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Mechanically characterizing biological tissues at the microscale helps to better link microscale 
biomechanics to mechanobiology but also contributes to the mechanistic understanding of disease 
mechanobiology. Cell spheroids (CSs) are state-of-the-art in vitro three-dimensional cell cultures 
allowing for the synthesis of microtissue models into sphere-like geometry. Such a geometry is 
attractive for micromechanical assessment via parallel-plate compression, since only minimal and 
nondestructive sample preparation is required to conduct such tests. However, appropriate data 
analysis and interpretation methods are mostly lacking. Current approaches, relying on Hertzian 
theory and its modifications, are inadequate for capturing large deformations observed in CSs upon 
compression. Here, we utilized the extended Tatara model, incorporating hyperelasticity and nonlinear 
boundary effects, to investigate CS mechanics. To evaluate the effectiveness of the model, we 
compared results to Hertz, Ding, and simple Tatara models. The extended Tatara model demonstrated 
superior accuracy, enabling mechanical analysis of CSs under compression of up to 50% strain. 
Estimating the apparent Poisson’s ratio via image segmentation and shape analysis helped refine the 
calculated apparent modulus. This work establishes a robust analytical framework that will, in the 
future, help advance our understanding of cardiac fibrosis progression and support the development of 
therapeutic strategies using patient-derived CSs as test models.
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Cells actively sense and respond to mechanical cues of their surrounding mechanical microenvironment 
provided by the extracellular matrix (ECM) and neighboring cells. Mechanical cues, such as compressive 
forces, apparent ECM stiffness, that is its elastic and viscous properties, play a pivotal role in triggering cellular 
processes, in health and disease, such as proliferation1, differentiation2, migration3, apoptosis4 and tissue 
remodeling2. Alteration in ECM mechanical properties is a hallmark of various fibrotic conditions such as cardiac 
fibrosis5 and lung fibrosis6. In such pathological processes, not only do cells alter the mechanics of their ECM 
microenvironment but change their contractility7,8 as a response to matrix stiffening. This leads to an altered 
mechano-homeostatic state, compared to the healthy situation6. Dysregulation of ECM mechano-homeostasis 
is not solely a consequence of pathology but may also be a reason for disease progression9,10. To understand the 
role of mechanobiological changes for the onset and progression of cardiac fibrosis, it is therefore important to 
mechanically characterize the fibrotic niche at the microscale.

In vivo, biological tissues, depending on their function, are subjected to various mechanical forces, such 
as compressive, tensile, or shear11. Soft biological tissues exhibit low stiffness, ranging from tens of pascals to 
several megapascals12–14, and can therefore undergo large deformations under relatively low external forces. 
Nevertheless, the level of strain soft tissues typically experience is contingent upon both the physiological 
context and the specific tissue type. For instance, the heart tissue can be exposed to strains of 20%–30%15 under 
physiological conditions, while in pathological conditions, e.g. arrhythmias, up to 80% strains16. It is therefore 
necessary to consider the relevance of large strains to tissue biomechanics and mechanobiology.

Classically, cell mechanics have been well documented using in vitro two-dimensional (2D) cell cultures. 
Although 2D systems have been an invaluable biological readout model, they do not account for extracellular 
barriers and 3D structure present in most in vivo17,18 cases. The advent of 3D cell cultures, such as spheroids, has 
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not only changed this but also enabled studying how cell–cell and cell–ECM interactions affect tissue mechanics 
under large physiological strain. As mentioned above, such 3D models mimic important aspects of the natural 
cellular microenvironment19,20. Several techniques have been employed for the mechanical assessment of cell 
spheroids (CSs), including parallel plate compression21,22, atomic force microscopy (AFM)23, micropipette 
aspiration24, and microtweezers25,26. Among these, parallel-plate compression stands out as a straightforward 
method to assess the bulk properties requiring only minimal sample attachment27–29.

With parallel-plate (and AFM-based) compression of CSs, contact mechanics models are employed to 
compute their apparent elasticity. While the Hertzian theory and its modifications (e.g., Johnson-Kendall-
Roberts, Sneddon) are most typically used23,30–33, they are derived upon the assumptions of small deformations 
and linear elastic behavior. However, CSs exhibit both material non-linearities, and, during parallel-plate 
compression, geometrical non-linearities (large deformations). This makes the Hertz theory inadequate for 
data analysis of CSs34, especially under compression at large strains. Although some studies used models that 
consider hyperelasticity22,35,36, none can so far describe the mechanics of CSs up to 50% apparent strain, which is 
in the physiological range for some soft tissues37 (e.g. skin). Therefore, a model that combines both material and 
geometrical nonlinearities alongside a standardized methodology is direly needed to better describe, assess and 
compare the intricate mechanical behavior of CSs under compression.

To this end, we employed the extended Tatara model38, which is a modified contact mechanics model 
employing a Mooney-Rivlin hyperelastic constitutive material behavior and is designed to specifically address 
shortcomings of the state-of-the-art Hertz and Ding models. In particular, the extended Tatara model considers 
material non-linearities and the change in contact area due to lateral extension, induced by the large compressive 
deformation. To evaluate the extended Tatara model, we compared its performance to three other models: the 
two most widely used models (a) Hertz and (b) Ding, and to (c) a simpler Tatara model (the latter only accounts 
for hyperelasticity and not for geometrical nonlinearities).

Results and discussion
Briefly, CSs were derived via a scaffold-free 3D approach by culturing human primary cardiac fibroblasts 
(hpCFs) (Fig.  1a). Of note, hpCFs, under physiological conditions, give structural support to the heart by 
regulating the synthesis and degradation of ECM proteins5. Subsequently, CSs were compressed individually at 
increasing speeds (Fig. 1b, c) up to 50% uniaxial strain with simultaneous tracking of the lateral deformation. 
Loading curves were fitted to the extended Tatara Model and results were compared to those similarly obtained 
by utilizing Hertz, Ding’s, and Tatara’s contact mechanics models (Fig.  1d). Additionally, by simultaneous 
tracking the CS lateral deformation, we estimated the apparent Poisson’s ratio and, based on this, modified the 
assumption of incompressibility of the model, which affects the magnitude of the apparent modulus.

Origin of non-linear elasticity in cell spheroids
CSs were subjected to parallel-plate compression tests to up to 50% strain (whereby strain or compressive 
strain here and throughout the manuscript refers to apparent strain based on initial CS height). CSs exhibited 
a nonlinear increase of force vs. strain (right subplot of Fig.  1c) under compression, as a result of material, 
geometrical, and boundary non-linearities. On the one hand, the contact area of a CS under compression 
increases nonlinearly with strain. This increase is depicted in Fig. 1e, where the contact area is estimated based 
on two contact mechanics models: (i) the Hertzian (small strain and linear elasticity) theory and (ii) the extended 
Tatara (large strain and hyperelasticity) model. At small apparent strains (up to about 10%; Fig. 1e), the contact 
area predictions from both models coincide, while at larger strains (> 10%), they increasingly differ (grey area), 
due to the lateral expansion and the non-linear material behavior that only the extended Tatara model accounts 
for. On the other hand, cells39, and ECM structural components, specifically collagen40, are well known for their 
nonlinear mechanical properties that are expected to contribute to the overall nonlinear mechanics of the CS.

To better inspect the force vs. strain nonlinearity, the data are presented in a log-log plot (inset of right 
subplot in Fig. 1c) along with straight lines representing selected power-law F–εn relationships. Up to 10% strain, 
the F–εn curve conforms to the predictions of Hertzian theory (i.e., F∝εz

3/2) indicating that elastic response 
dominates small strain deformation, and CSs behave similarly to a homogeneous, isotropic elastic material. 
However, from 10% to 45% strain, the behavior deviates from the Hertzian prediction, transitioning to a F∝ε3 
power-law relationship, and subsequently, to a stiffer behavior, approaching F∝ε5, from 40% and up to 50% 
strain. This multifaceted power-law response was previously also observed in the compression of rubber spheres 
as described by Shima et al.41.

Beyond the regime that can be analyzed assuming linear elastic behavior and small strains (Hertz theory), the 
CS microstructure undergoes considerable deformation-induced changes, involving deformation mechanisms 
of cellular and ECM components, leading to the non-linear force-strain relationship. The subsequent shift to 
a steeper power-law relationship at higher CS strains is indicative of permanent deformation (see paragraph 3 
from Limitations and perspectives section) and/or compaction at the cellular level. It becomes apparent that the 
CS undergoes complex structural changes, which very likely also entail irreversible processes.

F-εz curve modeling
Microcompression is widely employed as the state-of-the-art method to mechanically characterize biomaterials, 
tissue components and biological systems at the microscale42–44. Some studies have employed a continuum 
mechanics approach6,42,45 while others used contact mechanics models46–48 to estimate a “modulus of elasticity”, 
where it seems obvious, given the nonlinear behaviour of samples investigated, such a unique material property 
does not exist. Rather, this should be considered an apparent modulus that depends on loading case and 
displacement or force rate. To investigate the effect of displacement rate, we have compressed our CSs at 0.5, 1, 
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2, 5 μm/s. We evaluated the performance of four contact mechanics models; (a) Hertz, (b) Ding49, (c) Tatara and 
(d) extended Tatara, assuming an apparent Poisson’s ratio of 0.550. The coefficient of determination (R2; Fig. 2a, 
b) was calculated based on a least-squares fit of the applied forces utilizing experimental data within the 10–50% 
strain range. All models were subsequently fitted at 2.5% strain intervals within this strain range (Figure S1). 
Figure 2a and b show R2 values as a function of maximum strain fitted (εmax_fitted) at displacements rates 0.5 
μm/s and 5 μm/s, respectively. The goodness of fit for each model was further assessed using the chi-squared 
(χ²) statistical test. The resulting χ² values were normalized by the corresponding critical chi-squared ( χ²cr) to 
obtain the normalized chi-squared (χ²nrm). Figure 2c and d show the comparison of χ²nrm values obtained by 
fitting the four models at 2.5% strain intervals within 10–50% strain range at displacements rates 0.5 μm/s and 
5 μm/s, respectively. A value of χ²nrm less than 1 indicates that the fit passes (green color scale) the statistical test 
at 0.05 significance level, while values greater than 1 suggest that the model does not adequately describe the 
experimental data within the tested strain range (orange color scale).

At 0.5 μm/s displacement rate, R2 increases from 0.85, at 10% strain, to 0.99, at 25% strain. R2 values and 
their increasing trend with strain, at < 25%, are similar among all four models, however the Hertz model slightly 
outperforms Ding, Tatara, and extended Tatara. This can also be confirmed from Fig. 2c, where χ²nrm values 
obtained by fitting the Hertz model are smaller compared to the ones obtained by fitting the other models for 
the same fitting range. Fitting the Hertz model up to 27.5% strain returns the highest R2 (Fig. 2a), which then 
drops faster, when fitting the data above 27.5% strain, compared to the Ding, Tatara, and extended Tatara. While 
Ding best fits the data from 30% to 40% strain, according to χ²nrm results (Fig. 2c), only the extended Tatara 
outperforms all models at strains higher than 40% and up to 50% strain. The improvement of Ding and Tatara 
can be attributed to the, respectively, neo-Hookean and Mooney-Rivlin material laws and the correction factor 
upon which these models are built. However, the extended Tatara provides a better fit at larger deformations, 
integrating both a hyperelastic material law (Mooney-Rivlin) and a large deformation formulation (accounting 
for contact area changes due to lateral expansion).

Fig. 1.  (a) Schematic of CSs preparation. (b) 2D diagram of a CS compressed between two flat rigid plates 
which describes the interconnections between the extended Tatara model variables. (c) Force-strain data of 
a CS compressed up to 50% strain at four increasing displacement rates (0.5, 1, 2 and 5 μm/s). The inset in 
log-log scale shows the transition from Hertzian behavior, at small deformations, to approximately F∝ε5 at 50% 
strain. (d) Force-strain data of a CS compressed up to 50% strain at 0.5 μm/s displacement rate with the best-
fitted curves obtained by fitting four contact mechanics models and, (e) and the corresponding contact area 
predicted by Hertz and the extended Tatara model as a function of compressive strain.
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At 5 μm/s displacement rate, a similar trend in R2 is observed for the Hertz, Ding and Tatara models, with 
all three reaching a peak at 17.5% strain. Interestingly, the Hertz, Ding and Tatara models exhibit a decline in 
R2 between 20% and 42.5% strain, followed by a plateau until 50% strain. This trend is further supported by 
χ²nrm results (Fig. 2d), which indicate that the Hertz, Ding and Tatara models fail the χ² statistical test for strains 
beyond approximately 20%. The observed plateau hints to saturation (at 42.5% strain) beyond which these 
models can no longer account for the increase in contact area as a result of lateral expansion. In contrast, while 
the R2 values from the extended Tatara model progressively increase when fitting the model up to 50% strain, 
the χ²nrm results (Fig. 2d) suggest that at a displacement rate of 5 μm/s this model is only adequately capturing 
the experimental data for strains up to approximately 25%.

Apparent modulus vs. maximum strain fitted relationship
The apparent modulus, calculated by fitting the force-displacement data using four contact mechanics models 
at different strain levels and displacement speeds of 0.5 μm/s and 5 μm/s, is shown in Fig. 2e and f, respectively. 
Qualitatively, the apparent modulus changes similarly among all four models with relation to the maximum strain 
fitted. However, the Hertz model consistently overestimates the apparent modulus at both 0.5 μm/s and 5 μm/s 
displacement rates, especially at higher strains. This overestimation is due to the Hertzian theory’s limitation in 
considering the intricacies of non-linear deformations. Quantitatively, the apparent modulus calculated by all 
four models ranges from 1.5 kPa to 37 kPa.

At 0.5 μm/s displacement rate (Fig. 2e), the apparent modulus vs. strain fitted exhibits three distinct phases as 
strain increases. Initially, the apparent modulus, as predicted by all four models, decreases with increasing strain 
up to 17%. This behavior aligns with that observed in compressed foams, as reported by Bhagavathula et al.51. 
In their study on polymeric foams, a decrease in tangent modulus was observed at low strains, followed by an 
increase at higher strain levels, with the transition point varying depending on the strain rate. Similarly, Sun et al. 
noted a decrease in the unloading modulus when compressing various types of closed-cell foams, attributing the 
low stiffness at small strains (< 10%) to premature local yielding of the cell walls52. A CS is structurally composed 
of the ECM network and cells. With the above in mind and the results obtained from Fig. 3h, the initial decrease 
of the apparent modulus from 2.52 kPa to 2.17 kPa (from 10% to 17% strain) could be attributed to the local 
yielding of the ECM and cell cytoskeleton close to the surface of the cell spheroid. An additional contributing 

Fig. 2.  Five CSs were compressed at displacement rates of 0.5 μm/s and 5 μm/s. The resulting F-εz data were 
fitted using four contact mechanics models at 2.5% strain intervals within the 10%–50% strain range. Panels 
show: R² values at displacement rates of (a) 0.5 μm/s and (b) 5 μm/s; χ² nrm values for one representative CS at 
(c) 0.5 μm/s and (d) 5 μm/s; and the corresponding apparent modulus values at (e) 0.5 μm/s and (f) 5 μm/s.
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factor to the decreasing modulus at maximum strains fitted between 10% and 20% could be the low signal-to-
noise ratio, shown in Figure S1a. At 10% fitted strains, the signal-to-noise ratio is low, forcing the model to be 
fitted with a higher slope compared to when fitted at 15% and 20% maximum strains.

Between 17% and 30% strain, the apparent modulus predicted by Ding and Tatara models enters a plateau 
phase, indicating a stable hyperelastic response. During this phase, the material maintains consistent stiffness 
despite increasing strain, a behavior not observed in the case of the Hertz model. Beyond 30% strain, the 
increasing apparent modulus may result from two deformation mechanisms; (a) structural densification of cells 
and, (b) strain stiffening of collagen. Previously, cell packing has been reported to be analogous to the packing 
of cellular structures of foams53,54. Rahimidehgolan and Altenhof reported a nonlinear increase of the stress-
strain response in polymeric foams under uniaxial compression as a result of structural compaction, leading to 
stiffening55. In addition, collagen fibrils upon tension exhibit strain stiffening behavior40. Because CSs in this 
study are composed of both collagen (Picrosirius red staining, Fig. 4d) and cells (BioTracker and Hoechst 33342 
staining, Fig. 4d), we expect both deformation mechanisms to be present.

At 5  μm/s displacement rate (Fig.  2f), the apparent modulus is constantly increasing up to 42.5% strain 
and then reaches a plateau because of model saturation (see paragraph 3 from F-εz curve modeling section). 
Unexpectedly, no initial decrease in apparent modulus due to boundary nonlinearities and surface heterogeneities 
was observed. This is likely because the CS has already been compressed at 0.5, 1 and 2 μm/s, resulting in an 
already densely packed structure. However, in some cases (Figure S2), the first phase was apparent, indicating 
variability between samples possibly due to material heterogeneity.

Effect of displacement rate
Compression tests of CSs were conducted at four displacement rates (0.5, 1, 2 and 5 μm/s) and the experimental 
F-εz data were fitted with the extended Tatara model as it is shown in Fig. 3a. Τhe displacement rate-dependent 
nature of CSs is exhibited by the progressive increase of the F-εz curve slope with increasing displacement rate. 
Notably, the extended Tatara model performs better for displacement rates below 5 μm/s. The displacement 
rate dependency of the mechanical response can be attributed to the combined elastic, viscous and plastic 
mechanical behavior of both cells39,56 and ECM components1. A similar trend is observed with the Hertz model 
and its extensions, where the effect of the displacement rate is more apparent (Fig. 2a, b). In general, R2 values at 
0.5 μm/s displacement rate are higher than those at 5 μm/s displacement rate for the same strains (Fig. 2a and b). 
However, the opposite trend is observed at low strains, which can be attributed to the scatter in the initial part of 
the curve (see paragraph 1 from Limitations and Perspectives section).

Fig. 3.  (a) F-εz data of a CS compressed consecutively up to 50% strain at increasing displacement rates 
of 0.5, 1, 2, and 5 μm/s, with sample curves fitted using the extended Tatara model. (b) The corresponding 
χ2

nrm values and, (c) apparent modulus obtained from the same fits. (d) Cumulative residual strain of the 
five CSs assessed due to consecutive compression. (e) F-εz data of four CSs compressed up to 50% strain at 
different displacement rates (0.5, 1, 2, and 5 μm/s). (f) Apparent modulus obtained from two groups: five CSs 
compressed consecutively at increasing displacement rates (C, grey boxplots), and twenty individual CSs (five 
per displacement rate) each compressed once up to 50% strain at 0.5, 1, 2, or 5 μm/s (I, red boxplots). (g) Mean 
apparent modulus of CSs compressed consecutively and individually at each displacement rate. (h) Three CSs 
loaded to maximum forces of 20, 40, and 80 µN at a rate of 1 µN/s, followed by unloading at the same rate. 
Residual strain was recorded over a 900 s duration of rest.
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The goodness of fit at the different displacements rates was further assessed using the χ² statistical test. 
Figure 3b shows the χ²nrm values obtained by fitting the extended Tatara model at 2.5% strain intervals within 
10%–50% strain range at displacements rates 0.5, 1, 2 and 5 μm/s. The observation that the extended Tatara 
model performs better at lower displacement rates is further supported by the χ² statistical test. The extended 
Tatara model passes the χ² statistical test across the entire fitted range at 0.5 μm/s displacement rate, but only 
adequately captures the experimental data up to approximately 40% strain at 1 μm/s and 2 μm/s, and up to 25% 
strain at 5 μm/s.

Figure 3c shows the evolution of the strain-dependent apparent modulus (Eq. 11) obtained by fitting the 
extended Tatara model to the F-εz data with increasing strain at different displacement rates. At 0.5 μm/s 
displacement rate, the apparent modulus values are more consistent compared to the ones calculated at higher 
displacement rates. This indicates that the extended Tatara model predicts a similar apparent modulus regardless 
of the fitting range. The magnitude of apparent modulus increases along with the increasing applied displacement 
rate. The apparent modulus increases faster with compressive strain at higher applied displacement rates. This 
behavior was observed in all tested CSs (Figure S2). It is, therefore, essential to specify the fitting range, i.e., 
compressive strain, and displacement rates when reporting apparent modulus values.

The performance of all four contact models at lower displacement rates can be attributed to the viscous nature 
of CSs. Slower compression rates allow more time for stress relaxation, enabling the viscous and other transient 
components of the mechanical response to dissipate. Consequently, the measured data at lower displacement 

Fig. 4.  (a) F-εz fitting before (red) and after (green) apparent Poisson’s ratio correction. (b) Lateral strain 
εx as a function of compressive strain εz. The red and green curves represent the computed lateral strain 
assuming incompressibility and compressibility, respectively. The black dots were obtained from the CS image 
segmentation and shape analysis. Error bars represent standard deviation (n = 6), (c) Sensitivity of the apparent 
modulus calculated at 0.5 μm/s displacement rate to variations in apparent Poisson’s ratio, (d) Confocal 
fluorescence images of a CS composed of human primary cardiac fibroblasts, stained with BioTracker 488 (cell 
body, green), Hoechst 33342 (cell nuclei, blue) and Picrosirius red (collagen fibrils, red). Showing a maximum 
intensity projection of a 70 μm z-stack.
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rates predominantly reflect a hyperelastic response, which is better captured by the contact models. However, 
permanent deformation can contribute to the observed displacement-rate dependency. Since the same CSs were 
consecutively compressed up to 50% strain at increasing displacement rates of 0.5, 1, 2, and 5 μm/s, residual 
strain may accumulate, influencing both the mechanical response of the CSs and the corresponding apparent 
modulus values. Figure 3d shows the cumulative residual strain of the five CSs used in this study, along with their 
initial diameters. The method used to calculate both cumulative residual strain and initial diameters is detailed 
in Figure S3. Figure 3d shows that residual strain accumulates between successive loading/unloading cycles, 
reaching approximately 12% prior to the final loading at 5 μm/s. This is a considerable value relative to the total 
applied strain and may affect the accuracy of the apparent modulus values obtained at higher displacement rates.

To test whether the increase in apparent modulus with increasing displacement rate is solely due to the viscous 
response of the CSs or influenced by both viscous effects and residual strain, in total twenty individual CSs (five 
per displacement rate) were each compressed once up to about 50% strain at 0.5, 1, 2, or 5 μm/s. Figure 3e shows 
representative F-εz curves of four CSs compressed up to 50% strain at different displacement rates of 0.5, 1, 2, 
and 5 μm/s. A progressive increase in the slope of the F-εz curves with increasing displacement rate is observed, 
similar to the behavior seen when CSs were compressed consecutively (Fig. 3a). The F-εz data were fitted with 
the extended Tatara model and the apparent modulus of the twenty CSs was calculated (Eq. 11). Figure 3f shows 
a comparison of the apparent modulus between the CSs compressed consecutively (group C, grey boxplots) 
and the twenty individual CSs compressed once (group I, red boxplots) at 0.5, 1, 2, or 5 displacement rate µm/s. 
Interestingly, the increase in apparent modulus with displacement rate in the individual tests is almost identical 
to the increase observed in the consecutive loading tests, as evident from the slope shown in Fig. 3g. Notably, 
the apparent modulus of CSs tested individually (I) at different displacement rates is overall higher (Fig. 3f; red 
boxplots) than that of CSs tested consecutively (C; Fig. 3f; gray boxplots). We attribute this difference to the 
inherent heterogeneity between donors, as the individual tests (red boxplots) were conducted on CSs derived 
from a different donor than those used in the consecutive tests (gray boxplots). Additionally, to quantify the 
residual strain as a proxy for permanent deformation, we conducted loading-unloading-holding tests (Fig. 3h). 
Three different CSs were compressed to maximum forces of 20 µN, 40 µN and 80 µN at 1 µN/s loading rate, 
and then unloaded at the same rate, followed by a holding phase of up to 15 min. During the holding phase, 
the force was kept constant at 0.5 uN, equal to the preload applied before the loading phase. Figure 3h shows 
the resulting compressive strain over time. The residual strain ranges between 7% and 8%, which is relatively 
low compared to the overall applied strains of 26%, 36% and 58%. Taken together, these findings indicate that 
although permanent deformation is present, it does not have a substantial impact on the estimation of the 
apparent modulus. Therefore, the observed rate dependency is primarily due to the elastic and viscous response.

Apparent modulus correction via geometrical analysis
The apparent modulus estimation necessitates the assumption of a specific value for apparent Poisson’s ratio 
(ν). Some studies assume incompressibility (ν = 0.5)57, while others observed a volumetric change (ν < 0.5)58–61. 
Therefore, a precise determination of the apparent Poisson’s ratio is necessary for obtaining an accurate apparent 
modulus50,62.

The apparent modulus values presented in Fig. 2e and f were computed, assuming incompressibility, i.e., v 
= 0.5. As an example, fitting the extended Tatara model to the F-εz curve up to 50% strain, assuming v = 0.5, 
predicts an apparent modulus of 2.40 kPa (red, Fig. 4a) and a lateral strain at the horizontal diameter at z = R 
of 0.26 (red, Fig. 4b). Applying image segmentation and shape analysis (Figure S4) on images recorded during 
the compression of CSs, we measured the experimental lateral strain (black dots, n = 6, Fig.  4b). While the 
extended Tatara model performs a good fit (R2 > 0.99) with the F-εz curve over the entire range, it overestimates 
the measured lateral strain for compressive strains beyond 20% (εz < 0.2), indicating compressibility (Fig. 4a). 
Utilizing explicit numerical relationships (Eq. 23 and Eq. 24, Figure S5), we estimated an apparent Poisson’s ratio 
of 0.43, and consequently, the predicted lateral strain is in good agreement with the measured lateral strain (green, 
Fig. 4b). However, in the low strain regime (strain < 20%), the measured lateral strain is slightly underestimated 
by the extended Tatara model. This behavior was observed in all the CSs measured in this study (shaded area, 
Fig. 4b). Liu et al. observed a similar trend in the lateral strain of polyurethane spheres under compression63. 
Another possible explanation for this deviation at low strains can be the limitation in the force sensitivity of the 
cantilever (see paragraph 1 from Limitations and perspectives section). Finally, fitting the extended Tatara model 
to the F-εz data assuming apparent Poisson’s ratio of 0.43, an apparent modulus of 3.37 kPa was computed (green, 
Fig. 4a). The good fit of the extended Tatara model (R2 > 0.99) for both apparent Poisson’s ratios indicates that 
the model is robust in capturing the force-strain relationship of the data. The 40% increase in apparent modulus 
due to a change in apparent Poisson’s ratio from 0.5 to 0.43 underscores the importance of determining lateral 
expansion of the sample. We further assessed the influence of apparent Poisson’s ratio on the measured apparent 
modulus values. As shown in Fig. 4c, the apparent modulus increases with decreasing apparent Poisson’s ratio 
and its effect on calculated apparent modulus values becomes larger at higher compressive strains.

Limitations and perspectives
During the compression tests, we experienced experimental noise in the initial stages of contact, which is most 
likely responsible for the low performance (R2 < 0.95) of all contact models up to 15% strain. Although a preload 
of 0.5 µN was applied to the CS, the initial part of the F-εz curve is accompanied with more noise compared to 
the force resolution and sensitivity of the cantilever used. The cantilever used has an estimated stiffness of 0.55 
N/m and a force resolution of about 0.6 µN. A stiffer cantilever (i.e., of 2.4 N/m available from the manufacturer) 
offers lower force resolution, of about 3 µN, while a softer cantilever (of 0.15 N/m) offers higher force resolution 
of about 0.2 µΝ. Given these choices, the cantilever used here offers the highest possible measurement sensitivity 
throughout the whole force range of the tests (25 µN – 300 µN, Figure S6). Briefly, a cantilever too stiff, will have 
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small deflection and high noise, while a cantilever too soft will deflect without transmitting any compression to 
the sample. Force measurement sensitivity is optimal when sample and cantilever stiffnesses are well-matched. 
The ratio of cantilever deflection vs. base displacement (of the cantilever) provides a good estimate of the 
measurement sensitivity in cantilever-based force sensors64,65. The trade-off in cantilever stiffness necessitated 
choosing a cantilever capable of measuring the full range of forces applied with sufficient signal-to-noise ratio.

The extended Tatara model is built upon the constant volume and Poisson’s ratio assumptions. Furthermore, 
CSs are treated as spheres for volume calculations, which may not represent the true shape and volume. Five CSs 
were assessed, and in every case, image segmentation and shape analysis revealed a volume decrease of 2%–4.5% 
after compression to 50% strain, compared to the initial volume before loading. CSs are composed of cells, 
ECM and interstitial fluid66. These components have different material properties and are not homogenously 
distributed across the CS volume (spatial heterogeneity of structural components), which further adds to the 
complexity of CS mechanical behavior (Fig. 4d).

The model employed in this study assumes hyperelastic behavior, which constitutes a limitation. Our 
findings demonstrate that the mechanical response of CSs is displacement rate-dependent, due to the presence 
of viscoelastic effects, and, to a lesser extent, of permanent deformation. Consequently, the proposed model is 
not equipped to capture the time-dependent viscous behavior of CSs (or permanent deformation).

As a perspective, based on the results obtained in this study, several methodological improvements are 
proposed to enhance the accuracy of measuring and analyzing CSs. It is advisable to limit compression to 30% 
strain to prevent the onset of permanent deformations, which could compromise the validity of the results. 
Furthermore, it is crucial to integrate the actual geometry of the samples into the contact model, as the current 
approach assumes spherical symmetry, which may not accurately represent the true shape of the CSs. Lastly, 
conducting a comprehensive geometrical analysis to better determine the apparent Poisson’s ratio of the samples 
would provide a more precise characterization of their mechanical behavior, leading to improved agreement 
between experimental observations and theoretical models.

Conclusions
Here, we utilized a contact mechanics model—namely the extended Tatara model—to mechanically characterize 
CSs under large compressive deformations. We additionally report the shortcomings of using the Hertz, Ding 
and Tatara model (the latter not to be confused with the extended Tatara model) in accurately estimating the 
stiffness of CSs. The limitations of these three models are addressed by the extended Tatara model because it 
is built upon two assumptions that are, in many cases, necessary for CS mechanical characterization: (a) large 
deformation to account for the change in contact area due to lateral stretching of the CS and (b) nonlinear 
material behavior that considers the nonlinear mechanical properties of the structural components of CSs. 
Interestingly, by comparing the measured lateral strain, obtained from image analysis, with the prediction from 
the extended Tatara model, a correction for the apparent Poisson’s ratio was also needed to provide a better 
description of the deformation and thus CS measured stiffness. We envisage that such an improved analysis 
might provide a more accurate approach in determining the mechanical properties of CSs; this observation is of 
particular relevance in light of crucial mechanical cues, such as changes in mechanical properties integral to cell 
processes in health and disease.

Methods
Cell spheroids Preparation
Cardiac fibroblasts were obtained as outgrowths from surgical heart biopsy tissue from patients diagnosed 
with Hypertrophic Cardiomyopathy (HCM), as previously described67. The fibroblasts (1.5 × 106 per well) were 
seeded in AggreWell™800 Plates, pretreated with anti-adherence rinsing solution in Iscove’s Modified Dulbecco’s 
Medium (IMDM) containing 20% Fetal Bovine Serum (FBS), 1% Glutamine, 1% Pen/Strep and 10 ng/ml basic 
fibroblast growth factor (bFGF). Each well contains a standardized array of microwells 800 μm in size. The CSs 
were cultured for two days, frozen and stored at −80 °C until parallel-plate compression testing. The study was 
approved by the Ethical Committee of the Province of Alto Adige/South Tyrol (Nr. 5/2018) and the Regional 
Ethical Committee for the clinical experimentation of Tuscany (Nr. 19337_bio) and it conformed to the ethical 
guidelines of the declaration of Helsinki. All patients provided written informed consent.

Parallel-plate compression testing
In total, five CSs were mechanically assessed (on the same day) via parallel-plate compression using the CellScale 
MicroSquisher (CellScale, Ontario, Canada) and the corresponding SquisherJoy software. CSs were thawed and 
placed into the fluid bath test chamber (filled with sterile phosphate buffered saline (PBS) pH 7.4) in which 
parallel-plate compression took place. Each CS was compressed by a square stainless-steel flat plate fixed at 
the end of a 6 cm round tungsten cantilever with 0.2032 mm diameter. The cantilever was chosen based on the 
required force sensitivity (0.6 µN), while the stage and cameras were calibrated according to manufacturer’s 
instructions. CSs were compressed up to 50% apparent linear strain at subsequent displacement rates of 0.5, 1, 
2, and 5 μm/s, and released back to the original position (unloading speed) always using the same displacement 
rate. To calculate the apparent modulus, force and displacement data were fitted with four contact mechanics 
models that were implemented, namely, Hertz, Tatara, Ding, extended Tatara, in a custom MATLAB script 
(v. R2023a, MathWorks, Natick, MA, USA). The optimal apparent modulus was obtained for minimum error 
between the measured and predicted force values. The goodness of fit for each model was assessed using the 
coefficient of determination (R²) and the chi-squared (χ²) statistical test, performed with 95% confidence. For the 
χ² analysis, the uncertainty in force measurements was estimated by considering the resolution of the cantilever 
and the accuracy of the force transducer. Unless otherwise specified, apparent Poisson’s ratio of 0.5 was assumed.
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Contact mechanics theories for the F-εz curve modeling
To estimate the stiffness of the CSs, the force-displacement data was assessed by contact mechanics models. 
Table S1 summarizes the assumptions of the four contact mechanics models used in this study.

According to the elasticity theory, when an elastic half-space is subjected to a concentrated compressive force 
(F) along the z-axis, the vertical displacement (w) and radial displacement (u) can be described in cylindrical 
coordinates (z, r) as follows68,69:

	

w (z, r) = F
2π E


 (1 + ν ) z2

(r2 + z2)
3/

2
+

2
(
1 − ν 2)

(r2 + z2)
1/

2


� (1)

	

u (z, r) = (1 + ν ) F
2π ER


 zr2

(r2 + z2)
3/

2
− (1 − 2ν )


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(r2 + z2)
1/

2





� (2)

where ν is the Poisson’s ratio, R the radius of the sphere before compression and E is the apparent modulus of 
the sample.

Hertz model
For z = 0, Eq. (1) corresponds to the Hertzian solution. The Hertz model relies on the following assumptions: 
(i) the surface is an infinitely large half-space elastic body (area of contact is much smaller than the radius of 
the body), (ii) strains are small and limited within the elastic region, and (iii) surfaces are continuous and non-
conforming. For an elastic sphere under parallel plate compression, the relationship between the force, F, and the 
displacement, δ, according to Hertz, is given by70:

	
F = 4

3
√

RE′ δ
3/

2 � (3)

where δ is half the measured displacement D which represents the total CS displacement (the sum of the top and 
bottom deformations). The reduced modulus, E′, for a plate much stiffer than the sample (Eplate ≫ E) is given 
by71–73:

	
E′ = E

1 − ν 2 � (4)

Tatara model
To address the non-half-space nature of compressing spheres, Tatara introduced the following relationship 
between the compressive displacement and force74,75:

	
δ =

3
(
1 − v2)

F
4Eα

− f (α ) F
π E

� (5)

where α is the Hertzian contact radius and f(α) is given by:

	

f (a) = 2 (1 + v) R2

(
α 2 + 4R2

)3/
2

+ 1 − v2

(
α 2 + 4R2

)1/
2
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In Eq. (5), the first term corresponds to the Hertzian solution while the second term was introduced due to the 
reaction force acting on the opposite contact surface (z = 2R) to account for larger deformations. Equations (5) 
and (6) provide an implicit form of Tatara’s model. The Hertzian contact radius is calculated geometrically as a 
function of the compressive displacement76. However, here, the following equation, adopted from Wang et al.77, 
is used:

	
α

2R
= c1

δ

R
+ 0.5

(
δ

R

)1/
2 � (7)

where,

	 c1 = −0.0151181ν 2 − 0.012747ν + 0.039931� (8)

Ding model
When a CS undergoes notable deformation, the linear elastic assumption in the Hertzian theory cannot be 
considered valid. Ding addressed this assumption by taking into account the hyperelastic behavior of cells49,78. 
The model was derived numerically using the neo-Hookean constitutive law. According to the dimensional 
analysis, the correlation between the force and compressive displacement is given by79:
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where ΠnH is a dimensionless function depending on the size ratio β (β = radius of indenter/radius of sample). 
For the case of an elastic sphere compressed by a rigid flat plate, Eq. (9) reduces to the following Eq. 880:

	
F = 4

3 E′ √
R δ

3/
2

(
1 + 0.5δ

R

)
� (10)

Extended Tatara model
Tatara extended his previous model38 to account for even larger deformations considering the non-linear 
behavior of the material. Based on the Mooney–Rivlin hyperelastic material law, the strain-dependent apparent 
modulus is given as a function of the compressive strain εz by38:

	
E = E0

1 − ϵ z + (ϵ z)2/
3

(1 − ϵ z)2
� (11)

where E0 is the apparent modulus at εz = 0. At large strains, the change in shape due to deformations in the 
transverse direction cannot be neglected. Another benefit of this model is that it enables the calculation of 
this lateral expansion. The following set of constitutive equations provide an implicit form of Tatara’s extended 
model63:
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where U(z, α) is the lateral expansion at the vertical position z, U(R, α) is the lateral expansion at the horizontal 
diameter at z = R and α′ is the Tatara contact radius. Figure 1c depicts the geometrical interconnections among 
the aforementioned variables. The main drawback of this theory is that the governing equations cannot be 
solved analytically. To address the issue, an explicit relationship between the compressive displacement δ and 
the Hertzian contact radius α was used77:

	
α

2R
= d1

(
δ

R

)3/
2 + 0.5
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δ

R
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where,

	
d1 = 0.1787v − 0.07141

v3 − 0.6737v2 − 0.8102v + 0.6045 � (22)
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Cell spheroid image segmentation and shape analysis
The deformation of the CSs was captured through camera recordings and the data acquisition frequency was 
set to 1 Hz. Image analysis was performed on these image datasets using a custom MATLAB script. The script 
includes a series of preprocessing steps such as cropping, grayscale conversion, and manual thresholding, 
followed by morphological operations and the Canny edge detection algorithm to remove noise artifacts 
and isolate the object, respectively. The lateral expansion of the CS U(R, α) was estimated after boundaries 
identification by using a bounding box. The area and volume of the CS were measured by fitting an ellipse based 
on the dimensions of the bounding box. All the images were processed using consistent parameters. The step-by-
step automated workflow for detecting and analyzing the CSs is depicted in Figure S4. To estimate the apparent 
Poisson’s ratio of the CSs, an explicit numerical relationship was adopted from63:

For U* (R,α) ≥ 0.0485

	 ν
(
U* (R,α)

)
= 81.163

(
U* (R,α)

)3
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(
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(
U* (R,α)

)
+ 0.04242� (23)

For U* (R,α) < 0.0485
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where U*(R, α) is the dimensionless lateral expansion (U(R, α)/R) at the horizontal diameter at z = R at 40% 
dimensionless approach ξ (Figure S5).

Cell spheroid staining and confocal microscopy
CSs were stained using cell body BioTracker green stain (Sigma-Aldrich, 5µM), Hoechst 33342 stain (Thermo 
Fisher Scientific, 10 µg/mL) and Picrosirius Red (Morphisto, 0.1% Sirius red in saturated picric acid), according 
to manufacturer’s protocols. In short, live CSs were stained for 30 min with BioTracker green at 37 °C with 5% 
CO2 incubation. Upon staining fresh medium was replenished twice to hydrolyze free dye. After a PBS wash, CSs 
were fixed with 4% formaldehyde for 30 min and permeabilized with 0.25% Triton X solution for 45 min at room 
temperature. After a subsequent wash, picrosirius red stain was applied for 2 h. Hoechst staining was added after 
washing out picrosirius-red for 30 min, followed by confocal imaging.

Confocal microscopy of CSs was carried out with a Zeiss LSM800 confocal microscope, using a plan-
apochromat air x10, 0.45 NA objective (Zeiss), operated by ZEN blue software. Z-stacks of individual CSs were 
captured covering a 70 μm Z-range, with 5 μm offset between slices. Maximum intensity projections of the stacks 
(Fig. 4d) were obtained using ZEN blue software.

Data availability
The MATLAB scripts used for data and image analysis are available from the corresponding author on request.
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