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We present and formalize a general approach for profiling workload by leveraging only a priori available static metadata to supply

appropriate resource needs. Understanding the requirements and characteristics of a workload’s runtime is essential. Profiles are

essential for the platform (or infrastructure) provider because they want to ensure that Service Level Agreements and their objectives

(SLOs) are fulfilled and, at the same time, avoid allocating too many resources to the workload. When the infrastructure to manage is

the computing continuum (i.e., from IoT to Edge to Cloud nodes), there is a big problem of placement and tradeoff or distribution

and performance. Still, existing techniques either rely on static predictions or runtime profiling, which are proven to deliver poor

performance in runtime environments or require laborious mechanisms to produce fast and reliable evaluations. We want to propose a

new approach for it. Our profile combines the information from past execution traces with the related workload metadata, equipping

an infrastructure orchestrator with a fast and precise association of newly submitted workloads. We differentiate from previous works

because we extract the profile group metadata saliency from the groups generated by grouping similar runtime behavior. We first

formalize its functioning and its main components. Subsequently, we implement and empirically analyze our proposed technique on

two public data sources: Alibaba cloud machine learning workloads and Google cluster data. Despite relying on partially anonymized

or obscured information, the approach provides accurate estimates of workload runtime behavior in real-time.
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1 INTRODUCTION

Resource management in shared and virtualized systems across the Computing Continuum poses a major challenge

for providers and operators [48]. The key question is: how can we ensure Service Level Objectives (SLOs) [72] within
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2 Morichetta et al.

this complex and interconnected infrastructure while optimizing its usage? Modern orchestration techniques address

these challenges through scheduling workloads, resource placement, overcommitting and oversubscribing [20], or

handling resource bursts [51] and live migrations. In this context, profiling workloads plays a crucial role by helping to

analyze and understand them. By reducing overprovisioning, profiling helps maintain efficiency while ensuring that

stakeholders’ (e.g., application developers) goals are met.

Workload profiling: state of the art and limitations. The main approaches to workload profiling can be classified

into one of two general categories: (a) they either attempt to exploit available information about past workload executions

(historical data) to learn the workload’s characteristics or (b) they attempt to collect information about the workload’s

properties by actively observing it - usually by running the workload in a sandbox and probing it with synthetic traffic.

Furthermore, they make at least one of the following assumptions: (i) Environment consistency - that is, they assume that

the sandboxed execution environment used for profiling faithfully resembles the production execution environment;

(ii) Performance consistency - that is, the runtime performance of similar workloads will remain consistent over time.

(iii) Time consistency - that is, there are no time constraints on how long it takes to make profiling decisions, i.e., the

workload profile can be created ad hoc when needed; (iv) Occurrence consistency - that is, the same workload will run

multiple times, and it will reoccur in the same shared computing environment in the (near) future.

Unfortunately, these consistency assumptions typically do not hold in practice. The reasons are multiple. (i) The

execution environment is typically inconsistent across multiple workload runs. The primary reason is the infrastruc-

ture heterogeneity resulting from software and hardware updates, such as adding a new generation processor [23].

Additionally, due to the “noisy neighbors” phenomenon, the existing physical resources available in a host node can

significantly vary. This scenario can cause significant variance in workload performance, rendering the profiles useless.

(ii) Further, several authors have pointed out that the runtime performance of similar workloads is not consistent [13]

during their lifetime. It typically varies with time, even if the same preconditions are met, such as using the same

input data [26, 54]. (iii) The time allocated to the profiler to generate the workload’s profile can significantly vary. It is

use-case specific and typically inconsistent for different resource provisioning techniques. For example, time spent

profiling a workload while it is pending to be scheduled must be orders of magnitude shorter than profiling a workload

to prevent a bootstrapping problem when predicting SLO violations. (iv) Finally, previous work has shown that most

general-purpose workloads are recurrent only to a limited degree, that is, only between 40% and 60% of workloads

are reported to be recurrent [16, 24, 26]. By only looking at a single workload’s history, approximately every other

workload will fail to be successfully profiled.

Research challenges and requirements. Based on these limitations, we identify three main research challenges:

(RC-1) How can we derive accurate workload profiles in the face of a small sample size caused by non-recurrent

workloads?

(RC-2) How can we represent profiled characteristics so that they can capture the workloads’ performance variance?

(RC-3) How can we make the profiling process general, non-invasive, and transparent so that it can seamlessly facilitate

various resource provisioning and management techniques?

To address the RC-1, we take a pragmatic approach by continuously analyzing all available workloads from a shared

infrastructure, grouping together the ones that show a comparable behavior at runtime. Our approach only relies on

de-facto standard telemetry data, which is typically readily available for any virtualized computing infrastructure.

Furthermore, to make our approach generic, it must not rely on any particular assumption or precondition regarding the

data and its preprocessing or preparation. Tackling RC-2 requires a novel view of profile representation, moving away
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Fig. 1. Overview of the PolarisProfiler’s model.

from traditional profiles, which attempt to represent the workload’s runtime properties as static profile characteristics.

The profile groups should encapsulate the runtime telemetry of various workload types that show homogeneous

behavior. This characteristic allows to incorporate more detailed statistics, naturally reflecting workloads’ performance

variance. Finally, we need to build agile profiling decisions to handle the RC-3 and make our approach generally useful

for various resource provisioning and management techniques. The profiling method should seamlessly associate

workloads with profile groups upon arrival, ensuring non-invasiveness and enabling transparent processing. Moreover,

the profile assignment should rely on widely accepted and well-known information, such as workload metadata. The

overall aim is to build a profiling method that doesn’t just try to model the behavior of one type of workload either

looking at its behavior at runtime or by modeling its previous runs.

PolarisProfiler – a novel profiling approach that leverages a priori available, static metadata to enable generic and

immediate workload profiling based on historic execution traces – offers a solution to these challenges. We use the term

a priori to specify that we collect metadata information available at the submission (deployment or provisioning) phase.

Examples are user data, application data, and OS parameters. This information does not change during the workload

runtime; therefore, it is static ( invariant, unchanging). Figure 1 gives an overview of the approach. Once a workload

is submitted to the managed platform, it is first associated with a profile group; subsequently, it is assigned a profile

detailing its expected runtime characteristics. At this point, the orchestrator can make informed decisions on where to

schedule and how to manage the workload. We achieve this through a generic workload profile generator component

that automatically derives workload profiles based only on the readily available resource usage data. It does not rely on

any specific assumptions or tailored feature engineering. The model represents dynamic profiles, which can capture the

dynamic nature of the workload’s runtime properties. Our dynamic profiles can be continuously updated, even after

initial workload profiling, to reflect the workload’s varying performance over time. The metadata-based profile classifier

efficiently classifies new workloads and assigns runtime profiles through available, a priori, static metadata. This way,

new workloads get nearly instantly assigned a profile that includes its expected runtime behavior. We achieve that

thanks to profiles created based on similarity in resource usage, thus providing the ability to extract trends, anomalies,

and seasonal patterns. We show its potential through a comprehensive case study on two real-world, open-source traces.

In this paper, we build on top of previous results, presented in [44] with the following contributions.
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4 Morichetta et al.

(1) We introduce a formal representation of the PolarisProfiler model, extending and generalizing the previous

definition of our solution. Through block schemas and flowcharts, we describe the components and their

interactions to guarantee generalizability.

(2) We introduce a quality metric, ACQUIRES, to evaluate profiles based on both profile-specific and general features

and to manage the lifecycle of our system.

(3) We introduce the functioning of the feedback loop. This aspect includes experimenting with new workloads that

arrive in the system. It shows how this approach contributes to updating the profiles and keeping the system

representative of the workload.

(4) We expand our case study analysis by incorporating additional metrics (e.g., CPU, GPU, memory usage) and

evaluating it on a dataset ten times larger than before.

(5) We extend our analysis to estimate the capability of the proposed approach to work in different scenarios by

leveraging the Google cluster data [66] traces.

Despite only relying on static, a priori metadata, our methodology yields an overall error rate below 50% for the

93% of classified workloads for the Alibaba dataset. These results are competitive with the state-of-the-art approaches,

with the difference that their specific focus is the estimation of AI workload duration. Similar performance is achieved

for the Google cluster dataset, showing the generalizability of the approach. We publicly release the code to allow

transparency and reproducibility of our results
1
.

The rest of this paper is organized as follows: Section 2 introduces the PolarisProfiler model and methodology,

detailing the components and interactions within the profiling framework. Section 3 presents the main case study,

including the Alibaba dataset description, methodology, evaluation metrics, and results. In Section 4 we explore how

the PolarisProfiler can work with non-strictly machine learning workload. In Section 5, we review related work in the

field of workload profiling and resource management. Section 7 concludes the paper, summarizing the key findings and

contributions of the study.

2 POLARISPROFILER MODEL & METHODOLOGY
This section presents the core principles of our profiling methodology, PolarisProfiler. An overview of the model is

summarized by Figure 2. When a stakeholder, such as an application owner, submits workloads to the Computing

Continuum platform, standard metadata is attached. This metadata describes the workload’s nature and requirements,

such as its type (e.g., a machine learning task) and the associated resource characteristics (e.g., the virtual machine

type and resource allocation). The metadata accompanying the submitted workload serves as the input for the Profile

Classifier module. The Profile Classifier uses this metadata to assign the workload to a specific profile group. This

process involves labeling the workload as belonging to the group that exhibits the most similar metadata. The Profile

Generator creates profile groups.

2.1 Profile Generator

The Profile Generator is the first and the central element to develop in our approach. Its role is essential as it groups

together various types of workload workload that showed comparable runtime behavior. The grouping is achieved

through historical workloads usage traces to address RC-2, i.e., describe the workloads’ runtime properties. The traces

can include CPU, memory, GPU, disk usage, or execution duration measures. Figure 3 shows the various steps of its

1
https://github.com/polaris-slo-cloud/Profiling/edit/master/ml_data-profiling/README.md
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Fig. 2. Visual representation of the PolarisProfiler components, actors and their interactions in the model lifecycle.

generation. Whatever the defined set of routines for profile groups generation, an essential step is to evaluate the

categorization results; the Supervisor component takes care of this. At the end of the evaluation process, the selected

Profile Generator mechanism produces groups to which new workload will be assigned. These groups contain relevant

and specific runtime characteristics and metadata. To formalize the functioning of the Profile Generator, we define its

components and objectives mathematically, ensuring a foundation for grouping workloads through a tool-independent

design. The goal of the Profile Generator is to cluster workloads 𝐷 = {𝑤1,𝑤2, . . . ,𝑤𝑛} into meaningful profile groups

based on their runtime behaviors. Each workload𝑤𝑖 is represented as𝑤𝑖 = (𝑟 (𝑤𝑖 ),𝑚(𝑤𝑖 )),where 𝑟 (𝑤𝑖 ) = {𝑟1, 𝑟2, . . . , 𝑟𝑙 }
are the runtime features (e.g., CPU usage, memory usage, execution duration), and 𝑚(𝑤𝑖 ) = {𝑚1,𝑚2, . . . ,𝑚𝑘 } are
metadata features (e.g., application type, user). The Profile Generator utilizes only the runtime features 𝑟 (𝑤𝑖 ) for
clustering. Clustering is based on a distance metric 𝑑 (𝑤𝑖 ,𝑤 𝑗 ), which quantifies the dissimilarity between workloads

based on their runtime features 𝑑 (𝑤𝑖 ,𝑤 𝑗 ) = dist(𝑟 (𝑤𝑖 ), 𝑟 (𝑤 𝑗 )), where dist can be adjusted to the specific use case or

picked among notorious ones, as Euclidean distance, Manhattan distance, or Cosine distance. Alternatively, a similarity

measure 𝑠 (𝑤𝑖 ,𝑤 𝑗 ) can be derived as 𝑠 (𝑤𝑖 ,𝑤 𝑗 ) = 1 − 𝑑 (𝑤𝑖 ,𝑤𝑗 )
max𝑤𝑎,𝑤𝑏 ∈𝐷 𝑑 (𝑤𝑎,𝑤𝑏 ) .

Clustering objective. The objective of the Profile Generator is to partition 𝐷 into an a priori or empirically defined

number 𝑘 of disjoint profile groups {𝐶1,𝐶2, . . . ,𝐶𝑘 } such that

⋃𝑘
𝑖=1𝐶𝑖 = 𝐷 and 𝐶𝑖 ∩ 𝐶 𝑗 = ∅ for 𝑖 ≠ 𝑗, and the

intra-cluster distances are minimized, i.e., argmin{𝐶1,...,𝐶𝑘 }
∑𝑘
𝑖=1

1

|𝐶𝑖 |
∑

𝑤𝑎,𝑤𝑏 ∈𝐶𝑖
𝑑 (𝑤𝑎,𝑤𝑏 ) .Workloads that do not meet

a similarity threshold with any cluster are identified as outliers Outliers = {𝑤 ∈ 𝐷 | min𝑖 𝑑 (𝑤, 𝜇𝑖 ) > 𝜏}, where 𝜏 is the

distance threshold.

Profile group representation. Each profile group 𝐶𝑖 also includes various statistics of the workloads’ runtime features

(e.g., mean, variance). For example, the emerging runtime characteristics of a profile group can be represented as
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the mean of the runtime features of all workloads in the profile group (centroid) 𝜇𝑖 = 1

|𝐶𝑖 |
∑

𝑤∈𝐶𝑖
𝑟 (𝑤), or the one

with minimal average distance to all the other workload runtimes (medoid) 𝜇𝑖 = argmin𝑤∈𝐶𝑖

∑
𝑤′∈𝐶𝑖

𝑑 (𝑤,𝑤 ′). These
statistics may differ for each feature; for instance 𝑆𝐶𝑖

(𝑟 𝑗 ) = {percentile𝑝 (𝑟 𝑗 ),mean(𝑟 𝑗 ),median(𝑟 𝑗 ) | 𝑝 ∈ P}, where 𝑟 𝑗
is a runtime feature, P is the set of desired percentiles (e.g., 95th percentile for CPU usage, 20th percentile for memory

usage), and 𝑆𝐶𝑖
(𝑟 𝑗 ) is the set of chosen statistics for 𝑟 𝑗 . Furthermore, the profile group provides the metadata features

𝑚(𝑤) for all workloads in the cluster. These metadata features serve as input for the Profile Classifier.

General applicability. This formalization does not prescribe specific clustering techniques, allowing flexibility. The

first and more basic approach is to use manual labeling, i.e., by letting domain experts define a set of rules. Although

formally feasible and appropriate for small, specific use cases, at-scale manual labeling is an impractical solution [1, 62],

and rules updating can be cumbersome. When some labels or rules are available, a possible profiling routine can involve

semi-supervised techniques [31]. That way, we can learn underlying patterns in the data through a small set of labeled

entries. Still, label definition is challenging and always relies on static rules. Using unsupervised learning as well-known

clustering algorithms as K-Means or DBSCAN [8, 32, 52, 53, 63, 68] (eventually with the help of autoencoders [50])

represent for us the preferred solution as they can discover patterns without any previous knowledge.

Summary. In summary, using the introduced mechanisms and techniques, the Profile Generator addresses RC-1 and

RC-2 and provides the input for RC-3. The appeal of this design is its adaptability. The Profile Generator leverages

Manuscript submitted to ACM
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runtime features to generate profile groups that characterize workload behaviors, providing a flexible and generalizable

framework adaptable to various clustering methods and tools. By focusing exclusively on runtime features, it ensures

that profiles are directly reflective of execution properties, forming a solid basis for subsequent workload management.

We provide the validation through empirical testing on two well-known datasets, Alibaba and Google cluster traces,

showing how two different approaches can work on different data.

2.2 Profile Classifier
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Rules definition

List of suitable profile
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Fig. 4. Flowchart diagram of the definition of the Profile Classifier.

The Profile Classifier is responsible for assigning new workloads to existing profile groups based on metadata

features. This process should be fast, scalable, and flexible. It builds upon the profile groups generated by the Profile

Generator, leveraging the metadata of workloads within these groups for training. Figure 4 highlights the main steps.

This approach highlights its novelty, as it trains exclusively on metadata features extracted from finalized profile groups.

Profile assignment objective. Let 𝐶 = {𝐶1,𝐶2, . . . ,𝐶𝑘 } be the set of profile groups generated by the Profile Generator,

and let 𝑚(𝑤) represent the metadata features of a workload 𝑤 . The Profile Classifier is a function 𝑓 : M → C,
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where M is the space of metadata features and C is the set of profile groups. For a new workload 𝑤 , the classifier

predicts the profile group 𝐶𝑖 with 𝑓 (𝑚(𝑤)) = 𝐶𝑖 where 𝐶𝑖 ∈ C. Therefore, at runtime, the classifier assigns a new

workload to a profile group based only on its metadata features𝑚(𝑤), ensuring real-time efficiency and scalability.

The training dataset for the classifier consists of metadata features𝑚(𝑤) and their associated profile group labels 𝐶𝑖 :

Dtrain = {(𝑚(𝑤),𝐶𝑖 ) | 𝑤 ∈ 𝐶𝑖 and 𝐶𝑖 ∈ 𝐶}.

Properties and representation of the Profile Classifier. The Profile Classifier must satisfy key properties. First, the

classifier must assign workloads to the correct profile group with high accuracy. Validation involves computing the

classification accuracy and other related metric, as for example F-Score on a test set |Dtest |. Secondly, the classifier
must handle large numbers of metadata features and workloads efficiently at scale. Finally, the classifier must provide

insights into how metadata features contribute to its decisions, ensuring transparency. This aspect can be achieved

through interpretability techniques like SHAP values.

General applicability. The Profile Classifier is defined independently of specific implementation details. The two

core elements are: (1) the inputs, i.e., the metadata features𝑚(𝑤) of a workload, and (2) the outputs, i.e., the predicted

profile group 𝐶𝑖 for a workload𝑤𝑘 . This abstraction ensures the conceptual correctness of the model while allowing

flexibility in implementation. The Profile Classifier framework can indeed support various classification techniques,

making it adaptable to different tools and technologies. It could be implemented using a rule-based classifiers, where

it would leverage explicit rules derived from domain knowledge to assign workloads to profile groups. Alternatively,

it could be implemented as a machine learning models, for example by employing decision trees, random forests, or

gradient boosting models (e.g., XGBoost). Finally, it could also utilize deep learning for high-dimensional and complex

metadata representations. By separating the formal framework from the implementation, the Profile Classifier remains

robust and versatile across diverse application scenarios.

Summary. The Profile Classifier leverages the metadata features of profile groups generated by the Profile Generator,

enabling accurate and interpretable assignment of newworkloads. At runtime, it assigns newworkloads to profile groups

based solely on their metadata, ensuring scalability and real-time applicability. Its formalization ensures mathematical

rigor, conceptual abstraction, and tool independence, making it adaptable to various classification techniques and

real-world scenarios.

2.3 Feedback loop

The Feedback Loop is designed to maintain the accuracy and representativeness of the profile groups and the Profile

Classifier over time. It dynamically adjusts the system based on the continuous influx of workloads and their runtime

outcomes. This ensures that the profile groups remain representative and the classifier continues to assign workloads

accurately. Key variables in the Feedback Loop include the frequency of updates to profile groups and the retraining

of the Profile Classifier. These updates are triggered by specific conditions, such as the number of violations or the

emergence of many outliers. Figure ?? highlights this perspective.

Feedback loop objective. Let𝑇 be the set of discrete time points {𝑡1, 𝑡2, ..., 𝑡𝑛} where the system operates. At each time

𝑡 , 𝐶 (𝑡) represents the set of profile groups, 𝑓 (𝑡) represents the classifier,𝑊 (𝑡) represents the set of active workloads.
For a workload𝑤 at time 𝑡 , a violation occurs when a significant deviation between a workload’s actual runtime feature

values and the expected values derived from its assigned profile group. Specifically, for a runtime feature 𝑟 𝑗 . In detail, we
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express it as𝑉 (𝑤, 𝑡) = ∨
𝑗 ( |𝑟 𝑗 (𝑤, 𝑡) − 𝐸 [𝑟 𝑗 (𝐶𝑖 )] | > 𝛿 𝑗 ), where 𝑟 𝑗 (𝑤, 𝑡) is the actual resource usage 𝑗 at time 𝑡 ,𝐸 [𝑟 𝑗 (𝐶𝑖 )]

is the expected usage from profile group 𝐶𝑖 , and 𝛿 𝑗 is a deviation threshold for the runtime feature 𝑟 𝑗 .

The Feedback Loop triggers updates when either of the following conditions is met: (1) the percentage of violations
𝑉 (𝑤, 𝑡) exceeds a violation rate threshold 𝜏𝑣 during a time window Δ𝑡 . The equation is 𝑉𝑅(𝑡,Δ𝑡) > 𝜏𝑣 , where the

violation rate is expressed as𝑉𝑅(𝑡,Δ𝑡) = | {𝑤∈𝑊 (𝑡−Δ𝑡,𝑡 ) :𝑉 (𝑤,𝑡 ) } |
|𝑊 (𝑡−Δ𝑡,𝑡 ) | . (2) the number of outliers, i.e., workloads not assigned

to a profile group grows over a threshold: |𝐷𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 (𝑡) |/|𝐷 (𝑡) | > 𝜏𝑜 . (3) the profile 𝐶𝑖 is not update for a while, i.e.,
its freshness decays after some time. We express it as 𝐹 (𝐶𝑖 , 𝑡) < 𝑡𝑎𝑢𝑓 , where 𝐹 (𝐶𝑖 , 𝑡) = exp(−𝜆(𝑡 − 𝑡𝑙𝑎𝑠𝑡_𝑢𝑝𝑑𝑎𝑡𝑒 (𝐶𝑖 ))),
where 𝑡𝑙𝑎𝑠𝑡_𝑢𝑝𝑑𝑎𝑡𝑒 (𝐶𝑖 ) is the last update time of profile 𝐶𝑖 and 𝜆 is a decay parameter. When one of these violations

happen, i.e., when𝑈𝑇 (𝑡) is true, according to:𝑈𝑇 (𝑡) = ∨
𝑉𝑅(𝑡,Δ𝑡) > 𝜏𝑣, Violation threshold

min(𝐶𝑆 (𝐶𝑖 , 𝑡)) < 𝜏𝑓 , Freshness threshold

|𝐷𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 (𝑡) |/|𝐷 (𝑡) | > 𝜏𝑜 , Outlier threshold.

Then, we trigger the update of the Profile Generator. That means When 𝑈𝑇 (𝑡) is true, we trigger a new reclustering

for identifying new profile groups. Specifically, the new profile groups 𝐶 (𝑡 + 1) = Recluster(𝐷 (𝑡)), where, 𝐷 (𝑡) is
the complete set of workloads up to time 𝑡 and Recluster is the clustering algorithm (e.g., HDBSCAN). The final

configuration 𝐶 (𝑡 + 1) is persisted when ACQUIRES(𝑡) > 𝜏𝑞𝑢𝑎𝑙𝑖𝑡𝑦

Abstract representation of the feedback loop. The Feedback Loop must satisfy the following properties. The first

one is adaptivity; that means, the system must adapt to changes in workload characteristics over time. The second

characteristic is stability, which implies that the update frequency must be balanced, avoiding excessive retraining or
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clustering. Finally, these updates must be accurate. In simple words, the update must improve the profile groups and, in

general, reduce the number of violations. These properties can be guaranteed through some empirical testing, e.g., by

performing sensitivity analysis to determine optimal thresholds 𝜏𝑣 and 𝜏𝑜 .

General applicability. The Feedback Loop is defined abstractly as a monitoring and updating mechanism with three

components. The input is represented by the workload outcomes, including runtime feature values and outlier detection.

The outputs are updated profile groups and retrained Profile Classifier. The process happens based on triggers, i.e.,

conditions based on quality or freshness violations, or outliers. This abstraction separates the monitoring logic from

specific implementation details, ensuring flexibility. The Feedback Loop framework supports various implementation

techniques. For example, it can use rule-based thresholds or statistical models to detect deviations or more complex

mathematical definitions.

Summary. The Feedback Loop ensures the ongoing accuracy and representativeness of profile groups and the Profile

Classifier by dynamically monitoring workload outcomes and triggering updates based on violations and outliers. Its

formalization supports mathematical rigor, abstract representation, and tool independence, making it robust and flexible

for real-world deployment.

2.3.1 Supervisor metrics.

ACQUIRES. To provide a unified measure of profile clustering performance, we develop the ACQUIRES (Algorithm’s

Cluster QualIty-REcall Score) evaluation metric. This metric combines three complementary components, each of which

carefully defined and normalized to measure distinct aspects of cluster quality:

(1) Outliers reduction: It measures the fraction of data points |O| classified as outliers, relative to the total number of

points |𝐷 |. We aim at minimizing the number of outliers to ensure that the profile groups are representative of a

larger fraction of the dataset. A lower outlier fraction results in a higher score. It is computed as: Outliersscore =

1 − |O |
|𝐷 | .

(2) Cluster count correctness: It evaluates how close the actual number of generated clusters C𝑎𝑐𝑡𝑢𝑎𝑙 matches the

ideal number C𝑜𝑝𝑡𝑖𝑚𝑎𝑙
. The metric measures the relative deviation, ensuring that a perfect match yields a score

of 1, while larger deviations lower the score. Accurate cluster counts is essential for density-based clustering

methods (e.g., DBSCAN) as it can’t predefined. Furthermore, we aim at penalizing over- or under-clustering,

promoting balanced partitions. The equation is |C|score = 1 − |C𝑜𝑝𝑡𝑖𝑚𝑎𝑙−C𝑎𝑐𝑡𝑢𝑎𝑙 |
𝑚𝑎𝑥 (C𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ,C𝑎𝑐𝑡𝑢𝑎𝑙 ) .

(3) Internal cohesion: We leverage the average silhouette score S, a widely accepted measure [25, 43, 60] of how

well samples fit within their assigned clusters, to quantify internal cluster quality. Higher mean silhouette scores

indicate more coherent clusters. In detail: 𝑆𝐶score =𝑚𝑒𝑎𝑛(S) .

Each of these components focuses on a different, complementary aspect of clustering performance—outlier mini-

mization, adherence to a desired cluster count, and internal coherence. To consolidate them into a single measure, we

combine the sub-scores in a linear and equally weighted fashion. Assigning equal weights𝑤1,𝑤2,𝑤3 =
1

3
reflects the

initial assumption that all three dimensions—number of clusters, outliers, and cohesion—are of equal importance. This

choice can later be refined or adjusted depending on the specific use case. For example, in the case of prototype-based

clustering methods (e.g., K-Means),𝑤1 and𝑤2 should be set to 0 as there are never outliers and the optimal C𝑜𝑝𝑡𝑖𝑚𝑎𝑙
is

defined in the initialization phase. The final equation is: ACQUIRES = 𝑤1 |C|score +𝑤2Outliersscore +𝑤3𝑆𝐶score .
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With ACQUIRES we offer a simple metric, easy to compute and interpret but at the same time that combines multiple

clustering dimensions for robust evaluations. This approach to metric design is in line with recent efforts to develop

composite clustering metrics that balance multiple dimensions of quality simultaneously, and not only rely on the simple

silhouette score [64]. For instance, the Hybrid Clustering Score (HCS) [40] similarly integrates well-known clustering

indices (including the silhouette score) to provide a single metric that can be used for hyperparameter optimization. By

adopting a comparable rationale, ACQUIRES is transparent, interpretable, and flexible, allowing it to be applied across a

range of clustering tasks and domains. While this metric proves itself useful for the followed approach, future work

may consider exploring alternative formulations—such as multiplicative combinations or logarithmic transformations.

Profile Classifier. Concerning the Profile Classifier, the system can leverage the classic performance scores used for

classification. In particular, the F-Score provides a good estimation of the label prediction distribution in a multi-label

classification problem. In addition, we emphasize measuring other relevant parameters, such as execution time and

resource consumption. These aspects are essential when dealing with real-time systems. Most importantly, it is crucial

to have an interpretation of the results. This characteristic is of uttermost importance when dealing with the automation

of complex decisions. Therefore, using model-interpretability tools aids the understanding of the decisions that the

model has been taking.

2.4 Impact for the infrastructure orchestration

PolarisProfiler
Profile classifier
routine

New workload arrives

Completed
workloads 

data

Workload ends

End

Workload runtime
management pipelineNoIs

PolarisProfiler
initialized?

Profiles

Profile classifier

Extract resources
consumption

measures

Workload behavior
prediction

Assign profile label

Profiler algorithm PolarisProfiler 
Supervisor

Fig. 6. Flowchart diagram from the perspective of the application’s workload.

Figure 6 depicts in detail the information and action flow from the application’s perspective. The workload, when

submitted, gets into the PolarisProfiler routine. Here, it receives a label from the Profile Classifier, which pairs it with a

specific profile. The system uses the information gathered from that profile to predict essential aspects of the workload
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execution, such as its duration and resource consumption. The predicted outlook feeds the runtime management

pipeline with rich information that it can use for making better-informed decisions. For example, it can help the

scheduling process by facilitating more informed decisions [49]. Knowing the profile of a workload a priori can help

in sampling more suitable machines [11] and filtering and scoring the ones best tailored to that model to serve the

request. Furthermore, *aaS solutions must satisfy users’ SLOs [48, 55]. In this regard, achieving it in the bootstrapping

phase takes work. There is a need to bring an application online and satisfy the defined SLOs by leveraging only a little

information. In this context, the PolarisProfiler provides the information needed to assess the application behavior. If

we consider FaaS, there is a gap in how to tailor the correct resources from a heterogenous infrastructure [47, 56, 76]

for specific functions. Here, the PolarisProfiler aids in pairing the function characteristics with the most appropriate

node configuration by highlighting patterns in node usage and application behavior.

2.5 Scalability considerations

PolarisProfiler is built to profile workloads efficiently, sidestepping the intensive demands of runtime profiling by

leveraging static metadata. This approach enables swift and accurate workload categorization. However, as workloads

grow more diverse and accumulate, managing this complexity becomes challenging. To address this, PolarisProfiler can

rely on incremental clustering, allowing new workloads to integrate seamlessly without disrupting the existing setup.

For handling a surge in workloads that need to join the infrastructure, horizontal scalability offers an effective solution.

Drawing on insights from Faroughi et al. [15], horizontal scalability in density-based clustering can be achieved by

splitting workload inputs into smaller pieces and distributing them across multiple nodes or parallel jobs, ensuring both

efficiency and accuracy.

3 CASE STUDY

We provide a reference implementation of PolarisProfiler and its main profiling processes. Specifically, we develop a

profiling approach to optimize the scheduling of Machine Learning (ML) workloads. The rationale for targeting machine

learning workload is that it represents a current challenge for large and distributed systems [65]. The need for a large

amount of data and an increased necessity for the computing power of energy poses serious questions [7] and calls for

optimization strategies both from the AI and systems communities. Furthermore, the variety of algorithms and the

specific behavior of ML models makes it not trivial to uncover utilization patterns [67]. Therefore, guaranteeing SLOs

while optimizing the infrastructure usage requires more elaborate strategies.

3.1 Dataset

Our study considers two months of ML workload traces (jobs) from the Alibaba Platform for Artificial Intelligence

(PAI) [70]. The platform’s main target is businesses within the Alibaba group. It enables AI pipelines, offering different

levels of abstraction, from a canvas UI where the users can drag and connect the elements for their pipeline to containers.

Once submitted, the supported frameworks
2
translate each workload into tasks with different roles, e.g., parameter

servers (PS) and workers for a training workload and evaluator for inference. Each task has one or more instances,

deployed using Docker, and can run on multiple machines. This dataset is relevant to our case study, showing several

key characteristics. First of all, it contains real traces, reporting real machine usage. Furthermore, it discloses descriptive

static and a priori metadata. The most suitable metadata contained in Alibaba’s dataset is the user’s name (user), the

2
PAI accepts frameworks like TensorFlow, PyTorch, Graph-Learn, and RLlib.
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Table 1. Stratified sampling of 100 001 elements based on the workload metadata feature.

Workload Size Sampled size
bert 10 940 142 29 818

ctr 9 128 957 24 881

graphlearn 4 888 371 13 323

inception 10 781 289 29 385

nmt 13 537 37

resnet 60 863 166

rl 849 626 2 316

vgg 11 768 32

xlnet 15 632 43

Total size 36 690 185 100 001

workload name (job name), the model used (workload), and the type of the task, e.g., if it is training or inference and

which architecture uses (task name). Plus, the Alibaba trace comes with a group tag, i.e., meta-information specified by

tasks, such as entry scripts, command line parameters, data source, and sinks.

We start with the assumption that we do not have insights about the Alibaba system. First, we construct our case

study filtering out all the workloads that are not terminated since we do not have the resource usage information for

them, obtaining circa 36 million instances. Then, we use stratified sampling to reduce the set to a manageable size. We

base the stratification on the workload type, which, through the model names, gives us an explicit and more transparent

understanding of the workloads and their instances. We extract a dataset 𝐷 with a cardinality |𝐷 | = 100 001 elements.

Table 1 shows the categories and their sampled sizes.

We rely on 17 usage metrics to represent the workload runtime behavior.
3
However, we need to verify that this

information is capable of expressing relationships between workloads. We do so by relying on the Hopkins statistics [5].

This test measures how well the data can be grouped, relying on the hypothesis that the data follows a Poisson point

process. It outputs a score: if equal or above 0.3, the data have random distribution; the closer the values go to zero, the

more the data could follow clusters. We rely on the Python pyclustertend library for our analysis, that uses as default

distance “Minkowski,” which results in the standard Euclidean distance.
4, 5

For the set 𝐷 , the Hopkins score is 0.0033,
letting us believe in the possibility of obtaining meaningful profiles.

3.2 Testing simple rule matching for profile generation

As we point out in the introduction, most profiling methods rely on occurrence consistency [16, 24, 26]. To test how this

approach would work in the Alibaba case study, we assemble a baseline test to evaluate the performance of single or

combined static a priori metadata. The idea is to mimic the domain expert rule generation. For this task, we rely on

workload and task name, who represent the most understandable metadata. We analyze how well a single or a small

group of metadata features can group workloads that behave similarly, i.e., that are close to our 17-dimensional problem

(considering the 17 resource utilization metrics). For the evaluation, we use the well-established unsupervised metric

3
Namely: the number of instances for that workload (inst num), the starting and ending time (start time and end time), the planned resource usages (plan
cpu, plan mem, and plan gpu. Plus, the dynamic utilization metrics like CPU usage, memory usage (average and maximum), GPU usage, GPU memory usage
(average and maximum), number of inputs and outputs (read count and write count), number of bytes exchanged (read, and write) and the total workload

duration.
4
https://pyclustertend.readthedocs.io/en/master/

5
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html
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Table 2. Summary of the clustering results

#
outliers

#
clusters

mean
|C|

avg
𝑆𝐶𝑠𝑐𝑜𝑟𝑒

DB
score

HDBSCAN

mean 40331.1 68.6 1993.6 0.44 1.52
min 18059 10 254.9 0.23 1.19
max 64770 243 5859.5 0.65 2.01
std 11124.0 70.3 1509.3 0.08 0.19

OPTICS

mean 79578.3 66.2 889.5 0.60 1.19

min 66708 1 120.6 -1.00 0.98

max 98936 271 2979.5 0.81 1.40

std 7643.2 79.3 752.1 0.20 0.10

Silhouette coefficient (silhouette) [60] (𝑆𝐶𝑠𝑐𝑜𝑟𝑒 ). It tells in a [−1, 1] range how well each point lies within its group.
6

For a better assessment, we consider three distance measures: Euclidean, Cosine, and Manhattan. For workload, the

Manhattan achieved the highest score (0.21). Task name had the highest score with Euclidean (-0.07), though all values

were negative. The combination of Workload and Task name also performed best with Manhattan (0.08). This analysis

suggests that a combination of metadata labels will be required to identify profiles; further, leveraging the workload’s

historical resource usage will also ensure that the obtained groups are cohesive. The goal is to have profiles that prove

to be more cohesive than the groups obtained in this baseline test using just one metadata label.

3.3 Developing the Profile Generator with unsupervised learning

Here, we inspect which method can best implement the Profile Generator for the Alibaba dataset.

3.3.1 Candidate algorithms. We focus our examination on density-based methods, as they generate an “outliers’

group,” i.e., workloads not fitting any cluster, letting us explore irregular workloads and detect peculiar behaviors.

Furthermore, they don’t require input on the number of clusters. This aspect allows us to specify a desired target

but lets the algorithm be free of movement. In particular, here, we aim to have fine-grained clustering; therefore, we

focus on methods that generate groups at different data densities. The main algorithms are HDBSCAN [10, 41] and

OPTICS [4]. HDBSCAN [10, 41] seeks to solve the single-density problem by generating a tree representation of all

the possible clusters using a single-link approach. Then, it extracts the best clusters by optimizing the overall cluster

stability. Similarly, OPTICS [4], given a fixed value for the minimal cluster size, draws out higher density clusters by

looking at lower density ones.

3.3.2 Grid search for best Profile Generator model. We aim at identify the best configuration for the Profile Generator,

testing HDBSCAN and OPTICS on the case study dataset 𝐷 with combinations of four different parameters. The first one

is the data transformation tool for the dynamic workload feature. We consider the StandardScaler , the MinMaxScaler ,

the RobustScaler – particularly suitable for noisy datasets – and the PowerTransform, which produces a monotonic

transformation. An essential element in clustering is the distance metric. For our scenario, we choose the Euclidean and

the Manhattan. Finally, both HDBSCAN and OPTICS need to input a parameter specifying the number of minimum

points per cluster,MinPoints. We choose a range from 50 to 1 000
7
to balance granularity and cluster representativeness.

We extract several statistics for each clustering result (C). We consider the number of clusters generated, how many

outliers O the clustering detects, and the average cluster size. Furthermore, we rely on unsupervised performance

6
values closer to 1 representing a better fit

7
Specifically, {50, 100, 200, 300, 400, 600, 1 000}
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Fig. 7. The plots depict the relationship between the main search parameters and the final score. The purple solid line and the blue
dashed one represent the central tendency for HDBSCAN and OPTICS, respectively. The two colored areas show the confidence
interval.
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Fig. 8. The silhouette coefficient scores for the points in the extracted clusters.

metrics, such as the overall 𝑆𝐶𝑠𝑐𝑜𝑟𝑒 and the Davies Bouldin Score (DB Score). In addition, in our use case, we want to

maximize the number of clustered points to have a significant representation in the profiles. Finally, we want to have an

adequate number of clusters. We want to have more than one big group and avoid many small clusters. Therefore, we

look at having a good balance between the number of clusters and their cardinality (mean |C|). Table 2 summarizes the

main statistics for HDBSCAN and OPTICS. We can see how HDBSCAN outperforms (highlighted in bold) OPTICS for

most parameters. Furthermore, as we want to have a unique evaluation score, we show the ACQUIRES score (introduced

in Section 2.3.1) for the various HDBSCAN and OPTICS configurations. Figure 7 summarizes the results. The solid

purple line and the blue dashed one represent the central tendency for HDBSCAN and OPTICS, respectively. The purple

and blue areas show the value intervals. As we can notice, HDBSCAN generally guarantees a better ACQUIRES value

for all the main search dimensions, i.e., the minimum cluster size, the transform function, and the distance metric. This

behavior finds its ground because HDBSCAN produces far fewer outliers, a good number of clusters, and a solid 𝑆𝐶𝑠𝑐𝑜𝑟𝑒 .

In particular, as summarized by the plots, we obtain the best results with HDBSCAN, using a minimum cluster size of

300 (Figure 7a), the PowerTransform function (Figure 7b), and the Euclidean distance (Figure 7c).

3.3.3 HDBSCAN evaluation. Here, we inspect in detail the results of the selected HDBSCAN approach for generating

dynamic profile models. First, we examine the performance in terms of cluster separation, relying again on the 𝑆𝐶𝑠𝑐𝑜𝑟𝑒 .

We keep out from this analysis the “outliers group.” Figure 8 depicts the results. The x-axis shows the profiles (each

value, a profile). The y-axis reports the 𝑆𝐶𝑠𝑐𝑜𝑟𝑒 . The boxplots depict the variation of the 𝑆𝐶𝑠𝑐𝑜𝑟𝑒 values for the points in

each cluster. The orange line represents the total average 𝑆𝐶𝑠𝑐𝑜𝑟𝑒 . Figure 8 shows that overall, clusters 8 and 9 have a

good 𝑆𝐶𝑠𝑐𝑜𝑟𝑒 , despite their large size. Profiles 5, 6, and 11 are the ones that have the best 𝑆𝐶𝑠𝑐𝑜𝑟𝑒 . Their low cardinality
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and sample fit suggest that they represent particular and homogeneous workload instances. However, profile 10 has

a significant amount of not well-fitted samples. Even if this last behavior is not negligible, it is unrealistic to expect

perfect results with such cardinality. Overall, the results are well grounded and show how, in the case study, HDBSCAN

is a good candidate to implement our workload profile generator.
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Fig. 9. Box plots representing the distribution in the clustered profiles of CPU, GPU, Memory, and Duration. The y axis is in logarithmic
scale.

Dynamic infrastructure usage data. We now represent the range of workload performance within the profiles to

understand the core dynamic profile model. In detail, we examine the distribution of resource usage values across the

profiles and their variability in each cluster. Figure 9 depicts the results. Due to the page limit, we focus on the most

representative features for the case study: CPU usage, memory usage, and GPU utilization, and workload duration. The

color code is blue for CPU usage, green for GPU usage, red for memory usage, and yellow for workload duration; it is

invariant and consistent from now on. The figure shows the boxplots of the feature values grouped by the cluster labels.

The plots sort the profiles, in the x-axis, by the considered feature standard deviation, in ascending order; higher values

are at the right of the plot. We sort by the standard deviation to highlight the value of cohesiveness within each profile.

The y-axis shows, for each feature, their values.
8
The overall results show that most of the profiles have relatively low

variation. The exception is the “outliers group,” labeled as “-1,” which naturally contains all the workloads that do not fit

in the main profiles. A particular case is maximum memory usage, where profile 18 has a broader value range than the

outliers group. As a possible cause, this profile contains few workload samples and might include peculiar workloads.

On the contrary, sizeable profiles, like 8 and 9, show a good homogeneity, with generally few noisy points present.

Looking back at the high-level representation of clustering results in Figure 8, we can see that this cluster has low

8
In Figure 9d; we express values as multiples of 10

3
.
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cardinality and might include peculiar workloads. On the contrary, large clusters, like 8 and 9, show a good homogeneity,

with generally few noisy points present. Overall, this first analysis suggests that the HDBSCAN clustering has managed

to find homogeneous groups of workloads. Furthermore, such representation demonstrates the contribution of profiles

to the estimation of the runtime characteristics of a workload.
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Fig. 10. Heatmaps reporting the distribution of the main values for the metadata features on the extracted profiles. Axis labels have
been adjusted for better readability.

Metadata. Analyzing the metadata in the clusters is essential for RC-3, i.e., assigning profiles to new workloads.
9

Figure 10 depicts the results obtained for the five static and a priori metadata features, i.e., job names, workload, task

names, users, and groups. The heatmap shows the metadata feature value on the y-axis and, on the x-axis, the proportion

in the extracted clusters of workloads with that metadata feature. For completeness, we add the outliers group marked

red as “-1” on the x-axis. The cell colors depict proportional representation of each metadata feature value across

the clusters. The proportion is divided in five quantiles. The dark blue shows the lower proportional representation

(from 0 to 20%) and the light blue the higher one (from 80 to 100%). In detail, Figure 10a summarizes the pattern for

9
Related heatmap figures in the repository.
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the ten most recurring job names in the dataset. For seven out of ten job names, most of the values end in profiles 8

and 9, suggesting that these large groups contain various but similar workloads. These two profiles include, for the

large part, “bert” workload. Furthermore, besides the “rl” workload, which characterizes profiles 5 and 6, the other

workload feature values are scattered in the other clusters. Moreover, the clustering approach discarded the “resnet,”

“nmt,” and “vgg” values. Looking at the cardinality of these values, which is lower than 500 – our minimum cluster

size – we can understand why they are not in clusters. The task name distribution in Fig. 10c confirms this outcome.

Indeed, the last four values for task name distribution all have a cardinality below 200. These results show how the

HDBSCAN-based profiling helps to distinguish workloads in the case study. This outcome is significant, considering that

different workloads might show different patterns. Finally, looking at Figure 10d and Figure 10e, representing the ten

most recurring users and groups, we can see two patterns. Finally, some users and groups have a higher representation

than others in the profiles pair 8 and 9 or the 19 and 20 pair. These two groups mainly refer to “bert,” as previously

seen, and “graphlearn.” This outcome suggests that certain users focus on specific implementations, like “bert” and

“graphlearn” and that these implementations have very specific meta-information embedded in the “group” metadata.

Ultimately, this outline of the metadata distribution suggests that the clustering based on dynamic data can identify

patterns in the metadata features and that combining these values in input can lead to accurately detecting profiles.

3.4 Developing the metadata-based Profile Classifier

The final, essential step in the presented methodology is assigning a profile to newly submitted workloads. This task

has to happen fast and by leveraging static, a priori metadata. We illustrate through the case study how to build such

a classifier and discuss its performance. Furthermore, besides assigning new workloads to the profiles, we aim to

understand the relevance of metadata features in the decision-making process through the model, which maps the

input to the labels. Therefore, we rely on the interpretable eXtreem Gradient Boosting (XGBoost) classification model

due to its performance in classifying and its white box characteristics.

Table 3. Class-level classification score reports.

Profile 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Macro Avg Weighted Avg
Precision 0.90 0.99 1.00 1.00 1.00 0.66 0.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.97 0.84 0.99 0.84 0.93 0.95

Recall 1.00 1.00 1.00 0.99 1.00 1.00 0.00 0.99 0.98 1.00 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.99 0.30 1.00 0.90 0.95

F1-Score 0.94 1.00 1.00 0.99 1.00 0.80 0.00 0.96 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.41 0.91 0.46 0.91 0.90 0.94

Support 415 1172 177 607 143 134 68 134 2509 2316 128 64 1104 468 135 158 370 116 99 435 437 57 383 1489 426 1536 15080 15080

3.4.1 Training the Profile Classifier. We use the dataset of clustered elements 𝐷C
, leaving out the outliers group. From

each clustered workload, we extract their static, a priori metadata features, namely: job name, user, task name, group,

and workload. Overall, we obtain a set with a cardinality of 75 398 and a dimension of 5, i.e., the metadata features. For

the model generation, we subdivide the collection in training and validation sets, with an 80-20 ratio. The XGBoost

algorithm has limited support for categorical data. So, we must transform the input features into numerical ones. Valid

approaches are one-hot encoding or recurring to the embedding networks. The latter requires a long training time;

therefore, we use the former approach. After this transformation, the set dimension grows to 21 547. We store the data

as a sparse matrix to optimize the computation. In this case, we use the standard hyperparameters for XGBoost. Our

aim in the case study is to analyze its performance and avoid overfitting.

Table 3 summarizes the results of the validation set per profile. We can appreciate that the results are excellent for

most of the profiles, except for profile 6, where the classifier can not correctly label any of its points. In general, we

obtain an accuracy of 95.19% and a weighted avg F1-Score of 90%. Overall, the results show a good capability of the
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Fig. 11. SHAP summary plot.

trained model in predicting profiles independently from their size and starting just from a priori knowledge about a

workload and its instance(s). This result gives us a promising path towards reproducing the proposed profiling approach,

given the selected case study scenario where the granularity of information is partially insightful. Furthermore, the

sample selected and the resulting profiles extracted from it are wide-ranged enough to constitute a complex undertaking

for the model. Finally, an additional advantage of this approach is the speed with which the model can label new

workloads. We do not need any dry runs on sandboxes or runtime profiling.

3.4.2 Results explanation. A key feature is to obtain explainable results. We achieve that using the SHAP eXplainable

AI (XAI) approach [36, 37], of the top twenty features in the XGBoost model.
10

Figure 11 helps us understand how the

static metadata feature influences the decision, showing the average impact. Particularly relevant are the task name in

its “ps” value, the graphlearn workload type, and a specific user. The task name: “ps” category refers to using a Parameter

Server (PS) architecture for models’ training. In this case, one or more nodes play the role of a PS, broadcasting current

weights to learners before each step and aggregating gradients from them, which is an easy way to retain a global

view [35, 69]. This behavior might represent a demarcation with other training architecture. Similarly, Graph Neural

Networks (GNNs) (workload: “graphlearn”) have a very distinct behavior as they deal with graph data in the input. In

particular, their distributed execution using Alibaba’s developed framework can differentiate them from other workloads.

The same goes for the NLP model labeled as (workload: “bert”), which characterizes profiles 8 and 9. Furthermore, the

job name 94b340f2cdedf37303d41bf2 is the most recurrent in our dataset, and it occurs in profiles 5 and 6. If we link

this outcome with what we found in §3.3.3, we can match that these two clusters had very specific and defined resource

usage values with a constantly low standard deviation. Therefore, it is easy to associate this metadata with a relevant

10
The figure SHAP_summaryplot_allclasses.pdf is available in the repository
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decision boundary. Overall, the use of the SHAP explainability tool reinforces the idea of our profiling approach, i.e.,

that the static a priori metadata represents a suitable and rich vehicle to match jobs to distinct profiles.

3.5 Test case: predicting the workloads’ behavior

Finally, we test the capability of profiles to embed relevant information. To do so, we extend the analysis from our

previous contribution by considering 10 000 unseen workloads. This load accounts for 10% of the initial set, making

it a realistic scenario. In this analysis, we want to predict the workload’s behavior by looking at four key resource

usage indicators for ML workload, namely GPU usage, CPU usage, memory usage, and workload duration. The first

step that we follow is to analyze how to best summarize the target features for making the best prediction. Even

though the development of an accurate forecasting model for resource usage is out of the scope of this work, we aim to

have realistic results. For this reason, we inspect the value distribution of the four measures, GPU usage, CPU usage,

memory usage, and workload duration for each profile by computing the skewness score. Skewness values greater than

one indicate a distribution congregated towards the lower values. A skewness score lower than one instead describes

distributions where there are higher values for the feature in the exam and that lower values are anomalies. A skewness

value of zero indicates a normal distribution. Studying the distribution can help us understand which condensated

value better represents the profiles. Figure 12 represents the skewness values for every feature in each subplot. On the

y-axis, we can find the skewness values, while on the x-axis, the profile labels are sorted from the lower to the higher

skewness value. The grey horizontal dashed line represents the mean skewness value for the depicted feature among all

the profiles, while the red one indicates the median.
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(d) Workload duration.

Fig. 12. Bar plots representing the skewness in the clustered profiles of CPU, GPU, Memory, and Duration.
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As we can notice, most of the profiles, for most of the features, show skewness scores higher than one. In particular,

for the memory, the mean score is 0.85 and the median is 0.52. CPU usage shows similar behavior with a mean of 1.09

and a median of 0.52. GPU and duration instead are characterized by higher skewness values, with mean and median

respectively equal to 1.35 and 1.11 and 2.62 and 2.28. These results suggest focusing on the lower spectrum of quantiles

as these values show that outliers mostly lie on the higher side of the values distribution. After experimenting with

different settings, the approach that gave us the best results is to use the 5
𝑡ℎ

quantile for the prediction. Therefore, once

the classifier assigns each of the sampled workloads 𝑗 ∈ J𝑠𝑎𝑚𝑝𝑙𝑒 to a profile 𝑝 ∈ P, we use the 5𝑡ℎ quantile values
ˆ𝑑𝑝 to

assign the workload the predicted value. We do so for duration, CPU usage, and GPU usage.

Afterward, we use the normalized Root Mean Squared Error 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 to compute the loss between
ˆ𝑑𝑝 and the

actual workload behavior
ˆ𝑑 𝑗 . In the following, we depict the 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 both for each considered feature in isolation

and in total, aggregating the four measures.
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Fig. 13. CDFs of the 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values for the four considered measures: CPU, GPU, Memory, and Duration.

Considering features in isolation. Figure?? represents the Empirical Cumulative Distribution Function (ECDF) of the

𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values for the four different metrics. The x-axis shows the 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values in a log scale, and the y-axis the

CDF. For what concerns memory the ECDF curve starts sharply, indicating that a significant proportion of the data

has low 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values. More specifically, more than 80% of the profiles have an 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 less than 50. Regarding

GPU The initial rise in the GPU curve is steeper than that of Memory, highlighting that a portion of the workloads for

GPU have very low error. However, the percentage of values with a 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 lower than 50 are around 20%. The CPU
curve starts off a bit slower than Memory and GPU but accelerates from 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values around 10; here the fraction

of workloads with a 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 lower than 50 is around 40%. The duration curve has a shape somewhat similar to GPU,
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with a steep start. A significant portion of the workloads have very small 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values, as can be seen from the

vast shaded region. Afterwards, the values with 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 below 50 settle at around 40% of the total. In summary, there

is a good proportion of workloads with low 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values, suggesting that the modeling or prediction methods are

reasonably accurate for a majority of the workloads. The distribution and rate of increase in 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values vary

quite significantly between the metrics, with GPU and Duration showing a more pronounced initial increase, indicating

that a larger percentage of their workloads have very low errors compared to Memory and CPU, but also a greater

variability with outliers towards higher values.
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Fig. 14. Boxplots of the 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values for the four considered measures: CPU, GPU, Memory, and Duration.

Figure 14 displays four box plots depicting the distribution of 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values for the four different features: CPU

(Fig. 14a), GPU (Fig. 14b), Memory (Fig. 14c), and Duration (Fig. 14d). Fig. 14a shows that median 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 value for

CPU predictions appears to be below 50 for most of the profiles. There are quite a few outliers, especially on the higher

side of the 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 value, but overall the predictions seem accurate. Regarding GPU, Fig 14b shows high median

𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values. This confirms the difficulty of fully grasping GPU using the 5𝑡ℎ quantile measure. Considering

memory, the box plot in Fig. 14c displays a considerable variability in the data. While some profiles have their median

above the 50% of 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 , most of them are showing lower medians, suggesting a good capability to predict this

measure. The extent in the Duration box plot (Fig. 14d) is similar to GPU but slightly narrower. The median 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐

is generally around or slightly below the 50 mark. Overall, the spread, median values, and the number of outliers

vary across the four features, depicting a generally good prediction capability and highlighting at the same time the

complexity that comes with predicting accurately from a set of values.
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Fig. 15. CDF and boxplots representing the 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values by profile, considering 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 computed on the four main features
alltogether.

Considering the overall result for the four features combined. Here, we analyze the 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 when considering all

four measures in combination. That is the case we aim for production, where we want to know how far our prediction

was considering all the selected measures. Figure 15 shows the CDF and the boxplots for the single measures. As we

can see from Figure 15a, overall, we are able to get a very good error rate, with circa 93% of the workloads showing a

𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 lower than 50 and more than 40% a 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 lower than 40. These results are confirmed when looking at

the boxplot in Figure 15b. Here, we can see how, for most of the profiles, the median is lower than 50. Some profiles still

show many outliers or a greater distribution, but this is to be expected given that we use the same prediction metric for

all of them.

Takeaway The results show us how, in combination, we are able to obtain good predictions only using an overarching,

simple statistical metric. This result is promising as we can already define a good approximation for most of our

workloads. The boxplots show us how, however, not all the profiles can be easily summarized by a single metric.

Therefore, this behavior calls for future improvement in the prediction mechanisms by considering more sophisticated

solutions.

3.6 Feedback loop

The last evaluation involves checking how the proposed profiling can improve over time. Subsequent application of

the feedback loop on the 10,000 new unseen workloads provided encouraging results. A mechanism is instituted to

trigger re-clustering if there’s a misjudgment rate of 1% for the entire workload set, which in this case equates to 1 000

violations. Since using the 5
𝑡ℎ

quantile would not produce enough violations, we tweak the prediction using another

setting we previously tested; namely, we consider the 5
𝑡ℎ

quantile for predicting the feature value if the skewness value

of the profile, for that feature, is greater than one; otherwise, we rely on the median value. In this instance, out of the

10,000 workloads, 1 013 are originally flagged for violations. This experiment thus triggers the re-clustering when the

system records 1 000 violations. In this case, the system detects a reduction of the ACQUIRES values and triggers a

re-clustering. The re-clustering strategy proves to be effective, successfully avoiding the 13 following violations.

4 EXTENDED ANALYSIS ON GOOGLE CLUSTER DATA

We extend our analysis to estimate the capability of the proposed approach to work in different scenarios. To this extent,

we rely on the well-known and established Google cluster data traces [66]. The dataset represents each workload (or
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Table 4. Test Set performance of XGBoost over the Google cluster data traces.

Metric 0 1 2 3 4 5 6 7 8 9 10 11 12 Macro Avg Weighted Avg
Precision 0.97 1.00 0.93 1.00 0.96 0.97 0.94 1.00 0.80 1.00 0.94 0.89 1.00 0.95 0.99

Recall 1.00 1.00 0.96 1.00 0.77 0.99 0.91 0.92 0.55 0.94 0.73 0.65 0.95 0.87 0.99

F1-Score 0.99 1.00 0.94 1.00 0.85 0.98 0.93 0.96 0.65 0.97 0.82 0.75 0.97 0.91 0.99

Support 1268 7189 384 210 57 1095 347 139 22 65 45 48 59 10928 10928
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Fig. 16. Plots of the 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values on the Google cluster data for CPU, Memory, and Duration.

job) scheduled on a node as a set of tasks. All tasks within a job execute the same binary, sharing the same options

and requests. Hence, different task categories run as separate jobs. Further, each task runs within its container and has

some runtime metrics associated with it and collected through cgroup, from CPU rate to memory usage to disc I/O

time. As the Google cluster data trace is too large to be completely analyzed, we perform a thorough but lean analysis

for this evaluation. We extract circa 65000 jobs by stratified sampling over a relevant but unbalanced feature, scheduling
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class, that separates workloads according to their latency sensitiveness (0 less sensitive, three most sensitive). For the

runtime metrics, we use the cgroup telemetry shared by Google. The metadata features are less than in the Alibaba use

case, making the test more challenging. In our case, we use workload-related information as the priority label and the

scheduling class, plus information on the required amount of resources expressed in quartiles; namely, we consider disk

space, memory, and CPU request.

For this experiment, we keep the formal structure of our PolarisProfiler, changing some mechanisms to prove how

it might work with different algorithms. First, for the Profile Generator, we rely on the flat DBSCAN instead of the

Hierarchical one. We use PowerTransform to transform the runtime metrics. Furthermore, as the high dimensionality is

a problem for clustering methods, before giving our data in input to DBSCAN, we project it in a three-dimensional

space using an autoencoder. The Profile Classifier still relies on XGBoost, as in the Alibaba use case. However, here we

replace one-hot-encoding of the categorical features with an autoencoder mechanism.
11

After the profile groups generation, we divide the data in training and test set for the Profile Classifier and the

behavior prediction. The results on the test set (circa 11 000 workloads) are promising. First, the XGBoost classifier

offers a strong performance over the thirteen clusters identified by DBSCAN, as shown in Table 4. In particular, it

demonstrates resilience to different data and clusters with a cardinality imbalance. Figure 16 reports the results of our

analysis, showing the capability of our approach to work with different data sets and algorithms. The left column shows

the Cumulative Distribution Functions (CDFs) of 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values for the four considered metrics: CPU, Memory,

Duration, and GPU. These highlight the overall distribution of errors. In particular, the 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values for CPU

and Duration show a wide range and some significant outliers, suggesting high variability. Conversely, the Memory

metric exhibits a more contained distribution, indicating more consistent predictions across the clusters. GPU errors

exhibit a larger spread, as evidenced by both the CDF and boxplot visualizations. The right column provides boxplots of

𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐 values across the 13 clusters identified by DBSCAN. These visualizations show the variation in prediction

errors across the clusters. Notably, the approach demonstrates robustness, with the XGBoost classifier handling the

cardinality imbalance of the clusters effectively. While some clusters, such as Profiles 1 and 5, exhibit more pronounced

error variations, the overall performance confirms the resilience of our profiling mechanism, especially when modern

techniques like autoencoders and flat DBSCAN are employed. These results confirm the adaptability of our approach to

varying data distributions and clustering outcomes, providing a promising basis for further evaluations.

5 RELATEDWORK

Here, we highlight the state of the art in workload profiling. We start by describing runtime solutions; we then

present static solutions underlying the approaches that resemble our model more. Finally, we shed light on specific

methods for machine learning workload profiling, a recent trend that shows the relevance of the proposed approach.

5.1 Runtime profiling

Many authors focused to improve runtime workload profiling. Kairos [14] does not require any a priori knowledge of

task runtime. Instead, Kairos employs preemption to estimate the predicted remaining runtime of tasks from when they

have already been completed. Similarly, Jajoo et al. [23] propose a learning-in-space approach (SLearn). They select

and schedule only a portion of each workload’s tasks. This method takes advantage of the similarities between the

runtime characteristics of the tasks inside a single workload. Still, these and similar online approaches are subject to

11
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“environment inconsistency.” PARTIES [12] offers online profiling. As Kairos and SLearn approach, it uses runtime

information, discarding a priori knowledge, highlighting the difficulties of having information from user-submitted

workloads. On the same line, Kaushik et al. [29] profile application at runtime for improving vertical scaling. Inagaki

et al. [22] worked on profiling microservices to detect runtime bottlenecks. Gibilisco et al. [18] also focus on runtime

profile sampling for Spark performance. Manner et al. [39] perform dynamic profiling through simulations. Rao et

al. [57] combine static and dynamic profiling with a focus on Spark. On the contrary, we use available static metadata

as any workload is submitted, making the a priori matching trouble-free. Other works [38, 46, 71] collect “offline”

runtime information, running the workloads in exclusive mode. This approach, though, suffers from the environment’s

inconsistency.

5.2 Offline profiling

Building statistics and extracting patterns from metadata has seen diverse applications across domains. Gupta et al.[19]

proposed a profile-based network intrusion detection system for cloud environments, leveraging network behavior

profiles of virtual machines (VMs) to identify threats. Bartzas et al.[6] focused on profiling softwaremetadata in embedded

systems, with an emphasis on runtime memory behavior. In the context of structured datasets, WebLens [30] offers

metadata profiling for large-scale data integration. Similarly, Calzarossa et al. [9] surveyed workload characterization

techniques, showing how most approaches rely heavily on runtime metrics and execution traces. Previous work used

offline-based approaches to estimate the duration of workloads [16, 27] These works estimate the duration by using

assumptions on specific features, e.g., task type and dataset size. Instead, our work relies on a generic approach that

uses old dynamic information to infer the specific static and a priori metadata features to detect homogeneous profiles.

Other approaches, like 3Sigma [54], rely on the total historical workload duration distributions to predict how long

the new workloads will start. Similarly, Weng et al. [70] use the Alibaba dataset past estimation and a set of fixed

parameters, i.e., group and user, to estimate the workload completion time. Conversely, we create specific profiles to

address such challenges.

Similar to our method, Hu et al. [21] rank workloads using GPU time, correlating it to attributes, such as workload

name, user, and submission time. They leverage these attributes to predict the workloads’ priority in scheduling.

This approach follows a similar methodology. However, we aim to provide a more generic approach to automatically

extract these correlations and patterns. InfaaS [59] proposes using statically-profiled metadata, plus the tracking of

dynamic state for high-level-requirement-based distributed inference serving. On a close path, Kattepur et al. [28]

have a methodology in principle similar to our approach, but, in practice, it is runtime based and focusing on robotics

through fog networks.

5.3 Profiling machine learning workload

Finally, we focus on recent research that aims at characterizing machine learning workloads, as it has been the main

focus of our case study. Some works [17, 74] approach the profiling using historical execution traces containing

hardware attributes and runtime data to forecast the duration of a DNN’s training iteration. Aryl [34] leveraging

the former approach to estimate the DNN workload duration, using the history of the runs of the same workload.

SCHEDTUNE [3] leverages historical execution traces to build profiles to predict resource usage. Our case study

differentiates from that as we follow a more generic approach, i.e., we do not focus solely on training and do not

consider hardware assumptions. Loki [2] addresses hardware and accuracy scaling in inference serving pipelines by

dynamically optimizing resource allocation using metadata, although it centers on runtime adaptation. Themis [58]
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extends autoscaling strategies, combining horizontal and vertical scaling for deep learning inference but remains

tied to dynamic profiling methods. FlexLLM [42] incorporates metadata in parameter-efficient fine-tuning for large

language models, focusing on LLM-specific scenarios. FaaSwap [75] applies metadata-driven scheduling policies to

GPU-efficient serverless inference but emphasizes runtime execution metrics. Based on Habitat, EOP [73] aims at

characterizing deep learning inference tasks by looking at three main characteristics of the DNN, such as the batch size,

Height-weight-weight, and Height-weight-weight. Again, this approach targets a narrow problem and makes strong a

priori assumptions on the features that can better represent the workloads. Shin et al. [61] developed an approach to

profile the workload of AI applications.

5.4 Takeaways

In contrast to these works, we utilize static, a priori metadata for profiling workloads, offering a generalizable and

environment-resilient solution that avoids the complexities of runtime dependency. This approach is particularly suited

to distributed systems, where static metadata aids in efficient and robust workload profiling.

6 DISCUSSIONS AND FUTUREWORK

Long-time evolution analysis. An essential part of the profiles is to be dynamic and adapt to changing workloads

and environments. Despite our accurate analysis, it would be key to evaluate how the profiling method would work

in deployment over long periods. This aspect is especially relevant in an open infrastructure such as the computing

continuum, where the workload types can drastically change over time.

Integrating the metadata-based profiling with runtime solutions. Both history-based and online approaches have

advantages and disadvantages. History-based approaches benefit from rich metadata but may struggle with real-time

variability. The latter case can respond better to the current infrastructure and environment state. However, it can

suffer from time constraints, making the analyses naturally less precise; plus, it can go too far, overestimating current

variations by not looking at past patterns. The former does not have any of these problems, but it could scarcely tolerate

significant variations typical of systems’ evolution. Therefore, a promising future direction involves enriching our

history-based approach with an online component. In particular, we plan it to integrate it with predictive monitoring

tools [33, 45], which help in estimating workloads’ runtime properties.

Improving the profiling feedback. There are limits to using a single statistical values for predictions, as we perform

in our case study for the job duration. Deploying more elaborate solutions, e.g., Bayesian approaches, could help the

prediction accuracy. We can see this for the test samples in which 𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑐value is more than 100%. This behavior

calls for further research and investigations, which can be tailored to the specific target.

Testing the approach on other case studies. To consolidate the results shown in this case study, it is essential to extend

the approach to other scenarios. Some examples might be creating profiles explicitly related to certain SLOs. In addition,

we aim at building more comprehensive testbeds. An important aspect is to check the whole orchestration pipeline,

where the workload can be scheduled [49] on specific nodes [11] based on its profile. Being able to check its impact on

the infrastructure, the capability to fulfill its SLOs, would help us further improve the methodology.
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7 CONCLUSIONS

This paper formalized a methodology for profiling workload in virtualized and shared computing infrastructures,

leveraging static, a priori metadata. Our goal is to create a generalizable, fast, and precise workload profiler capable of

estimating runtime characteristics before execution. We then validated our approach through two use cases. First, we

comprehensively analyzed real ML workload traces, leveraging the Alibaba dataset. We outlined practical methods

and algorithms to implement the previously defined conceptual approaches and showed how the specific technologies,

together with the general approach, can lead to good results. In particular, we presented how, on 10 000 unseen data, our

system can improve and correct the divergent behaviors that can naturally appear after adding many new workloads to

the existing profiles. Finally, we presented how the PolarisProfiler can generalize across various workload types by

testing our approach on the Google cluster traces. The results are promising, highlighting PolarisProfiler as a reliable

mechanism for workload profiling and pushing toward further improvement of the model.
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