e.g. 500 m × 500 m large, GUs, we can determine how many of them need to be
taken into account for an accurate mean RSRP estimation.

Since we do not have a clear rural/urban area split in Austria, we use the macro
BS locations in Austria (provided by the operator), to determine how many BSs are
in a 2 km radius of each GU. If more than 50 BSs are found in the radius, then the
GU is classified as urban or BS-dense, otherwise, we classify it as rural or BS-sparse.
Measurements are then mapped to their belonging GU and thus to their corresponding
stratum - Fig. 6.9 depicts the mapping of the outdoor measurement dataset. Notice
that the red BS-dense areas overlap with larger cities in Austria, e.g. Vienna, Graz,
Linz, Salzburg, Innsbruck.

All crowdsourced data are then binned by their GUs and the mean for each GU is
calculated. These GU averages represent our population ground truth in the following
sampling schemes. Table 6.7 presents the RSRP GU statistics in the 1800 MHz band.
The statistics show as expected, that indoor and outdoor measurements have ≈ 7 dB
discrepancy, while the strata alone in each dataset, show a difference of 4 to 6 dB.
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Figure 6.10: Required fraction of GUs n plotted over acceptable estimation error d for
different sampling schemes in Austria Outdoor (top) and Indoor (bottom)
dataset (1800 MHz), based on BS-density strata split. All curves are
normalized by N .

In the Outdoor scenario, we have predominantly BS-sparse GUs, while in the Indoor
scenario number of BS-sparse and BS-dense GUs is in the same order of magnitude.
This indicates, that many GUs in Austria are missing Indoor measurements in the
crowdsourced data. If we look at the performance comparison between applied sampling
strategies in Fig. 6.10, we can hardly notice a difference in the performance of the three
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sampling methods. This is the case due to the very small SD difference among the strata,
as well as insufficient mean discrepancies. This testifies to the fact that the coverage
of the operator in question is as good in rural areas as it is in urban, as separating
the dataset into strata brings almost no advantage. Due to its higher variance, the
BS-sparse stratum (S1) experiences an overshoot of the N1 level when approaching the
10−2 dB error bound in both datasets.

To achieve a mean estimation error below 10−1,dB in 95% of cases - regardless of the
sampling method - approximately 50% (15 440 GUs) of the currently measured GUs in
Austria need to be covered in the Outdoor scenario. Similarly, in the Indoor scenario,
we would need to cover around 55% (6 032 GUs) of the currently measurement-covered
GUs to achieve the same level of accuracy.

6.6 Conclusion
Accurate estimation of KPIs in mobile networks is critical for improving network
performance and customer satisfaction. Sampling methods can be used to estimate
KPIs with an acceptable error level while minimizing the number of measurements
required. In this chapter, we investigated the behavior of three sampling methods for
accurate KPI mean estimation in mobile networks: SRS, SS with proportional allocation,
and SS with optimal allocation.

To understand the conditions under which stratification is most beneficial, we evaluated
the performance of different sampling methods on both synthetic and real-world data,
focusing on scenarios relevant to cellular network measurements. We then analyzed the
same sampling methods on two MDT crowdsourced datasets from a major Austrian
operator. To test and compare different sampling methods on both MDT datasets, we
stratified the data into meaningful strata to obtain an accurate mean RSRP estimate
with a minimum number of measurements and/or a minimum number of GUs used for
mean estimate calculations in each method. The analysis revealed that the first strata
split, based on the GPS position, speed, and radio channel conditions, offered a subtle
advantage of the SS methods over the SRS method. All three approaches resulted in
between 50 and 65% of the total measurements being required to remain below a mean
absolute estimation error of 0.01 dB in both datasets.

We further binned the data into equally sized GUs, removing the confounding by
determining a single representative KPI value for each GU. Using BS-density-based
stratification, we determined how many rural and urban GUs are required for accurate
mean prediction. Again, we compared three sampling techniques while using calculated
mean GU KPI values as our population ground truth. The analysis revealed that
we would have to cover around 50% of the GUs to remain below a mean absolute
estimation error of 0.1 dB. Stratification provided a minimal advantage to SRS due to
the comparable coverage of this operator in rural and urban regions in Austria, with
minor differences in mean and SD among these two strata.

While stratification provided only limited gains in real-world datasets for RSRP mean
estimation, we can utilize these methods to determine how many samples or areas are
required for determining the mean of any KPI in the network. For instance, considering
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T and CL, possibly more distinct strata can be found to utilize stratification to its full
benefit. The results presented in this chapter provide practical guidelines for network
operators seeking to balance measurement effort with accuracy in KPI estimation. By
leveraging SS, operators can determine the required number of measurements and
measurement areas needed for reliable benchmarking, while minimizing costs and time.
Across both theoretical derivations and simulation results, we observed that the required
sample size is primarily driven by the variance - either of the full population (in
the case of SRS) or the individual stratum variances (in SS). Additionally, SS offers
clear advantages over SRS when there are substantial differences in the means across
strata. However, in scenarios where strata are similar in both variance and mean,
this advantage diminishes, and SRS becomes a more practical and equally effective
approach. Moreover, the strata-specific variance values derived from real-world MDT
data can serve as initialization parameters for future studies or optimization frameworks
employing similar methodologies.

These measurement strategies can be directly transferred to railway scenarios, where
measurement resources are often constrained, and coverage variability is high due to
terrain, tunnels, and heterogeneous antenna deployments. In such use cases, fixed-length
track segments (e.g., 100 m) would serve as the fundamental GUs, and stratification can
naturally be applied across environmental classes such as rural open tracks, urban areas,
tunnels, or stations. Although large-scale MDT-like data from railway operators was
not available during this study, the simulation framework and theoretical derivations in
Sections 6.3 - 6.4 remain entirely valid and can guide railway-specific campaign design.
Thus, this chapter not only evaluates sampling approaches on existing crowdsourced
data, but also provides a scalable strategy for future railway connectivity benchmarking
efforts.
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Chapter 7

Future Research Directions
Modern trains are no longer just vehicles - they are digital platforms on wheels, hosting
a multitude of onboard services that go far beyond critical railway operations. Applica-
tions such as real-time video surveillance, passenger counting, infotainment, predictive
maintenance, and energy monitoring all rely on continuous, high-quality wireless connec-
tivity. These non-critical, yet essential services demand consistent network performance
throughout the journey, particularly as passengers and operators increasingly expect
seamless digital experiences on the move.

Extending on findings and methodologies established in this research, future work
should focus on:

• Crowdsourced Data Exploitation: Enhancing the established benchmarking
framework by incorporating crowdsourced MDT data to continuously validate
and refine network performance predictions and optimization strategies.

• Integration with FRMCS: Further studies should evaluate the proposed
methodologies and frameworks in the context of FRMCS deployments, lever-
aging advanced 5G and beyond technologies to fully digitalize railway operations
and enhance connectivity robustness.

• Holistic DT Expansion: Further integrating various DT components - including
predictive analytics, real-time monitoring, and extensive scenario simulations -
to create an even more comprehensive, scalable tool for network performance
management.

In the following sections, a brief discussion is provided on the implications of crowd-
sourced MDT data exploitation and the integration with FRMCS, as these are areas
for future development and open challenges.

7.1 Railway Digital Twins Enabled by Crowdsourcing
Data-driven methods are becoming essential for cellular network optimization, enabling
efficient performance evaluation. Crowdsourced data - particularly MDT - plays a central
role in this shift, replacing traditional drive tests in several applications such as coverage
validation, operator benchmarking, and spatiotemporal performance analysis [17, 150].
MDT provides structured access to user- and network-level measurements across idle
and connected states [151], offering a cost-effective alternative to manual drive testing.
However, it comes with challenges: reporting frequency varies greatly due to device and
contextual factors, and GPS inaccuracies in typical UEs are especially pronounced on
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Figure 7.1: Visualization of the Vienna-Bregenz measurement track, showing the full
route and a detailed view of intersecting Statistics Austria GUs [61]

trains due to movement, tunnels, train structure, and visibility constraints. This leads
to scattered data that hinders track-aligned performance evaluations.

We propose a methodology to classify MDT data as either in-train or out-of-train
using user-level speed and spatial movement across Statistics Austria’s 100 m × 100 m
GUs. Each measurement m includes a timestamp, anonymized UE ID, coordinates,
speed, and network KPIs. A sample is labeled as in-train if the user has a median daily
speed above 10 km/h and appears in at least five unique GUs along the track:

C(m) =
⧸︃

in-train, if v̄u > 10 km/h and GUu ≥ 5,

out-of-train, otherwise.
(7.1)

We applied this filtering to MDT data collected over a month along the Vienna-Bregenz
train track. Although the raw dataset typically showed less than five GUs per user
across the month, the classified in-train subset achieved around 14 GUs per user, offering
improved coverage. However, this is still too sparse to track individual train journeys
or evaluate performance per train type - highlighting the current limitation in MDT
data granularity for benchmarking specific onboard configurations. Nevertheless, such
crowdsourced datasets lay the groundwork for future train-specific DT models, where
statistical movement, connectivity patterns, and onboard experience could be inferred
without active measurement campaigns.

Fig. 7.2 shows a side-by-side comparison between MDT and controlled drive-test
data collected on the same route. The drive test, sampled every 500,ms, captures
detailed spatial variations, whereas MDT sampling - affected by device type, network
conditions, and battery status - occurs at irregular intervals with a median of 60 s, during
which the train may travel several kilometers. This results in sparse measurements and
lower spatial resolution. Despite this, signal strength distributions (Fig. 7.3) remain
comparable, and aggregated GU-level averages show a low MAE of 6.25 dB over segments
where both datasets report measurements on 1800 MHz.

These findings indicate that with targeted filtering - potentially enhanced by Artificial
Intelligence (AI)-driven classification - MDT data can serve as a viable proxy for drive
tests in large-scale, long-term coverage evaluation.
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(a)

(b)

Figure 7.2: Granularity comparison: (a) MDT data and (b) drive test data. The red
line indicates the track, scatter points are RSRP samples, and right-most
maps show averaged GU-level RSRP.

(a) (b)

Figure 7.3: ECDF comparison of GU-averaged RSRP for MDT and drive test data:
(a) zoomed-in segment from Fig. 7.1, (b) full Vienna-Bregenz track.
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Over time, with access to contextual metadata (e.g., train schedules, seating positions,
or equipment tags), these data streams could inform DT models that emulate train
characteristics such as antenna placement, cabin attenuation, and user density - enabling
passive, data-driven modeling of wireless environments onboard. The long-term vision is
to enable real-time online learning of railway DTs from end-user observations, eliminating
the need for repeated measurement campaigns. Future work should focus on integrating
such data streams with AI-based tools to enable intelligent, real-time optimization of
railway network performance.

7.2 Digital Twins for Enabling FRMCS Deployment
The FRMCS is envisioned as the successor to GSM-R, addressing its limitations and en-
abling the digital transformation of railway communications. Building on 5G principles,
FRMCS aims to deliver enhanced data rates, Ultra-Reliable Low-Latency Communi-
cation (URLLC), and advanced features such as network slicing to support a wide
variety of use cases - from mission-critical applications like European Train Control
System (ETCS) and ATO to non-critical services such as passenger infotainment.

While this dissertation has focused on benchmarking current commercial LTE and
early 5G solutions in railway environments, the presented methods are directly applicable
to the evaluation of future FRMCS deployments. In particular, the use of drive-test
models and crowd-sourced MDT-based performance estimation could be extended to
the FRMCS context, supporting early deployment validation and optimization. For
example, measurement-assisted RT could be a valuable tool for assessing interference
risks and propagation characteristics in the FRMCS band prior to commercial roll out.

One of the key concerns surrounding FRMCS is its spectrum coexistence with existing
Mobile/Fixed Communication Networks (MFCN). The European Commission has allo-
cated the [1900-1910] MHz unpaired band for Railway Mobile Radio (RMR) applications,
which is to be used by FRMCS. This Time Division Duplex (TDD) band lies adjacent
to the DL of 3GPP Band 3 (1800 MHz) and the UL of Band 1 (2100 MHz)- two of
the most commonly used frequency bands in commercial LTE and 5G NR networks.
As shown in Figure 7.4, this spectral adjacency introduces the potential for harmful
interference, particularly between the high-powered FRMCS DL and the comparatively
weaker MFCN UL signals.

This poses significant challenges, as FRMCS networks are expected to serve safety-
critical functions. The risk of interference from or to adjacent commercial networks -
particularly MFCN BS emissions into the FRMCS UL, and FRMCS DL leakage into
MFCN UL-must be carefully assessed. DTs provide a promising framework for this task,
enabling virtual coexistence testing of FRMCS and commercial networks under various
interference conditions, antenna configurations, and deployment topologies. Future work
should explore these interference mechanisms using simulation tools such as RT (e.g.,
Sionna RT) and validate them through targeted field measurements. While FRMCS
hardware is still in development, the propagation characteristics of nearby commercial
bands (e.g., Band 3) can serve as a useful proxy for modeling expected FRMCS signal
behavior.
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Figure 7.4: Radio spectrum planned for FRMCS frequency band and neighboring
MFCN bands.

Additionally, future studies should investigate coordinated deployment strategies to
mitigate interference, including:

• spatial separation and alignment of FRMCS and MFCN BSs (e.g., minimum
separation distances),

• the use of notch filters to suppress out-of-band emissions,
• adaptive antenna configurations and sector alignment, and
• potential reductions in transmit power in sensitive areas.

Current European Conference of Postal and Telecommunications Administrations
(CEPT) and Electronic Communications Committee (ECC) reports (e.g., [152–154])
underscore the absence of real-world deployment data for future railway communication
systems. To address this, future work should explore simulation-assisted, measurement-
informed approaches that can guide planning and evaluation in the absence of standard-
ized FRMCS equipment and live deployments.

There is also considerable potential in integrating FRMCS into existing railway
infrastructure. Reusing legacy GSM-R sites or mounting equipment on catenary masts
offers practical paths forward. These integration scenarios call for further investigation
into deployment planning, infrastructure reuse, and the impact of train-borne system
characteristics such as handover behavior and penetration loss.

Looking ahead, advancing tools for scalable benchmarking - both through simulations
and real-world data - will be essential for evaluating hybrid commercial and mission-
critical networks coexisting along the same tracks. In particular, research into AI-
assisted planning, adaptive network configuration, and DT-based optimization will
be key to ensuring reliable, interference-aware deployment of next-generation railway
communication systems like FRMCS.
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Chapter 8

Conclusion
This dissertation has explored the benchmarking and optimization of cellular connectivity
in railway environments, addressing both theoretical and practical challenges of ensuring
reliable communication on moving trains.

Our investigation began with high-resolution RT simulations aimed at modeling
wireless performance under realistic railway conditions. While these simulations provided
an initial view of coverage patterns and propagation behavior, they exhibited significant
discrepancies compared to real-world measurements. This was not due to a lack of
metadata or deployment information, but rather the need to calibrate simulation
parameters using ground-truth data. Even after calibration, deviations persisted -
highlighting that RT, while powerful, must be complemented by real-world measurements
to capture the full complexity of live network conditions.

To address this gap, we designed and executed extensive measurement campaigns
aboard moving trains, capturing both indoor and outdoor RSRP using scanners and
user equipment. These campaigns generated large, heterogeneous datasets that required
robust methodologies for processing and interpretation. In response, we developed a
scalable measurement framework that integrated real-world measurements with DT
representations of the environment and network. This enabled spatial alignment of
samples, correction on confounding effects, and extraction of environment-aware metrics
- ensuring that benchmarking results were both accurate and reproducible. As a further
contribution to the research community, we published multiple processed datasets from
these campaigns, enabling transparent validation and supporting future studies on
railway connectivity.

Since trains operate on fixed routes and hardware-level DTs remain largely unavailable,
direct comparison under identical conditions is infeasible. To fairly evaluate in-train
connectivity solutions across different train types and routes, we focused on generalizable
performance indicators. We used VPL as a key metric to isolate the cabin’s contribution
to signal degradation. This approach removes the influence of PL and BS deployment
differences around individual measurement tracks, as both indoor and outdoor signals
are equally affected by these external conditions. By examining outdoor-indoor RSRP
differences, we could robustly evaluate and compare different train configurations and
connectivity solutions.

Motivated by the industry’s increasing shift toward passive window solutions, We
then investigated the influence of the signal’s AoA on VPL. While window coatings offer
advantages such as broad frequency transparency, low maintenance, and compatibility
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with modern MIMO systems, their effectiveness is sensitive to the direction of incoming
signals. To support this analysis, we developed a robust framework for estimating
AoA in motion using GPS-tagged UE and scanner measurements in combination with
Environment and Rail DT and Cellular DT - eliminating the need for controlled lab
setups. This framework is applicable not only to controlled datasets but also to future
use cases involving crowdsourced data.

Our AoA-aware analysis revealed that high azimuth angles - common when BSs
are placed close to the tracks - lead to significantly higher VPL. These placements,
historically suitable for repeater-equipped trains, pose challenges for permeable window
designs. As a result, network planning strategies may need to be re-evaluated: for
instance, increasing the lateral distance of BSs from the track could reduce azimuth
angles and improve penetration, but would also increase PL. This trade-off highlights a
promising optimization space in which BS positioning is tailored to onboard connectivity
architecture.

To further explore how train design affects mobile signal propagation, we conducted
a targeted measurement campaign on the ÖBB Nightjet, comparing three cabin types
within the same train using identical window coatings. This controlled study showed
that, despite having comparable total window areas, cabins with more internal par-
titions (e.g., walls and doors) introduced up to 3 dB higher attenuation. Applying
our benchmarking framework, we also quantified VPL across various ÖBB train types:
standard metal-coated windows resulted in VPL of approximately 22 dB, while modified
FSS-coated windows reduced this to around 14 dB. In lightweight commuter trains with
larger windows, attenuation dropped further to approximately 10 dB - highlighting the
combined impact of coating technology and overall cabin design.

Recognizing the resource-intensive nature of train measurements, we developed a SS
methodology tailored to mobile network benchmarking. This approach enables reliable
estimation of key performance indicators (KPIs) while significantly reducing the number
of required measurements. By allocating sampling efforts based on strata such as
environmental type, BS density, and user speed, our method ensures that measurements
are concentrated where they are most informative.

Although railway-specific large-scale datasets were unavailable during this study, we
validated our methodology using two real-world MDT datasets: one city-scale (Vienna)
and one national-scale (Austria). Across both, we demonstrated that SS can achieve
mean RSRP estimates with minimal absolute error using only [50-65]% of the original
data. This demonstrates the method’s efficiency and its applicability to large-scale
mobile measurement campaigns. Stratification proved especially useful in heterogeneous
environments, and its design is highly transferable to railway settings - with fixed-length
track segments as natural GUs and strata based on tunnel presence, urbanization level,
or topography.

Looking ahead, we recognize the untapped potential of crowdsourced datasets for
railway connectivity evaluation. As access to onboard-generated data - such as MDT
reports or logs from railway operator routers - increases, these sources may offer a
scalable, low-cost alternative to traditional measurement campaigns. Integrating such
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data into our SS framework could enable benchmarking of railway connectivity across
train types, regions, and time periods.

In parallel, the ongoing FRMCS roll-out presents new challenges and opportunities.
As this mission-critical standard replaces GSM-R, further research will be essential to
evaluate its coexistence with commercial networks, its propagation behavior in diverse
railway environments, and its infrastructure requirements. While the tools developed in
this dissertation were not designed specifically for FRMCS, they can support related
investigations: the DT-based environment modeling provides a solid foundation for RT
simulations of FRMCS deployments, while the measurement datasets and crowdsourced
frameworks introduced here can assist in calibrating these simulations against real-world
conditions.

In summary, this dissertation delivers a comprehensive framework for assessing cel-
lular connectivity in railway environments, grounded in real-world measurements and
supported by scalable analytical tools. The developed methods address current bench-
marking challenges and lay the groundwork for future network deployments, contributing
both to academic research and practical improvements in rail communication systems.
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Appendix
A1 Gaussian Process Regression
This appendix provides a concise overview of GPR as presented in Rasmussen and
Williams’ Gaussian Processes for Machine Learning [155]. GPR is a non-parametric
Bayesian method for regression tasks that defines a prior over functions and uses
observed data to update this prior into a posterior distribution.

Gaussian Process (GP) Definition
A Gaussian Process (GP) is a collection of random variables, any finite number of

which have a joint Gaussian distribution. A GP is fully specified by a mean function
m(x) and a covariance function k(x, x↓):

f(x) ∼ G P(m(x), k(x, x↓)). (A1.1)

In practice, the mean function is often assumed to be zero: m(x) = 0.

Prior and Posterior Distributions
Given a training dataset D = {X , y}, where X ∈ Rn×d and y ∈ Rn, and a testing

data X∗, the joint distribution of the observed targets and the function value at X∗ is:⎪
y
f∗

⎮
∼ N

)︃
0,

⎪
K(X , X) + σ2

nI K(X , X∗)
K(X∗, X) K(X∗, X∗)

⎮]︃
. (A1.2)

The posterior predictive distribution at X∗ is then Gaussian, with predictive mean and
variance given as:

E[f∗] = K(X∗, X)[K(X , X) + σ2
nI]−1y, (A1.3)

V[f∗] = K(X∗, X∗) − K(X∗, X)[K(X , X) + σ2
nI]−1K(X , X∗), (A1.4)

where
K(X , X) ∈ Rn×n, [K(X , X)]ij = k(xi, xj) (A1.5)

is the kernel matrix for training data,

K(X , X∗) ∈ Rn×n∗
, [K(X , X∗)]ij = k(xi, x∗

j ) (A1.6)

is the kernel matrix between training and test points, and

K(X∗, X∗) ∈ Rn∗×n∗
, [K(X∗, X∗)]ij = k(x∗

i , x∗
j ) (A1.7)

is the kernel matrix for test data.
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Kernel Functions
The choice of kernel function k(·, ·) encodes assumptions about the function being

modeled (e.g., smoothness, periodicity). Common kernel functions include: squared
exponential (or RBF), Matern, polynomial, exponential, rational quadratic, linear,
periodic, constant, etc. A new kernel can also be created by multiplication and/or
addition of the existing kernels. For the purpose of RSRP interpolation, we chose RBF
kernel multiplied with the constant kernel:

k(xi, xj) = σ2
f exp

⌊︃
− 1

2𝜙2 ↔xi − xj↔2
⌋︃

. (A1.8)

The hyper-parameter l > 0 of the RBF kernel is the characteristic length scale, encapsu-
lating the distance at which function values do not correlate anymore. Small l indicated
quickly changing function, large l slowly changing one. The σ2

f ≥ 0 of the constant
kernel accounts for the signal variance that scales the RBF kernel.

In the case we do not know the parameters of the kernel, we can learn them by
maximizing the log marginal likelihood function [155].

Advantages of GPR
• Provides probabilistic predictions with uncertainty estimates.
• Highly flexible through kernel selection.
• No need for an explicit parametric form of the model.

GPR Limitations:
• Computational complexity is O(n3) due to matrix inversion.
• Performance depends heavily on the choice of kernel and hyperparameters.

Application to RSRP Interpolation
GPR can be effectively applied to interpolate RSRP values in mobile network mea-

surement campaigns, particularly in geospatial scenarios such as train tracks or urban
drive tests. Given sparse RSRP measurements along GPS coordinates, GPR can infer
the RSRP at unmeasured locations while also quantifying prediction uncertainty.

Let xi =
⎪

lati

loni

⎮
∈ R2 denote the GPS coordinates of a measurement point, and yi the

corresponding RSRP value. The full set of training locations is represented by a matrix
X ∈ Rn×2, where each row corresponds to a geographic coordinate pair. Similarly, let
X∗ ∈ Rn∗×2 denote the set of test locations where we wish to estimate RSRP. With a
trained GPR model using a spatial kernel (e.g., RBF kernel with geodesic or Euclidean
distance), we can interpolate the RSRP at any location x∗ along the route.

GPR can be effectively applied to interpolate RSRP measurements in mobile network
datasets, especially in scenarios where multiple samples are recorded at or near the same
geographic location. This typically occurs during repeated train runs or slow movement,
resulting in clusters of RSRP measurements per position.

In wireless propagation, the received signal strength is influenced by both LSF -
caused by distance-dependent PL and SF from obstacles - and SSF, which results from
rapid constructive and destructive interference of multipath components. SSF leads to
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A2 Kolmogorov-Smirnov Test

strong fluctuations over short distances (on the order of a wavelength), whereas LSF
evolves more smoothly over space.

By applying GPR to the spatial coordinates and corresponding RSRP values, the
predictive mean function yields a smoothed representation of the RSRP field. This
effectively suppresses the influence of SSF and reveals the underlying LSF component. As
such, GPR serves as a powerful spatial averaging tool to extract the location-dependent
mean signal strength from noisy, repeated measurements.

This is particularly useful when:

• Handling measurement gaps: In real-world data collection, there are often
missing measurements due to equipment malfunctions, temporary signal loss, or
filtering during preprocessing. GPR enables interpolation across these gaps by
leveraging spatial correlation, providing smooth estimates of RSRP even in regions
without direct observations.

• Enhancing spatial resolution of coverage maps: Raw measurements are
typically collected at irregular intervals and limited spatial density. GPR produces
a continuous estimate of the RSRP field, allowing for the generation of high-
resolution coverage maps that support visualization, performance assessment, and
network planning.

• Supporting propagation modeling and analysis: Propagation models rely
on accurate spatial representations of signal strength. GPR facilitates this by
reconstructing the RSRP field over an entire area of interest, serving as a basis
for LSF analysis, PL modeling, or RT validation.

• Smoothing SSF to extract LSF trends: By applying GPR to the spatial
coordinates and corresponding RSRP values, the predictive mean function yields
a smoothed representation of the RSRP field. This effectively suppresses the
influence of SSF and reveals the underlying LSF component. As such, GPR serves
as a powerful spatial averaging tool to extract the location-dependent mean signal
strength from noisy, repeated measurements.

Furthermore, the predictive variance can indicate regions with high uncertainty,
guiding where additional measurements may be needed or where model confidence is
low due to lack of data.

A2 Kolmogorov-Smirnov Test
The KS test is a classical nonparametric method used to compare empirical distribution
functions. It can be applied in both the one-sample and two-sample settings. This
section is based on the treatment in Wasserman’s All of Statistics [156].

One-Sample KS Test
Let X1, X2, . . . , Xn be an i.i.d. sample from an unknown distribution F . Suppose we

want to test the null hypothesis H0 : F = F0, where F0 is a fully specified, CDF.
The test statistic is based on the ECDF F̂ n(x), defined as:
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F̂ n(x) = 1
n

n[︃
i=1

⊋︀{Xi ≤ x}. (A2.9)

The Kolmogorov-Smirnov test statistic is:

Dn = sup
x

|F̂ n(x) − F0(x)|, (A2.10)

where supremum means we are computing the maximum vertical distance between the
ECDF F̂ n(x) and the CDF F0(x) across all possible values of x.

Under H0, the distribution of Dn does not depend on F0, and its asymptotic distri-
bution can be used to compute p-values or critical values.

Two-Sample KS Test
In the two-sample setting, we are given two independent samples:

X1, . . . , Xn ∼ F , Y1, . . . , Ym ∼ G, (A2.11)

and we wish to test the null hypothesis H0 : F = G.
Let F̂ n(x) and Ĝm(x) denote the ECDFs of the two samples. The two-sample KS

test statistic is:

Dn,m = sup
x

|F̂ n(x) − Ĝm(x)|. (A2.12)

Under H0, the test statistic Dn,m has a known limiting distribution, and approximate
p-values can be calculated.

KS Test Properties
• The KS test is distribution-free under the null hypothesis, meaning its critical

values do not depend on the underlying distribution.
• The test is sensitive to differences in both location and shape between distributions.
• The one-sample test requires that F0 is fully specified - it cannot be estimated

from the data.

A3 Reference Signal Received Power Simulation
To illustrate the importance of random sampling and compare it in crowdsourced and
drive test scenarios, we simulate an outdoor RSRP map for a part of Vienna’s third
district using the DLNP from [63], with the following simulation parameters: 15 sectors
(three sectors at each of the five BS locations) with PTX = 15 W, f = 1 800 MHz, sector
down-tilt of 10◦ and BS height of 30 m. The simulated area has a dimension 1 000 m
× 1 000 m, with an RSRP map resolution of 1 m. The DLNP utilizes the geospatial
building model, obtained from the GSW and a realistic network layout. The serving
RSRP map is obtained by computing the maximum RSRP value across all 15 sectors at
each location of the map grid and is depicted in the final map shown in Fig. 6.1a. Blue
scatter points represent five BS locations, while the red line outlines the Landstrasser
Hauptstrasse street in Vienna, obtained from OSM.
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A4 Variance Approximation
Assuming two separate sample sets or stata
S1 = {x

(1)
1 , x(1)

2 , . . . , x(1)
Nh

}, S2 = {x
(2)
1 , x(2)

2 , . . . , x(2)
Nh

} that have same mean µ and sample
size Nh, we define their variances as:

σ2
1 =

⎭Nh
i=1(x(1)

i − µ)2

Nh − 1 ,

σ2
2 =

⎭Nh
i=1(x(2)

i − µ)2

Nh − 1 .

(A4.13)

Then the average variance of the two groups is given as

σ2
1 + σ2

2
2 =

⎭Nh
i=1

⎝
(x(1)

i − µ)2 + (x(2)
i − µ)2

⎠
2(Nh − 1)

=
⎭2Nh

i=1 (x(1,2)
i − µ)2

2Nh − 2 .

(A4.14)

In comparison, if we combine these two strata into one set

S1,2 = S1 ∪ S2 = {x
(1)
1 , x(1)

2 , . . . , x(1)
Nh

, x(2)
1 , x(2)

2 , . . . , x(2)
Nh

},

then the variance of the combined set is given by

σ =
⎭2Nh

i=1 (x(1,2)
i − µ)2

2Nh − 1 . (A4.15)

In the limit Nh −→ ∞, the denominator terms in Eq. (A4.14) and Eq. (A4.15) can be
approximated with 2Nh. This approximation results in σ = σ2

1+σ2
2

2 , the equation that
can be easily generalized to account for arbitrary L strata:

σ =
⎭L

h=1 σ2
h

L
. (A4.16)

Hence, we can use the approximation from Eq. (A4.16) for sufficiently large strata sizes.

A5 Verification Algorithm
After calculating how many samples nh are required in each stratum h = 1, 2, . . . , L for
remaining under a certain error bound d with 95% accuracy, we can verify this result
by using calculated nh in each of R sampling iterations. In each iteration, we compute
the strata sample means, the stratified mean estimate and the absolute error between
the true population mean and the stratified mean estimate. Finally, we compute the α,
representing the percentage for which the condition estimation error level is violated.
If α indeed lies below 5% (100-95), then randomly sampling previously calculated nh
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samples from the corresponding h stratum, results in the stratified mean estimate under
the estimation error bound d in 95% of the cases. Note that in the optimal allocation
scheme, it may happen that the calculated nh is higher than Nh. We address this in
step 6. Similarly, step 4. corrects for the nh values rounded to zero, which can happen
in rare cases. Clearly, a sample size of zero or drawing more samples than are available
in the population is unfeasible. The verification algorithm is summarized below.

Algorithm for Stratification Verification
Input: population samples d, R, yi, nh for h = 1, 2, . . . , L
Output: α

Compute strata mean µh = 1
N

⎭Nh
i=1 yi for h = 1, 2, . . . , L

Compute population mean as µ = 1
N

⎭L
h=1 µhNh

for h = 1 to L do
if nh = 0 then

nh = 1
end if
if nh > Nh then

nh = Nh

end if
end for
Initialize error list as an empty set
for i = 1 to R do

SRS of nh from Nh in each strata h = 1, 2, . . . , L
Compute sample means µ̂h = 1

nh

⎭nh
i=1 yhi

Compute SS mean yst = 1
N

⎭L
h=1 µ̂hNh

error[i] = |yst − µ|
end for
return α =

⎭R

i=1 1(error[i]>d)
R
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