
 
 

  
 

Dissertation 

Highly-Efficient Nonlinear µFE Modelling 
of Bones and Bone-Screw Systems 

carried out for the purpose of obtaining the degree Doctor of technicae (Dr. techn.), submitted 

at TU Wien, Faculty of Mechanical and Industrial Engineering, by  

Dipl.-Ing. Pia Stefanek, BSc. 
 

Mat.Nr.: 00808550 

 

under the supervision of 

Univ. Prof. Dipl.-Ing. Dr. techn. Dieter H. Pahr 

Institute of Lightweight Design and Structural Biomechanics, E317 

 

 

Vienna, March 2025 

 

 
reviewed by 

 
Sen. Lect. Dr. Pinaki Bhattacharya 

Insigneo Institute for In Silico Medicine 

The University of Sheffield  

Sheffield, UK 

 

PD Dr. Peter Varga 

AO Research Institute Davos 

Davos, Switzerland 



 

 

 

 

 

  



This work was not supported by any funding agency. 

 

I confirm, that going to press of this thesis needs the confirmation of the examination 

committee. 

 

 

 

 

 

 

 

 

 

 

 

Affidavit 

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself, 

using only literature cited in this volume. If text passages from 

sources are used literally, they are marked as such.  

I confirm that this work is original and has not been submitted elsewhere for any examination, 

nor is it currently under consideration for a thesis elsewhere. 

 

I acknowledge that the submitted work will be checked electronically-technically using suitable 

and state-of-the-art means (plagiarism detection software). On the one 

hand, this ensures that the submitted work was prepared according to the high- 

quality standards within the applicable rules to ensure good scientific practice "Code 

of Conduct" at the TU Wien. On the other hand, a comparison with other student 

theses avoids violations of my personal copyright. 

 

 

 

 

Vienna, March, 2025     ___________________________ 

             Pia Stefanek 



 

 
 
 
 
 
  



Acknowledgements 
 
 

First and foremost, I would like to express my deepest gratitude to my supervisors, Dieter Pahr 
and Alexander Synek, for their invaluable scientific expertise and continuous support 
throughout my research. I greatly appreciate their guidance, which has significantly contributed 
to this dissertation. I am especially grateful to Alexander Synek for his encouragement and 
mental support during difficult times. 
Furthermore, I would like to sincerely thank Sebastian Bachmann for always being there to 
assist me with both scientific and IT-related challenges. His willingness to help and share his 
knowledge has been truly invaluable. I also want to extend my sincere thanks to Katja 
Haslinger-Vaughan, with whom I have had many insightful professional and personal 
exchanges. Additionally, I am grateful to all my colleagues at the institute, who have fostered 
a positive and motivating working atmosphere, which made my time there enjoyable and 
inspiring. 

Finally, I would like to express my deepest appreciation to my parents, my friends, and my 
partner Andreas. Their unwavering support, belief in me, and encouragement during 
challenging times have been indispensable throughout this journey. 

 

During the preparation of this thesis, ChatGPT was used in order to improve readability and 
language. All content was subsequently reviewed and edited, and the author takes full 
responsibility for the content of the dissertation. 

 

 

 

 

  



  



i 
 

Abstract 
 
 
Bone fractures are a significant global health concern, necessitating research on bone 
mechanics, fracture healing, and effective treatment methods such as orthopedic implants. 
Computational modelling, particularly µFE simulations, has emerged as a powerful tool for 
analyzing how bone microstructures and implants behave under various loading conditions. By 
accurately capturing microstructural features, µFE simulations provide valuable insights into 
microscale deformation fields as well as stress and strain distributions. However, existing µFE 
solvers must balance computational efficiency with model versatility, often requiring trade-offs 
between speed and modelling complexity. 

This dissertation focuses on advancing the specialized µFE solver ParOSol-NL to improve its 
predictive capabilities for bone and bone-screw systems. Four key objectives were pursued: (1) 
validating ParOSol-NL's accuracy at the mesoscale by comparing predicted displacement fields 
with experimental measurements obtained from digital volume correlation (DVC), (2) 
developing an efficient and accurate bone-screw contact model, (3) incorporating a pre-damage 
model to simulate bone damage induced by screw insertion, and (4) evaluating ParOSol-NL's 
accuracy in predicting bone-screw pull-out forces by comparison to experimental data. 

For mesoscale validation, ParOSol-NL’s predicted displacement fields were compared to DVC 
measured displacement fields of human trabecular bone biopsies under compressive loading, 
demonstrating strong agreement in both the elastic regime as well as at the ultimate load step. 
To model bone-screw interactions, various simplified interfaces were compared against the 
general contact algorithm of the commercial FE solver Abaqus/Explicit. Various single-screw 
bone constructs loaded in pull-out, push-in and shear served as test cases. Using a simplified 
contact algorithm based on tensionally strained interface element deletion (TED) allowed to 
predict whole-construct stiffness efficiently yet accurately. A modified variant (TED-M) 
accounted for contact area changes during loading, providing more accurate maximum force 
predictions. Both TED and TED-M were designed for seamless integration into ParOSol-NL. 
Additionally, a simplified pre-damage model was implemented in ParOSol-NL, incorporating 
a predefined damage zone around the screw to reflect insertion-induced damage. Finally, μFE 
simulations incorporating both the simplified interface and pre-damage models were used to 
predict screw pull-out forces in porcine bone biopsies. Quantitative agreement with 
experimental results was only achieved when carefully integrating contact modelling, material 
properties, and pre-damage parameters. 

This thesis enhances ParOSol-NL as a computationally efficient, nonlinear µFE simulation tool 
for bones and bone-screw systems. The solver's predictive accuracy at the mesoscale was 
validated, and simplified contact and pre-damage models were implemented to improve 
simulations of screw-bone interactions. These advancements enable more efficient and realistic 
µFE analyses, allowing for accurate biomechanical simulations while maintaining 
computational efficiency. 
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Kurzfassung 
 
 
Knochenfrakturen stellen ein erhebliches globales Gesundheitsproblem dar, weshalb eine 
umfassende Forschung in den Bereichen Knochenbiomechanik, Frakturheilung sowie 
operativer Frakturversorgung mittels orthopädischer Implantate von großer Bedeutung ist. Die 
computergestützte Modellierung, insbesondere Mikro-Finite-Elemente-Simulationen (µFE-
Simulationen), hat sich als leistungsstarkes Instrument etabliert, um das Verhalten von 
Knochenmikrostrukturen und Implantaten unter verschiedenen Belastungsbedingungen zu 
analysieren. Durch die präzise Erfassung mikrostruktureller Eigenschaften liefern µFE-
Simulationen wertvolle Einblicke in Deformationsfelder sowie in die Verteilung von 
Spannungen und Dehnungen auf der Mikroskala. Bestehende µFE-Löser müssen jedoch eine 
Balance zwischen rechnerischer Effizienz und Modellkomplexität finden, was häufig einen 
Kompromiss zwischen Rechengeschwindigkeit und Modellierungsgenauigkeit erfordert. 
Ziel dieser Dissertation ist es, den spezialisierten µFE-Löser ParOSol-NL weiterzuentwickeln, 
um seine Fähigkeit zur Vorhersage des Verhaltens von Knochen- und Knochen-Schrauben-
Systemen zu verbessern. Hierbei wurden vier zentrale Forschungsfragen adressiert: (1) die 
Validierung der Modellgenauigkeit von ParOSol-NL auf der Mesoskala durch den Vergleich 
zu Verschiebungsfelder aus experimentellen Messungen mittels digitaler Volumenkorrelation 
(DVC), (2) die Entwicklung eines effizienten und präzisen Kontaktmodells zur Simulation der 
Knochen-Schrauben-Interaktion, (3) die Implementierung eines Vorschädigungsmodells zur 
Berücksichtigung von durch die Schraubeninsertion induzierten Knochenschäden sowie (4) die 
Bewertung der Vorhersagegenauigkeit von ParOSol-NL im Hinblick auf die maximalen 
Zugkräfte von Knochen-Schrauben Systemen im Vergleich zu experimentellen Daten. 

Für die Validierung auf der Mesoskala wurden die durch ParOSol-NL berechneten 
Verschiebungsfelder mit den mittels DVC erfassten Verschiebungsfeldern humaner 
trabekulärer Knochenbiopsien unter Druckbelastung verglichen. Dabei zeigte sich eine hohe 
Übereinstimmung sowohl im elastischen Bereich als auch bei Erreichung der Maximalkraft. 
Um die Knochen-Schrauben-Interaktion zu simulieren, wurden verschiedene vereinfachte 
Kontaktmodelle mit dem allgemeinen Kontaktalgorithmus des kommerziellen FE-Lösers 
Abaqus/Explicit verglichen. Es wurden Knochen-Schrauben-Systeme, die jeweils aus einer 
einzelnen Knochenbiopsie und einer Schraube bestanden, unter Zug-, Druck- und 
Scherbelastung getestet. Ein vereinfachter Kontaktalgorithmus, basierend auf der Eliminierung 
von unter Zugspannung stehenden Elementen an der Knochen-Schraube Schnittstelle (TED), 
erwies sich als recheneffiziente und zugleich hinreichend genaue Methode zur Vorhersage der 
Gesamtsteifigkeit des Konstrukts. Eine modifizierte Variante (TED-M), die Änderungen der 
Kontaktfläche während der Belastung berücksichtigt, verbesserte die Genauigkeit der 
Maximalkraftvorhersagen. Beide Modelle, TED und TED-M, wurden speziell für die 
Integration in ParOSol-NL entwickelt. Weiters wurde ein vereinfachtes Vorschädigungsmodell 
implementiert, das eine vordefinierte geschädigte Zone um die Schraube berücksichtigt, um die 
durch die Insertion verursachten Knochenschäden adäquat zu erfassen. Abschließend wurden 
µFE-Simulationen unter Einbeziehung sowohl des vereinfachten Kontaktmodells als auch des 
Vorschädigungsmodells durchgeführt, um die maximalen Zugkräfte von Knochen-Schrauben-
Systemen in porzinen Knochenbiopsien vorherzusagen. Eine quantitative Übereinstimmung 
mit experimentellen Ergebnissen konnte nur durch eine präzise Abstimmung der 
Kontaktmodellierung, Materialeigenschaften und Vorschädigungsparameter erreicht werden. 
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Diese Arbeit erweitert ParOSol-NL zu einem leistungsfähigen, nichtlinearen µFE-
Simulationswerkzeug für Knochen- und Knochen-Schrauben-Systeme. Die 
Vorhersagegenauigkeit des Lösers wurde auf der Mesoskala validiert und vereinfachte 
Kontakt- und Vorschädigungsmodelle wurden implementiert, um die Simulation der Knochen-
Schrauben-Interaktion zu verbessern. Diese Weiterentwicklungen ermöglichen detaillierte und 
zugleich recheneffiziente µFE-Analysen, wodurch realistische biomechanische Simulationen 
mit hoher numerischer Effizienz realisiert werden können. 
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Chapter 1 

Introduction 
 
 
1.1 Problem Statement  
Bone fractures are among the most common injuries worldwide [1–3], affecting people of all 
ages due to accidents, falls, and various health conditions like osteoporosis [4]. The growing 
prevalence of fractures has led to a significant demand for effective treatments that can restore 
function and integrity to the affected bones. A common approach to treating fractures, 
especially in cases involving complex breaks, involves the use of orthopedic implants—devices 
such as plates, screws, and rods that are surgically placed to hold bones together as they heal 
[5,6]. However, while these implants have revolutionized fracture treatment, they come with 
their own set of complications, including failures and loosening over time, which can require 
additional surgeries and lead to prolonged recovery or other complications [7,8]. 

Research in bones and bone-implant systems is crucial, as it helps us understand how bones 
fracture, heal, and interact with implants [9]. Advanced research allows scientists to develop 
improved implant designs that integrate better with bone, reducing the risk of complications 
and improving long-term stability [10]. Through these advancements, patients experience faster 
recoveries, lower healthcare costs, and better outcomes, especially for those with unique needs 
like elderly patients or those with osteoporosis [11]. 

A promising area of innovation in bone and bone-implant research is computational modelling 
[12–14], which involves using advanced software and algorithms to simulate how bones and 
implants behave under various conditions. One of the significant advantages of computational 
modelling over experimental testing is that it allows researchers to explore a wide range of 
variables and conditions without the cost, time and, ethical constraints of physical testing [12]. 
Moreover, computational modelling accelerates the design and testing phase of orthopedic 
implants, as different scenarios, such as varying loading conditions, or implant placement can 
be easily adapted [12]. This helps to refine designs, and identify potential issues early in the 
development process, which accelerates the pace that research can translate into faster 
development of improved implants and ultimately lead to better patient outcomes [12]. 

Finite Element (FE) modelling [15] is a popular computational technique used for mechanical 
simulations, where a structure is divided into smaller, manageable elements to analyse stresses, 
strains, and other mechanical quantities. Micro FE (µFE) models [16–18] are a specialized 
application of this method, using extremely small elements to capture microstructural features 
with high accuracy. This allows for detailed simulations that provide valuable insights into local 
stresses and strains within bones, helping to understand how fractures may initiate and 
propagate. Especially in bone-implant systems, accuracy in capturing the implant geometry and 
the surrounding bone microstructure in the peri-implant region has been proven to be crucial 
for assessing its mechanical competence [19–21].  
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However, the high level of geometric detail required to perform microscale simulations also 
comes with trade-offs. The increased number of elements in µFE models leads to higher 
computational demands, particularly in terms of memory and processing power [22]. The 
computational costs increase further if nonlinearities, such as nonlinear material behaviour and 
contact nonlinearities, are included. The incorporation of nonlinearities enhances the realism 
and accuracy of the model, but also increases the complexity of the simulation. The material's 
response becomes more difficult to characterize, and solving these models typically requires 
more computational resources.  

To manage the computational demands of µFE models, researchers often rely on specialized 
solvers [23–25], which can efficiently handle the large amounts of data and computations 
involved in simulating bones and bone-implant systems. These solvers employ advanced 
algorithms and parallel processing techniques to distribute calculations across multiple 
processors, enabling faster computation times even for models with millions of elements. 

While specialized µFE solvers significantly improve computational efficiency, they generally 
lack the ability to include mechanical behaviour beyond linear elasticity, such as nonlinear 
material behaviours or contact nonlinearities. Linear elastic behaviour is often sufficient to 
answer research questions in bone biomechanics, such as identification of regions with high 
stresses and strains. However, it does not allow to study the failure of bone or bone-implant 
systems in detail.  

To address these limitations, general purpose FE solvers like Abaqus and Ansys are frequently 
employed due to their versatility and ability to incorporate greater model complexity. These 
solvers typically support a range of advanced features, enabling the inclusion of material 
nonlinearities and complex contact interactions—both of which are essential for accurately 
representing the mechanical behaviour of bone and bone-implant systems under realistic 
conditions. However, this increased versatility comes at a cost: general purpose solvers are 
generally less computationally efficient, which can present significant challenges when 
analyzing large or high-resolution models.  

While specialized µFE solvers enable efficient computations, their lack of model complexity 
limits their application in accurately capturing bone's mechanical behaviour. General purpose 
FE solvers, though versatile, sacrifice computational efficiency. These trade-offs highlight the 
challenges researchers face in balancing model detail and computational practicality, 
underscoring the need for continuous advancements in µFE solver technology to achieve both 
efficiency and realism in bone biomechanics modelling. 
 
Stipsitz et al. [24] addressed this challenge by enhancing the accuracy of efficient µFE 
simulations in bone biomechanics through the development of ParOSol-NL, an advanced 
nonlinear version of the specialized solver ParOSol [25]. This nonlinear adaptation allows 
ParOSol-NL to incorporate nonlinear material properties, a significant improvement over its 
predecessor, which was confined to linear-elastic analyses. Additionally, Stipsitz et al. [24], 
[26] calibrated material parameters using trabecular bone biopsy data and conducted 
verification and validation at the macroscale to ensure that simulations were both reliable and 
realistic. These enhancements allowed ParOSol-NL to perform efficient nonlinear µFE 
simulations on bone biopsies and bone segments.  
 
However, several critical milestones still remain unmet. No validation at the mesoscale has yet 
been performed, leaving the solver's validity at the local level unconfirmed. Furthermore, 
ParOSol-NL does not yet support contact modelling, significantly restricting its potential for 
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studying bone-implant systems. 
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1.2 Goals and Objectives 
The overarching aim of this thesis was to further validate and enhance the specialized µFE 
solver ParOSol-NL to create a powerful tool for µFE simulations that provides both efficiency 
and accuracy for studying bone and bone-screw systems. The focus on screws as implants was 
deliberate, as they are a universal and critical component in numerous orthopedic applications, 
ranging from fracture fixation to prosthetic anchorage. 
 
Figure 1.1 gives an overview of this thesis. To reach the final aim from the starting point, four 
subgoals needed to be reached. First, ParOSol-NL’s predictive accuracy at the mesoscale was 
assessed to ensure reliable local predictions of bone structures. Mesoscale validation is crucial 
for accurately modelling the mechanical behaviour of bone-screw systems, which relies on the 
local interaction between the screw threads and the bone microstructure. It is important to note 
that the validation was limited to the lowest measurable scale (sub-macroscale, i.e., mesoscale) 
and to robustly measurable variables (displacement fields) of currently available experimental 
techniques. Next, for simulating bone-screw systems, an efficient and accurate contact model 
was developed to capture the interaction between bone and screw. This contact model should 
enable ParOSol-NL to accurately simulate mechanical interactions between screws and the 
surrounding bone tissue. Additionally, an efficient pre-damage model that represents the bone 
damage caused by screw insertion was incorporated into ParOSol-NL. Finally, the capabilities 
of ParOSol-NL including simplified contact and pre-damage, were evaluated by comparing 
bone-screw pull-out simulations to experiments. 

In line with the four subgoals (see figure 1.1), the objectives of this thesis were as follows: 

(1) Validate displacement fields in bone biopsies predicted by ParOSol-NL at the 
mesoscale. 

(2) Develop an efficient and accurate contact model for bone-screw interactions compatible 
with ParOSol-NL. 

(3) Incorporate an efficient pre-damage model to represent bone damage from the screw 
insertion process. 

(4) Evaluate ParOSol-NL simulations with simplified contact and pre-damage by 
comparing predicted bone-screw pull-out forces with experimental measurements. 
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 Fig. 1.1 Graphical abstract of this thesis, including starting point, final aim and four subgoals.  
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1.3 Background 
Chapter 1.3 provides background information based on literature, which was required to 
conduct the scientific studies presented in chapters 2-4. Own contributions are described in 
chapters 1.4 and 1.5. 
 
1.3.1 Bones and Bone Fracture 
This chapter provides a brief introduction to bone structure across different scales, from the 
macroscopic to the nanoscopic level (see figure 1.2). It specifically explores the mechanical 
behaviour of bone tissue at the microscale, which is most relevant for µFE simulations. 
Additionally, the chapter addresses bone fractures as well as their implications. Different bone 
fracture types are discussed and the various phases of bone healing are explained, offering 
insights into the complex biological processes involved in recovery.  
 
1.3.1.1 Hierarchical Structure of Bone 
Bone tissue exerts important functions in the human body, such as providing structural support, 
protecting internal organs, and serving as a reservoir for mineral storage [27]. It also exhibits 
remarkable mechanical properties, including high stiffness, strength, toughness, and 
lightweight [27]. Its complex hierarchical structure spans from the macro- to the sub-nanoscale 
[27]. Knowledge at every level is crucial because each scale contributes to the overall 
functionality of bone [27]. 
 
At the macroscale, bone tissue is composed of two types: cortical (compact) and trabecular 
(cancellous) bone. Cortical bone forms a dense outer shell with low porosity (5-10%) [28] that 
primarily functions as a load-bearing structure, providing mechanical strength and protection 
[29]. Cortical bone surrounds trabecular bone, which is highly porous (50-90%) [28] and 
located primarily at the ends of long bones [29]. Its porous structure plays a key role in energy 
absorption and load distribution [29]. 
 
At the microscale, trabecular bone consists of an intricate network of interconnected struts and 
plates, known as trabeculae [29]. The orientation of the trabeculae is adaptive, aligning 
primarily along the directions of greatest stress, optimizing the bone’s structural integrity to 
withstand repetitive and multidirectional forces [30]. The microstructure of cortical bone is 
dominated by osteons [31]. Osteons, or haversian systems, are cylindrical units, each 
surrounding a central Haversian canal [31]. These canals house blood vessels and nerves, which 
are crucial for maintaining bone health by supplying nutrients and oxygen while removing 
waste products [31]. The spaces between osteons are filled with interstitial bone, made up of 
remnants of old osteons [31]. Both cortical and trabecular bone share a fundamental building 
block: lamellae [28]. Lamellae are thin layers of bone tissue, made from mineralized collagen 
fibril bundles arranged in a highly organized manner [28]. In trabecular bone, lamellae are 
primarily aligned along the long axis of the trabeculae to optimize load-bearing efficiency [28]. 
In cortical bone, the lamellae alternate in orientation between adjacent layers, which enhances 
strength and resistance to fracture under multidirectional forces [28]. 
 
At the nanoscale, mineralized collagen fibril bundles decompose into single mineralized 
collagen fibrils, which represent the fundamental structural units of bone [29]. These fibrils are 
composed of three key components: an organic matrix, minerals, and water [29]. The organic 
matrix predominantly contains type I collagen, which provides flexibility and tensile strength 
[32]. The mineral component, primarily hydroxyapatite, lends bone its stiffness and ability to 
withstand compressive forces [32]. 
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Fig. 1.2 The hierarchical structure of bone from the macro- to the sub-nanoscale [33]. 

1.3.1.2 Mechanical Behaviour of Bone 
Bone tissue mechanical behaviour exhibits significant natural variation due to several biological 
and environmental factors as species, age, anatomic site, hydration state and loading direction 
[34]. Moreover, the hierarchical structure of bone, composed of multiple levels of organization 
from the molecular to the macroscopic scale, results in a wide range of mechanical properties 
that are highly dependent on the scale being considered [27]. At each level—whether molecular, 
microstructural, or macrostructural —the mechanical behaviour of bone varies significantly due 
to the organization of its components [27]. The chapter focusses on the mechanical behaviour 
of bone at the microscale as material models for µFE simulations have to represent tissue 
mechanics at this scale. 
 
Bone properties at the microscale are influenced by factors such as collagen orientation, the 
crosslinking profile of collagen, the degree of mineralization, and the presence of bound water 
within the bone matrix [35]. When subjected to mechanical loading, bone tissue initially 
responds with linear-elastic behaviour, where deformation is reversible. However, as the strain 
reaches around 0.4-2.5% [36,37], the tissue reaches its yield point, marking the transition from 
elastic to plastic deformation, leading to a permanent change in structure that will not recover 
once the load is removed. After yielding, bone shows a quasi-brittle behaviour [38]. This means 
that although the tissue hardens and can continue to bear additional loads, it also begins to 
accumulate microdamage in the form of microcracks [39]. This damage accumulates and can 
lead to a reduction in the bone's apparent elastic modulus, as the microstructure deteriorates 
[40]. Despite this quasi-brittle behaviour, bone retains a degree of toughness [39], which refers 
to its ability to absorb energy before fracturing. This toughness is largely derived from its 
plasticity, where the ability to undergo permanent deformation before failure enables bone to 
dissipate energy and delay catastrophic fracture [41]. Both cortical and trabecular bone tissues 
exhibit anisotropic behaviour at the microscale, as their mechanical properties vary based on 
the orientation of the mineralized collagen fibers [42]. Both types of bone are stronger in 
compression than in tension [43,44] and hence show a tension-compression yield strength 
asymmetry [36]. Although cortical and trabecular bone tissues share a similar composition—
both are made up of a matrix of collagen fibers embedded with hydroxyapatite mineral—there 
are subtle differences in their mechanical properties, largely due to differences in porosity and 
structure. It is reported that trabecular bone has a slightly reduced elastic modulus, lower yield 
strain, and lower strength compared to cortical bone [36]. 
 
 1.3.1.3 Bone Fracture 
From a clinical point of view, bone fractures can be defined as an interruption of the continuity 
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of bone [45]. It occurs when a bone breaks or cracks due to high-impact force, pressure, or 
stress beyond its strength [46]. Fractures generally result from falls, accidents, sports injuries, 
or direct blows to the body [46]. Medical conditions like osteoporosis and certain cancers can 
also weaken bones, making them more susceptible to fractures from even minor stress [46]. 
 
Fractures are classified based on their appearance, severity, and how the bone is affected [47]. 
Based on the fracture morphology, one discriminates some common fracture types: 

• Complete fracture: The bone is broken into two or more pieces. Generally, complete 
fractures displace the bone fragments which are no longer aligned [46]. 

• Incomplete fracture: The bone cracks but does not break all the way through [46]. 
• Comminuted fracture: The bone shatters into three or more pieces, common in high-

impact traumas like car accidents [46]. 
• Intra-articular fracture: Intra-articular fractures extend into the joint space, meaning 

that the fracture line crosses the articular surface [47]. 
• Extra-articular fracture: Extra-articular fractures occur outside of the joint space and 

do not extend into the articular surface of the bone [47]. 

The fracture pattern and morphology gives an indication on the optimal selection of fracture 
treatment [48]. By assessing the characteristics of a fracture, treatments to ensure optimal 
healing, alignment, and function can be tailored. Simple, stable fractures often need only 
immobilization, while complex or unstable fractures, especially those prone to displacement, 
may require surgical fixation [48]. 
 
1.3.1.4 Bone Fracture Healing 
Bone fracture healing is a complex biological process that aims at complete restoration of the 
damaged bone tissue [49]. The process involves a series of events, with various cellular and 
biomechanical factors working together [49].  
 
One can discriminate two main types of bone healing: primary (direct) and secondary (indirect) 
bone healing [50]. Primary bone healing occurs when the bone fragments are closely aligned 
and rigidly stabilized, typically through surgical fixation [51]. New bone tissue forms directly 
across the fracture site, bypassing the formation of inflammation and callus [51]. Secondary 
bone healing is more common and occurs when there is some movement or gap between the 
bone fragments [50]. It involves a multi-stage process, including inflammation, soft callus, hard 
callus, and remodelling [50]. During inflammation, a hematoma forms at the fracture site, 
attracting immune cells to clear debris and activate bone-forming cells [52]. The hematoma is 
then replaced by a soft callus, a fibrous tissue that stabilizes the fracture but lacks load-bearing 
capacity [53]. Next, hard callus develops as osteoblasts create woven bone through enchondral 
and intramembranous ossification, enhancing mechanical stability [53]. Finally, during 
remodelling, the woven bone transitions into stronger, organized lamellar bone, restoring the 
bone's original structure [53]. 
 
  



  Chapter 1    Introduction 
 

9 
 

1.3.2 Bone Fracture Treatment 
This chapter provides an overview of contemporary methods for the treatment of bone fractures. 
It begins by distinguishing between conservative approaches and surgical interventions. The 
discussion transitions to internal fixation devices, with a particular focus on bone plates and 
screws. The chapter discusses conventional plates and locking plates, and finally describes the 
specifics of locking screws. Their design and functional role as a critical element for fracture 
fixation are analysed. 
 
1.3.2.1 Conservative and Surgical Approaches 
Bone fractures generally requires medical intervention to ensure the bone heals properly and 
regains its structural integrity and biomechanical properties [6]. The treatment depends on the 
type and severity of the fracture. Minor, non-displaced fractures can be treated conservatively, 
for example, by immobilizing the affected area with a splint or cast [54]. For more complex 
fractures, surgical interventions of the bone, known as osteosynthesis, are required to reposition 
the fractured fragments into their normal alignment and immobilize them by either internal or 
external fixation. External fracture fixation offers low soft tissue damage and is accomplished 
using pins and wires which are inserted percutaneously [6]. In contrast, internal fixation is 
achieved with surgical implantation of different orthopedic devices as for example plates, 
screws, and nails [6]. 
 
The choice of method depends on the type of fracture, location, cause, and severity [46]. A 
commonly used fracture fixation device is the bone plate. The plates are affixed to the surface 
of the bone using screws, and act as an internal splint to maintain proper alignment while the 
bone heals [6]. In general, one can discriminate between conventional, unlocked plates and 
locked plates which rely on different mechanical principles.  
 
1.3.2.2 Conventional Plates 
Conventional bone plates aim to provide absolute stability [55]. The tightening of the screws 
(see figure 1.3 (left)) results in normal force between bone and plate and compresses the plate 
on the bone [55]. A reactionary friction force between bone and the undersurface of the plate 
develops and provides support to the plate [55].  
 
Conventional plates encourage primary fracture healing by providing rigid fixation with little 
to no movement at the fracture site [56]. The absolute stability they offer prevents micromotion 
at the fracture, allowing the bone to heal through intramembranous ossification, where new 
bone is formed directly across the fracture without the formation of a callus [56]. Primary bone 
healing is particularly preferred for intra-articular fractures, where callus formation might 
impair joint function [56].  
 
However, conventional plates have several drawbacks that can complicate fracture stabilization 
and bone healing. While increasing screw torque can enhance load-bearing capacity by raising 
friction, it also heightens the risk of screw failure, particularly in osteoporotic or comminuted 
bone, where sufficient torque without loosening is often unachievable [57]. Additionally, load 
distribution in conventional plates is uneven, with screws nearest or farthest from the fracture 
site bearing the majority of stress [55]. The failure of one screw can trigger a domino effect, 
leading to sequential loosening and pull-out of others [55]. Mechanical adjustments to improve 
mechanical competence may also cause biological issues, such as impaired blood circulation 
due to higher compression forces, increasing the risk of necrosis and porosis [58]. Furthermore, 
the rigidity of conventional plates contributes to stress shielding, reducing mechanical stress on 
the bone, which can result in bone resorption and weakening over time [58]. 
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Fig. 1.3 Illustration of a conventional screw/plate system 
(left) and a locking screw/plate system (right) [59]. 

1.3.2.3 Locking Plates 
Locking plates (see figure 1.4) stabilize bone fragments through a rigid, fixed-angle coupling 
between the screw and the plate [55]. The locking screws, which are used together with locking 
plates, have threads not only along the shaft but also on the lateral surface of the head [55]. To 
create the locking mechanism, the head of the screw locks into the threaded hole of the plate 
and creates an axially and angularly stable connection between the screw and the plate itself 
[55].  
 
In comparison to conventional plates, the compressive forces between bone and plate are highly 
reduced in locking plates as the intimate contact between bone and plate is no longer required 
[60]. These conditions are ideal for secondary bone healing with callus formation, which leads 
to faster healing and improves the mechanical performance of the healed bone tissue [60]. 
Furthermore, the periosteal blood supply can be preserved which prevents excessive bone 
resorption [60].  
 
The specific design of the locking plate increases fixation of the fracture [55]. The plate, which 
acts as a surrogate cortex, can carry a large portion of load [55]. Together with the locked 
screws, the fixator allows to distribute forces evenly across the entire bone-plate construct, 
relieving stressed parts at the bone-screw interface [55]. Furthermore, the locking mechanism 
increases failure resistance, as the screws cannot toggle to align with the applied force but act 
together with the plate as a unit [55]. The strength of the fixator is composed of the strength of 
all bone-screw interfaces included in the construct [55]. In consequence, the fixation is less 
dependent on the local bone quality in the anchoring region and the risk for screw loosening or 
bone failure especially in bone with poor quality can be reduced [55].   
 
The decision whether to use a locking plate should involve several factors including the 
anatomical region of the fracture, the fracture pattern, and the bone quality. Especially fractures 
that have a high risk of non-union or loss of stability, as osteoporotic, peri-articular, and 
comminuted fractures should be treated with locking plates [61].  
 
Due to the frequent usage of locking plates for the fixations of certain fractures types [62], this 
thesis is focused on locking screws, which are specially designed to work together with locking 
plates.  
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Fig. 1.4 Volar locking plate fixation of a distal radius fracture. 

1.3.2.4 Locking Screws 
Locking screws (see figure 1.3 (right)) are designed to work in combination with locking plates, 
creating a rigid fixation system. They include threads at the lateral surface of the screw head 
which engage with the corresponding threads in the plate when the screw is tightened [55]. 
Because of the rigid plate-screw connection, the locking screws must handle complex, 
multiaxial forces that arise from different movements and loads on the bone [63].  
 
The locking screw tip can be either self-drilling (see figure 1.5 (A)) or self-tapping (see figure 
1.5 (B)). The self-tapping tip includes a so-called “flute”, which serves as the thread-cutting 
device and enables the screw to cut its own threads into the material as it is driven in [55]. Self-
tapping screws require a pre-drilled pilot hole prior to screw insertion. The pilot hole, matching 
the screw's core diameter, ensures proper guidance and reduces insertion stress [64]. Improper 
pilot hole sizing can increase insertion torque, risking screw breakage, or reduce pull-out 
strength [64]. However, drilling generates heat and friction, potentially causing thermal bone 
damage and microcracks near the hole [65–68]. A self-drilling tip combines both a drill and a 
tap section. This design allows the screw to simultaneously drill a hole and cut the exact profile 
of the screw threads directly into the material [55,69].  Self-drilling screws don’t need a pre-
drilled hole and can be inserted directly. This simplifies instrumentation and minimizes bone 
debris and thermal damage compared to self-tapping screws [70,71]. However, the required 
insertion torque was reported to be higher which could on the one side cause negative effects 
as microdamage but also leads to higher primary stability [72]. 
 

 
Fig. 1.5 Self-drilling (A) and self-
tapping screw (B) [73]. 
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1.3.3 Research in Bones and Bone-Screw Systems 
This chapter discusses different approaches to conduct research on bone tissue and bone-screw 
systems. The research is usually conducted to enhance our understanding of its mechanical 
behaviour or to improve screw designs and surgical techniques to avoid fracture fixation failure.  
 
1.3.3.1 Experiments 
Experimental tests can be broadly categorized into in vivo [74–76] and in vitro [77–80] 
methodologies. In vitro tests are typically conducted on cadaveric specimens or synthetic bones 
and are used to simulate mechanical behaviour under controlled conditions. Conversely, in vivo 
tests are essential for understanding the biological and mechanical behaviour of bones and 
bone-screw systems within living organisms. These tests capture the effects of real 
physiological conditions, including the interaction between biological and mechanical factors, 
such as bone remodelling and, healing. 

For in vitro and in vivo experimental testing, standard mechanical tests are commonly used to 
evaluate bone and bone-screw mechanical properties and their response to loading conditions. 
These tests are performed using mechanical testing machines, which apply loads typically at a 
force- or displacement-controlled constant loading rate [81]. Internal (e.g., load cells) or 
external (e.g., extensometers) sensors measure the occurring displacements and loads [82]. 
These data are generally used to generate load-displacement curves, which provide key 
mechanical parameters such as the ultimate strength and elastic modulus. Standard mechanical 
tests of bone include uniaxial tension and compression tests, bending and torsion tests. In bone-
screw systems, push-out and pull-out tests, are commonly used to measure the strength and 
stiffness of implant anchorage in bone [81].  

For more local measurements, bone surface strain is often measured using strain gauges. Small, 
sensitive electrical devices are directly attached to the surface of a bone, which are able to 
measure the experienced strain via electric resistance variations [83]. So-called strain gauge 
rosettes are able to measure both the direction and the magnitude of principal stain. The method 
is commonly used both in in vitro [84] and in vivo studies [85,86], where it enables 
measurement of strain under physiological loading conditions, providing critical insights into 
bone behaviour in living organisms. 

Imaging techniques, such as micro-computed tomography (micro-CT), are used to visualize 
internal structures and assess bone quality, screw fixation, and screw-bone interface interactions 
[87,88]. To study local displacements and strains, digital image correlation (DIC) or digital 
volume correlation (DVC) methods can be used. The DIC technique relies on applying a 
random speckle pattern to the bone surface [89]. This pattern serves as a unique reference, 
enabling the DIC software to track and match specific features between images before and after 
deformation, to calculate surface deformations [89]. DVC, an extension to DIC, works on 3D 
volume data. It compares 3D images of the bone before and after deformation and can capture 
the internal deformation within the bone (see section 1.3.4.4) [89].  

 1.3.3.2 Computational Modelling 
Computational modelling revolutionized engineering by enabling numerical simulations of 
complex problems that cannot be solved analytically. Numerical methods allow the 
transformation of partial differential equations, commonly used to describe the mechanical 
behaviour of complex engineering systems, into algebraic equations that can be solved 
computationally [15]. Among these methods, the FE method stands out as one of the most 
prominent due to its effectiveness and versatility (see section 1.3.4) [15]. The method is 
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nowadays widely employed to simulate the mechanical behaviour of bone and bone-screw 
systems [13,18]. 
 
FE simulations offer distinct advantages over experimental methods, providing a non-
destructive and highly versatile approach for studying bone mechanics [12]. Unlike 
experiments, FE models overcome ethical and practical limitations, enabling detailed 
simulations without the need for actual samples [12]. Additionally, FE models are time- and 
cost-effective, allowing for repeated simulations under varying conditions without the need for 
additional samples [12]. Researchers can easily adjust parameters, such as material properties 
or loading conditions, and instantly observe the effects, making it easier to explore a wide range 
of scenarios quickly and efficiently [12].   
 
Two main types of FE models have emerged over the years in bone and bone-screw construct 
research: homogenized FE (hFE) models and µFE models. hFE modelling simplifies the 
mechanical analysis of complex materials and structures by representing them as continua, 
leveraging averaged material properties derived from homogenization techniques [90]. This 
approach enables the efficient modelling of structures at macroscopic scales, with element sizes 
typically in the millimeter range [90]. Input geometries for hFE models are often derived from 
imaging techniques such as CT or magnetic resonance imaging (MRI), which provide sufficient 
resolution to capture the overall shape and volume of the structure without requiring detailed 
microstructural data [90]. As a result, hFE is computationally efficient [91] and particularly 
applied for scenarios where capturing the global mechanical behaviour is sufficient [92,93]. 
 
µFE models [16–18] use elements with sizes at the microscale, enabling them to accurately 
capture the intricate structure of trabecular bone. These models provide detailed insights into 
local stress and strain distributions and uncover potential failure mechanisms that are 
challenging to observe with experimental methods. Especially in bone-screw studies, this fine 
resolution is essential, as the precise geometry of both the screw and peri-screw region 
significantly affects the system's mechanical stability, making µFE models indispensable for 
accurate simulation of bone-implant interactions [19–21]. Due to these reasons, µFE models 
have become the gold standard in computational modelling of bone and bone-screw 
biomechanics [94]. 
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1.3.4 µFE Modelling of Bones and Bone-Screw Systems 
In this chapter, the fundamentals of the FE method are introduced, with a particular focus on its 
application at the microscale: the µFE method. The chapter explores the application of µFE 
modelling in the analysis of bone structures and bone-screw systems. Key aspects of modelling 
are examined in detail, beginning with an overview of various material modelling approaches 
and the specific challenges associated with bone-screw contact mechanics. The chapter also 
addresses the challenges involved in simulating damage resulting from the screw insertion 
process. Additionally, it reviews different types of µFE solvers, emphasizing their capabilities 
and limitations when handling µFE problems. 
 
1.3.4.1 Basics of the FE Method 
The FE method is a powerful computational technique used to approximate the behaviour of 
complex systems by subdividing a continuous domain into a finite number of smaller, simpler 
subdomains, called elements, connected by nodes [95]. The unknown variables — such as 
displacement or stress fields — are approximated over each element [95]. These local 
approximations are then assembled into a global system of equations, which is solved 
numerically to yield an approximation of the true solution [95].  
 
FE simulations can be categorized based on various criteria, such as system behaviour or time 
dependence. When the system experiences only small deformations and linear stress-strain 
relation, a linear FE simulation is typically used, where the system is modeled using linear 
partial differential equations [96]. However, many engineering problems require more complex 
models that cannot be adequately described by linear equations. In these cases, nonlinear FE 
simulations are necessary. Nonlinear behaviour can arise from several sources, including 
geometric nonlinearity (large displacements and rotations), material nonlinearity (nonlinear 
stress strain relation), nonlinear boundary conditions (contact between two bodies), bifurcation 
of equilibria (buckling) [96]. When considering time dependence, finite element analyses can 
be further classified as static or dynamic. In static analyses, the load is either constant or changes 
slowly over time, and the system remains in an equilibrium state where time and inertial effects 
are negligible [97]. In contrast, dynamic analyses deal with loads that vary over time, causing 
the system's response to change. In this case, inertial and damping effects must be considered 
[97]. 
 
The governing equation that needs to be solved in static, linear finite element simulations is 
stated as follows [15]:    
 𝐾 𝑈 =  𝐹ext (1.1) 
 𝐾 denotes the global stiffness matrix of the domain, 𝑈 denotes the nodal point displacements 
of the total assembly, and 𝐹ext represents the vector of nodal forces due to applied loads. In 
nonlinear problems [98], the relationship between forces and displacements is no longer linear. 
Hence, an incremental formulation is needed, where information about the known equilibrium 
condition (𝑡 = 𝑡(𝑚)) is used to derive the unknown equilibrium condition (𝑡 = 𝑡(𝑚+1)). At 𝑡(𝑚) 
the nonlinear system is linearized. The governing nonlinear finite element equation can be 
expressed as [98]: 
 𝐾(𝑚) ∆𝑈⏟  = 𝐹𝑒xt(𝑚+1) −  𝐹𝑖nt(𝑚) (1.2)                                𝑈(𝑚+1)-𝑈(𝑚) (1.3) 
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𝐾(𝑚) is the global tangential stiffness matrix in configuration m and 𝐹𝑖𝑛𝑡(𝑚) denotes the vector of 
internal forces in configuration m. 𝑈(𝑚) and 𝑈(𝑚+1) refer to the nodal displacement vectors for 
all nodes at time 𝑡 = 𝑡(𝑚) and 𝑡 = 𝑡(𝑚+1). 
 
Linear system of equations are typically solved using direct (e.g. Gaussian elimination) or 
iterative (e.g. Conjugate Gradient (CG)) solution methods. Direct methods provide exact 
solutions in a finite number of arithmetic steps, while iterative methods start with an initial 
guess and refine the solution through successive iterations [99]. Since assembling and storing 
the actual stiffness matrix is not efficient especially for large systems, a matrix-free approach 
is often employed. Instead of forming and storing the global stiffness matrix, matrix-vector 
products are computed directly at the element level using an element-by-element strategy, 
which reduces memory usage and computational time [100]. For nonlinear systems, 
incremental-iterative methods (e.g. Newton-Raphson and modified Newton-Raphson) are the 
standard approach. Due to the nonlinear nature of these problems, the equilibrium path cannot 
be directly solved, so the load is applied incrementally in small steps [101]. At each step, the 
nonlinear system is linearized around the current state and the equilibrium path of the system 
is followed through a sequence of small tangential linear steps [101]. 
 
When solving FE problems, one discriminates two different time integration strategies, namely 
implicit and explicit. Implicit methods involve solving the equilibrium equations for the entire 
system at each time step, requiring the assembly of the global stiffness matrix [102]. This 
process can be computationally intensive especially for nonlinear, large-sized models but 
provides unconditional stability for larger time steps, making it well-suited for simulations of 
static or quasi-static problems [103]. In contrast, explicit methods advance the solution based 
on the system behaviour at the current state, without forming or solving a global system [103]. 
This eliminates the need for global stiffness matrix assembly, making explicit methods 
computationally efficient per step and ideal for analyses with large nonlinearities or changing 
contact conditions [103]. 

When dealing with highly nonlinear problems, implicit time integration often encounters 
convergence challenges. To address this, the problem can be reformulated as a quasi-static 
process and solved using explicit time integration [104]. However, performing a quasi-static 
analysis on its true time scale is generally impractical due to the excessive runtime required. To 
reduce computational time, two common strategies can be employed: time scaling and mass 
scaling [104]. Time scaling involves increasing the loading rate until inertial effects become 
negligible, while mass scaling artificially increases the mass of the model to allow for larger 
time increments, while maintaining stability [104]. To ensure the simulation remains quasi-
static and avoids introducing unrealistic dynamic effects, it is crucial to minimize the influence 
of inertial forces on the mechanical response. This can be achieved by maintaining the ratio of 
kinetic energy to total internal strain energy below 5% to 10% [105].  

1.3.4.2 Basics of µFE Modelling 
µFE modelling (see figure 1.6 (A) and (B)) enables to capture the mechanical behaviour of 
materials and structures at the microstructural level. While standard FE typically deals with 
elements sizes in the millimeter range, µFE operates at much smaller scales, with element sizes 
typically in the micrometer range. As a result, µFE models can only be generated from highly 
detailed geometries obtained from imaging techniques like micro-CT, and demand high 
computational power due to the high number of elements involved [16]. The µFE approach is 
becoming increasingly important in the biomechanics field, where microscale behaviour 
significantly influences overall system performance [16]. Some common practices in µFE 
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modelling have evolved over time and are outlined in the following. 
 
A  B 

 
Fig. 1.6 µFE models showing a bone biopsy (element size: 36µm) (A) and a bone-screw system (element size: 32.8µm) 
(B). 

The main steps to perform a µFE analysis are similar to conventional FE analysis and include 
mesh generation, material properties, and boundary conditions and loading conditions [106]. 
 
The starting point of a µFE analysis is the extraction of a surface mesh from a highly-resolved 
micro-CT image, that expresses the geometry of the object of interest. Typically, the µFE mesh 
is directly generated from the segmented image using voxel to element conversion [107,108]. 
This means that each voxel in the 3D image is converted into a corresponding hexahedral finite 
element. The elements are equal in shape, size, and orientation, enabling reduced storage of the 
data structure [100]. Another automated meshing technique utilizes the marching cubes 
algorithm [109,110], which converts voxels into tetrahedral elements of varying sizes. This 
approach allows for the creation of models with smooth trabecular surfaces, enhancing 
geometric accuracy. However, the increased smoothness comes at the cost of higher 
computational effort [17].  
 
Each element in the mesh must be assigned appropriate material properties. The material model 
needs to be chosen based on the specific research question, e.g., an elastic model when the load 
remains within the elastic range, and a nonlinear model when the material undergoes large, 
permanent deformations [106]. Additionally, the selection of material properties must consider 
resolution, as bone shows different mechanical behaviours at different scales [27]. At the tissue 
level, bone properties are typically assumed to be isotropic and homogeneous, meaning that the 
same material properties are assigned in all directions. This assumption has been shown to be 
sufficient for predicting mechanical properties at the apparent level [107,108], as the anisotropy 
of bone is mainly determined by the trabecular architecture, which is captured at microscale 
mesh resolutions [111]. Furthermore, studies have demonstrated that mineralization 
heterogeneity has little effect on apparent material properties, supporting the simplifying 
assumption of material homogeneity [112]. However, studies investigating the similarity of 
trabecular and cortical bone tissue properties at the microstructural level have produced 
conflicting results, making it uncertain whether these two types of bone can be modeled in the 
same manner [113,114].  
 
Finally, proper boundary conditions and loading scenarios need to be assigned to ensure 
accurate simulations. If the µFE results are to be compared with experimental data, it is essential 
that the boundary and loading conditions closely replicate the actual testing conditions [106]. 
In µFE analyses, boundary conditions are typically simple, involving the application or 
restriction of displacements at specific nodes or surfaces, such as compression, stretching, or 
full fixation [24,115–117]. 
 

~1mm ~1mm 
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1.3.4.3 Challenges in µFE Modelling 
In addition to their numerous benefits, µFE modelling of bones and bone-screw systems 
presents several challenges that can affect the accuracy, reliability, and feasibility of the 
simulations. The major challenges include: 

• Dealing with large model sizes: The high resolution of µFE models increases the 
number of elements, often reaching several hundred million, which raises computational 
demands. This necessitated the need for efficient µFE solvers, designed to handle large 
µFE problems within a reasonable timeframe. 

• Bone material modelling: Bone exhibits nonlinear behaviour beyond its yield point, 
meaning that modelling failure in bone or bone-implant systems requires incorporating 
nonlinearities into the constitutive model, which inevitably increases the computational 
demands of the solution process. 

• Bone-screw interface modelling: Appropriate interface modelling is essential for 
accurate simulations of the interaction between bone and screw. Nevertheless, contact 
algorithms can be computationally demanding. 

• Modelling of damage due to screw insertion and pre-drilling in bone-screw 
systems: The pre-drilling and screw insertion process can induce damage in the bone, 
impacting the mechanical stability and long-term performance of the bone-screw 
system. However, accurately modelling this damage remains a challenging task. 

Additionally, the identification of key modelling parameters (e.g., material properties, friction 
coefficients, and damage from screw insertion) poses a ubiquitous challenge in µFE modelling. 
However, these aspects will not be further addressed here, as they are equally present in 
conventional FE modelling of biological tissues. The following sections explain the above-
mentioned challenges in more detail, how they have been dealt with in literature, and which 
challenges remain to be solved. 
 
1.3.4.4 Bone Material Modelling in µFE Models 
To perform µFE simulations of bones and bone-screw systems, a constitutive model of bone is 
required to describe the material behaviour through a stress-strain relationship [118]. This 
model is essential for accurately simulating the mechanical response of the system. In µFE, the 
material law and properties are applied locally at a resolution in the micrometer range, 
necessitating consideration of bone tissue behaviour at the microscale [118]. This chapter deals 
with commonly used constitutive laws generated to simulate bone behaviour with µFE models. 
The majority of models seek to balance intricacy and simplicity to achieve accurate yet 
computationally efficient simulations. 
 
Linear-Elastic Material Models 
Linear-elastic material models (see figure 1.7 (A)) are commonly used in µFE bone and bone-
screw simulations [116,119,120] due to their simplicity and low computational costs. The 
models assume a linear stress-strain relationship but cannot capture nonlinear bone behaviour 
beyond yield, limiting their ability to predict failure loads accurately. A widely used criterion 
[117,121–124] to estimate failure in linear-elastic simulations was developed by Pistoia et al. 
[116]. It classifies elements as damaged based on local effective tissue strain. Failure is 
determined if 2% of elements exceed the critical strain value. As this criterion was initially 
developed to predict fracture of radii subjected to compression load, its parameters need to be 
adapted for each individual case [125] and can lead to under- or overestimations in failure load 
of up to one order of magnitude [121,122]. 
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Nonlinear Material Models  
When applied strains exceed the elastic limit of bone material, the predictive accuracy of linear-
elastic models degrades. To enhance prediction performance, nonlinearities must be included 
in the selected constitutive law. However, introducing nonlinearities increases the complexity 
of the material formulation, resulting in higher computational demands. The majority of 
nonlinear constitutive models generated to model bone material behaviour in µFE models 
account for plasticity or damage [118].  
 
Elasto-Plastic Material Model 
In contrast to linear-elastic models, elasto-plastic material models (see figure 1.7 (B)) include 
material nonlinearity beyond yield and are able to describe bone as a material that exhibits both 
elastic and plastic behaviour. The models include a yield criterion corresponding to yield 
surfaces in 3D, e.g. von Mises [126,127], Drucker-Prager [126], or quadric approximations of 
the Drucker-Prager [128]. If this criterion is locally exceeded, the material undergoes permanent 
deformation. As tension-compression asymmetries were reported for bone tissue at the 
microscale, different yield strains in tension and compression are generally applied. Many 
elasto-plastic material formulations also account for isotropic hardening in the post-yield region 
[126,128]. While elasto-plastic models generally do not directly predict failure load [126,129], 
combining elasto-plastic behaviour with fracture mechanics provides a more comprehensive 
description, enabling failure load to be determined. Fracture is typically modeled using criteria 
that identify the onset and progression of material failure. For instance, elements in a FE 
analysis that exceed a predefined ultimate threshold, such as critical strain or stress, are often 
deleted from the model to simulate fracture [127]. 
 
Damaged-Based Material Model  
Damage-based material models (see figure 1.7 (C)) for µFE simulations are used to capture the 
progressive degradation of bone tissue under loading. These models introduce a damage 
variable that evolves with increasing strain, locally reducing material stiffness to simulate 
microstructural failure. Damage initiation and progression are typically governed by yield 
criteria, such as a critical strain threshold, indicating the onset of material degradation [24,130–
132]. Some damage-based material models extend to include fracture, enabling the simulation 
of complete structural failure. Upon reaching a predefined critical threshold, based on variables 
such as strain, or cumulative damage, elements may either be removed entirely [131,132] or 
retain a minimal residual stiffness to approximate severely damaged regions [24]. 
 
A 

 

B 
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C 

 
 Fig. 1.7 Stress-strain curves of different µFE material models: (A) linear-elastic material model, (B) elasto-plastic 
material model, and (C) damage-based material model with (1) linear-elastic region, (2) damaged region, and (3) fractured 
region. 

Note: elastic modulus (E), stress (σ), strain (ε), damage onset stress/strain in tension (σ +/ε +), damage onset stress/strain in 
compression (σ -/ε -), critical strain in tension/compression (εc+/εc-). 

 
1.3.4.5 Bone-Screw Interface Modelling in µFE Models 
Although the contact interface plays a critical role in the stiffness and strength of the screw and 
the overall success of the fixation [133], the importance of contact modelling for accurate model 
prediction in µFE simulations still merits discussions [120]. Bone-screw contact modelling 
typically involves defining contact surfaces that can simulate friction, sliding, and possible 
separation between the screw threads and the bone. This chapter provides an overview of 
commonly used bone-screw interface models in µFE. The models presented vary significantly 
in terms of their complexity and computational efficiency. It is important to note that contact 
algorithms in µFE must strike an optimal balance between these two factors to ensure accurate 
and practical simulations. 
 
Interface Based on Contact Algorithms 
General-purpose contact algorithms (see figure 1.8 (A)) are widely regarded as the gold 
standard in interface modelling due to their ability to replicate physical contact across diverse 
applications [134]. These algorithms enforce contact conditions by preventing surface 
penetration and ensuring proper force transmission at the interface. To ensure contact 
conditions are satisfied, FE solvers rely on methods such as penalty-based enforcement or 
Lagrange multipliers [135]. The penalty method permits slight overlap between surfaces and 
applies a force that increases with the extent of penetration to push the objects apart [136]. In 
contrast, Lagrange multipliers introduce a constraint force that prevents overlap entirely, 
ensuring more precise contact enforcement but at the cost of greater computational difficulty 
[136]. For tangential behaviour, Coulomb's law of friction is commonly used [135]. It states 
that the frictional force is proportional to the normal force and opposes motion, with sliding 
occurring once the applied force exceeds the maximum static friction [135]. Despite their 
robustness and flexibility, general-purpose contact algorithms have notable computational 
demands. They must detect and update potential interactions between surfaces at every 
iteration, determining which regions are in contact and which are not. For models with large 
contact areas or multiple interacting bodies, this process can significantly increase 
computational overhead [135].  
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Fully Bonded Interface 
A computationally efficient approach to address the challenge of bone-screw contact modelling 
is to assume full bonding (see figure 1.8 (B)) between bone and screw. This means that the µFE 
elements referring to bone material that are in contact with µFE elements referring to screw 
material, stay bonded from the start of the simulation until the end. This assumption does not 
correspond to reality as no direct bonding between bone and screw exists shortly after insertion. 
Consequently, the fully bonded interface assumption, though frequently used in literature, 
might lead to overestimations in whole-construct stiffness and strains [20,120,137].  
 
Simplified Interface Models 
Another approach for bone-screw contact modelling involves simplified interface models (see 
figure 1.8 (C)), which aim to strike a balance between computational efficiency and modelling 
accuracy. One such method, proposed by Steiner et al. [120], starts with a single preliminary 
simulation with the fully bonded interface, evaluated in the linear-elastic region. During this 
preliminary analysis, interface elements that experience positive volumetric strain are identified 
as being in tension and are subsequently removed, based on the assumption that tensile stresses 
cannot be transferred at the contact interface. In contrast, interface elements experiencing 
negative volumetric strain are considered to be in compression and are retained, as they are 
assumed to contribute to stress transfer between the bone and screw. After removing the 
disconnected elements, the updated interface is used to conduct the final nonlinear simulation, 
reflecting the modified contact conditions. 
 

A General contact B Fully bonded C Simplified contact  
 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 
 

Fig. 1.8 Schematic illustration of different bone-screw contact models: (A) General-purpose contact, (B) fully bonded, and 
(C) simplified contact by deleting interface elements under positive volumetric strain following Steiner et al. [120]. 



  Chapter 1    Introduction 
 

21 
 

1.3.4.6 Damage Due to Pre-Drilling and Screw Insertion in µFE Models 
The pre-drilling of the pilot hole as well as the screw insertion process induce bone 
microdamage, as noted in several studies [67,138–141]. This accumulation of microdamage can 
compromise the primary stability of the screw, potentially resulting in screw loosening [142]. 
Consequently, accurate modelling is essential for reliable predictions of the mechanical 
properties of bone-screw systems. Steiner et al. [139] localized and quantified the screw 
insertion related pre-damage by comparing micro-CT scans of human femoral bone before and 
after screw insertion. Their findings revealed that the extent of the damaged region depends on 
the screw thread depth, with the most severe damage in the areas immediately adjacent to the 
screw. However, microdamage is influenced by multiple additional factors, including screw 
thread design, insertion technique (e.g. self-tapping vs. self-drilling) [143], and insertion torque 
[144]. A review of the literature identifies several approaches commonly used to model damage 
caused by screw insertion in bone-screw µFE models. 
 
Simulation of Screw Insertion 
Ovesy et al. [145] and Zhou et al. [146] incorporated the screw insertion process into the pre-
drilled pilot hole in their simulations, enabling them to capture the progression of bone damage 
induced by screw insertion. This approach (see figure 1.9 (A)) allows for a more detailed 
representation of the mechanical effects at the bone-screw interface. However, it is 
computationally intensive, making it practical only for small-scale models. Additionally, in 
case pre-drilling is conducted in the experiments, this process might also need to be modeled in 
the simulations to achieve a correct estimation of pre-damage.   
 
No Pre-Damage 
Ovesy et al. [121] and Panagiotopoulou et al. [122] ignored pre-damage (see figure 1.9 (B)) 
resulting from screw-insertion in their µFE models. Despite this significant modelling 
simplification, their simulations demonstrated a strong 1:1 correspondence with experiments. 
However, even though the mechanical response can be captured with this approach, it is to be 
expected that the damage in the surrounding bone is not realistically represented. 
 
Simplified Pre-Damage 
To maintain computational efficiency, some studies defined damage zones around the screw 
with a uniformly reduced elastic modulus, effectively simulating the mechanical degradation 
of bone tissue due to screw insertion [115,120,137] (see figure 1.9 (C)). This approach 
simplifies the modelling process by avoiding the need to simulate the dynamic process of screw 
insertion while still accounting for the weakened properties of the bone in the peri-implant 
region. By adjusting the elastic modulus, researchers try to replicate the decrease in stiffness 
and load-bearing capacity of the bone near the screw threads. The size of the damage zones and 
the degree of modulus reduction vary among studies, with thinner zones reflecting localized 
damage and thicker zones accounting for broader mechanical impact. Similarly, the reductions 
in elastic modulus range from a few percent [115], representing subtle microdamage, to almost 
hundred percent [137], simulating severe local damage or a complete loss of structural integrity 
in the affected bone. 
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A Simulation of screw insertion B No pre-damage C Simplified pre-
damage 

 

 

 

 

 

 
Fig. 1.9  Illustration of different pre-damage models: (A) simulation of screw-insertion and schematic illustration of 
resulting pre-damage, (B) no pre-damage, and (C) simplified pre-damage. 

 

1.3.4.6 Dealing with Large Model Sizes in µFE Models 
Regarding solid mechanics, a large number of µFE solvers exists which can solve µFE 
problems. They roughly be divided into two types: general purpose solvers (Abaqus (Dassault 
Systems, Vélizy-Villacoublay, France), Ansys (ANSYS, Inc., https://www.ansys.com/) that are 
versatile in application but lack computational efficiency, and specialized solvers (FEAP [23], 
Faim (Numerics88 Solutions Ltd, https://bonelab.github.io/n88/index.html), ParOSol [25], 
ParOSol-NL [24]) that show improved computational performance but are limited in model 
complexity. Given that μFE models often involve huge element numbers, selecting the 
appropriate solver depends critically on the specific requirements of the problem. 
 
General-Purpose Solvers 
General-purpose μFE solvers are designed to address a wide range of problems, from simple 
linear static analyses to complex nonlinear and dynamic simulations. They accommodate 
various nonlinearities (material, geometric, and contact) and offer extensive libraries of material 
models and element types [105,147]. Additionally, these solvers feature user-friendly graphical 
interfaces that simplify model setup and provide robust pre- and post-processing tools 
[105,147]. General-purpose solvers differ significantly from specialized solvers. In contrast to 
specialized solvers, they often rely on direct solvers, which can become resource-intensive for 
very large models [148]. Furthermore, direct solvers typically require the full assembly of the 
global stiffness matrix before solving, leading to high memory usage, especially in parallel 
computing environments [148]. A very commonly used general purpose solver for μFE 
simulations is Abaqus (Dassault Systems, Vélizy-Villacoublay, France) [122,145,146] which 
is briefly described in the following section. 
 
Abaqus 
Abaqus is a versatile general-purpose finite element analysis software that offers the modules 
Abaqus/Standard and Abaqus/Explicit. They refer to the two primary numerical approaches 
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offered by the Abaqus software package: implicit analysis (Abaqus/Standard) and explicit 
analysis (Abaqus/Explicit), each tailored for specific engineering applications [149]. 
Abaqus/Standard employs the Newton-Raphson method or its variants for solving nonlinear 
problems, with linear systems solved using a direct solver based on Gaussian elimination [105]. 
In contrast, Abaqus/Explicit employs an explicit time integration scheme, making it suitable for 
high-speed dynamics and large deformation applications [105]. 

The software offers a comprehensive element library, including solids, shells, and beams, and 
an extensive material library that supports linear and nonlinear elasticity, rubber, plasticity, and 
more [150]. Additionally, users can extend material capabilities by writing custom behaviour 
subroutines. Furthermore, it provides advanced tools for modelling contact and interface 
problems [150]. 

Specialized Solvers 
Specialized large-scale µFE solvers are designed to efficiently handle high-resolution models 
with mesh sizes reaching several million elements. To achieve this, they typically employ 
iterative solvers, which significantly reduce memory usage and computational time compared 
to direct solvers [148]. A critical efficiency-enhancing strategy in these solvers is the use of a 
matrix-free approach [100]. Matrix-free methods are particularly advantageous for solving 
large systems due to their scalability [151]. Traditional approaches that assemble the global 
stiffness matrix often encounter bottlenecks in parallel systems, as they require extensive inter-
processor communication [151]. In contrast, the element-level independence of matrix-free 
methods allows for efficient parallelization, minimizing communication overhead and ensuring 
better scalability as problem sizes increase [151]. Despite these advantages, the efficiency and 
scalability of specialized µFE solvers come with trade-offs. They generally support only linear-
elastic or simple nonlinear material models, limiting their applicability to scenarios where such 
simplifications are valid. Additionally, these solvers are often restricted to a single element type 
to streamline computations and maximize performance. Two widely used specialized solvers 
FEAP [130,152,153] and ParOSol [120,154,155], will both be briefly introduced in the 
following sections.  
 
FEAP/Olympus 
FEAP (Finite Element Analysis Program) is a computational tool developed by Robert L. 
Taylor [23] for solving engineering problems using the FE method. Originally written in 
Fortran, the code is available on open access, making it accessible for adaptation and 
customization, particularly in research and educational settings [23,156]. It includes different 
types of elements, material models, and boundary conditions [23,156]. The solver enables to 
perform materially linear and nonlinear numerical studies, where an elasto-plastic material 
model is applied [130,152,157].  
 
FEAP is a serial code, meaning it was originally designed to run on a single processor without 
parallel computing capabilities [158]. In order to improve scalability when handling very large 
problems, Olympus, a parallel finite element framework, was designed by integrating FEAP 
into a parallel computing environment [158]. In order to divide the problem into smaller sub-
problems that can processed in parallel, Olympus uses a parallel graph partitioner called 
ParMetis [158]. To integrate FEAP within the parallel framework, Olympus uses an interface 
layer called pFEAP [158]. pFEAP manages the data exchange between FEAP's local instances 
and the global system handled by Olympus [158]. Each FEAP instance on a processor only 
processes the data relevant to its assigned subdomain, while pFEAP coordinates 
communication between subdomains as needed [158]. To solve the linear system of equations, 
Olympus uses Prometheus, a parallel algebraic multigrid solver [158]. 
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Within the Olympus framework, FEAP benefits from advanced parallel computing techniques, 
making it efficient for µFE simulations. Nonetheless, the solver requires huge computational 
resources, with about 2.2kB memory per degree of freedom (DoF) [158], which is much higher 
than the memory requirements of the solver ParOSol (0.1kB) that is introduced in the next 
section [159]. 
 
ParOSol 
The specialized solver ParOSol (Parallel-Octree-Solver) was initially developed by Flaig and 
Arbenz [25] is designed to achieve a low memory footprint and high scalability. Its low memory 
footprint optimizes resource utilization per DoF, while its exceptional scalability enables 
efficient use of thousands of processors, making it well-suited for large-scale simulations [159]. 
 
The low memory footprint can be achieved due to the special octree data structure, which 
efficiently stores the nodes and elements of the mesh [159]. This data structure allows to avoid 
to model void spaces, which significantly reduces memory consumption, by focusing 
computational resources only on regions that contain elements [159]. The octree-like data 
structure also forms the foundation of a geometric multigrid preconditioner that accelerates the 
solution process by promoting faster convergence [159]. Load balancing is achieved by 
dividing the octree into equally sized parts, ensuring that each processor handles an even portion 
of the computational workload, thus optimizing parallel performance and reducing idle time 
among processors [159]. 
 
The software, written in optimized object-oriented C++, avoids unnecessary memory allocation 
during all computation stages [159]. Parallelization is implemented using the Message Passing 
Interface (MPI), enabling efficient communication in distributed systems, while input and 
output operations rely on HDF5, a format optimized for managing large datasets and ensuring 
reliable data transfer [159]. 

While ParOSol excels in performance and scalability, it comes with limitations due to its 
specialized design. The solver supports only hexahedral elements, simplifying its algorithms 
but restricting flexibility for complex geometries [159]. The mesh is generated internally, 
preventing external customization or refinement [159]. Furthermore, all elements must share 
the same Poisson’s ratio, limiting its ability to model materials with varying properties [159]. 
Additionally, ParOSol supports only linear-elastic material behaviour, reducing its applicability 
to simulations requiring complex nonlinear responses [159]. 

ParOSol-NL 
ParOSol was initially developed to handle only linear-elastic simulations. Stipsitz et al. [24] 
enhanced the solver to ParOSol-NL, which enables materially nonlinear simulations. This 
upgrade allows for more realistic modelling of damage and fracture at the tissue level, providing 
insights into how materials fail under load. Additionally, it enables the direct determination of 
the maximum force of a structure [26]. However, the extension does not account for other types 
of nonlinearities, such as geometric and contact nonlinearity, limiting its applicability to cases 
where these effects can be neglected [26]. 
 
A simple damage-based nonlinear material law was carefully integrated into ParOSol to 
preserve the efficient parallel properties of the original solver [26]. To achieve good scalability, 
minimization of inter-process communication was considered in the implementation process 
[26]. By reducing the need for data exchange, high computational efficiency even when scaling 
to large numbers of processors were maintained [26]. 



  Chapter 1    Introduction 
 

25 
 

 
The solution of materially nonlinear problems is carried out using an incremental-iterative 
procedure [26]. The external load is applied incrementally, with each load step being solved 
through iterative applications of the original linear ParOSol solver [26]. Within each iteration, 
the elastic moduli are held constant, and once the linear problem is resolved, trial stresses are 
computed for each element [26]. If the calculated stress state falls outside a pre-defined quadric 
damage onset surface, the solver adapts the elastic modulus and updates the damage variable 
for each element [26]. This element-wise update simplifies the implementation and helps to 
maintain the solver's efficiency [26]. Increment convergence is determined when both global 
and local steady-state conditions are met [26]. 
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1.3.5 Verification and Validation of µFE Models 
This chapter presents an overview of the concepts of verification and validation of 
computational models. It subsequently focuses on the process of experimental validation of 
µFE models at the macroscale (several millimeters or larger), outlining its key stages. Finally, 
the chapter discusses the procedure of validating a μFE model using the DVC method, which 
is currently the most promising method to validate µFE models below the macroscale. 
 
1.3.5.1 Verification and Validation of Computational Models 
The verification and validation process provides evidence that a computer model produces 
results with sufficient accuracy for its intended use [160]. However, it does not guarantee the 
model's accuracy under all possible conditions [160]. Verification and validation is achieved 
when the required level of accuracy for the specific scenario is satisfied [160]. Verification 
ensures that the computational model is mathematically correctly implemented and solves 
equations accurately [161]. In contrast, validation focuses on determining whether the model 
accurately represents the real-world phenomena by comparing its results to experimental data 
and assessing the appropriateness of assumptions and simplifications [161].  
 
The verification and validation plan of the American Society of Mechanical Engineers (ASME) 
(see figure 1.10) provides a systematic framework for evaluating computational models [161]. 
The process begins with defining the problem statement, which identifies the objectives, 
physical phenomena, and boundary conditions to ensure alignment with the intended 
application [161]. A conceptual model is then developed, simplifying the system into key 
components and processes, serving as a foundation for the subsequent mathematical and 
physical models [161]. The mathematical model formalizes the relationships in the conceptual 
model through equations, which are implemented in algorithms and software to produce the 
computational model [161]. Code verification ensures the correct implementation of equations, 
while calculation verification assesses numerical accuracy, stability, and convergence of 
simulation results [161]. Simultaneously, a physical model is developed alongside an 
experimental design that defines test variables, conditions, and data collection methods to 
generate experimental data representing system behaviour [161]. Uncertainty quantification 
evaluates sources of variability in both simulations and experiments, providing confidence 
bounds and ensuring reliable comparison [161]. The validation process compares simulation 
outcomes with experimental data to assess the computational model’s fidelity [161]. Acceptable 
agreement validates the model [161]. Otherwise, the mathematical model, computational 
implementation, or experimental setup must be refined [161].  
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Fig. 1.10 Graphical illustration of the verification and validation activities and outcomes similar to Schwer [161]. 

1.3.5.2 Verification of µFE Models 
The verification process is divided into code verification and calculation verification [160]. 
Code verification ensures that the software functions as intended by addressing two main areas 
[160]. First, software quality assurance detects programming errors while ensuring that the code 
produces consistent results across different hardware, operating systems, and compilers [160]. 
Second, numerical algorithm verification involves creating test problems with known analytical 
solutions and comparing these to the outputs of the code to confirm the correctness of the 
numerical methods [160]. Calculation verification, on the other hand, focuses on quantifying 
errors in numerical simulations, introduced by discretization [160]. This is typically done 
through mesh-refinement studies, which analyse how the solution converges as the grid is 
refined [160]. 
 
1.3.5.3 Validation of µFE Models at the Macroscale 
Validation of μFE models at the macroscale (several millimeters or larger) is a crucial step to 
ensure that these models accurately predict the apparent or structural mechanical behaviour of 
bone biopsies up to whole bones with implants. The typical process of validating μFE models 
of bones and bone-screw systems at the macroscale involves several key stages. First, a 
representative set of cadaver bones is selected, carefully prepared, and subjected to high-
resolution scanning to capture the bone microstructure [18]. Next, mechanical experiments are 
performed on these specimens to measure their apparent mechanical properties, such as 
stiffness and strength, under controlled loading conditions [18]. Simultaneously, μFE 
simulations are designed based on the previously recorded μCT scans, replicating the 
experimental setup as closely as possible by incorporating similar boundary conditions, loading 
scenarios, and material properties [18]. Finally, the outputs of the simulations are compared to 
the experimental results to assess the model’s predictive accuracy, often using statistical metrics 
like the coefficient of determination (R²) or mean absolute error (MAE). Successful validation 
requires a strong correlation between the experimental and simulated data, demonstrating that 
the μFE model can reliably replicate the mechanical response of bone at the macroscale [18]. 
Figure 1.11 illustrates a typical validation process of μFE predicted apparent properties of bone-
screw systems following the verification and validation plan. 
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Fig. 1.11 General workflow for a macroscale validation of bone-screw μFE models following the verification and validation 
plan of ASME [161]. 

The agreement between μFE outcomes and experimental results is influenced by several factors. 
An important factor is the appropriate selection of bone material properties, such as the Young’s 
modulus. While there is considerable variation in the values used across different studies, using 
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a well-calibrated Young's modulus that aligns with the actual bone tissue properties of the 
physical model can significantly enhance the agreement between μFE and experiment [18]. The 
experimental setup plays a critical role as well. Controlled experiments, such as those involving 
the embedding of isolated bone segments [162], allow for better control over boundary 
conditions, minimizing external variables that can affect results. This approach leads to more 
reliable μFE predictions, as it closely replicates the conditions under which the bone would 
experience mechanical loads [18]. However, it is equally important to ensure that the 
experimental setup remains aligned with the reality of interest [163]. It should not be too far 
removed from the actual scenario being studied, as this can compromise the model’s relevance.  

 1.3.5.4 Validation of µFE Models at the Mesoscale 
Validation of μFE models at the macroscale assesses prediction accuracy of μFE models at the 
apparent level, but it cannot estimate prediction accuracy of mechanical properties at smaller, 
localized scales. To address this limitation, DVC, initially introduced by Bay et al. (1999) [164], 
has emerged as a valuable technique for validating μFE models at mesoscale levels. Shortly, 
DVC tracks the deformation of internal features by comparing the volumetric images of the 
undeformed and deformed state and uses this information to compute the local displacements 
and strains across the entire 3D volume of biological tissues [165]. For image resolutions of 
about 30μm, the DVC displacement field is typically measured in a regular grid with a spacing 
of approximately 0.5–2mm [166]. Figure 1.12 illustrates a typical validation process of μFE 
predicted displacement fields at the mesoscale following the verification and validation plan.  
 
The accuracy and precision of displacement and strain fields calculated by DVC depend on 
several factors, notably the quality of input images and the tissue's microstructural 
heterogeneity [167]. Poor image quality, caused by low signal-to-noise ratios or insufficient 
resolution, hinders the algorithm's ability to track intensity patterns, reducing reliability. Tissue 
microstructure also plays a critical role as homogeneous structures like cortical bone produce 
uniform intensity patterns that are harder to track, while the heterogeneity of trabecular bone 
offers distinct patterns that improve detection [168]. Another critical factor affecting DVC 
performance is the choice of nodal spacing on the superimposed grid. Increasing nodal spacing 
generally leads to an increase in accuracy and precision, following a power-law relationship 
[166].  

The DVC method is widely used to validate µFE model predictions, primarily for displacement 
measurements due to the lower accuracy of strain calculations [107,119,124,169,170]. In these 
validation studies, DVC employs deformed and undeformed images of bone structures to 
measure the displacement and strain fields. The undeformed image serves as the basis for 
generating a µFE model, where the displacement field measured by DVC is applied at the 
boundaries. Since DVC measures displacements on a coarser grid than the µFE model, different 
approaches are used for comparison, such as pointwise comparison (interpolating µFE results 
to DVC points) [107,119] or volume averaging (averaging µFE results for corresponding DVC 
grid nodes) [171]. 
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Fig. 1.12 General workflow for a mesoscale validation of bone μFE models following the verification and validation plan of 
ASME [161]. 
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1.4 Summary of Publications and Contributions 
Chapters 2, 3, and 4 present individual research studies that contribute to the overarching aims 
of this thesis and have been previously published:  
 
Chapter 2: Stefanek, P., Synek, A., Dall’Ara, E. & Pahr, D. H. (2022). Comparison of linear 

and nonlinear stepwise μFE displacement predictions to digital volume 
correlation measurements of trabecular bone biopsies. Journal Of The 
Mechanical Behavior Of Biomedical Materials/Journal Of Mechanical Behavior 
Of Biomedical Materials, 138, 105631. 
https://doi.org/10.1016/j.jmbbm.2022.105631 

Chapter 3:  Stefanek, P., Pahr, D. H. & Synek, A. (2024). Comparison of simplified bone-
screw interface models in materially nonlinear μFE simulations. Journal Of The 
Mechanical Behavior Of Biomedical Materials/Journal Of Mechanical Behavior 
Of Biomedical Materials, 157, 106634. 
https://doi.org/10.1016/j.jmbbm.2024.106634 

Chapter 4:  Stefanek, P., Silva-Henao, J. D., Fiedler, V., Reisinger, A. G., Pahr, D. H., & 
Synek, A. (2025). Screw pull-out force predictions in porcine radii using 
efficient nonlinear µFE models including contact and pre-damage. Frontiers in 
Bioengineering and Biotechnology, 13. 
https://doi.org/10.3389/fbioe.2025.1524235 

 
 
The author of this thesis was the first author of all three publications. According to the CRediT 
taxonomy (https://credit.niso.org/), the first author contributed to these publications by data 
curation, the investigation, the methodology, the project administration, the visualization, and 
the writing of the original draft. 
  
Chapter 2 focuses on validating ParOSol-NL at the sub-macroscale level. Chapter 3 introduces 
the development of an efficient and accurate contact model tailored for bone-screw simulations 
within ParOSol-NL. Finally, Chapter 4 integrates two subgoals: first, an efficient pre-damage 
model is implemented to represent bone damage caused by the screw insertion process; second, 
the enhanced ParOSol-NL solver is applied to bone-screw simulations with simplified contact 
and pre-damage. These simulations are evaluated by comparing the predicted bone-screw pull-
out forces against experimental results. The three publications and their main outcomes are 
summarized in the following. 
 
1.4.1 Comparison of linear and nonlinear stepwise μFE displacement 
predictions to digital volume correlation measurements of trabecular bone 
biopsies 
Local displacements from trabecular bone biopsies under stepwise compressive loading 
predicted with linear and nonlinear μFE models were compared to DVC measurements at a 
specific load step in the elastic regime as well as at the ultimate load. The μFE models showed 
good agreement with the DVC measurements, supporting the validation of ParOSol-NL for 
sub-macroscale displacement predictions (0.864mm x 0.864mm x 0.864mm). At the linear load 
step, both linear and nonlinear μFE models demonstrated comparable accuracy in predicting 
displacement fields. At the ultimate load step, nonlinear μFE simulations yielded a slightly 
more accurate correlation with DVC-measured displacements, but also introduced a substantial 
increase in computational costs in comparison to linear simulations.  
 

https://doi.org/10.1016/j.jmbbm.2024.106634
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1.4.2 Comparison of simplified bone-screw interface models in materially 
nonlinear μFE simulations 
Three different efficient and simplified bone-screw interface modelling approaches were 
compared to the general contact algorithm of the general purpose μFE solver Abaqus/Explicit. 
The simple nonlinear material model of ParOSol-NL was implemented in Abaqus/Explicit to 
allow a direct comparison of different interfaces. Multiple load cases (push-in/pull-out, shear) 
and variations of single screw-bone constructs (low/high density human radius bone, different 
screw insertion depths) were considered. Fully bonded interface models overestimated both 
whole-construct stiffness and maximum force, and resulted in unrealistic damage patterns. 
Thus, it was concluded that accurate physical contact modelling is essential for bone-screw μFE 
modelling if these quantities shall be predicted accurately. Simplified and efficient interface 
models, based on tensionally strained element deletion (TED) following those developed by 
Steiner et al. [120] resulted in improved accuracy in predicting mechanical responses of the 
bone-screw interface in comparison to the fully bonded interface. A modified version of the 
TED interface, TED-M, was introduced to account for changes in the contact area during the 
simulation. The original version of TED produced the lowest errors in predicting whole-
construct stiffness, while TED-M excelled at accurately estimating maximum force. Both 
models also offered improved prediction of damage distributions in comparison to the fully 
bonded interface, providing a more realistic assessment of damage patterns. Since both TED 
and TED-M enable straightforward implementation in the μFE solver ParOSol-NL, efficient 
and accurate bone-screw contact models for the specialized solver were found.   
 
1.4.3 Screw pull-out force predictions in porcine radii using efficient 
nonlinear µFE models including contact and pre-damage 
Screw pull-out force predictions of porcine biopsies were conducted using μFE models that 
included both a simplified bone-screw interface model of the previous study (see chapter 1.4.2) 
as well as a screw insertion related pre-damage model. Pre-damage was applied in a manner 
consistent with previous research, by defining a small damage zone around the screw where the 
damage value was set to a certain predefined value. The damage zone was parametrized by its 
radial thickness around the screw and the damage values assigned. A plausible set of pre-
damage parameters was found by iterative adaptation to match the experimental results. 
However, the solution was not unique, i.e. multiple parameter sets would provide a good fit 
with respect to the experimental data. Further refinement of the pre-damage model would 
necessitate additional experimental data on pre-damage distribution. 
 
Interestingly, good correlations of μFE and experimental screw pull-out force could be achieved 
even when assuming a fully bonded interface and without integrating pre-damage factors. 
However, the values obtained were not quantitatively accurate. Achieving quantitatively 
accurate results depends on the careful integration of various factors: contact modelling, 
material property selection, and pre-damage parameters. Each of these components plays a 
critical role in capturing the complex biomechanical interactions and failure modes accurately.  
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1.5 Scientific Contribution 
This thesis constitutes a significant advancement in the biomechanical modelling of bone and 
bone-screw systems at the microscale using μFE simulations. It introduces computationally 
efficient methods to address the challenges of bone-screw interface interactions and the effects 
of pre-damage caused by pre-drilling and screw insertion. These methods achieve a critical 
balance between predictive accuracy and computational cost, enabling high-fidelity 
biomechanical analyses with reduced resource demands. 

A central outcome is the enhancement of ParOSol-NL as a computationally efficient, materially 
nonlinear μFE simulation framework. The reliability of ParOSol-NL in accurately predicting 
displacement fields of bone at the mesoscale was demonstrated, establishing it as a robust tool 
for analyzing deformation patterns even close to the point of failure. Implementing a simplified 
screw-contact and pre-damage model extend the applicability of ParOSol-NL to use cases 
involving bones with screw-anchored implants. Comparison to experimental measurements 
highlights the accuracy of this approach while maintaining computational efficiency for this 
new field of application. In summary, ParOSol-NL has emerged as a particularly valuable tool 
for orthopedic research, offering promising applications in analyzing the mechanical behaviour 
of bone, conducting preclinical testing of implants, and optimizing implant designs. 

This research lays the groundwork for more feasible and accessible large-scale μFE 
simulations, such as those of entire bones or complete bone-screw systems. These 
advancements hold the potential to significantly enhance biomechanical analyses, advancing 
the understanding of bone mechanics, improving orthopedic treatment strategies, and driving 
innovation in medical device design for better clinical outcomes. 
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From the manuscript 

Comparison of linear and nonlinear stepwise μFE 
displacement predictions to digital volume 

correlation measurements of trabecular bone 
biopsies 

Pia Stefanek, Alexander Synek, Enrico Dall’Ara, Dieter H. Pahr 
 

Published in: J. Mech. Behav. Biomed. Mater. 138:105631, December 2022 
 
Abstract 
Digital volume correlation (DVC) enables to evaluate the ability of µFE models in predicting 
experimental results on the mesoscale. In this study predicted displacement fields of three 
different linear and materially nonlinear µFE simulation methods were compared to DVC 
measured displacement fields at specific load steps in the elastic regime (StepEl) and after yield 
(StepUlt). Five human trabecular bone biopsies from a previous study were compressed in 
several displacement steps until failure. At every compression step, µCT images (resolution: 
36µm) were recorded. A global DVC algorithm was applied to compute the displacement fields 
at all loading steps. The unloaded 3D images were then used to generate homogeneous, 
isotropic, linear and materially nonlinear µFE models. Three different µFE simulation methods 
were used: linear (L), nonlinear (NL), and nonlinear stepwise (NLS). Regarding L and NL, the 
boundary conditions were derived from the interpolated displacement fields at StepEl and 
StepUlt, while for the NLS method nonlinear changes of the boundary conditions of the 
experiments were captured using the DVC displacement field of every available load step until 
StepEl and StepUlt. The predicted displacement fields of all µFE simulation methods were in 
good agreement with the DVC measured displacement fields (individual specimens: R2>0.83 
at StepEl and R2>0.59 at StepUlt; pooled data: R2>0.97 at StepEl and R2>0.92 at StepUlt). At StepEl, 
all three simulation methods showed similar intercepts, slopes, and coefficients of 
determination while the nonlinear µFE models improved the prediction of the displacement 
fields slightly in all Cartesian directions at StepUlt (individual specimens: L: R2>0.59 and NL, 
NLS: R2>0.68; pooled data: L: R2>0.92 and NL, NLS: R2>0.94). Damaged/overstrained 
elements in L, NL, and NLS occurred at similar locations but the number of overstrained 
elements was overestimated when using the L simulation method. Considering the increased 
solving time of the nonlinear µFE models as well as the acceptable performance in displacement 
prediction of the linear µFE models, one can conclude that for similar use cases linear µFE 
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models represent the best compromise between computational effort and accuracy of the 
displacement field predictions. 
 
Keywords: Micro Finite Element Model, Materially Nonlinear Simulation, Digital Volume 
Correlation, Displacement, Trabecular Bone Biopsies 
 
2.1 Introduction 
Bone has a complex, hierarchical structure that spans multiple length scales [27]. Since all 
scales are contributing to the mechanical behaviour of bone, understanding bone failure still 
remains challenging. Especially research concerning the link between failure mechanisms of 
bone acting at different length scales is still incomplete [29]. 
 
Over the past 30 years, with the increase of computational power and the improvement of 
imaging techniques, computational modelling has been established as a popular tool to non-
invasively predict the mechanical properties and failure processes of bone [100,172–174]. Due 
to tremendous improvement in resolution, micro computed tomography (µCT) scanners are 
nowadays able to capture the bone architecture at the micro scale (~30µm resolution) and even 
below. For this reason, micro finite element (µFE) models represent a non-invasive addition to 
lab-experiments to investigate the mechanical behaviour of bone under loading at the 
microscale. In most micro finite element (µFE) studies so far, bone is modelled using a linear-
elastic material law [18,111,175,176]. But such analyses cannot be used to simulate 
deformations beyond the elastic limit, which occur for example when bone fractures. In order 
to predict failure behaviour, a nonlinear material law is required. 
 
Since bone exhibits several mechanisms such as plasticity, damage, viscosity, and creep in the 
post-yield regime, a wide range of different constitutive models have been developed 
[24,126,128]. Each of these models is formulated for a limited range of applications (e.g. 
trabecular/cortical bone, whole bone/single trabeculae, small/large strain, etc.) in which it is 
capable to replicate the real mechanical behaviour with acceptable accuracy [118]. However, a 
tradeoff between computational efficiency and the complexity of the implemented material 
model must be found to enable feasible runtimes of the µFE simulations. Most general-purpose 
FE solvers (e.g. Abaqus, Ansys) are able to account for different types of nonlinearity 
(geometric [177], material [129] and contact nonlinearity [145] but are only a viable option for 
model sizes up to a few millions of elements. For example, Ding et al. [178] needed 310 CPU 
hours to solve a nonlinear simulation of a trabecular bone model with 0.7million elements with 
Abaqus/Standard. Increasing model sizes further raise computational requirements and make 
the use of a supercomputer essential. Highly specialized software generated to solve large-scale 
problems (e.g. FEAP [23], Faim (Numerics88 Solutions Ltd, 
https://bonelab.github.io/n88/index.html), ParOSol [25], ParOSol-NL [24] have better parallel 
execution performance but are generally based on linear-elastic or very simple nonlinear 
material models. For example, ParOSol-NL is able to solve even very large nonlinear models 
with up to a few hundreds of million elements in approximately 5500 CPU hours [179]. 
 
Before their application, the µFE models have to be validated against accurate experimental 
measurements. For instance, apparent properties (e.g. stiffness, strength) can be compared 
directly to experimental measurements from standard monotonic mechanical testing 
[24,123,180,181]. Experimental validation of local predictions was recently made possible by 
using Digital Volume Correlation (DVC). Given µCT images of the unloaded and the loaded 
specimens, DVC is able to measure the 3D displacement field, which can be compared to the 
µFE model predicted displacement field. However, for image resolutions of about 30µm the 
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DVC displacement field is typically measured in a regular grid with a specific spacing of 
approximately 0.5 to 2mm [166]. Thus, “local” displacements typically define displacements 
of volumes of this size which is rather a meso than a micro quantity.  
 
In the last years, DVC was successfully applied multiple times to get more insight into strain 
distributions [182,183] and fracture patterns [184–186] of bone. Furthermore, several studies 
evaluated the agreement between FE predicted displacements and DVC measured 
displacements in the elastic and in the nonlinear regime. Zauel et al. [170] showed an excellent 
correlation in µFE displacements of cancellous uniaxially loaded bone biopsies only in axial 
loading direction while other studies reported excellent agreements with DVC data in all 
directions (R2>0.86) [107,119]. In a recent study, very good agreement has been found between 
µFE and DVC displacements for very complex vertebral bodies with induced focal lesions 
(R2>0.84) [169]. Oliviero et al. [124] were able to replicate the DVC displacement field in the 
nonlinear regime using linear µFE models (R2>0.76). Jackman et al. [184] compared predicted 
displacements of nonlinear quantitative computed tomography (QCT) based FE models to DVC 
measured displacements in the nonlinear regime. The correlation results were only moderate 
with coefficients of determination ranging between 0.06 and 0.77. Madi et al. [187] applied a 
nonlinear material model to a scaffold implant material made of 85:15 poly(D,L-lactide-co-
glycolide) and were able to replicate the displacement field up to 3% strain. To the author’s 
knowledge, only one recent study has yet compared displacements predicted by nonlinear µFE 
to DVC measured displacements in bone. Peña Fernández et al. [188] successfully replicated 
the DVC displacement field (R2>0.79) up to 3% nominal strain. Their µFE models were solved 
with the commercial solver Abaqus/Standard with the benefit of a complex material law 
including geometrical nonlinearity and the drawback of low computational efficiency.  
 
The aim of this study was to compare the displacement predictions of three different linear and 
materially nonlinear µFE simulation methods using the highly efficient µFE solver ParOSol-
NL in both pre- and post-yield loading stages. To examine the validity of the predicted 
displacement fields, their agreement to DVC displacements measured from compressive tests 
of human trabecular bone biopsies was evaluated.  
 
2.2 Materials and methods 
Figure 2.1 shows the outline of this study. In brief, human trabecular bone biopsies from a 
previous study were compressed in several displacement steps until failure. At every loading 
step, µCT images were recorded. A non-rigid registration was applied to the images to get the 
displacement fields at all loading steps until failure. The unloaded 3D images were then used 
to generate linear and materially nonlinear µFE models. Three different µFE simulation 
methods were compared: linear (L), nonlinear (NL), and nonlinear stepwise (NLS). Finally, the 
displacement fields predicted by the µFE models were compared to the DVC displacement 
fields at a specific load step in the elastic regime and at the ultimate load step. 
 
2.2.1 Experimental data 
The study is based on experimental data of five randomly selected human trabecular bone 
biopsies (see Fig. 2.2) which were used in a previous study [189]. The five selected cylindrical 
biopsies, which were extracted from the thoracic and lumbar spine, measured about 11mm in 
height and 8mm in diameter and had a mean relative bone volume fraction (BV/TV) of 14%. 
Their morphometrics were evaluated with the software Medtool (v4.5, Dr. Pahr Ingenieurs e.U., 
Pfaffstätten, Austria)(Table 2.1). In the original study, nominal uniaxial compression 
experiments were performed on each specimen using a custom loading device inside a 
SCANCO µCT 40 (SCANCO Medical AG, Brüttisellen, Schweiz) machine (see Fig. 2.1A). An 



  Chapter 2    Paper 1 
 

37 
 

axial load was applied manually using a screw and was measured with a loadcell (HBM Type 
C9B 2kN). While the samples’ bottom surface was fixed using epoxy glue to ensure fully 
clamped boundary conditions, the top surface of the samples was glued to a uniaxially moving 
part. Displacement-controlled loading was applied in a stepwise manner (nominal displacement 
step size: 0.03mm-0.072mm) until failure. The specimens were scanned in the preloaded 
configuration (1-4N) and at every loading step with a resolution of 36µm. In order to reduce 
relaxation-effects during the scan, the µCT image acquisition was started approximately 30min 
after load application. The scanning parameters were: voltage of 70000V, current of 114µA, 
projection number of 250 and exposure time of 200ms. Compared to the original study, only 
steps until a drop of force were considered (see Fig. 2.1A StepUlt). The number of used loading 
steps varied between five and seven. At StepUlt, the specimens reached loads between 21.6N 
and 90.48N and were compressed with apparent strain from 1.8% to 3% (see Fig. 2.3). In 
addition to the gray value images obtained from the µCT scanning also segmented images of 
every loading step were available from the previous study [189]. They were generated by 
applying single level thresholding on the smoothed (Gauss filter with 𝜎 = 0.8 and a kernel size 
of 3x3x3) grey-value images.  
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Fig. 2.1 Complete workflow of the study. A. Stepwise compression experiments from Hosseini et al. [189]. B. Application 
of BoneDVC algorithm on the gray value images. C. µFE analyses of the middle 80% of the preloaded segmented images. 
D. Displacement field comparison: µFE predicted vs. DVC measured. Only the middle 80% of the µFE models were 
evaluated corresponding to 64% of the original specimen height. E. Overview of the simulation methods: L, NL, and NLS. 
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Table 2.1 
Dimensions and morphometrics of the five bone specimens (A3-D6) used in this study. 

Specimen 
ID 

Diameter 
in mm 

Height in 
mm 

BV/TV in 
% 

Tb.N in 
1/mm 

Tb.Th* 
in μm 

Tb.Sp* 
in μm 

A3 8.1 11.556 13.6 0.85 181±45 1002±402 

D2 8.172 11.88 19.9 1.04 181±51 783±279 

D3 8.064 11.592 11.3 0.8 178±45 1067±414 

D5 8.064 11.808 8.6 0.68 181±48 1285±511 

D6 8.064 11.808 16.7 0.99 174±40 832±306 
 

*mean ± standard deviation 
 
Note: bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular 
separation (Tb.Sp) 

 

2.2.2 Digital volume correlation 
The DVC displacement field of every loading step was computed over the entire volume using 
a global DVC algorithm (BoneDVC, https://bonedvc.insigneo.org/dvc/) (see Fig. 2.1B and Fig. 
2.4). Details about the algorithm are reported in multiple publications [166,168,190]. Briefly, a 
cubic grid with a selected grid spacing (GS) (previously referred to as nodal spacing (NS) in 
Dall’Ara et al. [168] and other literature) is superimposed on the 3D gray value images. Then, 
elastic registration is applied to the preloaded and deformed images using the Sheffield Image 
Registration Toolkit (ShIRT). The software solves the registration equations at the nodes of the 
grid using trilinear interpolation between the nodes. In this study a GS of 24 voxels (0.864mm) 
was selected following previous studies that used the same global DVC approach on µCT 

A3 D2   

 
Fig. 2.2  Experimental force-displacement curves of all analysed specimens A3 
to D6. The given force values describe the forces after relaxation. 
 
 

  

 

D3 D5  

  

 

D6   

 

 
 

 
 

 

Fig. 2.3 3D representation of the 
five selected human trabecular 
bone biopsies A3 to D6. 

  

https://bonedvc.insigneo.org/dvc/
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images of bone with similar scanning resolutions, which reported displacement precision below 
2.5µm [191–193]. In order to exclude boundary effects of the experiment only the middle 80% 
of the DVC displacement field were considered for further processing. Boundary effects arise 
from artefacts of the experimental setup and could lead to high measurement errors in the 
regions close to the boundary. Since this effect diminished farther away from the boundary, a 
general practice is to exclude the edge parts from the experimental evaluation [119,124,169]. 
 

2.2.3 μFE modelling 
The segmented µCT images of each specimen were cropped (middle 80% of height) and µFE 
models were created from the images in the preloaded configuration (see Fig. 2.1C). All voxels 
were converted into 8-noded hexahedral elements and isotropic, homogeneous material 
properties were assigned. According to Stipsitz et al. [24] an elastic modulus of E0=10GPa was 
selected for the bone voxels but it was reduced to E0=2GPa in order to account for the stress 
relaxation during the stepwise loading experiment [189]. Note that the selected value for E0 is 
not relevant in this study, since only displacements and not forces are considered. The Poisson’s 
ratio of the bone voxels was selected to be ν=0.3 [24,123]. Depending on the simulation method, 
linear-elastic or damage-based nonlinear material properties were chosen. The used nonlinear 
material model consists of a linear-elastic region, a damaged region including hardening 
(hardening modulus Eh=0.05E0) and a failure region. The material degradation in the damaged 
region is modelled by reduction of the elastic modulus dependent on the observed damage. An 
isotropic, quadric damage onset surface models the transition from the linear-elastic to the 
nonlinear regime (shape parameter ζ0=0.3, critical damage Dc=0.9) [24,123]. Different damage 
onset strains in tension and compression (𝜀0+=0.0068, 𝜀0−=0.0089) are used to account for the 
tension-compression asymmetry of bone [24,123]. In order to capture also deformations of the 
void volume, background voxels were assigned linear-elastic material properties with an elastic 
modulus of E0=0.0002GPa and a Poisson’s ratio of ν=0.3. Displacement boundary conditions 
were applied to the top and bottom layers of the µFE models. The boundary conditions were 
obtained by trilinear interpolation of the DVC derived displacement fields at a prior defined 
elastic load step (DVC, Elu) and at StepUlt (DVC, Ultu) following the methodology of Chen et al. 
[107]. In order to define the elastic load step (StepEl) the 0.1% strain-offset method was used to 
determine the yield point of the experimental force-displacement curves. The last load step 
before yield was defined to be StepEl. For every specimen six different µFE models were created 
to predict the displacement fields at the elastic and at the ultimate load step for three different 
simulation methods (see next section). 

A3 D2  

  

 

 

 Fig. 2.4  3D representation of the DVC measured displacement field at the ultimate load step of two representative 
specimens (A3 and D2).  
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2.2.4 Simulation methods 
In this study three different simulation methods were compared (see Fig. 2.1E): linear (L), 
nonlinear (NL), and nonlinear-stepwise (NLS). For the L method, linear-elastic material 
properties were assigned to the bone voxels. The boundary conditions were derived from DVC 
displacement fields DVC, Elu and DVC, Ultu. The DVC displacement fields were obtained by single 
registration of the preloaded to the deformed images at StepEl/StepUlt without considering any 
in-between steps. The linear µFE analysis was solved in one increment. For the NL simulation 
method, damage-based nonlinear material properties were applied and the analysis was solved 
in several displacement increments of same size i.e. the DVC displacement at the boundary was 
taken (DVC, Elu, DVC, Ultu) and linearly scaled in-between (radial load). Regarding the NLS 
method, the boundary conditions were applied stepwise using the DVC displacement field of 
every available load step until StepEl and StepUlt. In order to obtain all of these displacement 
fields the preloaded images had to be registered to the deformed images of all in-between load 
steps until StepEl/StepUlt. Note that the NLS method therefore also captures nonlinear changes 
of the boundary conditions of the experiments (non-radial load), which might affect the damage 
evolution and hence influence the prediction of the displacements (see Fig. 2.1E). 
 
All µFE models were solved with the µFE solver ParOSol-NL [24] on a cluster using up to 80 
CPUs (CPU: AMD Ryzen 7 3700X). The number of elements ranged between 12.9million and 
13.6million (see Table 2.2). Furthermore, Table 2.2 lists the CPU hours for all simulation 
methods and specimens at StepUlt. 
 

Table 2.2 
Comparison of element number, degrees of freedom and computational costs in CPU 
hours for all simulation methods and all specimens at StepUlt. 

Specimen 
Element 

number in 
million 

 
DoF in 
million 

CPU hours at StepUlt 

L* NL* NLS** 

A3 13.0 39.5 0.9 60.7 177.4 

D2 13.6 41.3 0.7 51.4 193.7 

D3 12.9 39.2 1.0 98.5 230.8 

D5 13.2 40.0 1.0 91.1 213.4 

D6 13.2 40.0 1.1 68.5 182.9 
 

* Usage of 72CPUs 
** Usage of 80CPUs 

2.2.5 Comparison between μFE and DVC and damage analysis 
In order to reduce boundary condition effects, only the middle 80% in height of the µFE models 
(corresponding to 64% in height of the original specimens) were considered for comparing the 
predicted and measured displacement fields. The comparison was performed at StepEl (FE, Elu 
vs. DVC, Elu) and at StepUlt (FE, Ultu vs. DVC, Ultu) (see Fig. 2.1D).  
A so-called volume-averaging method, similar to the method used by Fu et al. [171], was 
applied to compare the displacement fields (see Fig. 2.5 and Appendix A) instead of a pointwise 
comparison [107,119]. The complete FE mesh was superimposed by the cubic grid used to 
perform the DVC registration. Hence, every node in the FE mesh was included in a cube of 
24x24x24 voxels in size and a DVC point in the middle. All nodes in a specific cube were then 
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assigned to the corresponding DVC point. The displacements of all nodes inside a specific cube 
were then averaged (including both bone and void volume) and compared to the corresponding 
displacement value of the DVC point. DVC points inside a surrounding cubic volume with a 
relative density lower than 5% were excluded from the displacement field comparison. 
Furthermore, DVC points located outside of the bone cylinder were not considered.  
 
Linear regressions were used to show the relationship between the measured DVC displacement 
fields and the µFE predicted displacement fields. For each specimen, for both relevant load 
steps (StepEl, StepUlt), for all three Cartesian components of the displacement field and for its 
magnitude, the following parameters were computed: Slope, intercept, coefficient of 
determination (R2), residuals, and root mean square error (RMSE). Furthermore, the spatial 
distribution of the residuals was evaluated qualitatively. For this purpose, all µFE mesh nodes 
of a specific cube surrounding a DVC point were assigned the corresponding residual value 
(FEu - DVCu) of that DVC point. Nodes in volumes where the DVC point was excluded were 
displayed in black colour.  
 
Damage was evaluated at StepUlt. Regarding the L simulation method an element was classified 
as damaged if the effective strain εeff exceeded a critical value of εc = 0.89% [123]. This value 
was selected since it corresponded to the yield strain in compression of the material model used 
for NL and NLS. 
For the simulation methods NL and NLS an element was defined as damaged if damage D>0. 
Damage evolution was compared for NL and NLS for the apparent strain value ε of the cropped 
specimen (80% of original height). 
 
All statistical evaluations were performed using Python 3.8 (https://www.python.org/) and the 
included library SciPy [194]. All figures showing the spatial distribution of residuals and the 
distribution of damage were created using Paraview (https://www.paraview.org/). 
 

 
Fig. 2.5 Graphical description of the volume averaging method. (a) shows the whole bone biopsy. A small part in the 
middle with a thickness of 24 voxels is cut out and shown in (b). In (b) the sliced bone overlaid by the DVC points 
marked in red is displayed. (c) focusses on a single cube with 24 voxels surrounding one DVC point. The DVC point in 
the middle of the cube is again marked in red, while µFE mesh nodes corresponding to bone material are displayed in 
green and µFE mesh nodes corresponding to bone marrow material are visualized in white. To compare the DVC 
displacement with the µFE predicted displacement the nodal displacements of all nodes within the corresponding 
24x24x24 voxel cube were averaged.  

2.3 Results 
2.3.1 Correlation of displacement fields 
The evaluation of displacement fields of all specimens at StepEl (FE, Elu vs. DVC, Elu) showed that 
µFE model displacements are highly correlated to DVC displacements (R2 between 0.97 and 1 

https://www.python.org/
https://www.paraview.org/
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for pooled data and R2>0.83 for individual specimens) (see Fig. 2.6 (a), Table 2.3 (a) and 
supplementary material). Intercepts were close to zero and slopes close to one for all methods 
and all Cartesian coordinates and magnitude (Intercept: -0.2µm to 3.2µm; Slope: 0.99 to 1.04 
for pooled data). Regarding intercept, slope, and R2, all three simulation methods showed 
similar results.   
 
Similar to the results at StepEl the evaluation of displacement fields of all specimens at StepUlt 
(FE, Ultu vs. DVC, Ultu) showed a high correlation between µFE model displacements and DVC 
displacements (see Fig. 2.6 (b), Table 2.3 (b) and supplementary material). For pooled data, 
intercepts were close to zero (4.4µm to 12µm) and slopes ranged between 0.97 and 1.17. In all 
spatial directions and for the magnitude, slopes and R2 values were closer to one for the 
simulation methods NL and NLS (R2>0.94 for pooled data and R2>0.68 for individual 
specimens) compared to L (R2>0.92 for pooled data and R2>0.59 for individual specimens). 
Furthermore, the intercept values for NL and NLS were closer to zero and slopes closer to one 
in comparison to L. No difference was observed between NL and NLS. 
 

Table 2.3 
Minimum coefficient of determination (R2) of all three spatial directions of individual specimens. 

Min(Rx2, Ry2, Rz2) A3 D2 D3 D5 D6 

(a
) S

te
p E

l L 0.92 0.96 0.89 0.83 0.88 

NL 0.92 0.96 0.89 0.85 0.88 

NLS 0.92 0.96 0.89 0.85 0.88 

(b
) S

te
p U

lt L 0.66 0.93 0.89 0.87 0.59 

NL 0.73 0.95 0.92 0.88 0.68 

NLS 0.73 0.95 0.92 0.88 0.68 
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Fig. 2.6 Linear regression analyses of pooled data between the µFE predicted displacements and the DVC measured 
displacements for all 5 specimens at the elastic (a) and at the ultimate (b) load step.  

 

 
2.3.2 Residuals 
At StepEl, the residuals showed similar interquartile range (IQR), medians and residual ranges 
for all methods (see Fig. 2.7 (a)). When all directions are considered, the residuals ranged from 
-22µm to 20µm. 
 
At StepUlt, IQR and residual ranges were slightly higher for the simulation method L in all 
directions and for the magnitude (e.g. z-direction: Residual range of L: -59µm to 46µm; 
Residual range of NL and NLS: -52µm to 41µm) (see Fig. 2.7 (b)). Furthermore, the median 
was shifted further from zero for L (e.g. z-direction: Median of L: 6µm; Median of NL and 
NLS: 4µm). Considering all directions, the residuals ranged between -80µm and 58µm.  
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 Fig. 2.7 Boxplot of residuals of pooled data of all specimens at the elastic (a) and at the ultimate (b) load step. 

2.3.3 Spatial distribution of residuals 
At StepEl, the spatial distribution of the residuals of all three simulation methods was similar 
and showed concentrated regions of high absolute residuals in all directions and for most 
specimens (see Fig. 2.8 (a)). At StepUlt, the concentrated regions of high absolute errors were 
similar to those recognized at the elastic load step (see Fig. 2.8 (b)). The simulation method L 
showed higher maximum absolute residuals than NL and NLS in y- and z-direction (e. g. L in 
z-direction max. between 46% to 104% of average compression vs. NL in z-direction max. 
between 29% to 91% of average compression (see Appendix B)). Fig. 2.8 shows the described 
observations for one representative sample and one displacement field direction. The results 
were similar for most samples and spatial directions; only the locations of high absolute 
residuals were different (see supplementary material). 
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Fig. 2.8 Spatial distribution of residuals at the elastic (a) and at the ultimate (b) load step of one representative specimen (A3) in z-
direction. All bone material nodes of a specific volume were assigned to the corresponding residual value of the specific DVC point. 
Nodes in volumes where the DVC point was excluded were displayed in black colour. Two colour maps were used: One shows the 
residuals in mm and the other one scales the residual value with the average compression of the specimen (see Appendix B).  

2.3.4 RMSE 
At StepEl, RMSE values for all specimens ranged between 2µm and 10µm (mean of all spatial 
directions: 4.5µm) for all simulation methods and in all directions and for the magnitude (see 
Fig. 2.9 StepEl). The RMSE difference between the L and NL simulation method was lower 
than 0.6µm for all specimens and in all directions and for the magnitude. NL and NLS 
performed quite similar. 
 
For all three simulation methods the RMSE increased at StepUlt, but the increase was more 
pronounced for the L method (see Fig. 2.9 StepUlt). RMSE of L ranged between 11µm and 18µm 
in z-direction, while the reached RMSE values for the NL and NLS methods were between 8µm 
and 14µm. In x- and y-direction the difference between the L and NL method at the ultimate 
load step was less pronounced than in z-direction and for the magnitude. 
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 Specimens  

 

  

  
Fig. 2.9  RMSE of all specimens (A3, D2, D3, D5, D6) at the elastic and at the ultimate load step in all directions and for the 
magnitude. 

2.3.5 Damage 
At StepUlt, the number of damaged elements was highest for the L simulation method (average 
of 11.3% of total element number). The simulation methods NL and NLS reached a far lower 
number of damaged elements (average of 7.4% for NL and 8.4% for NLS of total element 
number) (see Fig. 2.10 (a) and 2.11). Especially specimens D2 and D5 (>12.3% and 11.6% of 
total element number) had a high number of damaged elements. Figure 2.11 (b) shows the 
difference in damage between the three simulations methods. The percentage of elements that 
were classified as damaged in the one simulation method and classified as not damaged in the 
other one, ranged between 1.4% and 9.8% of the total element number when L was compared 
to NL or NLS. Between NL and NLS the difference in damage classification was rather low 
(0.3% to 1.6% of total element number).  
 
The damage distribution was different for all specimens (see Fig. 2.11). The L simulation 
method overestimated the number of damaged elements, but the location of the damaged 
elements qualitatively agreed in all methods. The damaged region predicted by the NL method 
was mostly a subset of the damaged region predicted by the L method. The number of damaged 
elements predicted exclusively be the NL method were rather low. NL and NLS methods 
showed almost no differences in the damage distribution (see supplementary material).  
 

StepEl StepUlt 

 

StepUlt 

 

StepUlt 

 
StepUlt 

 

StepEl 

StepEl 

StepEl 
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The damage evolution (see Fig. 2.12 for specimen A3 and supplementary material for further 
specimens) shows that the number of damaged elements increases in a similar manner for NL 
and NLS for all specimens. The number of damaged elements is rather low until a strain value 
of approximately 0.4% is reached. Then the number of damaged elements increases in a linear 
manner. 
 

(a) 

 
(b) 

 
Fig. 2.10 (a) Number of damaged elements for all simulation methods scaled by the 
element number of bone material of each specimen at StepUlt. Regarding L, elements 
were classified as damaged when εeff > 0.89%. For the simulation methods NL and 
NLS, elements were classified as damaged when D > 0. (b) Difference in damage 
scaled by the element number of bone material of each specimen at StepUlt. This plot 
visualizes the number of elements which are classified as damaged in one simulation 
method and classified as not damaged in the other one. 
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Fig. 2.11 Comparison of damage distribution between the simulation methods L and NL for all specimens at StepUlt. 
Regarding L, elements were classified as damaged when εeff > 0.89%. For the simulation methods NL and NLS, elements 
were classified as damaged when D > 0. Elements that were marked as damaged in both simulation methods are 
visualized in yellow, while those that only one simulation method classified as damaged were marked in blue (only L) and 
red (only NL). 

 

L damaged only 

NL damaged only 

Both damaged 



  Chapter 2    Paper 1 
 

50 
 

A3 

 
Fig. 2.12 Damage evolution with apparent strain ε in z-direction (for specimen 
cropped to middle 80% of height) for on representative specimen (A3) for 
simulation methods NL and NLS. For the simulation methods NL and NLS, 
elements were classified as damaged when D > 0. The y-axis shows the 
number of damaged elements scaled by the total element number of bone 
material. 

2.4 Discussion 
The aim of this study was to compare the displacement predictions of three µFE simulation 
methods (L, NL, and NLS) with DVC measurements at the elastic and in the ultimate load step. 
Therefore, µFE models of human trabecular bone biopsies simulating stepwise compression 
were analyzed, displacement predictions were averaged and compared to DVC displacement 
measurements of the same volume.  
 
The results showed that all three simulation methods were able to replicate the averaged 
displacement field at the elastic as well as at the ultimate load step (see Fig. 2.6 and 
supplementary material). At the elastic load step, the µFE models were able to predict more 
than 83% of the displacement variations in all three spatial directions and for the magnitude, 
for all simulation methods and for all five individual specimens. At the ultimate load step, the 
coefficients of determination decreased but the predictions were still highly correlated to the 
DVC measurements.   
 
While all three simulation methods showed similar performance regarding all evaluated 
parameters at the elastic load step, slight differences became evident when displacement results 
were evaluated at the ultimate load step. Whereas the simulation method L was able to predict 
more than 59% of displacement variations in all three Cartesian directions and for the 
magnitude, the displacements predicted by the simulation methods NL and NLS correlated 
better (R2>0.68) with the DVC measured displacements (see Table 2.3 and supplementary 
material). In all directions and for all specimens the coefficient of determination was lower for 
the L simulation method. Furthermore, higher IQR, residual ranges, and RMSE values were 
observed in all directions (see Fig. 2.7 and Fig. 2.9). Similar results were reported by Peña 
Fernández et al. [188] who showed that nonlinear µFE models could improve the displacement 
predictions in yielded bone regions. The improved performance in displacement prediction of 
the NL method at the ultimate load step is compromised by the long solving time in comparison 
to the L method (maximum CPU hours at StepUlt: L: 1.1h vs. NL: 98.5h) (see Table 2.2). Since 
the L method was still capable to predict the displacement field with acceptable accuracy and 
precision until the ultimate load, its application seems to be sufficient when evaluating 
displacement fields and qualitatively evaluating damage locations of similar bone biopsies 
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under compression. However, note that the damaged regions were found to be at similar 
locations but generally overestimated in L when compared to the NL or NLS methods (see Fig. 
2.10 and 2.11). Thus, caution is warranted if damage is interpreted using linear µFE models at 
ultimate load. These results are in line with those of Stipsitz et al. [123], where damage of linear 
and nonlinear µFE model simulations was observed at similar locations in the distal radius and 
the number of damaged elements was generally overestimated using the linear µFE models. 
Neither at the elastic load step nor at the ultimate load step, a difference in performance between 
NL and NLS could be observed. Furthermore, the number and location of damaged elements at 
the ultimate load step were in good agreement (see Fig. 2.10 and 2.11). In contrast, the 
simulation time for NLS (maximum CPU hours at StepUlt: 230.8h) was much higher than for 
NL (see Table 2.2). One can assume that in the presented use case (small trabecular biopsy), 
the nonlinearity of the boundary conditions does not play a crucial role for the accuracy and 
precision of the local displacement field. This was also confirmed by the damage evolution, 
which showed only minor differences between NL and NLS (see Fig. 2.12). However, 
differences between NL and NLS could be more pronounced for different case studies (e.g. 
larger displacements, larger bone samples, different material models, and different output 
parameters) which would justify the higher computational effort. 
 
The µFE displacement predictions of all simulation methods were better at the elastic load step. 
For all specimens and in all directions higher R2 values (e.g. pooled data of NL method in z-
direction: StepEl: R2=0.98; StepUlt: R2=0.97), lower IQR, residual ranges (e.g. pooled data of NL 
method in z-direction: StepEl: -17µm to 17µm; StepUlt: -51µm to 41µm), and RMSE values were 
observed. Damage analysis at the ultimate load step showed that the damage distribution of 
most specimens (A3, D2, D6) corresponded to regions of high residual errors (see Fig. 2.11 and 
supplementary material), indicating difficulties to predict the behaviour of yielding bone. 
Future studies could try to improve the µFE performance especially at the ultimate load step 
possibly by implementing a more complex material model to the simple damage-based material 
model that was used in this study. This suggestion is supported by Peña Fernández et al. [188], 
who used a linear elastic-viscoplastic damage model including geometrical nonlinearity and 
only reported minor deterioration in displacement predictions when comparing results at 1% 
and 3% compression. In consequence, further enhancements in material modelling are 
important to increase the accuracy of displacement predictions. A further approach to improve 
the displacement predictions of µFE models seems to be the implementation of tissue 
heterogeneity. However, since studies from Peña Fernández et al. [188] and Fu et al. [171] only 
reported negligible difference between homogeneous and heterogeneous models one can 
conclude that the microstructure dominates the mechanical behaviour of bone tissue. 
 
The study results were generally in line with values reported in literature. At the elastic load 
step, the results of all evaluated parameters (regression, residuals, and RMSE) were similar to 
the findings reported by Costa et al. [119] and Chen et al. [107], who conducted similar studies 
with comparable GS (500µm to 1872µm). They reported agreements of more than 86% between 
the displacement fields measured with DVC and predicted by linear µFE. In this study, only 
one specimen (D5) showed a slightly lower coefficient of determination (L: R2=0.83) in x-
direction. The RMSE value range of this study (2µm to 10µm) was similar to that reported by 
Costa et al. [119] (1µm to 12µm) and Chen et al. [107] (1µm to 11µm). The results at the elastic 
load step were further compared to the results of Peña Fernández et al. [188] at 1% compression. 
The nonlinear models showed a weaker correlation (R2>0.53) but also smaller RMSE values 
below 1.7µm than this study reported (NL: R2>0.85; RMSE<9.5µm). The low RMSE value can 
be attributed to the high resolution of 5µm used in the study of Peña Fernández et al. [188]. The 
results at the ultimate load step were compared to Oliviero et al. [124], who used a linear-elastic 
material model to predict the displacement fields in the elastic and in the nonlinear regime. 
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Coefficients of determination were higher (R2>0.77) than in this study (R2>0.59), but RMSE 
values were in line with the findings of our study (e.g. Oliviero et al. [124] in z-direction: 6µm 
to 24µm; this study L method in z-direction: 11µm to 18µm). Reasons for the weaker 
correlation could be that no outliers were removed, whereas in all above mentioned studies 
Cook’s distance was applied for this purpose. In addition, the usage of the volume averaging 
method leads to an increased number of comparison points, including points in regions with 
low BV/TV and higher residuals (see Appendix A).  
 
The study is restricted by several limitations. To begin with, the sample size was rather small, 
but still comparable to similar studies [107,119]. Next, the study only compared averaged 
displacements of 1mm3 seized cubic volumes and does not capture local displacements. 
Furthermore, the displacement precision of the DVC measurements and therefore also the GS 
size were derived just from literature [191,192,195] and could not be evaluated with a repeated-
scan test [168,196] in this study. Although a direct comparison with literature would require 
the same bone structure and scanning parameters, previous studies evaluating precision showed 
that displacement errors are rather small in the size of a fraction of a voxel [166,168,190]. Thus, 
it can be assumed that they did not affect the main outcomes of this study. Nevertheless, the 
strain precision is much more sensitive to the image quality (signal to noise ratio) due to the 
fact that the differentiation process amplifies the errors associated to the displacements [166]. 
Higher resolution images, using Synchrotron tomography [197] would lead to a DVC accuracy 
high enough to compare DVC and µFE strains. However, in situ mechanical testing combined 
with Synchrotron tomography has limitations in assessing the local mechanical behaviour of 
bone tissue due to radiation induced damage [198–200]. In consequence, our study is limited to 
the sole evaluation of displacements and not strains. Furthermore, radiation-induced material 
changes or damage due to the multiple scanning of the specimens could have an influence on 
our study results. Nevertheless, effects of radiation were found only when higher imaging flux, 
typical of synchrotron µCT imaging were used [198]. Although future studies need to quantify 
the effect of this limitation, we can assume that it did not severely compromise our study results 
since the displacement comparison between the µFE model and the experiments showed high 
correlations. Another limitation is the number of displacement steps and the variable 
displacement step size, which could influence the performance of the NLS method. 
Nevertheless, the applied displacement step size appeared sufficient to capture the nonlinearity 
in the apparent load-displacement curves. Lastly, the application of the highly parallel µFE 
solver ParOSol comes with the limitation that geometrical nonlinearity and further aspects of 
the constitutive behaviour of bone material (plasticity, viscosity, poroelasticity) were not 
considered. However, the usage of ParOSol together with its implemented damage-based 
material model can be justified since the solver works highly efficient and therefore enables to 
simulate large bone structures.   
 
2.5 Conclusion 
In this study, predicted displacements of linear and nonlinear µFE models were compared to 
DVC measured displacements at a specific load step in the elastic regime and at the ultimate 
load step. The predicted displacement fields of all µFE simulation methods were in good 
agreement with the DVC measured displacement fields. Although the nonlinear µFE models 
improved the prediction of the displacement fields slightly at the ultimate load step in all spatial 
directions, the increased simulation times cannot be ignored. Furthermore, damage was 
evaluated and occurred at similar locations for all linear and nonlinear µFE models. Hence, this 
study confirms that for similar use cases (displacement and qualitative damage evaluation of 
compressed trabecular bone biopsies) linear µFE models are sufficient in order to predict 
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displacement fields in the linear and nonlinear regime as well as to reveal damage locations 
with acceptable accuracy and very low computational effort. 
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Appendix A 
The majority of studies that compared μFE results to DVC measurements used a pointwise 
validation [107,119,124,169]. The pointwise method only includes DVC points inside the μFE 
mesh. Since the DVC nodes are by construction located at the center of the μFE elements, the 
DVC displacement values were compared to the interpolated displacement values of the μFE 
nodes. Fig. 2.13 compares the two different evaluation methods (volume-averaging vs. 
pointwise) at StepEl and StepUlt for one representative specimen in z-direction for the simulation 
method L. The results for intercept, slope, and R2 are quite similar for both methods. A 
difference between the evaluation methods is the number of comparison points (Volume-
averaging method: 476 points; Pointwise method: 83 points).   
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Fig. 2. 13 Comparison of evaluation methods at the elastic (a) and at the ultimate (b) load step for one representative 
specimen (A3) in z-direction using the linear simulation method. 

 

 
 
 
 
 
 
 
 
 
 
 

Furthermore, Fig. 2.14 shows another difference between the evaluation methods. Most 
comparison points of the pointwise method refer to cubic volumes with a BV/TV of more than 
10%. Regarding the volume-averaging method, there are many comparison points that refer to 
cubic volumes with a low BV/TV between 5 and 10%. Moreover, Fig. 2.14 shows that the 
residual values are higher in volumes of low BV/TV. The results were similar for all specimens, 
all simulation methods and in all directions. 
 
Appendix B 
Depending on the evaluated load step (StepEl, StepUlt), the average compression of the individual 
specimens was computed in the following way:  
 ∆ �̅� 𝐷𝑉𝐶 = 𝑢𝑇𝑜𝑝 𝐷𝑉𝐶 - 𝑢𝐵𝑜𝑡𝑡𝑜𝑚 𝐷𝑉𝐶  (2.1) 

 
Fig. 2. 14 Comparison points of the evaluation methods regarding BV/TV of the 
surrounding cubic volume and residual height at StepUlt. One representative specimen 
(A3) was selected and evaluated with the linear simulation method in z-direction. 
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 𝑢𝑇𝑜𝑝 𝐷𝑉𝐶
 describes the average DVC displacement at the top layer of the comparison region 

(64% of original specimen height). Equally, 𝑢𝐵𝑜𝑡𝑡𝑜𝑚 𝐷𝑉𝐶  describes the average DVC 
displacement at the bottom layer of the comparison region. 
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Abstract 
Micro finite-element (µFE) simulations serve as a crucial research tool to assist laboratory 
experiments in the biomechanical assessment of screw anchorage in bone. However, accurately 
modelling the interface between bone and screw threads at the microscale poses a significant 
challenge. Currently, the gold-standard approach involves employing computationally 
intensive physical contact models to simulate this interface. This study compared nonlinear µFE 
predictions of deformations, whole-construct stiffness, maximum force and damage patterns of 
three different computationally efficient simplified interface approaches to the general contact 
interface in Abaqus Explicit, which was defined as gold-standard and reference model. The 
µCT images (resolution: 32.8µm) of two human radii with varying bone volume fractions were 
utilized and a screw was virtually inserted up to 50% and 100% of the volar-dorsal cortex 
distance. Materially nonlinear µFE models were generated and loaded in tension, compression 
and shear. In a first step, the common simplification of using a fully-bonded interface was 
compared to the general contact interface, revealing overestimations of whole-construct 
stiffness (19% on average) and maximum force (26% on average), along with inaccurate 
damage pattern replications. To enhance predictions, two additional simplified interface models 
were compared: tensionally strained element deletion (TED) and a novel modification of TED 
(TED-M). TED deletes interface elements strained in tension based on a linear-elastic 
simulation before the actual simulation. TED-M extends the remaining contact interface of TED 
by incorporating neighboring elements to the contact area. Both TED and TED-M reduced the 
errors in whole-construct stiffness and maximum force and improved the replication of the 
damage distributions in comparison to the fully-bonded approach. TED was better in predicting 
whole-construct stiffness (average error of 1%), while TED-M showed lowest errors in 
maximum force (1% on average). In conclusion, both TED and TED-M offer computationally 
efficient alternatives to physical contact modelling, although the fully-bonded interface may 
deliver sufficiently accurate predictions for many applications. 
 
Keywords: Micro finite element modelling, Materially-nonlinear explicit simulation, Bone-
screw system, Bone-screw interface modelling 
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3.1 Introduction 
For more than five decades finite element (FE) simulations have served as invaluable tools in 
bone implant development and evaluation, complementing laboratory experiments [13]. Unlike 
laboratory experiments, numerical studies are cost- and time-effective and do not rely on tissue 
samples which can be difficult to obtain. Micro-finite element (µFE) simulations, based on 
high-resolution computed tomography (CT) scans, currently represent the gold standard, 
particularly for the challenging task of modelling screw anchorage in trabecular bone. They are 
able to resolve the bone-screw interface on the microscale and hence capture the screw thread 
geometry as well as peri-implant bone region in detail, which was reported to be essential for 
an accurate prediction of the mechanical behavior of the bone-screw system [19–21].  
 
Bone-screw µFE simulations have to overcome two major challenges: bone-screw interface 
modelling and simulation of pre-damage due to screw insertion. Usually, linear-elastic µFE 
simulation studies assumed a fully-bonded interface and neglected pre-damage in the peri-
implant bone region. They reported overestimations in whole-construct stiffness and strains up 
to one order of magnitude [117,120,137]. In order to account for the reduction in mechanical 
competence of the peri-implant bone region [138–140], Steiner et al. [120] and Torcasio et al. 
[137] implemented a peri-implant damage zone with reduced stiffness in their linear-elastic 
µFE simulations and were able to reduce the errors in the predicted strain and whole-construct 
stiffness to about 10% on average. Since the bone-screw failure process as well as the contact 
mechanics at the bone-screw interface are highly nonlinear, recent studies have turned to 
nonlinear µFE simulations. Most of them included frictional contact at the bone-screw interface 
but ignored peri-implant bone damage [121,122]. Nevertheless, they were able to improve the 
predictions in comparison to the linear-elastic simulations and were able to quantitatively 
replicate the experimentally measured screw perforation force [122] and screw pull-out force 
[121]. 
 
Nonlinear µFE models are typically solved with general-purpose FE solvers (e.g. Abaqus, 
Dassault Systems, Vélizy-Villacoublay, France) which can handle different types of 
nonlinearities (geometric, material and contact) but are computationally demanding. Ovesy et 
al. [121] reported solving times of 2h on 16 cores for relatively small models, consisting of a 
single screw with an average model size of 350,000 elements. In consequence, many nonlinear 
studies needed to reduce the model sizes by either cropping the bone specimens [121] or 
decreasing the image resolution [122] in order to achieve manageable solving times. The 
capability to simulate a complete bone-screw implant system, including multiple screws, can 
only be achieved using specialized solvers designed to solve large-scale problems (e.g. FEAP, 
[201], Faim (Numerics88 Solutions Ltd, https://bonelab.github.io/n88/index.html), ParOSol 
[25], ParOSol-NL [24]). These solvers exhibit improved parallel execution performance and 
can handle nonlinear models with several hundreds of million elements [179]. However, the 
application of these efficient solvers always comes with the drawback of reduced model 
complexity, as they typically only incorporate linear-elastic or simple nonlinear material laws 
and lack bone-screw contact implementations. To address these limitations, some researchers 
employed simplified interface model approaches that try to avoid the occurrence of artificial 
tensile strain on the interface elements. For example, Ovesy et al. [121] and Panagiotopoulou 
et al. [122], removed the bone elements directly below the screw threads specifically for 
simulated screw pull-out loading cases. Steiner et al. [120] developed a method independent of 
the loading case: they conducted an initial linear simulation that was used to calculate the 
volumetric strain of the interface elements. Then they removed all interface elements 
undergoing positive volumetric strain and performed the simulation with the updated interface 
again.  
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Despite these efforts, the necessity of including contact at the bone-screw interface in µFE 
models is still in question. The available literature on this subject matter is limited as the effects 
of interface modelling and peri-implant bone damage due to screw insertion overlap and its 
influences cannot be discriminated in lab experiments. One of the few studies on this topic was 
conducted by Steiner et al. [120].They only found minimal whole-construct stiffness 
differences when comparing the fully-bonded interface to a simplified interface model approach 
using linear-elastic µFE models. To the authors’ knowledge no study yet examined the 
relevance of interface modelling in the nonlinear regime.  
 
The first aim of this study was to investigate the influence of physical contact modelling 
regarding deformations, whole-construct stiffness, maximum force and damage distribution 
using nonlinear µFE in Abaqus Explicit. In a second step, the performance of the already 
existing simplified interface model of Steiner et al. [120] was evaluated and compared to a 
newly developed interface model that was found based on a qualitative and quantitative analysis 
of the contact area. In order to concentrate on the effects of interface modelling in an isolated 
manner, damage due to screw-insertion was excluded. As this cannot be done experimentally, 
this study was conducted solely numerical using general contact in Abaqus Explicit as gold-
standard and reference model. The study design enables direct transfer of the simplified 
interface models to highly efficient µFE solvers such as ParOSol-NL.  
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Fig. 3.1 Outline of the study. This figure shows the interface models with lower resolution in order to schematically illustrate 
the differences at the interface. 

3.2 Material and methods 
Fig. 3.1 shows the outline of this study. All details can be found below. Shortly, two human 
radius bone specimens with low and high bone densities were cropped and a screw was virtually 
inserted. Voxel-based nonlinear µFE models were generated, and three loading cases (tension, 
compression, and shear) were simulated using Abaqus Explicit. Deformations, whole-construct 
stiffness, maximum force, and damage distribution within the bone were evaluated. Three 
different simplified interface models (fully-bonded and “element deletion” models) were 
compared to a reference model (general contact).  
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3.2.1 Image processing 
Micro-computed tomography (µCT) images of human distal radius sections from previous 
studies [155,202] were used (see Fig. 3.1). The original scans had a resolution of 16.4µm and 
were taken by Hosseini et al. [202] using a µCT 100 scanner (SCANCO Medical AG, 
Brüttisellen, Switzerland). Stipsitz et al. [123] segmented and resampled the images to a 
resolution of 32.8µm. This resolution was chosen to ensure applicability of the material model 
of Stipsitz et al. [24] (see section 2.2) which was developed for resolutions around 35µm. From 
15 specimens in total, two specimens that differed in their bone volume fraction were selected: 
a low-density (LD) and high-density specimen (HD). The images were uniformly aligned with 
respect to the volar surface and a cuboid with a square cross section of 7.5mm side length was 
cropped from the center of the bones (see Table 3.1). The cuboid size was selected according 
to Ovesy et al. [121,145] with the intention to reduce simulation time while fully capturing the 
bone damage around the implant. The µCT image of a locking screw (Medartis A-5750; 
titanium alloy TiAl6V4), that was part of a distal radius fracture fixation system (A-5750; 
Medartis, Basel, Switzerland), was taken and resampled to 32.8µm from Synek et al. [155] 
(Skyscan 1173; Bruker, Bilerica, USA). The screw (outer diameter: 2.5mm) was cut to different 
lengths and was virtually inserted into the center of the segmented bone images in two 
configurations: either the screw tip was aligned flushed with the outer surface of the dorsal 
cortex (hereon denoted as 100% insertion depth), or the screw was inserted to 50% of the volar-
dorsal cortex distance (hereon denoted as 50% insertion depth). Hence, four different bone-
screw specimens were created: a high-density specimen with 50% (HD_50) and 100% 
(HD_100) screw insertion depth and a low-density specimen with 50% (LD_50) and 100% 
(LD_100) screw insertion depth (see Fig. 3.1). All image processing steps were performed with 
Medtool 4.5 (Dr. Pahr Ingenieurs e.U., Pfaffstätten, Austria). 
 

Table 3.1 
Dimensions and CT-based morphometrics of the two prepared bone specimens. 

 

Specimen 
Side 

length  
in mm 

Height in 
mm 

Trabecular bone Cortical 
bone 

BV/TV in 
% 

Tb.Tha in 
µm 

Tb.Spa in 
µm C.Tha in µm 

LD 7.5 14.5 12.5 194±56 939±315 494±135 
HD 7.5 20.3 21.4 228±66 811±247 690±234 

 
Note: bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separaton (Tb.Sp), volar and dorsal cortical 
thickness (C.Th), low-density specimen (LD), high-density specimen (HD).  
a Mean ± standard deviation. 

 
3.2.2 Mesh, material and boundary conditions 
Based on the segmented bone images with the implanted screw, µFE models were generated. 
All voxels were directly converted into eight-noded hexahedral elements (C3D8R) with side 
length of 32.8µm. Isotropic and homogeneous material properties were assigned. Bone was 
modelled using a damage-based material model recently introduced for efficient large-scale 
nonlinear µFE analysis [24]. The material model was implemented as a user material (VUMAT) 
in Abaqus (Abaqus 2022 Dassault Systems, Vélizy-Villacoublay, France) and included a linear-
elastic region (𝐸0 = 10GPa and a Poisson’s ratio of ν = 0.3), a damaged region with hardening 
(hardening modulus 𝐸𝐻 = 0.05𝐸0) and a failure region. In the damaged region, material 
degradation was expressed via local stiffness reduction based on the observed damage. The 
yield criterion distinguished between tension and compression behavior (damage onset strain 
in tension 𝜀0+ = 0.0068; damage onset strain in compression 𝜀0− = 0.0089) and was modelled 
using an isotropic, quadric damage onset surface (shape parameter ζ0 = 0.3) [24,123]. Element 
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deletion was enabled and elements that exceeded the critical damage 𝐷𝑐 (𝐷𝑐 = 0.915) [24,123] 
were deleted. The titanium alloy screw was modelled using linear-elastic material properties 
with an elastic modulus of 𝐸 = 115GPa and a Poisson’s ratio of ν = 0.3 [155].  
 
The bone was fixed at the outer surfaces, except for the volar and dorsal surface (see Fig. 3.1). 
At the screw top, a displacement of 0.2mm was applied in loading direction, while the 
movement in other directions was constrained. Three load cases were simulated. In tension and 
compression, the displacement was applied in volar/dorsal direction. For the shear load case, 
the screw was displaced in distal direction.  
 
The models were generated using Medtool 4.5 and had an element number between five and 
ten million.  
 
3.2.3 Interface modelling 
Four different interface models were applied: general contact (GC), considered as the gold-
standard and reference interface model; fully-bonded (FB), assuming bonding at the bone-screw 
interface; tensionally-strained element deletion (TED), as proposed by Steiner et al. [120] and 
a novel modification of TED (TED-M), derived from the findings of the contact area 
investigation (see section 3.1). For the general contact interface, hard contact with a friction 
coefficient of 0.7 [121,145] was selected and self-contact was excluded for the screw material. 
With the element deletion technique activated, all contact surfaces were updated in every 
iteration in order to account for potential interface changes. TED is an interface model that 
represents contact in a simplified way [120] (see Appendix A for a detailed explanation). Before 
the actual simulation, a single preliminary simulation (“pre-simulation”) with the fully-bonded 
interface is conducted and evaluated in the linear-elastic region. Interface elements 
experiencing positive volumetric strain are identified as being strained in tension and are 
subsequently removed, under the assumption that no tensile stresses can be transferred at the 
contact interface. Conversely, interface elements undergoing negative volumetric strain are 
considered to be strained in compression and are retained in the interface, under the assumption 
that they contribute to the stress transfer between bone and screw. After the removal of 
disconnected elements resulting from the deletion process, the final nonlinear simulation with 
the updated interface is performed. TED-M (see Appendix A for details) is a novel approach 
similar to TED, derived from the insights gained in section 3.1, which revealed a notable change 
in the contact area throughout the simulation process. TED may not fully capture these contact 
interface dynamics, as it relies on a single “pre-simulation”. TED-M slightly increases the 
contact area of TED, in an effort to better capture the interface elements that get into contact 
throughout the entire simulation up to maximum force. It uses the contact interface detected 
with TED as starting point, but reincludes those interface elements with positive volumetric 
strain into the contact interface that share at least one node with the interface elements with 
negative volumetric strain. This approach derives from observations that contact area changes 
mainly involve neighboring interface elements (see section 3.1). 
 
3.2.4 Simulation  
All models were solved with Abaqus Explicit (Abaqus 2022 Dassault Systems) using 29 cores 
on a dual AMD EPYX 7452 server with 512GB RAM. 
 
In order to minimize computational costs, a simulation time of t = 0.0005s was chosen, with 
results assessed at intervals of 1e-05s. Furthermore, a smooth loading amplitude was applied 
and bulk viscosity was assigned using the default parameters of Abaqus Explicit. The 
simulation ensured quasi-static behavior by confirming that kinetic energy did not exceed 5% 
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of internal energy, except for the initial phase [203]. Consequently, this initial phase was 
excluded from the results, with evaluations of all simulations (and “pre-simulations”) starting 
once quasi-static conditions were established. 
 
Additional simulations were performed to ensure that variations of voxel size (32.8µm and 
72µm) and specimen size (side length of 7.5mm and 9mm) did not influence the main study 
outcomes (see Appendix B).  
 
3.2.5 Reference model evaluation and contact area analysis 
The contact area was examined using the contact output variable CPRESS in the simulations 
with the GC interface. CPRESS is evaluated at the element nodes and denotes the magnitude 
of the net contact normal force per unit area. An element was classified as interface element if 
it contained at least one interface node. A node was called an interface node, if its coordinates 
were included both in the bone and in the screw element set. An interface node was defined as 
contact node, when CPRESS > 0. Contact nodes were categorized as permanent, if they 
contributed to the contact area in all simulation steps, while temporary contact nodes 
contributed to the contact area in at least one simulation step. The number of interface nodes, 
contributing to contact, was analyzed at each simulation step to estimate the size of the contact 
area. Furthermore, changes in the contact area over the simulation time were tracked by 
measuring the cumulative number of interface nodes contributing to the contact area in at least 
one simulation step. The contact area analysis only considered the parts of the simulation where 
quasi-static conditions (kinetic energy ≤ 5% of internal energy) were ensured up to the point of 
reaching maximum force. 
 
3.2.6 Comparison of interfaces and contact area analysis 
Simulations with the interfaces FB, TED and TED-M were compared to the reference interface 
model GC by analyzing deformations, whole-construct stiffness, maximum force and damage 
distribution within the bone. Deformation plots were generated at maximum force and analysed 
in a qualitative manner. Whole-construct stiffness was measured by calculating the tangent 
slope of two prior defined displacement steps that lay in the quasi-static and elastic regime. 
Maximum force was defined as the peak force, followed by a force decrease of at least 10N. 
Linear regressions were performed for whole-construct stiffness and maximum force for each 
loading case individually. The regression line was constrained to pass through the origin to 
measure the average error of each specific interface method compared to the GC interface. 
Additionally, relative errors of all simulations in comparison to the simulation with the GC 
interface were computed. Damage distributions were evaluated, visualized and compared at 
maximum force. An element was considered as damaged if damage D > 0.  
 
All statistical evaluations were performed with Python 3.8 (https://www.python.org/) and the 
included library SciPy [194]. All figures showing the distribution of damage were created using 
Paraview (https://www.paraview.org/). 
 
3.3 Results 
3.3.1 Reference model evaluation and contact area analysis 
Qualitative analysis of the deformed specimens at maximum force revealed that the general 
contact interface caused an opening of the bone-screw interface at the dorsal and volar cortex 
in the tension load case (see Fig. 3.2(a) GC). In the compression load case, bone-screw interface 
openings were harder to detect but could be observed especially at the volar cortex (see Fig. 
3.2(b) GC). Similarly, in the shear case, an interface opening was detected at the volar cortex 
on the proximal side of the screw (see Fig. 3.2(c) GC).  

https://www.paraview.org/
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At the starting point of the quasi-static regime, contact area analysis showed that between 38% 
and 48% of interface nodes were recognized as contact nodes for all specimens and loading 
cases (see Fig. 3.3 and supplementary material). As the simulation progressed, the number of 
contact nodes increased between 3% and 12% so that on average 52% of interface nodes 
contributed to the contact area. Then, the contact area stayed rather constant until a slight drop 
between 1% and 6% was found just before reaching maximum force.  
 
The cumulative number of identified contact nodes ranged between 42% and 50% for all 
specimens and loading cases at the beginning of the quasi-static regime (see Fig. 3.3 and 
supplementary material). Subsequently, it exhibited a rapid increase followed by a slower 
ascent until it reached final values ranging between 52% and 72% for all specimens.  
 
The number of permanent contact nodes ranged between 42% and 69% for all specimens and 
loading cases (see Table 3.2). The lowest constancy of contact area was observed in the shear 
case, the highest in the compression load case. The change in contact area over the simulation 
time is also shown in Fig. 3.4. Qualitative analysis revealed that the temporary contact nodes 
were mostly located around the permanent contact nodes. 
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(c) Shear 
  

 

 

 

 

 

 

 
  

 
 

   

Fig. 3. 2 Deformations at maximum force (scaling factor: 5) of one representative specimen (HD_100) with the 
general contact interface (GC), the fully-bonded interface (FB), the tensionally-strained element deletion 
interface (TED) and the modified tensionally-strained element deletion interface (TED-M) in tension (a), 
compression (b) and shear (c). The first row displays the entire specimen, with a red square highlighting regions 
that are magnified in the second row. 

Note: general contact (GC), fully-bonded (FB), tensionally-strained element deletion (TED), modified 
tensionally-strained element deletion (TED-M) 
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Fig. 3.3 Contact area analysis for one representative specimen (LD_50) in compression. 
Interface nodes belonged to elements that were included both in the bone and in the screw 
element set. Contact nodes were defined as interface nodes, when CPRESS > 0. The 
number of contact nodes in each simulation step is shown over the whole simulation 
process until maximum force is reached. Furthermore, cumulated contact nodes are 
illustrated from the beginning of the simulation up to maximum force. They were 
measured by summing up all identified contact nodes and hence report changes in the 
contact area. 

Note: low-density specimen (LD), high-density specimen (HD), 50% screw insertion depth 
(50), 100% screw insertion depth (100). 

 
 

Table 3.2 
Permanent contact nodes in % of all contact nodes that contributed to the contact area in at 
least one simulation step from quasi-static conditions to maximum force. Contact nodes were 
stated as permanent, if they were contact nodes in each reported simulation step from quasi-
static conditions to maximum force. 

 

  LD_50 LD_100 HD_50 HD_100 
Permanent 
contact  
nodes in % of all 
contact nodes 

Tension 
64 55 62 64 

Compression 
69 66 66 66 

Shear 
43 42 55 54 
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(a)  

 

(b) 

 

(c) 

 

 
 

 

Fig. 3.4 Contact nodes for one representative specimen (LD_50) in compression at the start of the quasi-static simulation 
(a), in the middle of the simulation (b) and at maximum force (c). Interface nodes were defined as contact nodes, if 
CPRESS > 0. Contact nodes, that contributed to the contact area in the current simulation step, were marked red while 
those, that were contact nodes in any other simulation step from quasi-static regime to maximum force, were marked 
white. The arrows point at regions which did not contribute to the contact area in all presented simulation steps, indicating 
a change in the contact area over the simulation time.  

3.3.2 Deformation 
The differences in the deformation between the interface models were particularly evident in 
the dorsal and volar cortex (see Fig. 3.2 (a-c)). At maximum force in tension, all simplified 
contact models (FB, TED, TED-M) stayed completely (see Fig. 3.2(a) FB) or mainly (Fig. 
3.2(a) TED, TED-M) bonded at the dorsal cortex. At the volar cortex, the FB interface stayed 
completely bonded, while TED and TED-M mostly replicated the interface opening of the 
general contact interface. In the compression and shear load case, interface openings were 
hardly detectable at the dorsal cortex. At the volar cortex, the FB interface stayed bonded while 
TED and TED-M again replicated the GC interface (see Fig. 3.2(b) and (c) FB, TED, TED-M).   
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3.3.3 Whole-construct stiffness 

 
Fig. 3.5 Error of whole-construct stiffness results of FB, TED and TED-M interface 
simulations in comparison to reference simulation with interface GC in %. 

Note: low-density specimen (LD), high-density specimen (HD), 50% screw insertion depth 
(50), 100% screw insertion depth (100) 
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(a) Tension (b) Compression 
 

 

 

 
(c) Shear   
 

 

  

Fig. 3.6 Comparison of whole-construct stiffness results of FB, TED and TED-M interface simulations to stiffness of GC 
interface for all specimens in tension (a), compression (b) and shear (c). 

Note: low-density specimen (LD), high-density specimen (HD), 50% screw insertion depth (50), 100% screw insertion depth 
(100) 

 
The FB interface simulations of all specimens overestimated the whole-construct stiffness 
between 10% and 27% with an average error of 19% in comparison to the GC interface (see 
Fig. 3.5). The overestimation was lowest in compression (12%) and highest in tension (20%) 
(see Fig. 3.6).  
 
TED achieved the most accurate replication of whole-construct stiffness results among all 
interface models, with an average underestimation error of only 1%. The error ranged between 
-5% to 2% over all specimens, meaning that for some the whole-construct stiffness was 
underestimated, while it was overestimated for others (see Fig. 3.5). Underestimation was 
highest in the shear case (3%), reduced in compression (1%) and turned into an overestimation 
in the tension case (1%) (see Fig. 3.6). 
 
TED-M interface simulations demonstrated enhanced whole-construct stiffness replication 
compared to the FB interface, with an average error of 4% across all specimens and loading 
cases (see Fig. 3.5). The overestimation in tension (5%) and compression (4%) was higher than 
in shear (1%) (see Fig. 3.6). 
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3.3.4 Maximum force 

 
Fig. 3.7 Error of maximum force results of FB, TED and TED-M interface simulations in 
comparison to reference simulation with interface GC in %.  

Note: low-density specimen (LD), high-density specimen (HD), 50% screw insertion depth (50), 
100% screw insertion depth (100). 
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(a) Tension (b) Compression 
 

 

 

 
(c) Shear   
 

 

  

Fig. 3.8 Comparison of maximum force results of FB, TED and TED-M interface simulations to maximum force of GC 
interface for all specimens in tension (a), compression (b) and shear (c). 

Note: low-density specimen (LD), high-density specimen (HD), 50% screw insertion depth (50), 100% screw insertion depth 
(100) 

 
Simulations with the FB interface led to an overestimation of maximum force for all specimens 
and all loading cases with an average error of 26% in comparison to the GC interface. Especially 
in the tension and shear loading cases high errors between 21% and 54% were found. With an 
average error of 13%, errors were much lower in the compression case (see Fig. 3.7). 
 
TED was able to reduce the maximum force error in comparison the FB interface, but turned 
the maximum force overestimation into an underestimation. All specimens and all loading 
cases, except for the low-density specimen with 100% screw insertion depth (LD_100) in 
tension, showed an underestimation of maximum force ranging between 5% and 15% with the 
TED interface (see Fig. 3.7). 
 
TED-M improved the maximum force replication in comparison to TED and FB and reduced 
the average error of all specimens and loading cases to 1%. Except for specimen LD_100 in 
tension, the maximum force error was by 6% at most. For specimen LD_100 a large 
overestimation of 21% was observed (see Fig. 3.7). Separation of the loading cases showed that 
the shear loading case leads to an underestimation of 4% on average, while tension and 
compression overestimated the maximum force for up to 3% on average (see Fig. 3.8). 
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3.3.5 Damage distribution 
Qualitative analysis of damage showed that the simulation with the FB interface resulted in a 
different damage pattern in comparison to the simulation with GC for all loading cases and for 
all specimens (see Fig. 3.9 and 3.10). The amount and the magnitude of damage were higher 
with the FB interface. Especially the shear load case showed that FB was not able to 
qualitatively replicate the damage of the GC interface simulation (see Fig. 3.9c and 3.10c). The 
volar cortex was damaged on both sides of the screw, which was not the case with the GC 
interface. 
 
TED and TED-M both led to damage patterns that resembled GC better than FB. TED-M 
showed slightly more damaged regions and also the magnitude of damage was higher. 
Therefore, TED-M replicated the damage pattern of GC slightly better than TED. The improved 
damage replication in comparison to FB can be observed in the shear case where the damage 
was reduced to the distal side of the volar cortex similar to the result of GC. However, the 
damage distribution still showed differences to GC, particularly in the tension simulation of the 
high-density specimen with 100% screw insertion depth (HD_100) (see Fig. 3.10a). Damage at 
the dorsal cortex was observed in both TED and TED-M, despite its absence in GC. 
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 GC FB TED TED-M  
(a) Tension  
 

    
 

 

  
 

(b) Compression 
 

    
(c) Shear 
 

  
 

  

Fig. 3. 9 Damage distribution at maximum force for the high-density specimen with screw insertion depth of 50% for all 
loading cases tension (a), compression (b), and shear (c).  
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 GC FB TED TED-M  
(a) Tension  
 

    
 

 
 

 

 
 

(b) Compression 
 

    
(c) Shear 
 

    

Fig. 3. 10 Damage distribution at maximum force for the high-density specimen with screw insertion depth of 100% for 
all loading cases tension (a), compression (b) and shear (c). 
 
Note: general contact (GC), fully-bonded (FB), tensionally-strained element deletion (TED), modified tensionally-
strained element deletion (TED-M) 

 
3.4 Discussion 
This numerical study aimed to compare different simplified interface approaches regarding 
deformations, whole-construct stiffness, maximum force, and damage using materially-
nonlinear µFE simulations of bone-screw systems. General contact in Abaqus Explicit was 
defined as gold-standard and reference model. The first objective was to evaluate the impact of 
physical contact modeling, achieved through a comparison between the fully-bonded approach 
and the general contact model. All specimens and loading cases showed whole-construct 
stiffness and maximum force overestimations, as well as differing damage patterns. However, 
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the average error of 19% for whole-construct stiffness and 26% for maximum force of the fully-
bonded approach may be acceptable for many applications. The computationally efficient 
“element deletion” models TED, as presented by Steiner et al. [120], and the novel TED-M 
model, both enhanced the predictions of the fully-bonded approach and hence enabled efficient 
and even more accurate predictions of deformations, whole-construct stiffness, maximum force 
and especially damage patterns. 
 
While the maximum force results of the general contact interface model were generally in line 
with the µFE results reported in literature [121,122], the whole-construct stiffness results 
reported by Ovesy et al. [145] were lower than the values of this study (max. 4kN/mm vs. max. 
21kN/mm). This mismatch can be explained by several factors, e.g. Ovesy et al. [145] used 
trabecular bone specimens and inserted a dental implant, while in this study locking screws 
were implanted into specimens consisting of trabecular bone with cortex.   
 
The whole-construct stiffness predicted with the fully-bonded approach matched the results of 
Steiner et al. [120] and Wirth et al. [117]. When comparing the whole-construct stiffness results 
of the fully-bonded model to the general contact model, whole-construct stiffness 
overestimations up to 27% were reported in this study, while Steiner et al. [120]  and Wirth et 
al. [117] measured whole-construct stiffness overestimations of more than 300% on average 
when comparing their results to experiments. This mismatch likely results from the peri-implant 
bone damage occurring from the implantation process, which is included in experiments, but 
not modelled in this study. Peri-implant bone damage due to screw insertion has already been 
proven to cause whole-construct stiffness reduction [138–140], hence explaining the large 
overestimations reported by Steiner et al. [120] and Wirth et al. [117]. These results indicate 
that physical contact modelling only plays a minor role for predicting whole-construct stiffness 
in comparison to the reduced mechanical competence caused by peri-implant bone damage. 
 
The relevance of physical contact modelling differs between the load cases. The lowest average 
errors in whole-construct stiffness and especially in maximum force were measured in the 
compression load case, where all interface elements at the screw tip retain the screw movement 
regardless of whether they are bonded or in contact. In contrast, in the fully-bonded tension and 
shear simulations, the interface elements are bonded to the screw and hence oppose the tension 
and shear movement, which is not the case in the general contact simulation. In conclusion, 
physical contact modelling showed importance, as we saw overestimation errors and different 
damage pattern patterns for all specimens and loading cases. Nonetheless, the overestimations 
of whole-construct stiffness and maximum force may be acceptable for many applications. For 
instance, the fully-bonded approach may be appropriate for predicting whole-construct stiffness 
in the presence of peri-implant bone-damage, considering that peri-implant bone damage likely 
exerts a larger influence on the results than interface modelling. However, fully-bonded models 
should be avoided when the aim is to investigate damage patterns.  
 
Although both TED and TED-M enhanced the predictive accuracy of deformations, whole-
construct stiffness, maximum force and damage patterns in comparison to the fully-bonded 
approach, they exhibited performance differences. The interface model TED discriminates 
between interface elements strained in tension and compression only in a single simulation step 
in the elastic regime and hence fails to account for the occurring contact area changes. This 
seems to be sufficient to replicate whole-construct stiffness (average error of 1%) but not 
maximum force (average error of 8%). Consequently, TED was enhanced to TED-M by 
expanding the contact area to account for the contact area changes. Since contact analysis 
revealed that non-permanent contact nodes predominantly surrounded permanent ones, the 
contact area increase was achieved by including neighboring interface elements of contact 
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elements to the contact area. TED-M was able to improve the force predictions to an error of 
1% on average, but led to slight whole-construct stiffness overestimations (average error of 
4%). Nevertheless, neither TED not TED-M could perfectly replicate the general contact model, 
as evidenced in the damage pattern of the tension load case of the specimens with 100% screw 
insertion depth. Both TED and TED-M did not delete all elements below the screw tip inducing 
an incorrect damage prediction. This incorrect damage replication later resulted in an 
overestimation of maximum force, particularly notable in the low-density sample (LD_100), 
where the sparse trabecular bone only minimally contributes to the maximum force result. 
These results indicate that in order to replicate the general contact model more accurately, an 
interface model that includes a change in the contact elements throughout the simulation is 
required. Nonetheless, increasing the complexity of the interface model by including repeated 
contact element deletion comes with the drawback of reduced model efficiency.   
 
The study faces several limitations. Firstly, the study was conducted solely numerical and 
specified general contact as gold standard. Although the general contact algorithm still remains 
to be validated to clarify its capability of physical contact replication, its application is common 
practice in the majority of research studies that implement bone-screw contact [145,203]. The 
virtual screw insertion process did not consider peri-implant bone damage which might have a 
large effect on the interface and was found to have high influence at least on the whole-construct 
stiffness results [120]. Nonetheless, we decided to isolate the contact effects in order to avoid 
the overlapping of interface modelling and peri-implant damage influences in the results. 
Furthermore, all µFE models were based on hexahedral voxel elements, which might not be 
able to perfectly display the bone and screw geometry and hence the contact surfaces. Despite 
this limitation being inherent to all µFE simulations, the used voxel size was comparable or 
even smaller than in many similar studies [121,122,145]. The analyses were restricted to small 
bone regions in order to achieve feasible solving times for the nonlinear simulations. It was 
ensured that the cropped regions were large enough the capture the effects of the compared 
interface models [121,145]. Next, the study results are based on the used nonlinear material 
model, the selected material parameters and resolution proposed by Stipsitz et al. [24] and a 
commonly used friction coefficient taken from Ovesy et al. [145]. Although the main study 
outcomes could be replicated for lower resolutions (see Appendix B), the influence of other 
parameters still needs to be investigated. Lastly, the study was limited to a single screw, two 
bone specimens with varying densities and two insertion depths.   
 
3.5 Conclusion 
This study compared three different simplified interface modelling approaches in materially 
nonlinear µFE simulations of bone-screw systems regarding deformations, whole-construct 
stiffness, maximum force and damage distribution using general contact as gold-standard. 
Overestimations in whole-construct stiffness and maximum force, along with differing damage 
patterns between the fully-bonded and general contact interfaces, showed the relevance of 
physical contact modeling. However, the errors of the fully-bonded approach may be acceptable 
for many applications, particularly if the damage pattern is of minor relevance. The simplified 
interface models TED and TED-M effectively reduced errors and improved damage pattern 
predictions, with TED outperforming in whole-construct stiffness prediction and TED-M 
exhibiting the lowest errors in maximum force. These interface models offer computational 
efficiency and straightforward implementation in µFE solvers like ParOSol-NL. Consequently, 
this research study serves as an initial step towards enabling simulations of complete bone-
screw implant systems with enhanced accuracy and efficiency beyond the current capabilities. 
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Appendix A 
Both, TED and TED-M are “element deletion” interface models that represent contact in a 
simplified way.  
 
In a first step, TED performs a single preliminary simulation (“pre-simulation”) with the fully-
bonded interface (see Fig. 3.11(a) Step 1). Volumetric strain is evaluated in the linear-elastic 
regime and interface elements are discriminated based on their volumetric strain value (see Fig. 
3.11(a) Step 2). Interface elements, that experience positive volumetric strain, are identified as 
being strained in tension, while interface elements, undergoing negative volumetric strain, are 
considered to be strained in compression. Under the assumption that only elements strained in 
compression contribute to the stress transfer between bone and screw, interface elements, 
strained in tension, are deleted (see Fig. 3.11(a) Step 3). Only interface elements strained in 
compression remain in the updated interface. After the removal of newly appeared disconnected 
elements resulting from the deletion process, the simulation is performed again with the updated 
interface.     
 
The first two steps of TED-M are equivalent to TED. A single “pre-simulation” is conducted 
and the interface elements are discriminated based on their volumetric strain value (see Fig. 
3.11(b) Step 1 and 2). Conversely to TED, not all elements that were identified to be strained 
in tension get deleted, but TED-M reincludes some of them back into the contact interface. In 
step 3, TED-M finds interface elements identified to be strained into tension that have a shared 
node with interface elements considered to be strained in compression. Those so-called 
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neighbor-elements of the interface elements strained in compression are reincluded into the 
updated interface. Only interface elements, that are strained in tension and have no shared node 
with interface elements strained in compression, get deleted (see Fig. 3.11(b) Step 4). Similar 
to TED, newly appeared disconnected elements, resulting from the deletion process, get deleted 
and the simulation with the updated interface is performed again.  
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a)  TED 
 

 
b) TED-M 
 

 
Fig. 3.11 Workflow of TED (a) and TED-M (b). This figure shows the interface models with lower resolution in order to 
schematically illustrate the differences at the interface. TED deletes interface elements based on their volumetric strain 
value (volumetric strain > 0 → deletion) in a linear-elastic preliminary simulation and performs the actual simulation with 
the updated interface. TED-M increases the contact area of TED by reincluding neighboring interface elements of the 
updated interface.  
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Appendix B 
The influence of the voxel size (32.8µm and 72µm) on the main outcomes of this study was 
investigated in tension for the low-density and high-density specimen with 50% screw insertion 
depth (LD_50 and HD_50) (see Fig. 3.12). TED was best in replicating whole-construct 
stiffness (see Fig. 3.12 (a)), while TED-M showed lowest errors in maximum force (see Fig. 
3.12 (b)) for all resolutions and sample sizes. The influence of the specimen size (7.5mm and 
9mm) was explored in tension on the high-density specimen with 50% screw insertion depth 
(HD_50) (see Fig. 3.13). Again, TED exhibited lowest errors in whole-construct stiffness 
replication (see Fig. 3.13(a)), while TED-M mostly enhanced the maximum force predictions 
(see Fig. 3.13(b)). These results suggest that both voxel and specimen size variations only had 
negligible influence the main study outcomes. 
 
(a)         Whole-construct stiffness (b)             Maximum force 
 

 

 

 
Fig. 3. 12  Absolute error in whole-construct stiffness (a) and maximum force (b) when comparing the simplified interface 
models fully-bonded (FB), tensionally strained element deletion (TED) and modified TED (TED-M) to the general contact model 
(GC) for two different resolutions (32.8um and 72um) for the high-density specimen with 50% screw insertion depth (HD_50) 
and the low-density specimen with 50% screw insertion depth (LD_50) in tension. 

 

(a)         Whole-construct stiffness (b)               Maximum force 
 

 

 

 
Fig. 3.13 Absolute error in whole-construct stiffness (a) and maximum force (b) when comparing the simplified interface models 
fully-bonded (FB), tensionally strained element deletion (TED) and modified TED (TED-M) to the general contact model (GC) 
for two different sample sizes (7.5mm and 9mm) for the high-density specimen with 50% screw insertion depth (HD_50) in 
tension. 

Appendix C. Supplementary data 
Supplementary data to this article can be found online at 
https://doi.org/10.1016/j.jmbbm.2024.106634. 
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Abstract 
Nonlinear micro finite element (µFE) models have become the gold-standard for accurate 
numerical modeling of bone-screw systems. However, the detailed representation of bone 
microstructure, along with the inclusion of nonlinear material and contact, and pre-damage due 
to pre-drilling and screw-insertion, constitute significant computational demands and restrict 
model sizes. The goal of this study was to evaluate the agreement of screw pull-out predictions 
of computationally efficient, materially nonlinear µFE models with experimental 
measurements, taking both contact interface and pre-damage into account in a simplified way. 
Screw pull-out force was experimentally measured in ten porcine radius biopsies, and 
specimen-specific, voxel-based µFE models were created mimicking the experimental setup. 
µFE models with three levels of modeling details were compared: Fully bonded interface 
without pre-damage (FB), simplified contact interface without pre-damage (TED-M), and 
simplified contact interface with pre-damage (TED-M+P). In the TED-M+P models, the 
influence of pre-damage parameters (damage zone radial thickness and amount of damage) was 
assessed and optimal parameters were identified. The results revealed that pre-damage 
parameters highly impact the pull-out force predictions, and that the optimal parameters are 
ambiguous and dependent on the chosen bone material properties. Although all µFE models 
demonstrated high correlations with experimental data (R² > 0.85), they differed in their 1:1 
correspondence. The FB and TED-M models overestimated maximum force predictions (mean 
absolute percentage error (MAPE) > 52%), while the TED-M+P model with optimized pre-
damage parameters improved the predictions (MAPE < 17%). In conclusion, screw pull-out 
forces predicted with computationally efficient, materially nonlinear µFE models showed 
strong correlations with experimental measurements. To achieve quantitatively accurate results, 
precise coordination of contact modeling, pre-damage representation, and material properties 
is essential. 
 
Keywords: micro finite element modeling, bone-screw systems, bone-screw contact, 
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predamage due to screw insertion, efficient materially-nonlinear simulations 
 
4.1 Introduction 
While experimental testing with cadaver bones remains the gold standard in bone-implant 
research, finite element (FE) analysis offers significant advantages. Experiments are time-
consuming, costly, and require scarce human or animal tissue. In contrast, once an FE model is 
created and validated, parameters can be easily modified, allowing for efficient testing of 
various implant configurations on the same subject. This makes FE analysis ideal for systematic 
optimization studies. FE models provide a deeper understanding of local stress and strain, 
helping to identify potential weaknesses and failure points [12,13,63]. Micro-FE (µFE) models, 
based on high-resolution CT images, are currently considered the benchmark for bone-screw 
modeling. They capture the local bone microstructure, including trabecular networks and screw 
geometry, which is crucial for accurately predicting mechanical behavior and anchorage quality 
[19–21]. Nonetheless, the detailed representation of microstructure increases µFE model sizes 
and computational demands. Moreover, recent studies highlight the need to incorporate 
nonlinearities in bone-screw simulations, as both bone failure and bone-screw contact 
interactions are nonlinear processes [121,122,146]. However, including these nonlinearities, 
increases model complexity and computational requirements even more. 
 
One possibility to deal with high computational demands in µFE are specialized solvers 
developed to solve large-scale problems with several millions of elements (e.g. FEAP [201], 
Faim (Numerics88 Solutions Ltd, https://bonelab.github.io/n88/index.html), ParOSol [25], 
ParOSol-NL [24]). These solvers are highly efficient for solving large-scale problems, but in 
turn often only support linear-elastic or simplified nonlinear material laws. As they generally 
lack the ability to include nonlinear contact mechanics, some studies have proposed simplified 
contact models to overcome these limitations, while maintaining computational efficiency 
[120,204]. While the relevance of interface modeling in bone-screw µFE simulations has 
already been demonstrated [204], modeling of peri-implant bone damage due to pre-drilling 
and screw insertion may be even more critical for accurate predictions [120,146]. Various 
studies have reported that the screw insertion causes damage in the surrounding bone [138–
141]. Steiner et al. [139] localized and quantified the screw insertion related pre-damage by 
comparing µCT scans of human femoral bone before and after screw insertion. They found that 
the damaged region depends on the screw thread depth and can extend up to a radial distance 
of 0.9mm, with the most significant damage occurring within a distance of 0.3mm.  
 
However, in general it remains unclear how to define the radial thickness of the damage zone 
in a µFE simulation and how to model the compromised mechanical properties inside the 
damage zone. Consequently, literature research reveals a variety of pre-damage modeling 
approaches. Ovesy et al. [145] and Zhou et al. [146] conducted nonlinear simulations 
incorporating the screw insertion process, but this method is computationally intensive and 
feasible only for small models. To maintain computational efficiency, other studies used linear 
simulations and defined damage zones around the screw with a uniformly reduced elastic 
modulus [115,120,137]. Damage zones were selected with radial thicknesses between 0.16mm 
[137] and 0.9mm [120] around the screws. Inside these zones, the bone elastic modulus was 
reduced between 17% [115] and 99.5% [137]. As all studies used bones from different species 
(human, rat) and anatomical locations (spine, femur, hind limb), they selected different elastic 
moduli for undamaged bone. Hence, this wide range of damage estimation could also result 
from variations in the selection of material properties. To the author’s knowledge, no study has 
yet tried to implement this simplified pre-damage modeling approach in computationally 
efficient µFE simulations with nonlinear material. 
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The objective of this study was to assess the correlation between screw pull-out predictions 
from computationally efficient, materially nonlinear µFE models and experimental 
measurements, while considering both contact interface and pre-damage. In a first step, the 
parameters of a simplified pre-damage model were identified dependent on the elastic modulus 
selection. In a second step, the predicted maximum force of different computationally efficient 
µFE models was compared to experiments and damage distributions were evaluated. 
 

4.2 Material and methods 
Figure 1 provides an overview of this study. The experimental part was conducted by Silva-
Henao et al. [78]. Screws were inserted into porcine distal radius biopsies after pre-drilling, and 
experiments were conducted to assess maximum pull-out force. µCT scans of the pre-drilled 
samples were cropped and used to generate nonlinear µFE models that replicated the 
experiments. After determining optimal pre-damage parameters for different elastic moduli, 
three different interface and pre-damage modeling combinations were implemented, and the 
predicted maximum force was compared to experimental measurements. Additionally, damage 
distributions at maximum force were evaluated.  
 
4.2.1 Experimental data 
The study is based on the experimental data of Silva-Henao et al. [78], where ten porcine distal 
radii were selected for pull-out experiments (see Fig. 1). A conventional drill-press with a 
modified core driller was used to extract a cylindrical sample (20mm in diameter and height) 
with a centered 2mm pilot hole from each bone. Following the implantation procedure 
described in Ovesy et al. [121], a universal mechanical testing machine (ZwickiLine Z2.5, 
ZwickRoell GmbH & Co. KG, Ulm, Germany) was used to implant a locking screw (outer 
diameter: 2.5mm; titanium alloy TiAl6V4; A-5750, Medartis Inc., Basel, Switzerland). The 
screw was inserted mono-cortically to a depth of 15mm. Tensile force-controlled loading 
(loading rate: 50N/s) was applied using a custom-designed testing apparatus. The samples were 
laterally fixed in a sample holder, while cyclic loading was applied to the screw via a clamp 
positioned in 2mm distance to the bone. The loading started with a pre-conditioning phase 
including 20 loading cycles between 0N and 15N which was followed by a pause of 1s. 
Afterwards, a cyclic overloading phase followed, where the load amplitude was increased by 
1N per cycle while maintaining a minimum load of 15N. The loading was applied until the 
screw was entirely pulled out of the bone samples.  
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Fig. 4.1 Study outline. Predicted pull-out force of nonlinear µFE simulations of bone-screw models was compared to 
experiments. The simulations included both a simplified contact interface and a simplified pre-damage model. The 
photographs from the experimental procedure were taken from Silva-Henao et al. [78]. 

 
4.2.2 Image processing 
µCT images with a resolution of 15µm were acquired from the unloaded, pre-drilled bone 
samples using a SkyScan1173 µCT scanner (Bruker, Bilerica, USA) (90kV source voltage, 
60μA source current, 1250ms exposure time, 1mm aluminum filter). In order to reduce image 
noise, the μCT images were smoothed using a Gaussian filter (σ=1; kernel size=2x2x2). The 
samples were aligned along the pre-drilled screw axis, and cuboids with a square cross section 
(7.5mm side length) were cropped from the bone center (see Fig. 1). The cuboid size was 
determined following Ovesy et al. [121,145] to minimize simulation times while ensuring to 
fully capture bone damage around the screw. Single-level thresholding was applied to binarize 
the images. A µCT image (resolution: 14.8μm; SkyScan1173, Bruker, Bilerica, USA) of the 



  Chapter 4    Paper 3 
 

85 
 

same locking screw that was used for the pull-out experiments, described in section 2.1, was 
taken from a previous study [155] and cropped to a length of 17mm. Bone and screw images 
were resampled to a resolution of 36μm, as the later applied material model of Stipsitz et al. 
[24] (see section 2.3) was developed for resolutions of this magnitude. The screw was virtually 
inserted to a depth of 15mm into the center of the segmented bone images to mimic the 
experimental conditions. The samples had a bone volume fraction range of 18.2% to 38.3% and 
their mean cortical thickness varied between 237µm and 1124µm. All image processing steps 
and morphometric evaluations were performed with Medtool 4.5 (Dr. Pahr Ingenieurs e.U., 
Pfaffstätten, Austria). 
 
4.2.3 Mesh, material and boundary conditions 
The segmented bone images with the virtually inserted screw were used as geometrical input to 
generate µFE models. Each voxel was converted into eight-noded hexahedral elements (side 
length: 36µm). The number of elements varied between 5.8 and 10.3 million. Material 
properties were assumed to be homogeneous and isotropic. For the bone material, a nonlinear 
damage-based material model [24,123] especially developed for efficient nonlinear µFE 
analysis was selected. The model consists of a linear-elastic region, a damaged region, and a 
failure region. In the linear-elastic region, an elastic modulus 𝐸 = 4.6GPa and a Poisson’s ratio 
of ν = 0.3 were selected. As material parameters proposed by Stipsitz et al. [24,123] (E = 10GPa) were identified for human rather than porcine bone, the elastic modulus was taken 
from Costa et al. [119], who found the best fit between µFE predicted and experimental axial 
forces on a porcine bone sample using E = 4.6GPa. The transition from the linear to the 
nonlinear, damaged regime was modeled using an isotropic, quadric damage onset surface 
(shape parameter ζ = 0.3) which differentiates between tension and compression. Since Morgan 
and Keaveny [205] showed that yield strains remain relatively constant across species, damage 
onset strains in tension and compression were taken from Stipsitz et al. [24,123] and kept 
constant (damage onset strain in tension 𝜀+ = 0.0068; damage onset strain in compression 𝜀− = 0.0089), while damage onset stresses were scaled according to the selected elastic modulus 
[122,145]. In the damaged region, isotropic material hardening (𝐸H = 0.05𝐸0) [24,123] was 
included, and material degradation, found by back-projection of the current stress state on the 
damage onset surface, was modeled via local stiffness reduction according to observed damage 
levels. When the critical damage threshold 𝐷c = 0.915 [24,123] was exceeded, local failure was 
modeled by reducing the elastic modulus to a residual value close to zero. For the titanium alloy 
screw, linear-elastic material properties, with an elastic modulus of 𝐸 = 115GPa and a 
Poisson’s ratio of ν = 0.3 [155] were assumed.  
 
The boundary conditions were selected to mimic the experimental conditions (see Fig. 1). The 
nodes located on the four lateral sides of the bone were fully constrained. At the screw top, a 
displacement of 0.2mm was applied along the screw axis, while the nodes were constrained in 
all other directions. The displacement value of 0.2mm was selected since it was enough to 
observe a drop in the force-displacement curve in all simulations. The displacements obtained 
from the simulations could not be directly compared to the experimentally measured 
displacements, as only crosshead displacements were measured in the experiments. 
Additionally, cropping the specimen geometry in the µFE models influenced the displacement 
results.  
 
All µFE models were generated with the software Medtool 4.5 (Dr. Pahr Ingenieurs e.U., 
Pfaffstätten, Austria). 
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4.2.4 Interface modeling 
Three types of µFE models with different interface and pre-damage combinations (see Table 1) 
were compared: a fully-bonded interface without pre-damage (FB), a modified tensionally-
strained element deletion (TED-M) [120,204] interface without pre-damage, and a TED-M 
interface with pre-damage (TED-M+P). The fully-bonded interface assumes perfect bonding at 
the bone-screw interface nodes. TED-M represents a modification of the tensionally-strained 
element deletion (TED) interface model introduced by Steiner et al. [120], which imitates 
contact in a simplified way. It is based on a preliminary linear-elastic simulation (“pre”-
simulation) with a fully-bonded bone-screw interface. Interface elements under positive 
(tensional) volumetric strain are removed, assuming no tensile stress transfer at the bone-screw 
interface. Elements under negative (compressional) volumetric strain are retained, as they 
contribute to stress transfer between bone and screw. Finally, the actual simulation with the 
updated interface is conducted. Stefanek et al. [204] extended the model of Steiner et al. [120] 
to TED-M which enhances the accuracy of maximum force predictions. In an attempt to better 
account for occurring contact area changes throughout the simulation process, TED-M slightly 
expands the contact area found with TED by reincluding neighboring interface elements of 
contact elements in the contact area.  
 
4.2.5 Pre-damage modeling 
Pre-damage was modeled by defining a cylindrical damage zone with a radial thickness T, 
where a pre-damage value of bone 𝐷Pre (0 < 𝐷Pre < 𝐷c) was set (see Fig. 1). This approach is 
slightly different to other simplified pre-damage models reported so far, where the pre-damage 
was defined as elastic modulus reduction in linear elastic µFE models. Bone-screw research 
done so far could not provide conclusive guidelines on how to set the pre-damage value (𝐷Pre) 
and the thickness of the pre-damage zone. Hence, the influence of these parameters on the 
maximum force was investigated. As we hypothesized that the selection of material properties 
also affects maximum pull-out force, the influence of reducing and increasing the elastic 
modulus was also investigated.  
 
To test the influence of pre-damage parameters on maximum pull-out force, 27 different 
combinations of pre-damage value (𝐷𝑃𝑟𝑒= 0.85, 0.88, 0.91), radial thickness (𝑇 = 0.3mm, 
0.6mm, 0.9mm) and elastic modulus (Ered=3.6GPa, E=4.6GPa, Einc=5.6GPa) were evaluated 
for each specimen. The parameter ranges of 𝐷𝑃𝑟𝑒 and T were set following observations in 
literature [120] and considering the requirements of the used material law (𝐷Pre< 𝐷c).  
 
To visualize the error in the µFE predicted maximum pull-out force for each parameter 
combination, heat maps (cubic interpolation) were generated, covering the parameter space. 
The error between µFE models and experiments was defined as (SimFmax −  ExpFmax)/ ExpFmax. 
Isolines were evaluated to indicate parameter combinations with a relative error of zero. In cases 
where no parameter combination led to an error of zero, the parameter combination with lowest 
relative error was indicated. 
 
To identify optimal per-damage parameters for all specimens, a mean heat map was created by 
calculating the mean relative error of all specimens for the nine parameter combinations and 
each elastic modulus. From the isoline of the mean heat map, two parameter sets were extracted 
for each elastic modulus: one with minimal radial thickness (Min. T) and one with minimal 
damage (Min. DPre). These parameter combinations were then used to perform µFE simulations 
for all specimens, and to compare the µFE predictions with the experimental measurements. 
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Table 4.1 
Description of all three compared interface and pre-damage combinations.  
Name FB TED-M TED-M+P 
Schematic 
illustration 

    
Interface Fully-

bonded 
Modified 
tensionally-
strained 
element 
deletiona 

Modified tensionally-strained element deletiona 

Pre-damage None None Pre-damage value DPre > 0 in cylindrical zone 
around screw with radial thickness T  

a [120,204] 
The fully-bonded (FB) interface assumes bonding between bone and screw, while the modified tensionally-strained element 
deletion (TED-M) interface deletes selected elements at the interface to better replicate bone-screw contact. The TED-M 
interface is combined with a simplified pre-damage model. A cylindrical region with a radial thickness T is selected, where a 
pre-damage value DPre > 0 is assigned. 
 
4.2.6 Simulation 
All µFE models were solved with ParOSol-NL  [24,25] using up to 126 cores on a dual AMD 
EPYC 7763 64-core processor with 1TB RAM. Simulations were performed until a drop of 
force of at least 15N was observed.  
 
4.2.7 Comparison between µFE and experiments 
Maximum force values of all µFE simulations (FB, TED-M, and TED-M+P) were compared to 
experimental results using linear regressions. The following parameters were computed: slope, 
intercept, coefficient of determination (R2), concordance correlation coefficient (CCC), mean 
absolute percentage error (MAPE), and root mean squared error (RMSE). Damage distributions 
were evaluated, visualized, and compared for all µFE simulations at maximum force. 
 
All statistical evaluations were conducted with Python 3.8 (https://www.python.org/) and the 
included library SciPy [194]. The figures showing the damage distribution were generated with 
the software ParaView (https://www.paraview.org/).   
 
4.3 Results 
4.3.1 Influence of radial thickness, pre-damage value and elastic modulus 
As expected, µFE simulations with lower elastic modulus led to lower maximum force 
predictions, and vice versa (see Fig. 2 (B) and supplementary material). Both higher pre-damage 
and larger radial thickness of the pre-damage zone led to lower maximum force predictions. 
The results differed for each specimen (see supplementary material), but tendentially an elastic 

https://www.python.org/
https://www.paraview.org/
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modulus of Ered=3.6GPa led to underestimation of experimental maximum force, whereas an 
elastic modulus of Einc=5.6 GPa led to overestimations. 
 
The influence of the chosen elastic modulus and pre-damage parameters on the relative error is 
also visualized in the heat maps (see Fig. 2 (C) and supplementary material). The isolines in the 
heatmap indicated a variety of parameter combinations leading to a relative error of zero 
percent, depending on the selected elastic modulus (see Fig. 2 (C)) and specimen 
(supplementary material). All zero-error isolines showed a similar relation of pre-damage value 
and radial thickness of the pre-damage zone. Setting the pre-damage to a higher value required 
smaller radial thickness to achieve zero maximum force error and vice versa. 
 
Mean heat maps (see Fig. 3 (A)) showed isolines for Ered=3.6GPa and E=4.6GPa, while for 
Einc=5.6GPa none of the investigated pre-damage parameter combinations led to a mean error 
of zero. Hence, the optimal pre-damage parameter combination included both the highest 
evaluated pre-damage value 0.91 and the highest evaluated radial thickness 0.9mm. The optimal 
radial thickness as well as the optimal pre-damage value were lower for Ered=3.6GPa than for 
E=4.6GPa for both evaluated criteria Min. DPre and Min. T (see Fig. 3 (B)). While the optimal 
pre-damage value ranged between 0.85 and 0.88 for  Ered=3.6GPa, it needed to be increased 
between 0.904 and 0.91 to reach best outcomes for E=4.6GPa. Radial thickness was evaluated 
to be ideal between 0.3 and 0.628mm for Ered=3.6GPa and between 0.741 and 0.9mm for 
E=4.6GPa. 
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Fig. 4.2 Experimental force-displacement curve (A), simulated force displacement curves for different values of radial 
thickness T and pre-damage value DPre (B) and heat maps showing the relative error in maximum force (C) of one 
representative specimen (S10). Simulated force-displacement curves and heat maps are shown for three different elastic 
moduli of bone material Ered=3.6GPa, E=4.6GPa, and Einc=5.6GPa. The simulated force-displacement curves (B) show a 
selection of five parameter combinations of T and DPre. In the heat maps (C), green isolines mark the parameter combinations 
of pre-damage DPre and radial thickness of damage zone T, where the relative error in maximum force between simulation 
and experiment is zero. In case that no parameter combination can be found that leads to zero relative error, the parameter 
combination where the relative error is minimal is marked by a green cross. 
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Fig. 4.3 Mean heat maps (A) and optimal pre-damage parameters (B). The heat maps (A) illustrate the mean relative error 
across all specimens for three different elastic moduli of bone material: Ered=3.6GPa, E=4.6GPa, and Einc =5.6GPa. Isolines 
indicate the parameter combinations of pre-damage DPre and radial thickness of damage zone T where the relative error in 
maximum force between simulation and experiment is zero. The optimal pre-damage parameters based on the minimal pre-
damage (Min. DPre) and the minimal radial thickness criteria (Min. T) are summarized in (B). The unfilled green markers ‘o’ 
denote the points where the isoline parameters are evaluated based on the minimum pre-damage criteria, whereas the filled 
green markers ‘●’ denote the points where the isoline parameters are evaluated based on the minimum radial thickness 
criteria. 

 
4.3.2 Comparison of maximum force 
Both models without pre-damage implementation (FB, TED-M) showed high correlations 
(R2>0.86) to experiments but failed to predict a good 1:1 fit, as confirmed by high RMSE 
(>211N) and MAPE (>51%) and low CCC (<0.43) (see Fig. 4 and Table 2). Models with 
optimal pre-damage implementations (TED-M+P) according to Fig. 3(B), achieved comparable 
R2 correlations (>0.85) but improved the 1:1 fit to experiments for Ered=3.6GPa and E=4.6GPa 
(RMSE<50N; MAPE<12%; CCC>0.89). Only minor differences were observed between 
Ered=3.6GPa and E=4.6GPa as well as between different criteria for optimal pre-damage 
parameter selection (Min. T or Min. DPre). For Einc=5.6GPa, TED-M+P improved the maximum 
force predictions in comparison to the models without pre-damage. However, TED-M+P with 
Einc=5.6GPa showed inferior results in comparison to the TED-M+P models with Ered=3.6GPa 
and E=4.6GPa. 
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Fig. 4.4 Linear regressions between µFE predicted (FSim) and experimentally measured (FExp) maximum force for three 
different elastic moduli of bone material Ered=3.6GPa, E=4.6GPa, and Einc =5.6GPa and three different pre-damage and 
interface combinations: a fully-bonded interface without pre-damage (FB), a simplified contact model [120,204] without pre-
damage (TED-M), and the same contact model with pre-damage (TED-M+P). Optimal pre-damage parameters were selected 
based on two criteria defined in Fig. 3: minimal pre-damage (Min. DPre) and minimal radial thickness criteria (Min. T). 

 
Table 4.2 
Comparison of linear regressions from Fig. 4 using different error metrics to evaluate the goodness of fit.  
  RMSE in N MAPE in % CCC R2 

Ered=3.6GPa 

TED-M+P 
Min. DPre 46.74 11.55 0.905 0.864 

TED-M+P 
Min. T 46.27 11.60 0.906 0.863 

E=4.6GPa 

FB 242.58 61.20 0.371 0.866 

TED-M 211.18 51.93 0.429 0.865 
TED-M+P 
Min. DPre 

49.91 11.68 0.895 0.855 

TED-M+P 
Min. T 47.26 11.17 0.904 0.865 

Einc=5.6GPa TED-M+P 89.26 17.37 0.7658 0.860 
 

Note: root mean squared error (RMSE), mean absolute percentage error (MAPE), concordance correlation coefficient 
(CCC) and coefficient of determination (R2). 
For each metric, the model showing the best results (lowest error or highest correlation) was formatted as bold text. 

 

4.3.3 Comparison of damage distributions 
Overall, the models FB and TED-M exhibited similar damage distributions (see Fig. 5). Most 
damage could be observed in bone material close to the screw but not directly attaching the 
screw core. The extent of damage reduced gradually from the screw axis towards the outer 
surface. However, a more detailed comparison revealed that the FB model displayed slightly 
higher damage and differences in the regions of critical damage. In contrast, the TED-M+P 
models all showed the implemented pre-damage zone close to the screw, with a radial thickness 
depending on the optimal pre-damage parameters (see Fig. 5 and 6). For TED-M+P models 



  Chapter 4    Paper 3 
 

92 
 

with Ered=3.6GPa, screw pull-out led to a visible formation of additional damage around the 
predefined damage zone. In contrast, for TED-M+P models with E=4.6GPa and Einc=5.6GPa, 
the screw pull-out did not cause any additional damage outside the pre-damage zone. 
 

 
Fig. 4.5 Damage at maximum force of one representative specimen (S10) for E=4.6GPa and for all interface and pre-damage 
combinations: a fully-bonded interface without pre-damage (FB) and a simplified interface method [120,204] without pre-
damage (TED-M) and with pre-damage (TED-M+P). A displacement scaling factor of 5 was used, and optimal pre-damage 
parameters were selected based on two criteria defined in Fig. 3: minimal pre-damage (Min. DPre) and minimal radial 
thickness criteria (Min. T). For the TED-M+P, the color bar includes blue regions between the pre-damage value DPre in the 
damage zone and the critical damage Dc. 
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Fig. 4.6 Damage at maximum force of one representative specimen (S10) for the two elastic moduli Ered=3.6GPa and 
Einc=5.6GPa. All models included a simplified interface method [120,204] with pre-damage (TED-M+P). A displacement 
scaling factor of 5 was used, and optimal pre-damage parameters were selected based on two criteria defined in Fig. 3: 
minimal pre-damage (Min. DPre) and minimal radial thickness criteria (Min. T). For the TED-M+P, the color bar includes 
blue regions between the pre-damage value DPre in the damage zone and the critical damage Dc. 

 
4.4 Discussion 
The goal of this study was to evaluate the agreement of screw pull-out force predictions of 
computationally efficient, materially nonlinear µFE models with experimental measurements, 
taking both contact interface and pre-damage into account. Across all µFE model variations - 
whether pre-damage or contact interface was implemented or not - the predicted maximum 
forces showed a strong correlation with experimental data. However, the selection of pre-
damage parameters emerged as particularly critical for achieving quantitatively accurate 
predictions. 
 
The optimal pre-damage parameters identified via evaluation of the mean heat map isolines 
generally aligned with previous studies. For an elastic modulus of 3.6GPa and the investigated 
parameter range, the evaluated ideal radial thickness was between 0.3mm and 0.63mm, while 
for 4.6GPa and 5.6GPa, it was between 0.74mm and 0.9mm, which is similar to the radial 
thickness values selected from Steiner et al. [120] (0.6mm – 0.9mm) and Chevalier et al. [115] 
(0.4mm). Torcasio et al. [137] and Steiner et al. [120] selected higher damage values (>0.98) 
than the pre-damage values evaluated in this study (0.85 to 0.91). However, all compared 
studies differed from this study in various aspects (material law, contact implementations, 
predicted mechanical parameters). Furthermore, the pre-damage value in this study was 
restricted by the critical damage 𝐷c= 0.915 of the used material law. The heat maps revealed 
that radial thickness of the pre-damage zone, pre-damage value, and elastic modulus selection 
all influenced maximum force screw pull-out predictions. A higher radial thickness reduces the 
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need for a high pre-damage value, and vice versa. In a similar manner, a lower modulus 
decreases the maximum force and allows for lower pre-damage parameters, while a higher 
modulus has the opposite effect. Hence, optimal pre-damage parameters are not unique and 
cannot be chosen independently. Accurate modeling of pre-damage requires identification of 
the correct, specimen-specific material properties as well as experimental determination of at 
least one pre-damage parameter (radial thickness or pre-damage value). In addition, it must be 
kept in mind that multiple other parameters of the µFE model (e.g. voxel size, contact model) 
and pre-processing steps (e.g. segmentation) can quantitatively affect maximum force 
predictions. Pre-damage parameters must therefore always be considered as specific for a given 
µFE modeling and workflow, rather than generally applicable. 
 
All different interface and pre-damage combinations showed similar correlations (R2>0.85) 
consistent with comparable studies by Ovesy et al. [121] (R2>0.91), Panagiotopoulou et al. 
[122] (R2>0.93) and Zhou et al. [146] (R2=0.79) using fully nonlinear models and standard 
commercial FE solvers. However, the models differed in their 1:1 fit to experimental maximum 
force results. The fully-bonded interface without pre-damage highly overestimated the 
maximum force predictions (MAPE=61%), and the TED-M model only slightly improved the 
predictions (MAPE=52%). In contrast, the TED-M+P models were able to improve the 
predictions and enabled a good 1:1 fit to experimental results, especially for Ered=3.6GPa and 
E=4.6GPa (MAPE<12%). The TED-M+P model for 5.6GPa showed slightly higher errors 
(MAPE=17%), likely due to a suboptimal elastic modulus selection. Although this study results 
suggest a strong impact of pre-damage modeling on screw pull-out force prediction, other 
studies still reached accurate results with good 1:1 correspondence without accounting for pre-
damage at all [121,122,146]. Hence, simple nonlinear models without pre-damage 
implementations can still yield good correlations and 1:1 correspondence with experimental 
measurements on a structural level. This is in line with the results of this study, which showed 
that various modeling aspects (contact interaction, elastic modulus, pre-damage value and radial 
thickness) can be used to tune the 1:1 agreement of the models on a structural level (here: 
maximum pull-out force). However, especially for an in-depth analysis of bone-screw 
mechanical behavior beyond the structural level, these modeling aspects must be separated and 
correctly implemented. 
 
Despite similar screw pull-out force predictions with various combinations of pre-damage 
parameters, differences between the models were evident in the damage distributions. FB and 
TED-M showed only slightly different damage distributions with damage gradually decreasing 
with larger distance from the screw. The pre-drilling reduced the influence of the contact 
interface on the damage distribution, as any potential contact at the screw tip was removed. 
Without pre-drilling, contact between the bone and the tip of the screw could cause large 
differences between fully bonded and contact models in a pull-out scenario [204]. In contrast 
to FB and TED-M, TED-M+P models only predicted small amounts of damage outside the 
damage zone. This suggests that TED-M+P may overestimate damage within the damage zone 
while underestimating it outside. This error could be caused by the simple geometric 
representation of the cylindrical pre-damage zone with sharp boundaries, and should be further 
evaluated by comparison to experimentally measured pre-damage distributions. However, 
experimental methods for accurate measurement of pre-damage are not yet available and novel 
methods must be developed in order to validate µFE models at this level of detail. To guide 
researchers conducting similar studies, it is suggested to first perform a material parameter 
identification to establish these parameters as fixed. Subsequently, investigations into pre-
damage formation caused by pre-drilling and screw insertion should be carried out. Using µCT 
scanning before and after screw insertion, the radial thickness of the pre-damage zone can be 
estimated [139]. The pre-damage value may be estimated using digital volume correlation, 
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which provides detailed 3D displacement and strain measurements, helping to detect 
deformations beyond the yield limit [206–209]. Additionally, staining techniques can highlight 
crack formation, enabling to assess the extent of damage [210,211]. Furthermore, extensive 
calibration studies involving multiple loading cases, specimens, and screws could be conducted 
to back-calculate the pre-damage parameters [120]. 
 
The study has several limitations. To begin with, the elastic modulus was taken from literature 
and was not experimentally determined for the used specimens. Furthermore, the applied 
nonlinear material properties were based on human bones and only adapted to porcine bones 
[24]. As the pre-damage parameters as well as the maximum force predictions depend on the 
selected material properties, this study cannot provide optimal parameters for future studies, 
but can only show the effect and ambiguity of the pre-damage parameters. Additionally, the 
study outcomes were restricted to pre-drilled bone samples. The drilling process leads to 
reduced strength and stability of the bone-screw construct [67] and leaves bone debris in the 
pilot-holes, which might be interpreted as intact bone in the µFE models. Furthermore, all 
results were limited to a single loading case, a single screw with one insertion depth, and the 
nonlinear material model of Stipsitz et al. [24], developed for efficient µFE simulations. 
 
In conclusion, screw pull-out forces predicted by computationally efficient, materially 
nonlinear µFE are highly correlated with experimental measurements, even with a fully bonded 
interface and without considering pre-damage. However, to obtain quantitatively accurate 
results, careful orchestration of contact modeling, material properties and pre-damage 
parameters is required. The selection of these parameters is ambiguous and experimental 
assessment of pre-damage distributions is necessary to further refine and validate the µFE 
models. µCT scanning before and after screw insertion could be valuable in providing more 
accurate pre-damage distributions while methods like digital volume correlation and staining 
may help to estimate the pre-damage value. Until such experimental data become available, 
optimal parameters of a simplified pre-damage model must be identified as proposed in this 
study using comparison to experimental results.   
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