
D I S S E R T A T I O N

Smoothed Covariance Estimation for
Multi-Source and Spatial Data in the

Presence of Outliers

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften unter der Leitung von

Peter Filzmoser
E105 – Institut für Stochastik und Wirtschaftsmathematik, TU Wien

eingereicht an der Technischen Universität Wien

Fakultät für Mathematik und Geoinformation

von

Patricia Puchhammer
Matrikelnummer: 01426471

Diese Dissertation haben begutachtet:

1. Univ.Prof. Dipl.Ing. Dr.techn. Peter Filzmoser
Institut für Stochastik und Wirtschaftsmathematik, TU Wien

2. Assoz.Prof. PD Dr.in Bettina Grün
Institute für Statistik und Mathematik, WU Wien

3. Prof. Claudio Agostinelli, PhD
Department of Mathematics, University of Trento

Wien, am 30. April 2025





Abstract

Multi-group or multi-source data, in which observations are partitioned into groups by
external variables, arise in a wide range of disciplines. Examples include spatial data
grouped by proximity, country borders, or geological units; medical data categorized
by diagnosis, disease, or age; and temporal data structured by days, months, or years.
These groupings are typically associated with continuous variables and reflect inherent
relationships among the groups – making separate analysis inappropriate.

Outliers can have a substantial impact on classical, non-robust statistical methods,
often distorting results and leading to misleading interpretations if not properly ad-
dressed. This issue becomes particularly critical in complex data structures such as
multi-group or spatial data, where outliers may remain hidden and bias outcomes
more easily. Detecting both classical outliers and those specific to the multi-group or
spatial context is essential for producing reliable estimates. Moreover, analyzing these
outliers can offer valuable insights, such as the detection of mislabeling or, in the case
of geochemical spatial data, the identification of regions of potential mineralization.

This thesis develops and adapts robust statistical methods for application in multi-
group settings. Key contributions include the development of a robust, smoothed
covariance estimator for spatial and multi-source data – applied to local outlier de-
tection – and its use in geochemical exploration. Furthermore, a sparse multi-group
principal component analysis (PCA) framework is proposed, enabling joint analysis
of global and group-specific features. Finally, a cellwise robust Gaussian mixture
model (GMM) is introduced for the multi-group context, allowing for the detection of
transitional group outliers. These theoretical and methodological advances significantly
extend the robust statistics toolbox, providing improved analytical frameworks for
multi-group data and demonstrating strong performance in both simulation studies
and real-world applications.





Kurzfassung

Gruppierte Daten oder Daten aus mehreren Quellen, die aufgrund von externen Varia-
blen eingeteilt werden, gibt es in zahlreichen Disziplinen. Beispiele inkludieren räumliche
Daten, die nach geografischer Nähe, Ländergrenzen oder geologischen Einheiten ge-
gliedert sind, medizinische Daten unterteilt nach Diagnosen oder Altersgruppen, und
Zeitreihen, die nach Tagen, Monaten oder Jahren gruppiert werden können. Häufig liegt
der Gruppierung eine kontinuierliche externe Variable zugrunde, welche die Gruppen
inhaltlich miteinander verbindet. Somit können die Gruppen nicht separat betrachtet
werden.

Klassische nicht-robuste, statistische Methoden sind anfällig gegenüber Ausreißern,
die die Analyse verzerren und irreführende Schlussfolgerungen zulassen. Insbesondere
bei komplexeren Daten, die zusätzlich gruppiert oder räumlich korreliert sind, gestaltet
sich die Identifikation solcher Anomalien besonders herausfordernd. Sowohl klassische
Ausreißer als auch solche mit kontextbezogenen Abweichungen müssen zuverlässig
erkannt werden, um die Validität der Ergebnisse sicherzustellen. Darüber hinaus
können identifizierte Ausreißer Hinweise auf fehlerhafte Gruppenzuweisungen liefern
oder, etwa im geochemischen Kontext, potenziell auf bislang unentdeckte Vererzungen
hindeuten.

Im Rahmen dieser Arbeit werden robuste statistische Methoden zur Analyse grup-
pierter Daten entwickelt und evaluiert. Zentrale Beiträge umfassen die Konstruktion
eines robusten, geglätteten Kovarianzschätzers für räumliche und/oder gruppiert struk-
turierte Datensätze, dessen Einsatz zur Identifikation räumlicher Ausreißer sowie dessen
Anwendung in der geochemischen Exploration. Darüber hinaus wird ein Verfahren zur
Hauptkomponentenanalyse für gruppierte Daten entwickelt, das eine simultane Analyse
wichtiger gruppenspezifischer und gruppenübergreifender Eigenschaften ermöglicht.
Abschließend wird ein Gaußsches Mischungsverteilungsmodell für den Multigruppen-
kontext vorgestellt, das Rückschlüsse auf Transitionsdynamiken von Gruppenausreißern
erlaubt. Die theoretischen und methodischen Beiträge erweitern die Intrumente der
robusten Statistik und liefern einen Rahmen für die Analyse gruppierter Daten. Simu-
lationsstudien und Echtdatenanwendungen demonstrieren die Stärken der entwickelten
Methoden.
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1 Introduction

The ongoing technological progress allows for more complex models and calculations in
all fields of research. Especially in robust statistics, calculation-heavy algorithms are
common and become applicable for real-life data. This also enables the calculation of
new possibly more complex methods considering data whose underlying structure is
not homogeneous.

Prominent examples are multi-group (or multi-source) data, where observations are
partitioned into groups according to some external criterion. Multi-group data are
present in many fields including medicine where groups can be based on diagnoses,
spatial data and/or temporal data where underlying groups of interest are connected to
country borders or geological units, or time units like days, months or years. Generally,
groups are defined based on an underlying continuous process, which provides additional
context that should be leveraged in a smooth way.

Although existing methods for homogeneous data could in theory be applied to
each group separately, they miss the overall connection between the groups and
possibly mask common patterns. They are also not taking advantage of the contextual
information of the other groups. Applying a method to all observations combined can
lead to some overall valid insights, but all group information is lost. Moreover, the
heterogeneity between the groups can lead to spurious conclusions. To capture both
the local and group inherent characteristics as well as the group independent and more
global patterns, methods targeted towards the multi-group setting that can capture
the similarities between the groups need to be considered.

Robust statistics can be used to ensure reliable results. Outliers in the data can
obscure the results and in the worst case lead to misleading conclusions since classical
methods are easily manipulated by outliers. Robust statistics flagging or reducing
the effects of outlying observations need to be applied. Especially for complex data,
outliers can heavily distort the statistical analysis in unexpected ways and can easily
be masked when classical methods are applied.

In many applications, including geochemistry, observations hold relative information.
Thus, they cannot be analyzed with standard statistical methods based on the classic
Euclidean space. Compositional data analysis accounts for the relative information with
the typical sum restriction and provides a sound framework to deal with compositional
data.

This thesis contributes to research by focusing on robust analysis for multi-group
data, while addressing the interplay of local and global features. The remainder of
the introductory section is structured as follows. Section 1.1 introduces concepts and
methods of robust statistics for homogeneous data as well as for different types of data
heterogeneity. Section 1.2 describes the basis of the two main algorithms used in this
thesis and Section 1.3 introduces the concept of Compositional Data (CoDa). The

1



1 Introduction

remainder of the thesis includes Chapter 2 which introduces a rowwise robust covariance
estimator used for local outlier detection. The outlier detection method is then further
applied to geochemical data of varying data quality in Chapter 3. Chapter 4 develops
a sparse PCA method which is based on robust multi-group covariance estimates. The
ideas are then further extended in the cellwise outlier paradigm in Chapter 5, which
derives a cellwise robust multi-group Gaussian mixture model to capture smoothness
among the groups. The final chapter summarizes the findings and outlines potential
directions for future research.

1.1 Robust Statistics

In data analysis, outliers are omnipresent. The goal of robust statistics is to deliver
reliable estimates of parameters unaffected by outliers and allow to draw conclusions
regarding the main bulk of the data. Hampel et al. (1986) define the field of robust
statistics as follows: “In a broad informal sense, robust statistics is a body of knowledge,
partly formalized into ‘theories of robustness’, relating to deviations from idealized
assumptions in statistics.” As hinted by the quote, assumptions about data generating
processes and deviations thereof need to be addressed explicitly. In the following
common assumptions for various multivariate data types are discussed further, different
notion of outliers are described as well as robust methods to counteract their effects.
Also the theoretical concept of the breakdown point is introduced.

1.1.1 Notions of Outlyingness

Typical assumptions in statistics are that observations stem from identically and
independently distributed random variables. When inference or the likelihood is
of interest the normal distribution is imposed or sometimes more general elliptical
distributions. In robust statistics we assume that these assumptions hold for the
majority of the data. When observations are not coherent with the assumed statistical
properties of a model, they are considered to be outlying and there effect on the
analysis should be removed or at least be bounded. However, it depends on the type
of data and statistical model, if the mentioned general assumptions need to be fulfilled
or whether they need adaptations. For each data and model type discussed below,
illustrations of outliers are shown in Figure 1.1.

Classical Multivariate Outliers The typical assumptions on the data generating
model like independently and identically distributed observations, possibly from a
normal, occur often. Outliers are considered to contaminate the main bulk of the
data, which follow the typical assumptions and to deviate from that assumption by
originating from another distribution.

An often used model to describe the rowwise contamination scheme is the Tukey-
Huber contamination model (Tukey, 1962; Huber, 1964). Within this model, we are
interested in the distribution of the uncontaminated p-variate random vector Y , but

2



1.1 Robust Statistics

can only observe the possibly contaminated random vector X,

X = (1−B)Y +BZ,

where B ∼ B(ϵ) is Bernoulli-distributed. Thus, only whole observations can be
contaminated. This model serves as basis of many theoretical concepts in robust
statistics like the influence function or the breakdown point.

A recent approach is to consider only contaminated cells of observations instead
of whole observation rows. Alqallaf et al. (2009) formalize the fully independent
contamination model

X = (I −B)Y +BZ,

where B = diag(B1, . . . , Bp) and Bi ∼ B(ϵ) for i = 1, . . . , p independent from each
other. Especially in higher-dimensional settings, more information can be retained.
There is no official consensus on when cellwise outliers can be considered rowwise
outliers and it seems to depend on the chosen paradigm (Raymaekers and Rousseeuw,
2024a).

A differentiation between cellwise and rowwise outliers can also be made for the
other notions of multivariate outliers discussed below, even though this distinction may
not have been thoroughly investigated to date.

Local/Spatial Outliers Spatial data consist of observations with values in the multi-
variate feature space as well as given spatial coordinates in one to three dimensions or
even more (e.g., spatio-temporal data). Temporal data or time-series data can also be
seen as a special case of spatial data with one-dimensional coordinates. For spatial
data, an assumption often made either explicitly or implicitly is the so-called Tobler’s
first law of geography : “Everything is related to everything else, but near things are
more related than distant things" (Tobler, 1970). Tobler’s Law is the basis of most
tools and methods in spatial and geo-statistics (see, e.g., Cressie, 2015) and provides
also a guideline on when observations might be outlying in the spatial context. Thus,
when an observation differs strongly from spatially close observations in the feature
space – contrary to what would be expected based on Tobler’s Law – they are spatial
(or also local) outliers.

Outliers in Clustering In cluster analysis we assume that we have data, where each
observation is drawn independently from one of several, often elliptical, distributions –
referred to as clusters. Outlying observations, in this context, are those that do not
resemble any of the clusters. A notable distinction from single-distribution frameworks
is the possibility of clustered outliers: small groups of outliers that form their own
cluster, distant from the main clusters. In addition to estimating the parameters of each
cluster, the presence of such outliers also presents challenges in accurately determining
the number and structure of clusters.

3
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Figure 1.1: Different types of outliers based on the data generating process of uncon-
taminated data points.

Multi-Group/Multi-Source Outliers Multi-group (also multi-source) data in the
context of this thesis describes data sets, where all observations have the same feature
space and are partitioned into distinct groups or sources prior to statistical data analysis.
The partition can be pre-defined by some external information like medical diagnoses
or specified at the beginning of the analysis to emphasize particular interpretative
perspectives. Additionally, it is assumed that these groups are related, so a joint
analysis provides more insight than an separate analysis for each group or source.
Within this framework, outliers can be classified as either global, meaning they do
not conform to any group, or local, meaning they are anomalous within their assigned
group but not necessarily in others.

Limitations of Non-Robust Methods

While outliers themselves also provide valuable insights into the data-generating process,
including them in a non-robust estimation of parameters like location and covariance
can severely distort the results, leading to estimates that no longer accurately reflect the

4



1.1 Robust Statistics

−10

0

10

20

−10 0 10 20
Var 1

Va
r 2

C
lassical

R
obust

0 25 50 75 100 125

1e−01

1e+00

1e+01

1e+02

1e+03

1e−01

1e+00

1e+01

1e+02

1e+03

S
qu

ar
ed

 M
ah

al
an

ob
is

 D
is

ta
nc

e

Figure 1.2: Classical versus robust parameter estimation. Left panel: 95% tolerance
ellipses of classical (red) and robust (black) estimates based on the MCD-
estimator applied to data with outliers (red dots). Right panel: Squared
MD for classical (top) and robust (bottom) estimators. Red dots are masked
outliers and black dots are non-outlying observations above the χ2-threshold
(dashed grey line) indicating masking and swamping, respectively.

main bulk of the data. Classical non-robust estimates, such as sample covariance and
mean, are heavily influenced by outliers and in extreme cases one single extreme point
can be sufficient to distort them arbitrarily strong (see also Section 1.1.4). The left
panel of Figure 1.2 illustrates the tolerance ellipses for the sample mean and covariance
(red) and robust estimates (black) for bivariate contaminated data points. Compared to
100 homogeneous observations a small number of 21 outliers lead to extreme distortions
of the sample estimates. Although outliers can be visually identified in the bivariate
case, such detection becomes infeasible in higher dimensions.

When detecting outliers during or after estimating procedures, robustness in all steps
of a method is crucial to mitigate against masking and swamping effects. Masking
of outliers occurs when they cannot be clearly distinguished from the majority of
non-outlying observations due to biased or distorted estimates. Conversely, swamping
refers to the incorrect classification of regular observations as outliers. An commonly
used metric for identifying outliers is the Mahalanobis Distance (MD) of an observation
x ∈ Rp,

MD(x,µ,Σ) =
+
(x− µ)′Σ−1(x− µ)

which relies on location and covariance estimates of µ and Σ. If observations are
normally distributed with mean µ and covariance Σ, then MD2 ∼ χ2

p. Therefore, an
often used threshold for flagging observations as outliers is the 95%-th quantile of the
χ2
p-distribution. As illustrated in the right panel of Figure 1.2, all outliers are correctly

identified by the robust estimator whereas only a subset is correctly detected by the
classical sample estimates demonstrating their vulnerability to masking effects.

Masking and swamping effects can also occur for heterogeneous data, as illustrated in
Figure 1.3. Two regular clusters are contaminated with isolated and clustered outliers.

5



1 Introduction

−10

0

10

20

−20 −10 0 10
Var 1

Va
r 2

Figure 1.3: Clustering: Masking and swamping effect for 8% of outliers (crosses) and
mclust with two clusters, a non-robust Gaussian Mixture model implemen-
tation (Fraley et al., 2024).

The non-robust clustering method returns two expanded covariance matrices shown as
95%-tolerance ellipse, where two outliers are masked and two regular observations are
falsely flagged as outlying. In cluster analysis it is possible to increase the number of
clusters until all outliers have their own cluster, however this is often not optimal and
robust methods for clustering are preferable (García-Escudero et al., 2010).

1.1.2 General Strategies for Robustness

There are different strategies to get outlier-robust estimates for covariance and location.
While outliers or outlying cells can be identified during the estimation procedure and
fully removed from the resulting estimates, another approach is to bound or down-
weight extreme effects of any observation or cell. Selected methods are described to
illustrate main concepts in the large literature body of robust statistics.

Methods Based on Down-Weighting Extreme Effects

One approach to construct rowwise robust estimators of location and covariance is to
generalize the concept of Maximum-Likelihood estimators (MLE). The large group
of M-estimators (Huber, 1964; Maronna, 1976) use reweighting of observations in the
univariate and of Mahalanobis Distances in the multivariate case. A non-decreasing
weighting function is used which determines the degree of robustness against outliers.
M-estimators are a large class of estimators that include, e.g., the median and the
Least-Squares estimator. Another robust estimator is the S-estimator (Davies, 1987),
which uses a robust M-estimator for scale. The Stahel-Donoho estimator (Stahel, 1981;
Donoho, 1982) projects the data onto many different 1-dimensional subspaces, for
which outlying measures are calculated. These are then used to down-weight outlying
observations for parameter estimation.

Some of the rowwise robust methods are recently extended to the cellwise paradigm
(see, e.g., Raymaekers and Rousseeuw, 2024a). The cellwise Stahel-Donoho estimator
(Van Aelst et al., 2011) considers cellwise instead of rowwise weights. An extension
of the S-estimator was developed by Agostinelli et al. (2015), called the two-step
generalized S-estimator, which was further adapted by Leung et al. (2017). Both
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1.1 Robust Statistics

consist of first filtering extreme outlying cells before applying a Generalized-S-estimator
in the second step.

Methods Based on Removing Outliers

Robust methods that flag outlying observations and fully remove them are, for example,
the Minimum Covariance Determinant (MCD) estimator developed by Rousseeuw
(1985) that selects a subset of non-outlying observations to minimize the determinant
of the corresponding sample covariance matrix. This is equivalent to choosing a subset
of observations to maximize their Gaussian likelihood (Raymaekers and Rousseeuw,
2023). Its use is suggested for n > 5p. For high-dimensional data, the Minimum
Regularized Covariance Determinant (MRCD) estimator (Boudt et al., 2020) minimizes
the determinant of a regularized covariance matrix of a selected outlier-free subset.
Both provide rowwise robust location and covariance estimates.

Cellwise robust methods that remove outlying cells are for example cellHandler
(Raymaekers and Rousseeuw, 2021), which iterates between setting outlying cells to
missing and estimating the parameters in a missing value scenario, and cellMCD
(Raymaekers and Rousseeuw, 2023) which unifies the flagging of outliers and parameter
estimation in one objective function. A slightly different but successful algorithm is
the Detecting Deviating Data Cells (DDC) algorithm (Rousseeuw and Bossche, 2018),
which flags and further imputes outlying cells. However, it does not inherently provide
a location or covariance estimate.

1.1.3 Robustness for Complex Data

There are many robust methods for non-homogeneous data. Here, we focus on some
well-known examples for specific areas of research.

Spatial Data

Local outlier detection in spatial data as well as robust spatial estimation methods are
very diverse. A large literature body exists on geographically weighted methods that
are based on a moving-window and weighting approach and also include extensions
regarding outlier robustness. For example, Harris et al. (2013) use the MCD estimator
applied to spatially weighted observations to robustify the estimation of local covariance
matrices and detect local outliers. Other statistical methods detect spatial outliers on
the basis of high pairwise MD between two observations x and y,

MDpair(x,y,Σ(x,y)) =
+
(x− y)′Σ(x,y)−1(x− y),

where Σ(x,y) is a spatially appropriate robust covariance matrix, whose estimation
is the main challenge. Here, often MCD or MRCD based estimates are chosen for
robustness (Filzmoser et al., 2013; Ernst and Haesbroeck, 2016).

Another more algorithmic approach is the local outlier factor (Breunig et al., 2000,
LOF), where the denseness of an observation in the multivariate space is compared to
the denseness of its k-nearest neighbors in the multivariate space. Here, local refers
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Figure 1.4: LOF for bivariate spatial data: Top left panel shows the multivariate
feature space and the standard LOF (area of grey area) compared to the
spatial LOF (area of black circle). The bottom right panel shows the
spatial locations. The panels on the off-diagonal show the relationships of
coordinates and features. One prominent local outlier is observation 51.

to the multivariate feature space. A spatial adaptation is provided by Schubert et al.
(2012) by comparing the denseness in the multivariate space to the nearest neighbors
in the coordinate space (see Figure 1.4).

Heterogeneous Data - Clustering

There is a large literature on clustering, where trimming approaches are used to
robustify clustering methods against rowwise outliers (García-Escudero et al., 2010). A
robust version of the well-known k-means method is trimmed k-means (Cuesta-Albertos
et al., 1997). An extension of the MCD to clustering is introduced by Gallegos (2002);
Gallegos and Ritter (2005), which was extended to allow for more flexible covariance
shapes by García-Escudero et al. (2008), a method known as TCLUST. For mixture
models, one approach is also to trim the likelihood (Markatou, 2000; Neykov et al.,
2007).

Regarding cellwise outliers, current approaches are sclust (Farcomeni, 2014a) for
Gaussian mixture models. Trimming-based methods are Farcomeni (2014b), who
introduces snipping, and the cellwise-trimming approach of García-Escudero et al.
(2021). Recently, a cellwise robust Gaussian mixture model extension of the cellMCD
was introduced by Zaccaria et al. (2024).

Another direction is taken by Peel and McLachlan (2000) who address outliers
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1.1 Robust Statistics

by mixtures of heavy-tailed t-distributions. However, as shown in Hennig (2004),
heavy-tailed mixtures are not more robust against extreme outliers than Gaussian
mixtures.

1.1.4 Breakdown Point

One of the theoretical concepts to assess robustness of an estimator is the breakdown
point (BP). Maronna et al. (2006) characterize the rowwise breakdown point of an
estimator as the largest amount of contamination (proportion of atypical points) that
the data may contain such that the estimator still gives some information about the
real parameter, i.e., about the distribution of the “typical” points.

Formally, an estimator θ̂ taking values in a parameter space Θ should remain bounded
as well as bounded away from the boundaries of Θ. In the multivariate setting this
implies that location estimates should remain bounded. A distinction is commonly
made between two types of breakdown points: the explosion BP, which occurs when the
largest eigenvalue becomes unbounded, and the implosion BP, which arises when the
smallest eigenvalue approaches zero, leading to singularity of the estimated covariance
matrix.

Moreover, one can distinguish between the asymptotic contamination BP, a concept
based on contaminated distributions, and the finite-sample contamination BP (Donoho
and Huber, 1983), which is defined for a finite sample of contaminated observation.
For the finite-sample BP, outliers can either be added to an uncontaminated sample
(addition BP) or a subset of uncontaminated observations is replaced by arbitrary
values (replacement BP). The rest of this section focuses on the finite-sample breakdown
point.

Rowwise Finite-Sample Breakdown Point

Given n fixed uncontaminated observations Xn, the addition BP of an estimator θ̂ is
defined as

δ∗n(θ̂,Xn) = min

�
m

m+ n
: θ̂(Xn ∪ Ym) breaks down,Ym ∈ Rm×p



,

where Ym denotes m arbitrary observations added to Xn. The replacement BP is
defined as

δ∗n(θ̂,X
m
n ) = min

�m

n
: θ̂(Xm

n ) breaks down
�
,

where Xm
n denotes the contaminated copy of Xn with up to m observations replaced by

arbitrary values. Although both concepts depend on the matrix Xn, many statistical
methods have BPs that only depend on n. For methods with data-independent BP
and where the BPs have a certain (and common) expression, Zuo (2001) shows a direct
relation between addition and replacement BP.
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Cellwise Finite-Sample Breakdown Point

For the cellwise paradigm, the finite-sample replacement BP is defined as

ϵ∗n(θ̂,X
m
n ) = min

�m

n
: θ̂(Xm

n ) breaks down
�
,

where Xm
n denotes the contaminated copy of Xn where up to m cells per variable are

replaced by arbitrary values (Raymaekers and Rousseeuw, 2023). In their work it is
shown that the cellwise BP is always lower than the rowwise (replacement) BP,

δ∗n(θ̂,X
m
n ) ≥ ϵ∗n(θ̂,X

m
n ).

Finite-Sample Breakdown Point for Clustering

Regarding clustering, the above defined BPs, especially the replacement BP, are typ-
ically data dependent, i.e., dependent on Xn and the underlying cluster structure.
Moreover, there is variability in the literature regarding the definition of breakdown
with respect to the number of affected estimates. According to Garcia-Escudero and
Gordaliza (1999) an estimator for clustering breaks down if one of the cluster estimates
breaks down, for Gallegos (2003) all estimates need to break down simultaneously.
Hennig (2004) propose the r-components parameter breakdown point in a univariate
mixture model setting and also accounts for the estimated mixture proportions. More-
over, he proposes the classification BP, which is applicable to more general clustering
methods without classical parameter estimation.

To reduce the issue of data dependency of the BP, Hennig (2004) propose a setting of
ideally well-clustered data, which was extended by Cuesta-Albertos et al. (2008) to the
multivariate setting. Basic assumptions are that clusters are infinitely far apart from
each other and from outliers. Further, outliers are infinitely far away from each other
and thus do not form clusters of their own (for more details see also Chapter 5). Other
approaches consist of a new notion of breakdown that are cluster dependent. Hennig
(2008) introduces the dissolution point as well as isolation robustness to capture the
stability of detected clusters for general clustering methods.

1.2 Algorithms

In the following sections, two algorithms utilized in Chapters 4 and 5 are described
in greater detail. Section 1.2.1 is based on the work of Boyd et al. (2011) on the
Alternating Direction Method of Multipliers (ADMM), while Section 1.2.2 builds on
the comprehensive descriptions of the Expectation-Maximization (EM) algorithm by
McLachlan and Krishnan (2008).

1.2.1 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) is an optimization algorithm
and is based on the Dual Ascent method and the Method of Multipliers.
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The Dual Ascent methods is applied to a constrained convex optimization problem
(primal problem) of the form

min
x

f(x)

subject to Ax = b,

with x ∈ Rp,A ∈ Rq×p, b ∈ Rq and f convex with values in R. The corresponding
dual problem involves maximizing the dual function

g(y) = inf
x

L(x,y)

with respect to y, where the Lagragian is defined as L(x,y) = f(x) + y′(Ax − y).
Assuming strong duality and a unique minimizer, the optimal solutions to the primal
and dual problem can be recovered from each other. The Dual Ascent method then
uses gradient ascent to solve the dual problem assuming that the dual function g is
differentiable.

The Method of Multipliers modifies the standard Lagrangian by introducing a
quadratic penalty term, resulting in the augmented Lagrangian

Lp(x,y) = f(x) + y′(Ax− y) +
ρ

2
||Ax− y||2

with penalty parameter ρ > 0. This formulation is equivalent to the original constrained
problem. Then, dual ascent is applied to solve the dual problem. Applying Dual Ascent
to the augmented Lagrangian results in improved convergence properties: the dual
function is differentiable under less restrictive conditions, and convergence is guaranteed
even if the primal problem is not strictly convex or does not always have finite values.
Optimality conditions that need to be met for an optimum x∗,y∗ are primal feasibility,
Ax∗ − b = 0, and dual feasibility, ∇f(x∗) +A′y∗ = 0.

The standard optimization problem for the ADMM is formalized as

min
x,z

f(x) + g(z) (1.1)

subject to Ax+Bz = c,

with x ∈ Rp, z ∈ Rq,A ∈ Rr×p,B ∈ Rr×q, c ∈ Rr and f and g convex. The ADMM
then minimizes the augmented Lagrangian function Lp

Lp(x, z,y) = f(x) + g(z) + y′(Ax+Bz − c) +
ρ

2
||Ax+Bz − c||2

from the Method of Multipliers iteratively (see also Figure 1.5),

xk+1 = argmin
x

Lp(x, z
k,yk),

zk+1 = argmin
z

Lp(x
k+1, z,yk),

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c).
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xk+1 = argminx Lp(x, z
k,yk)

zk+1 = argminz Lp(x
k+1, z,yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

Initial values
(x0, z0,y0)

Solution
(x∗, z∗,y∗)

(a) ADMM for the standard optimization
problem in Equation (1.1).

xk+1
1 = argminx L1

p(x,y
k)

...
xk+1
N = argminx LN

p (x,yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

Initial values
(x0

1, . . . ,x
0
N ,y0)

Solution
(x∗ = (x∗

1, . . . ,x
∗
N ),y∗)

(b) ADMM for a separable decomposition,
i.e., Equation (1.2) with paralleliza-
tion.

Figure 1.5: Visualization of the ADMM iteration structure for different problem set-
tings.

Theoretical results regarding convergence exist when f and g fulfill certain convexity
assumptions and if the Lagrangian has a saddle point. Optimality conditions from the
Method of Multipliers can be transferred similarly and the algorithm can be stopped,
if primal and dual feasibility conditions are fulfilled. For non-convex problems there is
no guarantee for convergence of any kind.

There are numerous extensions of ADMM, ranging from algorithmic enhancements
to theoretical considerations. On the algorithmic side, improvements include variations
in the penalty parameter ρ during iterations, inexact minimization steps for x and
z, and alternative update orders – all aimed at accelerating convergence. Beyond
these, more structural considerations involve different decompositions of the problem
or reformulations that are equivalent to the original formulation but allow for an
application of ADMM.

A particularly useful case arises when the objective function f is additively separable
for a partition of x = (x1, . . . ,xN )

f(x) = f(x1) + . . .+ f(xN ). (1.2)

Together with the separability of the quadratic term ||Ax||22 corresponding to such
partition, the ADMM can be leveraged, as the minimization steps can be carried out
in parallel (see also Figure 1.5).

12



1.3 Compositional Data

1.2.2 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is a widely
known technique in statistics for maximizing likelihood functions, particularly in
situations where some data is unobserved. Common examples include datasets with
missing values or truncated observations. Less obvious examples are mixture models,
where each observation is assumed to originate from one of several distributions, but
the specific origin is unknown.

In such settings, the likelihood function for the observed (incomplete) data is typically
complex and difficult to optimize directly. In contrast, the complete-data likelihood –
which includes the unobserved or latent variables – is often more tractable. The EM
algorithm addresses this by iteratively alternating between two steps:

• The Expectation step (E-step) estimates the missing or latent data given the
current parameter estimates.

• The Maximization step (M-step) then maximizes the expected complete-data
log-likelihood obtained in the E-step.

An important extension of the EM algorithm is the Generalized EM (GEM) algorithm,
which relaxes the requirement of fully maximizing the complete-data likelihood in
the M-step. Instead, it only requires that the new parameter estimate increases the
likelihood compared to the previous estimate.

Applications of the EM algorithm in the context of mixture models include Gaussian
mixture models with missing data in the component distributions (Eirola et al., 2014),
as well as more general settings involving elliptical distributions (Mouret et al., 2023).

1.3 Compositional Data

The following introductory summary to Compositional Data Analysis (CoDA) is based
on the work of Filzmoser et al. (2018).

The concept of compositional data was introduced by Aitchison (1982). Composi-
tional data are characterized by their relative nature: the essential information lies not
in the absolute magnitudes of the components but in their proportions relative to each
other. This inherently implies scale invariance, meaning that multiplying all compo-
nents by a constant does not change the compositional information. Typical forms of
compositional data include percentages, proportions, and concentration measurements
such as parts per million (ppm) or milligrams per kilogram (mg/kg).

As a consequence, compositional data can always be represented with the constraint
of a constant sum. For instance, in a composition expressed in percentages, the sum
of all components must equal 100%; in the context of material composition, the total
mass of subcomponents cannot exceed the overall sample mass (e.g., 1 kg). As a result,
the data reside in a simplex, a constrained sample space, rather than in unconstrained
Euclidean space. This violates assumptions commonly made in standard statistical
methods, which often implicitly or explicitly rely on the standard Euclidean geometry.
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1.3.1 Aitchison Geometry and the Simplex

The D-part simplex is the sample space of compositional data and is defined as

SD =

�
x = (x1, . . . , xD)

′ ∈ RD : xi > 0,

p-
i=1

xi = κ

	
.

Due to scale invariance, κ can be replaced by 1. The geometry that equips the simplex
to be a vector space is not Euclidean but the so-called Aitchison geometry. The
perturbation and the powering operations are defined as

x⊕ y = (x1y1, . . . , xDyD)
′ α⊙ x = (xα1 , . . . , x

α
D)

′,

respectively. The inner product is defined as

⟨x,y⟩A =
1

2D

D-
i=1

D-
j=1

ln
xi
xj

ln
yi
yj

,

and together with the Aitchison geometry an Euclidean linear vector space struc-
ture with dimension D − 1 is obtained. Working within this vector space ensures
compositional coherence.

1.3.2 Transformations

Many methods are developed in the standard Euclidean space. Thus, it would be
convenient to transform the data from the Aitchison space to the Euclidean space and
then applying the statistical methods at hand to the new coordinates. This is possible
with some of the transformations described below, however, obstacles regarding the
interpretation of results occur. Three often used transformations based on log-ratios
are described in the remainder of Section 1.3 and visualized in Figure 1.6.

Additive Log-Ratio Coordinates (alr) The first transformation is additive log-ratios
with respect to one variable j,

alrj(x) =
�
ln

x1
xj

, . . . , ln
xj−1

xj
, ln

xj+1

xj
, . . . , ln

xD
xj

#′
.

Additive log-ratio coordinates are compatible with powering and perturbation,

alrj(x⊕ y) = alrj(x) + alrj(y), alrj(α⊙ x) = α · alrj(x).

One disadvantage of the alr-transformation is the dependence on j, which can be
chosen arbitrarily. Moreover, the non-orthogonality of the resulting coordinate system
implies that the Aitchison inner product is not the Euclidean inner product applied to
the transformed values and thus, the transformation is not isometric.
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(a) Values and 95% tolerance ellipse trans-
formed from ilr to clr-coefficients.
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(b) Values transformed to alr-coordinates.

(c) Values and 95% tolerance ellipse trans-
formed from ilr to the simplex.
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(d) Normally distributed ilr-coordinates
with 95%-tolerance ellipse.

Figure 1.6: Different transformation spaces: On the bottom left panel the simplex and
in the bottom right panel ilr-transformed values. On the upper left panel
clr-coefficients are shown and on the upper right panel alr-coordinates with
Var 1 as basis. The tolerance ellipse is based on the covariance and mean
used to construct normally distributed ilr-coordinates.
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Centered Log-Ratio Coefficients (clr) Here, each compositional element of the
simplex is geometrically centered,

clr(x) =

ln
x1

D

)(D
k=1 xk

, . . . ln
xD

D

)(D
k=1 xk

′

.

Advantages are that there is no need for the subjective choice of a denominator and
the clr-transformation is compatible with powering and perturbation as well as the
inner product,

⟨x,y⟩A = ⟨clr(x), clr(y)⟩.

Thus, the clr-transformation is isometric implying that distance-based statistical
methods can easily be applied to clr-transformed data. However, the entries sum up to
zero and thus, the coefficients are based on a linearly dependent generating system
with D vectors. On the one hand, this is problematic for univariate methods and
interpretations since the coefficients cannot be considered separately. On the other,
many multivariate methods rely on the inversion of covariance matrices, that end up
being singular.

Isometric Log-Ratio Coordinates (ilr) The idea is to form an orthonormal basis in
the space spanned by the clr-coefficients. Only D − 1 vectors are necessary for a basis.
There are infinitely many options to choose such a basis – one particular constructive
basis is called pivot coordinates. Compatibility with powering and perturbation and
isometry hold for all ilr-coordinates, however interpretation of ilr-coordinates with
respect to certain original compositional parts is difficult or not feasible.

1.4 Overview

Chapter 2 is based on the article Puchhammer, P. and Filzmoser, P. (2024). Spatially
smoothed robust covariance estimation for local outlier detection. Journal of Computa-
tional and Graphical Statistics, 33(3):928–940. It presents a rowwise robust covariance
estimator for spatially grouped data, developed along the lines of the MRCD framework,
and applied to local outlier detection. P. Puchhammer conceived the idea and method-
ology, derived the theoretical results, and implemented the algorithm in R R Core
Team (2024) and C++, made available via the CRAN package ssMRCD (Puchhammer
and Filzmoser, 2023). She further evaluated the method through simulation studies
and a data example, and contributed to the writing and editing of the manuscript.

Chapter 3 applies the local outlier detection method developed in Puchhammer
and Filzmoser (2024) to geochemical data in the context of mineral exploration. The
suitability of local outlier detection methods for data of varying quality and scale
is discussed. This chapter is based on Puchhammer, P., Kalubowila, C., Braus, L.,
Pospiech, S., Sarala, P., and Filzmoser, P. (2024a). A performance study of local
outlier detection methods for mineral exploration with geochemical compositional
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data. Journal of Geochemical Exploration, 258:107392. P. Puchhammer participated in
conceptual discussions, co-developed the study design, extended the data analysis and
results initially carried out by L. Braus, and contributed to the writing and editing of
the manuscript.

Chapter 4 presents work based on Puchhammer, P., Wilms, I., and Filzmoser, P.
(2024b). Sparse outlier-robust PCA for multi-source data. arXiv preprint arXiv:2407.16299.
It focuses on sparse PCA methods for multi-group data. The development emphasizes
joint sparsity patterns and covariance estimation, offering improved interpretability and
insight into global and local patterns. P. Puchhammer contributed to the conceptual
development in collaboration with her co-authors, implemented the algorithm in R,
and tested the methodology through simulation studies and real data examples. She
also contributed to the writing and editing of the manuscript.

Chapter 5 is based on the work Puchhammer, P., Wilms, I., and Filzmoser, P. (2025).
A smooth multi-group Gaussian Mixture Model for cellwise robust covariance estimation.
arXiv preprint arXiv:2504.02547. It introduces a cellwise robust Gaussian mixture
model (GMM) for multi-group data, in which theoretical concepts are formalized
and breakdown points are proven. The method also enables exploration of transition
dynamics between groups by adapting the flexibility of the grouping structure. P.
Puchhammer developed the methodology within the GMM framework, extended robust
clustering theory to the multi-group context, implemented the method in R, conducted
simulation studies, and contributed to the manuscript’s writing and editing.

Chapter 7 concludes the thesis by summarizing the main findings and providing an
outlook on future research directions.
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2 Spatially Smoothed Robust
Covariance Estimation for Local
Outlier Detection

This chapter was published as Puchhammer, P. and Filzmoser, P. (2024). Spatially
smoothed robust covariance estimation for local outlier detection. Journal of Compu-
tational and Graphical Statistics, 33(3):928–940. DOI: 10.1080/10618600.2023.2277875.

2.1 Introduction

The identification of multivariate outliers is probably one of the most important tasks
in multivariate data analysis. A need to find outliers in order to make further analyses
more reliable, or the direct interest in the outliers themselves motivate the numerous
approaches available for multivariate outlier detection. The identified outliers are
supposed to deviate to a certain extent from the main trend or structure of the data
majority, and thus they are also called “global outliers” (Filzmoser et al., 2013). In
contrast, the term “local outliers” refers to a setting where additional information
regarding some kind of neighborhood is available, for example provided by spatial
coordinates of the observations. Then, local outliers are observations which clearly
differ from the multivariate measurements of their spatial neighbors indicating local
anomalies that spark interest and make further analysis essential. Nevertheless, the
values themselves might still be in an ordinary range of the data set, and thus the
observation would not be outlying in a global sense.

Existing statistical approaches for multivariate local outlier detection are often based
on a distance measure and neighborhood structure. A neighborhood a is defined as
a subset of the set of observation indexes, say {1, . . . , n}. A p-variate observation
xi, for i ∈ {1, . . . , n}, is defined to be in neighborhood a if and only if i ∈ a. The
decision if some observation x is in a neighborhood is typically based on its spatial
coordinates s(x). One way to construct the spatial neighborhood is to take a spatial
k-nearest-neighborhood of each point x, where k ∈ N. For a fixed x, the spatial
distance to another point y is defined as the Euclidean distance

dx(y) = ∥s(x)− s(y)∥ =

(s(x)− s(y))′ (s(x)− s(y))

�1/2
.

A spatial neighborhood ak(x) can then be defined as the set of the k many spatial
nearest observations,

ak(x) = {xj : dx(xj) ≤ dx(k)}, (2.1)
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where dx(1) ≤ dx(2) ≤ . . . ≤ dx(k) ≤ dx(n) are the sorted distances to all observations
xi, i = 1, . . . , n. Regarding local outlier detection, a distance measure often used to
evaluate outlyingness is the pairwise Mahalanobis distance (MD). For a neighborhood
a with covariance Σa and an observation xi in neighborhood a, the pairwise MD is
defined as

MDΣa(xi,xj) =

(xi − xj)

′Σ−1
a (xi − xj)

�1/2 for all j ∈ a.

In general, the MD describes the distance between two observations, where the Euclidean
distance in the feature space is adapted according to local distribution properties.

The estimation method used to determine Σa for all neighborhoods is key to good and
reliable results. It is essential that outlying observations themselves are not affecting
the estimation, since this could possibly mask outliers, leaving them undetected. Thus,
a robust covariance estimation on the neighborhood level is necessary. One of the
most widely used robust estimators for the covariance is the Minimum Covariance
Determinant (MCD) estimator (Rousseeuw, 1984, 1985), where one has to identify the
h sub-sample of observations (where h is fixed e.g. to half of the observations) that
minimize the determinant of its sample covariance. The MCD covariance estimator
is then given by the sample covariance of the h subset, multiplied by a consistency
factor (Croux and Haesbroeck, 1999). For its computation, the fastMCD algorithm
developed by Rousseeuw and Driessen (1999) introduces an iterative concentration step,
so-called C-step, that guarantees a decrease of the objective function until convergence
to a (local) minimum, making the MCD estimator faster and even more popular. The
global minimum is then approximated by iterating for a number of random starting
values and choosing the smallest local minimum. By selecting a small number of good
deterministic starting values for the fastMCD, the detMCD algorithm from Hubert
et al. (2012) improves run-time even more. In spite of these excellent features of the
MCD estimator, as well as affine equivariance and high robustness, one drawback
is that the concept is not applicable in case of singularity of the sample covariance
matrix of the h subset, which can easily occur. As for many methods, regularity of the
estimated covariance is also needed to compute Mahalanobis distances. Especially in a
setting where we are restricted to local neighborhoods consisting of a possibly small
subset of observations, we might have a situation where regularity cannot be achieved
and thus an inversion of the local covariance matrix is not possible. One solution is
to base the local estimation on regularized robust covariance estimators, such as the
recently developed Minimum Regularized Covariance Determinant (MRCD) estimator
from Boudt et al. (2020) (or also on the Fritsch estimator, Fritsch et al. (2012)). One
of the many attractive properties of the MRCD is that a slightly adapted fastMCD
algorithm based on C-steps is also applicable.

Existing methods for local outlier detection have different ways to define the covari-
ance matrix in order to ensure regularity. The method of Filzmoser et al. (2013) is
dealing with regularity issues by using the MCD estimator calculated on the whole
data set, i.e., Σa = Σ, thus imposing a global covariance structure. They have shown
that for i.i.d. Gaussian random vectors x1, . . . ,xn with mean µ and covariance matrix
Σ, the conditional distribution of the pairwise squared MDΣ(xi,xj), for j = 1, . . . , n,
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given xi, is a non-central chi-square distribution with p degrees of freedom and non-
centrality parameter MD2

Σ(xi,µ). Instead of a fixed cut-off value for the pairwise MD,
different sophisticated visual approaches are used. By plotting a degree of isolation
based on the pairwise MD and quantiles of the non-central chi-square distribution,
suspicious and highly isolated observations can be discovered and analyzed in more
detail. Quite contrary to Filzmoser et al. (2013), the method of Ernst and Haesbroeck
(2016) uses a very local covariance estimation by taking individual k-nearest-neighbor
(kNN) neighborhoods for each point separately into account. To tackle the regularity
issues, they use a regularized covariance estimation (originally the estimator from
Fritsch et al. (2012), for the MRCD see also the adaptation made in Bellino et al.
(2019)) for each individual kNN neighborhood. Additionally, they introduce the concept
of the “next distance”, which is also MD based, and use the upper fence of the adjusted
boxplot of Hubert and Vandervieren (2008) of all next distances as a non-parametric
cut-off value for detecting outliers.

Since it is not necessary to use a MD concept to find local outliers, a short detour
to machine learning techniques might be interesting. One of the most prominent
approaches for detecting multivariate local outliers in machine learning is the local
outlier factor (LOF) developed by Breunig et al. (2000). Initially, locality refers to
multivariate values and Euclidean distances in the feature space but this method can
also be canonically adapted to spatial local outlier detection. In Schubert et al. (2012)
this adaptation and further LOF-based approaches are discussed. Interestingly, also
LOF and its variants are based on a concept of distance and neighborhoods.

The existing methods have shortcomings in various ways that have not yet been
properly addressed. The rather global nature of the method of Filzmoser et al.
(2013) leads to a reliable and robust estimation of the covariance. Nevertheless, it is
somewhat questionable if the estimated covariance is applicable and representative
for the covariance structure on the local level. Trying to solve this issue of missing
locality in the estimation, Ernst and Haesbroeck (2016) resort to a very local approach
by recalculating the covariance matrix for each observation separately. Although more
locality is achieved, the method is not taking into account that covariance matrices are
not likely to change abruptly from one neighborhood to a next one. Also, the number
of estimated parameters is extremely high and based on rather few observations, even
if the local covariance structure is abruptly changing. A more global estimation of
the local covariance matrices might be more stable and reliable and might also avoid
repetitive calculations. It seems that until now there are only two extremes regarding
locality of the covariance estimation available.

We bridge the gap between the fully global and the fully local approach by providing
a covariance estimator based on the MRCD that addresses the missing locality on the
one hand and the missing spatial smoothness on the other. By providing the possibility
to set the amount of spatial smoothing and the size of the neighborhoods we get a
generalization of the two detection methods, with the goal that good outlier detection
properties based on the new local covariance estimations are achieved. Moreover, the
covariance estimate can be seen as a generalization of the MRCD when the data set
has additional sub-structures.

The paper is organized as follows. In Section 2 we introduce the new covariance
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estimator, derive its properties as well as properties of the original MRCD and establish
the methodology to detect local outliers. An algorithm and the derivation of a
generalized C-step are discussed in Section 3. Section 4 provides simulation results
regarding run time, convergence and outlier detection, while in Section 5, a real data
set is analyzed using the newly developed local outlier detection method. Finally, the
main results are presented and summarized in the conclusions.

2.2 Methodology

2.2.1 Spatially Smoothed MRCD Estimators

Assume that the p-dimensional observations xi = (xi1, . . . , xip)
′, for i = 1, . . . , n, are

arranged as rows in the n× p matrix X with n > 2p. Furthermore, each observation
has spatial information available, e.g. spatial coordinates, and is assigned to one of N
many neighborhoods, defined by the index sets a1, . . . , aN of size n1, . . . , nN .

The goal of the proposed method is to obtain local covariance estimates for each
neighborhood that are suitable for calculating the pairwise MDs and to some extent
smooth among nearby neighborhoods. Since the MCD estimator requires at least
n > 2p to provide a regular covariance matrix, which is a severe limitation especially
for small neighborhoods, we focus on its regularized extension, the MRCD estimator.
Instead of minimizing the determinant of the sample covariance matrix as in the MCD
case, the minimization objective is the determinant of a convex combination of the
sample covariance and a symmetric and positive definite matrix, the so-called target
matrix T . Boudt et al. (2020) suggest a data-driven approach based on the condition
number of the covariance matrix to set the degree of regularization ρ which is used
in the convex combination. Regarding the target matrix T , it is sensible to choose a
robust and regular covariance, e.g. a diagonal matrix based on univariate robust scale
estimates.

In the following, we adapt the idea of the MRCD estimator to our setting of local
and smooth covariance estimation. Let H = (H1, . . . , HN ) be subsets of the index sets
a1, . . . , aN defining the neighborhoods. The size of each subset Hi is hi = |Hi| = ⌈αni⌉,
for i = 1, . . . , N , where α is selected in the interval [0.5, 1], and ⌈·⌉ is the ceiling
function, rounding up to the next integer. A smaller value of α will result in more
robustness against outliers, and it would also be possible to adjust this value to each
neighborhood individually. The observations of subset Hi are written as matrix XHi ,
with dimensionality hi × p. Let the neighborhood specific MRCD-based covariance
matrix Ki(H), for i = 1, . . . , N , be defined as

Ki(H) = ρiT + (1− ρi)cαCov(XHi), (2.2)

with Cov(Y ) being the sample covariance matrix of Y , and cα a consistency factor for
the proportion α (see Croux and Haesbroeck, 1999). The regularization parameter ρi
is set individually for each neighborhood, and it could also be chosen as zero if the
estimated covariance matrix is already invertible. Finally, since we want to smooth the
covariance matrices, it seems counter intuitive to choose neighborhood specific target
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matrices, which would also require more parameter estimations. Therefore, we assume
a global target matrix T , taken as a robust and regular covariance matrix estimated
based on the full data set X. Since we assume n > 2p we propose to use the MCD
estimator for X as target matrix.

We want to find the combination of subsets in H that minimizes the objective
function

f(H) =
N-
i=1

det

(1− λ)Ki(H) + λ
N-

j=1,j ̸=i

ωijKj(H)

 . (2.3)

The tuning parameter λ ∈ [0, 1] is used to balance the influence of an individual local
neighborhood and the remaining neighborhoods in the covariance estimations. In case
of λ = 0, there is no spatial influence at all which is equivalent to the estimation
of the MRCD for each neighborhood separately while using a global target matrix.
For the other extreme λ = 1, the covariance matrix in a specific neighborhood is an
average over the surrounding covariance estimates without adding local information
from the neighborhood itself. Moreover, it is possible to interpret the second part in
the determinant as a penalization term. Due to the minimization of the determinant,
observations from ai that match well with the main trend of observations in neigh-
borhoods with positive weights ωij are more likely to be in the optimal H-set if λ is
increased. The weights ωij are supposed to be non-negative, and we set ωii = 0. The
elements of the weight vector ωi = (ωi1, . . . , ωiN )′ indicate the relative influence that
the estimated covariances of other neighborhoods have on the covariance estimation of
the i-th neighborhood. Also, each weight vector has to sum up to one,

.N
j=1 ωij = 1

for all i = 1, . . . , N . All these weights need to be pre-specified, for example based
on inverse geographical distances, and are collected as rows in the weighting matrix
W ∈ RN×N .

Note that for the objective function (2.3) a global minimum H∗ = (H∗
i )i=1,...,N exists

since its domain consists of a finite number of subset combinations. For this global
minimum, the estimated covariance matrix for each neighborhood ai is

Σ̂SSM,i = (1− λ)Ki(H∗) + λ

N-
j=1,j ̸=i

ωijKj(H∗), (2.4)

and the location estimate µ̂SSM,i is the sample mean of the selected observations
XH∗

i
. We call these estimators the spatially smoothed MRCD (ssMRCD) location and

covariance estimators.
Although the neighborhood structure and the value of λ will often depend on the data

at hand, there are some sensible and natural choices for W . If we have a neighborhood
structure that has no further meaning and might just be used to divide the spatial
space into subsets, an inverse-distance based weight matrix, also used in Sections 2.4
and 2.5, might be a good choice. Other possibilities include binary matrices with ones
if neighborhoods share a border and zero otherwise, with rows scaled appropriately.
Moreover, the regularity parameters can be set by default. For a neighborhood ai we
suggest to set the regularization parameter ρi as the data driven value that is proposed
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by the MRCD algorithm in Boudt et al. (2020), when interpreting the neighborhood
as its own data set.

2.2.2 Theoretical Properties

In the following we will show that the spatially smoothed MRCD estimators proposed
here are – in contrast to the original MRCD estimator – affine equivariant, and we
derive its breakdown point. For a data set X ∈ Rn×p, a location and covariance
estimator are called affine equivariant for all neighborhoods if for any non-singular
matrix A ∈ Rp×p, any vector b ∈ Rp, and all i = 1, 2, . . . , N , it holds that

µ̂SSM,i(XA′ + 1nb
′) = µ̂SSM,i(X)A′ + b′, (2.5)

Σ̂SSM,i(XA′ + 1nb
′) = AΣ̂SSM,i(X)A′.

Theorem 2.2.2.1 (Affine equivariance). Let T be any robust, regular and affine
equivariant estimate of the covariance for the data set X, here denoted as T (X). Then,
the spatially smoothed MRCD estimators of location and covariance with target matrix
T (X) are affine equivariant.

Proof. The proof is given in the appendix.

The assumptions of Theorem 2.2.2.1 for T (X) can be fulfilled by the MCD applied
to the full data set X for n > 2p. Nevertheless, any robust estimator satisfying the
assumptions can be used, e.g. S-estimators (Rousseeuw and Leroy, 1987). Note that
for local outlier detection tasks we typically have enough observations globally to get
regularity with standard robust estimators. As a remedy if regularity is not achievable,
the MRCD (or e.g. the OGK estimator of Maronna and Zamar (2002)) can be used.
Assuming that the target matrix can be estimated in a robust, regular and affine
equivariant way representing a covariance, the MRCD would also be affine equivariant.
However, this might question the usefulness of the MRCD since we already have a
robust, regular and affine equivariant covariance estimator available, namely T (X).
Therefore, in typical application scenarios, the ssMRCD is affine equivariant whereas
the original MRCD is not. Anyhow, in the case of global high-dimensionality, i.e.
n ≤ p+ 1, affine equivariance can only be achieved by the non-robust sample mean
and covariance (Tyler, 2010). Neither the MRCD nor the ssMRCD can then be affine
equivariant.

Another important property of robust estimators is the finite sample breakdown
point, which is defined as the minimal fraction of points that need to be exchanged
in order to make the estimators useless. Before considering the spatially smoothed
MRCD we have to derive the breakdown point of the original MRCD without prior
scaling of the observations, from now on called raw MRCD. The breakdown point of a
location estimator µ̂n is formally defined as

ϵ∗n(µ̂n;Xn) =
1

n
min{m : sup ||µ̂n(Xn,m)− µ̂n(Xn)|| = +∞},
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where Xn,m is the data matrix Xn with m-many observations exchanged with arbitrary
values (Maronna et al., 2006).

For the covariance estimate Σ̂n the finite sample breakdown point is defined as

ϵ∗n(Σ̂n;Xn) =
1

n
min{m : supmax

j
| ln(λj(Σ̂n(Xn,m)))− ln(λj(Σ̂n(Xn)))| = +∞},

with λ1(Σ), . . . , λp(Σ) denoting the eigenvalues of a matrix Σ in decreasing order.
Since the eigenvalues are sorted, we only have to consider the biggest eigenvalue
λ1(Σ̂n(Xn,m))) which might explode when exchanging observations with arbitrary
values (explosion breakdown point) and the smallest eigenvalue λp(Σ̂n(Xn,m))) which
might become zero (implosion breakdown point) and thus implies singularity (Maronna
et al., 2006).

Theorem 2.2.2.2. Consider the raw MRCD estimator with fixed ρ > 0, regular and
fixed T = QΛQ′ and the data matrix Xn. Then, the following statements hold:

a. The MRCD location estimator µ̂n has the finite sample breakdown point min(h, n−
h+ 1)/n.

b. The MRCD covariance estimator Σ̂n has the finite sample explosion breakdown
point (n− h+ 1)/n.

c. The MRCD covariance estimator Σ̂n has the finite sample implosion breakdown
point 1.

Proof. The proof is given in the appendix.

Regarding the finite sample breakdown point of location and covariance estimators
with multiple estimators let us define the finite sample breakdown point ϵ∗n as the
minimal fraction of points of the same arbitrary neighborhood that need to be exchanged
in order to make at least one of the estimators useless. For the location estimators
µ̂SSM,n,i, i = 1, . . . , N , the formal definition is

ϵ∗n((µ̂SSM,n,i)
N
i=1 ;Xn) = min

i=1,...,N

1

ni
min{m : sup ||µ̂SSM,n,i(X

i
n,m)−µ̂SSM,n,i(Xn)|| = +∞},

where Xi
n,m is the matrix Xn with m-many observations of neighborhood ai exchanged

with arbitrary values.
For the breakdown points of the ssMRCD estimator, we restrict the values of the

parameters W and λ to exclude the following special case. In general it is possible that
all entries of one column of the weight matrix are zero for (at least) one neighborhood
ai (ωij = 0 for all j = 1, . . . , N) meaning that neighborhood ai does not contribute to
spatial smoothing for any other neighborhood. If additionally λ = 1, the observations
and the MRCD-based covariance matrix of neighborhood ai (see Equation (2.2)) do also
not contribute to the estimation of the ssMRCD-covariance estimate of neighborhood
ai itself. Thus, the values of the observations in neighborhood ai do not affect the
estimation in any way implying that it is not sensible to include this neighborhood in
the calculation of the breakdown point. Therefore, in the following theorems of this
section we assume that there is at least one non-zero entry per column of W if λ = 1.
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Theorem 2.2.2.3. The location estimators (µ̂SSM,n,i)
N
i=1 of the spatially smoothed

MRCD have the finite sample breakdown point

ϵ∗n((µ̂SSM,n,i)
N
i=1 ;Xn) = min

i=1,...,N
min(ni − hi + 1, hi)/ni.

Proof. The proof is given in the appendix.

For the covariance estimates Σ̂SSM,n,i, i = 1, . . . , N , the finite sample breakdown
point is defined accordingly,

ϵ∗n

��
Σ̂SSM,n,i

 N

i=1
;Xn

#
=

min
i=1,...,N

1

ni
min{m : supmax

j
| ln(λj(Σ̂SSM,n,i(X

i
n,m)))− ln(λj(Σ̂SSM,n,i(Xn)))| = +∞}.

Again, we can differentiate between explosion and implosion breakdown point.

Theorem 2.2.2.4. Given a fixed and regular target matrix T , the finite sample
implosion breakdown point of the spatially smoothed MRCD covariance estimators�
Σ̂SSM,n,i

 N

i=1
is equal to

ϵ∗n(
�
Σ̂SSM,n,i

 N

i=1
;Xn) = 1.

The finite sample explosion breakdown point is

ϵ∗n(
�
Σ̂SSM,n,i

 N

i=1
;Xn) = min

i=1,...,N
(ni − hi + 1)/ni.

Proof. The proof is given in the appendix.

Note that for all the breakdown properties of the original and the spatially smoothed
MRCD, the target matrix T is assumed to be regular and fixed. In applications the
target matrix would be some covariance estimator T (X) with its own breakdown point.
Then, the explosion breakdown point of the ssMRCD with estimated target matrix is
the minimum of the two breakdown points, and the implosion breakdown point is 1
(see online appendix, after proof of Theorem 2.2.2.4).

2.2.3 Local Outlier Detection

The final step for detecting outliers is to decide how the spatially smoothed covariances
available for neighborhoods ai, i = 1, . . . , N , will be linked to the pairwise MD.

The method is based on Ernst and Haesbroeck (2016). In order to compare each
observation x with its local neighbors we need a second neighborhood structure that
provides spatially close neighbors in contrast to the structural neighborhoods ai that
are used for the smoothed covariance estimation. Thus, we select some k ∈ N and
calculate the spatial k nearest neighbors, bk(x), see also Definition (2.1), where a
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typical value might be k = 10. However, when applying the method, the spatial
structure of the data set should also be considered.

For each observation x ∈ ai, the next distance is defined as

d(x) = miny∈bk(x)
�
(x− y)′Σ̂−1

SSM,i(x− y)
�1/2

,

which is the minimum of all pairwise MDs based on the covariance matrix Σ̂SSM,i

with all observations in the spatial k nearest neighborhood bk(x). The neighborhood
bk(x) is not necessarily a subset of ai. However, due to the spatial smoothing of the
covariance matrices and the spatial correlation of regular observations, an observation
y spatially close to x should be similar enough to not be classified as outlier even if the
covariance matrix of another but close neighborhood ai is used. In the case of a strong
difference between x and y, the observation y would still be classified as outlying.

The next distance d(x) is used as a measure of outlyingness. If the next distance is
high, none of the observations in the spatial k nearest neighborhood is similar to the
observation x, which means that x would be flagged as a local outlier. As a notion what
values for the next distance are considered as high, a non-parametric cut-off value can
be used based on the upper fence of the adjusted boxplot (Hubert and Vandervieren,
2008) using all next distances from all neighborhoods ai, i = 1, . . . , N . Observations
above the cut-off value are considered to be local outliers.

Possible further extensions like the restriction to homogeneous neighborhoods as
suggested in Ernst and Haesbroeck (2016) are not included but are interest of future
research.

2.3 Algorithm and C-Step

For computing the spatially smoothed MRCD location and covariance estimators we
need to minimize the objective function (2.3). However, since the number of possible
combinations of subsets is comparable with the MCD or the MRCD, it is in general not
feasible to just calculate the value of the objective function for all these combinations
and select the best one. Instead, the strategy of C-steps (concentration steps) introduced
for the MCD estimator by Rousseeuw and Driessen (1999) will be adapted to this
problem setting. Given an index set H1 corresponding to h observations of the data
matrix X, the C-step chooses the subsequent subset H2 where the h observations
with the smallest Mahalanobis distances, based on the arithmetic mean and sample
covariance matrix of the observations from H1, are taken. Rousseeuw and Driessen
(1999) have shown that this procedure converges to a local minimum. The C-step idea
has also been extended for the MRCD (Boudt et al., 2020), and we will now adapt the
generalized C-step to our setting.

Theorem 2.3.0.1. For each j = 1, . . . , N , let ρj ∈ (0, 1) and H0
j be any starting

subset of aj of respective size hj ∈ (nj/2, nj). Let αj be the corresponding fraction
of the observations used, αj = hj/nj. Let H0 = (H0

1 , . . . , H
0
N ) be the combination of

the subsets and λ ∈ [0, 1) fixed. The target matrix T (X) is assumed to be positive
definite, symmetric and fixed, and Kj(H0) is defined as in Equation (2.2) with T =
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T (X). Calculate the sample mean for each neighborhood aj , j = 1, . . . , N , based on
the respective subset, mj(H0) = 1

hj

.
k∈H0

j
xk.

Fix neighborhood ai. For x ∈ ai, let the MD-based measure with the subset given by
H0 be defined as

d(x;H0) = (x−mi(H0))′

(1− λ)Ki(H0) + λ
N-

j=1,j ̸=i

ωijKj(H0)

−1

(x−mi(H0)).

For a new subset H1
i of ai of size hi with-

k∈H1
i

d(xk;H0) ≤
-
k∈H0

i

d(xk;H0),

denote H̃ = (H0
1 , . . . , H

1
i , . . . , H

0
N ) (note that Kj(H̃) = Kj(H0) for j ̸= i). Then,

det

�
(1− λ)Ki(H̃) + λ

N-
j=1,
j ̸=i

ωijKj(H̃)

!
≤ det

�
(1− λ)Ki(H0) + λ

N-
j=1,
j ̸=i

ωijKj(H0)

!

with equality if and only if Ki(H̃) = Ki(H0) and mi(H̃) = mi(H0).

Proof. The proof is given in the appendix.

The C-step theorem states that the objective function will decrease with every step
as long as the other covariance estimators stay fixed. In the implemented algorithm
described below, this will in general not be the case. However, the theorem and its
proof should be sufficient to motivate and provide a reason for the algorithm proposed
in the following.

The algorithm makes use of the C-step to solve the minimization problem based on
Boudt et al. (2020). Suppose that we can estimate the target matrix T = T (X) by
the affine equivariant MCD estimator, then we also obtain affine equivariance for the
spatially smoothed MRCD. Thus, we can ignore the scaling step in Boudt et al. (2020)
and reduce the number of parameter estimations. Using an eigen-decomposition of
T = QΛQ′, with Q containing the eigenvectors as columns, and Λ being the diagonal
matrix of positive eigenvalues, we transform the observations,

zi = Λ−1/2Q′xi, (2.6)

for i = 1, . . . , n. Thus, in the next steps we can use Z = (z1, . . . , zn)
′ as data matrix

and T = Ip as target matrix, which numerically simplifies the data-driven selection
procedure for ρj .

In order to start the iteration process by making use of the C-steps, we need starting
values, which should be robust and regular covariance estimates for each neighborhood.
As proposed for the original MRCD estimator, we will also use the deterministic MCD
algorithm of Hubert et al. (2012) for each neighborhood separately. This approach
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results in six estimates for location and scatter for each neighborhood, which show
especially good convergence properties. Furthermore, for each neighborhood aj , the
value of ρj is calculated using the data-driven selection procedure based on a maximal
condition number according to steps 3.2 to 3.4 from Boudt et al. (2020). The set of
six deterministic starting values for each neighborhood is restricted to those with a
sufficiently small condition number (for more details see step 3.5. in Boudt et al.,
2020).

One new issue that arises is the number of possible combinations of initial subsets:
for N neighborhoods we end up with up to 6N subset combinations as possible starting
values. Since a high number of starting values might not be essential for a good
approximation, we will consider an upper limit of 6N starting values in the following,
and they will be selected at random out of the possible combinations that are left after
the ρ-selection step. While accuracy can be increased with additional starting values,
the restriction to 6N leads to computational feasibility for the algorithm and still
provides reliable estimates as can be seen in the performance of local outlier detection
in Section 2.4.

Suppose now that we start the procedure with an initial subset H0 = (H0
1 , . . . , H

0
N ),

then we apply the C-step for each neighborhood ai and obtain a new subset H i
1. The

combination of these subsets H1 = (H1
1 , . . . , H

1
N ) is used as starting point for the next

iteration step, etc. After there is no change in the subsets, the iteration process stops
(see also Figure A.8 in the online supplements). After applying the C-step iterations
for all starting values, we choose the subset combination with the smallest objective
function value as the final subset combination H∗ = (H∗

1 , . . . , H
∗
N ).

Although Theorem 2.3.0.1 is not proving that the objective function decreases with
every step due to the additional covariance matrices being adapted separately for each
neighborhood after each iteration step, simulation results show that the algorithm
provides stable results and good monotonic behavior in most cases (see Section 2.4).

After receiving the final combination of subsets H∗ for each neighborhood, the
matrices KZ

i are back-transformed to

K∗
i = QΛ1/2


KZ

i (H∗)
�
Λ1/2Q′. (2.7)

The covariance estimate for neighborhood ai is then

Σ̂SSM,i = (1− λ)K∗
i + λ

N-
j=1,j ̸=i

ωijK
∗
j , (2.8)

and the location estimate is the arithmetic mean of the optimal subset XH∗
i
. The

detailed numerical procedure is summarized as pseudo-code in Algorithm 1.
Regarding the tuning parameter λ there is no standard procedure to get a good

value that is similarly automated like the calculation procedure for the regularization
parameters ρi. However, there are multiple possibilities demonstrated in Section 2.5
that can be used to choose λ in applications.
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Algorithm 1 Algorithm for the spatially smoothed MRCD estimator.
1: Step 1.1: Calculation of target matrix T using the MCD estimator on X
2: Step 1.2: Eigen-decomposition of T = QΛQ′ and transform observations accord-

ing to Equation (2.6)
3: Step 2: Initialization step according to steps 3.1 to 3.5 (without C-step) from

Boudt et al. (2020) for each neighborhood
4: for i = 1, . . . , N do
5: Fix neighborhood ai
6: Get 6 initial deterministic sets of hi observations from ai according to Hubert

et al. (2012)
7: Calculate 6 initial covariance matrices and mean estimates
8: Select neighborhood-specific ρi via data-driven approach
9: Filter subset of initial starting estimates according to condition number (step

3.5 from Boudt et al., 2020)
10: end for
11: Select set of initial h-set combinations as starting values at random
12: Step 3.1: C-step: For each initial combination of subsets, iterate until convergence
13: Step 3.2: Select best combination of subset based on objective function value
14: Step 4: Calculate Ki(H∗) ∀i and use Equations (2.7) and (2.8) to get final

estimates

2.4 Numerical Simulations

In order to test the new method, two simulation setups are constructed which also
incorporate the neighborhood structures necessary for the covariance estimation and
outlier detection. For both setups we simulate covariance matrices which depend on a
parameter δ, denoted by Σ (δ), where the entries are defined as (Σ (δ))jk = δ(j−k), for
j, k ∈ {1, . . . , p}, leading to positive definiteness and symmetry.

Setup 1: The first setup is inspired by the original idea of covariance matrices
smoothly transforming over space. We start by setting up the (two-dimensional)
coordinates (s1i , s

2
i ) of the observations xi with nsim = 41 observations per coordinate

axis, evenly spread between 0 and 20, resulting in n = n2
sim = 1681 data points in

total.
For Nsim many areas alm, l,m ∈ {1, . . . ,√Nsim}, of similar observations we construct

a second spatial grid with each cell consisting of nsim/Nsim observations on average.
The borders of the areas for the first coordinate are defined as b1l = l 20√

Nsim
for

l = 0, . . . ,
√
Nsim. Analogously, the borders for the second coordinate are defined as

b2m = m 20√
Nsim

for m = 0, . . . ,
√
Nsim, leading the an evenly spaced grid. Thus, the

area alm consists of observations {xi : s
1
i ∈ (b1l−1, b

1
l ] ∩ s2i ∈ (b2m−1, b

2
m]} for l,m ̸= 0.

For either l or m equal to 1, the left edge of the interval (which would be zero) is

included. The coordinate centers of the area alm are defined as c1lm =
b1l−1+b1l

2 and

c2lm =
b2m−1+b2m

2 .
The observed values of observations in area alm are then randomly drawn from a p-
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Figure 2.1: Simulation scenarios with p = 2 and a 5% contamination rate. On the left
hand side the simulation setup 1 is presented with contamination achieved
through the swapping process described in Ernst and Haesbroeck (2016),
Nsim = 25 and nsim = 41. The values printed on the left-most panel are
corresponding to the parameter δlm. On the right hand side, setup 2 with
ν = 3 is shown with completely random swapping.

dimensional normal distribution N (µlm,Σ (δlm)), where µlm := ((c1lm+c2lm)/2, . . . , (c1lm+
c2lm)/2) ∈ Rp×1, thus having entry values between 0 and 20. For the covariance matrix
Σ (δlm) for areas alm we use the structure described above with parameter δlm defined
as

δlm =

�
0.1 + l

0.9− 0.1√
Nsim

#�
0.1 +m

0.9− 0.1√
Nsim

#
∈ [0.01, 0.81],

increasing smoothly from the left bottom to the right upper corner. A simulated data
set with p = 2 is presented in Figure 2.1 (left) where the grid structure and the change
of the mean are clearly visible. The resulting δlm for each area is shown as well.

Setup 2: To get a more flexible simulation setup, a random field, specifically
the parsimonious multivariate Matérn model (see Gneiting et al., 2010; Ernst and
Haesbroeck, 2016), is used as suggested in Ernst and Haesbroeck (2016) and Harris
et al. (2013). Instead of the constructed matrices used in Ernst and Haesbroeck (2016)
and Harris et al. (2013) we again choose a matrix structure Σ (δ) as described above
with δ = 0.7, since it can be extended for higher dimensions. For δ being set to 0.7
we get a range of high to low correlations reflecting different relationships between
variables. The spatial smoothness is assumed to be the same for all variables, and it is
regulated by one smoothness parameter ν, which is taking values in {0.5, 1.5, 3}. A
higher ν leads to more spatial smoothness and in general more distinct outliers after
contamination. The spatial scale parameter a of the Matérn model is set to one. A
grid structure for the coordinates of the observations with values ranging from 0 to 20
with grid size 0.5 is imposed, leading to 412 = 1681 observations overall, similar to the
standard setting in setup 1.

Lastly, contamination with outliers is achieved by swapping coordinates of observa-
tions with each other. Filzmoser et al. (2013) exchange observations that are completely
randomly chosen, whereas Ernst and Haesbroeck (2016) propose to swap the most
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2 Spatially Smoothed Robust Covariance Estimation for Local Outlier Detection

extreme observations regarding the first score of the global robust principal components.
In order to avoid the problem of exchanging whole areas of observations with each
other due to high spatial correlation, once observations are swapped, their 15 closest
neighbors are removed from the swapping process. This leads to a clear distinction
of outlying observations without the possibility of other outliers being close (see also
Figure 2.1). Thus, swapping according to Ernst and Haesbroeck (2016) should in
general result in a better performance for all considered methods. Both swapping
approaches in both setups will be analyzed with a varying contamination level β
between 1% and 15%.

For the ssMRCD covariance estimation we impose a grid based neighborhood struc-
ture. Similar to the description of setup 1 we use evenly spaced borders and assign the
observations to neighborhoods ni, for i = 1, . . . , N . Thus, the case N = Nsim in setup
1 depicts a perfect match of the neighborhoods selected for the ssMRCD and the real
underlying covariance structure. For Nsim > N the ssMRCD uses less neighborhoods
leading to more smoothness of the covariance estimation. The weighting matrix W is
based on the inverse (Euclidean) distance of the centers, that are defined equivalently
to setup 1.

We will focus on the suitability of the ssMRCD covariances for local outlier detection
and refer to the online supplement for additional analysis regarding computational
efficiency and convergence behavior of the algorithm described in Section 2.3. We
compare its performance to the local outlier detection methods of Filzmoser et al.
(2013) (F), Ernst and Haesbroeck (2016)(EH) and the local outlier factor methodology
of Breunig et al. (2000), canonically adapted to spatial neighborhoods as described
in Schubert et al. (2012) (LOF). Both simulation setups vary in the parameters p, ν
and Nsim, respectively, and both swapping processes are used, each combination is
simulated 100 times. All methods considered compare each observation to k many of
its neighboring observations which we will assume to be equal to 10 for all methods.
For the ssMRCD we will assume the default values (λ = 0.5, N = 25, and W based
on inverse-distances) arrived from the parameter sensitivity analysis included in the
online supplement.

The outlier classification method of Filzmoser et al. (2013) has a parameter βF
which is the percentage of neighboring observations that a local outlier is allowed to
be similar to. Here we use the value βF = 0.1, as proposed in Ernst and Haesbroeck
(2016), meaning that 0.1k = 1 observation is allowed to be similar within the 10 nearest
neighbors. For inliers the expected value of the isolation degree is βF . If the actual
degree of isolation is higher than the expected value, this signals local outlyingness.
As cutoff for classifying an observation as local outlier we use twice the value of βF , so
20%. This cutoff is less strict than in the simulation setup from Ernst and Haesbroeck
(2016) who take a cutoff of three times the expected value, i.e. 30%. Note that the
methodology of Filzmoser et al. (2013) mostly focuses on visual outlier detection tools,
so the cutoff value chosen here might not be optimal.

For the regularized spatial detection technique by Ernst and Haesbroeck (2016),
the parameter βEH , which gives the fraction of the most homogeneous neighborhoods
included in the outlier detection procedure, is set to one. In the simulations we
are interested in all outliers, and the heterogeneity in the simulated data should be
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comparable for all of the observations. Thus, only considering a fraction leads to non
comparable results. Moreover, the simulation results of Ernst and Haesbroeck (2016)
show that over all considered setups, βEH = 1 is also optimal. As regular covariance
matrix estimator we use the MRCD with the default target matrix (equi-correlated
target matrix) and α = 75%.

Last but not least, the non-parametric LOF, which calculates a local outlier factor
for each observation based on a comparison of the so-called "local reachability density"
with its k-nearest neighbors, needs a cutoff value. Since there is no fixed rule on how
to choose a cutoff value, a local outlier factor above 1.5 determines an outlier. This
value is also used in the original paper of Breunig et al. (2000).

The results for both simulation setups and the completely random switching are
shown in Figures 2.2 and 2.3. For the results regarding the swapping method of Ernst
and Haesbroeck (2016) shown in Figures A.13 and A.14 as well as a comparison of the
four methods in terms of computational efficiency we refer to the online supplement.

Starting with the false positive rate (FPR), we see that the method of Ernst and
Haesbroeck (2016) has some issues with classifying too many normal observations as
outliers in nearly all settings. This is likely due to the very local covariance estimation
which might be too strict in general leading to a strong swamping effect, especially in
settings where there is no strong spatial correlation of the observed values. Interestingly,
the behavior of the FPR for the method of Filzmoser et al. (2013) depends on the data
simulation setup. For the moving matrix scenarios, the FPR is rather high, for random
fields it is very low. The LOF and the ssMRCD-based outlier detection method have
reliable low FPR for all scenarios.

The outcome for the false negative rate (FNR) is quite different. While for Ernst
and Haesbroeck (2016) the FNR is in many settings below all other methods, this
might just be due to the high FPR. The method of Filzmoser et al. (2013) has a very
high FNR in most scenarios even in those with a high FPR. Regarding LOF, the
simulation scenario has a strong effect on its performance. For the moving matrix setup
we see a rather good performance compared to the other methods, while for random
fields the FNR can hardly keep up with the other methods except the method of
Filzmoser et al. (2013). The ssMRCD method is somewhere in between. Although the
corresponding FNRs for the moving matrix setup with completely random swapping
are not overwhelming, they are still in a reasonable range for the switching method of
Ernst and Haesbroeck (2016). Moreover, the FNRs for the ssMRCD outlier detection
technique in the other scenarios are compellingly low.

Comparing the F1-scores of the different methods, the best method to use in general
depends on the scenario. While the three selected methods seem to have pitfalls in
at least one simulation scenario, the ssMRCD-based method is consistently showing
reliable results and is mostly among the two best methods. Moreover, less extreme
behavior occurs when it comes to the FNR and the FPR. Thus, the ssMRCD-based
local outlier detection method could be the method of choice for standard outlier
detection tasks. However, note that with increasing contamination it might become
more beneficial to use a method that is generally more prone to flag observations as
outliers, e.g. the technique of Ernst and Haesbroeck (2016), or to adapt the parameters
of the ssMRCD to allow for more locality.
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Figure 2.2: False positive and false negative rate for all four outlier detection methods
with varying contamination levels achieved through completely random
switching for different scenarios. Each point represents the mean of 100
repetitions.
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Figure 2.3: F1-Score for all four outlier detection methods with varying contamination
levels achieved through completely random switching for different scenarios.
Each point represents the mean of 100 repetitions.
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Figure 2.4: On the left hand side, the contours of Austria and its districts are shown
together with the imposed grid structure for the ssMRCD neighborhoods.
Here, singular points are assigned to a neighboring neighborhood. For each
neighborhood ai the index i is placed at the center, and the tolerance ellipses
of corresponding correlation matrices based on the ssMRCD estimator are
plotted along the first and second eigenvector coordinate of T , which can
be seen in the upper left corner as reference. The biplot of T is shown on
the right hand side.

2.5 Example

In this section we consider a data set provided by GeoSphere Austria (2024). It consists
of monthly weather data for Austrian weather stations and is used to test and compare
the different methods. The data set contains measurements of air pressure [hPa] (p),
relative air humidity [%] (rel), the monthly sum of sunshine duration [h] (s), wind
velocity [m/s] (vv), air temperature in 2 meters above the ground [°C] (t), and the
average daily sum of precipitation [mm] (rsum), averaged over all months in 2021, for
n = 183 weather stations distributed all over Austria (see also Figure 2.4 or 2.7). The
coordinates used for all methods are given in latitude and longitude.

We set k = 10 for all methods, i.e. we want to compare one observation with its ten
closest neighbors, independent of the methodology used. Although for the method of
Ernst and Haesbroeck (2016) it is possible to remove observations with comparably
high levels of heterogeneity among the neighbors, we want to include all observations,
thus setting β = 1. Even if there is increased heterogeneity among the neighbors,
an observation might still be an interesting outlier clearly visible with the naked
eye. Moreover, as mentioned in the prior section, the simulation results in Ernst and
Haesbroeck (2016) show the best performance for high β. For the methodology of
Filzmoser et al. (2013) in accordance with the simulation setup we allow for one of the
ten neighbors to be similar to the local outlier. The cutoff value is again set to 0.2.
We use the same cutoff value of 1.5 for the LOF as in the simulations.

For the ssMRCD local outlier detection method we use a grid based neighborhood
structure for the covariance estimation. Due to the Alpine landscape especially in
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the Western parts of Austria we aim at a rather local covariance structure, thus
choosing a rather fine grid with N = 21 neighborhoods and ni ≈ 8.7 observations
per neighborhood on average. Other possible options could be based on underlying
structures, e.g. due to historical or political reasons, or on other classifying methods
like clustering of the spatial coordinates. Furthermore, we use inverse-distance weights
for the weighting matrix W between neighborhoods based on their center and select
the default smoothing degree of λ = 0.5 to gain enough smoothing but still keep the
locality of the fine grid structure.

As an alternative to using the default value of λ = 0.5 we can set up a simulation
procedure. Assuming that the real data is uncontaminated, we can swap observations
similar to the simulation studies in Section 2.4 and define them as local outliers. We
can apply the outlier detection technique with the ssMRCD and different choices of λ
(this can also be applied to other parameter settings of the ssMRCD), and then analyze
the fraction of found outliers and the total number of outliers. Since only focusing on
the known FNR for the found outliers leads to an increased false positive rate, it is
sensible to also take the total number of found outliers into account. A good value of
λ is a trade-off between a low FNR and a comparatively low number of found outliers
overall. Interestingly, this procedure endorses the choice of λ = 0.5 in this data set.

The resulting ssMRCD correlation matrices for each neighborhood can be seen in
Figure 2.4. The observations and the tolerance ellipses of the ssMRCD correlation
matrices are colorized according to their neighborhoods. Since we have dimension
p = 6, we reduce the dimensionality to the first two eigenvectors v1 and v2 of the
global MCD correlation matrix T , which is displayed at the upper left corner, hoping
to depict most of the relevant variance. Moreover, a biplot of T is added at the right
hand side to link the correlation matrices to our weather data.

Applying all four outlier detection methods leads to 24 observations in total classified
as outliers. The most outliers (21) are classified by the method of Ernst and Haesbroeck
(2016), the least (3) by Filzmoser et al. (2013), which is consistent with the simulation
results regarding FPR and FNR, especially for the random fields setup. The distances
which are used for outlier detection for each method and observation are shown in
Figure 2.5. For further comparison of the results, the upper part of Figure 2.6 shows
all 24 classified outliers with the corresponding ratio of distance value to cut-off value.
Ratios above one are outliers. We can see that there are multiple weather stations that
are classified as outliers only by the method of Ernst and Haesbroeck (2016) which
lends itself to a notion consistent with the simulation results that there are some false
positives among these weather stations. One example for a false positive could be panel
b) in in the lower part of Figure 2.6. The station Feuerkogel (panel a)) was not detected
by the method of Filzmoser et al. (2013), also consistent to the simulation results for
the random fields setup and the generally high FNR. Interestingly, also LOF seems to
have drawbacks and fails for example for the weather station Patscherkofel (panel c)),
which was not detected as outlier. Nevertheless, the weather station Schoeckl (panel
d)) was detected by all of them.

When looking at Figure 2.7 we can find some explanation for the local outlyingness
for two of the three local outlier stations and why panel b) might not be outlying.
While the stations Schoeckl and Feuerkogel are rather exposed on higher altitudes than
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Figure 2.5: Distance-distance plots with the outlyingness scores of EH (next distance),
of LOF (local outlier factor) and of F (isolation degree) against the next
distance of the ssMRCD-based method. Observations are separated into
global outliers based on the robust MD with the MCD as covariance
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Figure 2.7: Altitude map of Austria with all weather stations and four selected outliers.
Each dashed ellipse indicates the k nearest neighbors with whom the
corresponding outlier is compared.

most of the surrounding k-nearest stations which can easily lead to different patterns
regarding weather, the station Linz-Stadt (panel b)) is in a rather flat area similar
to its neighbors. The station Patscherkofel is already deep in the Alpine area and is
surrounded by other stations in valleys but also on mountains. Although from panel c)
in Figure 2.6 it is evident that Patscherkofel differs significantly in wind velocity, it is
not clear why it differs so much also from stations with similar altitude and exposure.

2.6 Conclusions

In this paper we enhance the limited toolbox for multivariate local outlier detection
by extending the approaches of Filzmoser et al. (2013) and Ernst and Haesbroeck
(2016). The developed ssMRCD based on the MRCD (Boudt et al., 2020) bridges the
gap between fully local and fully global covariance matrices used in the pairwise MD
by exchanging the extremely local covariance matrices used in Ernst and Haesbroeck
(2016) with spatially smooth estimates.

We define the ssMRCD by means of a minimization problem and prove theoretical
properties of the estimator, such as equivariance and breakdown point. A heuristic
is provided for the stable convergence property of the proposed algorithm under
reasonable spatial changes in underlying covariance matrices. Moreover, the methods of
Filzmoser et al. (2013), Ernst and Haesbroeck (2016) and the ssMRCD outlier detection
method are compared with the local outlier factor adapted for local outliers (Schubert
et al., 2012) regarding outlier detection performance and computational efficiency for
simulated data and real world data from Austrian weather stations.

While we support the conclusion of Ernst and Haesbroeck (2016) that it is difficult
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to select the "best" method for outlier detection techniques, the ssMRCD-based
outlier detection technique seems to be the only method providing reliable (but still
improvable) results over all analyzed simulation scenarios. Note, that there might be
non-analyzed scenarios where the ssMRCD-based outlier detection technique is not
performing satisfactorily enough. Additionally, it is able to compete with the other
methods regarding runtime even though the computation is quite complex. However,
for a thorough real data analysis it is still preferable to use different outlier detection
methods and compare the results in order to exploit all possible advantages of the
available methods. Comparing results of multiple methodologies provides more insight
in the data and significant local outliers can be classified with more reliability overall.

The ssMRCD covariance structure can be exploited also beyond local outlier detection.
All covariance based methods that are sensible to adapt to spatial data can be extended
by using the ssMRCD instead, e.g. spatial principal component analysis. A special case
for the application of the ssMRCD might also be spatial data with structural breaks
that need to be considered in the analysis. Finally, the presented ideas could also be
transferred to a time series context, where the spatial dependency is replaced by the
temporal dependency of multivariate time series, and the dependence structure could
change over time. Such settings are usually quite challenging for outlier detection.

Software Availability

An implementation of the methodology and the Austrian weather data is available in
the R-package ssMRCD on CRAN.
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A.1 Proofs

Proofs of Section 2.2

Proof of Theorem 2.2.2.1. Let i be fixed, T (X) be an estimator of covariance as
described above and Y := XA′ + 1nb

′ be the transformed data matrix. Then, for any
subset combination H and for all j = 1, . . . , N it holds that

KY
j (H) = ρjT (Y ) + (1− ρj)Cov(YHj )

= ρjT (XA′ + 1nb) + (1− ρj)Cov(XHjA
′ + 1nb)

= ρjAT (X)A′ + (1− ρj)ACov(XHj )A
′

= A

ρjT (X) + (1− ρj)Cov(XHj )

�
A′

= AKX
j (H)A′.

It follows that (1− λ)KY
i (H) + λ

N-
j=1,j ̸=i

ωijK
Y
j (H)

 =

=

(1− λ)AKX
i (H)A′ + λ

N-
j=1,j ̸=i

ωijAKX
j (H)A′


= A

(1− λ)KX
i (H) + λ

N-
j=1,j ̸=i

ωijK
X
j (H)

A′. (A.9)

By using the multiplicative property of the determinant and det(A) ̸= 0 we see that
A is only a constant in the minimization problem and is not affecting the choice of the
optimal combination of subsets,

f(H) =
N-
i=1

det

(1− λ)KY
i (H) + λ

N-
j=1,j ̸=i

ωijK
Y
j (H)


=det(A)2

N-
i=1

det

(1− λ)KX
i (H) + λ

N-
j=1,j ̸=i

ωijK
X
j (H)

 .

Together with Equation (A.9), affine equivariance is proven for the covariance estimator.
Since the location estimator is defined as the arithmetic mean, which is affine equivariant,
the property stated in Equation (2.5) is also fulfilled.
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Proof of Theorem 2.2.2.2. c. Regarding notation see also Boudt et al. (2020). The
eigenvalues for the transformed covariance matrix KW = ρI + (1 − ρ)cαSW (H),
where SW (H) is the covariance matrix of a subset H of X, are bounded below by
ρ > 0. Thus, λi(K

−1
W ) = λi(KW )−1 ≤ 1/ρ and

00K−1
W

00
2
≤ 1/ρ where ∥.∥2 denotes the

spectral matrix norm. For covariance matrices the spectral norm is equal to its biggest
eigenvalue. It follows that0000�QΛ1/2KWΛ1/2Q′

 −1
0000
2

=
000QΛ−1/2K−1

W Λ−1/2Q′
000
2

≤
000Q′Λ−1/2

0002
2

00K−1
W

00
2

≤ c/ρ,

for c > 0, since Q′Λ−1/2 is also regular and fixed. This implies that

λi

�
QΛ1/2KWΛ1/2Q′

 −1
= λi

�
(QΛ1/2KWΛ1/2Q′)−1

 
≤ c/ρ

for all i = 1, . . . , p . It follows that

λi(QΛ1/2KWΛ1/2Q′) ≥ ρ/c > 0 ∀i = 1, . . . , p,

for all subsets H, specifically for the optimal subset H∗. Thus, the eigenvalues of
Σ̂n = QΛ1/2K∗

WΛ1/2Q′ are also bounded away from zero, and it follows that the
implosion breakdown point is 1.

b. It is clear that ϵ∗n(Σ̂n;Xn) ≤ (n− h+ 1)/n since in this case there would always
be at least one observation in the selected subset independent of its value spoiling the
estimation. We need to show that ϵ∗n(Σ̂n;Xn) > (n− h)/n.

Suppose ϵ∗n(Σ̂n;Xn) ≤ (n − h)/n. We can change m ≤ n − h observations arbi-
trarily and denote the resulting matrix as Xn,m = (x∗

1, . . . ,x
∗
m,xm+1, . . . ,xn)

′, where
x∗
1, . . . ,x

∗
m are the exchanged observations (w.l.o.g. placed in the first m rows). The

supremum being infinite is equivalent to

∀C > 0 ∃Xn,m : | ln(λ1(Σ̂n(Xn,m)))− ln(λ1(Σ̂n(Xn)))| > C. (A.10)

Since ln(λ1(Σ̂n(Xn)) is constant and ln is monotonously increasing and unrestricted
we can w.l.o.g. assume that the value inside of the absolute value is non-negative. Addi-
tionally, moving the constant ln(λ1(Σ̂n(Xn))) to the right hand side, Equation (A.10)
is equivalent to the unboundedness of the biggest eigenvalue λ1(Σ̂n(Xn,m)),

∀C > 0 ∃ x∗
1, . . . ,x

∗
m : λ1(Σ̂n(Xn,m)) > C. (A.11)

Note that det(X) =
(p

i=1 λi(X) for any p-dimensional matrix X and that Σ̂n(Xn,m) =
(1 − ρ)cαCov(Xn,m;H∗) + ρT , where H∗ is the subset of observations of Xn,m that
minimize det((1− ρ)cαCov(Xn,m;H) + ρT ) over all subsets H. As shown above, the
eigenvalues of (1− ρ)cαCov(X)+ ρT are bounded away from zero for all X and ρ > 0,

λi((1− ρ)cαCov(X) + ρT ) ≥ c > 0, ∀i = 1, . . . , p.
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For the matrix Xn,m;H∗ , it follows that
p'

i=2

λi(Σ̂n(Xn,m)) ≥ cp−1 > 0.

Let the constant C̃ be defined as

C̃ =
det((1− ρ)cαCov(Xn,m;H̃) + ρT )

cp−1
,

where H̃ = m+ 1, . . . ,m+ h denote h indices of fixed and unchanged observations of
Xn,m, which exist due to m ≤ n− h. Then, due to condition (A.11) for C̃ there exists
x∗
1, . . . ,x

∗
m such that λ1(Σ̂n(Xn,m)) > C̃ which leads to

det((1− ρ)cαCov(Xn,m;H∗) + ρT ) > det((1− ρ)cαCov(Xn,m;H̃) + ρT ).

This contradicts the minimization of the determinant property of the selected subset
H∗. Thus, ϵ∗n(Σ̂n;Xn) > (n− h)/n.

a. Using the same argument as before, it is clear that ϵ∗n(µ̂n;Xn) ≤ (n−h+1)/n. Let
us show that ϵ∗n(µ̂n;Xn) ≤ h/n. Again we can argue that sup ||µ̂n(Xn,m)−µ̂n(Xn)|| =
+∞ is equivalent to

∀C > 0 ∃ x∗
1, . . . ,x

∗
m : ∥µ̂n(Xn,m)∥ > C. (A.12)

We have to find m = h many exchanged data points in a way that the norm of the
location estimator is unbounded but the determinant of the covariance matrix is still
minimal. For the fixed data set Xn, we obtain the optimal subset H∗ of observations
and add a fixed but arbitrarily large number L > 0 to the first coordinate of these
m = h observations,

∀i ∈ H∗ : x̃i1 = xi1 + L and x̃ij = xij ∀j = 2, . . . , p.

Thus, the sample mean of the first coordinate of the selected subset Xn,m;H∗ is equal
to the original mean of the first coordinate of Xn;H∗ plus L. Similarly, the sample
covariance is the same as before given that we take the same subset H∗, since it is
independent of constant shifts applied to all used observations. This implies that also
the regularized covariance and its determinant are the same which was minimal for
all other subsets of Xn. In order to show minimality of the subset H∗ for the new
data matrix Xn,m it follows that we only have to consider the subsets that have both
original and exchanged (arbitrarily large) observations.

Regarding the sample mean of the first coordinate of one of these subsets H̃, it is

M̃1 =
1

h

 k-
j=1

xij1 +
h-

j=k+1

x̃ij1


=

1

h

 k-
j=1

xij1 +
h-

j=k+1

(xij1 + L)


= M1 + L− k + 1

h
L,
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where M1 is the (fixed) mean of the first coordinate of the subset Xn;H̃ and both
sums are not empty. Regarding the variance of the first coordinate, which is the first
diagonal entry of the sample covariance matrix, we see

Cov(Xn,m;H̃)11 =
1

h− 1

 k-
j=1

(xij1 − M̃1)
2 +

h-
j=k+1

(x̃ij1 − M̃1)
2


=

1

h− 1

�
k-

j=1

(xij1 −M1 − L+
k + 1

h
L)2� �� �

O(L2)

+

h-
j=k+1

(xij1 + L−M1 − L+
k + 1

h
L)2� �� �

O(L2)

!

= O(L2)

Thus, the Frobenius norm of Cov(Xn,m;H̃) and also its regularization are O(L2) and
it follows for some constant β > 0 that

O(L2) =
000(1− ρ)cαCov(Xn,m;H̃) + ρT )

000
F

≤ β
000(1− ρ)cαCov(Xn,m;H̃) + ρT )

000
2

= βλ1((1− ρ)cαCov(Xn,m;H̃) + ρT )

≤ β
det((1− ρ)cαCov(Xn,m;H̃)

cp−1
,

due to equivalence of matrix norms in finite dimensional space and c being the constant
from above. Choosing L arbitrarily large, we see that the determinant corresponding
to a mixed subset is larger than the determinant of the optimal subset H∗ of only
exchanged observations.

Now suppose ϵ∗n(µ̂n;Xn) = m/n < min(h, n − h + 1)/n and start from Equa-
tion (A.12),

∀C > 0 ∃ x∗
1, . . . ,x

∗
m : ∥µ̂n(Xn,m)∥ > C.

This implies that

∀C > 0 ∃ x∗
1, . . . ,x

∗
m :

k-
j=1

00xij

00+

h-
j=k+1

000x∗
ij

000 ≥
000000
 k-

j=1

xij +

h-
j=k+1

x∗
ij

000000 > C,

where ij ∈ H∗, j = 1, . . . , h. Thus, for all C > 0 there exists some x∗
ij

whose norm is
bigger than C. W.l.o.g. assume it is x∗

1 and that the first coordinate is responsible,

∀C > 0 ∃ x∗
1 ∈ H∗ : |x∗11| ≥ C.
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For m < h < n− h+ 1 there would not be the possibility to only include exchanged
points in the subset and it would always be possible to have a subset of h many original
observations. This is also the case for m < n − h + 1 < h. Thus, there are at least
one exchanged point x∗

1 and one original point in H∗. But with the same argument
as before, the determinant of the mixed subset of original points and arbitrarily large
points would eventually contradict optimality, because at one point the determinant
would be so large that there would be an h-sized subset of original observations available
to get a smaller determinant.

Proof of Theorem 2.2.2.3. For i = 1, . . . , N , the location estimate is the standard
sample mean of hi many observations from neighborhood ai selected in a way to
minimize the objective function (2.3). By exchanging observations in one neighborhood
ai with arbitrarily large values and keeping the other neighborhoods the same (keeping
the matrices Kj bounded), we can apply the results of Theorem 2.2.2.2 for the
MRCD structured covariance matrix Ki. The location breakdown point for Ki is
min(ni − hi + 1, hi)/ni. Thus, in order to make at least one of the location estimators
useless we need to exchange a fraction mini=1,...,N min(ni−hi+1, hi)/ni of observations
of one neighborhood.

Proof of Theorem 2.2.2.4. Since the spatially smoothed MRCD covariance estimators
Ki are regularized on each neighborhood according to the MRCD approach, all
eigenvalues are positive and bounded away from zero as long as the target matrix T is
regular (see Theorem 2.2.2.2). Hence, none of the covariance estimators will ever be
singular and the implosion breakdown point is 1.

For the second part let us fix neighborhood ai. Note, that the covariance estimator
is defined as Σ̂SSM,n,i = (1−λ)Ki(H∗)+λ

.N
j=1,j ̸=i ωijKj(H∗) for the optimal subset

H∗. The matrix Ki = Ki(H∗) is structured in an MRCD manner based on the sample
covariance matrix of the subset H∗

i and the target matrix. Since we assume T to be
fixed, for Ki we can get arbitrarily large eigenvalues only under the same circumstances
as for the MRCD (see Theorem 2.2.2.2). Thus, exchanging a fraction of (ni−hi+1)/ni

by arbitrary values can lead to arbitrarily large eigenvalues of Ki. For the explosion
breakdown point for one neighborhood covariance estimator Σ̂SSM,n,i it is sufficient
that at least one Kj has reached its breakdown point (assuming a general setting for
W and λ). It follows, that the finite sample explosion breakdown point of Σ̂SSM,n,i is

ϵ∗n(Σ̂SSM,n,i;Xn) = min
i=1,...,N

{(ni − hi + 1)/ni}. (A.13)

Since ϵ∗n(Σ̂SSM,n,i;Xn) is already independent of i, the overall explosion break-
down point for the spatially smoothed MRCD covariance estimators is equal to
ϵ∗n(Σ̂SSM,n,i;Xn).

For all proofs the target matrix T is assumed to be fixed. In applications it is often
the case that T is actually an estimated covariance matrix T (X) based on data X
and thus, the breakdown point needs the be reevaluated. First, the estimator T (X)
has to be regular, otherwise the theoretical results are not applicable. Accordingly, the
implosion breakdown point of the ssMRCD estimator is still 1. Regarding the explosion
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breakdown point, the target matrix enters the estimation for the ssMRCD without any
changes. Due to the additive structure of the estimators and the inequalities for the
biggest eigenvalue of covariance matrices,

λ1(A) + λ1(B) ≤ 2λ1(A+B) ≤ 2(λ1(A) + λ1(B)),

choosing a subset in a way that leads to an unboundedness of the biggest eigenvalue of
T (X) also leads to unboundedness of the final estimator and unboundedness of the
final estimator regarding the biggest eigenvalue implies unboundedness in one of the
estimators (T (X) or the ssMRCD estimator with a target matrix assumed to be fixed).
Thus, the breakdown point of the ssMRCD with estimated target matrix Σ̂T

SSM,n,i is
exactly the minimum of the two,

ϵ∗n(Σ̂
T
SSM,n,i;Xn) = min{ϵ∗n(Σ̂SSM,n,i;Xn), ϵ

∗
n(Tn;Xn))}.

Proofs of Section 2.3

Proof of Theorem 2.3.0.1. This proof is very much along the lines of Boudt et al.
(2020). The neighborhood ai is fixed. Thus, the matrix which determinant should be
minimized regarding i is

A1 :=

(1− λ)Ki(H0) + λ
N-

j=1,j ̸=i

ωijKj(H0)


=

(1− λ)[(1− ρi)cαiCov(XH0
i
) + ρiT ] + λ

N-
j=1,j ̸=i

ωijKj(H0)



=

����(1− λ)(1− ρi)cαi� �� �
:=ρ̃

Cov(XH0
i
) + (1− λ)ρiT + λ

N-
j=1,j ̸=i

ωijKj(H0)

� �� �
:=Ω

%%%%
= ρ̃ Cov(XH0

i
) +Ω,

A2 :=

(1− λ)Ki(H̃) + λ

N-
j=1,j ̸=i

ωijKj(H̃)


= ρ̃ Cov(XH1

i
) +Ω,

where Ω is a fixed positive definite covariance matrix.
Since the original proof is not restricted to convex linear combinations, we can use

the same proof with the matrices A1, A2 and Ω in place of K1, K2 and Λ and adapted
factors

wj =
+
kρ̃/hi, j = 1, . . . , hi

=
+
k/(p+ 1), j = hi + 1, . . . , k.
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with k = hi + p+ 1.1

A.2 Algorithm

Iteration Steps

Starting values H0
i ∀i = 1, . . . , N given

Step 0 : H0
1 H0

2
. . . H0

N

K0
1 K0

2
. . . K0

N

Step 1 : H1
1 H1

2
. . . H1

N

K1
1 K1

2
. . . K1

N

...

Until convergence : Hm
i = Hm−1

i ∀i = 1, . . . , N

C-step

C-step

Figure A.8: Illustration of matrices used in the C-step after each iteration step. Hj
i are

the selected subsets of neighborhood aj in step i, and Kj
i the corresponding

regular covariance matrices.

Convergence

Here, we want to analyze the algorithm described and motivated in Section 2.3 in
more detail. Since Theorem 2.3.0.1 is only valid for one varying covariance matrix and
not for multiple varying ones, the convergence properties should be further examined.
Figure A.9 shows the objective function values along the iteration procedure for all
starting H-set combinations for different parameter settings for both simulation setups.
We choose p = 5 and a 5% contamination rate achieved by completely random swapping.
The weighting matrix is based on inverse distances as mentioned in Section 2.2. Each
panel reflects the convergence behavior of the objective function for one simulated data
set.

Although the behavior differs in general, it is evident that the algorithm has overall
very good convergence properties. A high percentage of monotonically decreasing

1Note that this proof can be generalized to any kind of linear combination with fixed matrices and a
sample covariance matrix of a subset.
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objective functions can often be achieved and the non-monotonically decreasing paths
increase only marginally. The reliability of the convergence results in the simulation
might possibly be due to the spatially correlated values which lead to rather small
changes in the covariance matrices during the algorithm. Thus, for our simulated data
sets, the assumption of fixed covariance matrices seems to be sufficiently met. Since in
reality local outlier detection mostly makes sense only for spatially correlated data,
the theoretical results from Theorem 2.3.0.1 proof to be even more valuable.

Moving Matrix (λ = 0.5) Random Fields (ν = 1.5, N = 25)

N = 64 N = 9 λ = 0.2 λ = 0.9
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Figure A.9: Different convergence behaviors of the objective function. A p = 5 dimen-
sional setting with 5% contamination achieved with completely random
swapping. Each line is the path of one initial set of H-sets along the C-step
iteration according to the algorithm described in Section 2.3.

Moreover, the convergence takes place fast which might be caused by the choice of
the good starting estimates of the detMCD algorithm (Hubert et al., 2012). Another
reason might be that the number of observations that can be used is restricted by the
neighborhood assignments to a smaller number than in a covariance estimation for
the full data set. Very promising is also the rapid improvement at the very beginning,
independent of the simulated data sets.

A.3 Analysis of Runtime

Estimation of ssMRCD Estimators

Here, we present some analysis of computational efficiency of the ssMRCD estimator
and the algorithm proposed.

The iteration process and the increasing number of starting values with increasing
N can have quite an impact on runtime. Nevertheless, as long as the number of
neighborhoods N is not too big, the outlier detection method based on the ssMRCD
is competitive with other local methods (Ernst and Haesbroeck, 2016), especially
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Figure A.10: Analysis of runtime of the ssMRCD for setup 1 with 5% contamination
rate, Nsim = 25 and varying parameter values with default values λ = 0.5,
p = 5, N = 25 and n = 1681 if not varied. The solid line is representing
the mean of 100 repetitions, the edges of the band around the mean the
5% and 95% quantile.
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if p is large (see also Figure A.11. For simulation setup 1 with Nsim = 25, a 5%
contamination rate through completely random switching and 100 repetitions are used
and the parameters p, λ, N and n are each varied univariately. The default values for
parameters not being varied are p = 5, λ = 0.5, N = 25, and n = 1681.

As depicted in Figure A.10, the number of neighborhoods N and the number of
observations n have the most influence on runtime with more than a linear increase.
The nearly quadratic increase for N is partly due to the number of starting values
increasing linearly with N , which could also be reduced to enhance efficiency if necessary.
Interestingly, the dimension p has an approximately linear effect on runtime which
is overall moderate. The smoothing parameter λ does not significantly change the
runtime.

Local Outlier Detection Methods

n =  400 n =  1681 n =  3600
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Figure A.11: Comparison of average (mean) runtime for outlier detection algorithms
using simulation setup 1 with varying number of observations n and
dimension p. The parameter settings from the previous outlier detection
performance simulation study with 200 repetitions are used .

With many dimensions and observations efficiency in computing becomes important.
The results of a short simulation study regarding the runtime of the four outlier
detection techniques with parameter settings of the simulations underlying Figures 2.2
and 2.3 are shown in Figure A.11 for the moving matrix scenario with Nsim = 100.
All methods need more computation time for increasing dimension p, especially the
methods based on covariance estimation and inversion (EH, ssMRCD, F). Also, the
number of observations seems to have a big effect on runtime, especially for the method
of Filzmoser et al. (2013), possibly due to an inefficient implementation of finding
the k-nearest neighbors. Although the local outlier factor (LOF) method is reliably
fast, the ssMRCD seems to be comparably efficient, even though it involves a complex
covariance estimation procedure.
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A.4 Parameter Sensitivity

Before comparing the performance in local outlier detection with other methods, the
parameter sensitivity of the ssMRCD is analyzed in more detail. This simulation study
should simplify the choices of λ and N in particular for real world data and focus on
possible issues connected to suboptimal parameter settings.
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Figure A.12: Outlier detection performance based on the false negative, false positive
rate and the F1-score of the ssMRCD outlier detection method for different
parameter settings. Each point represents the arithmetic mean and the
corresponding bars the 5th and 95th quantile of 100 simulations. For non-
varying parameters the default settings are p = 5, N = 25 (comparable
to ni ≈ 67) and λ = 0.5.

For this purpose, setup 2 (random fields) is considered as simulation setting, with
parameter ν = 3, and β = 5% completely randomly swapped observations. Special
focus is put on the choice of λ and N , but also the effect of dimension p is analyzed. The
other parameters are chosen in accordance to possible default settings. The weighting
matrix is based on the inverse Euclidean distances of the centers of the neighborhoods
ai. Since all considered methods propose k = 10 as a default value, we adhere to
this setting for now. Each parameter combination was simulated for 100 different
realizations. While Ernst and Haesbroeck (2016) suggest to use Cohen’s Kappa as
summary statistic of the confusion matrix, we will use the F1-score due to its good
interpretability and suitability also for imbalanced classification data.
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Figure A.12 shows the false negative rate, the false positive rate and the resulting
F1-score plotted against varying values of λ, N and p, with default values of p = 5,
N = 25 (implying ni ≈ 67 on average) and λ = 0.5. These values should reflect a
quite general and unspecific parameter setting. For illustration purposes it is more
informative to plot the average neighborhood size ni ≈ 1681/N instead of the number
of neighborhoods.

The simulation results show that a higher λ decreases the false positive rate, it has
marginal reduction effects on the false negative rate until too much smoothing masks
real outliers. The overall performance increases moderately in λ, but for λ higher than
0.5 the increase is marginal. Thus, we propose a default value of 0.5 for λ to get the
advantage of the decrease in the false positive rate while avoiding the masking effect
for higher values. Compared to the influence of λ, the effect of the dimension p is more
pronounced. Very small dimensions seem to cover outliers more effectively, probably
due to less available information. Interestingly, the size of the neighborhoods seems to
be relatively irrelevant, at least in this simulation setting. Only a small masking effect
occurs similar to the effects of λ. Too big neighborhoods lead to too much smoothing.
Thus, this might imply to choose a strategy of medium sized neighborhoods to increase
efficiency in computation and reduce unnecessary regularization. This guidance for
the parameter choices might be biased towards this specific simulation setting and
not optimal in other settings, but fixing the parameters with at least a sensible value
simplifies the overall procedure.
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A.5 Local Outlier Detection Performance Analysis
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Figure A.13: F1-Score for all four outlier detection methods with varying contamination
levels achieved through the switching method of Ernst and Haesbroeck
(2016) for different scenarios. Each point represents the mean of 100
repetitions.
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Figure A.14: False positive and false negative rate for all four outlier detection meth-
ods with varying contamination levels achieved through the switching
method of Ernst and Haesbroeck (2016) for different scenarios. Each
point represents the mean of 100 repetitions.
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3 A Performance Study of Local Outlier
Detection Methods for Mineral
Exploration with Geochemical
Compositional Data

This chapter was published as Puchhammer, P., Kalubowila, C., Braus, L., Pospiech,
S., Sarala, P., and Filzmoser, P. (2024a). A performance study of local outlier detection
methods for mineral exploration with geochemical compositional data. Journal of
Geochemical Exploration, 258:107392. DOI: 10.1016/j.gexplo.2024.107392.

3.1 Introduction

Detecting multivariate outliers is one of the most important steps when analyzing
any kind of data. Such outliers could arise from gross errors during data recording,
they could be the result of inappropriate data preprocessing, or they could indicate
observations which are indeed very different from the rest and thus point at unusual
phenomena (Zimek and Filzmoser, 2018). The problem of outlier detection becomes
more difficult when analyzing data with additional attributes that need to be considered,
such as the locations of observations in a spatial data setting. Here, we are often not
interested in the outliers found with standard methods (so-called global outliers) but
we focus on observations that are anomalous with respect to their spatial surrounding.
These observations are called local outliers, and they could indicate interesting locations
to practitioners, e.g., unknown mineral deposits. On the other hand, methods which
use locality (for example geographically weighted methods (e.g. Brunsdon et al., 1998)
or geostatistical techniques (see e.g. Cressie, 2015) can also be heavily influenced by
local outliers.

While the literature for local outlier detection is not as broad as for global outlier
detection, there are still some (multivariate) methods available. We will focus on
three methods based on the pairwise Mahalanobis distance (see Filzmoser et al., 2013;
Puchhammer and Filzmoser, 2024) defined as

MD Σ(x, y) =

(x− y)tΣ−1(x− y)

�1/2 for y ∈ A(x)

for two (multivariate) observations x, y with a robust covariance estimate Σ which can
depend on the spatial attributes of x and y. The set-valued function A(x) returns
observations that are spatially close to an observation x. The three methods differ
in their covariance estimation, specifically in the degree of its locality. The fourth
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method comes from the area of machine learning and is solely distance-based. All of
the four methods compare each observation with its k-nearest neighbors (A(x) returns
the k-nearest spatial neighbors) and calculate a degree of outlyingness that together
with a method-specific cutoff value flag observations as outliers.

The first method introduced by Filzmoser et al. (2013), in the following called
robust local outlier detection method (ROB), is available in the R-package mvoutlier
(Filzmoser and Gschwandtner, 2012) and uses the pairwise Mahalanobis distances
together with a global and robustly estimated covariance matrix, ignoring the spatial
context of the data. The measure of outlyingness for each observation is based on
theoretical properties connected to χ2-quantiles. For more details we refer to the
respective paper by Filzmoser et al. (2013). In contrast, the method of Ernst and
Haesbroeck (2016), here called regularized spatial detection technique (REG), estimates
local covariance matrices based on the k-nearest spatial neighbors for each observation
separately. Thus, for a fixed observation x, the covariance estimation is only based
on observations in A(x). The measure of outlyingness (also called next-distance) is
just the minimum of all MD, miny∈A(x) MD (x, y) of each observation x, and the final
cutoff value to determine outlyingness is the upper fence of an adjusted boxplot based
on all next-distances. Next-distances above the cutoff value indicate local outliers. As
a compromise between using only one covariance estimation and using a covariance
estimation for the local neighborhood of each observation individually, the third method
of Puchhammer and Filzmoser (2024) is bridging the gap by partitioning the space into
groups (e.g. by country boundaries for socioeconomic data, or via grids or clustering
for data without known clear grouping) and estimating a covariance matrix for each
group using the so-called ssMRCD estimator implemented in the R package ssMRCD
(Puchhammer and Filzmoser, 2023). The concept of next-distances from REG is also
applied here to identify outliers. Simulation studies in Puchhammer and Filzmoser
(2024) show that the method ROB tends to have an increased false negative rate since
the global covariance matrix seems to not being strict enough in its estimation of the
local covariance. The method REG leads to an increased false positive rate, because
using only the k-nearest neighbors for the covariance estimation seems to be too strict
by not putting the local estimation into the global perspective. Outlier detection based
on ssMRCD includes some spatial smoothing among spatially close groups, and thus
the broader structure is also taken into account which balances the false positive and
false negative rate.

The last considered method for local outlier detection is the local outlier factor
(LOF) introduced by Breunig et al. (2000) and adapted to the spatial setting according
to Schubert et al. (2012). Since the LOF is purely (Euclidean) distance-based and does
not use the pairwise Mahalanobis distance, there is no need to estimate a covariance
matrix. Instead, a local density based on the Euclidean distance in the feature space is
calculated for each observation and compared with the density of its k-nearest spatial
neighbors. Formally, the base of the LOF is the so-called reachability distance gk
between two objects x and y which is defined by

gk(x, y) = max{dk(x), d(x, y)}
where d is the Euclidean distance and dk(x) the (Euclidean) distance of x to its k-
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nearest neighbor. The density used, also called the local reachability density, is defined
by

lrdk(x) =

�.
y∈Ak(x)

gk(x, y)

|Ak(x)|

!−1

with Ak(x) being the spatial k-nearest neighbors. If the density of an observation is
considerably lower than the density of its neighbors,measured by a local outlier factor

LOFk(x) =

.
y∈Ak(x)

lrdk(y)
lrdk(x)

|Ak(x)|
bigger than 1, the observation is considered a local outlier. The original LOF method
of Breunig et al. (2000) is implemented in the R package DescTools (see Signorell et
mult. al., 2017).

Finding these local outliers is quite important for mineral exploration especially in the
context of geochemical data. Though there are a number of methods such as geological
mapping, geochemistry, geophysical surveys and remote sensed imagery that are used
in mineral exploration to find potential areas for mineral deposits (Marjoribanks, 2010),
in this paper, we are focusing on a geochemical approach in connection with local
outlier detection. In the areas having transported cover, such as glaciated terrains,
mineral deposits are typically found as sub-outcropping under till-cover. In addition,
many ore deposits locate buried under the bedrock surface or even hundreds of meters
depth in the bedrock without outcrop on the surface. That type of buried deposits are
challenging for the mineral exploration due to poor recognition with surface techniques.
However, geochemical data of till and bedrock may provide good targeting criteria for
identifying both sub-outcropping and buried mineral deposits. Local outliers reveal
anomalous data points which highly deviate from the surrounding data variability
in geochemical data sets and may be indicators for mineral deposits in geochemical
explorations (Filzmoser, 2004). Thus, geochemical anomaly detection in general is
crucial for exploring unknown mineral deposits, and applying local outlier detection
techniques in particular can be beneficial in achieving this goal. The type of geochemical
data (i.e. elements) that should be used to identify outliers and then predict possible
deposits may depend on the type of targeted mineral deposit. When detecting Ni - Cu
deposits, as an example, outliers can be associate with high Ni, Cu, PGE, Ti, V, S, Cr
and Co (Maier, 2015).

In this context, also certain relations of element concentrations are often very
insightful. This is connected to the compositional nature of element concentrations
which is an essential aspect and needs to be addressed by any method when applied to
geochemical data. While the assumption of a normal distribution seems valid for many
measurements, the underlying distribution of geochemical data has an inert structure
that must not be ignored. Since geochemical measurements (also called analytical
results) constitute a composition of elements, the sum of the concentrations or parts of
each sample is fixed to the same number. Thus, the underlying geometry of the data
is not the Euclidean but the Aitchison geometry (Pawlowsky-Glahn et al., 2015) and
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the relevant information is not in the absolute values but in the pairwise (logarithmic)
ratios of the parts. Although this geometry seems complicated, many methods can
be applied after appropriately transforming the compositional data to the Euclidean
geometry while additionally taking the original structure (i.e. the simplex) or the
pairwise (logarithmic) ratios of the parts into account for interpretation.

There are various transformations suited for this task (see, e.g., Filzmoser et al., 2018).
We will focus on two of them that are easy to apply and have good theoretical properties.
The first transformation leads to the so-called centered-logratio (clr) coefficients. For a
composition x = (x1, . . . , xD), the clr transformation is defined as

clr(x) =

ln
x1

D

)(D
k=1 xk

, . . . , ln
xD

D

)(D
k=1 xk

 , (3.1.1)

which is essentially the logarithm (per variable) of the observed composition stan-
dardized by its geometric mean. The clr-transformation is isometric, meaning that it
preserves the distance of the Aitchison geometry when using the Euclidean distance in
the transformed space. Also, the interpretation is desirably straightforward and based
on relative information with respect to the (geometric) mean. However, a drawback
present in many applications is that the transformed data matrix does not have full
rank since clr coefficients are based on a generating system and not on a basis of the
Aitchison geometry. This can be overcome by using one of infinitely many orthonormal
coordinates. The transformation of choice in this paper is based on isometric logratio
(ilr) coordinates and known under the name pivot coordinates (e.g. Filzmoser et al.,
2018). The j-th entry of the pivot coordinates of x is defined as

ilr(x)j =

*
D − j

D − j + 1
ln

 xj

D−j

)(D
k=j+1 xk

 (3.1.2)

for j = 1, . . . , D − 1. Since an orthonormal basis is used, we reduce the dimension of
the transformed composition by one and resolve the problem of singularity in general
present for the clr-transformation. Up to a constant we have equality in the first
entry of the ilr and clr transformation, ilr(x)1 ∝ clr(x)1, and thus, the first entry of
ilr coordinates can be interpreted just as easily as the clr-transformation. Note that
although there is a close connection between the first coordinates, it should be kept
in mind that ilr coordinates represent dominance while clr indicates the average of a
composition. However, this close relationship does not apply to the other coordinates
of the ilr-transformed composition which is essentially the one major disadvantage of
the orthonormal basis. We will use both transformations according to their properties,
and choose the transformation based on the questions and requirements arising in our
data analysis.

In this paper we analyze geochemical data by applying local outlier detection
techniques to three data sets differing in scale and data quality. We show the importance
of data preprocessing steps and the usage of compositional data analysis methods,
describe the problems encountered with data having insufficient quality and debate

60



3.2 Data Description and Preprocessing

possible solutions that adequately account for the compositional nature. Moreover,
we show how different local outlier detection techniques perform on different scales
and analyze in which cases some methods might be less appropriate to find mineral
deposits. Some ideas on outlier diagnostics, method evaluation, and filtering of outliers
based on common compositional data transformations are also discussed to complete a
thorough local outlier analysis in the compositional data setting.

The paper is organized as follows. In Section 3.2 we describe the three data sets
and corresponding preprocessing steps before applying the four local outlier detection
methods in Section 3.3. The final two sections summarize and discuss the findings and
provide overall conclusions.

3.2 Data Description and Preprocessing

For illustration purposes we choose three data sets differing in spatial scale, sampling
scale and data quality to showcase the differences and specifics of the four selected
outlier detection methods. The locations of the samples of the different data sets are
depicted in Figure 3.2.1.

The first data set is the so-called GEMAS data set described in Reimann et al.
(2014a,b). The data consists of agricultural soil samples that cover most of Europe
in a density of 1 sample per 2500 km2, see Figure 3.2.1 left. The 2108 samples were
analyzed by X-ray fluorescence, following tight quality control procedures, resulting in
concentration values for 41 chemical elements. Here we use the data set published in
the R-package robCompositions (see Templ et al., 2011), named as data set gemas. It
contains only elements with less than 3% of the analytical results below the detection
limit, resulting in 18 main elements with good data quality.

The other two data sets are used for till geochemical analysis (regional till geochem-
istry, targeting till geochemistry and mineral deposits) in Finland. They are provided by
the Geological Survey of Finland (1995, 2013, 2016) (GTK) and modified as described
below. The regional till data set covers whole Finland and it has been collected during
the period of 1983 to 1991. This data set contains the concentrations of 22 - 26 elements
(depending on the map sheet – in the selected area we have 22 elements available),
see Table 3.2.1. The samples have been collected from the C horizon, which contains
unaltered till. The sampling depth is approximately 1.5 - 2 m. The sampling density
is 1 sample per 4 km2 and the full data set comprises of 82 062 samples. Furthermore,
concentrations of 22 - 26 elements that can be extracted by aqua regia have been
analyzed for fine fraction of the till material less than 0.06 mm and the data has been
published by 1:400 000 map sheets (Salminen and Tarvainen, 1995).

The final data set, the targeting till geochemical data set, contains around 385 000
soil samples collected by GTK along sample lines in certain areas between the years
from 1971 to 1983. Most of them are till samples, however samples from sorted mineral
soils, weathered bedrock and mixed intermediate forms also exist in the data set. In
this paper, only till samples collected using percussion drilling and test pitting methods
from the C horizon which contain fine (less than 0.06 mm) fractions are considered.
The samples have been collected by 1:100 000 map sheets. The point density of the
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samples lies between 6 - 12 samples per 1 km2 where the line interval is 500 – 2000 m
and the distance between two points is 100 - 400 m. The average depth of the samples is
2 m, and an emission quantometer method has been used to measure the concentration
of 17 elements listed in Table 3.2.1 (Gustavsson et al., 1979).

For the data analysis in Section 3.3 we do not use the complete regional and targeting
till data sets, but choose data subsets covering only the area from Central Lapland
depicted in Figure 3.2.1 (right), which is partitioned into four smaller areas or map
sheets by GTK. This area contains many known mineral deposits and provides sufficient
data quality in terms of enough reliable measurements, which is not provided in all
areas for the targeting till data set. By taking the same sampling area for these two
data sets, we are also able to compare their usefulness for mineral exploration with
local outlier detection methods.
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Figure 3.2.1: Map of research areas. Left: Grey crosses indicate sample loca-
tions of the GEMAS project while the black dots represent the
reference sites of the SEMACRET Project (2023). The rectangle
in the Northern part of Finland represents the four selected map
sheets of the regional and targeting till data set shown on the right.
Right: Sample locations of regional till (black crosses) and targeting till
(gray dots) data, partitioned into four map sheets. Each triangle indicates
a known mineral deposits.

3.2.1 Data Preprocessing

The element selection based on the detection limit threshold of 3% for the GEMAS
data set constitutes a compromise between rejecting too many elements, and keeping
too many elements with low data quality. Removing said elements ensures that most
of the reliable information of this data set is extracted. Due to the high data quality
in general, no further preprocessing is necessary.
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The selected subset of the regional till data set generally has good data quality.
However, for some elements it contains values below the lower detection limit, and
other data quality issues. Therefore, additional data cleaning is required. The right
part of Table 3.2.1 shows the percentages of values with the data problems mentioned
before for the selected 4 map sheets. We decided to exclude Zr and Th for all further
analyses. The remaining data quality issues are not connected to detection limit
problems, since only Zr and Th where erroneous in this way. A small amount of
analytical results have additional markers in the data with unclear encoding. The
benefit of the additional information saved trough this procedure outweigh possible
negative effects on data analysis and the differently marked analytical results are
kept in the data. We refer to Mert et al. (2016) for an analysis of contamination on
compositional data transformations. The resulting regional till data set has thus 870
samples and 20 variables.

Compared to the previous data sets, the targeting till geochemical data set has serious
data quality issues, typically connected to values related to detection limits, zero and
even negative analytical results, and values marked with special symbols. Therefore,
extensive data cleaning is required in order to perform further statistical analyses and
modeling procedures. The percentages of insufficient quality of samples per element
and map sheet areas are calculated and shown in Table 3.2.1 left. Eventually, elements
which contain more than 30 percent of problematic samples over all map sheets (e.g.,
Ag, Pb and Zn) are removed from all further analyses.

Furthermore, the geochemical analysis of the targeting till data set has been carried
out at different times and map sheets. Therefore, it is necessary to analyze a possible
mismatch and if the measurements are comparable. Figure 3.2.2 illustrates the spatial
concentration of Fe in both till data sets separately. It is evident that there are
discontinuities at the map sheet boundaries in the targeting till data set due to
inconsistencies during the geochemical analysis done by quantometer method. These
discontinuities are not present in the regional till data, where there is a change of
geological units from Archean and Proterozoic to only Proterozoic origin visible. Thus,
after displaying clearly visible map sheet boundaries and discrepancies between map
sheets at least for Fe that are not due to the underlying geology it was decided to
analyze the map sheets (1:100 000 scale) separately for the targeting till data set, as
the smaller areas also contain enough sample points to carry out the analysis.

To improve data cleaning further, also Q-Q plots are used to examine the distribution
of concentrations between different map sheets in the regional as well as in the targeting
till data set where only elements with less than 30% of quality issues are included.
For the Q-Q plots, we focus on the elements Co, Cr, Cu, Fe, Ni, V, and Ti, which
are important ore metals in ultramafic rocks, and thus of special interest for mineral
exploration. As example, the concentration values of Fe for all four map sheets
separately are shown by Q-Q plots for the targeting till data set in Figure 3.2.3(a)
and for the regional till data set in Figure 3.2.3(c) as well as the corresponding clr
transformed values in Figure 3.2.3(b) and in Figure 3.2.3(d), respectively. The Q-Q
plots for Fe vary between map sheets (M4, M5, M11, M12) but especially between
the two data sets. With respect to the average concentration level per map sheet we
even see adverse ordering in original as well as clr transformed values for regional

63



3 A Performance Study of Local Outlier Detection Methods for Mineral Exploration

Targeting till (%) Regional till (%)
Element M4 M5 M11 M12 M4 M5 M11 M12

Ag 100 100 100 100 - - - -
Al 91.17 93.84 4.64 16.63 0 0 0 0
Ba - - - - 0 0 0 0
Ca 1.13 2.02 27.09 53.87 0 0 0 0
Co 16.27 18.52 3.04 8.24 0 0 0 0
Cr 86.65 6.82 6.33 4.16 0 0 0 0
Cu 1.27 4.39 0.96 1.93 0 0.36 0 0
Fe 0.03 0.87 0.73 1.80 0 0 0 0
K 1.96 3.44 35.66 9.60 0 8.02 0 0
La - - - - 0 0 0 0
Li - - - - 0 0 0 0
Mg 0.03 0.06 0.01 0.03 0 0 0 0
Mn 2.17 1.14 2.71 2.74 0 0 0 0
Na 0.37 0.40 15.90 4.38 - - - -
Ni 0.24 0.33 0.18 0.46 0 1.45 0 0
P - - - - 0 0 0 0
Pb 99.58 91.95 97.35 97.71 - - - -
Sc - - - - 0 0 0 0
Si 0 0.47 0.01 0.07 - - - -
Sr - - - - 0 0 0 0
Th - - - - 5.88 15.32 9.52 1.92
Ti 0 0.27 0.01 0.01 0 0 0 0
V 0.27 0.94 1.03 3.72 0 0 0 0
Y - - - - 0 0 0 0
Zn 98 22.04 91.48 60.58 0 0 0 0
Zr - - - - 11.02 7.66 36.90 44.87

Table 3.2.1: Percentages of problematic data quality of the targeting till and regional
till data set for different elements with respect to corresponding map
sheets. The values of the elements per map sheet used after the final data
cleaning are underlined.
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Figure 3.2.2: Illustration of discontinuities of Fe (%) between map sheets in the targeting
till (right) compared to regional till data set (left). Clear boundaries are
visible between the map sheets in the targeting till data set.

and targeting till, which is congruent with Figure 3.2.2. Note that Q-Q plots alone
are not sufficient to diagnose map sheet leveling problems but the adverse ordering
could still be a strong indicator of them. However, other quantitative differences
between the two data sets might be mainly due to different analytical techniques.
Interestingly, the clr transformation based in the regional till data set reorders the
average relative level of Fe between map sheet M4 and M12 indicating that using the
appropriate compositional data structure adds important information which would
be ignored otherwise. Regarding differences between the map sheets per data set for
other elements (Co, Cr, Cu, Ni, V, and Ti) shown in B.1 it is less clear whether they
originate from map sheet problems or from spatially changing lithology. Finally, the
distributions of elements for all map sheets, elements and data sets seem to be plausible.
Apart from some lower detection limit problems in the targeting till data set, which
will be taken care of in the next step, we do not need to account for any extensive
rounding, grouping or other distributional issues that might occur.

After the extensive map sheet analysis of the targeting till, the final data cleaning is
necessarily done per map sheet. In order to use as many elements as possible, we start
by removing samples that have at least one zero value of element concentration. Also
observations with more than 30% of problematic values over all elements provide a
restricted amount of reliable information and are removed. Due to the high sample
density, we still keep enough observations to make sensible analysis when applying the
rather strict row cleaning (M4: 2417 samples, M5: 1399 samples, M11: 5821 samples,
M12: 4557 samples). Note, that for data sets of lower sample density, the decision
between having less samples or less elements available after data cleaning is less clear
than in this case. Finally, only the elements that have less than 5% problematic values
per map sheet are used, which are underlined in Table 3.2.1. This is again rather strict,
but we hope to reduce the number of local outliers connected to poor data quality
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Figure 3.2.3: Q-Q plots of Fe: (a) original concentration in targeting till, (b) clr
transformed concentration in targeting till, (c) original concentration in
regional till, (d) clr transformed concentration in regional till, n (targeting
till) = 16460, n (regional till) = 870.
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or detection limit problems. Imposing the even stricter limit of 3% similar to the
GEMAS data set is not applicable for this data set, since many more elements would
be lost for the analysis. However, note that the effects of some data quality issues on
compositional transformations will be present but limited (Mert et al., 2016).

After the final data cleaning of both data sets, targeting and regional till, the
last preprocessing step is to address the compositional nature of the geochemical
data (for targeting till again per map sheet). Although the clr-transformation is
isometric regarding the Aitchison geometry and easy to interpret, the linear dependency
introduced is problematic. In the case of covariance estimation we would get a singular
matrix which is not invertible. However, this is a necessity for the pairwise Mahalanobis
distance and the three methods based on it. Thus, it is sensible to choose ilr coordinates
for the regularized spatial outlier detection technique, the robust local outlier detection
method and the ssMRCD-based outlier detection technique to avoid this problem. Since
LOF does not need a covariance estimation and is strictly (Euclidean) distance-based,
any transformation for compositional data which is isometric can be applied. Thus,
both ilr and clr can be used, and due to isometry both lead to the same local outlier
factor and thus, to the same local outliers.

3.3 Data Analysis

After finishing the preprocessing and data cleaning steps and the compositional data
transformations, the four outlier detection methods can be applied to the transformed
data. Regarding the parameters, we generally adhere to default settings wherever
sensible. For all four methods we compare each observation with the same amount of
k nearest neighbors. Setting k influences the locality of the local outlier detection in
all methods since we are looking for an anomaly compared to samples from a larger
area. For a more detailed analysis of the effects of different k values we refer to Braus
(2023). Since the considered data sets differ in sample size and density, k is adjusted
to the data sets. The parameters for the ssMRCD-based method are a smoothing
parameter λ = 0.5, representing a compromise between local and global covariance
estimation. Neighborhoods are defined data specific and the weighting matrix for
smoothing between neighborhoods is defined as the pairwise inverse distance of the
neighborhood spatial centers, which is the most natural choice for data without inherent
spatial structural breaks. For LOF a value above 1.5 is flagged as outlying, and for the
regularized spatial detection technique we want to include all observations (βREG = 1)
independent of local heterogeneity. As regularized covariance estimator, the Minimum
Regularized Covariance Determinant estimator (Boudt et al., 2020) with a trimming
percentage α = 75% is chosen, meaning that 75% of the k-nearest neighbors are used
for the local covariance estimation. Regarding ROB, all other parameters including
the amount of neighbors allowed to be similar as well as the cutoff value are adjusted
to the spatial scale of the data.
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3.3.1 GEMAS Data

For the GEMAS data set we use the following parameter setting for the different
local outlier detection methods: We choose k = 10 for all methods, a standard
settings, and N = 50 neighborhoods for the ssMRCD estimation which reflects an
appropriate level of locality given the sample density and ensures sufficient observations
per neighborhood. The neighborhoods are selected by k-means clustering based only
on the spatial attributes of the data and checked for reasonably sized spatial clusters.
For the robust local outlier detection method (ROB) we allow 10% of the neighbors to
be similar (βROB = 0.1) due to the large area covered and the sparse sampling of the
GEMAS data set, and choose an isolation degree bigger than 0.2 as cutoff value. These
parameter choices are also supported by the work of Braus (2023). As some indicator
for performance we also include the reference sites of the SEMACRET Project (2023)
in Figure 3.2.1 (left). Finding these reference sites can be interpreted as analysis goals.
However, on the one hand this approach is unbalanced since a high number of found
outliers already leads to an improved performance, and on the other hand unknown
mineral deposits are not taken into account. Nevertheless, we get more insight into
possible drawbacks of different methods.

The flagged outliers per method are shown in Figure 3.3.1. Starting with the most
global method, the robust local outlier detection method (ROB), problems connected
to the global covariance estimation are evident. For the robust covariance estimation,
the MCD estimator (Rousseeuw, 1985) is used which selects a subsample of the data
with the lowest determinant of the sample covariance based on this subsample. On the
GEMAS data set, the subsample contains mainly observations from Middle to Northern
European countries, thus leading to a covariance not representing Southern Europe
and to an unbalanced and somewhat biased spatial distribution of the outliers. For the
regularized local outlier detection technique (REG), the outliers are more or less evenly
distributed. However, the problem of a high number (almost 15% of the observations)
of outliers arises which is likely connected to an increased false positive rate. The high
amount of outliers makes it difficult to get more valuable insight into the data rendering
the method essentially useless without further processing. Both, the ssMRCD-based
and the LOF-based outlier detection method seem promising, however it seems that
the ssMRCD finds most reference sites, including a strong signal very close to the
ultra-mafic intrusion body in Beja (see Figure 3.3.2b). Note that the mineral deposit
in Suwalki in North Poland is assumed to be multiple hundreds of meters deep under
the surface, so it is unlikely that it affects the soil sufficiently. Moreover, LOF does not
flag the soil sample from the Canary Islands as outlying which would be sensible given
that the ten nearest neighbors are located far away somewhere in South Spain.

Although the element selection in the GEMAS data set might not be oriented towards
mineral exploration, the data quality is very good and it is well suited to discuss further
processing steps. After applying the four methods we end up with many potential
locations for mineralisation or other anomalous observations. Thus, a closer look at
the identified outliers is quite important since finding mineralised areas can be very
expensive, and additional analysis can improve the identification of important locations.
We are interested in utilizing potential mineralisations by mining, hence high values of
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Figure 3.3.1: Spatial locations of flagged outliers (marked as cross) by each method
separately on the GEMAS data set. The black dots represent areas of
interest in the SEMACRET Project (2023) where mineral deposits are
anticipated.

(a)

(b)

Figure 3.3.2: Outlier diagnostics for (a) observation 530 which is closest to the Akan-
vaara area, and for (b) observation 189, closest to the ultra-mafic intrusion
body in Beja, each colored in red. The two parallel coordinate plots
show the multivariate structure of the observations and corresponding
10 nearest neighbors in gray, once in percent (upper part) and once in
clr-transformed values (lower part).
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elements in clr coordinates (meaning high concentrations relative to other elements)
but also in total concentrations are desirable. Thus, we employ a filtering procedure
on all flagged outliers keeping only those observations which have clr and measured
concentration levels simultaneously above the global 95% quantile for at least one
element. In Table 3.3.1 the total numbers of outliers, filtered and unfiltered, are shown
for all three data sets. Depending on geological knowledge and the type of mineral
deposits that should be found, the selection of elements for the filtering procedure can
be further specified in concrete applications. For finding potential Ni-Cu mineralisation,
the elements in the filtering procedure can be tailored specifically to high Ni and Cu
and other connected elements (see also subsection 3.3.3).

The number of outliers is reduced by the filtering procedure, but for single observa-
tions we can still improve on the analysis to increase the chance of finding valuable
mineral deposits. A possible diagnostic tool is based on parallel coordinate plots which
can give insight into the multivariate structure. Each observation is represented by a
line, and the values of each variable on the horizontal axis are connected. We focus on
the comparison with the k-nearest neighbors. Together with insight into the underlying
bedrock, the corresponding observation can be interpreted as interesting new target
for further exploration or discarded as uninteresting anomaly. In Figures 3.3.2a and
3.3.2b, two of the flagged outliers which are closest to the Akanvaara area and Beja
are analyzed in comparison to their 10 nearest neighbors (colored in gray) using the
parallel coordinate plot.

Regarding the outlier next to Beja in Portugal, which was flagged only by the
ssMRCD-based method, we see high values in Ca and Mg and particularly low values
in K. This fits well to the known geology in this region. While the neighbors are
mostly located on sand (3 samples) and on the South-Portuguese Flysch zones (4-5
samples) which are composed of higher Al, Si, Fe, K as well as hardly any Ca and
Mg (Jorge et al., 2013), respectively, the flagged outlier lies on the layered Gabbroic
Sequence at Beja which is consistent with the elemental composition of the outlier as
it contains olivine bearing gabbroic rocks which are bordered by heterogeneous diorites
(Jesus et al., 2014). Gabbro usually contains minerals which associate with Ca and
Mg such as pyroxene, plagioclase, and olivine of which weathering release Ca and Mg.
The depicted high values in Ca and Mg are thus indicators for the Caliche type of
weathering, which is typical in that type of climate for (ultra-)mafic lithologies. Also,
low Si and slightly higher Cr with respect to neighbors indicate weathering of gabbroic
rocks.

For the outlier indicated by the methods LOF, REG and ssMRCD near the Akanvaara
deposit and the so-called Koitelainen deposit north-western of Akanvaara, higher values
can be observed for Fe and Mn with respect to the nearest neighbors (Figure 3.3.2a).
The Akanvaara deposit is located in Northern Finland (eastern part of the Central
Lapland greenstone belt) and it is considered as a layered mafic intrusion which hosts
vanadium mineralisation in layers of magnetite gabbro and also in chromitite layers
within gabbro. These two layers have been mineralised by massive, semi-massive and
disseminated magnetite, pyrite, chalcopyrite and chromite (Lutynski, 2019). Koitelainen
also an ultramafic deposit which is enriched by commodities such as Cr2O3, V, Fe
and PGE. The flagged outlier is closer to the Koitelainen deposit than the Akanvaara
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deposit where the distances from the outlier to the deposits are approximately 17 km
and 72 km respectively. Thus, when considering the flagged outlier for these deposits,
elevated amounts of elements such as Cr, V, Cu are also expected other than Fe in order
to identify it as an indicator for Akanvaara and Koitelainen. However, the GEMAS
data are for grassland areas and Akanvaara locates inside largely forested area without
close vicinity to grasslands. Furthermore, since this flagged outlier associates with only
high Fe and Mn, it cannot be 100 percent certain that it indicates the Akanvaara or
Koitelainen deposits, but it is certain that it indicates a mafic environment where there
is a possibility for a mineral deposit.

3.3.2 Regional Till Data

For the regional till data set some parameter settings are adjusted. We again compare
single observations with their k = 10 nearest neighbors. For the ssMRCD-based
method, each of the 4 map sheets is chosen as an own neighborhood. This choice is
due to the very dense sampling grid, but simulations in Puchhammer and Filzmoser
(2024) also suggest that the method is rather insensitive to the number of neighbors, as
long as some smoothing by the parameter λ is performed. For the robust local outlier
detection method (ROB), we increase the percentage of neighbors allowed to be similar
to 30% (βROB = 0.3) due to the smaller scale of the sampling area and choose an
appropriate cutoff value for the isolation degree of 0.4. We refer to Braus (2023) for
sensitivity analyses with respect to the choice of these parameters.

Interestingly, due to the smaller scale of the data we have the advantage of known
mineral deposits (Geological Survey of Finland, 2016). There are 48 known mineral
deposits of various types in the research area depicted as red rectangles in the right
part of Figure 3.2.1. Ideally, our methods find these locations. However, since generally
there are no samples directly on the deposits, we define a deposit to be found if an
outlier is located 4 km or closer to the deposit. This might seem like quite far, but
for an average density of one sample per 4 km2 and historical glacial movement this
distance is quite reasonable. Note, that this is not a guarantee that the outlying sample
detecting the deposit has a typical element composition connected to the specific
deposit type. Hence, it might be possible, that the sample is outlying due to other
processes. Moreover, it would be preferable if the methods find the deposits as the
most extreme outliers. Thus, we rank the outliers according to their outlyingness value,
and analyze how many deposits are found until which outlier rank.

The left part of Figure 3.3.3 shows how many deposits are found by outliers up
to the rank depicted on the horizontal axis for the regional till data set, with and
without the filtering procedure described in the prior subsection. We see that filtering
outliers reduces the number of outliers overall. However, for the regularized spatial
outlier detection technique, the ssMRCD-based method and also the LOF there is
an improvement in accuracy, meaning more deposits are found earlier. The degree of
the improvement differs among methods, from strong for REG to negligible for LOF.
Nevertheless, the filtering tool proves to be valuable if a subselection of outliers is
necessary.
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Figure 3.3.3: Performance of local outlier detection methods on regional (left) and
targeting (right) till data for filtered and unfiltered flagged outliers. The
dashed line represents the number of known mineral deposits. The
methods applied to the regional till data set have better performance
than for targeting till, as can be seen for the first 30 outliers (dotted line).

3.3.3 Targeting Till Data

Finally, the targeting till data set is used for the analysis. As discussed in Section 3.2
it is most sensible to analyze the four map sheets separately. The data also provides
a structure of smaller sub-mapsheets, 12 for M4 and M5 and 6 for M11 and M12,
respectively, that are used as neighborhood structure for the ssMRCD-based method.
The only other parameter setting that is changed compared to the regional till data
analysis is k, the number of neighbors to be compared with each observation. Due
to the high sampling density, we increase k to 30 to find appropriate local outliers.
Since we have 16 times more observations than in the regional till data set for the same
area, the necessary distance to a known mineral deposit for it to be defined as found is
reduced to 1 km in order to compare the performance of the data sets fairly.

Due to the separation of the map sheets in the analysis and the fact that we have a
different set of elements per map sheet, we cannot compare the degree of outlyingness
without adjustments. Thus, for each map sheet the outlyingness is standardized with
its cutoff value to reduce the effects of separate analysis, and then the observations is
ranked jointly by the standardized outlyingness.

The results can be seen in the right panel of Figure 3.3.3, again with unfiltered
and filtered outliers. The methods flag many samples as outlying and for ROB and
REG filtering significantly reduces the number of outliers while increasing accuracy.
Ideally, the curves would jump at the very beginning up towards the number of known
deposits. We can see that the ssMRCD-based method is closest to the ideal, both with
and without filtering of outliers.
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Figure 3.3.4: Outlier diagnostics for an outlier (red cross) close to the Saattopora-
Cu deposit (right triangle). The two parallel coordinate plots show the
multivariate structure of the observations and its corresponding 30 nearest
neighbors in gray, once in percent (upper part) and once in clr-transformed
values (lower part).

As mentioned before it is also possible to use a specific set of elements for filtering
that match a deposit type of interest. As illustration we now try to find a (known)
Ni-Cu deposit by filtering according to Ni, Cu, Ti, V, Co and Cr (see section 3.1). Three
of the four methods (LOF, REG, ssMRCD) flag the sample analyzed in Figure 3.3.4
as outlier, which is less than 1 km away from the Saattopora-Cu deposit hosting Cu
together with Au, Ni, Co and Ag. High values in Ni, Ti and Co of the flagged sample
imply that the Ni-Cu deposit is connected to its outlyingness.

Comparing the results of the two data sets shown in Figure 3.3.3, we can clearly see
that significantly more mineral deposits are potentially found by less flagged outliers
using the regional till data set. In the case of mineral exploration this is definitely
desirable since each outlier would need to be analyzed more closely. By providing
that valuable outliers have high ranks in outlyingness, the effort and time spent on
additional analysis is reduced. Note that outlier detection with the regional till data
set might be more accurate than with the targeting till data set just because of the
availability of more elements. This seems to be an important factor in finding certain
types of ore deposits compared to a higher sampling density.

Another interesting approach is to analyze if the (potentially) found mineral deposits
are the same or if the data sets lead to different results. In Figure 3.3.5 the outlier rank
of the found deposits for both data sets are shown, for filtered and unfiltered outliers,
and summarized in Table 3.3.2. In most cases, the number of found deposits is hardly
affected by the filtering procedure. This indicates that the filtering process designed
for subselecting outliers really leads to more accuracy in finding mineral deposits.
Again, we can see that analyzing outliers from the regional till data set is effectively
detecting ore deposits since many of them are found with a much lower outlier rank.
Interestingly, the ore deposits found differ between the data sets used. This reflects
also the size and type of ore deposits which would mean that with sparse sampling
grids bigger outcropping or sub-outcropping mineralisations are possibly found but
with increased sampling density the detection of smaller sub-outcropping and buried
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Figure 3.3.5: Found mineral deposits per outlier rank for unfiltered outliers (a) and
filtered outliers (b) in either the regional and/or the targeting till data
set. Jointly found deposits are marked by dots, deposits found only by
one method are marked as gray crosses.

deposits is improved.

Unfiltered Filtered
Method GEMAS Regional Targeting GEMAS Regional Targeting

LOF 36 17 420 24 15 359
REG 311 115 943 182 59 640
ROB 66 13 595 28 5 167

ssMRCD 64 26 431 48 21 379

# samples 2108 870 14194 - - -

Table 3.3.1: Number of flagged outliers for each method and data set, unfiltered and
filtered by high values in clr values and non-transformed measurements in
at least one element.

3.4 Summary and Discussion

In this paper we demonstrated the suitability of local outlier detection methods for
the purpose of mineral exploration in geochemistry. Generally, local outlier detection
incorporates the spatial neighborhood of the samples in order to identify local anomalies
in the multivariate element composition. The analyzed data sets are of different scale,
sample density and data quality, and they also vary in the number of available element
concentrations. However, the geochemical data sets have in common that they are
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Unfiltered Filtered
Method Regional Targeting Both Regional Targeting Both

LOF 12 18 5 11 17 4
REG 39 27 24 31 22 15
ROB 2 18 1 1 9 1

ssMRCD 17 19 7 15 18 6

Table 3.3.2: Number of found deposits for each method and data set, unfiltered and
filtered by high values in clr values and non-transformed measurements in
at least one element. Maximum number of deposits possible to find is 48.

of compositional nature, which made it necessary to process them with tools from
compositional data analysis.

The different methods for multivariate local outlier detection mainly vary in the way
how they estimate the covariance matrix to compute pairwise Mahalanobis distances.
The simplest approach is to use a joint global covariance matrix. The other extreme is
to use separate covariance estimates for each local neighborhood. A third, recently
proposed methods tries to find a compromise between those two extremes, with the idea
that the robust covariance estimation should change smoothly across the neighborhoods.
These methods are compared to a procedure called LOF (Local Outlier Factor), which
incorporates Euclidean distances between the multivariate observations, and thus is
based on a very different concept.

While all methods find mineralisations, we have shown that they also have their
limitations, ranging from biased covariance estimation to an extensive flagging of
outliers and not finding reasonable spatial outliers. With known mineral deposits it
is possible to evaluate the methodologies on real data and analyze their performance
in more detail. However, the considered mineral deposits are of very different type,
and one might have to go into much more detail to see if the compositions of the
identified outliers really reflect the type of mineralisation, or if the elements used in
the analysis are even appropriate for this purpose. Moreover, it can also happen that
some of the identified outliers point at new yet unknown mineralisations, which makes
the evaluation used in this paper biased.

Thus, next to appropriate outlier detection methods, it is also important to use
diagnostic tools to verify if the indicated outliers indeed point at mineralisations. We
introduced exploratory procedures that combine relative and absolute information, as
outliers are supposed to be atypical in the multivariate compositional data space, but
at the same time they are supposed to have high concentration values for particular
elements.

Next to a data subset from the GEMAS project we evaluated the procedures for
two data sets from the same area in Finland, measured in different years, with a
very different sampling density, and yielding different sets of elements with different
data quality. The main question was if higher sampling density would also lead to
higher accuracy for mineral identification. However, the crucial point for mineral
identification seems that not only the commodity elements need to be available, but
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also complementing elements that allow to understand and characterize the geological
situation.

3.5 Conclusions

A general but possibly obvious conclusion is that also for local outlier detection,
data quality is more important than quantity. However, it is not just quality which
matters, it is also the set of elements which needs to be big enough in order to cover
the complexity of the geochemistry that experts would expect to find at mineralised
zones. Here, rare elements such as gold could be very valuable, provided that they are
measured with sufficient quality. Elements measured with low quality, as for example
with a high proportion of values below the detection limit, will negatively affect the
log-ratio transformations used in compositional data analysis. In more detail, an
observation where just one element has a value below the detection limit could end
up in a multivariate observation of the compositionally transformed data set with all
entries being distorted. This could lead to a very high proportion of outliers, where
local outlier detection methods could fail to work correctly.

For the tested local outlier detection methods it is known that some are very sensitive
and may lead to a too strict rule for indicating outliers. Also the way how the methods
work internally is very different, and therefore these methods are flagging different sets
of outliers. From a theoretical point of view, the ssMRCD method will be preferable
over the methods REG and ROB in case where the investigated area shows geochemical
differences, e.g. as a result of different underlying processes (pollution sources, soil
formation, environmental conditions, etc.). The LOF method tends to identify data
points that are isolated in the multivariate space. Thus, if the sampling is dense and
the observations continuously change towards the mineralisation, this method may fail
to see samples on top of mineralised zones as outliers. Nevertheless, a strategy could
be to use multiple local outlier detection methods to balance their advantages and
limitations.

For sampling strategies it follows that a lower density with more analyzed elements is
desirable to high density sampling with low data quality. When interesting locations are
found with sparse data, the density can then still be increased in further studies adjusted
to the specific ore type and deposit size to also find smaller targets (for example, vein
type or small sub-outcropping deposits). Nevertheless, statistical analysis alone is
limited and always needs cooperation with experts providing interpretation of outliers
and classifying them as potential mineral deposits worth to be analyzed further.
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Appendix B

B.1 Q-Q Plots

Figure B.1: Q-Q plots of Co: (a) original concentration in targeting till, (b) clr trans-
formed concentration in targeting till, (c) original concentration in regional
till, (d) clr transformed concentration in regional till.
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Figure B.2: Q-Q plots of Cr: (a) original concentration in targeting till, (b) clr trans-
formed concentration in targeting till, (c) original concentration in regional
till, (d) clr transformed concentration in regional till.

Figure B.3: Q-Q plots of Cu: (a) original concentration in targeting till, (b) clr trans-
formed concentration in targeting till, (c) original concentration in regional
till, (d) clr transformed concentration in regional till.
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Figure B.4: Q-Q plots of Ni: (a) original concentration in targeting till, (b) clr trans-
formed concentration in targeting till, (c) original concentration in regional
till, (d) clr transformed concentration in regional till.

Figure B.5: Q-Q plots of Ti: (a) original concentration in targeting till, (b) clr trans-
formed concentration in targeting till, (c) original concentration in regional
till, (d) clr transformed concentration in regional till.
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Figure B.6: Q-Q plots of V: (a) original concentration in targeting till, b) clr trans-
formed concentration in targeting till, (c) original concentration in regional
till, (d) clr transformed concentration in regional till.
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4 Sparse Outlier-Robust PCA for
Multi-Source Data

This chapter was published as Puchhammer, P., Wilms, I., and Filzmoser, P. (2024b).
Sparse outlier-robust PCA for multi-source data. arXiv preprint arXiv:2407.16299.

4.1 Introduction

Principal component analysis (PCA) is undoubtedly one of the most important unsu-
pervised statistical methods available. The basic idea is to project the observations
in a given data set onto a new vector space with orthonormal basis where each basis
vector is a linear combination of the original variables constructed to capture the
highest variability for the first basis vector, the second highest variability for the
second basis vector and so on. The new variables are called principal components
(PC), the coordinates of the PCs in the original variable space are called loadings and
the coordinates of the observations with respect to the PCs are called scores. Often,
only the first few PCs that catch a majority of the variance and thus of the available
information are analyzed. As such, PCA finds widespread application across numerous
areas, such as dimensionality reduction, visualization, clustering, feature engineering
and many more.

Standard PCA—PCA based on the sample covariance—has, however, three important
shortcomings when it comes to analyzing modern data sets. First, modern data sets
often consist of many variables. Then sensible, efficient and correct interpretation of
scores and loadings can get difficult since the loadings obtained via standard PCA are
often a combination of all variables involved. Moreover, by focusing the interpretation
on large absolute loading entries and ignoring small ones, whether intentionally or
not, misleading interpretation results can be produced as discussed in Cadima and
Jolliffe (1995). Therefore, inducing sparsity in the loading entries is necessary to ensure
correct interpretation of PCA results. Sparse PCA (see Section 4.1.1) has become
fundamentally important in a variety of applications.

Secondly, standard PCA is often applied to a single data set, yet many modern
applications entail multiple related data sets from different sources for which PCA
needs to be performed jointly. Classical examples of such multi-source data are time
series data that can be grouped based on time increments like months or years, spatial
data with groups based on spatial proximity or nationality, or more general subgroups
based on e.g., demographics, socioeconomic status or other external variables. Even
though PCA can still be applied globally on the whole data and structural changes
might still be identified in the scores, the question of which variables drive the variance
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4 Sparse Outlier-Robust PCA for Multi-Source Data

in different groups or data sets remains unanswered as such. On the other hand, fully
localizing PCA by applying it on each subgroup individually ignores the overall inert
link between the subgroups, rendering the individualistic approach inappropriate. Thus,
the local and global aspect of the data needs to be addressed simultaneously. Moreover,
in the multi-source PCA setting with N sources, sparsity and especially structured
sparsity patterns are well suited. By analyzing multiple related data sets, we end up
with N -times more loading entries than for a global PCA approach. Thus, sparsity
in each entry is important. However, due to the interconnection of the data sets and,
thus of the loadings, structured sparsity, here meaning sparsity in entries of the same
variable for all sources simultaneously, can be present in the data sets as well. Including
a structured sparsity inducing combination of groupwise and elementwise penalties can
then increase accuracy in PCA or also regression results as demonstrated by Jenatton
et al. (2010) and Simon et al. (2013), respectively, for groupings of variables in a
global context. Although other disciplines have already explored multi-source data
successfully, multi-source PCA analysis remains under-explored (see Section 4.1.1).

Third, standard PCA is not robust to outliers (aka anomalies). Yet, variability
analysis in modern multi-source data sets also requires that outliers are taken care of
reliably. By definition, outliers do not behave like the majority of the data and lie
outside of the multivariate point cloud of regular observations. Thus, outliers inherently
increase variability measured by classical estimators and distort the direction of high
variability towards them. Since we are interested in the direction of variability of
the data majority, robustness in estimators for variability, i.e. covariance matrices,
must be used. Well-known robust covariance estimators are for example the minimum
covariance determinant estimator (MCD, Rousseeuw, 1985; Rousseeuw and Driessen,
1999) or its regularized variant, the minimum regularized covariance determinant
estimator (MRCD, Boudt et al., 2020) that can be used to robustify PCA by a so-called
plug-in approach (Croux and Haesbroeck, 2000) that we also adopt in this paper. see
Section 4.1.1 for other approaches.

In this paper, we offer the first multi-source PCA approach that delivers sparse
loadings and is robust to outliers. A key ingredient of our method is the spatially
smoothed MRCD (ssMRCD) estimator (Puchhammer and Filzmoser, 2024, 2023),
an outlier-robust covariance estimator that jointly estimates covariance matrices for
multiple, related data sets by inducing smoothing. We tailor the ssMRCD estimator
towards our multi-source PCA set-up and then adopt the popular plug-in approach in
robustness, using the tailored ssMRCD as plug-in, to perform sparse, outlier-robust
PCA for multiple, related data sets. We employ standard sparsity as well as structured
sparsity penalties to mirror the relations between the multiple sources (also called
neighborhoods in the ssMRCD context given the focus on spatial settings, yet the
ssMRCD estimator is generally suited for analyzing multi-source data). By jointly
analyzing the covariance matrices—via the ssMRCD—and sparsity in the loadings—via
the structured sparsity penalties—we can better differentiate between global structures
indicated by similarities between sources, and local structures indicated by differences
in our variability analysis. Apart from this main methodological contribution, we also
offer an important computational contribution by designing an alternating direction
method of multipliers algorithm and by carefully fine tuning it to solve the multi-source
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PCA problem in a computationally efficient manner. We offer computing code in the
form of a publicly available R-package ssMRCD (Puchhammer and Filzmoser, 2023) to
facilitate adoptability and practical use.

4.1.1 Related Work

Many proposals in the literature exist that focus either on sparse PCA, multi-source
PCA or outlier-robust PCA; we review these strands below. Yet, few studies address
two out of these three aspects simultaneously, and no PCA method exists, to the best
of our knowledge, that delivers all three features jointly; a gap that this paper fills.

Sparse PCA

The literature on sparse PCA is rich. We provide a compact, yet incomplete, overview
here but refer the interested reader to Bertsimas et al. (2022) for a recent review on
the different literature strands. Starting with the work of Jolliffe et al. (2003), who
introduce the least absolute shrinkage and selection operator (LASSO) into PCA with
the algorithm known as SCoTLASS, Zou et al. (2006) include an elastic-net penalty to
PCA reformulated as regression problem. Further developments include the work of
Shen and Huang (2008) approaching the problem from a regularized singular value
decomposition, Ma (2013) focusing on a thresholding approach for high-dimensional
data, d’Aspremont et al. (2008) deriving a greedy algorithm based on a semi-definite
relaxation variation, and Journée et al. (2010) with a convex reformulation of sparse
PCA. Recently, Bertsimas and Kitane (2023) proposed GeoSPCA, a sparse PCA
approach that builds on a geometrical interpretation of the problem.

Multi-Source PCA

While the need for multi-source data analysis has already been addressed in a variety
of other disciplines (e.g., Price and Sherwood, 2018; Wang et al., 2013 for regression
settings, Puchhammer and Filzmoser, 2024 for covariance estimation, Danaher et al.,
2014; Price et al., 2021 for inverse covariance estimation, or Barbaglia et al., 2016;
Wilms et al., 2018 for time series data), multi-source PCA analysis is still under-
explored. A recent exception is Shi and Kontar (2024). They propose personalized PCA
(PerPCA), a systematic approach to analyze data collected from different sources with
heterogeneous trend thereby decoupling shared (global) and unique (local) features. A
similar but different approach to analyzing connected data sets is multi-block PCA,
where features are grouped together instead of observations. Recent advances of this
field is integrated principal components analysis (iPCA) by Tang and Allen (2021), who
propose a model-based framework of the classical PCA problem suited for analyzing
multiple data sources with features of different types that are measured on the same set
of samples, and offer sparse as well as non-sparse iPCA estimators. Other PCA-related
methods for multi-block data are joint and individual variance explained (JIVE; Lock
et al., 2013) and common and individual feature extraction (CIFE; Zhou et al., 2016),
both focusing on low-rank approximations.
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Outlier-Robust PCA

Early work by Croux and Haesbroeck (2000) considers robust PCA using robust
covariance estimators as plug-ins instead of the regular sample covariance matrix that
is non-robust. Leyder et al. (2024) recently proposed Generalized spherical PCA, a
robust PCA method based on the generalized spatial sign covariance matrix. Other
robust PCA approaches are based on projection pursuit (e.g., Li and Chen, 1985;
Hubert et al., 2002; Croux and Ruiz-Gazen, 2005) or a combination of both called
ROBPCA (Hubert et al., 2005). Hubert et al. (2016) further extend ROBPCA to
sparse PCA (ROSPCA) while Croux et al. (2013) develop a robust PCA method
with standard sparsity based on projection pursuit. A well-known PCA approach by
Candès et al. (2011) delivers robust PCA results under additional weak assumptions
and is of special interest among others in the fields of video processing and face
recognition. More recently, Yi et al. (2017) offer joint sparse principal component
analysis (JSPCA) that simultaneously selects useful features and provides protection
against outliers whereas Wang and Van Aelst (2020) develop a sparse PCA based on
least trimmed squares (LTS-SPCA) which is then also compared to ROBPCA and
ROSPCA in simulations. For robustness in the case where entries of data set columns
have been corrupted by permutations Yao et al. (2024) propose data analysis via
unlabeled principal component analysis (UPCA). Some robust PCA methods tailored
towards high-dimensional data include Schmitt and Vakili (2016), whose FastHCS
algorithm selects a subset of observations, as well as the work of Fayomi et al. (2024),
where PCA is based on a Cauchy likelihood reformulation.

4.1.2 Outline

The remainder of the paper is structured as follows. In Section 4.2, we derive the
objective function to perform sparse, outlier-robust PCA for multiple related data sets.
In Section 4.3, we present and carefully discuss the computationally-efficient algorithm
to perform multi-source PCA based on the alternating direction method of multipliers
(ADMM). In Section 4.4 our proposal is tested on simulated data and compared to
state-of-the-art PCA alternatives. Two real data examples are analyzed in Section 4.5
and finally, conclusions are given in Section 4.6.

4.2 Multi-Source PCA Based on the ssMRCD

In Section 4.2.1 we introduce the optimization problem to perform sparse PCA for
multiple related data sets thereby focusing on the first PC. We then expand the
problem to multiple PCs in Section 4.2.2. Finally, in Section 4.2.3 we detail the
ssMRCD estimator, a key ingredient in our plug-in approach to achieve robustness on
multi-source data.

4.2.1 First Principal Component

Let X1,X2, . . . ,XN be data sets from N sources consisting of Xi = (x′
i,1, . . . ,x

′
i,ni

)′ ∈
Rni×p observations per source i = 1, . . . , N of the same p variables. For each source i,
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corresponding locally estimated covariance matrices are denoted by Σ̂i ∈ Rp×p and
estimated means by µ̂i ∈ Rp.

When considering the PC loadings for multi-source data each loading can be written
as a matrix, where each column represents a source, and each row one variable. The
loadings matrix of the k-th principal component is denoted as

V k =

� vk11 . . . vk1N
...

...
vkp1 . . . vkpN

% = (vk
·1, . . . ,v

k
·N ) = (vk′

1· , . . . ,v
k′
p· )

′ . (4.2.1)

The loadings matrix of the first PC is obtained by solving the following optimization
problem

V 1 = argmin
V ∈Rp×N

||v·i||2=1,i=1,...,N

−
N-
i=1

v′
·iΣ̂iv·i + ηγ

p-
j=1

N-
i=1

|vji|� �� �
=||vj·||1

+η(1− γ)
√
N

p-
j=1

||vj·||2,

(4.2.2)

where η ≥ 0 regularizes the overall degree of sparsity, and γ ∈ [0, 1] distributes the
sparsity between local (γ = 1) and global (γ = 0) sparsity patterns. The groupwise
penalty induces global sparsity structures—that is sparsity for all loadings of a given
variable across all sources—and is equivalent to the groupwise penalty used in Simon
et al. (2013). As in Simon et al. (2013), the term

√
N balances the size of the two

penalties since the minimal penalty for the L1-norm under the given constraints is N ,
whereas the minimal groupwise penalty is

√
N . Thus, we can compare the effect of

increasing η among different levels of γ more easily.

4.2.2 Multiple Principal Components

The loadings for the k-th principal component V k are the solutions to the optimization
problem Equation (4.2.2) with an additional constraint to account for orthogonality
per source,

vk
·i⊥vl

·i l = 1, . . . , k − 1, i = 1, . . . , N.

The orthogonality constraints between the loadings per source constitute non-standard
optimization constraints, especially in the context of (sparse) PCA. Since the groupwise
sparsity induces a non-separable objective function and existing solutions rely on
standard orthogonality constraints, they cannot be applied, and new solutions are
needed.

To facilitate notation and optimization, we rewrite the problem into stacked-column
notation. The matrix V k can be stacked into one collective vector vk and the covariance
matrices into a block-diagonal (positive semi-definite) matrix,

vk =

� vk·1
...

vk
·N

% , Σ̂ =

� Σ̂1

. . .
Σ̂N

% .
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Then, the objective function for the loadings of the k-th set of PCs can be rewritten in
a form known from standard PCA with adapted penalty terms and linear and quadratic
equality and inequality constraints,

vk = argmin
v∈RpN

− v′Σ̂v + ηγ||v||1 + η(1− γ)
√
N

p-
j=1

+
v′Cjv

s.t. v′Biv = 1 ∀i = 1, . . . , N (4.2.3)

v′Biv
l = 0 ∀l = 1, . . . , k − 1, i = 1, . . . , N.

The pN × pN matrices Cj and Bi, extract the j-th row (variable) and i-th column
(source) of V k from the stacked column vector vk, respectively, and are defined as

(Cj)ik =

�
1, if i = k = pl + j, where l = 0, . . . , N − 1,
0, otherwise.

(Bi)jk =

�
1, if j = k = p(i− 1) + l, where l = 1, . . . , p,
0, otherwise.

Thus, Cj = C ′
j = C ′

jCj and C1+ . . .+Cp = IpN for j = 1, . . . , p and Bi = B′
i = B′

iBi

and B1 + . . .+Bp = IpN for i = 1, . . . , N .
Once the loadings v1, . . . ,vk are obtained from the data, the scores of each locally

centered observation xi,ι − µ̂i for ι = 1, . . . , ni of source i are calculated by

ti,ι = (xi,ι − µ̂i)
�
v1
·i, . . . ,v

k
·i
 

(4.2.4)

and collected in Ti =
�
t′i,1, . . . , t

′
i,ni

 ′ ∈ Rni×k.

4.2.3 Outlier-Robustness via ssMRCD Plug-In

Optimization of problem (4.2.3) for the loadings requires plug-in estimators for the
covariance matrix of each source, whereas computation of the scores in Equation (4.2.4)
additionally requires mean estimators. Standard choices to this end would be the
sample covariance matrices and sample means computed for each source separately.
Such estimators face, however, two problems. First, they are not robust to outliers. One
may resort to traditional robust estimators such as the MCD or median for each source
separately to circumvent this problem. Since only robustly estimated covariances and
means are used further, no additional robustification steps are necessary. Second, these
classical (non-robust or robust) estimators still treat each source in isolation thereby
ignoring potential connections and interactions between them. Therefore, it is crucial
to incorporate both local and global information to leverage available information
across multiple sources more extensively, enhancing the accuracy and reliability of the
resulting covariance and mean estimators.

An outlier-robust covariance and mean estimator tailored towards this global-local
scenario is the ssMRCD estimator (Puchhammer and Filzmoser, 2024) that is imple-
mented in the R-package ssMRCD (Puchhammer and Filzmoser, 2023). The ssMRCD
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estimator has originally been developed for local outlier detection in spatial data.
However, due to its general requirements, it can be extended to general data sets within
a multi-source setting, which we do in this paper. To make the paper self-contained,
we fully detail the ssMRCD estimator tailored towards the multi-source PCA problem
set-up, including the selection of its hyperparameters in Section (4.3.2).

Starting with a partition of the data into multiple sources, the ssMRCD estimator
selects a subset Hi of size |Hi| = hi consisting of an α ∈ [0.5, 1] percentage of
observations of Xi by minimizing the objective function over all H-subset combinations
H = (Hi)i=1,...,N

H∗ = argmin
H=(Hi)i=1,...,N

N-
i=1

det

(1− λ)Ki(H) + λ
N-

j=1,j ̸=i

ωijKj(H)

 ,

similar to the MCD (Rousseeuw, 1985; Rousseeuw and Driessen, 1999), or the MRCD
(Boudt et al., 2020) estimator, thus choosing subsets with least-outlying observations.
The weight matrix W , with entries ωij , i, j = 1, . . . , N , provides a measure of similarity
between data sources which is used to leverage global information more targeted. For
example, for spatial or time series data, the weights could be based on inverse distances,
or for groupings based on known properties, the similarity between these properties’
levels might be an appropriate choice for W (see also Section 4.5). The matrices Ki(H)
are constructed in an MRCD manner, regularizing the sample covariance matrix of the
H-subsets of source i Cov(XHi) with a global target matrix R and a factor ζi,

Ki(H) = ζiR+ (1− ζi)cαCov(XHi),

making the estimator suitable also for high-dimensional data. The target matrix R
can be any robustly estimated regular covariance matrix, and ζi is set to ensure a low
condition number for starting values (see Boudt et al., 2020). The factor cα is required
for consistency and described in more detail in Croux and Haesbroeck (1999). Finally,
the ssMRCD covariance estimators are defined as

Σ̂i = (1− λ)Ki(H∗) + λ
N-

j=1,j ̸=i

ωijKj(H∗),

and the mean estimators µ̂i as the sample mean of the selected observations XH∗
i

per
source. The most prominent parameter for the ssMRCD estimator is λ ∈ [0, 1] which
defines the amount of smoothing between the covariances of sources weighted with W .
The parameter λ thus describes how much of the global data is exploited compared
to the local source-specific data; the closer its value to one, the more the local data
sources are exploited.

4.3 Algorithm

We propose a computationally efficient algorithm tailored towards solving optimization
problem (4.2.3). Since the optimization of (4.2.3) is difficult due to its non-differentiable
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norm penalties and overall non-convexity, we develop an alternating direction method
of multipliers (ADMM) algorithm (Boyd et al., 2011) specifically fine-tuned to solving
it. The proposed ADMM algorithm is based on solving the following equivalent
representation of problem (4.2.3), namely

min
v(1),v(2),
v(3),v(0)

−v′
(1)Σ̂v(1) + I∞{v′

(1)Biv(1) = 1, v′
(1)Biv

l = 0 ∀1 ≤ i ≤ N, 1 ≤ l < k}� �� �
f1(v(1))

+ ηγ||v(2)||1� �� �
f2(v(2))

+ η(1− γ)
√
N

p-
j=1

)
v′
(3)Cjv(3)� �� �

f3(v(3))

(4.3.1)

s.t. v(i) − v(0) = 0, i = 1, 2, 3, (4.3.2)

where I∞{·} denotes the indicator function with an infinite amount of weight if the
condition inside the brackets is not fulfilled.The introduction in problem (4.3.1) of
the helper variables v(1),v(2) and v(3), coupled together to v(0) via the constraints
in Equation (4.3.2), allows us to efficiently decouple the optimization problem into
corresponding subproblems. The ADMM then solves these subproblems iteratively
until convergence; the updates for the m-th iteration step are

vm+1
(i) =argmin

v(i)

(fi(v(i)) +
ρ

2
||1
ρ
um
(i) + v(i) − vm

(0)||22 (4.3.3)

vm+1
(0) =

1

3

3-
i=1

�
vm+1
(i) +

1

ρ
um
(i)

#
,

um+1
(i) =um

(i) + ρ
�
vm+1
(i) − vm+1

(0)

 
,

with penalty parameter ρ > 0 enforcing consensus between the helper variables. The
solutions of the three new optimization problems (4.3.3) are detailed in Appendix C.1.
In the following, we discuss convergence in Section 4.3.1, and provide guidance to select
the hyperparameters in Section 4.3.2.

4.3.1 Convergence

A globally optimal solution to problem (4.2.3) exists since we have a compact variable
space and a continuous objective function. Convergence of the iterative ADMM is
therefore based on monitoring the primal and dual residuals at each iteration m,

rm = ||vm
(1) − vm

(0)||22 + ||vm
(2) − vm

(0)||22 + ||vm
(3) − vm

(0)||22
sm = 3ρ2||vm

(0) − vm−1
(0) ||22.

The primal residual rm measures the coherence between the optimizers of the three
subproblems in the sense of constraint (4.3.2), whereas the dual residual sm gives
the overall change compared to the previous iteration. The tolerances for the two
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convergence criteria are then

ϵmprime =
+
Np ϵADMM + ϵADMM max{||vm

(1)||2, ||vm
(2)||2, ||vm

(3)||2, ||vm
(0)||2} (4.3.4)

ϵmdual =
+
Np ϵADMM + ϵADMM max{||um

(1)||2, ||um
(2)||2, ||um

(3)||2},
for a given tolerance ϵADMM , implying the same absolute and relative tolerance. The
algorithm stops when rm < ϵmprime and sm < ϵmdual. We set to ϵADMM = 10−4 in all
simulations and real data examples.

To avoid convergence problems due to the sign ambiguity of the PCA vectors (since
two vectors that are directly opposed to each other result in the same explained variance
and sparsity pattern), we impose an additional constraint to the optimality problem in
Equations (4.2.3). Taking a fixed vector z ∈ RpN , we enforce the solution for the k-th
vectorized loadings matrix to have a non-negative scalar product with z for each source,

z′Biv
k ≥ 0, ∀i = 1, . . . , N, (4.3.5)

and add the term I∞{z′Biv(1) ≥ 0, ∀1 ≤ i ≤ N} to the objective function f1(v(1)).
Unless z is exactly orthogonal to the real solution in at least one source, we consistently
choose the solution for v(1) in the same direction. The best choice for z would be the
true solution. Since the true solution is, however, unknown, the next best possibility
is the well-chosen starting value that we derive in Section 4.3.1. Section 4.3.1 further
zooms into the choice of the penalty parameter ρ and Section 4.3.1 ends with further
algorithmic enhancements.

Starting Value

The starting value plays a crucial role in convergence, especially due to the non-convexity
of problem (4.2.3). Also, the projection approach with z being the chosen starting
value is more stable for a good choice of the starting value since the orthogonality
issues described just above are less likely to occur.

To find a good starting value, a compromise between the two extreme cases of
sparsity is needed. When considering problem (4.2.3) with η = 0 (no sparsity), it boils
down to N separate standard PCA problems, one for each covariance Σ̂i (i = 1, . . . , N).
The solutions for the k-th PC are the k-th eigenvectors yk(Σ̂i) of the covariances
calculated per source i,

y0
k = (yk(Σ̂1)

′, . . . ,yk(Σ̂N )′)′.

The extreme solution for η → ∞ depends on γ, as denoted by y∞
k (γ), and can be

calculated based on the results of Proposition 4.3.1.1.1 The proof of the proposition is
given in Appendix C.2.

Proposition 4.3.1.1. Using the notation of Equation (4.2.2), define

G1(v) =

p-
j=1

N-
i=1

|vji| =
N-
i=1

||v·i||1, G2(v) =

p-
j=1

||vj·||2.
1Note, that the indices in Proposition 4.3.1.1 are not necessarily unique, such as for correlation

matrices, which are addressed in Appendix C.2.
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a. For each source i = 1, . . . , N and given the normality constraint ||v·i||2 = 1,
the minimal value of ||v·i||1 is attained, if there exists a variable j′(i) such that
|vj′(i)i| = 1 and vji = 0 for all j ̸= j′(i).

b. Given the normality constraints ||v·i||2 = 1, i = 1, . . . , N , the minimal value of
G2(v) is attained if there exists a variable j′ for all sources i = 1, . . . , N such
that |vj′i| = 1 and vji = 0 for all j ̸= j′.

c. The minimizers of G1(v) with the highest explained variance
.N

i=1 v
′
·iΣ̂iv·i have

corresponding indices for non-zero entries j′(i) ∈ argmaxj=1,...,p

�
Σ̂i

 
jj

for each

source i. The minimizers of G2(v) with highest explained variance have non-zero
entries only for the variable indexed by j′ ∈ argmaxj=1,...,p

.N
i=1

�
Σ̂i

 
jj

.

Proposition 4.3.1.1 forms the basis for constructing the extreme solution set. Starting
with the extreme solution of the first component, y∞

1 (γ), when γ = 1, only G1 is
included in the penalty term, with penalty weight η increasing without bounds. Thus,
we focus solely on the minimizers of G1 with the highest variance as an extreme solution.
For γ ≠ 1, we also need to minimize G2. However, since the minimizers of G2 are
also minimizers of G1, we ultimately seek minimizers of G2 that explain most of the
variance.

Secondly, the set of extreme solutions for a subsequent PC, y∞
k (γ) for k > 1, is

constructed iteratively. For the k-th component the orthogonality constraints need to be
maintained. Under the assumption that the prior PCs are extreme solutions with non-
zero variables indexed by j1(i), . . . , jk−1(i), i = 1, . . . , N , every minimizer of the penalty
terms with non-zero entries indexed by jk(i) /∈ {j1(i), . . . , jk−1(i)}, i = 1, . . . , N,
satisfies the orthogonality constraints.2 Thus, we can focus on minimizers with the k-th
highest explained variance without further adjustments to the orthogonality constraints.

For a given η and γ, we then average the two extreme solutions, y0
k and y∞

k (γ),
to obtain an appropriate starting value for the k-th component, implicitly assuming
some continuity of the solution in η. Finally, we project the starting value onto the
feasible subspace defined by the optimization constraints using the projection defined
in Equation (4.3.6). Thus, the starting value for the k-th PC is

yk = P
(v1:(k−1))

⊥

�
1

2
(y0

k + y∞
k (γ))

#
.

The good performance of the starting value is investigated in an additional simulation
study in Appendix C.2.

Choice of Penalty Parameter ρ

An open question connected to convergence is how to select the value of the penalty
parameter ρ as it vastly influences convergence and also convergence speed. On the
one hand, small values for ρ keep the primal residuals larger, implying larger changes

2In the case of minimizers of G2 it holds that jl(i) = j′l , i = 1, . . . , N, l = 1, . . . , k − 1.
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in updates and possibly fewer iterations, hence faster convergence. On the other hand,
large values of ρ improve the stability of solving the first minimization problem of the
ADMM stated in Equation (4.3.3) for i = 1. Hence, a good balance for ρ needs to be
found.

Regarding stability of the first subproblem in (4.3.3), note that it can be rephrased
to a root finding problem by applying the Karush-Kuhn-Tucker-Theorem (KKT) (see
Appendix C.1 for more details) where we use either the proposal from Section 4.3.1 as
starting value (for the first iteration; hence m = 1), or the outcome of the previous
ADMM iteration vm

(0) (for iterations m > 1). Choosing ρ on the larger side moves
the solution for vm+1

(1) closer to the starting value vm
(0) for the root problem, thus the

iteration to a root that also fulfills the inequality condition in the KKT-Theorem
becomes more stable.

Finally, based on initial experiments, we found that using a principal component
specific penalty parameter, denoted by ρk for the k-th component, works well regarding
both convergence speed of the ADMM and the root finding problem. In particular, we
use

ρk = η +
1

2N

N-
i=1

 p-
j=1

�
Σ̂i

 
jj
−

k−1-
l=1

(vl)′Σ̂iv
l

 ,

and then increase ρk sequentially by 1 if there is either no convergence in the residuals
or if the root found is not feasible. 3 This approach is supported by the findings of
Ghadimi et al. (2014) regarding the optimal ρ for quadratic problems, which depends
on η and the eigenvalues of the matrix in the quadratic term.

Algorithmic Enhancements

To further improve performance and enhance computational speed, we implement
several additional algorithmic enhancements.

First, since we are interested in sparse loadings that often cannot be exactly zero due
to the iterative nature of the algorithm, in our calculations we round loading entries
whose absolute values are below a tolerance of ϵthr = 5 · 10−3. While a fixed tolerance
seems somewhat arbitrary, it enables fair comparisons between different parameter
settings and possibly differing algorithm accuracies. Due to rounding small values to
zero, the orthogonality constraints might be slightly violated.

Second, we apply inexact minimization / early termination for the subproblem
regarding the function f1(v(1)), meaning that iterations of the root finder are stopped
before full convergence during each step of the ADMM. Thus, fewer iterations per
ADMM iteration are needed, leading to speed gains without significant loss of accuracy
overall. The tolerance ϵroot indicates an error for finding the root of the function f

3Alternatively, one could resort to the often-used approach to dynamically adapt ρ based on the
size of the residuals (see Boyd et al., 2011). However, it does not perform well in our case. This
likely occurs because the penalty for violating the constraints is reduced too heavily in some steps,
leading to non-appropriate root finding starting values and consequently no convergence to a
feasible root.
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Algorithm 2 ADMM (Σ̂1, . . . , Σ̂N , η, γ,v1:(k−1),yk,mmax, ϵADMM , ϵroot, ρ)

1: Initialize v(1),v(2),v(3),u(1),u(2),u(3) ← 0 ∈ RNp, vnew
(0) ← yk, m ← 1

2: while m ≤ mmax do
3: vold

(0) ← vnew
(0)

4: Solve subproblems: ▷ See also Appendix C.1
5: v(1) ← solution of Equation (4.3.3) for i = 1 with u(1) and vnew

(0)

6: v(2) ← S(vnew
(0) − 1

ρu(2),
ηγ
ρ )

7: v(3) ← SG(v
new
(0) − 1

ρu(3),
η(1−γ)

√
N

ρ )

8: vnew
(0) ← 1

3

.3
i=1(v(i) +

1
ρu(i))

9: vnew
(0) ← P

(v1:(k−1))
⊥(vnew

(0) )

10: u(i) = u(i) + ρ(v(i) − vnew
(0) )

11: r ← .3
i=1 ||v(i) − vnew

(0) ||22 (primal residual)
12: s ← 3ρ2||vnew

(0) − vold
(0) ||22 (dual residual)

13: Set ϵprime, ϵdual according to Equation (4.3.4)
14: if r < ϵprime and s < ϵdual then
15: break
16: end if
17: end while
18: vnew

(0) ← P
(v1:(k−1))

⊥(vnew
(0) )

19: Set entries of vnew
(0) with absolute value lower than ϵthr = 0.005 to 0

20: Normalize vnew
(0) ← P(0)⊥(v

new
(0) )

21: Return vnew
(0)

of 10−1ϵroot|f |+ 10−1ϵroot (see function multiroot in package rootSolve, Soetaert,
2009) and we allow an increased error of 10ϵroot in the constraints. In our calculations,
ϵroot is set to 10−2 or 10−1 for increased speed.

Third, the algorithm is considerably faster if we project vm
(0) after each ADMM

iteration step onto the feasible subspace given by the optimization constraints in
Equation (4.2.3). Denote the matrix containing all calculated loadings of source i

as v1:(k−1)
·i = (v1

·i, . . . ,v
k−1
·i ). Then, the function projecting a vector v = (v′·1, . . . ,v′

·N )′

to the feasible space for the k-th PC is defined as

P
(v1:(k−1))

⊥(v) =

����
v·1−

�k−1
l=1 ⟨v·1,vl

·1⟩vl
·1

||v·1−
�k−1

l=1 ⟨v·1,vl
·1⟩vl

·1||2
...

v·N−�k−1
l=1 ⟨v·N ,vl

·N ⟩vl
·N

||v·N−�k−1
l=1 ⟨v·N ,vl

·N ⟩vl
·N ||2

%%%% . (4.3.6)

If k = 1, we project onto to orthogonal space of the null vector 0, thus we are
normalizing only.

Finally, an overview of the ADMM algorithm for the k-th PC is summarized in
Algorithm 2. We achieve convergence in all simulations and real data examples using
the algorithmic fine tuning and choices described throughout Section 4.3.1.
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4.3.2 Hyperparameter Selection

In Section 4.3.2 we provide criteria to select the sparsity hyperparameters, in Sec-
tion 4.3.2 hyperparameter of the ssMRCD estimator are discussed and Section 4.3.2
provides guidance on how to determine the number of PCs.

Tuning Parameters for (Joint) Sparsity

The tuning parameters of the objective function (4.2.3), i.e. the parameter for the
overall amount of sparsity η and the parameter for the trade-off between global and
local sparsity γ, need to be selected.

To select γ, we propose an optimality criterion for the first principal component
which balances explained variance and sparsity in the loadings; a balance that is
commonly desired for sparse PCA. In particular, we maximize the explained variance
V(v) = v′Σ̂v and the mean S(v) of the standardized entry- and groupwise sparsity

S(v) = 1

2

�
#{vji = 0, i = 1, . . . , N, j = 1, . . . , p}

N(p− 1)
+

#{||vj·||2 = 0, j = 1, . . . , p}
p− 1

#
.

Since V(v) and S(v) vary also over η, the optimal γ is then chosen to be the maximizer
of the area under the curve (AUC) of sparsity S(v) and the explained variance,
standardized to the two extreme solutions,

V(v)− V(y∞
1 )

V(y0
1)− V(y∞

1 )
, (4.3.7)

along the trajectory path for varying η, stopping at full sparsity. For computational
efficiency, we keep the same selected γ for the higher-order PCs.

To select η, we propose a simple approach of optimizing the trade-off product (TPO)
of the standardized number of zero entries and the standardized explained variance
(4.3.7) for the first principal component,4

TPO =

�
#{vji = 0, i = 1, . . . , N, j = 1, . . . , p}

N(p− 1)

#� V(v)− V(y∞
1 )

V(y0
1)− V(y∞

1 )

#
.

For further PCs, the optimal η is adjusted according to the residual variance to
distribute sparsity more equally across the loadings. The degree of sparsity for the l-th
PC, given the optimally selected η of the first PC, is ηl = glη, l > 1. To calculate gl,
we use the projected covariance matrix Σ̂i of the orthogonal space of the corresponding
first l − 1 PCs, per source. We propose to use the sum of the first eigenvalues, λ̃1, of
the projected covariance matrices as scaling factor,

g̃l =

N-
i=1

λ̃1

��
Ip − v

1:(l−1)
·i

�
v
1:(l−1)
·i

 ′#
Σ̂i

�
Ip − v

1:(l−1)
·i

�
v
1:(l−1)
·i

 ′##
,

with Ip being the p-dimensional identity matrix. Finally, the standardized value gl =
g̃l/g̃1 is used for scaling.

4Alternatively, one can resort to BIC-based approaches as in Hubert et al. (2016) and Croux et al.
(2013). We prefer the approach based on the TPO instead since a BIC-based approach becomes
more complicated with multiple covariances and the additional groupwise sparsity penalty regarding
degrees of freedom.

93



4 Sparse Outlier-Robust PCA for Multi-Source Data

Hyperparameters for the ssMRCD

The ssMRCD plug-in estimator requires additional hyperparameters that need to be
set (see Puchhammer and Filzmoser, 2024, 2023). Since the partition into multiple
sources and the weights W between them are data dependent, there is not a general
rule how to set them, except the notions that are elaborated on in Section 4.2.3.

For the smoothing parameter λ, the selection criterion described in Puchhammer
and Filzmoser (2024) is not applicable in our case since it is based on local outlier
detection. We therefore derive a new approach to set λ in a more general setting
based on the idea that data should be described as well as possible by the means and
covariances that are produced by the ssMRCD model. The model residuals per source
ri,ι, ι = 1, . . . , ni, are

ri,ι = Σ̂
−1/2
i (xi,ι − µ̂i),

and if we have a good estimation of the data, the mean of the smallest α-fraction of
residual norms over all sources

R =
1

h1 + . . .+ hN

h1+...+hN-
ι=1

||r(ι)||2, (4.3.8)

where r(1), . . . , r(h1+...+hN ) are the h1 + . . .+ hN smallest residuals, should be small.
Hence, minimizing R will be the criterion for the optimal λ. If the partition cannot be
derived from the data context, the same approach can be used to find a good grouping
or even good weights, although computationally very expensive.

Number of Principal Components

Finally, the number of principal components necessary to describe the data appropriately
needs to be selected. We propose to use the cumulative percent variation (CPV), as
suggested in Hubert et al. (2016). The number of components should at least cover a
certain threshold, for instance 80% of the overall (global) variation,.k

l=1(v
l)′Σ̂vl

trace(Σ̂)
≥ 80%. (4.3.9)

Depending on the research question, other summary statistics connected to CPV on
a source level are applicable as well, e.g., the minimal CPV over all sources should
be at least 80%, or an adapted scree plot consisting of boxplots can be used (see also
Section 4.5).

4.4 Simulations

We introduce two simulation setups. In Section 4.4.1, we investigate the induced
sparsity patterns of the multi-source PCA method for varying degrees of global and
local sparsity. In Section 4.4.2 the performance of the method first in absence and
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then in presence of outliers is investigated. Finally, note that in Appendix C.2, we
present results of additional simulation experiments on the suitability and efficiency of
the proposed starting values.

Across simulations, the different methods are compared using multiple evaluation
criteria that are averaged over repetitions and sources. First, we compute the angle
between the real subspace and the estimated subspace spanned by the first (for k = 1)
or first and second (for k = 2) real and estimated loading, respectively, according to
Hubert et al. (2016, 2005), standardized to [0, 1]. Second, we obtain the orthogonal
distance of a non-contaminated observation xi,ι,

ODi,ι = ||xi,ι − µ̂i −
�
v1
·i, . . . ,v

k
·i
 
ti,ι||2, (4.4.1)

as measure for good data projection and reconstruction abilities of the components.
The OD means of clean observations over all sources per simulation scenario are linearly
scaled to [0, 1] for illustration purposes.

Next, concerning sparsity, we first present the level of sparsity selected by each
method as a reference

#{vji = 0, i = 1, . . . , N, j = 1, . . . , p}
N(p− 1)

.

From a sparsity recognition point of view, we then analyze standard evaluation tech-
niques to check if methods correctly specify sparse and non-sparse variables. The true
negative rate (TNR) specifies the percentage of correctly identified non-zero entries of
the real loadings ṽ and the true positive rate (TPR) the correctly found zero entries of
ṽ,

TNR =
1

N

N-
i=1

#{j ∈ 1, . . . , p : vji ̸= 0, ṽji ̸= 0}
#{j ∈ 1, . . . , p : ṽji ̸= 0} ,

TPR =
1

N

N-
i=1

#{j ∈ 1, . . . , p : vji = 0, ṽji = 0}
#{j ∈ 1, . . . , p : ṽji = 0} .

We also include three evaluation measures to combine these two measures into one.
The well known F1-Score and the zero-measure (Z-measure) introduced in Hubert
et al. (2016), which calculates the percentage of overall correctly identified entries
without partitioning into groups first, are applicable in a balanced setting. However,
in an unbalanced setting with high sparsity, F1 and the Z-measure essentially lead to
ignorance of correctly identified non-sparse entries and the amount of correctly identified
sparse entries drives a “good" performance and gives incentives to overestimate the
sparsity pattern. In such settings, we prefer to use the geometric mean (G-Mean) of
TNR and TPR instead.

4.4.1 Detecting Sparsity Patterns

We start by investigating whether the proposed sparse multi-source PCA method
delivers entry- and groupwise sparse loadings as desired when no outliers are present.
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Figure 4.4.1: Heat map of the two covariance matrices used as basis for all simulation
settings with p = 10 variables. Each covariance entry is colored according
to its value.

To this end, we construct two covariance matrices for N = 2 groups using different
sparse loading matrices P1 and P2, similar to the simulation setting of Croux et al.
(2013),

P1 =



)
1
2 0 −

)
1
2 0 0 0)

1
4 0

)
1
4 0 −

)
1
2 0

0
)

1
2 0 −

)
1
2 0 0

0
)

1
4 0

)
1
4 0 −

)
1
2 06×(p−6))

1
4 0

)
1
4 0

)
1
2 0

0
)

1
4 0

)
1
4 0

)
1
2

0(p−6)×6 Ip−6


,P2 =



)
2
3 0 −

)
1
3 0)

1
3 0

)
2
3 0

0
)

1
3 0 −

)
2
3 04×(p−4)

0
)

2
3 0

)
1
3

0(p−4)×4 Ip−4


,

and a common eigenvalue diagonal matrix, D = Diag(2, 1.5, 1.25, 1.125, 1, . . . , 1).
The covariance matrices are then constructed based on the eigen-decomposition for
each source as Σi = PiDP ′

i , for i = 1, 2 and visualized in Figure 4.4.1. Random
noise ϵ ∼ N (0, 0.1) is (symmetrically) added for each entry of the covariance matrices
for each simulation run individually to address possible uncertainty in the covariance
estimation of Σ̂1 and Σ̂2. While the first loadings are directionally similar, the second
loadings imply opposing directions of highest variance between different sources to cover
also the scenario of non-compliant dominating groups. We consider 100 simulation
repetitions for p = 10 variables, we set ϵroot = 0.1, and take different values of the
sparsity parameters η = 0, 0.05, . . . , 1.25, γ = 0, 0.5, 1. Then, we apply our sparse
multi-source PCA procedure using the real covariance matrices Σ1 and Σ2 as plug-in
and obtain the first two principal components. For the first PC, variables 1,2 and
5 have non-zero loadings in group 1 (see non-zero entries in the first column of P1),
whereas only variables 1 and 2 have non-zero loadings in group 2 (see non-zero entries
of the first column in P2). For the second PC, similarly, variables 3, 4 and 6 have
non-zero loadings in the first group whereas only the former two have non-zero loadings
in the second group.
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Figure 4.4.2: The mean of loading entries of the first PC with a band for the standard
error. The seven solid gray lines depict the entries that are sparse by
construction, the dashed and dotted lines depict the variables that are
not sparse in at least one source loading. The horizontal lines indicate
the true value of the corresponding loading entries.

The resulting loading entries for varying parameters η and γ are visualized in
Figure 4.4.2 for the first PC and in Figure 4.4.3 for the second PC. Colored and
non-solid lines indicate the variables whose loading entries are non-zero, and the
corresponding horizontal lines the respective values, according to the true loadings
P1 and P2. The gray lines correspond to variables with zero loading entries, and the
shaded area around each loading entry indicates the standard error. We can clearly
see that the true structured sparsity patterns are recovered successfully, and the sparse
multi-source PCA method thus succeeds in separating the important variables with
non-zero loadings from the unimportant variables with zero loadings. The estimated
loadings for the first PC are very similar across different values of the hyperparameter γ
(in the different panels of Figure 4.4.2). In contrast, for the second PC, we see large
differences in the variables 3 and 4, that have non-zero loading entries in both sources.
By increasing γ they are kept at more accurately high levels for a larger range of η
until the rise of the gray solid lines around η ≥ 0.8 indicates a trickling down of the
variability of the real first PC, that is not accounted for in the estimated fully sparse
first PC for high η.

Altogether, the proposed multi-source PCA method succeeds in recovering the
true sparsity patterns present in the PCA loadings in an idealized setting where the
covariance matrices are known upfront. In the next section, we evaluate the performance
of the method across different evaluation metrics; and this in the realistic scenario
where the covariance matrices of the N sources need to be estimated, not only in
case of clean data but we also discuss the impact of different outlier scenarios on its
performance.
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Figure 4.4.3: The mean of loading entries of the second PC with a band for the standard
error. The seven solid gray lines depict the entries that are sparse by
construction, the dashed and dotted lines the variables that are not sparse
in at least one source loading. The horizontal lines indicate the true value
of the corresponding loading entries.

4.4.2 Outlier Robustness

We now evaluate the performance of the proposed sparse outlier-robust PCA method for
multi-source data in more detail, first when no outliers are present and we subsequently
discuss the impact on its performance in presence of outliers. We hereby estimate the
covariances matrices of the N sources using the ssMRCD estimator.

We construct linearly shifting covariance matrices by using a convex combination
of the two covariance matrices Σ1 and Σ2 of the simulation setting described in
Section 4.4.1. With N ≥ 2 being the number of sources, the covariance Σ̃i for source i
for i = 1, . . . , N is constructed according to

Σ̃i =

�
1− i− 1

N − 1

#
Σ1 +

i− 1

N − 1
Σ2.

The corresponding real loadings are then just the eigenvectors of Σ̃i.
Similar to the simulation setting of Croux et al. (2013), clean data points for each

source i are drawn from a multivariate normal distribution N (0, Σ̃i) and a certain ϵout
fraction of shift outliers are drawn from N (µout, Ip) with

µout =
√
2(2, 4, 2, 4, 0,−1, 1, 0, 1,−1, . . . , 0, 1,−1)′

per source.
We compute several versions of the multi-source PCA method, to appropriately

evaluate the contributions of its three main features, namely in (1) delivering structured
sparse loadings, (2) exploiting the multi-source aspect and in (3) providing protection
against outliers. Our proposal that delivers all three aspects is labeled ssMRCD-PCA
in the remainder. It computes the ssMRCD estimates with α = 0.5, a band matrix,

98



4.4 Simulations

N o  contam ina tion  (ε = 0) C ontam ina tion  (ε = 0.2)

k = 1
k = 2

Ang le OD

Spars ity
TNR

TPR F1 Z

G−Mean
Ang le OD

Spars ity
TNR

TPR F1 Z

G−Mean

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ssM R C D −P C A
ssM R C D −P C A
(non−robust)

ssM R C D −P C A
(non−m ulti)

ssM R C D −P C A
(non−structu red)

RO S P C A

Figure 4.4.4: Comparison of performance of the first two components for equally con-
taminated data sources (N = 10).

constructed with ones on the off-diagonals, zeros in the diagonal and appropriately
scaled, as weight matrix W , and the optimal smoothing criteria from Equation (4.3.8)
for the selection of λ. Regarding the PCA sparsity parameters, they are optimized using
the optimization approaches described in Section 4.3.2 on a grid of γ = 0, 0.1, . . . , 1
and η = 0, 0.1, . . . , 5, or stopped prior if full sparsity is achieved. Next, ssMRCD-PCA
(non-robust) uses the ssMRCD estimator as described above but with α = 1, thereby
using all observations for its computation and, hence, providing no protection against
outliers. ssMRCD-PCA (non-multi) neglects the multi-source aspect in total and
computes PCA without exploiting neither the joint estimation across the multiple
sources of the ssMRCD estimator (λ = 0) nor the shared sparsity patterns (γ = 1).
Finally, ssMRCD-PCA (non-structured) uses the proposed ssMRCD plug-in estimator
but no structured sparsity in the PCA step, hence γ = 1. Moreover, we also compare
these four versions of the multi-source PCA method to the ROSPCA method introduced
by Hubert et al. (2016) which is a state-of-the-art benchmark for sparse outlier-robust
PCA for which open-source code is easily available. To this end, we use the R-package
rospca (Reynkens, 2018) with their implemented optimal sparsity approach. Note
that this method is not tailored towards multi-source data, hence we apply it for each
source individually.

In Figure 4.4.4 our proposed method ssMRCD-PCA is compared to its three variants
that either neglect robustness (non-robust), multi-sourceness (non-multi) or structured
sparsity (non-structured), as well as to the benchmark method ROSPCA. For each
method we calculate the first two PCs for 100 simulation repetitions and p = 10 with
varying contamination level ϵ = 0% (hence no contamination) and ϵ = 20% and number
of data observations per source n = 500, both constant over all N = 10 sources. First,
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Figure 4.4.5: Comparison of performance of the first two components with locally
contaminated data (with contamination level of ϵ = 20%) in source 5
of N = 10 sources for n = 500. The results for data source 5 are shown
in the right panel, the mean over all sources is shown in the left panel.

when no outliers are present (“No contamination" panel in Figure 4.4.4), the proposed
ssMRCD-PCA with a robust plug-in estimator is, as expected, slightly less effective
than its version that uses a non-robust plug-in, ssMRCD-PCA (non-robust). Still, it is,
generally, more effective than its benchmark ROSPCA.

Furthermore, the price for neglecting the structured sparsity patterns (see ssMRCD-
PCA (non-structured) and also ssMRCD-PCA (non-multi)) concerns all evaluation
criteria, however, the increased TNR for the second component is especially evident.
Comparing these two versions with the proposed ssMRCD-PCA, clear benefits are
noticeable for both, considering structured sparsity as well as considering the multi-
source aspect also for variance computation.

When outliers are present (panel “Contamination" in Figure 4.4.4), the importance
of using a robust method becomes directly apparent, since the variant ssMRCD-
PCA (non-robust) is heavily affected by the outliers: the criteria connected to data
reconstruction, i.e. the angle and OD, show inferior performance compared to the
proposed ssMRCD-PCA method with robust plug-in, while the detection of sparsity
patterns is comparable to ROSPCA. We can also see that for the first component
the proposed method ssMRCD-PCA provides better results than ROSPCA in all
measurements and settings. Especially interesting compared to ROSPCA is the
combination of higher sparsity with a lower angle and low OD. This implies a good
fit of the highly sparse loadings to the data and the subspace of highest variation.
Moreover, the sparsity recognition metrics confirm that the correct sparsity structure is
found. The cost of neglecting either the multi-source aspect or the structured sparsity
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remains similar to the uncontaminated case.
Finally, another interesting outlier configuration to analyze in the context of multi-

source PCA is how locally contaminated data, in this context meaning contamination in
only one source, affects the PCA results. Therefore, we stick to the data contamination
setting with N = 10 data sources but instead of contaminating all sources equally, we
only contaminate the fifth of N = 10 sources with ϵ = 20% outlying observations. We
use 100 simulation repetitions, n = 500 observations, and p = 10 variables. The results
are shown in Figure 4.4.5.

We can see that the proposed multi-source PCA method provides consistently better
results in both PCs than its benchmark ROSPCA. When we analyze the results for the
single contaminated data source (right panel in Figure 4.4.5), we see very stable results
for the proposed ssMRCD-PCA method. This is in contrast to the results of ROSPCA
with contamination, where the performance on the contaminated source is clearly worse
than the average over all sources (left panel in Figure 4.4.5) in almost all performance
measures and both components. The non-robust version of the ssMRCD-PCA based
method also shows reasonable performance when averaged over all sources. Yet, even
with local contamination we can see a stark performance decline in the contaminated
source, especially in the first PC. This indicates that provided a multi-source scenario,
inherent similarities in the covariances between groups should be leveraged. Applying
additional smoothing, further stabilizes the covariance estimation, even in a non-robust
setting, and in combination with groupwise sparsity we achieve reliable sparse loadings.

4.5 Applications

We demonstrate the usefulness of the proposed sparse multi-source PCA method on
two diverse applications, namely one on multivariate time series data from an Austrian
weather stations (Section 4.5.1) and the second on measurements of plant geochemistry
(Section 4.5.2).

4.5.1 Weather Analysis at Hohe Warte

We analyze daily weather measurements of the weather station Hohe Warte in Vienna,
Austria over the years 1960-2023 as provided by GeoSphere Austria (2024). The
data set consists of p = 13 variables covering the amounts of sunshine, wind, cloud
coverage as well as temperature, humidity, air pressure and visibility (see Appendix C.3
for the full list) for N = 64 sources corresponding to the different years and overall.64

i=1 ni = 23, 372 observations. For preprocessing, we standardize the variables to the
corresponding medians and the mean absolute deviations from the years 1960 to 1980
that are used as a baseline for proceeding climatic developments.

For the computation of the ssMRCD plug-in estimator, we assume that each year
is similar to five prior and five subsequent years with a linear decrease in similarity
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Figure 4.5.1: Hohe Warte weather station: Optimal smoothing and sparsity parameters.
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Figure 4.5.2: Hohe Warte weather station: Heat map of the loadings for the p = 13
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Figure 4.5.3: Hohe Warte weather station: Scores for each observation of the first
three components (rows) partitioned into four consecutive time subsets
(columns).

leading to the weighting matrix W structured as a band matrix given by����������
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where each row is then scaled to have an overall sum of 1 (see also Puchhammer
and Filzmoser, 2024). The amount of smoothness, λ, of the ssMRCD estimator is
optimized over the interval [0, 1] with step size 0.05 to minimize the residual norm
in Equation (4.3.8). The upper left part of Figure 4.5.1 shows the residual norm
varying over the amount of smoothing and the optimal value of λ = 0.45. Based on
the optimally smoothed set of covariances, the sparsity parameters of the proposed
sparse multi-source PCA method are selected using a step size of 0.05 for γ and 0.25
for η. The optimal values are then γ = 0.45, η = 1 (see upper right and lower left part
of Figure 4.5.1, respectively). The corresponding boxplot-based scree-plot is shown in
the lower left part of Figure 4.5.1. Each boxplot is constructed per PC and is based on
the individually explained variance per year for all N = 64 years. According to the
CPV-criterion Equation (4.3.9), we analyze only the first three components, since they
explain 80% of the overall variance.

Figure 4.5.2 presents the sparsity patterns of the loadings for the first three PCs
obtained by our sparse multi-source PCA method. We see three different causes of

103



4 Sparse Outlier-Robust PCA for Multi-Source Data

variation. The first PC (left panel) is mainly composed of precipitation and displays
a clear global pattern across all years, meaning that precipitation drives most of the
weather variation over the year. Figure 4.5.3 displays the corresponding scores (top
row), partitioned into time subsets, and shows rather constant variation over time. The
second component (middle panel in Figure 4.5.2) consists mainly of temperature, vapor
pressure, sight, radiation and sun as well as humidity and cloud cover in the opposed
direction. By inspecting the scores in the middle row of Figure 4.5.3, we can see that
the second component captures the seasonality and the corresponding variability over
each year. Again, the pattern seems to be rather stable over the 64 years.

Finally, the loadings for the third component are visualized in the right panel of
Figure 4.5.2 and consist again of temperature variables and sight. Yet, in contrast to
the first two PCs, a trend becomes visible in their loadings on the third PC as can be
seen from darker colors in the heat map for the more recent years. Also maximal wind
speed and wind velocity display important loading entries, which are stable or rather
decreasing in importance for variability over the years, respectively. This changing
pattern over the years is also visible in the shape of the scores displayed in Figure 4.5.3,
bottom row. While the years 1960-1979 do not seem to exhibit seasonality in the scores,
such a pattern becomes more apparent for the more recent years. While pinpointing
the source of variability for the third component is more difficult than for the first two
components, one possible source could be related to climate change, apparent from
the evolving trend over the long time frame of 64 years. The smooth transitioning
over time as mainly visible in the third component is directly detectable from our
multi-source PCA method whereas it would remain unnoticed from a standard (global)
PCA analysis.

Finally, via two score-related measures we also demonstrate the need for robust
methods, namely by showing the presence of outliers in the data. First, the OD defined
in Equation (4.4.1) measures the distance of each observation from the estimated
principal component subspace and thus, how strongly the observation disagrees with
the direction of highest variance of the data majority. A single-source upper cut-off value
for outlier detection is proposed by Hubert et al. (2005) as (µ̂MCD + σ̂MCDz0.975)

3/2,
where µ̂MCD and σ̂MCD are univariate MCD estimates of OD and z0.975 is the 97.5%
quantile of the standard normal distribution.

Secondly, the so-called score distance (SD) for observation xi,ι is defined as

SDi,ι =
)

t′i,ιL
−1
i ti,ι,

where Li denotes the diagonal matrix of the eigenvalues of the first k PCs of source i.
Observations with high SD are not outlying with respect to the direction of variance as
for OD, but they are outlying from the main data cloud within the projected subspace.
For robust PCA, a typical cut-off value of

)
χ2
k,0.975 is often proposed for SD (see also

Hubert et al., 2016). Note that both cut-off values are based on theoretical results
that are not directly applicable in a multi-source context and thus, the cut-off values
should be used as orientation rather than fixed cut-offs for outlier detection.

In Figure 4.5.4 the densities of OD and SD are shown separately for the four time
spans from Figure 4.5.3 together with the respective cut-off values. While there are
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4.5 Applications

O D S D
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Figure 4.5.4: Hohe Warte weather station: Orthogonal distance (OD, left panel) and
score distance (SD, right panel) densities for the considered time subsets
based on the first three PCs as well as standard cut-off values for OD and
SD as vertical dashed lines. The horizontal axis spans to the maximum
value of SD and OD respectively.

observations with high SD and OD—also exceeding the cut-off values—present in all
time subsets showcasing the importance of robust estimation procedures in general,
we also see additional bumps around the OD range of 2.5− 4 for the years 2020-2023
specifically. The frequency of high SD seems to rise as well, together indicating an
increase in extreme weather observations in the most recent years which thus justifies
the need for an outlier-robust joint PCA method.

4.5.2 Geochemical Plant Analysis

Our second application demonstrates the usefulness of sparse PCA for multi-source
data with a more general grouping structure. The data consists of n = 547 observations
of p = 19 element concentrations originating of N = 6 different plant species (Norway
Spruce, Common Juniper and Scots Pine) and organs (bark, needle, twig) and was
collected during the NEXT project funded by the EU (NEXT, 2021) in order to draw
conclusions for mineral exploration. The aim is to explore differences and similarities
of variance among the different plant groups and the suitability of the scores to
discriminate between mineralizations and non-mineralizations. Since mineralizations
are supposed to have a geochemical composition that is different from non-mineralized
areas, these observations form outliers, which calls for robust procedures.

For applying the ssMRCD estimator, we assume equal amounts of similarity between
observations of the same plant species or of the same organs when constructing the
weight matrix W . Moreover, due to the compositional nature of element concentrations,
we apply the standard isometric log-ratio(ilr) transformation to the data (see e.g.,
Filzmoser et al., 2018) known from compositional data analysis. Based on the optimal
smoothing criteria R, the optimal value for group smoothing is λ = 0.35.
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Figure 4.5.5: Plant geochemistry: Heat map of loadings for the p = 19 variables
(columns) over plant-organ species combination (rows) on the first and
second principal component (panels)

.

After the calculation of the ssMRCD covariance matrices, they are (linearly) trans-
formed from ilr to centered log-ratios (clr) coordinates to increase the interpretability
of the principal components’ loadings and scores. The clr-transformation essentially
standardizes each variable with the geometric mean per observation, followed by a log-
transformation. While clr leads to linear dependent variables opposed to ilr, leading to
numerical issues for covariance estimation (especially determinant based estimators like
the ssMRCD estimator), it is possible to intuitively interpret clr as relative importance
of elements which is not possible for ilr. Thus, we apply the sparse multi-source PCA
algorithm to the transformed covariance matrix of clr variables. Optimal parameters
are then given by γ = 0.6, η = 0.15 (see also Figure C.3 in Appendix C.4).

In Figure 4.5.5 the loadings of the first and second principal components explaining
around 33% of overall variance are shown per source,5 being a combination of a plant
species and organ. We see clear similarities across all organs of the juniper species in
both components and of the spruce species for the first component. Only in the second
component the organs of the same species (spruce) start to show differences. Moreover,
pine bark has the most complexity in the loading structure of the first component. This
combination of heavy metals like uranium (U), vanadium (V) and lead (Pb) against
phosphorus (P), potassium (K) and rubidium (Rb) is to be expected from physiological
characteristics of pine bark.

When it comes to mineral exploration, a goal of the NEXT project, it would be
interesting if we can find a plant organ-species combination and a direction of variation
along which the discrimination between mineralizations and non-mineralizations is
visible. To investigate this, we use the geological classification between calcsilicate
rocks and mafic rocks. Mafic rocks are often associated with volcanic and intrusive
activities and they can indicate the presence of specific mineral deposits like nickel,
copper, and platinum group elements.

Taking a look at Figure 4.5.6 we can see the distribution of the scores connected to
5Since 10 PCs are needed to explain 80% of the data (see also Figure C.3) we will focus on the first

two components for interpretation.
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Figure 4.5.6: Plant geochemistry: Density and median (vertical line) for calcsilicate
rock (solid) and mafic rock (dashed) measurements for the first PC for
all plant species (columns) - organ (rows) combinations. Note that empty
panels correspond to combinations of plant species and organs not present
in the considered data set.

the first (left) and second (right) PC as density and the median as vertical lines for
different groups split into observations connected to calcsilicate and mafic rocks. Other
geological units are not shown. The bark of Scots pine has the most differentiable peaks
and medians, indicating the possibility to use this plant organ-species combination with
the elements of the first loading for mineral exploration. Similar conclusions can be
made for the second PC. Here, Norway spruce tends to differentiate the most between
the two geologies across all organs, indicating potential leverage for geological and
mineral exploration. However, the geology and other external variables of the respective
data set can vary heavily and other sources of variation like soil moisture, amount of
till, fine fraction of the sample or physiological effects of the plants mentioned before
can also be part of variation described by the PCs.

4.6 Conclusion

We introduce sparse PCA analysis for multiple related data sources to permit the
detection of global as well as local, source-specific sparsity patterns in the PCA loadings.
To this end, we propose an optimization problem that maximizes explained variances
across the multiple data sources while inducing structured sparsity patterns. The
ssMRCD estimator is used as plug-in into the optimization problem and perfectly fits
the spirit of combined global-local sparsity patterns by delivering local covariances that
are smoothed over groups. Moreover, it provides protection against the presence of
outliers in the data.
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4 Sparse Outlier-Robust PCA for Multi-Source Data

We provide a computationally efficient algorithm based on the ADMM to obtain
sparse outlier-robust PCA loadings. Algorithmic parameters are fine-tuned and conver-
gence is achieved in all applications and simulations. Care is given to optimally select
the hyperparameters controlling the degree of sparsity and smoothing properties of the
ssMRCD estimator tailored to the PCA context. The proposed ssMRCD-PCA method
is publicly available in the R-package ssMRCD (Puchhammer and Filzmoser, 2023).

The proposed sparse multi-source PCA method performs well in simulation settings
mimicking structured sparsity and it outperforms non-robust counterparts as well as
the state-of-the-art sparse, robust PCA method ROSPCA when outliers are present.
The versatility of the multi-source method is illustrated on two different applications.

Possible further application scenarios entail also a wide variety of data, where the
grouping structure is not fixed upfront. The flexibility of the method regarding the
source-definition can also be leveraged for, e.g., the large field of spatial data. Finally,
our multi-source perspective to sparse, outlier-robust PCA holds also promise for other
popular multivariate analyses such as discriminant analysis, graphical modeling or
canonical correlation analysis.
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Appendix C

C.1 ADMM Minimization Problems

For ease of notation, we introduce the matrix notation of the vectorized ADMM
components u(1),u(2),u(3) and v(0),v(1),v(2) and v(3) similar to (4.2.1) as

Um
(i) =

� um
(i),1 . . . um

(i),(N−1)p+1
...

...
um
(i),p . . . um

(i),Np

% = (um
(i),·1, . . . ,u

m
(i),·N ) = (um′

(i),1·, . . . ,u
m′
(i),p·)

′,

V m
(i) =

� vm
(i),1 . . . vm

(i),(N−1)p+1
...

...
vm
(i),p . . . vm

(i),Np

% = (vm
(i),·1, . . . ,v

m
(i),·N ) = (vm′

(i),1·, . . . ,v
m′
(i),p·)

′.

The notation for the variables without superscript is likewise as well as for the vector
z used in Equation (4.3.5).

Minimization Problem 1

Due to the block-diagonal structure of Σ̂, the additivity of the quadratic Frobenius
norm and the separable constraints, the minimization problem can be separated among
sources. Thus, per source i, we have the following minimization problem in v ∈ Rp for
each iteration step m

min
v

− v′Σ̂iv +
ρ

2
||v +

1

ρ
um
(1),·i − vm

(0),·i� �� �
=:c

||22

s.t. v′v = 1,

v′vl
·i = 0, 1 ≤ l < k

z′
·iv ≥ 0.

The problem is non-convex but differentiable and, thus, can be solved by calculating
the Lagrangian

L(v) = −v′Σ̂iv +
ρ

2
||c+ v||22 − µz′

·iv + λ0(v
′v − 1) +

k−1-
l=1

λl(v
′vl

·i)
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and applying the Karush-Kuhn-Tucker (KKT) conditions,

∇vL(v) = −2Σ̂iv + ρ(c+ v)− µz·i + 2λ0v +
k−1-
l=1

λlv
l
·i = 0, (C.1)

g(v) = −z′
·iv ≤ 0,

h0(v) = v′v − 1 = 0,

hl(v) = v′vl
·i = 0, ∀1 ≤ l < k, (C.2)

µ ≥ 0,

µz′
·iv = 0. (C.3)

For speed we can derive a term for λ0 by multiplying equation (C.1) from left with v′,
which cancels λl and µ due to the optimality conditions (C.3) and (C.2),

0 = −2v′Σ̂iv + ρv′(c+ v)− µz′
·iv� �� �

=0

+2λ0 v′v����
=1

+

k−1-
l=1

λl v
′vl

·i����
=0

λ0 = v′Σ̂iv − ρ

2
v′(c+ v).

It is also possible to calculate λl as a function of µ and v by multiplying with (vl
·i)

′,

0 = −2(vl
·i)

′Σ̂iv + ρ (vl
·i)

′(c+ v)� �� �
=v̄j ′c

−µ(vl
·i)

′z·i +
k−1-
l=1

λl(v
l
·i)

′vl
·i� �� �

=λl

λl = 2(vl
·i)

′Σ̂iv − ρ(vl
·i)

′c+ µ(vl
·i)

′z·i.

However, substituting λl with the exact expression derived above has proven to
deteriorate precision in the orthogonality constraints without a significant gain in
speed.

It is not possible to derive an analytical solution due to third and higher-order terms
after substituting the multiplier λ0 into Equation (C.1). We have to resort to solving
the root constraints (C.1), (C.2) and (C.3) numerically using the function multiroot
from the R-package rootSolve (Soetaert, 2009). Additionally, we need to ensure that
all other constraints are also fulfilled after finding a root. We apply the concept of
warm starts and use vm

(0),·i as the starting value for the root finder. If no feasible root
is found, we increase ρ until a feasible root is found.

Regarding regularity conditions, we can check the linear independence constraint
qualification (LICQ) condition, where we need linear independence of all ∇hl(v) = vl

·i,
∇h0(v) = v and ∇g(v) = z·i if g(v) = z′

·iv = 0. By design, ∇hl(v) and ∇h0(v)
are independent since the components are all orthogonal. If g(v) = z′

·iv = 0, we are
orthogonal to ∇h0(v). Additionally choosing z·i orthogonal to all prior loadings, the
regularity condition is fulfilled for all v, implying that it is sufficient to look at points
fulfilling the KKT conditions to find the optimum. Since for each source i z·i is chosen
as the starting value yk,·i which is in the given feasible space and thus part of the
orthogonality space of vl

·i, the LICQ condition is fulfilled.
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Minimization Problem 2

The objective function to minimize,

ηγ||v(2)||1 +
ρ

2
||1
ρ
um
(2) + v(2) − vm

(0)||22,

is separable across sources due to the squared Frobenius norm and the L1-norm.
The analytical solution is thus given by the proximal operator of the L1-norm, i.e.
element-wise soft-thresholding (Boyd et al., 2011) for each entry of v(2),

vm+1
(2),i = S

�
vm
(0),i − um

(2),i/ρ, ηγ/ρ
 

∀i = 1, . . . , Np,

with S(x, λ) = sign(x)max(|x| − λ, 0).

Minimization Problem 3

The part of the minimization function connected to the groupwise sparsity, f3(v(3)),
can be rewritten as

f3(v(3)) = η(1− γ)
√
N

p-
j=1

)
v′
(3)Cjv(3) = η(1− γ)

√
N

p-
j=1

||v(3),j.||2.

Thus, we can use the groupwise/block soft-thresholding operator, which is the proximal
operator of the L1-norm of subgroups (Boyd et al., 2011)

vm+1
(3),j· = SG(v

m
(0),j· − um

(3),j·/ρ, η(1− γ)
√
N/ρ),

with SG(x, λ) = max(1− λ/||x||2, 0)x.

C.2 Starting Values

The extreme solution for η → ∞ depends on γ, y∞
k (γ).

Proof of Corollary 4.3.1.1. a. First, we know for any v

1 = ||v·i||22 =
p-

j=1

v2ji ≤
p-

j=1

v2ji + 2
-
j′<j

|vj′i||vji| = ||v·i||21,

and that the proposed minimizer of ||v·i||1 has the minimal objective function
value of 1. Moreover, all other minimizer have to fulfill that |vj′i||vji| = 0 for
all j′ < j to reach the minimal objective function value of 1. Thus, all minimizers
have exactly one entry unequal to zero per source.

b. Define xj =
).N

i=1 v
2
ji = ||vj·||2. Then, based on the inequality of part a, it

holds that

N =
N-
i=1

||v·i||22 =
p-

j=1

||vj·||22 = ||x||22 ≤ ||x||21 =
 p-

j=1

||vj·||2
2

= G2(v)
2.
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The extreme solution proposed above has an objective function value of N , which
is thus minimal. Again, the same argument applies as before implies, that all
mixed terms |xj′ ||xj | must be equal to zero for all j′ ̸= j to reach equality of the
two norms.

c. Trivial.

For the special but important case of correlation matrices, we need an adaptation
since the variable chosen by the explained variance is not unique. In order to ensure
consistent behavior, we calculate the k-th eigenvectors of each correlation matrix, scale
it with the root of the respective eigenvalue, and take the mean. The variable with the
absolute highest value will be taken as the groupwise solution for η → ∞. Although
all variables are valid solutions for η → ∞, choosing an extreme solution close to y0

k,
we get more consistency over varying λ and thus better convergence.

Simulation Results

In Figure C.1 the performance of the proposed starting value for simulation scenario
1 (Section 4.4.1) and the first four principal components is illustrated. We apply
ρ = p, ϵroot = 10−1, ϵADMM = 10−4, ϵthr = 0.005. For PCs 2 to 4 we iteratively use
the best solution of all starting values for the orthogonality constraints. We simulate
100 random starting values, where each entry of the starting values is drawn from
a standard normal distribution, and the vector is then projected onto the feasible
space using the projection defined in Equation (4.3.6). The values of the objective
function of the random starting values are shown as boxplots for varying η ∈ [0, 2]
(horizontal axis) and γ = 0, 0.5, 1 (panels). The crosses indicate the objective function
value for the proposed starting value. It is clearly visible, that the proposed starting
value reliably produces optimal solutions and is thus a valid alternative to using many
random starting values.

In Figure C.2 the results for correlation matrices are shown. Regarding correlation
matrices, there are multiple optimal extreme solutions, since all variables have the
same amount of variance univariately. If there are multiple optimal solutions obtained
in the simulations the one with the highest absolute scalar product with the extreme
solution y0

k is taken for the orthogonality constraints for the simulation for the next
PC. This accounts for the fact that the extreme solutions y∞

k (γ) (as well as y0
k for

higher components) are based on the prior extreme solution components.
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Figure C.1: Objective function values for the proposed starting value (cross) and for
random starting values (boxplot) for covariance matrices.
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Figure C.2: Objective function values for the proposed starting value (cross) and for
random starting values (boxplot) for correlation matrices.

114



Appendix C

C.3 Weather Analysis at Hohe Warte

The variables used in the real data example collected from the weather station Hohe
Warte are listed and described in Table C.1.

Name Description Unit
cl Cloud coverage, daily mean 1, . . . , 100

rad Global radiation, daily sum J/cm²
vp Vapour pressure, daily mean hPa

wmax Maximal wind speed, daily maximum m/s
ap Air pressure, daily mean hPa

hum Relative air humidity, daily mean %
prec Precipitation, daily sum mm
sight Sight distance, sight at 1pm m
sun Sunshine duration, daily sum h

tmax Maximal air temperature at 2m, daily maximum °C
tmin Minimal air temperature at 2m, daily minimum °C

t Air temperature at 2m, daily mean °C
w Wind speed, daily mean m/s

Table C.1: Hohe Warte weather station: List of variables.

C.4 Geochemical Plant Analysis

Figure C.3 shows the optimal parameter selection for the geochemical plant data set.
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Figure C.3: Plant geochemistry: Optimal smoothing and sparsity parameters.
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5 A Smooth Multi-Group Gaussian
Mixture Model for Cellwise Robust
Covariance Estimation

This chapter was published as Puchhammer, P., Wilms, I., and Filzmoser, P. (2025). A
smooth multi-group Gaussian Mixture Model for cellwise robust covariance estimation.
arXiv preprint arXiv:2504.02547. DOI: 10.48550/arXiv.2504.02547.

5.1 Introduction

The continuous increase in data volumes confronts statisticians with increasingly
complex data structures. External information in addition to the measured features is
often available and can be leveraged in the analysis. An example of external information
are data with a partitioning of the observations into groups. This can be either a
partition such as healthy persons and patients, but it could also be related to an expert
grouping or to groups based on some hypothesis. However, in contrast to traditional
classification tasks, the group information is considered uncertain to some extent,
and thus the intended groups need more flexible modeling. Examples common in the
medical context are progressive diseases, where patients are in transition from a healthy
status towards more and more sever stages of a disease. Overall, groups cannot be
dissociated from each other leading to a multi-group setting for the analysis.

Analyzing the groups separately might offer some insight, but overall trends or
connections between groups would be lost or at least difficult to extract. On the other
extreme, removing the grouping structure also poses analytical obstacles. Methodologies
that assume identically distributed observations might fail because of the lack of
coherency between the groups. Other approaches based on multiple distributions, such
as mixture models or clustering methods, can deliver groups of data, however, they
are not necessarily connected to the provided grouping and thus model something
we might not be interested in. Therefore, more flexible models that can account for
an underlying, possibly smooth connection among data groups defined by external
information on a prior partition are needed to draw proper insights from data sets
often present in real life.

There are many practical problem settings of this kind: When analyzing spatial data,
as in the geosciences, underlying structures such as terrain type or country borders
can dictate the grouping structure. Although the underlying basis are (continuous)
spatial coordinates, the focus for the analysis still lies on the specifics of provided
groups, but also on their common characteristics. The same applies to time-series data
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5 A Smooth Multi-Group Gaussian Mixture Model

structured by some fixed time interval, such as months or years, or by specific events.
An important area where separation based on smooth external variables is common is
medicine, where many diagnoses are based on continuous measurements with specific
thresholds. An example is diabetes, where the diagnosis is based on measured blood
sugar. Moreover, even if the diagnosis is not based on continuous external variables,
most diseases are progressive, so measured features vary in a smooth way between
people with different health conditions. Thus, taking the diagnosis classification as
granted will not only lead to mistakes, but also misses information of persons being at
a transition, as well as the reasons for this transition. The idea extends to many other
fields, such as groups based on socio-economic status, or failure of components due to
abrasion in industrial technology.

When it comes to real-life data, outliers are often present. Their effect on data analysis
should be minimized to obtain robust and reliable results. Especially in settings with
complex data structures, they can be masked more easily and can have a greater effect
on the results if not detected. With multivariate data, outlying observations can be
entirely different from the data majority, or they can just differ in single variables. The
latter are called cellwise outliers, and methods were developed for their identification
in one coherent data set, such as the detecting deviating data cells algorithm (DDC,
Rousseeuw and Bossche, 2018), or the cellMCD estimator (Raymaekers and Rousseeuw,
2023) for cellwise robust covariance estimation. A cellwise robust version of a Gaussian
mixture model was recently proposed by Zaccaria et al. (2024, cellGMM) – however,
the method is limited to delivering the best clusters independent of prior information
from the grouping structure.

We extend the setting of Gaussian mixture models (GMMs) to multi-group data
sets to address the additional focus given by the pre-defined groups. Assuming that
a smooth process underlies the partition into groups, we model each group having a
main distribution and being mixed with distributions of other groups. This allows
us to match the resulting distributions to the pre-defined groups and to put unusual
observations into a bigger context. An observation can either be unusual in the original
group and might fit better to another group, indicating a possible mismatch, or an
observation is generally unusual because of possibly outlying cells. For a mismatch, it
is worth checking the group assignment for errors. In case of outlying cells, these may
refer to unreliable or extreme measurements that should either be corrected or removed
for further analysis. By specifying the probabilities of group membership for each
observation, we can also shed light on the transition mechanisms of observations moving
from their predefined group to another one, and thus identify potentially influential
variables during this transition.

The remainder of the paper is structured as follows. Section 5.2 provides more
detailed information on the relevant literature, as well as an introduction to the model
setup and the objective function. Section 5.3 details the algorithm and hyperparameter
settings. Theoretical results on robustness properties are reported in Section 5.4, and
experimental simulation results on robustness are described in Section 5.5. Three
real-life data examples from meteorology, medicine and oenology, the science of wine
and wine making, are illustrated in Section 5.6, and Section 5.7 concludes.
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5.2 Methodology

We introduce the multi-group Gaussian mixture model in Section 5.2.1. The objective
function based on the log-likelihood is proposed in Section 5.2.2, and finally connections
and differences to related methods are discussed in Section 5.2.3.

5.2.1 Model and Notation

Let X1,X2, . . . ,XN be data sets from N groups consisting of independent observa-
tions Xg = ((xg,1)

′, . . . , (xg,ng)
′)′ ∈ Rng×p per group g = 1, . . . , N of the same p vari-

ables. Let n =
.N

g=1 ng, and assume that observations xg,i from group g, i = 1, . . . , ng,
originate from a Gaussian mixture

xg,i ∼ N (µk,Σk) with probability πg,k ≥ 0 (5.2.1)

for k = 1, . . . , N . Note that observations of a particular group can originate not only
from a single distribution but from a Gaussian mixture of all group distributions. In
the multi-group setting we assume that a pre-specified group is more coherent than the
combined data, and thus it consists of a main distribution assigned to it. Therefore,
we enforce πg,g ≥ α ≥ 0.5, where the constant α specifies how coherent each group
should be.

Based on Equation (5.2.1) it follows that the expected value and the covariance of
any xg from group g are

E[xg] =
N-
k=1

πg,kµk,

Cov[xg] =

N-
k=1

πg,kΣk +

N-
k=1

πg,k(µk − E[xg])(µk − E[xg])
′, (5.2.2)

see Appendix D.1 for the derivation. The covariance corresponding to group g is then
a smoothed covariance consisting of the covariance from the major distribution, Σg,
with a minimum weight of α, and of the other covariance matrices Σk, with weights
πg,k specifying the amount of overlap to other distributions as well as the variability of
the means around the expected value.

In the following we define our notation used throughout the paper. The multivariate
normal density with mean µk and covariance Σk of an observation xg,i is denoted by

ϕ(xg,i;µk,Σk) =
exp (−1

2(xg,i − µk)
′Σ−1

k (xg,i − µk))+
(2π)p detΣk

.

Since outlying cells will be considered missing in the likelihood, observed and missing
cells of xg,i are denoted by a binary vector wg,i = (wg,i1, . . . , wg,ip), where a value of 1
indicates observed variables, and 0 indicates missing or outlying values. We will put
(wg,i) as superscript, as in x

(wg,i)
g,i ,µ

(wg,i)
k and Σ

(wg,i)
k , if we only consider the subset of

variables that are observed, i.e. {j : wg,ij = 1, j = 1, . . . , p}. Moreover, for any binary
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vectors w and w̃, the notation Σ
(w|w̃)
k denotes the submatrix of Σk that includes rows

and columns indicated by w and w̃, respectively. Also, (1−w) indicates missing cells
instead of observed ones, {j : wg,ij = 0, j = 1, . . . , p}.

When considering the multivariate normal density ϕ(x
(wg,i)
g,i ;µ

(wg,i)
k ,Σ

(wg,i)
k ) of a

partially observed observation, conventions regarding fully non-observed observations
(wg,i = 0) are as follows. The density ϕ(x

(wg,i)
g,i ;µ

(wg,i)
k ,Σ

(wg,i)
k ) and the covariance

determinant det(Σ
(wg,i)
k ) are equal to 1, the squared Mahalanobis distance (x

(wg,i)
g,i −

µ
(wg,i)
k )′(Σ(wg,i)

k )−1(x
(wg,i)
g,i − µ

(wg,i)
k ) is equal to zero.

5.2.2 Objective Function

For our cellwise robust estimation of the statistical model described above we denote
the model parameters that need to be estimated as π = (πg,k)

N
g,k=1, µ = (µk)

N
k=1 and

Σ = (Σk)
N
k=1, and their estimates as π̂ = (π̂g,k)

N
g,k=1, µ̂ = (µ̂k)

N
k=1 and Σ̂ = (Σ̂k)

N
k=1.

Based on the proposed model in Equation (5.2.1) we use a likelihood approach to
estimate the parameters. Robustness against cellwise outliers is achieved by considering
outlying cells to be missing values indicated by a set of matrices W = (Wg)

N
g=1

consisting of binary vectors wg,i, i = 1, . . . , ng, which also need to be estimated,
Ŵ = (Ŵg)

N
g=1. These missing values are removed from the likelihood estimation by

using the observed likelihood.
For defining the objective function, the approach of the cellMCD (Raymaekers

and Rousseeuw, 2023) is extended. We combine the observed log-likelihood for the
model described in Equation (5.2.1) with a penalty term for the number of missing
cells. The estimators are then the minimizers of the observed penalized log-likelihood
Obj(π,µ,Σ,W ), defined as

N-
g=1

ng-
i=1

−2 ln

�
N-
k=1

πg,kϕ
�
x
(wg,i)
g,i ;µ

(wg,i)
k ,Σ

(wg,i)
reg,k

 !
+

p-
j=1

qg,ij(1− wg,ij)

 (5.2.3)

subject to the constraints

Σreg,k = (1− ρk)Σk + ρkTk (5.2.4)
ng-
i=1

wg,ij ≥ hg ∀j = 1, . . . , p, ∀g = 1, . . . , N (5.2.5)

N-
k=1

πg,k = 1 ∀g = 1, . . . , N (5.2.6)

πg,g ≥ α ≥ 0.5. (5.2.7)

The first part of Equation (5.2.3) is the observed likelihood of each observation xg,i

given a missingness pattern wg,i. The second part introduces the penalty term to
reduce the number of flagged cells and increases accuracy as also shown in Raymaekers
and Rousseeuw (2023). Flagging a cell of an observation xg,ij costs a value of qg,ij in the
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objective function. The penalty constant qg,ij is derived by the notion of a standardized
residual. If the (absolute) residual is atypically large (measured by a χ2-quantile), the
minimizing effects on the likelihood exceed the additional cost flagging the cell. If the
residual is too small, it will not be flagged and included in the estimation. In that way,
only clearly outlying cells are flagged and overflagging is reduced. For more details on
choosing qg,ij , we refer to Section 5.3.4.

Regarding the constraints, Equation (5.2.4) provides regularization of the covariance
matrices by a convex combination with a regular diagonal matrix Tk of univariate robust
scale for group k, and a regularization factor ρk > 0, similar to the MRCD (Boudt
et al., 2020). Regularity provides stability for grouped data settings, where groups can
also consist of just a few observations, as well as for high-dimensional settings. The
proposed values for ρk and Tk are described in more detail in Section 5.3.4.

The number of cells flagged per group and variable is constrained by Equation (5.2.5),
where at least half of the cells per group need to be included in the parameter estimation
of the mixture model, hg ≥ ⌈0.5ng⌉. However, due to the possible instability of the
covariance estimation between two variables, we set the default value to hg = ⌈0.75ng⌉
and thus allow for a maximum of 25% of flagged cells per variable and group.

Lastly, the two constraints in Equations (5.2.6) and (5.2.7) originate from the
proposed multi-group GMM. The parameter α specifies how strict the model is regarding
the pre-defined groups. A value of α = 1 allows no group change of observations from
their given groups. When α decreases, more and more flexibility among the groups is
allowed. Therefore, a gradual increase in flexibility can illuminate observations located
in the transition between groups.

5.2.3 Connections to Related Work

Our method combines elements of clustering via mixture models, robustness, missing
data, and multi-group data analysis.

Regarding robustness, many methods exist for the rowwise setting, where an en-
tire observation is considered an outlier (Maronna et al., 2019). A recent rise in
methodologies is visible for the cellwise paradigm, introduced by Alqallaf et al. (2009),
where single cells of an observation are considered outlying. Standard rowwise robust
estimators of covariance and location are the Minimum Covariance Determinant (MCD;
Rousseeuw, 1984, 1985) estimator, typically proposed for n ≥ 5p (with n the number of
observations and p the number of variables), and its regularized version, the Minimum
Regularized Covariance Determinant (MRCD; Boudt et al., 2020) estimator. Both
search for a subset of observations that minimize the resulting sample covariance.

In the cellwise paradigm, the cellwise robust MCD (cellMCD; Raymaekers and
Rousseeuw, 2023) is a recent proposal to extend the likelihood formulation of the MCD
to the cellwise outlier setting, leveraging the idea that outlying cells can be considered
to be missing values in the estimation procedure. The objective function of the cellMCD
consists of the observed likelihood (Little and Rubin, 2019), where outlying cells are
declared as missing, plus a penalty term reducing the number of flagged cells and
thus increasing estimation accuracy. The objective function is then optimized in an
iterative manner, switching between covariance and location estimation via an Expected
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Maximization (EM) algorithm and updating flagged outlying cells. Again, n ≥ 5p is
suggested. An alternative in high-dimensional settings is the covariance estimator of
Öllerer and Croux (2015) based on pairwise correlations.

Regarding finite mixture models, rowwise robust proposals for standard GMMs
(Neykov et al., 2007) were recently extended to cellwise robustness (cellGMM, Zaccaria
et al., 2024). Similar to the cellMCD, the objective function consists of an observed
likelihood incorporating the mixture model and a penalty term. However, due to
the model structure, the penalty weights need to be estimated for each observation
separately in the first step before the outliers can be flagged more accurately in the
second step. While cellGMM is cellwise robust and allows for multiple distributions, it
does not account for the pre-defined grouping structure and estimated clusters are not
directly matched to the given groups.

One rowwise robust method that is applicable in the scenario described above is
the spatially smoothed MRCD (ssMRCD) estimation proposed by Puchhammer and
Filzmoser (2024). Originally developed for spatial data, it relies on predefined groups
that are connected by a bigger picture, and in contrast to a standard GMM also
provides a match between pre-defined groups and covariance and location estimates.
However, the ssMRCD is not formulated as a mixture model, as it yields a covariance
estimate for a group by incorporating overall and group-wise information, where the
group contributions are pre-specified by weights. For achieving robustness, the ssMRCD
estimator targets the determinant of specific covariance matrices, similar to MCD and
MRCD.

Compared to the ssMRCD, there are certain advantages of the proposed probabilistic
model-based approach when it comes to selecting hyperparameters. While the amount
of smoothing and the smoothing weights need to be prespecified for the ssMRCD
estimator, which correspond to the mixture weights in the specified mixture model,
here these parameters can be estimated within the probabilistic model. Also the amount
of flexibility (referred to as smoothing for the ssMRCD) is not a fixed parameter given to
the model, but it can vary between groups and is only restricted by the hyperparameter
α.

5.3 Algorithm

The algorithm for the multi-group GMM consists of two steps, iteratively minimiz-
ing the objective function over two sets of parameters, similar to Raymaekers and
Rousseeuw (2023). The W-step minimizes over W and the Expectation Minimiza-
tion (Maximization) (EM, Dempster et al., 1977; McLachlan and Krishnan, 2008)
step minimizes over (π,µ,Σ). Especially the EM-step is adapted to the multi-group
setting by accounting for constraint (5.2.7) and by regularizing the covariance, see
Equation (5.2.4). Given initial starting values for the parameters described in Ap-
pendix D.3,we iteratively repeat the W-step and the EM-step until the estimated
covariance matrices have converged. A pseudo code of the main algorithmic structure
is given in Algorithm 3.
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5.3 Algorithm

5.3.1 W-Step

The calculation of the (τ + 1)-th step is based on the estimated parameters in the
τ -th step, π̂τ = (π̂τ

g,k)
N
g,k=1, µ̂

τ = (µ̂τ
k)

N
k=1, Σ̂

τ = (Σ̂τ
k)

N
k=1, Ŵ

τ = (Ŵ τ
g )

N
g=1. Here, we

minimize the objective function Equation (5.2.3) corresponding to the parameter W .
For an estimate Ŵ τ , a copy W̃ is defined and modified for each variable step by step
to reduce the objective function value, starting with j = 1. Although the exact results
depend on the order of the variables, Raymaekers and Rousseeuw (2023) have shown
by simulations that this effect is small or even negligible.

Based on the fixed variable j, for each group g and observation i we calculate the
difference in the objective function for including the cell in the estimation, w̃g,ij = 1
(1w̃g,i) and flagging the cell, w̃g,ij = 0 (0w̃g,i) while all other entries stay unmodified.
Note that the results are order independent regarding groups or observations. Thus,
the difference Δg,ij is

Δg,ij =− 2 ln

�
N-
k=1

π̂τ
g,kϕ

�
x
(1w̃g,i)
g,i ; µ̂

τ(1w̃g,i)
k , Σ̂

τ (1w̃g,i)
reg,k

 !

+ 2 ln

�
N-
k=1

π̂τ
g,kϕ

�
x
(0w̃g,i)
g,i ; µ̂

τ(0w̃g,i)
k , Σ̂

τ (0w̃g,i)
reg,k

 !
− qg,ij .

For all observations with Δg,ij < 0, we set w̃g,ij equal to 1 for further calculations. If
there are less than hg observations per group g with Δg,ij < 0, we set those w̃g,ij equal
to 1 for which Δg,ij is among the lowest hg values of {Δg,ij : i = 1, . . . , ng}. Then,
the same procedure is applied to the next variable with the updated W̃ , until the
flagging is updated for all variables. Overall, the updated W̃ after all variables is the
next estimate Ŵ τ+1. We always modify W̃ such that the objective function is at least
not increasing given the constraints, and thus the whole W-step does not increase the
objective function value.

5.3.2 EM-Step

Given Ŵ τ+1, the parameters of the mixture model can be estimated to minimize the
unpenalized observed likelihood of the GMM with missing values thus minimizing the
overall objective function. Eirola et al. (2014) provide an EM-based algorithm for
GMMs with missing data that will be adapted to the multi-group setting incorporating
the additional constraints given by Equations (5.2.4) and (5.2.7). More details and
derivations are provided in Appendix D.3.

The expected probability that observation xg,i is from distribution k conditional on
the observed values indicated by ŵτ+1

g,i and on the previous estimates π̂τ = (π̂τ
g,k)

N
g,k=1,

µ̂τ = (µ̂τ
k)

N
k=1, Σ̂

τ = (Σ̂τ
k)

N
k=1, is

t̂τ+1
g,i,k =

π̂τ
g,kϕ

�
x
(ŵτ+1

g,i )

g,i ; µ̂
τ(ŵτ+1

g,i )

k , Σ̂
τ (ŵτ+1

g,i )

reg,k

#
.N

l=1 π̂
τ
g,lϕ

�
x
(ŵτ+1

g,i )

g,i ; µ̂
τ(ŵτ+1

g,i )

l , Σ̂
τ (ŵτ+1

g,i )

reg,l

# . (5.3.1)
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5 A Smooth Multi-Group Gaussian Mixture Model

Due the constraints in Equation (5.2.7) and (5.2.6), the mixture probability updates
are adapted according to

π̂τ+1
g,g = max

�
α,

1

ng

ng-
i=1

t̂τ+1
g,i,g

	
, π̂τ+1

g,k = (1− π̂τ+1
g,g )

1
ng

.ng

i=1 t̂
τ+1
g,i,k

1− 1
ng

.ng

i=1 t̂
τ+1
g,i,g

.

Further, for an observation xg,i with current missingness pattern ŵτ+1
g,i , the condi-

tional expectation x̂τ+1
g,i assuming that xg,i comes from distribution k is calculated

by

x̂
τ+1 (1−ŵτ+1

g,i )

g,i = µ̂
τ(1−ŵτ+1

g,i )

k + Σ̂
τ (1−ŵτ+1

g,i |ŵτ+1
g,i )

reg,k

×
�
Σ̂

τ (ŵτ+1
g,i |ŵτ+1

g,i )

reg,k

#−1�
x
(ŵτ+1

g,i )

g,i − µ̂
τ(ŵτ+1

g,i )

k

#
(5.3.2)

x̂
τ+1 (ŵτ+1

g,i )

g,i = x
(ŵτ+1

g,i )

g,i . (5.3.3)

The new estimate for µ̂τ+1
k is then

µ̂τ+1
k =

1

t̄k

N-
g=1

ng-
i=1

t̂τ+1
g,i,kx̂

τ+1
g,i

with t̄k =
.N

g=1

.ng

i=1 t̂
τ+1
g,i,k.

For estimating the covariance based on x̂τ+1
g,i , an additional term needs to be added.

Assuming that observation xg,i originates from distribution k, the correction term is
calculated according to

Σ̃
τ (1−ŵτ+1

g,i |1−ŵτ+1
g,i )

reg,k = Σ̂
τ (1−ŵτ+1

g,i |1−ŵτ+1
g,i )

reg,k − Σ̂
τ (1−ŵτ+1

g,i |ŵτ+1
g,i )

reg,k

×
�
Σ̂

τ (ŵτ+1
g,i |ŵτ+1

g,i )

reg,k

#−1

Σ̂
τ (ŵτ+1

g,i |1−ŵτ+1
g,i )

reg,k

for unobserved variables, ŵτ+1
g,i equal to 0, and 1 otherwise. The new estimate Σ̂τ+1

reg,k

is then calculated as

Σ̂τ+1
reg,k = ρkTk + (1− ρk)

1

t̄k

N-
g=1

ng-
i=1

t̂τ+1
g,i,k

�
(x̂τ+1

g,i − µ̂τ+1
k )(x̂τ+1

g,i − µ̂τ+1
k )′ + Σ̃τ

reg,k

�
.

5.3.3 Convergence of the Algorithm

The algorithm iterates between the W-step and the EM-step until the maximal absolute
change in any entry of all covariance matrices, maxk,j,j′ |Σ̂τ

reg,k,jj′ − Σ̂τ+1
reg,k,jj′ |, is smaller

than ϵconv = 10−4.
Since the regularization of the covariance matrices acts on the maximization step of

the EM-algorithm, the same argumentation as in Proposition 6 from Raymaekers and
Rousseeuw (2023) can be applied to show that each W-step and EM-step reduce the
objective function or leaves it unchanged while all constraints are fulfilled. Thus, the
algorithm converges to a local minimum.
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5.4 Robustness Properties

5.3.4 Choice of Hyperparameters

In the objective function (5.2.3), the parameters ρk, Tk and qg,ij are used but not yet
specified.

First, regarding the regularization, we choose a diagonal matrix Tk consisting of robust
univariate scale estimates for observations from group k, Tk = diag(σ̂k,1, . . . , σ̂k,p).
Here, we choose the univariate MCD estimator applied to each variable separately. For
the amount of regularization we opt for a condition number of 100 for each covariance.
However, due to multiple groups, this is not always possible since Tk could vary heavily
and possibly already have a higher condition number for one specific k. Thus, the
condition number to achieve for distribution k is κk = max(1.1 condTk, 100), where
the factor 1.1 allows for multivariate data input if the condition number of Tk is high.
Given the initial estimates Σ̂0

k, the regularization factor ρk is chosen as small as possible
and such that the condition number fulfills ρkTk + (1− ρk)Σ̂

0
k ≤ κk.

Second, the penalty weights qg,ij are chosen per observation and variable. In the
cellMCD algorithm (Raymaekers and Rousseeuw, 2023), the weights only depend on
the initial estimate of the conditional variance per variable j, and a cell is flagged if

ln(Cij) + ln(2π) + (xij − x̂ij)
2/Cij > qj ,

where x̂ij and Cij are conditional mean and variance of xij given the current estimates
and observed cells for observation i. The penalty weight qj is chosen as qj = χ2

1,0.99 +
ln(2π) + ln(Cij) such that cells are flagged if the standardized residuals exceed a
χ2-quantile,

(xij − x̂ij)
2

Cij
> χ2

1,0.99,

the 99-th quantile of the chi-square distribution with one degree of freedom.
In the multi-group GMM, the original distributions of the observations are not clear,

and we first need an initial estimate to which distribution each observation belongs to.
Given initial estimates π̂0, µ̂0 and Σ̂0, we can calculate the probabilities t̂0g,i,k according
to Equation (5.3.1) and use a weighted penalty parameter for each observation,

qg,ij = χ2
1,0.99 + ln(2π) +

N-
k=1

t̂0g,i,k ln(C
0
k,j),

where C0
k,j =

1
(Σ̂0

reg,k)
−1
jj

.

5.4 Robustness Properties

In this section, we introduce an extension of the additive breakdown point for cluster
and finite mixture model settings to the cellwise paradigm. As common in these settings,
the breakdown point is data dependent and in unfavorable constellations, a robust
estimator can break down if even one point is added. Thus, often an idealized setting
of well clustered data points is considered, introduced by Hennig (2004) for univariate
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5 A Smooth Multi-Group Gaussian Mixture Model

Algorithm 3 Multi-group GMM

Input: X1,X2, . . . ,XN ; initial estimates Σ̂0
reg, µ̂0, π̂0, Ŵ 0; hyperparameters qg,ij ,

Tk, ρk, ϵconv, hg, α
1: W ← Ŵ 0

2: (Σreg,µ,π) ← (Σ̂0
reg, µ̂

0, π̂0)
3: crit ← ∞
4: while crit > ϵconv do
5: Σprev

reg ← Σreg

6: W ← wstep(X,Σreg,µ,π,W , qg,ij , hg)
7: (Σreg,µ,π) ← emstep(X,Σreg,µ,π,W ,T , ρ, α)
8: crit ← maxk,j,j′ |Σprev

reg,k,jj′ − Σreg,k,jj′ |
9: end while

10: return Σreg,µ,π,W

and extended by Cuesta-Albertos et al. (2008) to multivariate data in the rowwise
paradigm (described in Appendix D.2). In this section we transfer the idealized setting
from the rowwise outlier paradigm to the notion of cellwise outliers (see Section 5.4.1)
as well as to the complex grouped structure of the targeted data sets (see Section 5.4.2)
and prove the corresponding breakdown point of the proposed estimator.

5.4.1 Cellwise Breakdown in an Idealized Scenario

Compared to the well-known rowwise outliers, where an outlier is considered to be a
whole observation, in the cellwise outlier paradigm introduced by Alqallaf et al. (2009),
outliers are considered to be only single cells of observations. For the corresponding
cellwise replacement breakdown point, only single cells are replaced by arbitrary values.
The maximal fraction of contaminated cells per variable without breakdown of the
estimator is then its breakdown point (Raymaekers and Rousseeuw, 2023).

When considering cellwise outlyingness in a mixture model setting, the scenario
of well-clustered data used for the assessment of the breakdown behavior in the
rowwise paradigm is not sufficiently separating the clusters when it comes to cellwise
outlyingness. In the cellwise contamination scheme, the removal of a subset of variables
could still lead to cluster overlap (see Figure 5.4.1a) and thus, the ideal scenario
should be adapted to cluster separation in all subsets (see Figure 5.4.1b). Note that a
separation in all variable subsets is equivalent to a separation in each variable.

To formalize well-separated clusters in the cellwise paradigm, a sequence of clusters
(Xm)m∈N is considered ideal when the distances of observations within clusters are
bounded by a constant b < ∞ and observations from different clusters are increasingly
far away. Formally, let s ≥ 2 be the number of clusters, and ñ1 < ñ2 < . . . < ñs =
ñ ∈ N. For each m-th part of the sequence, the data Xm are clustered into s clusters
A1

m, . . . , As
m such that

A1
m = {x1,m, . . . ,xñ1,m}, . . . , As

m = {xñs−1+1,m, . . . ,xñs,m}
and Xm =

/s
l=1A

l
m and xi,m = (xi1,m, . . . , xip,m) for i = 1, . . . , ñ,m ∈ N.
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A1
m A2

m
m → ∞ m → ∞

y2,m ≡ y

y1,m

m
→

∞

(a) Not ideal in cellwise paradigm. Clus-
ters A1

m, A2
m and y2,m not separated

vertically, y1,m and y2,m not separated
horizontally.

m
→
∞

m
→
∞

A1
m

A2
m

y2,m ≡ y

y1,mm → ∞

(b) Ideal in cellwise paradigm (wy1,m
=

(1, 0), wy2,m = 0, y1,m ∈ B1
m, y2,m in

any Bl
m). The dashed line for y2,m

indicates bounded horizontal but in-
creasing vertical distance.

Figure 5.4.1: Horizontally overlapping clusters in Figure a) and ideally separated clus-
ters in the cellwise outlier paradigm in Figure b).

Thus, to ensure that clusters are well separated in each variable, we enforce

lim
m→∞min{|xi′j,m − xij,m| : xi′,m ∈ Al

m,xi,m ∈ Ah
m, h ̸= l, j = 1, . . . , p} = ∞. (5.4.1)

Additionally, well-clustered also means that data points of each cluster are close to each
other. Thus, a bounded distance within clusters in all variables separately is assumed,

max
1≤l≤s

max{|xi′j,m − xij,m| : xi′,m,xi,m ∈ Al
m, j = 1, . . . , p} < b ∀m ∈ N. (5.4.2)

Note, that Equation (5.4.2) is equivalent to the corresponding assumption in the
rowwise setting stated in Equation (D.3).

We now consider added cellwise outliers, Ym = {y1,m, . . . ,yr̃,m}, such that 0 ≤ r̃1 ≤
. . . ≤ r̃s = r̃ and

B1
m = {y1,m, . . . ,yr̃1,m}, . . . , Bs

m = {yr̃s−1+1,m, . . . ,yr̃s,m}.
For each added observation yi,m, there exists a w(yi,m) ∈ {0, 1}p indicating the outlying
cells by w(yi,m)j = 0 and non-outlying cells by w(yi,m)j = 1. The non-outlying part
of cellwise outliers should originate from one of the constructed clusters,

max
1≤l≤s

max{|yi′j,m − xij,m| :xi,m ∈ Al
m,yi′,m ∈ Bl

m,

j = 1, . . . , p with w(yi′,m)j = 1} < b ∀m ∈ N,

and outlying cells should be infinitely far away from all other outlying cells and clusters,

lim
m→∞min{|yi′j,m − xij,m| : xi,m ∈ Xm,yi′,m ∈ Ym, w(yi′,m)j = 0} = ∞, (5.4.3)

lim
m→∞min{|yi′j,m − yij,m| : yi′,m,yi,m ∈ Ym, i ̸= i′, w(yi′,m)j = 0} = ∞. (5.4.4)
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Figure 5.4.2: Possible group structure of groups for N = 3. Each column block corre-
sponds to a group and each row within a column block to an observation.
Red, violet and green rows are indicating from which cluster the observa-
tion originates from, gray indicates outlying cells. The gray line in the
third block is assigned to B3

m, but could stem from any other cluster too.

The breakdown of an estimator Ê of location, covariance or cluster weight is defined
equivalently to the rowwise setting. Thus, the breakdown of an estimator is relatively
defined by estimates based on Xm and on Xm ∪ Ym and the location breakdown for a
cluster l occurs, if for all h = 1, . . . , N

||µ̂l(Xm)− µ̂h(Xm ∪ Ym)||2 → ∞, (5.4.5)

where || · ||2 denotes the Euclidean norm. Denoting the smallest and largest eigenvalue
of a covariance matrix with λp and λ1, respectively, a covariance estimator of a cluster
l would implode (explode) if λp(Σ̂l(Xm)) → 0 (λ1(Σ̂l(Xm)) → ∞) and λp(Σ̂l(Xm ∪
Ym)) ↛ 0 (λ1(Σ̂l(Xm ∪Ym)) ↛ ∞) or vice versa. The weight estimator π̂l of a cluster
l breaks down if π̂l ∈ {0, 1}.

The cellwise additive breakdown point is then defined as

ϵ∗(Ê) = min

�
maxj=1,...,p

.r̃
i=1(1− w(yi,m)j)

ñ+ r̃
: Ê breaks down

	
,

where
.r̃

i=1(1− w(yi,m)j) denotes the number of contaminated cells per column j.

5.4.2 Cellwise Breakdown for Multi-Group Data

For analyzing the breakdown point in an ideal setting for a multi-group mixture model
as described in Section 5.2.1, we assume N many underlying clusters and outliers
constructed to be cellwise, separated as described in Section 5.4.1. All observations
Xm ∪ Ym, contaminated or not, are partitioned into groups Z1

m, . . . ,ZN
m of size n1 +
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5.4 Robustness Properties

r1, . . . , nN + rN (where ng is the number of clean and rg is the number of added
observations of group g) by a function g̃ : Xm

/Ym → {1, . . . , N}, thus Zm =/N
g=1Z

g
m = Xm

/Ym. Moreover, we assume that for each group g a certain fraction
α̃g of its ng observations and rg added outliers are from cluster g,

|{x : x ∈ Ag
m, g̃(x) = g}|
ng

≥ α̃g,
|{y : y ∈ Bg

m, g̃(y) = g}|
rg

≥ α̃g, (5.4.6)

thus, reflecting the major distribution per group. An illustration of the groups and the
cluster origins per observation for a fictitious ideal data set is shown in Figure 5.4.2,
where each row corresponds to an observation, each column block corresponds to a
group and each column per group to a variable. The first (row) block per group includes
the clean data, and the second block the added, possibly contaminated data. The
color indicates the ideal cluster each observation is originating from (red, green, violet)
for clean cells or whether a cell is outlying (grey). For each group the majority of
observations comes from the main cluster for clean and for contaminated observations,
respectively. Cellwise contamination can affect single cells (group 2), all cells of
single variables (group 1, variable 2 and 4) and/or whole observations (group 3, first
contaminated row).

For the ideal scenario we assume that at least
�
ng+rg+1

2

�
observations from group g

are from cluster g and thus, α̃g is restricted to fulfill (ng + rg)α̃g ≥
�
ng+rg+1

2

�
for all

g = 1, . . . , N . Note, for the proposed estimation this implies that for any variable j
and group g there always exists at least one observation in Zg

m originating from cluster
g which is observed for variable j.

Cellwise breakdown is defined equivalently to the ungrouped setting and the break-
down point is defined as the minimal fraction of outlying cells for at least one variable
in at least one group necessary to break down one estimator Ê,

ϵ∗group(Ê) = min
g=1,...,N

min

�
maxj=1,...,p

.
y∈Zg

m∩Ym
(1− w(y)j)

ng + rg
: Ê breaks down



.

Corollary 5.4.2.1. Given the ideal setting and fixed ρk > 0,Tk > 0 (positive definite),
the following statements hold.

a. For all m and no contamination, Zm = Xm, there exist feasible estimates π̂,
µ̂, Σ̂ such that the objective function is finite for any feasible set of W in
Equation (5.2.5). Thus, the value of the objective function for a minimizer of
Equation (5.2.3) under the constraints (5.2.4) to (5.2.7) is bounded.

b. Given the contaminated data Zm and sets of estimates π̂(Zm), µ̂(Zm), Σ̂(Zm),
Ŵ (Zm) for m ∈ N. If there exists an l such that λ1(Σ̂reg,l(Zm)) → ∞ for
m → ∞, then the value of the objective function of the estimates goes to infinity.

c. Given the contaminated data Zm and sets of estimates π̂(Zm), µ̂(Zm), Σ̂(Zm),
Ŵ (Zm) for m ∈ N. If there exists a variable j∗, l, k and a constant b̃ such
that |µ̂k,j∗(Zm) − µ̂l,j∗(Zm)| < b̃ for l ̸= k, then the objective function of these
estimates goes to infinity.
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5 A Smooth Multi-Group Gaussian Mixture Model

The proof leverages the ideal scenario and subsequent intuition about reasonable
estimates to bound the objective function in the uncontaminated case and to further
show that an observation cannot “escape" from one cluster to another if it is originating
from an exploding cluster since clusters move apart from each other. It is given in
Appendix D.2.

Theorem 5.4.2.1 (Breakdown point). For the ideal scenario and fixed ρk,Tk > 0 the
following breakdown results in the cellwise paradigm hold.

a. The implosion breakdown point is 1.

b. The weight breakdown point is 1.

c. The explosion breakdown point is at least ming{(ng − hg + 1)/ng}.
d. The location breakdown point is 0.

e. The explosion breakdown point is exactly ming{(ng −hg +1)/ng}, when assuming
that the location estimator is not broken down.

The proof leverages the strong cellwise separation between the clusters and the
results of Corollary 5.4.2.1 and is given in Appendix D.2.

5.5 Simulations

In order to test the proposed method, we focus on five main scenarios: 1) a basic
setting with N = 2 balanced groups, 2) a balanced setting with N = 5 groups, 3)
an unbalanced two-group setting, 4) a balanced two-group setting with increasing
singularity issues, and 5) a high-dimensional balanced two-group setting. Setting 1)
and 2) are described in detail in the main text; for the remaining settings and further
detailed evaluations we refer to Appendix D.4.

In Section 5.5.1 the generation of clean and contaminated data for two covariance
structures is described in detail. Competing methods and evaluation criteria are
summarized in Section 5.5.2 and 5.5.3, respectively, and corresponding results are
shown in Section 5.5.4.

5.5.1 Data Generation

Clean data are generated according to the underlying multi-group Gaussian mixture
model, formulated in Equation (5.2.1), for given dimensions p ∈ {10, 20, 60}. For
N ∈ {2, 5} groups we vary the mixture between the groups indicated by the parameter
πdiag ∈ {0.75, 0.9}. The mixture probabilities are then given by πgg = πdiag and
πg,k =

1−πdiag

N−1 for g, k = 1, . . . , N, g ̸= k.
We differentiate between two different covariance structures applied to all covari-

ances in the mixture distributions. The first type is of Toeplitz structure (similar
to Raymaekers and Rousseeuw, 2023) and each covariance Σk ∈ Rp×p is constructed
by Σk,ij = ζ

|i−j|
k where ζk is randomly drawn from a uniform distribution in [0.5, 1].
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5.5 Simulations

Toeplitz covariances share the relationships between variables but to a different ex-
tent. The second type is based on the approach of Agostinelli et al. (2015) (ALYZ)
to construct well-conditioned correlation matrices. We allow for more variation of
the variances and stop the iterative procedure early, specifically when the trace of
a covariance is bounded by [p/2, 2p]. Compared to the Toeplitz structure, here the
correlation between the variables can vary more strongly between the groups, making
it more difficult for local methods to account for outliers.

Two types of scenarios are discussed for the mean of the distributions. On the one
hand, we consider a scenario where there are just differences in the covariance, thus
setting all means to zero, µk = 0. On the other hand, the more realistic scenario with
different means is considered, by applying the concept of c-separation (Dasgupta, 1999)
that gives a notion of how strongly the distributions overlap. We assume significant
overlap (0.5-separated clusters) due to an underlying smooth variable and construct
the means inductively, starting with µ1 = 0p. Given µ1, . . . ,µk−1 a new vector µtmp

is drawn from N (0p, Ip). To ensure a certain level of separation and overlap we set
the next distributional mean to µk = t∗(µtmp − 1

k−1

.k−1
l=1 µl) +

1
k−1

.k−1
l=1 µl, where

t∗ fulfills

||µl − µk||2 ≥ 0.5
+
pmax(λ1(Σl), λ1(Σk))

for all l = 1, . . . , k − 1, with equality for at least one l. Each group g consists
of ng ∈ {30, 40, 50, 100} many clean observations drawn with probability πg,k from
N (µk,Σk).

For each group a percentage ϵcell = 10% of random cells per variable is contaminated
as in Raymaekers and Rousseeuw (2023). Given an observation from group g which is
drawn from distribution k and where a subset of variables indexed with J should be
contaminated, cells indexed by J are replaced with

µk,J + vk,J
γcell

+|J |)
v′
k,JΣ

−1
k,J vk,J

.

Here, J as subscript denotes the part of the vectors/matrices corresponding to the
indexed variables, and vk,J denotes the eigenvector with the smallest eigenvalue of
Σk,J . The parameter γcell ∈ {2, 6, 10} controls the strength of the outlyingness of
contaminated cells with respect to µk. For γcell = 2 the cellwise outliers are hard to
distinguish from regular cells, while γcell = 10 produces clear outliers which are easier
to detect for robust methods, and very influential to non-robust procedures.

5.5.2 Competing Methods

Regarding the performance comparison of our proposed method, we include the following
seven methods in our simulation study, starting with their acronyms.

cellgGMM: The proposed cellwise robust multi-group GMM.

sample: The sample covariance applied to each group separately as a non-robust
alternative.
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mclust: A non-robust basic finite GMM implemented via an EM-algorithm in the
R-Package mclust (Fraley et al., 2024) applied globally, with the correct number
of groups provided. Since there is no clear attribution of an estimated cluster to
a group, mclust will only be calculated for two-group settings and clusters will
be assigned to groups in the most favorable way1.

MRCD (Boudt et al., 2020): Rowwise robust covariance estimator applicable to high
dimensions and applied separately to each group. It is available in the R-package
rrcov (Todorov, 2024).

ssMRCD (Puchhammer and Filzmoser, 2024): An estimator targeted towards a multi-
group setting robust against rowwise contamination available in the R-package
ssMRCD (Puchhammer and Filzmoser, 2023). It is calculated with the default
values for smoothing and equal weights for all groups, and the unsmoothed
covariance estimates are assumed to correspond to the covariance matrices of the
mixture distribution.

cellMCD (Raymaekers and Rousseeuw, 2023): A cellwise robust method for covariance
and location available in the R-package cellWise(Raymaekers et al., 2023).

OC (Öllerer and Croux, 2015): The cellwise robust covariance estimator is applied
separately to each group. The OC-estimator does not provide a location estimate
but it can calculate a covariance matrix in high-dimensional settings. A fast
implementation is available in the R-package Filzmoser et al. (2009).

5.5.3 Evaluation Criteria

The performance of covariance estimation is compared across all methods, where
possible. Given an estimated covariance Σ̂k, the Kullback-Leibler divergence to the
real covariance Σk is used as evaluation criterion,

KL(Σ̂k,Σk) = tr(Σ̂kΣ
−1
k )− p− log det(Σ̂kΣ

−1
k ).

For N ≥ 2, the final performance metric is the average over all distributions, KL =
1
N

.N
k=1KL(Σ̂k,Σk).

The mean estimates µ̂k and the mixture probabilities π̂ are evaluated by the Mean
Squared Error (MSE)

MSE(µ̂k,µk) =
1

p

p-
j=1

(µkj − µ̂kj)
2,

MSE(π̂,π) =
1

N2

N-
g=1

N-
k=1

(πg,k − π̂g,k)
2

1The assignment of groups and clusters is such that it minimizes the evaluation measure of the
KL-divergence. Thus, it is possible that the performance of estimating locations might suffer for
the considered performance criteria.
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and averaged over the groups for the mean, MSE(µ) = 1
N

.N
k=1MSE(µ̂k,µk).

Additionally, the correctness of flagged cellwise outliers is measured by the standard
recall, precision and F1-score and compared only to the cellMCD, since this is the only
other method providing flagged cells.

5.5.4 Results

As introduced at the beginning of Section 5.5, we focus on two out of the five different
settings in the main text, and additional figures regarding the MSE for location
and mixture probabilities as well as outlier detection performance are included in
Appendix D.4. Each combination is repeated 100 times. Note that cellMCD cannot be
calculated if too many marginal outliers are present, in which case the failed runs are
removed for all methods reducing the number of repetitions shown in the plots (see
Appendix D.4 for corresponding tables stating the number of effective runs).

We start with the basic balanced setting where we consider p = 10 variables, N = 2
groups and n1 = n2 = 100 observations per group. Figure 5.5.1 and 5.5.2 show the
KL-divergence for covariance estimation across all seven competing methods and a
varying strength of outlyingness γcell for the Toeplitz and ALYZ covariance structure,
respectively. The four subpanels differ regarding the coherency in the predefined groups.
For example, observations of one group are very coherent for πdiag = 0.9 and µ = 0
(top right panel) or less coherent for πdiag = 0.75 and varying µ. For both covariance
structures and among all four coherency types it is visible that only the cellwise robust
methods can manage outlying cells as γcell increases. Our proposed method cellgGMM
and cellMCD are the most reliable while OC local is somehow robust against an increase
in the degree of outlyingness of cells. However, OC local starts already with suboptimal
estimates for γcell = 2. At the bottom panels it is evident that differences in location,
even for strong overlapping distributions like here, is sufficient to drastically decrease
performance for all competitor methods regarding covariance estimation. Especially for
the cellMCD, non-coherency in the mean and covariance structures (ALYZ structure)
confuse the algorithm in detecting cells and precision deteriorates (see also Figure D.2
and D.4 in the appendix) while for the proposed cellgGMM it facilitates the correct
clustering (see also Figure D.1 and D.3).

In the setting with an extended number of N = 5 groups, p = 10 variables and
n1 = . . . = n5 = 100 observations per group, we see similar and even more prominent
patterns. In Figure 5.5.3, the KL-divergence for the ALYZ covariance structure2 is
shown. Again, methods that are not robust against cellwise outliers suffer increasingly
with the degree of outlyingness when it comes to covariance estimation. While for
varying µ, the findings are the same as in the basic setting, we see that here cellgGMM
performs better than cellMCD even in the most coherent setting (top right panel).
Thus, the more groups are available to our proposed method, the better it can leverage
the given context.

2Due to the difficulties of the cellMCD based on the amount of marginal outliers, some parameter
combinations for the Toeplitz-structured covariances lead to a very low number of repetitions
(down to 16). Thus, corresponding results are stated in the appendix and should be treated with
caution.
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Figure 5.5.1: KL-divergence for the basic balanced setting and Toeplitz covariance
structure for varying strength γ of outlyingness.
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Figure 5.5.2: KL-divergence for the basic balanced setting and ALYZ covariance struc-
ture for varying strength γ of outlyingness.
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Figure 5.5.3: KL-divergence for the balanced setting with five groups and ALYZ co-
variance structure for varying strength γ of outlyingness.

With respect to the other three settings, the findings are similarly good for the
proposed cellgGMM. The results of the competing methods in the unbalanced setting
with N = 2, p = 10, n1 = 100 and n2 = 50 are comparable to the balanced settings
described above. When increasing the p-to-n-ratio (N = 2, p = 20, n1 = n2 = 30), we
see that cellMCD struggles a lot with flagging cellwise outliers due to low precision and
subsequently with covariance estimation, often delivering worse covariance estimates
than the OC local method. In the high dimensional scenario (N = 2, p = 60,
n1 = n2 = 40) the results depend on the covariance structure. For the Toeplitz
structure, OC local performs comparably well, while for ALYZ-structured covariances,
cellgGMM generally outperforms OC local more clearly.

In general, cellgGMM consistently performs well in all five settings considered and
in multiple coherency constellations. While it is often comparable to cellMCD when
µ = 0, in real multi-group settings this is a rare exception and one has to consider real
life data to be closer to settings where locations vary over groups. In these simulation
scenarios, cellgGMM outperforms all other considered methods.

5.6 Applications

We illustrate possible application scenarios of the proposed method by data from the
fields meteorology, medicine and oenology. Weather measurements of Austrian weather
stations are analyzed in Section 5.6.1, and in Section 5.6.2 we investigate handwriting
data of healthy and Alzheimer patients. In the third application in Section 5.6.3 we
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analyze patterns of high to low rated wine samples.

5.6.1 Austrian Weather Data

We illustrate our method on data provided by GeoSphere Austria (2024), with p = 6
monthly measured weather variables at 183 Austrian weather stations, including air
pressure (p) and temperature (t), amount of rain (rsum), relative humidity (rel), hours
of sunshine (s) and wind velocity (vv), which are averaged over the year 2021. The data
set is publicly available in the R-Package ssMRCD (Puchhammer and Filzmoser, 2023)
under the name weatherAUT2021 on CRAN. Figure 5.6.1 shows the spatial locations
and the underlying diverse geographical and thus also meteorological structure caused
by the Alps. We proposed a separation of the stations into N = 5 more coherent
groups, visible by the dashed lines in the figure. The most western area (group 1,
n1 = 31) is characterized by very mountainous terrain, which extends to the east into
the next area (group 2, n2 = 80), where high and low mountains are present. The most
northern part (group 3, n3 = 35) consists of low mountains and hills along the Danube
river which flows through Vienna and the Vienna Basin (group 5, n5 = 21). The last
area to the East (group 4, n4 = 16) hosts some hills but is mainly flat.

Our goal is to identify weather stations with cellwise outliers given the spatial context
and to further analyze why these stations are atypical. Moreover, we are also interested
in the coherency of the pre-defined groups. To this end, we apply our method with
default values hg = 0.75ng, allowing for up to 25% of flagged cells per variable, and
α = 0.5, indicating a strong flexibility of observations to switch between the five groups.
The highest class probabilities maxk t̂g,i,k per observations are shown in Figure 5.6.1
with different plot symbols.

Observations with at least one flagged cell are shown in Figure 5.6.2. The top
panel shows the estimated class probabilities t̂g,i,k by the color of the tiles, while the
membership to one of the original groups is marked by a dot. In the bottom panel,
outlying cells are colored according to their standardized residuals rg,ij (Raymaekers
and Rousseeuw, 2023),

rg,ij =

N-
k=1

t̂g,i,k
xg,ij − x̂kg,ij,

Σ̂
(j|j)
reg,k − Σ̂

(j|ŵg,i)
reg,k

�
Σ̂

(ŵg,i|ŵg,i)
reg,k

 −1
Σ̂

(ŵg,i|j)
reg,k

,

where x̂kg,ij denotes the expected value of xg,ij given that it is from distribution k and
using only unflagged cells ŵg,i, see also Equation (5.3.2). The proposed method can
identify if observations are outlying in all groups, indicated by a high number of cellwise
outliers (e.g. half of the cells are outlying), or whether they are outlying specifically in
their pre-defined group, indicated by a high probability for another group. In the upper
panel of Figure 5.6.2 showing only observations with outlying cells, this is expressed
by non-overlapping dots and dark blue tiles.

Positive values of the residual indicate that the observed value is higher than what
would be expected, and negative values refer to observed values which are lower than
expected, given the other non-flagged cells. Many outliers are connected to cell outliers
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Figure 5.6.1: Altitude map of Austria with spatial locations of weather stations indi-
cated by black symbols and separation into groups indicated by dashed
grid lines. Shapes are based on the maximal class probability of the
corresponding observation.

in the variable wind velocity, likely due to the diverse exposure of weather stations
even in the same area. Moreover, a pattern of unexpected high values in wind velocity
and low values in air pressure and temperature is visible for the five weather stations
with half of their cells outlying (Villacher Alpe, Sonnblick, Rudolfshütte, Patscherkofel,
Galzig) - exactly the five highest weather stations with an altitude of more than 2000
meters.

Figure 5.6.3 presents a more detailed analysis of the variables wind velocity and air
temperature. The tolerance ellipses, based on the estimated locations and covariance
matrices per group, show a smooth transition from groups connected to mountainous
landscapes (group 1 and 2) with higher variation in temperature to flatter landscapes
(group 3 to 5) with increased variation in wind velocity and generally higher temperature.
The only cellwise outlier with unexpectedly high temperature is the weather station
Wien-IS, which is located in the city center of the capital Vienna.

5.6.2 Darwin - Alzheimer Disease

Alzheimer disease is a non-curable neuro-degenerative disease which progresses over
time, leading to cognitive impairment. To mitigate the negative effects of Alzheimer
disease on affected patients and their loved ones, early diagnoses and treatment is
essential. In contrast to Cilia et al. (2022) who train a classifier to discriminate between
the two groups, we propose to use the developed multi-group GMM methodology as
a tool to analyze the gray area between diagnosed Alzheimer patients and subjects
considered healthy. While the groups are given by an official diagnosis, some persons
can be on the verge to Alzheimer and not yet being diagnosed or at very early stages.
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Figure 5.6.4: Class probabilities tg,i,g for subjects whose probabilities change based on
α sorted by time of switching.

Thus, the strict separation into groups might not be beneficial, and a more smoothed
approach can help to better analyze the intertwinings between the two groups and
identify corresponding influential variables.

The DARWIN (Diagnosis AlzheimeR WIth haNdwriting) data set (Cilia et al., 2022),
available in the R-package robustmatrix (Mayrhofer et al., 2024), contains handwriting
samples from n1 = 85 healthy persons and n2 = 89 patients with diagnosed Alzheimer
disease (AD). Each subject was asked to execute 25 different handwriting tasks on a
tablet from which 18 summary features where extracted: total time, air time, paper
time, mean speed on paper, mean speed in air, mean acceleration on paper, mean
acceleration on air, mean jerk on paper, mean jerk in air, mean of pressure, variance
of pressure, generalization of the mean relative tremor (GMRT) on paper, GMRT in
air, mean GMRT, number of pendowns, maximal x-extension, maximal y-extension
and dispersion index. For a detailed explanation of the tasks and measured variables
we refer to Cilia et al. (2018). Similar to Mayrhofer et al. (2025) we also exclude
the variables total time, mean GMRT and air time due to linear dependencies and
unreliable measurements. The remaining variables are summarized over the 25 tasks
by the median and the median absolute deviation (mad). Thus, we include p = 30
variables and the groups are given by the Alzheimer disease status (N = 2).

One way to focus on the overlap of the two groups is to vary the parameter α ∈
{1, 0.99, . . . , 0.51, 0.5} in the calculations. While α = 1 forces the observations to
belong to the predefined group, decreasing values are less and less strict and enable
switching to the other group if the multivariate distribution of that group is more
appropriate. Figure 5.6.4 presents the class probabilities t̂g,i,g for varying α for subjects
whose probability of being in their predefined class t̂g,i,g is lower than 50% for at least
one value of α (switchers). We can see that a subset of 8 AD diagnosed patients and 2
healthy subjects move to the opposite group as soon as the procedure starts to allow
for a switch, i.e. when α < 1, indicating strong multivariate similarities to the opposite
group.

Figure 5.6.5 shows all cells of the data matrix, with the observations split into
Alzheimer patients and healthy people. Additionally, within these groups we show the
switchers, which are sorted according to increasing values of α, thus in the same order
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as shown in Figure 5.6.4. The cells of the matrix present information about outlyingness
of the cells when varying α (no symbol, crosses or dots), and color according to the
standard deviation of the residuals over varying α. If a cell is white, it is not outlying
for all α. Cells marked by dots are outlying for several or even all values of α. Higher
variability of the residuals can occur for different reasons: (a) the person switches
to the other group, (b) the cell is identified as an outlier for particular values of α,
or both (a) and (b) occur. Case (a) mainly appears for the switching persons. For
example, the variable pressure_mean (both median and mad) which shows many cells
with increased residual variability. Several of those cells are outliers as soon as the
given diagnosis is not enforced to the statistical model, revealing the inhomogeneity of
the subjects with respect to this variable. However, there is also a block of cells which
are not outliers, and this block appears for persons switching from the healthy to the
AD group, as this group provides a better model fit. It might be worth looking closer
at the data collection of this variable, since either possible unfavorable measurement
conditions or other undiagnosed or progressive diseases affecting the variable could
cause the detected unusual behavior. The variable pressure_mean (as well as some
other features) also leads to cellwise outliers for many observations, while other variables
such as mean_speed_in_air are inconspicuous.

This plot also provides insights into multivariate cluster overlaps given by the
distribution estimates for values of a specific subject. For example, Alzheimer patient 8
switches immediately to the healthy group without any change in residuals, indicating
that patient 8 is at the overlap of the clusters in all variables but relatively closer to
the center of the healthy cluster. It is likely that such persons have an early diagnosis
of Alzheimer and low cognitive impairment.

5.6.3 Wine Quality

Lastly, we leverage the model flexibility to investigate how qualitative expert evaluations
of wine are consistent with their quantitative chemical features. To this end, we use a
data set of Cortez et al. (2009b), available at the UCI Machine Learning Repository
(Cortez et al., 2009a). The data were collected over the years 2004 to 2007 and consist
of p = 11 physicochemical measurements, including fixed acidity, volatile acidity, citric
acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH-level,
sulphates, and alcohol percentage, for n = 4898 samples of white vinho verde, a known
Portuguese wine. Additionally, each wine was qualitatively graded from 0 (very bad)
to 10 (excellent) by three different sensory assessors by blind tasting. The median of
the three grades is reported as the variable quality.

Originally, Cortez et al. (2009b) trained a Support Vector Machine classifier given
the quality variable. However, we are more interested in the coherency of each group
and whether expert evaluations are consistent regarding the chemical features reported.
We partition the data into three groups based on the quality assessment: the first
group with low wine quality includes n1 = 1640 wine samples with quality assessments
3 to 5 (20 wine samples with quality level 3, 163 with 4, and 1457 with 5), the second
group with medium quality contains n2 = 2198 samples with quality level 6, and the
third group includes n3 = 1060 good quality wine samples (880 samples with level 7,
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175 with 8, and 5 samples with quality 9). Due to prominent skewness in multiple
variables we apply a robust transformation to each variable to achieve central normality
(see Raymaekers and Rousseeuw, 2024b). We then apply the cellgGMM estimator
with α = 0.75. The increase in α compared to the minimal 0.5 should stabilize the
estimation due to the low number of unbalanced groups as well as some incoherency
within the groups.

The parallel coordinate plot in Figure 5.6.6 displays the resulting parameter estimates
alongside the feature values of the wine samples. Each panel represents wine samples
that are of low, medium or high quality according to the experts (column) and of low,
medium or high quality according to the predicted group assignment of our model
(rows). Consequently, the diagonal panels highlight wine samples where both expert
evaluations and statistical methodology agree on their quality.

Panels below the main diagonal show wine samples that experts rate lower than their
physicochemical measurements would suggest, while panels above the diagonal show
samples rated higher than expected based on their quantitative features. Additionally,
each panel includes the estimated location (solid black line) and standard deviation
(black error bars) provided by the cellgGMM for the expert-proposed group (thus they
are identical in each column). We see a strong heterogeneity within each expert group.
While the wine samples where experts and cellgGMM agree are quite coherent, clear
structural differences are visible in case of deviations. The two bottom left panels show
quantitatively good wines that are rated low by experts. They differ clearly from less
qualitative wines, most prominently by low density and residual sugar while containing
a relatively high amount of alcohol. On the opposite, wines rated too high by experts
(middle right panel) show adverse results for residual sugar, density and alcohol.

Moreover, there are many cellwise outliers detected by the algorithm that are also
visible in the parallel coordinate plot. Especially the high amount of outlying chloride
values is noticeable, as well as low citric acid values. Here, robustness against cellwise
outliers is key to get reliable estimates and to avoid clusters basically modeling one
variable with a high number of extreme values.

Overall, we get a good insight into the physicochemical features connected to the
quality of wines as given by experts. While we achieve a nice pattern for high quality
wines by our proposed multi-group GMM, the heterogeneity of the expert ratings is
high. Possible factors might be chemical or physical properties that are not measured
but are decisive for assessors when rating wine highly, a somewhat subjective notion of
quality, or both. The strong heterogeneity together with multiple prominent cellwise
outliers might also explain why previous classification attempts for this specific data
set only achieve an accuracy of up to 64.6% in Cortez et al. (2009b).

5.7 Summary and Conclusions

We establish a flexible GMM that accounts for external group information and can
deliver moment estimates matched to given groups. Underlying progressive structures of
the multi-group setting are present in many multi-group data sets and can be leveraged.
To this end, we introduce a probabilistic multi-group GMM allowing observations to
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Figure 5.6.6: Differences in wine quality assessment of expert rating (columns) and
physicochemical features. Black lines show estimated location and stan-
dard deviation for expert groups, colored lines show wine measurements,
divided in expert group (column) and the statistically most likely group
(rows).
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5 A Smooth Multi-Group Gaussian Mixture Model

originate from other than their pre-defined group. An objective function is formulated
based on its likelihood together with a penalty term.

A further contribution of this paper is the introduction of an appropriate notion
of breakdown of the estimator in the cellwise multi-group setting. A novel setting
of ideally cellwise well-clustered data is described for which the cellwise robustness
properties can theoretically be evaluated and compared between different methods.
This optimal setting is further extended to multi-group data for which we prove the
breakdown point for the proposed cellwise robust multi-group GMM.

An iterative algorithm based on the EM algorithm guarantees convergence to a
local optimum and due to the additional regularization the resulting estimator is
applicable in high-dimensions. The robustness of the estimator is confirmed also in
extensive simulation covering multiple relevant scenarios, and its usefulness is further
demonstrated on three versatile real life examples where possible interpretation angles
of the rich output of the method are illustrated in detail.

Compared to other methods, the cellgGMM provides a one-to-one match of estimated
covariance and location parameters with pre-defined groups while allowing observations
to be assigned flexibly to other groups if they are better fitting – a combination not
offered by other methods. In contrast, classical GMMs deliver estimates that are
not clearly matching known groups, and separate analysis forces observation to be
always of the original group. The approach is in a way also more refined than robust
discriminant analysis (for an overview see Hubert et al., 2024) which would discard
observations in the covariance estimation that might not fit to the pre-defined groups
due to misgrouping or being in the gray area between groups, e.g. when groups are
related to progressive medical diseases or diagnoses. In applications, especially the
parameter α that specifies the strictness of the membership to the given groups is
a particularly well-suited tool to shed light on transition dynamics when varied. In
a broader sense, the parameter α continuously bridges the gap between a separate
parameter estimation via the cellMCD for each group when α = 1 and a classical
(cellwise robust) GMM with a given number of clusters in the extreme (and excluded)
case of α = 0.

The proposed method is applicable in many fields of research where assignments to
pre-defined groups can be viewed more flexibly. Future research might leverage the
resulting moment estimates for other prominent multivariate methods like principal
component analysis, discriminant analysis or graphical modeling, and possibly further
extend classical methods towards a joint approach for group dependent and group
independent features.
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Appendix D

D.1 Derivation of Group Moments

Given the multi-group Gaussian mixture model in Equation (5.2.1) we can derive the
group moments.

Expected value: Due to the law of total expectation it follows that

E[xg] =
N-
k=1

P[xg ∈ k]E[xg|xg ∈ k] =
N-
k=1

πg,kµk.

Covariance: We want to show Equation (5.2.2),

Cov[xg] =

N-
k=1

πg,kΣk +

N-
k=1

πg,k(µk − E[xg])(µk − E[xg])
′.

For fixed variables j, j′ (that can also be equal), the corresponding covariance based
on Equation (5.2.2) can be reformulated as
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Cov[xg]j,j′ =
N-
k=1

πg,kΣk,j,j′ +
N-
k=1

πg,k((µk − E[xg])(µk − E[xg])
′)j,j′

=

N-
k=1

πg,kΣk,j,j′ +

N-
k=1

πg,k(µk − E[xg])j(µk − E[xg])j′

=
N-
k=1

πg,kΣk,j,j′

+

N-
k=1

πg,k(µk,jµk,j′ − µk,jE[xg]j′ − µk,j′E[xg]j + E[xg]j′E[xg]j)

=
N-
k=1

πg,kΣk,j,j′ +
N-
k=1

πg,kµk,jµk,j′ −
N-
k=1

πg,kµk,jE[xg]j′

−
N-
k=1

πg,kµk,j′E[xg]j +
N-
k=1

πg,kE[xg]j′E[xg]j

=

N-
k=1

πg,kΣk,j,j′ +

N-
k=1

πg,kµk,jµk,j′ − E[xg]j′
N-
k=1

πg,kµk,j

− E[xg]j

N-
k=1

πg,kµk,j′ + E[xg]j′E[xg]j

=

N-
k=1

πg,kΣk,j,j′ +

N-
k=1

πg,kµk,jµk,j′ − E[xg]j′E[xg]j . (D.1)

We can introduce the random variable Zg,i indicating from which distribution
observation xg comes. From the law of total covariance we get that

Cov(xg,j ,xg,j′) = E[Cov(xg,j ,xg,j′ |Z)] + Cov(E[xg,j′ |Z],E[xg,j |Z])

=
N-
k=1

πg,kΣk,jj′ +Cov(µZ,j′ , µZ,j)

=

N-
k=1

πg,kΣk,jj′ + E(µZ,j′µZ,j)− E(µZ,j′)E(µZ,j)

=
N-
k=1

πg,kΣk,jj′ +
N-
k=1

πg,kµk,j′µk,j − (

N-
k=1

πg,kµk,j′)(
N-
k=1

πg,kµk,j)

=

N-
k=1

πg,kΣk,jj′ +

N-
k=1

πg,kµk,j′µk,j − E[xg]j′E[xg]j . (D.2)

We can see that the right hand sides of Equation (D.1) and (D.2) are the same.
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D.2 Derivation of the Breakdown Point

Idealized Scenario in a Rowwise Outlier Paradigm

The classical finite sample addition (replacement) breakdown point describes the
maximal fraction of observations that need to be added to (replaced with arbitrary
values in) a given sample to make the estimator useless. An estimator of location µ̂
breaks down if it becomes unbounded, ||µ̂||2 → ∞. An estimated covariance matrix Σ̂
becomes either unbounded and explodes (explosion breakdown point), λ1(Σ̂) → ∞, or
singular (implosion breakdown point), λp(Σ̂) = 0, where λ1 and λp describe the largest
and smallest eigenvalue, respectively.

However, in the setting of mixture models, pathological settings where (robust)
estimators break down by just changing one observation can occur. Thus, we focus
on the additive breakdown point for parameter estimation in ideal settings of well-
clustered data points for mixture models, as described in Hennig (2004) for univariate
and extended by Cuesta-Albertos et al. (2008) to multivariate data. A sequence
of clusters (Xm)m∈N is considered to be ideal when the distances of observations
within clusters are bounded by a constant b < ∞ and observations from different
clusters are increasingly far away. Formally, let s ≥ 2 be the number of clusters and
ñ1 < ñ2 < . . . < ñs = ñ ∈ N. For each m-th part of the sequence, the data Xm is
clustered into s clusters A1

m, . . . , As
m such that

A1
m = {x1,m, . . . ,xñ1,m}, . . . , As

m = {xñs−1+1,m, . . . ,xñs,m}
and Xm =

/s
l=1A

l
m. The formal conditions for ideal clusters above are

max
1≤l≤s

max{||xi′,m − xi,m||2 : xi′,m,xi,m ∈ Al
m} < b ∀m ∈ N, (D.3)

lim
m→∞min{||xi′,m − xi,m||2 : xi′,m ∈ Al

m,xi,m ∈ Ah
m, h ̸= l} = ∞, (D.4)

where ||.||2 denotes the Euclidean norm. The added outliers denoted as Ym =
{y1,m, . . . ,yr̃,m} should be clearly distinguished from all clusters and not build a
cluster on their own,

lim
m→∞min{||yi′,m − xi,m||2 : xi,m ∈ Xm,yi′,m ∈ Ym} = ∞,

lim
m→∞min{||yi′,m − yi,m||2 : yi′,m,yi,m ∈ Ym, i ̸= i′} = ∞.

The breakdown of an estimator is then relatively defined by estimates based on Xm

and on Xm ∪ Ym. Location breakdown for a cluster l occurs, if for all h = 1, . . . , N

||µ̂l(Xm)− µ̂h(Xm ∪ Ym)||2 → ∞. (D.5)

A covariance estimator of a cluster l would implode if λp(Σ̂l(Xm)) → 0 and λp(Σ̂l(Xm∪
Ym)) ↛ 0 or if λp(Σ̂l(Xm)) ↛ 0 and λp(Σ̂l(Xm∪Ym)) → 0. Analogously, the explosion
breakdown occurs when λ1(Σ̂l(Xm)) → ∞ and λ1(Σ̂l(Xm ∪ Ym)) ↛ ∞ or vice versa.
The weight estimator π̂l of a cluster l breaks down if π̂l ∈ {0, 1}. The addition
breakdown point is then defined as r̃

ñ+r̃ where r̃ is the minimal number of added outliers
necessary to break down the parameter estimate. Both illustrations in Figure 5.4.1
depict ideal settings in the rowwise outlier paradigm.
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Proof of Corollary 5.4.2.1

Proof of Corollary 5.4.2.1. For ease of notation we drop the superscript m for obser-
vations and the explicit dependence of the estimators on Zm or Xm. All limits are
corresponding to m → ∞. The notation w(y) marks the real outlying cells of y
while the notation wy indicates the missingness pattern of y for a given W from the
objective function if the indexation of y is irrelevant. Then penalty term can generally
be left out since it is always bounded,

|
N-
g=1

ng-
i=1

p-
j=1

qg,ij(1− wg,ij)| ≤ pN max
g

ng max
g,i,j

qg,ij < ∞.

a. Given a data matrix X we construct a set of estimators with finite value of the
objective function. For all k = 1, . . . , N set Σ̂k,jj = 1 and zero otherwise and
µ̂k = 1

|Ak
m|

.
x∈Ak

m
x, where |Ak

m| denotes the number of elements in Ak
m. Then,

also regularized covariance matrices Σ̂reg,k have finite positive eigenvalues.

1. Assume α ̸= 1. Set π̂k,k = α ≥ 0.5, π̂k,l = 1−α
N−1 > 0 for k ≠ l. For each

observation xg,i with wg,i originating from any cluster l it holds that

ln

�
N-
k=1

π̂g,kϕ
�
x
(wg,i)
g,i ; µ̂

(wg,i)
k , Σ̂

(wg,i)
reg,k

 !

≥ ln

�
1− α

N − 1
ϕ
�
x
(wg,i)
g,i ; µ̂

(wg,i)
l , Σ̂

(wg,i)
reg,l

 #

= ln
1− α

N − 1
+ ln

e−
1
2
(x

(wg,i)

g,i −µ̂
(wg,i)

l )′(Σ̂
(wg,i)

reg,l )−1(x
(wg,i)

g,i −µ̂
(wg,i)

l ))
(2π)

�
j wg,ij det Σ̂

(wg,i)
reg,l

= ln
1− α

N − 1
− 1

2

�
(x

(wg,i)
g,i − µ̂

(wg,i)
l )′(Σ̂(wg,i)

reg,l )−1(x
(wg,i)
g,i − µ̂

(wg,i)
l )

+
-
j

wg,ij ln(2π) + ln det Σ̂
(wg,i)
reg,l

!

≥ ln
1− α

N − 1
− 1

2
(b(wg,i))′(Σ̂(wg,i)

reg,l )−1(b(wg,i))

− 1

2
p ln(2π)− 1

2
ln det Σ̂

(wg,i)
reg,l ,

where b denotes the vector b = (b, . . . , b) ∈ Rp with b corresponding to
Equation (5.4.2) and the last inequality follows from Equation (D.3) with
the Euclidean norm. Since all terms on the right hand side are bounded, the
objective function is bounded from above. For the lower bound, it follows
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that

ln

�
N-
k=1

π̂g,kϕ
�
x
(wg,i)
g,i ; µ̂

(wg,i)
k , Σ̂

(wg,i)
reg,k

 !
≤ lnN +max

k
ln
�
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�
x
(wg,i)
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(wg,i)
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(wg,i)
reg,k

  
≤ lnN +max

k
(−1

2
(x

(wg,i)
g,i − µ̂

(wg,i)
k )′(Σ̂(wg,i)

reg,k )−1(x
(wg,i)
g,i − µ̂

(wg,i)
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≤0

−1

2

-
j

wg,ij ln(2π)� �� �
≤0
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k

(−1

2
ln det Σ̂

(wg,i)
reg,k )

≤ lnN − 1

2
lnmin

k
det Σ̂

(wg,i)
reg,k .

Since the covariance estimates are finite, the objective function is bounded
for any feasible W .

2. Assume α = 1. Set π̂k,k = 1, π̂k,l = 0 for all k ̸= l. All observations from a
group g originate from cluster g, Zg = Ag, see Equation (5.4.6). Thus, for
any xg,i it holds that

ln

�
N-
k=1

π̂g,kϕ
�
x
(wg,i)
g,i ; µ̂

(wg,i)
k , Σ̂

(wg,i)
reg,k

 !

= −1
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(wg,i)
g,i − µ̂

(wg,i)
g )′(Σ̂(wg,i)

reg,g )−1(x
(wg,i)
g,i − µ̂

(wg,i)
g )

− 1

2

-
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wg,ij ln(2π)− 1

2
ln det Σ̂

(wg,i)
reg,g

≥ −1

2

�
(b(wg,i))′(Σ̂(wg,i)

reg,g )−1(b(wg,i)) + p ln(2π) + ln det Σ̂
(wg,i)
reg,g

 

and the objective function is bounded from above. For the lower bound, it
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follows

ln
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π̂g,kϕ
�
x
(wg,i)
g,i ; µ̂

(wg,i)
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reg,k
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reg,g )−1(x
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≤0

−1

2

-
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wg,ij ln(2π)� �� �
≤0

−1

2
ln det Σ̂

(wg,i)
reg,g

≤ −1

2
ln det Σ̂

(wg,i)
reg,g .

Thus, the objective function is bounded for any feasible W .

b. Assume that under the given estimates the objective function is bounded. By
construction, the estimated covariances Σ̂reg,k are regular and thus, the lowest
eigenvalues λp(Σ̂reg,k) ≥ b̃k(ρk,Tk) > 0 are bounded away from zero. According
to the proof of Proposition 2b) from Raymaekers and Rousseeuw (2023) it holds
for all k and any feasible ŵ that

ln det Σ̂
(ŵ)
reg,k ≥ ln max

j=1,...,p
Σ̂
(ŵ)
reg,k,jj + (p− 1) ln b̃k(ρk,Tk).

where b̃k(ρk,Tk) is a constant depending only on ρk and Tk.
From part a. we know that for all xg,i from group g it holds that

ln
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N-
k=1
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(ŵg,i)
g,i ; µ̂
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min
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. (D.6)
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Let j∗(l) = maxj=1,...,p Σ̂reg,l,jj for the distribution where λ1(Σ̂reg,l) → ∞. For
each group g there exists at least one observation xg,i∗(g) from cluster g for which
variable j∗(l) is observed, wg,i∗(g)j∗(l) = 1. For these observations, we have

(x
(ŵg,i∗(g))
g,i∗(g) − µ̂

(ŵg,i∗(g))
l )′(Σ̂

(ŵg,i∗(g))
reg,l )−1

×(x
(ŵg,i∗(g))
g,i∗(g) − µ̂

(ŵg,i∗(g))
l ) + ln max

j=1,...,p
Σ̂
(ŵg,i∗(g))
reg,l,jj ≥ ln max

j=1,...,p
Σ̂reg,l,jj

= ln max
j,j′=1,...,p

|Σ̂reg,l,jj′ |

≥ ln
λ1(Σ̂reg,l)

p
→ ∞.

Thus, for all xg,i∗(g), g = 1, . . . , N the argument l cannot be the minimizer.

Without loss of generality, assume that all other covariance matrices are bounded,
λ1(Σ̂reg,k) < ∞ if k ̸= l. Due to Equation (5.4.1), (5.4.3) and (5.4.4) it holds
that |xg,i∗(g)j∗(l) − xh,i∗(h)j∗(l)| → ∞ if g ̸= h. Also,

(x
(ŵg,i∗(g))
g,i∗(g) − µ̂

(ŵg,i∗(g))
k )′(Σ̂

(ŵg,i∗(g))
reg,k )−1(x

(ŵg,i∗(g))
g,i∗(g) − µ̂

(ŵg,i∗(g))
k )

≥ (xg,i∗(g)j∗(l) − µ̂k,j∗(l))
2(Σ̂

(ŵg,i∗(g))
reg,k )−1

j∗(l)j∗(l).

If (Σ̂
(ŵg,i∗(g))
reg,k )−1

j∗(l)j∗(l) → 0, then the smallest eigenvalue goes to zero,

λp((Σ̂
(ŵg,i∗(g))
reg,k )−1) → 0

implying λ1(Σ̂
(ŵg,i∗(g))
reg,k ) → ∞ as well as λ1(Σ̂reg,k) → ∞, which contradicts that

the other covariances are bounded in the first eigenvalue. Thus, (Σ̂
(ŵg,i∗(g))
reg,k )−1

j∗(l)j∗(l)
is bounded away from zero.

Since all observations are increasingly far away, there exists at least one xg′,i∗(g′)
such that (xg′,i∗(g′)j∗(l) − µ̂k,j∗(l))

2 → ∞ for all k = 1, . . . , N, k ̸= l and for which
the minimum from Equation (D.6) goes to infinity. Moreover, all parts are
bounded from above,

ln

�
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π̂g,kϕ
�
x
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g,i ; µ̂

(ŵg,i)
k , Σ̂

(ŵg,i)
reg,k

 !
≤ lnN − p

2
min
k

ln b̃k(ρk,Tk).

Thus, the objective function has to explode.

c. Assume that the objective function of the estimators π̂, µ̂, Σ̂, Ŵ is finite. Then
Σ̂reg,k are regular and not exploding due to part b. For all groups g there exists
at least one observation xg,i∗(g) ∈ (Ag ∪ Bg) ∩Zg such that ŵg,i∗(g)j∗ = 1. Let
C1 = mink,ŵ,j Σ̂

(ŵ)
reg,k,jj > 0 and C2 = mink,ŵ,j(Σ̂

(ŵ)
reg,k)

−1
jj > 0 (see part b.), then
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it holds
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min
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(p− 1) ln b̃k(ρk,Tk)− 1

2
lnC1

− 1

2
C2min

k

�
(xg,i∗(g)j∗ − µ̂k,j∗)

2

!
.

There are N many observations observed in j∗ that move increasingly far away
from each other in variable j∗. Since there exists l′, l such that to |µ̂l′,j∗−µ̂l,j∗ | < b̃
there are only N − 1 location estimates that move infinitely far away from each
other. It follows that maxg mink(xg,i∗(g)j∗ − µ̂k,j∗)

2 → ∞ and thus, there is one
term in the objective function that explodes, while the others are bounded (see
part b.).

Proof of Breakdown Points in Theorem 5.4.2.1

Proof of Theorem 5.4.2.1. a. Clear, since the lowest eigenvalues are always bound
away from zero (see also proof of Theorem 2c in Puchhammer and Filzmoser,
2024).

b. Since constraint (5.2.7) restricts the estimates π̂(Zm) such that π̂(Zm)g,g ≥ α > 0

for all g, the weight of each cluster k is 1
N

.N
g=1 π̂(Zm)g,k ≥ α

N > 0. Thus, all
clusters have non-zero weight.

c. From Corollary 5.4.2.1a., we know for uncontaminated data Xm that the objective
function is finite for the minimizers, and from Corollary 5.4.2.1b. we know that
the covariance matrix estimates are not exploding. Thus, a breakdown occurs
only when there exists an l such that λ1(Σ̂reg,l(Zm)) → ∞.

Assume that for each group g only up to ng−hg cells per column are contaminated
and outlying in the idealized scenario. It is possible to set Ŵ such that wy,j = 0
for all cells of added outliers y exactly when w(y)j = 0. Thus, there exists a
copy of an uncontaminated ideal scenario X̃m, that has the same values if cells
are observed as indicated by Ŵ and non-outlying values if wy,j = 0. From
Corollary 5.4.2.1a. for the given Ŵ it follows that there exist candidate estimates
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with finite objective function for X̃m and the value of the objective function on
Xm ∪ Ym is the same (and finite). From Corollary 5.4.2.1b. it follows that if
a covariance matrix explodes, the objective function explodes as well and the
estimates cannot be minimizers of the objective function because there exist
candidate estimates with a lower objective function. Thus, the breakdown point
is at least ming{(ng − hg + 1)/ng}.

d. We produce a special setting that is ideal and uncontaminated and in which there
are two possible estimates for location that have increasing distance from each
other for m → ∞.

Assume N = 2 many groups3, α = 0.5, ng is even for all g = 1, . . . , N , and that
there are no added outliers, Ym = ∅. Further assume that we have minimizing
estimates of the objective function, π̂, µ̂, Σ̂ and Ŵ . Assume Xm such that the
minimizing Ŵ has zeros in the first column and in the first ng/2 cells and for
all other columns there are zeros in the last half of the cells, for both groups.
Assume Xm such that Σ̂reg,1 = Σ̂reg,2 as well as π̂1,1 = π̂2,2 = 0.5. Construct
µ̃1 = (µ̂2,1, µ̂1,2, . . . , µ̂1,p) and µ̃2 = (µ̂1,1, µ̂2,2, . . . , µ̂2,p) by exchanging the first
coordinate of µ̂1 and µ̂2.

Then it holds for the constructed µ̃1, µ̃2 that

ϕ
�
x
(ŵ1,i)
1,i ; µ̂

(ŵ1,i)
1 , Σ̂

(ŵ1,i)
reg,1

 
= ϕ

�
x
(ŵ1,i)
1,i ; µ̃

(ŵ1,i)
1 , Σ̂

(ŵ1,i)
reg,1

 
∀i ≤ n1/2

ϕ
�
x
(ŵ1,i)
1,i ; µ̂

(ŵ1,i)
1 , Σ̂

(ŵ1,i)
reg,1

 
= ϕ

�
x
(ŵ1,i)
1,i ; µ̃

(ŵ1,i)
2 , Σ̂

(ŵ1,i)
reg,2

 
∀i ≥ 1 + n2/2

ϕ
�
x
(ŵ2,i)
2,i ; µ̂

(ŵ2,i)
2 , Σ̂

(ŵ2,i)
reg,2

 
= ϕ

�
x
(ŵ2,i)
2,i ; µ̃

(ŵ2,i)
2 , Σ̂

(ŵ2,i)
reg,2

 
∀i ≤ n1/2

ϕ
�
x
(ŵ2,i)
2,i ; µ̂

(ŵ2,i)
2 , Σ̂

(ŵ2,i)
reg,2

 
= ϕ

�
x
(ŵ2,i)
2,i ; µ̃

(ŵ2,i)
1 , Σ̂

(ŵ2,i)
reg,1

 
∀i ≥ 1 + n2/2.

Thus, the value of the objective function is the same and finite and the constructed
estimates π̂, µ̃, Σ̂ and Ŵ are also optimizers. However, ||µ̂l(Xm) − µ̃h(Xm ∪
Ym)||2 → ∞ for all l, h ∈ {1, 2} due to Corollary 5.4.2.1c.

e. For ease of notation we drop the superscript m for observations and the explicit
dependence of the estimators of Zm or Xm. All limits are corresponding to
m → ∞. We construct a counter example that shows that the covariance needs
to explode if the location estimator is not breaking down within the idealized
scenario.

Given an uncontaminated sample X and one variable j∗, we assume that all cells
from variable j∗ of the uncontaminated data are positive. The uncontaminated
data X is partitioned into groups Z1, . . . ,ZN and only one group g′ is contami-
nated with ng′ − hg′ + 1 many cellwise outliers Y, outlying only in variable j∗

with negative values. Thus, for any Wg′ there is always at least one outlying cell
in variable j∗, that is observed. The data used in the contaminated case is then

3This setting can be generalized to N > 2, e.g. by adding groups which consist entirely of one cluster
each.
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Z =
/N

g=1Z
g. For an estimator Ŵ (Z) let ỹ be an outlier for which variable j∗

is observed, w(ỹ)j∗ = 0 and ŵỹ,j∗ = 1.

Let t̂k(z) denote the probability of an observation z ∈ Zg that it belongs to
distribution k given the estimates π̂(Z), µ̂(Z), Σ̂(Z) and Ŵ (Z),

t̂k(z) =
π̂g,kϕ

�
z(ŵz); µ̂

(ŵz)
k , Σ̂

(ŵz)
reg,k

 
.N

l=1 π̂g,lϕ
�
z(ŵz); µ̂

(ŵz)
l , Σ̂

(ŵz)
reg,l

 .

Note that due to the regularity of the covariance estimates the density goes to
zero, ϕ

�
z(ŵz); µ̂

(ŵz)
k , Σ̂

(ŵz)
reg,k

 
→ 0, if ||z(ŵz)− µ̂

(ŵz)
k ||2 → ∞ and thus t̂k(z) → 0.

Since there are N many possible distributions, for ỹ there exists a distribution
k∗ with t̂k∗(ỹ) ≥ 1

N > 0.

Upon convergence of the EM-algorithm the location estimate of the j∗-th variable
of distribution k∗ is

µ̂k∗j∗(Z) =
1

t̄k∗

N-
g=1

-
z∈Zg

t̂k∗(z)ẑj∗ ,

with t̄k∗ =
.N

g=1

.
z∈Zg

t̂k∗(z) and ẑj∗ being the imputed value of z for variable
j∗. For ŵz,j∗ = 1 it is equal to zj∗ and for ŵz,j∗ = 0 it is equal to

µ̂k∗j∗ + Σ̂
(j∗|ŵz)
reg,k∗

�
Σ̂

(ŵz |ŵz)
reg,k∗

 −1 �
z(ŵz) − µ̂

(ŵz)
k∗

 
,

where Σ̂
(j∗|ŵz)
reg,k∗ indicates the submatrix Σ̂reg,k∗ consisting of the j∗-th row and

the observed variables of z as columns, see also Equations (5.3.2) and (5.3.3).

Denoting the set of observations of Z where variable j∗ is observed as Oj∗ =
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{z ∈ Z : ŵz,j∗ = 1}, we can separate the sum term into

µ̂k∗j∗(Z) =
1

t̄k∗

N-
g=1

-
z∈Zg

t̂k∗(z)ẑj∗

=
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-
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x(ŵx) − µ̂k∗(Z)(ŵx)
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1
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�
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.

Subtracting the estimated location on the uncontaminated sample µ̂k∗j∗(X ) and
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using that the location estimator is not breaking down, we further get

µ̂k∗j∗(Z)− µ̂k∗j∗(X )� �� �
bounded

=

=
1
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∗
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1
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1
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1
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µ̂k∗j∗(Z)− µ̂k∗j∗(X )� �� �
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reg,k∗
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 −1 �
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  .

Due to Corollary 5.4.2.1a. the objective function of the uncontaminated sample
is finite and due to Theorem 5.4.2.1, part a. and c., the estimated covariances on
the uncontaminated sample are bounded and regular. Since we assume that the
location estimator is not breaking down, variables cannot be separated (otherwise
a similar counter example to part d. can be constructed). Thus, for all x ∈ X
there exists k such that |x(w)−µ̂

(w)
k (X )| bounded for all feasible w – otherwise the

objective function would explode – and thus, if |x(w) − µ̂
(w)
l (X )| → ∞ for l ≠ k

it follows that t̂l(x) → 0 and tl(x)(x
(w) − µ̂

(w)
l (X )) → 0. Thus, all subtraction

parts marked with ∗ are bounded. The last term t̂k∗(y)
�
y(ŵy) − µ̂k∗(Z)(ŵy)

"
is

also bounded, since outliers are only outlying in variable j∗ and otherwise they
are part of one cluster. Thus, with the same argument as for uncontaminated
data, the term is bounded.

Since t̂k∗(ỹ) ≥ 1/N and ỹ ∈ Zg′ ∩ Y ∩ Oj∗ the whole sum of ∈ Zg′ ∩ Y ∩ Oj∗

goes to minus infinity. To enable the equality of both sides, at least one of the
covariances needs to explode (in variable j∗) to counteract the exploding sum.
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D.3 Algorithm

In this section details on initialization and additional derivations for the EM-step are
provided.

Initialization

First, all data sets are standardized robustly on a global scale (meaning as if the group
structure is not known) using the wrapped location (see also default options in function
estLocScale from the R-package cellWise Raymaekers et al., 2023). This leads to
global scale and shift invariance and is helpful to stabilize the regularization approach
based on the condition number of the estimated covariance matrices. For a given α
the initial estimate for π̂0 is

π̂0 =


α 1−α

N−1 · · · 1−α
N−1

1−α
N−1 α · · · 1−α

N−1
...

...
. . .

...
1−α
N−1

1−α
N−1 · · · α

 .

Then the other initial values are estimated for each group separately according to
the following steps:

1. Based on the scaled and centered data sets, local robust scales σ̂k,j for group
k and variable j are calculated using the univariate MCD. The regularization
matrices are then defined as Tk = diag(σ̂k,1, . . . , σ̂k,p).

2. Define the condition number to achieve for distribution k as

κk = max

�
100, 1.1

λ1(Tk)

λp(Tk)



.

3. We use the DDCW as in Raymaekers and Rousseeuw (2023), applied separately
for each group, to get initial estimates Σ̂0

reg,k and µ̂0
k. While this approach is

not feasible in normal clustering, here we assume that each group has a main
distribution enforced by Equation (5.2.7). Thus, taking a robust estimate of
the covariance and mean of the main bulk of the observations for each group
separately is reasonable and a good initial estimate of the corresponding main
distribution. To ensure regularity also in cases with low number of observation
in a group k, each time a covariance is calculated during the DDCW-algorithm,
it is regularized with regularization matrix Tk and an adaptive regularization
factor ρk ensuring a maximal condition number of κk.

4. Similar to the initialization in Raymaekers and Rousseeuw (2023) the entries of
the matrices W 0 are all set to one.

After the convergence of the algorithm all data are rescaled to the original scale.
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EM-Step

The Expectation-Maximization Algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 2008) is often used to find maximum likelihood estimates in setting where
data is incomplete - meaning that some random variables are not observed. Here,
this includes the values of missing cells indicated by the given W and the class of an
observation which is an often used approach in the context of mixture models.

For each observation xg,i a binary random variable zg,i,k indicates whether it was
drawn from distribution k. The likelihood resulting from including the additional
random variables zg,i,k is called the complete log-likelihood and the resulting objective
function the complete objective function CObj(π,µ,Σ,W ,Z) is −2 times

N-
g=1

ng-
i=1

�
N-
k=1

πg,k ̸=0

zg,i,k ln
�
πg,kϕ

�
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k ,Σ
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reg,k

  
+

p-
j=1

qg,i,j(1− wg,ij)

�
,

where Z includes all random variables zg,i,k. When taking the conditional expectation
of zg,i,k,

tg,i,k = E[zg,i,k|x(wg,i)
g,i ,π,µ,Σ,W ] =

πg,kϕ
�
x
(wg,i)
g,i ;µ

(wg,i)
k ,Σ

(wg,i)
reg,k

 
.N

l=1 πg,lϕ
�
x
(wg,i)
g,i ;µ

(wg,i)
l ,Σ

(wg,i)
reg,l

 ,
we can formulate the expected objective function EObj(π,µ,Σ,W ), which is −2 times

N-
g=1

ng-
i=1

�
N-
k=1

πg,k ̸=0

tg,i,k ln
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πg,kϕ

�
x
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reg,k

  
+
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qg,i,j(1− wg,ij)

�
.

(D.7)

The Expectation-Maximization algorithm then leverages that we can iteratively take
the expectation and then maximize the expected objective function in Equation (D.7).
Overall this approach gives us at least the same or more optimal next estimates after
each iteration.

The extension of the maximization step regarding the parameters µ and Σ for the
Gaussian Mixture Model with missing values (Eirola et al., 2014) to the multi-group
GMM with missing values is straight forward since the group structure can be ignored
once the conditional expectation of zg,i,k is calculated.

The only difference is the estimation of the mixture probabilities π due to the
constraint πg,g ≥ α and

.N
k=1 πg,k = 1 for all g = 1, . . . , N . To find the optimal

mixture probability the Karush-Kuhn-Tucker theorem can be applied. We set the
derivative of the expected objective function in Equation (D.7) with respect to πg,l to
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zero, then the following conditions have to hold

∂[EObj + λ(1−.N
k=1 πg,k) + µ(α− πg,g)]

∂πg,l
= 0

µ(α− πg,g) = 0

µ ≥ 0

1−
N-
k=1

πg,k = 0.

Plugging in the concrete formula from Equation (D.7) leads to (I denoting the
indicator function)

0 =
−2

.ng
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− λ− µIl=g

−2

ng-
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(1− πg,g)
,

where we sum over all l ̸= g from the third row on. Plugging λ in leads to

πg,l =
(1− πg,g)

.ng

i=1 tg,i,l.ng

i=1(1− tg,i,g)
= (1− πg,g)

1
ng

.ng

i=1 tg,i,l

1− 1
ng

.ng
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For the Lagrange parameter µ we finally have

− 1
ng

.ng

i=1 tg,i,g

πg,g
+

(1− 1
ng

.ng

i=1 tg,i,g)

(1− πg,g)
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2ng
≥ 0
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1
ng

.ng

i=1 tg,i,g

(1− 1
ng

.ng

i=1 tg,i,g)

Since f(x) = x/(1 − x) is monotonously increasing, this is fulfilled if πg,g ≥
1
ng

.ng

i=1 tg,i,g. Thus, if the inequality is strict, µ > 0 and πg,g = α. Otherwise,
πg,g = 1

ng

.ng

i=1 tg,i,g is a feasible solution which is equal to the unconstrained mini-
mization problem. Overall, we have

πg,g = max

�
α,

1

ng

ng-
i=1

tg,i,g

	
, πg,l = (1− πg,g)

1
ng

.ng

i=1 tg,i,l

1− 1
ng

.ng

i=1 tg,i,g
.

Also the regularity condition linear independence constraint qualification (LICQ) is
fulfilled for all feasible π.
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D.4 Additional Simulation Results

In the following subsections additional results for the five settings from Section 5.5 are
presented. The settings analyzed are the balanced basic setting (N = 2, p = 10, n1 =
n2 = 100), an unbalanced setting (N = 2, p = 10, n1 = 100, n2 = 50) as well as a
balanced setting with nearly as many variables as observations per group (N = 2, p =
20, n1 = 30, n2 = 30), a setting with more groups (N = 5, p = 10, n1 = . . . = n5 = 100)
and a high-dimensional setting (N = 2, p = 60, n1 = n2 = 40).

For each setting, the performance of parameter estimation compared to competing
methods is visualized as well as the correctness of flagging outlying cells. Moreover, for
each setting a table with the number of repetitions considered in the figures is given.
They can deviate from the default number of 100 due to the restriction of the cellMCD
regarding the number of marginal outliers.

Basic Balanced Setting
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Figure D.1: Parameter estimates for the basic balanced setting (N = 2, p = 10, n1 =
n2 = 100) with Toeplitz structured covariances. In the left panel MSE of
the mean estimation and in the right the MSE of the mixture probabilities
π.

160



Appendix D
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Figure D.2: Performance of cellwise outlier detection in the basic balanced setting
(N = 2, p = 10, n1 = n2 = 100) with Toeplitz structured covariances
evaluated by precision, recall and F1-score.

γcell πdiag µ #
10 0.75 0 100
10 0.75 varying 58
10 0.90 0 100
10 0.90 varying 98
6 0.75 0 100
6 0.75 varying 61
6 0.90 0 100
6 0.90 varying 99
2 0.75 0 100
2 0.75 varying 84
2 0.90 0 100
2 0.90 varying 100

(a) Toeplitz structure.

γcell πdiag µ #
10 0.75 0 100
10 0.75 varying 100
10 0.90 0 100
10 0.90 varying 100
6 0.75 0 100
6 0.75 varying 100
6 0.90 0 100
6 0.90 varying 100
2 0.75 0 100
2 0.75 varying 100
2 0.90 0 100
2 0.90 varying 100

(b) Agostinelli et al. (2015) structure.

Table D.1: Number of successful replications for the two covariance structures in the
basic balanced setting (N = 2, p = 10, n1 = n2 = 100), depending on
simulation parameters.
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Figure D.3: Parameter estimates for the basic balanced setting (N = 2, p = 10, n1 =
n2 = 100) with covariances according to Agostinelli et al. (2015). In the
left panel MSE of the mean estimation and in the right the MSE of the
mixture probabilities π.
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Figure D.4: Performance of cellwise outlier detection in the basic balanced setting
(N = 2, p = 10, n1 = n2 = 100) with covariances according to Agostinelli
et al. (2015) evaluated by on precision, recall and F1-score.
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Appendix D

Balanced Setting with Increased Group Number

γcell πdiag µ #
10 0.75 0 100
10 0.75 varying 16
10 0.90 0 100
10 0.90 varying 99
6 0.75 0 100
6 0.75 varying 21
6 0.90 0 100
6 0.90 varying 100
2 0.75 0 100
2 0.75 varying 61
2 0.90 0 100
2 0.90 varying 100

(a) Toeplitz structure.

γcell πdiag µ #
10 0.75 0 100
10 0.75 varying 96
10 0.90 0 100
10 0.90 varying 100
6 0.75 0 100
6 0.75 varying 96
6 0.90 0 100
6 0.90 varying 100
2 0.75 0 100
2 0.75 varying 100
2 0.90 0 100
2 0.90 varying 100

(b) Agostinelli et al. (2015) structure.

Table D.2: Number of successful replications for the two covariance structures in the
balanced setting with increased number of groups (N = 5, p = 10, n1 =
. . . = n5 = 100), depending on simulation parameters.

164



Appendix D

πd iag = 0.75 πd iag = 0.9

µ
=

0
µ  varying

2 6 10 2 6 10

1

10

100

1

10

100

γce ll

K
L−

D
iv

er
ge

nc
e

ce llgG M M cellM C D O C M R C D ssM R C D sam ple

πd iag = 0.75 πd iag = 0.9

µ
=

0
µ  varying

2 6 10 2 6 10

0.01

0.03

0.10

0.30

0.01

0.03

0.10

0.30

γce ll

M
S

E

ce llgG M M cellM C D M R C D ssM R C D sam ple πd iag = 0.75 πd iag = 0.9

µ
=

0
µ  varying

2 6 10 2 6 10

0.01

0.02

0.03

0.04

0.05

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

γce ll

M
S

E

Figure D.5: Parameter estimates for the balanced setting with increased number of
groups (N = 5, p = 10, n1 = . . . = n5 = 100) and Toeplitz structured
covariances. On top the KL-divergence of the covariance estimates. On
the bottom left panel MSE of the mean estimation and on the bottom
right the MSE of the mixture probabilities π.
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Figure D.6: Performance of cellwise outlier detection in the balanced setting with
increased number of groups (N = 5, p = 10, n1 = . . . = n5 = 100) and
Toeplitz structured covariances evaluated by precision, recall and F1-score.
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Figure D.7: Parameter estimates for the balanced setting with increased number of
groups (N = 5, p = 10, n1 = . . . = n5 = 100) and covariances according
to Agostinelli et al. (2015). in the left panel MSE of the mean estimation
and in the right the MSE of the mixture probabilities π.
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Figure D.8: Performance of cellwise outlier detection in the balanced setting with
increased number of groups (N = 5, p = 10, n1 = . . . = n5 = 100) and
covariances according to Agostinelli et al. (2015) evaluated by on precision,
recall and F1-score.
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Appendix D

Unbalanced Groups

γcell πdiag µ #
10 0.75 0 100
10 0.75 varying 58
10 0.90 0 100
10 0.90 varying 93
6 0.75 0 100
6 0.75 varying 68
6 0.90 0 100
6 0.90 varying 96
2 0.75 0 100
2 0.75 varying 84
2 0.90 0 100
2 0.90 varying 100

(a) Toeplitz structure.

γcell πdiag µ #
10 0.75 0 100
10 0.75 varying 99
10 0.90 0 100
10 0.90 varying 100
6 0.75 0 100
6 0.75 varying 99
6 0.90 0 100
6 0.90 varying 100
2 0.75 0 100
2 0.75 varying 100
2 0.90 0 100
2 0.90 varying 100

(b) Agostinelli et al. (2015) structure.

Table D.3: Number of successful replications for the two covariance structures in the
unbalanced setting (N = 2, p = 10, n1 = 100, n2 = 50), depending on
simulation parameters.
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Figure D.9: Parameter estimates for the unbalanced setting (N = 2, p = 10, n1 =
100, n2 = 50) with Toeplitz structured covariances. On top the KL-
divergence of the covariance estimates. On the bottom left panel MSE
of the mean estimation and on the bottom right the MSE of the mixture
probabilities π.
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Figure D.10: Performance of cellwise outlier detection in the unbalanced setting
(N = 2, p = 10, n1 = 100, n2 = 50) with Toeplitz structured covari-
ances evaluated by precision, recall and F1-score.
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Figure D.11: Parameter estimates for the unbalanced setting (N = 2, p = 10, n1 =
100, n2 = 50) with covariances according to Agostinelli et al. (2015) On
top the KL-divergence of the covariance estimates. On the bottom left
panel MSE of the mean estimation and on the bottom right the MSE of
the mixture probabilities π.
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Figure D.12: Performance of cellwise outlier detection in the unbalanced setting (N =
2, p = 10, n1 = 100, n2 = 50) with covariances according to Agostinelli
et al. (2015) evaluated by on precision, recall and F1-score.

173



Appendix D

Balanced Setting with Similar n and p

γcell πdiag µ #
10 0.75 0 84
10 0.75 varying 12
10 0.90 0 84
10 0.90 varying 53
6 0.75 0 84
6 0.75 varying 14
6 0.90 0 85
6 0.90 varying 55
2 0.75 0 89
2 0.75 varying 38
2 0.90 0 88
2 0.90 varying 85

(a) Toeplitz structure.

γcell πdiag µ #
10 0.75 0 79
10 0.75 varying 81
10 0.90 0 82
10 0.90 varying 82
6 0.75 0 81
6 0.75 varying 82
6 0.90 0 83
6 0.90 varying 82
2 0.75 0 92
2 0.75 varying 92
2 0.90 0 88
2 0.90 varying 85

(b) Agostinelli et al. (2015) structure.

Table D.4: Number of successful replications for the two covariance structures in the
balanced setting with similar sized p and n (N = 2, p = 20, n1 = 30, n2 =
30), depending on simulation parameters.
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Figure D.13: Parameter estimates for the balanced setting with n close to p (N =
2, p = 20, n1 = 30, n2 = 30) and Toeplitz structured covariances. On top
the KL-divergence of the covariance estimates. On the bottom left panel
MSE of the mean estimation and on the bottom right the MSE of the
mixture probabilities π.
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Figure D.14: Performance of cellwise outlier detection in the balanced setting with
n close to p (N = 2, p = 20, n1 = 30, n2 = 30) and Toeplitz structured
covariances evaluated by precision, recall and F1-score.
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Figure D.15: Parameter estimates for the balanced setting with n close to p (N =
2, p = 20, n1 = 30, n2 = 30) with covariances according to Agostinelli
et al. (2015). On top the KL-divergence of the covariance estimates. On
the bottom left panel MSE of the mean estimation and on the bottom
right the MSE of the mixture probabilities π.
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Figure D.16: Performance of cellwise outlier detection in the balanced setting with n
close to p (N = 2, p = 20, n1 = 30, n2 = 30) and covariances according to
Agostinelli et al. (2015) evaluated by on precision, recall and F1-score.
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High-Dimensional Setting

γcell πdiag µ #
10 0.75 0 100
10 0.75 varying 100
10 0.90 0 100
10 0.90 varying 100
6 0.75 0 100
6 0.75 varying 100
6 0.90 0 100
6 0.90 varying 100
2 0.75 0 100
2 0.75 varying 100
2 0.90 0 100
2 0.90 varying 100

(a) Toeplitz structure.

γcell πdiag µ #
10 0.75 0 100
10 0.75 varying 100
10 0.90 0 100
10 0.90 varying 100
6 0.75 0 100
6 0.75 varying 100
6 0.90 0 100
6 0.90 varying 100
2 0.75 0 100
2 0.75 varying 100
2 0.90 0 100
2 0.90 varying 100

(b) Agostinelli et al. (2015) structure.

Table D.5: Number of successful replications for the two covariance structures in
the balanced high-dimensional setting (N = 2, p = 60, n1 = n2 = 40),
depending on simulation parameters.
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Figure D.17: Parameter estimates for the balanced high-dimensional setting (N =
2, p = 60, n1 = n2 = 40) with Toeplitz structured covariances. On top
the KL-divergence of the covariance estimates. On the bottom left panel
MSE of the mean estimation and on the bottom right the MSE of the
mixture probabilities π.
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Figure D.18: Performance of cellwise outlier detection in the balanced high-dimensional
setting (N = 2, p = 60, n1 = n2 = 40) with Toeplitz structured covari-
ances evaluated by precision, recall and F1-score.
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Figure D.19: Parameter estimates for the balanced high-dimensional setting (N =
2, p = 60, n1 = n2 = 40) with covariances according to Agostinelli et al.
(2015). On top the KL-divergence of the covariance estimates. On the
bottom left panel MSE of the mean estimation and on the bottom right
the MSE of the mixture probabilities π.
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Figure D.20: Performance of cellwise outlier detection in the balanced high-dimensional
setting (N = 2, p = 60, n1 = n2 = 40) with covariances according to
Agostinelli et al. (2015) evaluated by on precision, recall and F1-score.
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6 Conclusions

This thesis contributes with three novel methods to the robust statistical toolbox,
designed for the analysis of multi-group and spatial data and for effective outlier
detection. In addition, it provides an empirical evaluation of spatial outlier detection
in the context of geochemistry. The following sections summarize the key findings of
each chapter, outline the limitations of the proposed methods, and discuss potential
directions for future research.

Chapter 2 introduces the spatially smoothed Minimum Regularized Covariance
Determinant (ssMRCD) estimator, a rowwise robust covariance estimator tailored
for grouped spatial data. This method combines robustness via minimization of
determinants with spatial smoothing through weighted combinations of covariances
across groups. It facilitates local outlier detection via pairwise Mahalanobis distances.
Theoretical results include derivations of the breakdown point for the MRCD and
ssMRCD, alongside an efficient algorithm. Simulation results and a real-world data
example highlight the method’s robustness and interpretability

A limitation lies in the subjectivity involved in defining groups based on spatial
proximity, currently a task left to the statistician. Automating this step through
a nested clustering algorithm that prioritizes spatial over feature proximity would
enhance objectivity. Similarly, the optimal number of neighbors used in comparisons
remains an open problem. While the method is developed for spatial data, it may
also be applicable to time series or spatio-temporal data. Extensions could include
hierarchical smoothing or varying smoothing strength across groups. The general
principle of weighted covariances may also be adapted for other robust estimators, such
as M-estimators.

Chapter 3 applies the ssMRCD and competing methods to geochemical data of
varying scale, sampling density, and quality. The multi-group structure helps account
for systematic measurement biases, and the method’s utility for mineral exploration
is demonstrated. Issues related to data preprocessing for compositional data are also
addressed.

A challenge in this context is the partial validation of detected outliers: they are
compared to known mineral deposits, yet not all existing deposits are likely to be
documented. Ideally, field investigations would validate the flagged regions, however
such efforts are extremely costly. Integrating geophysical or geological data could
improve group definition and enhance outlier detection. Additionally, cellwise robust
methods may help to better characterize why certain observations are outlying.

Chapter 4 presents a sparse, robust PCA method for multi-group data. It facilitates
the interpretation by inducing shared sparsity patterns among all groups. A non-convex
optimization problem is solved using a tailored and fine-tuned ADMM algorithm, which
is extensively tested. Real life data applications show the increased interpretation
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6 Conclusions

potential of loadings.
Future extensions could include the construction of compositionally coherent sparse

clr-loadings which are constrained to sum up to zero. Then, each clr-loading has a
clear compositional meaning. Also more elaborate visualizations could incorporate
geographical and PCA information at the same time similar to dynamic PCA. This
proved to be difficult, thus, research in that area could contribute to a better under-
standing. Moreover, a multi-group biplot framework would be a valuable but non-trivial
extension. Hierarchical group structures could also be incorporated to reflect more
complex group relationships.

Finally, Chapter 5 develops a novel Gaussian mixture model that incorporates
the multi-group aspect by allowing observations to be mislabeled and to originate
from another group. This provides more flexibility and overall smoothness between
estimated covariances. Cellwise robustness ensures reliable results and detected outliers
can shed light into group-overlaps. Especially when varying the degree of flexibility
of the groups, observations can be identified as being very representative of a certain
group, being at the verge between groups or being totally mislabeled and outlying in
their original group. An efficient algorithm is developed and results prove to be reliably
superior as illustrated in simulations and real data examples. Moreover, a theoretical
framework was presented to analyze the breakdown point of cellwise robust clustering
models for well-clustered data and further used to prove the breakdown point for the
multi-group mixture model.

While extensive simulations studies prove efficient estimation of mixture parameters
as well as detection of cellwise outliers, a simulation study in the presence of rowwise
outliers is not considered yet. Moreover, cellwise robustness is especially useful in the
context of high-dimensional data. Although a simulation setting is considered with
more variables than observations per group, it would be valuable if the algorithm is
still feasible for more calculation-heavy settings with a very high absolute number of
variables–a setting well suited for sparse precision matrices and the joint graphical lasso
(Danaher et al., 2014). Based on the formulation via a likelihood, further theoretical
results like consistency or the influence function could be derived. Moreover, it is also
possible to use the proposed covariance estimates for cellwise spatial outlier detection
when applied to spatial data similar to Chapter 2. New insights and interpretation
possibilities could be gained when applying the cellwise paradigm to spatial or also
high-dimensional time series data.

Overall, this thesis presents three robust statistical methods tailored to multi-group
data, enhancing parameter estimation and outlier interpretation by leveraging contex-
tual information. These contributions offer valuable insights into group transitions and
misclassifications. Each chapter opens avenues for further research, both methodologi-
cally and theoretically, and the findings lay a solid foundation for advancing robust
analysis in complex data settings.
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