
Erzeugen von Guardedness für
azyklische Aggregatabfragen zur
Minimierung der Materialisierung

von Zwischenergebnissen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Andrea Ortner, BSc.
Matrikelnummer 11809650

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Mitwirkung: Univ.Ass. Dipl.-Ing. Alexander Selzer , BSc.

Assistant Prof. Dipl.-Ing. Dr.techn. Matthias Paul Lanzinger , BSc.

Wien, 22. April 2025
Andrea Ortner Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Enforcing Guardedness for
Acyclic Aggregate Queries to

Minimize Materialization

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering & Internet Computing

by

Andrea Ortner, BSc.
Registration Number 11809650

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Assistance: Univ.Ass. Dipl.-Ing. Alexander Selzer , BSc.

Assistant Prof. Dipl.-Ing. Dr.techn. Matthias Paul Lanzinger , BSc.

Vienna, April 22, 2025
Andrea Ortner Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Andrea Ortner, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 22. April 2025
Andrea Ortner

v

Danksagung

Zuallererst möchte ich an dieser Stelle meinen Eltern für ihre stete Unterstützung in
all den Jahren danken. Mama, Papa - es ist wahrlich ein Privileg, auf euren Schultern
zu stehen. Danke, dass ihr meine Eskapaden und verrückten Ideen nicht nur ertragen,
sondern sogar unterstützt habt.

Ein großes Dankeschön gebührt meinem Bruder und bestem Freund Chris. Mit dir in
meiner Ecke steig ich in jeden Boxring.

Eine Bärenumarmung verdienen auch meine Freunde, mit denen ich sowohl die schönsten,
als auch die schwierigsten Momente der letzten Studienjahre geteilt habe: Sonja, Fabian,
Robert, Tahel.

Dankbar bin ich ebenfalls meinem Betreuer Prof. Dr. Reinhard Pichler und seinem
Kollegen Dipl.-Ing. Alexander Selzer. Vom Themenvorschlag bis zum Abschluss der
Arbeit konnte ich mich auf ihr ”Coaching” verlassen und auf ihre Expertise und Hilfe
zählen. Danke auch für die Schaffung von Arbeitsumständen, die es mir erlaubt haben,
mich voll und ganz auf meine Diplomarbeit zu fokussieren.

Außerdem möchte ich mir selber danken, dafür, dass ich nie aufgegeben habe und die
Challenges der letzten Jahre stets auch als Chance betrachtet habe.

Zum Schluss möchte ich kurz auch jenen Leuten ein paar Worte widmen, die meine
Bestrebungen belächelt haben und die mir den Mut nehmen wollten. Wisset, dass eure
Energien verschwendet waren. Vergessen werde ich euch nicht.

vii

Acknowledgements

First and foremost, I want to thank my parents for their unwavering support. Mama,
Papa - what a privilege it is to stand on your shoulders. Thank you for putting up with
my antics and supporting my crazy little (and big) ideas.

A huge thank you also goes to my brother and best friend, Chris. With you in my corner,
there is nothing to fear.

A warm hug goes out to my friends, with whom I have shared the best and worst academic
moments over the past couple of years: Sonja, Fabian, Robert and Tahel.

I also want to thank my supervisor, Prof. Dr. Reinhard Pichler, and his colleague,
Dipl.-Ing. Alexander Selzer, for suggesting the thesis topic, ”coaching” me through the
whole process and providing good working conditions that allowed me to fully focus on
my thesis. I am grateful for your expertise and helpful suggestions whenever I thought I
had hit a wall.

Furthermore, I want to thank myself for never giving up and for seeing the challenges of
the last couple of years as opportunities to grow.

And lastly, I want to acknowledge all the people who belittled my endeavors and tried to
take my courage away. Rest assured, your energy was wasted. You will not be forgotten.

ix

Kurzfassung

Petabytes an Daten - das ist der Preis unserer globalisierten, digitalen Welt. Nur Hardware
alleine kann diesen Berg an Daten nicht bewältigen, zumal ihre Mächtigkeit auch physisch
limitiert ist (Moore’s Law). Will man bestimmte Informationen aus diesen Daten abfragen,
ist dies mit hohen Kosten verbunden. Um diese zu senken, ist es notwendig, intelligente
Software-Lösungen zu entwickeln. Doch warum ist diese Beantwortung bzw. Evaluierung
so kostspielig?

Ein Grund für die hohen anfallenden Kosten ist das Entstehen sehr großer Zwischener-
gebnisse bei relativ kleinen Endergebnissen. Dieses Problem konnte Yannakakis bereits
1981 etwas abschwächen, als er einen Algorithmus entwarf, der im Fall von Join-Abfragen
nur jene Zwischenergebnisse materialisierte, die auch Teil des Endergebnisses waren.
Im Fall von Aggregat-Abfragen bedeutet dies natürlich immer noch, dass große Zwi-
schenergebnisse materialisiert werden, obwohl das Endergebnis nur aus den Aggregat(en)
besteht. Die neueste Entwicklung bzgl. Yannakakis-artigen Optimierungen, genannt
AggJoin-Operator [LPS24], vermeidet Materialisierung im Fall von azyklischen Aggregat-
Abfragen komplett. AggJoin setzt dafür aber voraus, dass die zu beantwortenden Abfragen
”piecewise-guarded” sind. Das bedeutet, dass alle Attribute in der GROUP BY Klausel
bzw innerhalb eines Aggregat-Ausdrucks gemeinsam in einer der an den Joins beteiligten
Relation vorkommen müssen. Dies stellt eine große Einschränkung dar, schließlich können
so insbesondere Abfragen, deren GROUP BY Klauseln Attribute aus mehreren Relationen
enthalten (ein häufiger Use-Case in Business Analytics), nicht mit AggJoin evaluiert
werden. Aus diesem Grund ist es das Ziel dieser Arbeit, eine Brücke zwischen Yannakakis-
artigen Optimierungen (AggJoin), und non-guarded Abfragen zu bauen (d.h. Abfragen,
deren gruppierende Attribute aus verschiedenen Relationen stammen). Dazu haben wir
PartAggJoin implementiert; eine Erweiterung von AggJoin, die nicht an dieselben Restrik-
tionen gebunden ist: PartAggJoin zerlegt Abfragen-Bäume in Sub-Bäume, welche mit
unterschiedlichen Methoden evaluiert werden. Sind gruppierende Attribute vorhanden,
wird minimale Materialisierung erlaubt, um keine Informationen zu verlieren; im anderen
Fall wird AggJoin angewandt. Dadurch können nun auch Abfragen mit mehreren Attri-
buten im GROUP BY Teil von Yannakakis-artigen Optimierungsstrategien profitieren.
Die Effizienz und Performanz unserer Optimierung wurde durch die Implementierung
in SparkSQL bewiesen und empirisch anhand der Benchmarks TPC-H und Syn-TPC-H
gezeigt. Syn-TPC-H wurde als Datenset im Rahmen dieser Arbeit geschaffen, um einen
gezielten Fokus auf non-guarded Abfragen zu erlauben.

xi

Abstract

Petabytes of data - such is the cost of our modern, global, digital interconnectedness.
The approach of relying solely on hardware to process this amount of data is slowly
reaching its limit (Moore’s Law). This is why we need intelligent software solutions that
reduce the energy, time and overall cost of data processing. But why is it even so costly?

One reason for the high cost of processing is the explosion of intermediate results, even
if the final result is rather small. To mitigate this problem to some extent, Yannakakis
designed an algorithm in 1981 that, when multiple joins are necessary, only materializes
tuples that are actually part of the final result. In case of aggregate queries, this still
means that intermediate results are quite big in comparison to the final result (the
aggregated values). The state-of-the-art optimization (the AggJoin operator [LPS24]),
provides powerful speed-gains and succeeded in avoiding materialization altogether for
”piecewise-guarded” acyclic aggregate queries. This means, that all attributes in the
GROUP BY statement need to stem from the same relation, and so do attributes within an
aggregate expression. This is very limiting, as queries that have grouping attributes from
multiple relations are a common use case in business analytics. For this reason, this work
sought to build a bridge between Yannakakis-style query optimization and non-guarded
queries by allowing minimal necessary materialization. To this end, we implemented
PartAggJoin, an extension to AggJoin that lifts the restrictions in terms of guardedness:
PartAggJoin splits a query tree into subtrees. During the subsequent analysis of these
subtrees, PartAggJoin detects whether a subtree contains applicable grouping attributes.
If this is the case, it performs the minimal materialization necessary to preserve the
grouping attributes. If no grouping attributes are present, an AggJoin is performed. Thus,
PartAggJoin removes the limitations of guardedness for queries that contain two or more
attributes in GROUP BY clauses that stem from different relations, widening the field
of application for Yannakakis-style optimization. The efficiency and performance power
of our optimization is validated through its implementation in SparkSQL and empirical
evaluation on the TPC-H benchmark as well as on the newly created Syn-TPC-H dataset
that specializes on the evaluation of non-guarded queries.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Conjunctive Queries 5
2.1 Conjunctive Queries (CQs) . 6
2.2 Complexity of Evaluating CQs . 8

3 Hypergraphs and Acyclicity 9
3.1 Hypergraphs . 9
3.2 Acyclicity and Join Trees . 14
3.3 GYO-Reduction . 15
3.4 Yannakakis’ Algorithm . 17

4 Beyond ACQs: 0MA and Guarded Aggregate Queries 25
4.1 Boolean ACQs . 25
4.2 0MA Queries . 26
4.3 Guarded Aggregate Queries and their Evaluation 27
4.4 Piecewise-guarded Aggregate Queries 30
4.5 AggJoin . 31

5 Spark and SparkSQL 39
5.1 Spark . 39
5.2 SparkSQL . 41

6 Implementation and Evaluation 45
6.1 Benchmark Datasets and Analysis . 45
6.2 Enforcing Guardedness . 49
6.3 Implementation . 57
6.4 Evaluation . 68

xv

7 Discussion and Results 73

8 Conclusion 77

A Syn-TPC-H 79

B Queries and Query Plans 81

Overview of Generative AI Tools Used 85

List of Figures 89

List of Tables 93

List of Algorithms 95

Bibliography 97

CHAPTER 1
Introduction

Background. Big Data sounds great until we actually come face to face with the
problems of processing said big data. Even though modern Database Management
Systems (DBMS) are quite powerful, they are not able to handle queries with joins
regarding up to hundreds of relations (in fact, even handling 10 joins is already a
difficult task). This is because the two most prominent problems in query optimization,
namely finding a good join order, which is NP-complete, and avoiding the explosion
of intermediate results, can only be tackled by relying on heuristics, at least after a
certain threshold of involved relations is reached. And the greater the amount of involved
relations, the lesser the quality of the proposed optimization [GLL+23a]. The problem of
exploding intermediate results is especially bothersome in fields like business analytics,
that often feature aggregate queries that involve a great amount of joins (and thus huge
intermediate results), but results are typically only a few aggregated values.
In 1981, Yannakakis proposed an algorithm to reduce the size of intermediate results for
a certain subclass of queries, namely acyclic conjunctive queries (ACQs) (see Chapter 2
and Chapter 3). By relying on semi-joins and eliminating tuples which are not part of
the final results, this method materializes only necessary tuples [Yan81]. This process
allows evaluating acyclic conjunctive queries (ACQs) within three traversals of a join tree
in linear time w.r.t the input, output and query size.
For boolean queries, it was shown that the algorithm can be stopped after the first
bottom-up traversal [GLS01]. In subsequent works, a new class of queries, called zero-
materialization-queries (0MA) have been identified, for which it is also sufficient to do one
bottom-up traversal of semi-joins [GLL+23a], without materializing any join. However,
these 0MA queries have to satisfy three strict conditions (additionally to being ACQ):
The query has to be in aggregation normal form (i.e. apart from aggregation, grouping
and projection a query consists only of natural joins and selections), guarded (at least one
relation needs to hold all grouping and aggregation attributes) and set-safe [GLL+23a].
Set-safety is especially restrictive, since aggregations like SUM, AVG, MEDIAN and

1

1. Introduction

COUNT(*) are per definition excluded (see Chapter 4).

Problem Statement. The above-mentioned problem regarding set-safety has been
mitigated by more recent work [LPS24]. By introducing a new physical operator - the
AggJoin - that allows for propagating frequencies of tuples instead of materializing inter-
mediate results, Lanzinger et al. have widened the field of application for Yannakakis-style
query optimization even more. However, queries still have to have two quite restrictive
properties in order to profit from the newest optimizations: They have to be acyclic and
guarded or at least piecewise-guarded (see Section 4.3). [LPS24].

Since it has been shown empirically [BMT20, FGLP21] that in practice one mostly
encounters acyclic or almost acyclic queries, we have decided to take on the problem of
enforcing guardedness for ACQs. Three methods have been identified to achieve this:
The Upfront Joins method, the Partial AggJoin (PartAggJoin) and another method
called GroupAggJoin. Whereas the Upfront Joins method and PartAggJoin focus less on
avoiding full materialization, but rather tries to minimize materialization in order to make
the optimization proposed in [LPS24] applicable to non-guarded ACQs, GroupAggJoin
works similar to AggJoin, but additionally to propagating aggregates (see Section 4.5), it
also propagates attributes in the GROUP BY statement. We will describe these three
approaches in Section 6.2. Since GroupAggJoin is currently developed by the authors
of [LPS24], we will compare the other two approaches and implement the method that
proves more suitable in a SparkSQL environment (in our case, this is PartAggJoin, see
Section 6.2). Eventually we will provide benchmarks of the actual implementation of
PartAggJoin in a Spark environment in Section 6.4.

An improvement to existing systems is needed, because even though the optimization
proposed in [LPS24] has shown to lead to great speed-gains, it is only applicable to a
limited subset of queries, as was seen in the benchmark of the same paper: AggJoin
was applicable to all queries in the STATS-CEB dataset [HWW+21] and the SNAP
dataset [LK14]. Also, all 113 JOB [LGM+15] queries could be processed by the new
optimization. However, only 7 out of 22 TPC-H [TPCb] queries, 30 out of 99 TPC-
DS [TPCa] queries and 2 out of 9 LSQB [MLK+21] queries could be processed with
AggJoin. Since big data has shown again and again that it cannot be handled by (only)
strong hardware, it is paramount to further improve current optimizations and widen
their field of application in order to save space, time and costs and to ensure operability
and reliability of future DBMS.

Goal of the thesis. The over-arching goal of this thesis is to widen the field of
application for AggJoin, the query optimization proposed by Lanzinger et al. [LPS24].
For this, the three methods of extending the current algorithm mentioned above will
be described and compared. As stated above, the first two methods, Upfront Joins
and PartAggJoin, will allow minimal materialization in order to transform non-guarded
queries into guarded ones, which makes them eligible for the optimizations proposed
in [LPS24]. In case of Upfront Joins, such minimal materialization occurs in joins that

2

are executed before the query gets processed in order to create an auxiliary table that
acts like a guard for the query (hence the name Upfront Joins). The second method,
PartAggJoin, will also use full materialization, but only in places where it is necessary to
propagate attributes that appear in the GROUP BY statement. The third method will
extend the current AggJoin implementation by propagating not only aggregate columns,
but also columns that appear in the GROUP BY statement, creating the GroupAggJoin
operator. Regarding the practical implementation, GroupAggJoin is being implemented
by Alexander Selzer [LPS25], whereas the methods of Upfront Joins and PartAggJoin
will be examined as part of this work.

In particular, the following research questions have been investigated in our contribution:

1. How can we algorithmically restructure non-guarded ACQs into guarded ACQs in
a both time and space efficient way in order to make them eligible for the query
optimization proposed in [LPS24]?

2. How can we extend the state-of-the-art implementation of AggJoin presented
in [LPS24] for query optimization to make it more applicable to real-world scenarios?

The goal is to find a generally-applicable algorithmic solution that transforms non-guarded
queries into (piecewise-)guarded ones. Upon finding the most suitable algorithm, we will
implement it as an extension for the AggJoin-Procedure presented in [LPS24]. Eventually,
we will add our own benchmark dataset that contains queries that are non-guarded, but
will be transformed into guarded queries by our implementation. Since our contribution
allows optimization of a bigger share of the benchmark queries, we expect that a) more
queries profit from the optimization proposed in [LPS24] evaluation and b) the overall
speed-gain of the benchmark sets improves.

Approach. The research plan of this thesis contains the following steps: analyzing the
benchmark data and extending it with new queries, finding an appropriate algorithm to
enforce guardedness by comparing different approaches (Upfront Joins, PartAggJoin and
GroupAggJoin [LPS25]) and finally the evaluation of our implementation. As prepara-
tory first step, appropriate literature will be selected. Topics of interest in this step
will be traditional approaches to join-evaluation and query processing, as well as more
specific research, such as structure guided query evaluation, 0MA queries and guarded
aggregate queries. Additionally, the theoretical groundwork needed to extend the given
implementation will be laid by researching the aspects of CQs, hypertrees and various
query structures.

In the next step, we will analyze the query structures in the current benchmark data, that
is JOB [LGM+15], STATS [HWW+21]SNAP [LK14], TPC-H [TPCb], TPC-DS [TPCa]
and LSQB [MLK+21], i.e. we will have a look on how many relations are joined on
average, how many grouping attributes appear and so on in order to decide whether it
is also sensible to use the same data for our benchmarks. Also, we will create a new

3

1. Introduction

synthetic dataset based on the datasets of TPC-H [TPCb] called Syn-TPC-H in order to
specifically target non-guarded queries.

Step 3 of the research consist of comparing the three variants, namely Upfront Joins,
PartAggJoin and GroupAggjoin, and finally extending the current work of [LPS24]. The
authors have implemented their optimization in SparkSQL by extending SparkSQL’s
source code written in Scala. Without going into too much detail, we will quickly sketch
where our work will be included in their program: All queries are transformed into a
join-tree. Whenever a join treeT or subtree T’ of a join treeis given, the first step of the
algorithm is to re-structure T (or T’) so that the root node acts as a guard to the tree, i.e.
it holds all attributes that are needed by the GROUP BY operator. Currently, if no such
guard exists, the optimization is not applied. Our goal is to implement an extension to
the current algorithm that creates such a guard (more details can be found in Section 6.2
and Section 6.3. To the best of our knowledge, no single, widely established algorithm
that universally converts a non-guarded query to a guarded one exists.

In step 4 of the thesis, we will evaluate the chosen extension on the TPC-H benchmark
that was also used in [LPS24], as well as our synthetic dataset Syn-TPC-H.

Results. In this thesis, we will present a method to apply Yannakakis-style opti-
mization to non-guarded queries. After comparing the methods mentioned above, we
found that PartAggJoin currently the best suited approach for a Spark environment for
various reasons (see Section 6.2).

Our implementation of PartAggJoin is able to evaluate all non-guarded queries of the
new Syn-TPC-H dataset and more than half of the non-guarded queries in the TPC-H
dataset. It is able to process non-guarded queries using Yannakakis-style optimization by
splitting the join treeinto subtrees. Based on whether these subtrees contain relations
that have grouping attributes, the algorithm either uses AggJoin or chooses to allow
minimal materialization. Since PartAggJoin is an extension for AggJoin, it is applicable
for the same aggregate functions as AggJoin, namely MIN, MAX, SUM, COUNT and
AVG.

Structure of the thesis. We will begin our work by giving some theoretical background.
In Chapter 2 we will talk about CQs, their characteristics and the complexity of evaluating
such queries. In Chapter 3, we will formally introduce hypergraphs and explain their links
to acyclicity and join trees. We will also touch upon the GYO-reduction used to detect
acyclicity and explain Yannakakis’ algorithm [Yan81] in detail. Chapter 4 will focus on
newer developments regarding Yannakakis-style query optimization, namely complex
queries like 0MA queries [GLL+23a] and guarded aggregate queries [LPS24]. Afterwards,
we give a short introduction to Spark and SparkSQL in Chapter 5. In Chapter 6 the
methodology, including data analysis, finding a suitable algorithmic solution and imple-
mentation thereof are described, followed by Chapter 7 where we present and discuss
the obtained results. Finally the results, limitations and future work are summarized in
Chapter 8.

4

CHAPTER 2
Conjunctive Queries

In this chapter, we will introduce a basic type of queries, namely Conjunctive Queries
(CQs), that every DBMS has to be able process. In Section 2.1 we will talk about common
structures, properties and different notation styles of CQs. Section 2.2 then focuses on
the computational complexity of evaluating CQs.

As basis for the given examples we define the database schema R, containing the relations
DOG, OWNER, MEDICATION and VISIT, so R = {DOG, OWNER, MEDICATION,
VISIT}. The attributes of these relations can be seen in Table 2.1, Table 2.2, Table 2.3
and Table 2.4. In the following section we will abbreviate the relations with their first
letters, i.e. DOG = D, OWNER = 0, MEDICATION = M, VISIT = V.

Table 2.1: Attributes of the relation DOG.

D_ID Name Breed Weight Medication O_ID

Table 2.2: Attributes of the relation OWNER.

O_ID Firstname Lastname Address Bank Telephone

Table 2.3: Attributes of the relation MEDICATION.

M_ID Name Brand Dosage Price

Table 2.4: Attributes of the relation VISIT.

V_ID O_ID D_ID Date Payment

5

2. Conjunctive Queries

2.1 Conjunctive Queries (CQs)
Conjunctive queries (CQs) are a fundamental class of query types. In Relational Algebra
(RA), they typically correspond to select-project-join queries. [CM77].

Formal structure:

π(σ(R1 ▷◁ ... ▷◁ Ri))

Example:

π(σ(D ▷◁ O))

Importantly, the applied join is always an equi-join or natural join. Furthermore, the
query can only contain equality and conjunction as operators. In the next two sections,
we will list important properties of CQs and show different notation styles that go beyond
RA.

2.1.1 Properties of CQs
Rewriting without Selections. CQs can be rewritten without explicit selection opera-
tions (σ) if only equality conditions are present. If the equality condition includes two
different relations, the selection is treated as an equi-join. The selection criteria can be
added to the join as an additional join condition, thus eliminating the need for a separate
selection.

Formal structure:

π(σR1.x=R2.y(R1 ▷◁R1.a=R2.b R2...Ri−1 ▷◁Ri−1.n=Ri.m Ri)) ⇔ π(R1 ▷◁R1.a=R2.b∧R1.x=R2.y

R2...Ri−1 ▷◁Ri−1.n=Ri.m Ri)

Example:

π(σD.o_id=V.o_id(D ▷◁D.d_id=V.d_id V)) ⇔ π(D ▷◁D.o_id=V.o_id∧D.d_id=V.d_id V)

If the selection only involves the column(s) of one relation, e.g. σR1.x=5, the selection
can also be omitted by executing the selection before the join as a separate filtering step.
Assuming R1̃ = σR1.x=5(R1), the following transformation is possible:

Formal structure:

π(σR1.x=5(R1 ▷◁R1.a=R2.b R2)...Ri−1 ▷◁Ri−1.n=Ri.m Ri) ⇔ π(R1̃ ▷◁R1.a=R2.b

R2...Ri−1 ▷◁Ri−1.n=Ri.m Ri)

6

2.1. Conjunctive Queries (CQs)

Example:

π(σD.breed=”W esti”(D ▷◁D.o_id=O.o_id O)) ⇔ π(D̃ ▷◁D.o_id=O.o_id O)

Equivalence of Equi-Join and Natural Joins. Equi-joins with equality conditions
can be represented as natural joins after renaming columns appropriately. This can be
demonstrated with an example where a column is renamed (ρ) to make the equi-join
equivalent to a natural join.

Formal structure:

π(R1 ▷◁R1.a=R2.b R2) ⇔ π((ρb←aR1) ▷◁ R2)

Example:

π(D ▷◁D.ownerid=O.id O) ⇔ π(D) ▷◁ (ρownerid←idO)

2.1.2 CQs in Different Notation Styles
As already written above, CQs in RA are formally written as

π(σ(R1 ▷◁ R2... ▷◁ Ri))

Since most DBMS are based on some SQL dialect, we will also look at CQs written in
SQL. The example πR1.c,R2.d(R1 ▷◁R1.a=R2.b R2) corresponds to the following SQL query:

SELECT R1.c, R2.d
FROM R1, R2
WHERE R1.a = R2.b

As concrete example in our database schema, the query πD.name,O.lastname(D ▷◁D.ownerid=O.id

O) corresponds to the following SQL query:

SELECT D.name, O.lastname
FROM DOG as D, OWNER as O
WHERE D.o_id = O.o_id

Lastly, one example of a CQ in datalog notation is given. For this example, we add some
schema information to the example from above. Assume that the relation R1 has two
attributes, namely a and c, so it can be written as R1[a,c]. Correspondingly, R2 has
two columns, namely b and d and can thus be written as R2[b,d]. Every datalog query
consists of the head, where the projection occurs, and the body containing atoms (the
relations) that correspond to joins and filtering. The translation of the SQL query from
above into datalog yields the following result:

7

2. Conjunctive Queries

Q(c, d) : - R1(x, c), R2(x, d)

Since we know the schema structure of the relations, we can translate the query by
selecting every tuple (R1.c, R2.d) where the first attributes of the relations R1 and R2
have the same value (R1.a = R2.b).

A concrete example from our schema is the following:

Q(name, lastname) :- dog(d_id, Name, Breed, Weight, Medication, o_id), owner(o_id,
Firstname, LastName, Address, Bank, Telephone)

2.2 Complexity of Evaluating CQs
Despite their simple structure, evaluating CQs is computationally expensive. In 1977,
it was proven that evaluating CQs is an NP-complete problem [CM77]. That means
even though verifying a solution is possible in polynomial time, finding a viable solution
takes exponential time w.r.t the query size in the worst case. However, research was
able to identify subclasses of CQ, namely ACQs, that can be evaluated in linear time
Õ(| D | ∗ | Q | + | Q(D) |), where |D| is the size of the input data, |Q| is the size of the
query tree and |Q(D)| is the size of the final output [Yan81]. A small possible logarithmic
factor can also be part of Õ. We will look at some of these methods in Section 3.4,
Section 4.1 Section 4.2 and Section 4.3

8

CHAPTER 3
Hypergraphs and Acyclicity

Graphs are an important tool for modeling data. Due to their structure, they are able
to bridge the gap between machine-readable data and human-understandable visual
representation of data and its interconnections to other data. Furthermore, complex
graph operations like shortest-path and minimum spanning tree (MST) can be executed
on a graph structure, which is beneficial for optimization problems. In this chapter, we will
introduce a generalized kind of graph - the hypergraph - and explain how query evaluation
can benefit from such a structure. Afterwards, we will look into the connection between
acyclicity, hypergraphs and join trees and finally introduce Yannakakis’ Algorithm [Yan81]
for evaluation ACQs.

3.1 Hypergraphs
We will introduce the concept of a hypergraph by firstly giving the needed definitions of
a general graph, a path in a general graph, a multigraph and an (un)directed graph. The
following slightly modified textbook definitions are taken from [GTH+20].

3.1.1 General Definitions
Definition 1. A graph G is a pair (V, E), where V is a set of vertices, and E is a set
of edges. Each edge e ϵ E is an unordered pair {u, v}, where u, v ϵ V. The size of a
graph can either be defined by the cardinality of E [GTH+20] or the combined cardinality
of V and E [GLPN93]

For example, Figure 3.1 (left), shows a graph with set of vertices V = A, B, C, D, E and set
of edges E = e1, e2, e3, e4, e5, where e1 = A, B, e2 = B, C, e3 = C, D, e4 = A, C, e5 = D, E
and e6 = A, E [GTH+20].

9

3. Hypergraphs and Acyclicity

Definition 2. A path in a graph G = (V, E) is a sequence of edges e1, ..., en where
each edge ei is incident to ei+1, for 1 ≤ i < n. A path is said to be simple if ei ̸= ej for
i, j ≤ n, i ̸= j. The length of a path is the number of edges it contains. [GTH+20].

For example, the simple path from vertice A to vertice D in the graph of Figure 3.1 (left)
is (e1, e2, e3). Two vertice x, y are connected if there exists a path e1, ..., en with x ∈ e1
and y ∈ en.

Definition 3. A graph G is a multigraph if multiple edges are permitted between two
vertices.

For example, Figure 3.1 (right), shows a multigraph with a set of vertices V = A, B, C,
D and a set of edges E = {e1, e2, e3, e4, e5}, where e1 = {A, B}, e2 = {B, C}, e3 =
{C, D}, e4 = {A, C}, e5 = {D, E} and e6 = {A, E}. Note that e7 = {A, C} and
e8 = {B, C} are multiple edges [GTH+20].

Definition 4. A directed graph DG is an ordered pair (V, E) where V is a set of
vertices, and E a set of ordered pairs of vertices, called directed edges, often shown as
arrows in the visual representation of DG. An edge e = (A, B) is considered directed
from A to B; A is called the tail and B is called the head of the edge. A path can only
follow the direction of the edges, i.e. if the only connection between A and B is a directed
edge e = (A,B), then there can only be a path from A to B along e, but not the other way
around [GTH+20]. An example is given in Figure 3.2

Definition 5. Conversely, an undirected graph U(V,E) is an ordered pair (V, E) with
V is a set of vertices, and E a set of undirected edges, which are shown as plain lines in
the visual representation of U (see Figure 3.1 (left)). If an undirected edge e = {A,B}
exists between the vertices A and B, a path can follow either direction to connect the
vertices A and B [GTH+20].

A B

CD

E

e1

e2

e3

e4

e5

e6

A B

CD

E

e1

e2

e3

e4

e5

e6 e7
e8

Figure 3.1: Left: A simple connected graph. Right: A multi-graph with additional edges
e7 and e8.

10

3.1. Hypergraphs

A B

CD

E

Figure 3.2: Directed graph

3.1.2 The Hypergraph
After having listed the preliminary definitions of graphs, now the concept of a hypergraph
can be elaborated. Since varying definitions of a hypergraph and its properties can be
found in the literature, we will compare some of them [GTH+20, BB16, GLPN93] and
select the definition that fits the purpose of the thesis best.

Definition 6. In [BB16], a hypergraph H(E) is defined as a set of edges e1,, em,
which are themselves non-empty sets of vertices; the set of vertices of H, denoted V(H),
is defined as the union of all its edges. An undirected graph as defined in Section 3.1.1 is
simply a special case of a hypergraph: If every edge ei in a hypergraph has a cardinality
of 2, i.e. | ei |= 2, i= {1, .. . , m}, the hypergraph is an example of a standard
graph [GLPN93, BB16].

As an example, we will look at the hypergraph H given in [BB16] in Figure 3.3 (left)
with the following properties: H = {a, b, c, d, e, f, g} and a = {r}, b = {r, s}, c = {s, t,
u, v, w}, d = {t, u}, e = {v}, f = {x, v, w}, and g = {v, w, y, z}.

Note that we define a hypergraph H(E) as a set of edges and not as a set of edges and
vertices H(V,E). Whilst the latter notation is also common, we chose the first because in
a database context, all vertices are contained in edges. A single vertex would correspond
to a singular attribute that is not part of a relation - a state that is not possible in a
database system. Even if a relation e only contains one attribute v, it would still appear
as edge e = {v} (for more details on the connection of hypergraphs and relations, see
Section 3.1.3).

Definition 7. The size of a hypergraph H depends on its definition. In [GTH+20] the
size | H | of H is defined as the number of hyperedges, whereas each hyperedge has its own
size given by the number of vertices it contains. In [BB16] and [GLPN93], a different
definition of size is given: The authors define the size of a hypergraph H as the number
of the sum of its edges’ cardinalities, i.e. size(H) = ΣeiϵE | ei | where E is the set of
edges in H. In this work, we will use the latter definition of a hypergraph’s size, since the
cardinalities of relations (that is, the size of the hyperedges) do play a critical role in a
database context.

11

3. Hypergraphs and Acyclicity

After having defined what a hypergraph is, we will now look at certain properties and
elements of such a construct.

We begin with two different types of subhypergraphs.

Definition 8. A hypergraph H’ is a subhypergraph of a hypergraph H if H’ ⊆ H; in
this case we also say H’ is obtained from H by removing edges, that means if we follow
the definition of a hypergraph H from above as a set of its edges, H’ is simply a subset of
H [BB16].

Definition 9. A hypergraph H’ is the induced subhypergraph of H on a set S ⊆ V (H),
denoted H’ = H[S], if H[S] = {e ∩ S | e ∈ H} \ {∅}; in this case we also say H[S] is
obtained from H by removing vertices (those in V (H) \ S) [BB16].

Definition 10. Two edges e and f of a hypergraph are called properly intersecting if
e ⊈ f , f ⊈ e and e ∩ f ̸= ∅ [GTH+20].

For example, the two edges b = {r, s} and c = {s, t, u, v, w} in Figure 3.3 are properly
intersecting.

Definition 11. The star of the vertex x in the hypergraph H, denoted H(x), is defined
as H(x) = {e ∈ H | x ∈ e}[BB16].

As an example, the stars of the vertices in H are depicted in Figure 3.3,

Definition 12. In a hypergraph H, an edge e is a singleton edge if it is of cardinality
1; by analogy, a vertex x is a singleton vertex if its star in H is a singleton; that is, the
vertex x is contained in exactly one edge of H [BB16].

Definition 13. The dual of a hypergraph H = e1, ..., ek on vertices V (H) = x1, ..., xn is
obtained by identifying vertices with the same star into one vertex and then “exchanging”
the role of the vertices and of the edges; see Figure 3. Formally, the dual of a given
hypergraph H, denoted D(H), is defined as D(H) = {H(x) | x ∈ V (H)} [BB16]. An
example for a dual is given in Figure 3.3 (right).

3.1.3 Constructing a Hypergraph from a Query
In this section, we will look at hypergraphs in the context of a database environment,
specifically we will show how a hypergraph can be constructed from a given query.

When constructing a hypergraph from a query, one does not have access to all information
about the attributes of certain relations, as we only see the attributes (and relations) that
are relevant to the query. If one imagines a database schema as a hypergraph (that is,
edges are connected along primary and foreign key relations), the hypergraph obtained
from a query is an induced subhypergraph (see Definition 9) of the schema. This holds

12

3.1. Hypergraphs

Figure 3.3: A hypergraph H = {a,b,c,d,e,f,g} (left) and its dual (right). The stars of the
vertices in H are the following: H(r) = {a, b}, H(s) = {b, c}, H(t) = H(u) = {d, c}, H(v)
= {e, c, f, g}.

SELECT DISTINCT o.Firstname, o.Lastname, o.Telephone, d.name, v.payment
FROM OWNER o
JOIN DOG d ON o.O_ID = d.O_ID
JOIN VISIT v ON o.O_ID = v.O_ID
WHERE d.Breed = 'Chihuahua'
AND v.Date = '2024-11-18';

Figure 3.4: Querying the database for all payments of Chihuahua owners that have been
to the vet on a certain day in SQL.

Owner(O_ID, Firstname, Lastname, Telephone).
Dog(D_ID, O_ID, Name, Breed).
Visit(V_ID, O_ID, Payment, Date).

// Query
Result(Firstname, Lastname, Telephone, DogName, Payment) :-

Owner(O_ID, Firstname, Lastname, Telephone),
Dog(D_ID, O_ID, DogName, "Chihuahua"),
Visit(V_ID, O_ID, Payment, "2024-11-18").

Figure 3.5: Querying the database for all payments of Chihuahua owners that have been
to the vet on a certain day in datalog.

because the hypergraph of a query cannot contain any vertices that are not part of the
database schema.

In the above examples (see Figure 3.4 and Figure 3.5), the hypergraph H has three edges:
H = {O, D, V}. The subset of nodes that can be deducted from the query and matched
to their relations are the following: O = {Firstname, Lastname, Telephone, O_ID}, D =
{Name, OwnerID, D_ID, Breed} and V = {Payment, OwnerID, Date}. The resulting

13

3. Hypergraphs and Acyclicity

Figure 3.6: The constructed hypergraph from the query above (see 3.4)

hypergraph H can be seen in Figure 3.6. It is important to note that overlaps of edges
have to be deducted from the equality conditions and not by semantics (e.g. an attribute
o.ID would not be the same node as d.ID, unless both would appear on one side of an
equality condition: d.ID = o.ID).

3.2 Acyclicity and Join Trees
In this section, we will introduce a subclass of CQs, namely acyclic conjunctive queries
(ACQs). Commonly, it can be said that a CQ is acyclic if it has a join tree. Note that
our notion of the term "acyclicity" is the so-called alpha-acyclicity [BB16, Fag83].

A tree is defined as the following:

Definition 14. A rooted tree T (V, E) is a connected, acyclic graph with a distinctive
root node. Note that depending on the illustration of the tree, the root node can be chosen
arbitrarily (see Figure 3.7).

A join tree is a specific variation of a general tree:

Definition 15. A join tree T, is a rooted tree with root r that has an additional labeling
function λ: ⟨T, r, λ⟩. λ is a bijection that assigns to each node of T one of the relations
R1, ..., Rn that are part of a query while also fulfilling the connectedness condition: if
some attribute A1 occurs in both relations ni) and λ(nj) for two nodes ni and nj, then
A1 has to occur in the every node (and thus relation) along the path between ni and
nj [GLL+23a].

Note that a hypergraph can have many possible join trees. Examples can be seen in
Figure 3.7.

Theorem 1. A hypergraph H(V, E) is α-acyclic if it has a join tree [GLL+23a]. A
detailed proof of this theorem can be found in [Fag83].

14

3.3. GYO-Reduction

(a) The hypergraph of a query containing all
relations of the schema.

M

D

O V

(b) Join tree of the hypergraph above.

D

M VO

(c) Join tree of the hypergraph above.

Figure 3.7: The hypergraph of the a query containing the relations {Dog, Owner, Visit,
Medication} and two possible join trees with M = Medication, D = Dog, O = Owner
and V = Visit

To decide whether a CQ is acyclic can be done by applying the GYO-algorithm (see
Section 3.3). In the positive case, a join tree is constructed [GLL+23a].

3.3 GYO-Reduction
To check whether a hypergraph of a CQ is acyclic, one can apply the GYO-algorithm, or
GYO-Reduction. The algorithm was originally developed by Graham, Yu and Ozsoyo-
glu [YO79, Gra79] in 1979. The procedure can be used to check for acyclicity due to the
design of the algorithm: If a hypergraph can be reduced to an empty set of edges, it is
acyclic. While removing edges, a join tree can be built in parallel, using the intermediate

15

3. Hypergraphs and Acyclicity

results (i.e. removed edges) of the reduction. The pseudo-code of the algorithm can be
read in Algorithm 3.1

Algorithm 3.1: GYO-reduction [YO79, Gra79]
Input: A hypergraph H(V, E)
Output: Reduced set of edges E

1 GYO-REDUCTIONH(V, E) while possible do
2 if ∃e ∈ E : ∀v ∈ e : ∄e′ ∈ E \ {e} : v ∈ e′ then
3 delete e;
4 end
5 if ∃e ∈ E : ∃w ∈ E \ {e} : ∀v ∈ e : (v ∈ w ∨ ∄e′ ∈ E \ {e} : v ∈ e′) then
6 assign w as witness of e and delete e;
7 end
8 end
9 return E;

Definition 16. If the GYO-reduction is applied to a hypergraph, a hyperedge e can be
removed if there exists another hyperedge f that has the following properties: for every
vertex x that does not appear exclusively in e, it must be that x ∈ f . That means if e
shares vertices with other edges, there must exists one edge f that contains all of these
shared nodes. Edge f is then called a witness of e. A vertex that is contained in e but
not in any other edge is a so-called ear-node or ear-vertex [YO79, Gra79].

According to the definition above, every edge that shares no vertices with another edge
can be trivially removed, as can any edge that is completely contained within another
edge. Note that there can be cases of unconnected hypergraphs, in which case the
hypergraph does not have a join tree, but a join forest.

During the reduction, the following two steps are executed until no more edges eligible
for removal are found (or all edges have already been removed):

1. Find and select an edge e of the hypergraph H that has either a) a witness e’ and
contains one or more ear-vertices or b) is completely contained within another edge
or c) shares no vertices with another edge.

2. Remove e from H, i.e. remove e from the set of hyperedges.

As an example for how to decide whether a hypergraph is acyclic and how to build one or
more join trees from a hypergraph using the GYO-reduction, we will revisit the examples
given in Figure 3.7. While executing the GYO-reduction, a join tree is created.

To obtain the join tree in Figure 3.7b from the hypergraph given in Figure 3.7a, we
choose edge O first and remove it with edge D as its witness, which also means that
we put down D as parent node of O. Next, we remove edge V , which has D as parent

16

3.4. Yannakakis’ Algorithm

as well. Finally, we choose edge D to be removed, making M its witness and parent.
Finally, M can be trivially removed, because it has no more shared nodes. Since the
algorithm reduces the set of edges to an empty set, the hypertree is acyclic.

In Figure 3.7c, the algorithm starts by picking another edge as the first to be removed.
It removes M first, then O and finally V , all having D as witness and thus parent node.
Finally, D can also be removed and the result is again the empty set.

Before closing this section, we want to highlight one interesting property of acyclic
hypergraphs: an acyclic hypergraph can have a cyclic subgraph. This is illustrated by
the examples given in Figure 3.8 and Figure 3.9. If we process the hypergraph given in
Figure 3.8, we find that it is acyclic:

1. W.l.o.g, we identify B as first ear-vertex and consequently remove edge {A,B,C}
since edge {A,C,E} acts as a witness.

2. Next, we identify D as ear-vertex and consequently remove edge {E,D,C}. Again,edge
{A,C,E} acts as a witness.

3. Next, we identify F as ear-vertex and consequently remove edge {E,F,A} with edge
{A,C,E} as witness.

4. All nodes of the remaining edge {A,C,E} are now ear-vertices; the edge can be
removed.

5. All edges have been removed by the GYO-Algorithm, which means that the
hypergraph is acyclic.

Interestingly, if we try to apply the same procedure to the hypergraph in Figure 3.9,
which is a subgraph of Figure 3.8, we find that the GYO-Algorithm fails: There is no edge
is fully contained in another edge. There is no edge that shares no vertices with another
edge. An also, there is no edge that has an ear-vertex and a witness. The algorithm fails,
the hypergraph is cyclic [Fag83].

3.4 Yannakakis’ Algorithm
Once we have checked whether a hypergraph of a query is acyclic and have created a join
tree, we can apply Yannakakis’ algorithm [Yan81, TGR22, Pic23] to evaluate it without
creating intermediate results that contain tuples that are not part of the final result -
the so-called "dangling tuples".

This is accomplished by traversing the join tree up and down while applying semi-joins
that eventually reduce all relations to the tuples that are part of the end result. In the
final step, only these remaining tuples have to be joined, meaning that the final joins are
as minimal as possible for a given join tree, since after every join, the intermediate result
will only contain tuples that are part of the final result.

17

3. Hypergraphs and Acyclicity

Figure 3.8: An acyclic hypergraph [Fag83]

Figure 3.9: A cyclic hypergraph [Fag83]

A semi-join is defined as follows:

Definition 17. R ⋉ S := {r|r ∈ R ∧ ∃s ∈ S ∧ r[A1,...,An] = s[A1,...,An]}. This means that
the semi-join returns all tuples from R that have a join partner in relation S.

The algorithm consists of three steps:

1. A bottom-up traversal in which every node n is semi-joined with its child-nodes
ci: n ⋉ ci. This removes all tuples from n that are not present in ci (upwards
propagation).

2. A top-down traversal that has the opposite join-direction of step 1: ci ⋉ n. This
removes all tuples from ci that are not present in n (downwards propagation).

3. The remaining tuples are joined according to the join conditions. This last step
can be done either bottom-up or top-down [Pic23, Yan81].

18

3.4. Yannakakis’ Algorithm

Notably, the last step does not need to be done in a separate traversal. Since the relations
are joined iteratively, it could also be done during step 2, so that the final result is built
incrementally [TGR22].

Yannakakis’ algorithm works because it efficiently exploits the structural properties of
acyclic conjunctive queries (ACQs) and their associated join trees. The first bottom-up
traversal performs semi-joins, which filter tuples in the parent relations by ensuring only
those tuples are kept, which appear in the child nodes. This way, no information that
is needed later on will be lost. The top-down traversal further refines these results by
eliminating all tuples in the child nodes that are not contained in the parent relations.
After the second step, all dangling tuples have been eliminated and the actual computation
produces minimal intermediate results for a given join tree [Yan81, GLL+23a].

Correctness Proof. The following is a proof sketch of Yannakakis’ algorithm as shown
in [GLL+23b].
Assume a join tree T . For every node t ∈ V (T) let Tt be the subtree of T that has t as
its root node. Furthermore, let Rt be the relation at node t. Regarding the traversals, let
R′

t, R′′
t and R′′′

t denote the result of the first / second / third traversal of the join tree.
Formally, R′

t, R′′
t and R′′′

t can be defined the following way:

After the first bottom-up traversal, the following holds: R′
t = πvars(t)(▷◁v∈V (Tt) Rv) for

each t ∈ T . This means that for any subtree Tt, all relations of Tt are joined and the
results are projected onto the attributes of t. Intuitively, this means that the result
consists of all tuples in t that have join partners with its child nodes. This concludes the
upwards propagation.

After the top-down traversal, the following holds: R′′
t = πvars(t)(▷◁v∈V (T) Rv) for each

t ∈ T . After the completed upward propagation (R′
t), this step ensures that dangling

tuples are removed from child nodes by joining all tuples and then projecting to the
attributes of t. This concludes the downward propagation.

After the second bottom-up traversal, the following holds: R′′′
t = πvars(Tt)(▷◁v∈V (T) Rv)

for each t ∈ T . This step joins all relations in T sans the dangling tuples that have been
removed by prior steps. After completing this process for all nodes in the join tree, the
root node now contains all results of the query. As mentioned above, this step can be
incorporated into step 2 as a means of optimization.

Complexity. Now it becomes apparent why the algorithm evaluates in linear time with
respect to the size of the input D, the quer size Q and the size of the final result Q(D):
Õ(| D | ∗ | Q | + | Q(D) |). In the first two steps, the semi-joins, every tuple of the input
relations has to be look for a join partner within its neighboring relations in the join tree.
The bigger the size of the input, the more time consuming this step will be. And the size
of the final result r is directly connected to the third step: the more tuples remain, the
longer it takes to join the relations.

In the following sections, we will execute Yannakakis’ Algorithm step-by-step on the
query below (see Figure 3.10), with the corresponding join tree depicted in Figure 3.11.

19

3. Hypergraphs and Acyclicity

SELECT *
FROM Medication M, Owner O, Dog D, Visit V
WHERE M.name = D.Medication
AND D.OwnerID = O.ID
AND D.ID = V.DogID
AND O.ID = V.OwnerID

Figure 3.10: A simple CQ.

The query simply joins the relations MEDICATION, OWNER, DOG and VISIT and
returns all "active" records, e.g. if a medication is currently prescribed to no one, it will
not appear in the final result.

3.4.1 Bottom-Up Traversal
In the bottom-up traversal, the following semi-joins are computed: Owner ⋊ Dog,
V isit ⋊ Dog and Dog ⋊ Medication.

Note that the first semi-join (Figure 3.12) in the bottom-up traversal causes no tuple
reduction, since there is no tuple in DOG that has no join partner in OWNER.

The second semi-join (Figure 3.13) in the bottom-up traversal removes the last row in
DOG, since there is no visit in VISIT of a Dog 6 with Owner 101.

The third semi-join (Figure 3.14) in the bottom-up traversal removes the last three
medications in MEDICATION, since they are not prescribed to any dog in DOG.

3.4.2 Top-Down Traversal
In the top-down traversal, the following semi-joins are computed: Medication ⋊ Dog,
Dog ⋊ Owner and Dog ⋊ V isit.

The first semi-join (Figure 3.15) in the top-down traversal removes no rows, because
there is no medication present in DOG that is not present in MEDICATION.

The second semi-join (Figure 3.16) in the top-down traversal removes owner 105 from
OWNER, because they do not own any dog in the relation DOG.

The last semi-join (Figure 3.17) in the top-down traversal removes visit 5 from VISIT,
since no such Dog/Owner combination is present in DOG.

3.4.3 Final Traversal
What is left to do is joining all the tuples and returning the output result. For spatial
reasons, we will apply a projection onto the result and only select the columns M.name,
D.name., O.lastname V.payment and V.date. The result can be seen in Table 3.1.

20

3.4. Yannakakis’ Algorithm

Medication
M_ID Name Brand Dosage Price

1 Bravecto Merck 140mg 50.99
2 NexGard Boehringer 68mg 45.50
3 Heartgard Zoetis 136mg 35.00
4 Simparica Zoetis 80mg 40.00
5 Credelio Elanco 56mg 38.50
6 Revolution Zoetis 120mg 55.00

Dog
D_ID Name Breed Weight Medication OwnerID

1 Bella Labrador Retriever 25.0 Bravecto 101
2 Max Beagle 10.0 NexGard 102
3 Luna German Shepherd 30.0 Heartgard 103
4 Charlie Golden Retriever 28.0 Bravecto 104
5 Daisy Poodle 8.0 Bravecto 101
6 Rocky Boxer 35.0 Revolution 101

Owner
O_ID FN LN Addr Bank Tel

101 A. O. Addr101 RB Tel1
102 C. O. Addr102 VB Tel2
103 E. O. Addr103 EB Tel3
104 H. O. Addr104 OE Tel4
105 S. K. Addr105 N26 Tel5

Visit
V_ID OwnerID DogID Date (€)

1 101 1 "2024-09-23" 35
2 103 3 "2024-09-23" 78
3 104 4 "2024-09-29" 63
4 102 2 "2024-03-23" 12
5 105 5 "2024-05-21" 20
6 101 1 "2024-11-02" 44
7 101 5 "2024-05-21" 20

Figure 3.11: A join tree for a query that contains the relations Owner O, Medication M,
Visit V, and Dog D.

M.name D.name O.firstname v.payment v.date
Bravecto Bella A. 35 2024-09-23
NexGard Max C. 12 2024-03-23
Heartgard Luna E. 78 2024-09-23
Bravecto Charlie H. 63 2024-09-29
Bravecto Daisy A. 20 2024-11-02
Bravecto Bella A. 44 2024-11-02

Table 3.1: The final result of the join, projection applied.

21

3. Hypergraphs and Acyclicity

Figure 3.12: Owner ⋊ Dog

Figure 3.13: V isit ⋊ Dog

22

3.4. Yannakakis’ Algorithm

Figure 3.14: Dog ⋊ Medication

Figure 3.15: Medication ⋊ Dog

23

3. Hypergraphs and Acyclicity

Figure 3.16: Dog ⋊ Owner

Figure 3.17: Dog ⋊ V isit

24

CHAPTER 4
Beyond ACQs: 0MA and Guarded

Aggregate Queries

With his algorithm, Yannakakis [Yan81] introduced a method to eliminate tuples that
are not part of the final result (dangling tuples) from the final join and thus greatly
reduced the size of intermediate results. However, there is still one quite computationally
expensive action to take: joining the reduced intermediate results. As research [GLS01,
GLL+23a, LPS24] has shown, Yannakakis’ approach can be expanded and tweaked to
reduce costs even more. In this chapter, we will take a look beyond ACQs and talk
about Boolean ACQs (Section 4.1), 0MA queries (Section 4.1), guarded aggregate queries
(Section 4.3 and piecewise-guarded aggregate queries (Section 4.4).

4.1 Boolean ACQs

Boolean ACQs are a class of simple queries that only check for the existence of a result,
i.e. if the set of answer tuples is non-empty, the result is true, otherwise it is false. For
this class of queries, it has been formally proven [Yan81, GLS01] that one bottom-up
traversal of semi-joins suffices to evaluate the query. This also becomes apparent in the
example and the correctness proof given in Section 3.4: If the bottom-up semi-joins are
done and the root node is non-empty, we can already conclude that some values will
be returned, since the result can never be less than the size of the root node after the
bottom-up traversal, it only grows by joining other relations [TGR22, GLS01]. Naturally,
this speeds up the evaluation greatly, since the most expensive action - the final joining
of relations - does not have to be performed.

25

4. Beyond ACQs: 0MA and Guarded Aggregate Queries

4.2 0MA Queries
Following up on Boolean ACQs, the authors of [GLL+23a] have introduced a whole
class of queries that can be evaluated in one bottom-up traversal of the join tree and
more importantly without any materialization: the 0MA query class (short for zero
materialization answerable queries).
In their paper [GLL+23a], the authors give the following example:

SELECT exams.student , MIN (exams.grade)
FROM exams , courses
WHERE exams.cid= courses.cid
AND courses.faculty ='Biology '
GROUP BY exams.student ;

Since there are only two relations in this query, it is trivially acyclic and the bottom
up traversal consists of only one semi-join. As we recall, in the bottom-up traversal,
the child node restricts the parent node. Here, the semi-join COURSES ⋊ EXAMS
would remove any tuple from exams that does not match the cid of biology courses
in COURSES. As we need no attributes from the COURSES relation, all that is left
is to apply the grouping and aggregation. The result is obtained without joining any
relations [GLL+23a]. This also follows from the correctness proof in Section 3.4.
Formally, a 0MA query Q has to fulfill three properties:

1. Q has to be in aggregation normal form γU (πS(Q′)). That means additionally
to Q’, which can only contain natural joins and selection, the grouping operator γ
and aggregations are allowed.

2. Q has to be guarded. The definition of guardedness in [GLL+23a] is the following:

Definition 18. Guardedness: All attributes G1, ..., Gi appearing in a GROUP
BY statement (aggregated or not) and aggregates A1, ..., Ai have to be in the same
relation R of Q. R is then called the "guard" of Q.

3. Q has to be set-safe. This means that duplicate elimination δ before the aggregation
of attributes has no effect on the final result, i.e. γU (πS(Q′))=γU (δ(πS(Q′)))

0MA queries offered a good means of optimization for guarded queries that contain the
aggregate functions MIN, MAX and COUNT DISTINCT. But even though many queries
fulfill the above properties, guardedness and set-safety are quite restrictive properties.
Set-safety is especially restrictive, since aggregations like SUM, AVG, MEDIAN and
COUNT(*) are per definition excluded.
The authors admit this limitation, but also note that even if a query is not 0MA, there is
potential for cost reduction: if a subtree of the join tree is 0MA, then some joins can still
be omitted and overall the materialization of intermediate results is reduced [GLL+23a].

26

4.3. Guarded Aggregate Queries and their Evaluation

4.3 Guarded Aggregate Queries and their Evaluation
The introduction of 0MA queries offered a new perspective, but as written above, its
benefits are only applicable to a small percentage of queries that are both guarded
and set-safe. In [LPS24], the authors were able to drop the set-safety restriction and
introduced "guarded aggregate queries". By developing a new operator that accounts
for the frequency of the appearance of each tuple (the duplicates) and propagating
this information further up during the bottom-up traversal, they were able to evaluate
guarded aggregate queries with zero materialization.

4.3.1 Frequency Propagation in Guarded Aggregate Queries
Definition 19. Let Q be a query of the form γ[g1, ...gn][A1(a1), ...Aj(am)](R1 ▷◁ R2... ▷◁
Ro). γ stands for GROUP BY, Aj for aggregation. We call Q a guarded aggregate query
(or simply, “guarded query”), if (R1 ▷◁ R2... ▷◁ Ro) is acyclic and there exists a relation
Ri (= the guard) that contains all attributes that are either part of the grouping or occur
in one of the aggregate expressions. If several relations have this property, we arbitrarily
choose one as the guard [LPS24].

If the set-safety is dropped, how can duplicate tuples be accounted for? The main idea is
to note the frequency, i.e. the number of duplicates of every tuple as an extra attribute
in each tuple and propagate this one additional attribute upwards the join tree. The
initialization is formalized as Freq(u) = R(u) × {(1)}, where u is a node in the join tree
and R(u) is the corresponding relation. Freq(u) adds one additional column to R(u),
saving the frequency of each row.

The propagation of frequencies can be formalized in three statements:

• Freq0(u) := R(u) × {(1)}
• Freqi(u) := γ[Att(u), ci

u ← SUM(ci−1
u ∗ cui)](Freqi−1(u) ▷◁ Freq(ui))

• Freq(u) := ρcu←ck
u
(Freqk(u))

For better understanding, we will include the example given in [LPS24]. Consider the
following query and its corresponding join tree in Figure 4.1:

SELECT MEDIAN(s_acctbal)
FROM part, partsupp, supplier,
nation, region
WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey

27

4. Beyond ACQs: 0MA and Guarded Aggregate Queries

AND p_price >
(SELECT avg (p_price) FROM part)
AND r_name IN ('Europe', 'Asia')

S

N

R

PS

P

Figure 4.1: The corresponding join tree of the query above. S = supplier, N = nation, R
= region, PS = partsupp, P = part

For this query, the result after one bottom-up traversal with applied frequency propagation
can be found in Figure 4.2. As can be seen, the frequency attribute c for the first record
in supplier is 30. How is this computed? In the first step the count of each tuple c is
initialized to 1 Since REGION and PART are leaves, these are already their final c-values.
This corresponds to the formal statement Freq0(u) := R(u)×{(1)}. The step from PART
to PARTSUPPLIER or REGION to NATION, respectively, denotes the frequencies of
the R and P tuples in the child nodes and thus completes Freqi(u) := γ[Att(u), ci

u ←
SUM(ci−1

u ∗ cui)](Freqi−1(u) ▷◁ Freq(ui)). For example, the first c-value in NATION
is calculated by summing up the counts of r1 in REGION and multiplying each count
by 1, the initialized value in NATION: 1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1 The step from NATION
and PARTSUPPLIER to SUPPLIER involves the summation and multiplication of the
frequencies propagated in the subtrees. We have to look at all appearances of n1 in
NATION and s1 in PARTSUPPLIER. In PARTSUPPLIER, this means we have to get
the frequency of the tuples (s1, p1), (s1, p2) and (s1, p3). For (s1, p1) the frequency is 3.
This is now multiplied with all frequencies of n1 in NATION: 3∗3+3∗2 = 15. For (s1, p2)
the frequency is 2. This is now also multiplied with all frequencies of n1 in NATION:
2 ∗ 3 + 2 ∗ 2 = 10. For (s1, p3) the frequency is 1. Multiplied with all frequencies of n1 in
NATION we get 1 ∗ 3 + 1 ∗ 2 = 5. And 15 + 10 + 5 = 30

At the end of the bottom-up traversal, the root relation, which acts as a guard to the
query, holds all aggregation and grouping attributes and the frequency of each tuple
which reflects the size of the final result if all the joins have been realized. This allows
the system to compute aggregations which are not set-safe, as they can be rewritten
and expressed with frequency attributes. In the following list, B denotes an attribute of
guard R and cr the frequency attribute [LPS24].

• COUNT() → SUM(cr)

• COUNT(B) → SUM(IF(ISNULL(B), 0, cr))

28

4.3. Guarded Aggregate Queries and their Evaluation

Figure 4.2: Evaluation of the query from join tree 4.1 [LPS24]

• SUM(B) → SUM(B*cr)

• AVG(B) → SUM(B*cr)/COUNT(B)

• MEDIAN(B) → PERCENTILE(0.5, B, cr)

In the initial version of [LPS24], the optimization they offered was based only on guarded
aggregate queries. And even though it showed great speed-gains, it was only applicable to
a very narrow subset of queries, as was seen in the benchmark of the same paper: While
the optimization was applicable to all queries in the STATS-CEB dataset [HWW+21]
and the SNAP dataset [LK14], only 5 out of 33 queries in the JOB dataset [LGM+15]
were eligible for optimization, in LSQB [MLK+21] only 2 out of 9 and in TPC-H [TPCb]
only 2 out of 22.

29

4. Beyond ACQs: 0MA and Guarded Aggregate Queries

4.4 Piecewise-guarded Aggregate Queries

The experimental evaluation in [LPS24] has shown, that guarded aggregate queries are
able to cover a bigger percentage of queries in the benchmarks used to evaluate them
than 0MA. Still, in real life scenarios, the guardedness conditions proves too restrictive.
It is simply too often not the case that all aggregated attributes and on top of that all
grouping attributes come from the same relation. The authors were able to relax the
guardedness restriction for queries containing MIN, MAX, SUM, COUNT, and AVG and
introduced a new term: piecewise-guarded aggregate queries.

Definition 20. Let Q be a query of the form γ[g1, ...gn][A1(a1), ...Aj(am)](R1 ▷◁ R2... ▷◁
Ro). Again, γ stands for GROUP BY, Aj for aggregation. We call Q a piecewise-guarded
aggregate query (or simply, “piecewise-guarded query”), if (R1 ▷◁ ... ▷◁ Ro) is acyclic and
there exists a relationRi0 that contains all grouping attributes and, for every j ∈ {1, . . .
,m}, the following conditions hold:

• If Aj ∈ MIN, MAX, SUM, COUNT, AVG, then there exists a relation Rij that
contains all attributes occurring in Aj(aj).

• Otherwise, i.e., Aj /∈ MIN, MAX, SUM, COUNT, AVG, then Ri0 contains all
attributes occurring in Aj(aj) [LPS24].

R0, the guard of the attributes in the GROUP BY clause acts as so-called root guard,
i.e. this is the root of the join tree. The relations guarding one or more aggregates are
simply referred to as guards [LPS24].

Evaluating a query with aggregates that are all contained in the relation of the root
node works exactly as described in Section 4.3.1. But what about queries that contain
aggregated attributes that are not guarded by the root guard? As stated before, the
relaxation is only valid for MIN, MAX, SUM, COUNT, and AVG. The idea is simple:
those aggregates that are needed in the final result get propagated upwards along with
their frequency [LPS24].

In the revision of [LPS24], the authors introduced AggJoin (see Section 4.5), a new
operator in Spark that provides optimization not only for guarded queries, but also
for piecewise-guarded queries. With this improvement it was applicable to a wider
subset of queries: The new optimization was applicable to all queries in the STATS-CEB
dataset [HWW+21] and the SNAP dataset [LK14]. But this time, all 113 JOB queries, 7
out of 22 TPC-H queries , 30 out of 99 TPC-DS queries and 2 out of 9 LSQB queries could
be processed with AggJoin. Notably, not all queries in the benchmarks are aggregate
queries. For more details, see Figure 6.4.

In the next section, we will take a closer look at AggJoin in theory and in practical terms.

30

4.5. AggJoin

4.5 AggJoin
One example of technology that takes advantage of the above described notions of
guardedness and piecewise-guardedness is the so-called AggJoin extension of Spark (see
Chapter 5), that was first introduced in [LPS24]. The implementation and a benchmark
environment are publicly available at https://github.com/dbai-tuw/spark-eval.

Looking back at Figure 4.2, one can see that the algorithm works because the guard
of the query, here SUPPLIER, already holds all attributes that have to be aggregated
eventually. We can avoid materializing intermediate results by propagating frequencies
because we know that the guard will contain the needed columns and values. But what
if this is not the case?

Logical Optimization

Assume that an aggregate Aj(aj) is part of a query to be evaluated, but not guarded by
the root guard r. Furthermore assume that Aj ∈ {MIN, MAX, SUM, COUNT, AV G}
and that aj is of the form fj(Bj), where fj is a function on the attributes A′

j , e.g. Aj(aj)
= MAX(ai + aj). We will now search for the highest node w in the join tree Tu that
contains all attributes Bj . Note that w ̸= r since the query is piecewise-guarded, but not
guarded. To pass Aj(aj) from w to r, we have to add an additional attribute called Aggj

to every node u on the path from w to r. Formally, this processed can be described the
following:

γ[Att(u), Aggj ← Aj(fj(Bj))] ▷◁v∈Tu (R(v))) [LPS24]

Assume that as part of the initialization at node w, for each each tuple tw, a frequency
attribute tw.c has been initialized. Then in [LPS24], the additional attribute Aggj is
computed as follows (since AVG is computed by a combination of SUM and COUNT, it
is omitted in the following descriptions):

• If Aj ∈ {MIN, MAX}, then we set t.Aggj := fj(Bj).

• If Aj = COUNT, then we distinguish two cases: If fj(Bj) = NULL, then we set
t.Aggj := 0; otherwise t.Aggj := tw.c.

• If Aj = SUM, then we set t.Aggj := fj(Bj) ∗ tw.c

If Aj is MIN or MAX, then we can simply apply these aggregate functions to the tuples of
Aj and save the results in Aggj . If, however, Aj is COUNT, then we have to distinguish
between values that are null (which will not be counted) and non-null values. Since we
have to be aware of how often a tuple appears, the Aggj is set to the frequency of the
respective tuple. In the case of Aj = SUM, we also have to take into consideration how
often the value appears, so the sum of a certain attribute is the value times its number
of appearance (the frequency) [LPS24].

31

4. Beyond ACQs: 0MA and Guarded Aggregate Queries

For the propagation step, we also assume that the frequency attributes of the relations
and tuples involved have already been computed. Furthermore, assume that the nodes u
and u1 are part of the path from w to r, and u1 is the immediate child of u. Note that
u1 is the only child of u that is on the path from w to r, whereas u2, ...uk are not. The
following enumeration describes how Aggj is passed from u1 to u. For every tuple t of
R(u), the set {t1, ..., tn} contains all tuples of R(u1) that are join partners for t. That
means the tuples {t1, ..., tn} contain values that need to be aggregated and propagated
to t [LPS24].

• First suppose that Aj ∈ {MIN, MAX}. Then we set t.Aggj := Aj({t1.Aggj , ...,
tn.Aggj}).

• Now let Aj ∈ {SUM, COUNT}. For every i ∈ {2, ..., k}, let si denote the sum
of the frequencies of all join partners of t in R(ui). Then we set t.Aggj :=
(∑︁n

m=1 tm.Aggj [u1]) ∗ ∏︁k
i=2 si. Note that the value of ∑︁n

m=1 tm.Aggj is aggregation
of Aggj over all join partners of t in child u1 and ∏︁k

i=2 si is the combined frequency
values for each tuple gathered from the children {u2, ...uk}[LPS24].

We see that if Aj ∈ {MIN, MAX}, then the already aggregated values of the join
partners {t1.Aggj , ..., tn.Aggj} are aggregated once again into one value and saved in
t.Aggj . On the other hand, if Aj ∈ {SUM, COUNT}, then not only the aggregates of
the tuples that can join with t have to be taken into account, but also the frequencies
of values in children of u that are not on the path from w to r (that is, all nodes in
{u2,...,uk}). This is why the already computed sums are are not just further aggregated,
but also multiplied with the frequencies of their join partners from other children of
u [LPS24].

Notably, even though the logical optimization now propagates more values, the number
of tuples along the join tree is still the same as in regular semi-joins, as the relations are
only extended by columns for attributes and frequencies, but never new tuples [LPS24].
That is, even though the size of the relations increases, it does so horizontally by
adding attributes, but never vertically since no tuples are ever added. This means the
evaluation of piecewise-guarded aggregate queries is still linearly bounded by the size of
the data [LPS24].

Physical Optimization

The physical implementation of AggJoin combines Yannakakis-style evaluation and ag-
gregation. A similar process has been described in [SOAK+19], albeit without computing
and propagating frequency attributes of tuples. In this section, we will describe the
join-less implementation of AggJoin by the authors of [LPS24].

As a preprocessing steps, a frequency attribute c is added to every relation and initialized
as 1 for every tuple. Then, for every aggregate Aj(fj(Bj)) whose attributes are not
guarded by the root, a node w is determined - the highest node in the join tree that

32

4.5. AggJoin

contains the attributes Bj . Afterwards, every node along the path from w to root is
extended by attribute Aggj . The values of Aggj are initialized as described above [LPS24].

After the pre-processing, AggJoin starts to propagate frequencies and aggregates. For the
following explanations, the relations S and R will be the relations connected the nodes
uR and uS in a join tree, where uS is a child node of uR. Frequencies are propagated the
following way for a tuple r ∈ R [LPS24]:

• R ⋉ S must contain r

• find all possible join partners for r in S: S′ = S ⋉ {r}

• calculate sc, i.e. the sum of the frequencies of all the tuples in S′.

• Set r.c := r.c ∗ sc, that is the current frequency of tuple r is multiplied by the
amount of possible join partners from S.

Before propagating aggregates, a small initialization step has to be performed for the
aggregates SUM and COUNT that takes the frequency attributes of tuples in a node’s
subtree into account. Assume Aggj has to be initialized in R. As already described in
Section 4.5, for every tuple r ∈ R, Aggj has to be multiplied by r.c. Note that r.c is
calculated as such: For every child ui of uR, the sum of frequencies of all the tuples in
R(ui) that can join with t is calculated as sci. Then r.c is multiplied with sci. [LPS24].

For the propagation of aggregates, two cases have to be distinguished: (1) S contains
Aggj and (2) S does not contain Aggj . In case (1) the aggregates are processed the
following way for every tuple r ∈ R that has at least one join partner in S [LPS24]:

• If Aj ∈ {MIN, MAX} then Aj is applied to the respective values of all possible
join partners and the result is written to r.Aggj . That means the minimal (or
maximal) value of Aggj of all join partners (and the current tuple) is propagated.

• If Aj ∈ {SUM, COUNT}, the sum of the aggregated values in the join partners
are computed and then multiplied with r.Aggj , which was initialized as the sum of
frequencies of all tuples in S that join with R.

In case (2), the propagation involves less computation [LPS24].

• If Aj ∈ {MIN, MAX}, r.Aggj is left unchanged, as the value will be propagated
from another child node.

• If Aj ∈ {SUM, COUNT}, then it is processed like a frequency, i.e. r.Aggj is simply
multiplied by the sum of frequencies of S′, the join partners in S for r.

33

4. Beyond ACQs: 0MA and Guarded Aggregate Queries

SELECT MAX(m.price), o.name
FROM OWNER as o
NATURAL JOIN VISIT as v
NATURAL JOIN DOG as d
NATURAL JOIN MEDICATION as m
WHERE '2024-09-01' <= v.date and v.date < '2024-10-01'
GROUP BY o.name

Figure 4.3: An example query that is not fully guarded, but piecewise-guarded. The goal
of the query is to find out which owner was willing to pay most for a single medication
in September 2024.

Example of query evaluation with AggJoin. Looking at the query in Figure 4.3,
we can see that the query is trivially group-guarded by relation OWNER, since only one
attribute appears in the GROUP BY statement. However, this is not the same relation
as the guard for the aggregate MAX(m.price), which is in relation MEDICATION. The
AggJoin operator can still resolve this query without materialization. As per definition of
piecewise-guardedness (see Section 4.4), this query is piecewise-guarded: All elements of
the GROUP BY statement are part of the same relation, and each individual aggregate
consists only of attributes from one relation. Furthermore, the aggregate function(s) are
part of {MIN, MAX, SUM, COUNT, AVG}. The corresponding join tree can be seen in
Figure 4.4, relation OWNER (=O) is the root guard. The right side of the join tree can
be processed by the standard procedure for guarded aggregate queries: for relevant tuples,
a frequency attribute is added and propagated (as described in Section 4.3), semi-joins
are applied. The left side of the join treeneeds to be processed a bit differently. Similar
to [KAK+14], the aggregations needed in the final result are computed and propagated
from the node containing the relevant attributes that is highest up in the join tree to the
root. As described above, this propagation is realized by adding the respective columns
Aggj to each relation on the path to root. For our example in Figure 4.5, we see that
price appears only in MEDICATION, but not in DOG or OWNER. That means we
have to propagate the aggregate MAX(m.price) along the path from MEDICATION
to OWNER. In the first step, depicted in Figure 4.6, we can see that the frequency
attributes have been initialized for all tuples. Aggj has been initialized in relation that
contain the attribute to be aggregated. Now, along with the frequencies, the column Aggj

that contains MAX(m.price) of all possible join partners for DOG in MEDICATION
will be added to DOG, which will eventually relay these values to OWNER. In the right
join tree, frequency values are propagated from VISIT to OWNER. At the end of this
propagation, the root guard will hold not only the attributes necessary for grouping
but now after propagation also the computed aggregate values [LPS24]. The result of
AggJoin, that is the result of propagating aggregates and frequencies while applying
semi-joins, can be seen in Figure 4.7.

Implementation details. To sum up, AggJoin is a new physical operator, that does not

34

4.5. AggJoin

O

D V

M

Figure 4.4: One possible join tree for the query in Figure 4.3, where the group guard
OWNER has been chosen as root.

Owner
O_ID FN LN Addr Bank Tel

101 A. O. Addr101 RB Tel1
102 C. O. Addr102 VB Tel2
103 E. O. Addr103 EB Tel3
104 H. O. Addr104 OE Tel4
105 S. K. Addr105 N26 Tel5

Dog
D_ID Name Breed Weight Medication OwnerID

1 Bella Labrador Retriever 25.0 Bravecto 101
2 Max Beagle 10.0 NexGard 102
3 Luna German Shepherd 30.0 Heartgard 103
4 Charlie Golden Retriever 28.0 Bravecto 104
5 Daisy Poodle 8.0 Bravecto 101
6 Rocky Boxer 35.0 Revolution 101

Medication
M_ID Name Brand Dosage Price

1 Bravecto Merck 140mg 50.99
2 NexGard Boehringer 68mg 45.50
3 Heartgard Zoetis 136mg 35.00
4 Simparica Zoetis 80mg 40.00
5 Credelio Elanco 56mg 38.50
6 Revolution Zoetis 120mg 55.00

Visit
V_ID OwnerID DogID Date (€)

1 101 1 "2024-09-23" 35
2 103 3 "2024-09-23" 78
3 104 4 "2024-09-29" 63
4 102 2 "2024-03-23" 12
5 105 5 "2024-05-21" 20
6 101 1 "2024-11-02" 44
7 101 5 "2024-05-21" 20

Figure 4.5: A more detailed join tree for Figure 4.4, containing the relations Owner O,
Dog D, Visit V, and Medication M.

only keep track of frequencies, but also of aggregate values. This operator was integrated
in Spark by the authors of [LPS24] with as minimal change as possible to the original
processes in Spark. AggJoin was implemented in three variations: shuffled-hash join,
sort-merge join and broadcast-hash join. Since these are the three join types that Spark
naturally resorts to, the optimizations that Spark applies under the hood can still be
applied before the AggJoin. In Algorithm 4.1 the implementation of AggJoin as Hash
Join (with additional aggregate and frequency propagation), also called AggHashJoin,
can be seen. Notably, the hash phase, which also includes partitioning, is not affected by
the extension. Only the join phase is changed [LPS24]. To apply the AggHashJoin to
two relation R and S to be joined (where R is the parent relation), the algorithm takes
four lists as input: List R and S, that contain tuples that have join partners; List IS

35

4. Beyond ACQs: 0MA and Guarded Aggregate Queries

Owner
O_ID FN LN Addr Bank Tel c

101 A. O. Addr101 RB Tel1 1
102 C. O. Addr102 VB Tel2 1
103 E. O. Addr103 EB Tel3 1
104 H. O. Addr104 OE Tel4 1
105 S. K. Addr105 N26 Tel5 1

Dog
D_ID Name ... Medication OwnerID c

1 Bella ... Bravecto 101 1
2 Max ... NexGard 102 1
3 Luna ... Heartgard 103 1
4 Charlie ... Bravecto 104 1
5 Daisy ... Bravecto 101 1
6 Rocky ... Revolution 101 1
7 Brutus ... Heartgard 102 1

Medication
M_ID Name Brand Dosage Price c Agg_1

1 Bravecto Merck 140mg 50.99 1 50.99
2 NexGard Boehringer 68mg 45.50 1 45.50
3 Heartgard Zoetis 136mg 35.00 1 35.00
4 Simparica Zoetis 80mg 40.00 1 40.00
5 Credelio Elanco 56mg 38.50 1 38.5
6 Revolution Zoetis 120mg 55.00 1 55.0

Visit
V_ID OwnerID DogID Date (€) c

1 101 1 "2024-09-23" 35 1
2 102 3 "2024-09-23" 78 1
3 104 4 "2024-09-29" 63 1
4 102 2 "2024-03-23" 12 1
5 105 5 "2024-05-21" 20 1
6 101 1 "2024-11-02" 44 1
7 101 5 "2024-05-21" 20 1

Figure 4.6: A join tree for a query that contains the relations Owner O, Dog D, Visit
V, and Medication M, with added initialized columns c and Agg_1 for the respective
relations.

containing aggregates that are present in both R and S; List IR containing aggregates
that are only present in R. In the function AggHashJoin, sc which will eventually hold
the sum of frequencies of join partners of S for tuples in R, is initialized with 0. Then,
every attribute in IS is also initialized: SUM and COUNT are initially 0, whereas MIN is
initialized as a maximum value (depending on the environment) and MAX as a minimal
value, both environment variables are assumed to be stored in init[s]. The following
foreach-loop over S aggregates the frequencies and values to be propagated from S, which
are then used by the next for-loop over R to add the missing values from S, that is
propagating frequencies and attributes to R. Finally, the frequencies have to be multiplied
for SUM and COUNT before the list of tuples is returned [LPS24].

36

4.5. AggJoin

Algorithm 4.1: Hash Join with aggregate propagation
Input: Two lists R, S of tuples with the same values of the join attributes;
Input: List IS = {s1, . . . , sm} of indices of aggregate attributes Aggsi

, present in
both S and R;

Input: List IR = {r1, . . . , rn} of indices of aggregate attributes Aggri
, present

only in R;
1 Function AggHashJoin(R, S, IS , IR):
2 sc ← 0;
3 foreach s ∈ IS do
4 if As ∈ {MIN, MAX} then vals ← init[s];
5 else if As ∈ {SUM, COUNT} then vals ← 0;
6 end
7 foreach t ∈ S do
8 sc ← sc + t.c;
9 foreach s ∈ IS do

10 if As ∈ {MIN, MAX} then vals ← As(vals, t.Aggs);
11 else if As ∈ {SUM, COUNT} then vals ← vals + t.Aggs;
12 end
13 end
14 foreach t ∈ R do
15 t.c ← t.c · sc;
16 foreach s ∈ IS do
17 if As ∈ {MIN, MAX} then t.Aggs ← vals;
18 else if As ∈ {SUM, COUNT} then t.Aggs ← t.Aggs · vals;
19 end
20 foreach r ∈ IR do
21 if Ar ∈ {SUM, COUNT} then t.Aggr ← t.Aggr · sc;
22 end
23 return t;
24 end

37

4. Beyond ACQs: 0MA and Guarded Aggregate Queries

Figure 4.7: The result of applying AggJoin to solve the query in Figure 4.3. The columns
c and Agg_1 have been added and computed for every tuple.

38

CHAPTER 5
Spark and SparkSQL

Spark [Apa09] is a distributed data processing/ computing framework that was developed
in 2009/2010 at Berkeley’s AMPLab and donated to Apache in 2014 as an answer to
the ever rising volume of data to be processed. Its original purpose was to serve as
an abstraction of MapReduce (see Section 5.1), but since the SparkSQL module was
added, it has also become a popular distributed SQL query engine [Pip21, LPS24, GPS22,
AXL+15].

5.1 Spark
As written above, Spark is a distributed data processing framework. It offers APIs for
Java, Python and Scala and integrates features for streaming, machine learning, graph
processing and querying relational data [AXL+15, Apa09]. Its main building blocks
are so-called resilient distributed datasets (RDDs). An RDD is a set of tuples or data
elements (the partitions) which belong together semantically (e.g. tuples of a relation),
but are distributed over several nodes of the Spark cluster. The "resilient" part of the
name refers to a property that is close to the functional paradigm, that is writing functions
and procedures without mutating either the data or the state. In Spark, an operation on
a batch of data does not modify the original data, but instead creates its own copy to
work on [GPS22, Pip21]. When RDDs were introduced, the authors described them as
"fault-tolerant, parallel data structures that let users explicitly persist intermediate results
in memory, control their partitioning to optimize data placement, and manipulate them
using a rich set of operators." [ZCD+12]. RDDs are fault-tolerant, because they only
allow coarse-grained action and transformations like map, filter or join. These actions
are then repeatedly applied to different batches of data and logged, which creates the
so-called lineage of a dataset. Should a partition get lost for whatever reason, it can be
recomputed by applying the actions in the lineage to the original RDD [ZCD+12]. This
lineage can also be described as "logical plan" to compute a dataset, but it is evaluated

39

5. Spark and SparkSQL

Figure 5.1: Spark Architecture [ZCD+12]

lazily, i.e. unless for example an output operation necessitates the actual computation of
a value, the computation is postponed [AXL+15].

But what exactly are the nodes of a Spark cluster that hold the partitions? Spark is
based on a driver-worker architecture (see Figure 5.1). The driver program connects to
the cluster of workers, and defines the operations to be invoked and simultaneously keeps
track of each partition’s lineage. Both workers and the driver have their own RAM space
and CPU core(s). Once a worker has finished its task, it reports back to the driver. Since
the driver holds all the information about lineages, a crashed node can be replaced by a
new one and resume its work after invoking the transformations of the former lineage. If
the driver crashes, however, the application shuts down, too [ZCD+12, Pip21].

The classic and original purpose of Spark was to provide an abstraction over MapReduce,
a programming model developed in 2008 by Google engineers [DG08]. It itself is an
abstraction to aid in the computation of derived data from huge volumes of raw data
in a parallel, distributed and safe manner. Simply put, the model takes a set of input
key/value pairs, and produces a set of output key/value pairs or just values. More
precisely, the mapping step iterates over the key/value pairs and groups the values in
accordance to a new, intermediate key. The reduce function then recognizes the new keys
and reduces all values with the same key to a final output. The task of the user is to
implement the map function and the reduce function according to the task at hand (see
Figure 5.2). As an example, imagine a MapReduce function that counts the occurrence
of words in a text. The map function accepts the lines of the text, so each line number is
a key and each line a value. To count the words, each word becomes an intermediate key
with the value 1. The reducer now adds all values that have the same key - the word
count is done [DG08]).

Spark was introduced because even though MapReduce became a popular model, it
required the knowledge of either C++ or Java. Spark offered a layer of abstraction
that allowed users to create and manipulate RDDs instead of writing Java or C++
code [Pip21].

40

5.2. SparkSQL

Figure 5.2: The core concepts of MapReduce: The mapping step sorts the values according
to intermediate keys (here: k2) and reduce then produces the final output, that is relating
every value v2 that has the same key k2 [DG08].

5.2 SparkSQL

SparkSQL is the SQL module of Spark, i.e. the SQL framework within the Spark
query engine. Its main focus is t be able to process data using "a combination of both
relational queries and complex procedural algorithms" [AXL+15]. This is achieved by
two components: The DataFrame API and the Catalyst Optimizer.

5.2.1 The Dataframe API

Similar to the dataframe concept of the R language [R-p93], SparkSQL’s DataFrame API
offers support for external data sources and Spark’s native RDD for relational operations.
A dataframe is similar to a table, but can be manipulated in a straightforward way
like RDDs (see Fig 5.3). However, other than RDDs, dataframes do hold schema
information of the data they contain and are generally untyped. If one wants to introduce
types (e.g. assign a type to each row in a relation), one can use the DataSet API 1 of
Spark [Apa09, AXL+15].

Figure 5.3: The two dataframes employees and depts are joined and filtered with additional
grouping and aggregating [AXL+15].

5.2.2 The Catalyst Optimizer

SparkSQL furthermore contains the Catalyst optimizer, that applies rule-based and
(limited) cost-based optimization to each query in the multi-step query planning phase:
analysis, logical optimization, physical planning, and code generation (see Figure 5.4).

1https://spark.apache.org/docs/3.5.1/api/java/org/apache/spark/sql/Dataset.html

41

5. Spark and SparkSQL

Figure 5.4: Each step of query processing and execution planning in SparkSQL. Rectangles
with rounded corners represent query trees. [AXL+15]

The process accepts two kinds of inputs: Either a dataframe object (and its included
lineage) or an abstract syntax tree (AST) constructed by a SQL query parser. Either way,
in the first step the received set of instructions is transformed into an unresolved logical
plan. It is called unresolved, because in this step the attributes are neither type-checked
nor linked back to the relations they stem from. In the next step, these uncertainties are
resolved with the help of the catalog, an object that tracks the tables of a schema. As a
result, relations are looked up, attributes mapped and types determined. We obtain a
logical plan. A logical plan can be imagined as a further refinement of a join tree. Other
than a join tree, a logical plan is a binary tree and holds information about processing
steps like filtering, projecting and joining. From this point on, optimizations take
place. The optimized logical plan is the result of rule-based optimization like folding of
constants (computing constants at compile time rather than runtime), predicate pushdown,
projection pruning (unnecessary columns are removed from the query processing pipeline),
null propagation, Boolean expression simplification etc. [AXL+15]. With this optimized
logical plan as a basis, SparkSQL (or rather Catalyst) now creates one or more physical
plans by applying cost-based optimization. Notably, SparkSQL offers only limited
cost-based rules that only select a certain join algorithm based on statistical values (if
available). Additionally physical optimizations regarding pipeline processing, i.e. further
projections and filtering into a map expression, are applied [AXL+15].

In the last step, the code generation stage, Java bytecode is generated. To avoid the
complexities of typical code generation engines that almost amount to stand-alone com-
pilers, SparkSQL takes advantage of the Scala language, more precisely the "quasiquote"
library [SBO13]. "Quasiquote" allows the construction of ASTs that can then be fed to
the Scala compiler to generate bytecode at runtime, while still allowing the compiler to
add more optimizations in case they were missed in the steps before [AXL+15].

5.2.3 Static Optimizations of SparkSQL Catalyst
As opposed to other modern DBMS like PostgreSQL 2 or Oracle 3, the Catalyst opti-
mizer does not have advanced cardinality estimation. It only includes basic cardinality

2https://www.postgresql.org/docs/current/row-estimation-examples.html
3https://blogs.oracle.com/optimizer/post/cardinality-and-dynamic-statistics

42

5.2. SparkSQL

Figure 5.5: Flowchart on join type selection in Spark [Pip21]

estimation via statistics collection (if available), but it lacks advanced histograms (e.g.
Equi-depth histograms [MD88, AC99, CHW+22]) and multi-column correlation tracking,
which often leads to inaccurate estimations [AXL+15]. However, SparkSQL does come
with other in-built optimization techniques, like filter push-down, complex join-type
selection and lazy evaluation [AXL+15, pro, Pip21]. As an example for the delicate
complexity of the Catalyst optimizer, the reader is invited to take a look at Figure 5.5,
that gives an overview of how join type selection is done in Spark.

5.2.4 Dynamic Optimization: Adaptive Query Execution.
Since the introduction of Spark 3.3.0., adaptive query execution (AQE) is an available
feature in Spark. AQE utilizes runtime statistics to select a physical query plan or
change it, should another one become the most efficient query execution plan during
the execution (i.e. due to circumstances not foreseen by Spark’s limited cardinality
estimation). It enables four new optimizations during runtime: Automatically coalescing
post-shuffle partitions, converting Sort Merge Joins into Broadcast Hash Joins, converting
Sort Merge Joins into Shuffle Hash Joins, optimizing skewed joins [Pip21, pro]. As can
be seen in Figure 5.6, AQE is a communication between the execution stage and the

43

5. Spark and SparkSQL

Figure 5.6: Adaptive Query Planning (AQE) in Spark. Information gained during
execution is used to switch to a different execution plan [AXL+15, Pip21]

physical planning stage.

44

CHAPTER 6
Implementation and Evaluation

6.1 Benchmark Datasets and Analysis
6.1.1 Benchmarks
The algorithm developed in [LPS24] was benchmarked on five different datasets: STATS-
CEB [HWW+21], SNAP [LK14], JOB [LGM+15], LSQB [MLK+21] and TPC-H [TPCb].
In this section, we will describe and analyze these benchmark datasets to find out whether
they contain enough non-guarded queries to re-use them for our evaluations. Additionally,
we will present Syn-TPC-H, a synthetically created dataset that focusses on non-guarded
queries.

JOB. The JOB dataset stands for Join Order Benchmark and was introduced in 2015
in [LGM+15] in order to evaluate the quality of industrial-strength query optimizers.
It consist of mulit-join queries that are based on the IMDB dataset1, which contains
real-world information about movies, actors, directors, etc. The goal was to create
realistic queries in the form of Select-Project-Join (SPJ) blocks. The main challenge that
these queries pose is the significant number of joins: each query has between 3 and 16
joins with an average of 8 joins per example.

SNAP. SNAP (Stanford Network Analysis Project [LK14]) is a dataset that focuses on
evaluating graph queries (e.g. in [HW23]) and generally analyzing big graph structures
like social networks. In [LPS24], the following graphs where used for evaluation:

Graph Nodes Edges (un)directed
wiki-topcats 1,791,489 28,511,807 directed
web-Google 875,713 5,105,039 directed
com-DBLP 317,080 1,049,866 undirected

1https://www.imdb.com/

45

6. Implementation and Evaluation

In the evaluation task, path queries with 3 to 8 joins (i.e. 4 to 9 edges on a graph) and
three small tree-queries were taken into account.

STATS-CEB. The STATS / STATS-CEB [HWW+21] benchmark was created in 2021
in order to benchmark cardinality estimation (CardEst) methods and is similar to JOB,
but contains some more advanced joins. The data that is queried is anonymized textual
content from Stack Exchange.

LSQB. LSQB stands for "Large-Scale Subgraph Query Benchmark" [MLK+21] and
as the name suggests, it serves as a benchmark for processing graph queries and the
respective optimizers. Similar to SNAP, it is based on a social network like structure
that can be scaled up and down. In [LPS24], a scale factor of 300 was used.

TPC-H The TPC-H dataset [TPCb] consists of business oriented queries that can
be used to benchmark relational database systems. According to [TPCb], the queries
aim to answer realistic, "critical business questions" and consists of 22 queries and 8 base
relations [TPCb]
In addition to TPC-H, TPC-DS [TPCa] is based on similar data but contains more
complex queries including sub queries, complex joins, nested expressions, etc. It is based
on 24 relations and holds 99 queries [TPCa].

In the first version of [LPS24], the authors were able to apply their optimization to guarded
queries and were able to process all queries in the STATS-CEB dataset [HWW+21] and
the SNAP dataset [LK14], but only 5 out of 33 queries in the JOB dataset [LGM+15]
were eligible for optimization. In LSQB [MLK+21] only 2 out of 9 could be processed
and only 2 out of 22 in TPC-H [TPCb]. The newest version of the optimization proposed
in [LPS24], AggJoin, was applicable to all queries in the STATS-CEB dataset [HWW+21]
and the SNAP dataset [LK14]. Also, all 113 JOB queries could be processed by the new
optimization. However, only 7 out of 22 TPC-H queries, 30 out of 99 TPC-DS queries
and 2 out of 9 LSQB queries could be processed with AggJoin.

6.1.2 Analysis of the Benchmark Data
In this section, we will present an analysis that shows the internal structure of the above
presented benchmark sets. All queries can be found in the GitHub repository of the
DBAI Institute of TU Wien 2. For our work, it is relevant to look at the complexity of
queries, since very simple queries (see Section 4.3) are trivially guarded. In the analysis,
we took each query and counted the relations involved, number of aggregates and number
of attributes appearing in GROUP BY statements. Afterwards, these numbers were
averaged for each benchmark as a measure of benchmark complexity. Furthermore, each
query was checked in terms of guardedness, both in terms of aggregate-guardedness and
group-guardedness. The sqlglot library was used to carry out the query parsing 3. Please

2https://github.com/dbai-tuw/spark-eval/tree/main/benchmark
3https://github.com/tobymao/sqlglot

46

6.1. Benchmark Datasets and Analysis

Figure 6.1: The average amount of relations that are involved in the queries of the
Benchmarks JOB [LGM+15], TPC-DS [TPCa], TPC-H [TPCb], LSQB [MLK+21],
STATS [HWW+21], and SNAP [LK14].

Figure 6.2: The average amount of attributes that appear in GROUP BY statements in
the Benchmarks JOB [LGM+15], TPC-DS [TPCa], TPC-H [TPCb], LSQB [MLK+21],
STATS [HWW+21], and SNAP [LK14].

note that due to some technical limitation regarding specific SQL dialects, some queries
had to be skipped. Also note that since we are interested in the number of attributes
appearing as aggregated or grouped attributes, expressions like COUNT(*) that appear
quite often in SNAP or STATS, are counted as 0 aggregation attributes since no concrete
attribute appears. The results of this analysis are presented in Figure 6.1, Figure 6.2
and Figure 6.3. An additional analysis of the benchmarks that also includes information
about acyclicity and whether the query contains only equi-joins can be seen in Figure 6.4,
results taken from [LPS24].

47

6. Implementation and Evaluation

Figure 6.3: The average amount of attributes that appear in aggregates in the
Benchmarks JOB [LGM+15], TPC-DS [TPCa], TPC-H [TPCb], LSQB [MLK+21],
STATS [HWW+21], and SNAP [LK14].

Figure 6.4: Overview of the applicability of the AggJoin developed in [LPS24]s. The table
shows the number of queries (#), equi-join aggregate queries (▷◁-agg), acyclic queries
(acyc), piecewise-guarded queries (pwg), guarded queries (g), and 0MA queries [LPS24].

6.1.3 Additional Synthetic Data
As one can see in Figures 6.1, 6.2 and 6.3, even though all benchmark datasets contain
queries that involve more than four relations on average, the average number of attributes
that appears in aggregates or GROUP BY statements is fairly small and most of
the analyzed queries are already guarded or piecewise-guarded. This means while
the mentioned benchmarks worked well to showcase the original algorithm presented
in [LPS24], their lack of non-guarded queries makes them unsuitable as benchmark for our
implementation. For this reason, a new synthetic dataset of 45 queries that correspond
to the TPC-H schema was created. Of these 45 queries 35 are non-guarded and 10 are
(piecewise-)guarded in order to ensure that PartAggJoin does not interfere with AggJoin
in case of (piecewise-)guarded queries. We will call the schema Syn-TPC-H.

The synthetic queries vary in complexity: Some involve only 3 relations and require
only one join with full materialization to become guarded queries, others involve up to
6 relations and require multiple joins in order to be transformed into a guarded query.
An exact overview of the characteristics of the whole Syn-TPC-H dataset is given in the

48

6.2. Enforcing Guardedness

table depicted in Table A.1 in the Appendix.

For the non-guarded queries in the dataset, which will be of special focus in this work,
the following characteristics were extracted:

• Mean number of tables per query: 3.41

• Minimal number of tables per query: 2

• Maximal number of tables per query: 6

• Mean number of grouped attributes per query: 2.18

• Minimal number of grouped attributes per query: 2

• Maximal number of grouped attributes per query: 4

• Mean number of aggregated attributes per query: 1.68

• Minimal number of aggregated attributes per query: 1

• Maximal number of aggregated attributes per query: 4

6.2 Enforcing Guardedness
As described in Section 4.5, the AggJoin optimization only works on guarded or piecewise-
guarded queries. That means that queries that contain multiple attributes in the GROUP
BY clause that do not stem from the same relation cannot profit from the Yannakakis-style
optimization provided by AggJoin.

For example the query in Figure 6.5 cannot be evaluated by AggJoin since the grouping
attributes stem from different relations, so it is impossible that the root node of a join
tree contains both attributes (here o_orderpriority and l_shipmode) initially.

In this section, we will discuss three different methods that can be used to create
guardedness for previously non-guarded queries. The Upfront Joins method identifies
relations that contain the non-guarded attributes and joins them, thus creating a new
intermediate relation that then serves as a guard to the query. The second method,
Partial AggJoin (PartAggJoin) works similarly, but does not join tables before evaluating
the query, but during evaluation. The third method is mentioned in this work for reasons
of completeness. It is currently being developed by the authors of [LPS24]. This method
that is called GroupAggJoin applies the same principle as AggJoin to attributes in the
GROUP BY clause: attributes that are non-guarded are propagated to the top of the
join tree, which transforms the root-relation of the tree to a query guard. In the following
sections all three approaches will be described in detail.

49

6. Implementation and Evaluation

SELECT
o_orderpriority AS Order_Priority,
l_shipmode AS Ship_Mode,
SUM(l_extendedprice) AS Total_Revenue
FROM orders
JOIN
lineitem
ON orders.o_orderkey = lineitem.l_orderkey
GROUP BY
o_orderpriority,
l_shipmode

Figure 6.5: A query over the TPC-H database [TPCb] that is non-guarded
(o_orderpriority and l_shipmode are from different relations) and cannot be evalu-
ated by AggJoin.

6.2.1 Upfront Joins
The method presented in this section is called Upfront Joins because it identifies and
joins relations needed for a guard before actually processing and evaluating the query.

The process consists of the following steps:

1. Categorizing the query. In the first step, the query needs to be parsed in
order to determine which category it belongs to: guarded, piecewise-guarded or
non-guarded.
In the same step, the algorithm identifies which relations can form the root guard
by relying on schema information. This means the different relations that contain
attributes of the GROUP BY clause need to be determined.

2. Traverse the join tree. In this step, the goal is to find a path that contains all
the identified relations from step 1. For this, the join tree is traversed until a path
(or subtree) containing all relations is found.

3. Create a guard. A guard can now be created by joining the identified relations
along the path (or subtree) calculated in step 2. The resulting intermediate relation
now serves as a guard to the query at hand.

4. Process the query with AggJoin. Now that a group guard was created,
processing the query can be continued by utilizing the optimization provided by
AggJoin.
As an example, the process of enforcing guardedness for the query shown in
Figure 6.6 is presented below in Figure 6.7. In Figure 6.7a, one can see the
corresponding join tree, consisting of three nodes. In order to create a guard, the

50

6.2. Enforcing Guardedness

SELECT M.name, O.lastname, SUM(M.price)
FROM DOG as D
NATURAL JOIN MEDICATION as M
NATURAL JOIN OWNER as O
GROUP BY M.name, O.lastname

Figure 6.6: An example of a non-guarded query (M.name and O.lastname are from
different relations)

(a) Join Tree of the query in Figure 6.6.

(b) Join tree after creating a guard by joining two relations.

Figure 6.7: Enforcing guardedness via upfront joins.

relations OWNER and MEDICATION have to be joined, since the GROUP BY
clause contains attributes from both of these relations. In Figure 6.7b, the jointree
has a new node resulting from joining the two relations. In this form, the query is
guarded and can be further processed by AggJoin.

51

6. Implementation and Evaluation

6.2.2 Partial AggJoin (PartAggJoin)

Other than the Upfront Joins method, PartAggJoin enables integrating the necessary
minimal materialization directly into the AggJoin procedure. To this end, the algorithm
selects the appropriate logical join type at each node of the logical plan of a non-guarded
query. Note that the query type is known in advance, since AggJoin automatically deduces
it during execution. The core functionality of PartAggJoin consists of the following case
distinction. Assume that at node u, the relations R and S have to be joined.

1. Case: Neither of the relations R and S contains attributes that are part of the
GROUP BY statement. In this case, an AggJoin is performed.

2. Case: At least one of the relations R or S contains attributes that are part of
the GROUP BY statement. In this case a join with full materialization has to be
selected, since the grouping attributes have to be propagated for each tuple.

To this end, it is necessary to hook into each step of the traversal of the logical plan in the
logical layer and extend the given code with the functionality that follows. Just as AggJoin
(see Section 4.5), PartAggJoin decides which aggregates have to be initialized/propagated
and also takes care of initializing/propagating frequencies at those nodes of the join tree
that cannot apply AggJoin. To find out when (not) to apply AggJoin, PartAggJoin also
needs to check whether the current node has so-called applicable grouping attributes. If
the current node does contain these grouping attributes, i.e. one of the relations to be
joined contains one or more grouping attributes, the logical plan has to be modified so
that the system does not not apply the AggJoin operator, but instead uses a "normal"
join operator with materialization. If none of the relations contains grouping attributes,
AggJoin is selected as logical join operator.

Eventually, this results in a join tree whose subtrees will be evaluated by different
methods: Subtrees without grouping attributes will be processed by AggJoin without
any materialization, whereas relations of subtrees that do contain grouping attributes
will be joined by ordinary join methods (plus the additional propagation of pass-through
values for frequency and aggregation-values).

As an example, we take a look at the query depicted in Figure 6.8. It is non-guarded,
as the two attributes in the GROUP BY clause are not contained in the same relation.
In Figure 6.9, we can see a possible join tree for this query and the result of applying
PartAggJoin to evaluate the query. Since relation C and A contain grouping attributes,
every relation along the path from C to A has to be joined by a "normal join". Subtrees
that do not contain grouping attributes can be fully evaluated by AggJoin. Note that
this example will be revisited in Section 6.3 and evaluated in a more detailed step-by-step
approach.

52

6.2. Enforcing Guardedness

SELECT A.a, C.x, SUM(z)
FROM A
NATURAL JOIN B
NATURAL JOIN C
NATURAL JOIN D
...
GROUP BY A.a, C.x

Figure 6.8: A non-guarded query. Note that "..." is a placeholder for one or more further
joins that involve relations that hold no grouping attributes.

Figure 6.9: One possible join tree for the query in Figure 6.8. The logical join operators
(written in red) are selected by PartAggJoin accordingly.

53

6. Implementation and Evaluation

6.2.3 GroupAggJoin [LPS25]

An alternative to the Upfront Joins method and the PartAggJoin is GroupAggJoin. Since
it is an extension for AggJoin (see Section 4.5), it works very similarly. However, whereas
AggJoin propagates aggregates up the join tree, GroupAggJoin has to propagate attribute
values. The method is currently developed by the authors of [LPS24] and thus mentioned
here for reasons of completeness.

GroupAggJoin enforces guardedness by not only propagating the frequency of tuples up
the join tree, but also by propagating real attribute values. The reason for this is that in
the case of piecewise-guarded queries, not all aggregated attributes have to be present
in the guard initially, but when the aggregation is performed at the end of the query
processing, all aggregated attributes have to be present in the root guard, otherwise one
cannot evaluate the query without materialization. This way of enforcing guardedness can
also be applied to attributes that appear in the GROUP BY statement. If two or more
attributes from the GROUP BY statement stem from different relations, GroupAggJoin
propagates them up the join tree alongside frequencies and needed aggregates. The
extension can easily be added to the existing implementation. Assume a grouping
attribute of the form γ(fj(g1,, gn)), where γ denotes the grouping operator, fj an
arbitrary function and g1,, gn the attributes used for grouping. One example would
be GROUP BY LOWER(c.name, a.year). Propagating grouping attributes is even
simpler than propagating aggregated attributes: Since the grouping is done by the values
(or respectively by fj(g1,, gn)), there is no special initialization value. If a grouping
attribute gi is not present in the root node ur, we identify node uw as closest descendant
node that contains gi and add gi to every node on the path from uw to ur. Then, the
join can proceed.

Recalling Algorithm 4.1, we can see that AggHashJoin has four inputs: the lists R and S
that contain the tuples of relation R and S that have join partners; a list IS of aggregate
attributes present in R and S and a list IR that contains aggregates of R that are not
present in S. For GroupAggJoin (or, more precisely GroupAggHashJoin), one input
parameter has to be added: a list GS that contains the grouping attributes present in the
query that is currently processed. Then, a map is created using the grouping attributes
as keys and adding the aggregations calculated as the loops progress. The output type
is now slightly different: the algorithm returns a map with the grouping attributes as
a (compound) key and the corresponding tuples of R, extended with frequencies and
attributes, as values.

In terms of memory and computational cost, this new operator does add new tuples.
Even though no full join is materialized, the intermediate relations can increase sharply
in size if the data is skewed, as can be seen in Figure 6.10a and 6.10b. However in cases
where no attribute propagation is needed, the procedure is just a basic semi-join [LPS24].

54

6.2. Enforcing Guardedness

(a) Before applying GroupAggJoin (b) After applying GroupAggJoin

Figure 6.10: Comparison of the join tree before and after applying GroupAggJoin. In
this example, the query contains GROUP BY B.X, hence all values of X have to be
propagated from relation B to relation A.

6.2.4 Possible Pitfalls and Consequences

In this section, we will look at possible problems that are likely to occur in a con-
crete practical situation, i.e. when implementing Upfront Joins or PartAggJoin in a
Spark/SparkSQL environment. While this section will start out with a more general
problem that regards all of the above methods, we will then focus on comparing problems
between Upfront Joins and PartAggJoin, since GroupAggJoin is implemented by other
researchers [LPS25].

Cardinality estimation in Spark/SparkSQL. This problem regards all of the methods
described above. The Catalyst optimizer in SparkSQL offers various optimizations (see
Chapter 5), but has limited cardinality estimation. Even though SparkSQL’s Catalyst
Optimizer does include basic cardinality estimation via limited statistics collection, it
lacks advanced methods, which makes its estimates less precise than traditional database
systems like PostgreSQL 4 or Oracle 5 [AXL+15]. Consequently, if joins are executed
during query processing (e.g. during Upfront Joins or PartAggJoin), one can only roughly
guess how expensive an individual join is, let alone two or three. But even if no full join
is materialized, e.g. during GroupAggJoin, this is problematic. GroupAggJoin also adds
new rows to relations and consequently the cardinalities of the involved relations play a

4https://www.postgresql.org/docs/current/row-estimation-examples.html
5https://blogs.oracle.com/optimizer/post/cardinality-and-dynamic-statistics

55

6. Implementation and Evaluation

more critical role than - for example - in the case of AggJoin: Since AggJoin operates
on piecewise-guarded queries, one can always expect a performance improvement, since
materialization is completely avoided. This is not the case for the methods described
above. Conclusively, the lack of sophisticated cardinality estimation in Spark/SparkSQL
is a drawback for Upfront Joins, PartAggJoin and GroupAggJoin, because without further
statistics to rely on, there is no way to estimate how big the intermediate result will be.

This problem might be mitigated by applying statistical feature extraction and machine
learning in order to identify key factors that might give insight to hidden costs. This
possibility will be discussed in the outlook given in Chapter 8.

The following paragraph will now focus more on the comparison of Upfront Joins vs.
PartAggJoin that were encountered during the implementation of a Proof-of-Concept for
both methods.

Implementation Problems: PartAggJoin vs Upfront Joins. As we recall, the
Upfront Joins method consists of five steps:

1. Categorize the query: guarded, piecewise-guarded or non-guarded

2. Identify the relations that can form a root guard if joined.

3. Traverse the join tree to find a path or subtree that contains all the relations
identified in step 2.

4. Create a guard by joining these relations.

5. Feed back the newly created join tree to AggJoin.

PartAggJoin, on the other hand, does not involve any pre-processing of the logical plan.
It is directly integrated in the AggJoin procedure and selects an appropriate join type
for every node in the logical plan:

1. Case: Neither of the relations to be joined contain attributes that are contained in
the GROUP BY statement. In this case, an AggJoin is performed.

2. Case: At least one of the relations to be joined contains attributes that are part of
the GROUP BY statement. In this case a join with full materialization has to be
selected, since the grouping attributes have to be propagated for each tuple.

When it comes to the actual implementation, the straightforward approach of Upfront
Joins proved to have some pitfalls. We will discuss the two most pressing problems: the
difficulty to feed back the newly created join tree to AggJoin and the overhead created
by redundant traversals.

Back-propagating the newly created join tree. One major hindrance in imple-
menting the Upfront Joins method turned out to be the separation of the different layers

56

6.3. Implementation

in SparkSQL and communicating in both directions. Once a logical plan is created,
it undergoes certain optimizations. Based on the optimized logical plan, one or more
physical plans are generated, and the most promising one (according to a cost model)
is realized. Applying the Upfront Joins method would involve forcing both logical and
physical plan to include joins, then realizing these joins and then relaying this newly
created join tree to the logical layer. One problem was that materializing joins does not
immediately create a join tree - it mainly restructures data by creating an intermediate
table (the guard), that has to be then integrated with the original query and a new
logical plan. But to integrate the guard, there first needs to be a channel to propagate
it back from the physical to the logical layer of the query engine, which is as of now -
to the best of our knowledge - not intended by the engine. Even Spark’s own Adaptive
Query Execution (AQE), which does use a channel that allows some back propagation
does not allow direct communication between the physical and logical layer. So in order
to propagate the intermediate results back, we would have needed to either try to tweak
and enhance AQE channels for our own purpose or create a new side channel, similar
to [BKN24]. Knowing the complexity of the SparkSQL query engine, neither option
seemed optimal for our intentions.

Redundant traversals of the join tree. Another problem that presented itself during
implementation was the redundant traversal of the join tree. Essentially, the whole join
tree would have had to be traversed two times: The first traversal is needed in order to
select a path or a subtree containing the relations that would eventually be joined to
form a root guard. Then, upon having realized these joins, the whole tree would have
been traversed again by AggJoin.

Due to the above mentioned practical problems that we encountered during the first
effort of implementation, we decided to abandon the implementation of the Upfront Joins
method. Instead, we opted to focus on implementing PartAggJoin, that integrates the
necessary minimal materialization directly into the AggJoin procedure.

6.3 Implementation
In this chapter, we will present an algorithm that enforces guardedness for acyclic queries
by allowing minimal necessary materialization. For the reasons discussed in Section 6.2,
we eventually decided to fully implement an extension for AggJoin that closely follows
the idea of PartAggJoin, which was presented in Section 6.2.2. The extension was
implemented for SparkSQL Version 3.5.0.

6.3.1 The PartAggJoin Method
PartAggJoin makes it possible to integrate the necessary minimal materialization directly
into the AggJoin procedure. As described above in Section 6.2.2, PartAggJoin makes a
case-decision at every node in the join tree. If neither of the relations that need to be
joined in the current node contains grouping attributes, AggJoin is selected. Otherwise,

57

6. Implementation and Evaluation

PartAggJoin selects a "normal" join operator plus projection and aggregation, while
additionally adding some attributes for frequency and aggregates. These additional
attributes are needed, because just joining the relations is not enough. In order to make
these joins compatible with AggJoin, a frequency attribute and (depending on the query)
one or more aggregation attributes need to be initialized and propagated in order to
perform the final aggregation at the root node later on.

The initialization of aggregates and frequency attributes is exactly the same as in AggJoin.
Assuming that for every tuple t the frequency t.c has been initialized as 1 and given an
aggregate function of the form Aj(fj(Bj)) the additional attribute Aggj is initialized as
described below.

• If Aj ∈ {MIN, MAX}, then we set t.Aggj := fj(Bj).

• If Aj = COUNT, then we distinguish two cases: If fj(Bj) = NULL, then we set
t.Aggj := 0; otherwise t.Aggj := t.c.

• If Aj = SUM, then we set t.Aggj := fj(Bj) ∗ t.c

For the propagation of values, we have to consider two cases, depending on which form of
join is performed in the current node: a join with full materialization, or an AggJoin. If a
join with full materialization is performed, that is grouping attributes are propagated from
the child node to the parent node, the case is simple: Since every tuple is materialized, it
suffices to propagate the current values of c and Aggj . Neither the frequency, nor the
aggregation attribute changes.

The other case, an AggJoin, occurs when the child node does not contain grouping
attributes. Then, we have to perform an AggJoin an update the values of c and Aggj

in the parent accordingly, that is t.Aggj := (∑︁n
m=1 tm.Aggj [u1]). Note that in case of

multiple children, t.Aggj := (∑︁n
m=1 tm.Aggj [u1]) ∗ ∏︁k

i=2 si. has to be computed.

Eventually, this results in a join tree whose subtrees will be evaluated by different
methods: Subtrees without grouping attributes will be processed by AggJoin without
any materialization, whereas relations of subtrees that do contain grouping attributes
will be joined by ordinary join methods (plus the additional propagation of pass-through
values for frequency and aggregation-values).

This approach solved both of the problems mentioned above: Since the relations are
joined during the AggJoin procedure, there is no need to feed an intermediate result
back to an early step in the processing pipeline - there simply is no intermediate result
anymore. The two steps, namely creating a root guard and then processing the new
join tree, are now conflated into one procedure. Naturally, the problem of redundant
traversals was also resolved for the same reason.

To summarize, "Partial AggJoin" discriminates between the different subtrees of a join
tree. All subtrees that do not contain grouping attributes that need to be propagated can

58

6.3. Implementation

be processed by AggJoin and benefit from the resulting optimization. The other subtrees
have to be processed without a Yannakakis-style optimization, but still add columns for
frequency and aggregates, which allows for smooth integration with AggJoin.

In the next section, we will present a detailed example of the process described above.

6.3.2 Pseudo Code and Examples
The pseudo code of the approach described above can be seen in Algorithm 6.1. The
inputs R, S, IS and IR are the same as for AggJoin: Assuming we want to join the
relations R (parent) and S (child), List R and List S contain tuples that have join
partners; List IS contains aggregates that are present in both R and S; List IR contains
aggregates that are only present in R. An additional parameter is added in PartAggJoin:
GS that contains all grouping attributes that are present in S (the so-called applicable
grouping attributes). Frequency attributes are assumed to be already initialized.

The procedure goes as follows: If GS is empty (line 2), then we do not have to alter the
procedure and can use AggJoin for optimization. Otherwise, we have to do a join with full
materialization in order to propagate grouping attributes. To that end, all Aggj values
are initialized if the algorithm is in a leaf node (line 4 to line 9). Afterwards, the tuples in
R and S are joined (line 11). In the next step, the aggregates are propagated. Note that
within the SparkSQL query engine, projecting and propagating are done by one function.
For better understanding, the pseudo code depicts the projection of attributes (line 12)
and propagating attribute values (line 13 to line 25) as two separate steps. Finally, the
frequency values are updated and R is returned. Note that R now holds the result of the
join plus additional frequency and aggregate attributes.

6.3.3 Example (Theory)
As an example, we will evaluate the query in Figure 6.11. Note that we denote nodes of
the join tree with parenthesis, e.g. (A) and relations and their attributes in italics, e.g.
A. Since the query contains two distinct grouping attributes A.a and C.x, it is neither
guarded nor piecewise-guarded. Since one of the group guards A or C have to be the
root node of the join tree, we chose to represent the query with the join tree depicted in
Figure 6.12. We can differentiate between two subtrees: (A)-(B)-(C) has to be evaluated
by performing joins with full materialization, since the grouping attribute C.x has to
be passed from (A) to (C). The subtree (B)-(D)-... on the other hand can be evaluated
with AggJoin. Note that even if not depicted specifically, we assume that (D) has an
arbitrary number of child nodes whose frequencies and aggregates have been propagated
to node (D). Before starting to evaluate the join tree, the frequency and aggregate values
are initialized. As described above in Section 4.5 and Section 4.3, all frequencies are
initialized as 1. The aggregate, here SUM(z), is initialized as the value of z if z is present
in a tuple and as 0 otherwise. For propagation, the values of SUM(z) is aliased as Agg1.

Figure 6.13 shows the first join that is performed. In this case, a join with full material-
ization is needed, because relation C contains a grouping attribute that is not present in

59

6. Implementation and Evaluation

Algorithm 6.1: Partial Aggregation Join
Input: Two lists R, S of tuples with the same values of the join attributes;
Input: List IS = {s1, . . . , sm} of indices of aggregate attributes Aggsi

, present in
both R and S (to be updated in R);

Input: List IR = {r1, . . . , rn} of indices of aggregate attributes Aggri
, present

only in R (only frequency of joined tuples is considered);
Input: List GS containing all applicable grouping attributes in S;

1 Function PartAggJoin(R, S, IS , IR, GS):
2 if GS .isEmpty then return AggJoin(R, S, IS , IR) ;
3 else
4 if S.isLeaf then

// Initialize values
5 foreach s ∈ IS do
6 if As ∈ {MIN, MAX} then vals ← init[s];
7 else if As ∈ {SUM, COUNT} then vals ← 0;
8 end

// Add attributes to S
9 S.initialize(IS , vals);

10 end
// Join R and S

11 R = Join(R, S);
// Project c and Aggi so that R has the same values as

S for c and Aggi

12 projected_tuples ← project(R, c, Aggi);
13 foreach t ∈ projected_tuples do
14 if t exists in R then

// Propagate value from S to R for Aggi

15 foreach i ∈ IS do
16 if Ai = MIN then R[t][i] ← min(R[t][i], S[t][i]);
17 else if Ai = MAX then R[t][i] ← max(R[t][i], S[t][i]);
18 else if Ai = SUM then R[t][i] ← R[t][i] + S[t][i];
19 else if Ai = COUNT then R[t][i] ← S[t][i] × R[t][i];
20 end
21 end

// Propagate c from S to R
22 foreach i ∈ IR do
23 R[t][i] ← R[t][i] × S[t].c;
24 end
25 end
26 return R;
27 end

60

6.3. Implementation

SELECT A.a, C.x, SUM(z)
FROM A
NATURAL JOIN B
NATURAL JOIN C
NATURAL JOIN D
...
GROUP BY A.a, C.x

Figure 6.11: A query that is neither guarded nor piecewise-guarded. Note that "..." is
a placeholder for one or more further joins that involve relation that hold no grouping
attributes.

the root node (relation A). After joining, the intermediate result is B1, which contains
the original tuples of B (cells with black border) plus new tuples and attributes (cells
with green border). Naturally, tuples in B that did not have a join partner in C have
been eliminated.

The next step is shown in Figure 6.14. In this case the child node D does not contain any
grouping attributes, so an AggJoin is performed. Note that D contains the propagated
frequencies and aggregates of its subtree that have already been evaluated with AggJoin.
As a result of D ▷◁AggJoin B we obtain B2. No new tuples were added and the frequency
values as well as the values of Agg1 have been updated accordingly. Again, tuples in B
that have no join partner in D are eliminated.

The results of the final join of the algorithm can be seen in Figure 6.15. Again, we have
to perform a join with full materialization in order to propagate the missing grouping
attribute C.x to relation A. The already computed aggregates and frequencies are simply
passed on without further calculations. Now that all aggregates and grouping attributes
are present in root, the result can be calculated and unnecessary columns can be projected
away. Figure 6.16 shows the result of our example.

6.3.4 Example (Practice)
What PartAggJoin looks like in practice can be best shown by comparing the logical
query plans that are produced by AggJoin and PartAggJoin. For spatial reasons, the
right part of the plans is cropped in this section, however, the important information,
namely the join operator, is highlighted in colors.

At first, we will look at a regular AggJoin evaluation. For this example, we chose the
query q3 of the Syn-TPC-H dataset (also seen in Figure 6.17). Figure 6.18 shows the
corresponding logical query plan in which one can see that the AggJoin operator (named
CountJoin in the query plan for legacy reasons) was applied instead of a regular join
operator.

For comparison, let us now look at an example of PartAggJoin. We evaluate q34 of the
Syn-TPC-H dataset (Figure 6.19) and obtain the logical query plan that can be seen

61

6. Implementation and Evaluation

Figure 6.12: The initial join tree for the query in Figure 6.11. Note that "..." is a
placeholder for an arbitrary number of child nodes that hold no grouping attributes.

in Figure 6.20. Note that q34 is a query that involves five joins. Since there are two
grouping attributes that stem from different relations, exactly one AggJoin operator
(CountJoin) is substituted with a regular join with full materialization.

We note that there is a slight difference between the theoretical example presented above
and the practical example shown in this section. In the theoretical example, all joins from
the root node to the relation(s) that contain grouping attributes have been substituted
with regular joins. But if one looks closely at Figure 6.20, one can see that only one
join was substituted and the root of the logical query plan was not part of the join.
This is because SparkSQL applies its own optimizations to the logical query plan on
top of AggJoin or PartAggJoin which might involve rotating the original query tree and
changing the root node. However, the grouping attributes are still preserved by applying
projection (and aggregation) to the relevant attributes.

62

6.3. Implementation

Figure 6.13: The first intermediate result B1 = B ▷◁ C is obtained by full materialization
of a join. Cells that have been added as a result of the join have a green border.

Figure 6.14: The second intermediate result is B2 = D ▷◁AggJoin B1. Since D does not
hold any grouping attributes, AggJoin can be applied. Note that D holds the propagated
frequencies and aggregates of the children of node (D).

63

6. Implementation and Evaluation

Figure 6.15: After the final join, relation A contains all aggregates and grouping attributes
needed to evaluate the query.

Figure 6.16: The final result of the query in Figure 6.11, evaluated on the join tree
depicted in Figure 6.12.

64

6.3. Implementation

SELECT
n_name AS Nation,
SUM(l_extendedprice * (1 - l_discount)) AS Total_Spending

FROM
customer

JOIN
orders
ON customer.c_custkey = orders.o_custkey

JOIN
lineitem
ON orders.o_orderkey = lineitem.l_orderkey

JOIN
nation
ON customer.c_nationkey = nation.n_nationkey

GROUP BY
n_name

ORDER BY
Total_Spending DESC;

Figure 6.17: Example of a piecewise-guarded query (q3 of the Syn-TPC-H dataset)

Figure 6.18: The logical query plan of the query in Figure 6.17 containing the AggJoin
operator (depicted in the image as CountJoin for legacy reasons), highlighted in yellow

65

6. Implementation and Evaluation

SELECT
s_nationkey AS Nation_Key,
p_type AS Part_Type,
MIN(ps_supplycost) AS Min_Supply_Cost

FROM
supplier

JOIN
nation ON s_nationkey = n_nationkey

JOIN
region ON n_regionkey = r_regionkey

JOIN
partsupp ON s_suppkey = ps_suppkey

JOIN
part ON ps_partkey = p_partkey

JOIN
lineitem ON p_partkey = l_partkey

GROUP BY
s_nationkey, p_type;

Figure 6.19: Example of a non-guarded query (q34 of the Syn-TPC-H dataset)

6.3.5 Best and Worst Cases
As one can see in the example above, PartAggJoin widens the field of application for
AggJoin by evaluating subtrees without grouping attributes with AggJoin and performing
joins with full materialization for subtrees that contain grouping attributes. Before this
optimization, there was no possibility to optimize non-guarded queries with AggJoin.
Applying PartAggJoin method now allows a more modular approach: The processing
of subtrees that are guarded can be optimized by AggJoin, and only subtrees that are
non-guarded have to utilized joins with full materialization. Thus, one goal of the thesis
is achieved: non-guarded queries are now eligible for processing with AggJoin.

However, whether the speed-gain achieved by AggJoin can outweigh the overhead induced
by full materialization (even though it is still the minimal necessary materialization)
depends on the join tree at hand. Assuming that relation A and relation B are relatively
small relations and furthermore the only ones that contain grouping attributes, Figure 6.21
shows an example of an optimal join tree. Even if (D) had more child nodes, one could
always enforce guardedness by performing only one cheap join.

A worst case example can be seen in Figure 6.22. Assuming that the grouping attributes
are contained in relation A, D and E, every single join has to be materialized in order to
propagate every grouping attribute to the root node that holds relation A. Because of
the suboptimal distribution of grouping attributes among the relations, the optimization
that AggJoin provides cannot be utilized.

66

6.3. Implementation

Figure 6.20: The logical query plan of the query in Figure 6.19 containing both the
AggJoin operator (CountJoin Inner, highlighted in yellow), and the normal join operator
(Join Inner, highlighted in orange) as part of the PartAggJoin procedure.

A

B C

D

Figure 6.21: An example of an optimal case for partial AggJoin: Assume that A and B
are small relations and the only ones that contain grouping attributes.

A

B C

DE

Figure 6.22: Assume that the grouping attributes of a query are contained in the relations
A, D and E. In this worst case scenario, the whole join tree has to be evaluated by
materializing every single join.

67

6. Implementation and Evaluation

These two examples highlight the need for a way to categorize a query and its necessary
joins before evaluating it in some way. Even in the optimal case, the algorithm would
greatly benefit from cardinality estimation, but this is a matter of Spark’s internal
development. Another option would be to leverage machine learning (ML) in order to
extract key features of a query that would enable the algorithm to quickly decide whether
a query benefits from partial AggJoins or not. More details will be discussed in the
outlook given in Chapter 8.

6.4 Evaluation

6.4.1 Experimental Setup

We perform the experiments on a machine running on Linux Mint 21 Cinnamon with
13,5GB RAM and and the AMD Ryzen 7 7730U with Radeon Graphics × 8 proces-
sor. Furthermore, our extension was implemented for SparkSQL version 3.5.0. Our
implementation of PartAggJoin has been published on GitHub (https://github.com/A-
Ortner/master-thesis-project). The setup for the executed benchmarks can be found here:
https://github.com/A-Ortner/master-thesis-benchmark. The goal of our experiments
are the following:

1. Goal 1: Verify whether PartAggJoin can enforce guardedness for queries that could
not be processed by AggJoin by comparing AggJoin and PartAggJoin.

2. Goal 2: Verify whether PartAggJoin accurately discriminates between non-guarded
and (piecewise-)guarded queries and only uses joins with full materialization when
it is necessary (thus guaranteeing minimal materialization).

3. Goal 3: Verify whether PartAggJoin can enforce guardedness efficiently by compar-
ing PartAggJoin to the original SparkSQL distribution.

To obtain meaningful results from our evaluation, we chose the benchmark datasets TPC-
H and Syn-TPC-H. We refrained from using JOB, STATS, SNAP and LSQB because they
contain no non-guarded queries. TPC-DS seemed more suitable, but since it contains very
complex queries that could also not be fully processed by AggJoin, we decided that it held
little comparative value for PartAggJoin, since PartAggJoin would fail for reasons other
than non-guardedness. This left us with TPC-H, which contained some non-guarded
queries that PartAggJoin should be able to evaluate, whereas AggJoin could not. In
order to specifically test our implementation on a bigger set of non-guarded queries, we
created Syn-TPC-H (see Section 6.1.3) and compared how AggJoin, PartAggJoin and
the original SparkSQL query engine performed during evaluation. Note that for legacy
reasons, the presented logical query plan uses the name CountJoin when the AggJoin
operator is used.

68

6.4. Evaluation

benchmark #queries ▷◁-agg acyc. AggJoin PartAggJoin
TPC-H 22 15 14 7 12

Syn-TPC-H 45 45 45 10 45

Table 6.1: Overview of applicability of AggJoin and PartAggJoin to the benchmarks
Syn-TPC-H and TPC-H. The columns mark the number of queries (#queries), the
number of aggregate queries (▷◁-agg), the number of acyclic queries (acyc.) and the
number of queries that could be evaluated by the two methods AggJoin and PartAggJoin.

6.4.2 Enforcing Guardedness

For the first part of the evaluation, we wanted to find out whether PartAggJoin was able
to enforce guardedness for queries that could not be evaluated by AggJoin. To this end,
we executed the non-guarded queries of the Syn-TPC-H dataset and the non-guarded
queries of the original TPC-H dataset with AggJoin and PartAggJoin. Our evaluation has
shown that PartAggJoin was able to evaluate every non-guarded query in the Syn-TPC-H
dataset and more than half of the non-guarded queries in the original TPC-H dataset.
More details can be found in Table 6.1. Note that the Syn-TPC-H was specifically
designed with a focus on acyclic aggregate queries, which is why the overall coverage for
any Yannakakis-style optimization is much better.

As we can see in Table 6.1, PartAggJoin was able to raise the coverage of the Syn-TPC-H
dataset from 0% (if only AggJoin is enabled) to 100%, which greatly increased the
applicability of Yannakakis-style optimization for this dataset. When it comes to TPC-H
the overall coverage is lower because only 14 queries are acyclic and thus eligible for
Yannakakis-style optimization. Of these 14 queries, AggJoin is able to evaluate 7 queries,
whereas PartAggJoin increased the number of eligible queries to 12, which almost doubles
the amount of ACQs that can be evaluated. We will discuss the possible reasons as to
why some queries could neither be evaluated by AggJoin nor PartAggJoin in Chapter 7.

6.4.3 Minimal Materialization

After verifying in the section above that PartAggJoin is indeed able to enforce guardedness
for non-guarded queries, the next step is to check whether the materialization that
is necessary for this procedure is indeed minimal. This is the case due to the way
PartAggJoin was implemented. The AggJoin operator is only substituted if applicable
grouping attributes are present in the relations that are to be joined at that step of the
query evaluation, otherwise AggJoin will be applied. As an example, let us look at the
query in Figure 6.23, which corresponds to q22.sql in the Syn-TPC-H dataset. This query
has two grouping attributes that stem from different relations, so at least one AggJoin
has to be substituted by a join with materialization. In the corresponding logical plan,
depicted in Figure 6.24, we can see that this is indeed the case. During our evaluation,
we could verify for all queries in the Syn-TPC-H benchmark, that the materialization
that occurs is indeed minimal.

69

6. Implementation and Evaluation

SELECT
r_name AS Region,
n_name AS Nation,
COUNT(DISTINCT s_suppkey) AS Supplier_Count,
MIN(ps_supplycost) AS Min_Supply_Cost,
MAX(ps_availqty) AS Max_Available_Quantity

FROM
region

JOIN
nation ON r_regionkey = n_regionkey

JOIN
supplier ON n_nationkey = s_nationkey

JOIN
partsupp ON s_suppkey = ps_suppkey

GROUP BY
r_name, n_name

ORDER BY
Supplier_Count DESC;

Figure 6.23: Non-guarded query that should be evaluated by allowing one join with full
materialization of the relations region and nation. The query corresponds to q22.sql of
the Syn-TPC-H dataset.

Figure 6.24: (Optimized) Logical plan of the query shown in Figure 6.23. As one can
see, PartAggJoin allows for exactly one join (written as Join, Inner, marked in orange),
whereas all other joins are evaluated by the AggJoin operator (here named CountJoin).
For spatial reasons, the image was cropped.

70

6.4. Evaluation

6.4.4 Performance
After having seen that PartAggJoin is able to enforce guardedness and does so by only
allowing minimal materalization, the last question of our evaluation is whether the process
is an optimization in comparison to the original SparkSQL processing. To answer this
question, we used the non-guarded queries of the Syn-TPC-H dataset and evaluated them
with PartAggJoin and the original SparkSQL query engine. Due to statistical accuracy
we executed the benchmark five times and averaged the runtime for each query. The
results can be seen in Figure 6.25.

Overall, PartAggJoin was faster than the original algorithm in 21 out of 35 cases (60%).
On average, it was 1.99 seconds faster than SparkSQL. In 14 out 35 cases, PartAggJoin
could not speed up the evaluation of the given query. However, even in these cases it
was on average only 0.80 seconds slower than the original implementation, which can
be attributed to the fact that the more costly a query is, the more optimization can be
gained by using PartAggJoin.

Another metric that is worth mentioning is the end-to-end runtime (see Figure 6.26).
If we compare the time it took both systems (PartAggJoin and the original SparkSQL
distribution) to evaluate the non-guarded queries of the Syn-TPC-H dataset, we can see
that PartAggJoin achieves an overall speed-gain of 10%. In concrete numbers, SparkSQL
took 5 minutes and 23,78 seconds to evaluate Syn-TPC-H, whereas PartAggJoin took only
4 minutes and 53,44 seconds which amounts to an absolute speedgain of 30,334 seconds.
On average it took PartAggJoin 0.89 seconds less time to evaluate the non-guarded
queries.

We conclude this section by acknowledging that PartAggJoin is able to enforce guarded-
ness with minimal materialization and additionally achieves speed-gains in comparison
to standard SparkSQL. In the next section, we will discuss why, in some cases, no
optimization occurred and other limitations of PartAggJoin.

71

6. Implementation and Evaluation

Figure 6.25: Comparison of runtimes for the non-guarded queries in the Syn-TPC-H
dataset. In red, the runtime of our optimization (PartAggJoin) is depicted, the blue bars
indicate the runtime of the original SparkSQL module.

Figure 6.26: Comparison of the end-to-end for the non-guarded queries in the Syn-TPC-H
dataset. In red ("opt"), the runtime of our optimization (PartAggJoin) is depicted, the
blue bar ("ref") indicates the end-to-end runtime of the original SparkSQL module.

72

CHAPTER 7
Discussion and Results

In this section, we will revisit the research questions that motivated this work and discuss
the results obtained in Section 6.4.

The first research question is "How can we algorithmically restructure non-guarded
ACQs into guarded ACQs in a both time and space efficient way in order
to make them eligible for the query optimization proposed in [LPS24]?" To
answer this question, we compared the two methods Upfront Joins and PartAggJoin. As
has been discussed in Section 6.2, we found that Upfront Joins is not an ideal method
for a Spark environment, since the feedback mechanisms available between the different
stages of query processing are only rudimentary present and do not suffice for a method
like Upfront Joins. Furthermore, PartAggJoin is a direct extension of AggJoin and
thus avoids the additional traversals of the join tree that are necessary for the Upfront
Joins method. We conclude, that PartAggJoin is a suitable method to algorithmically
transform non-guarded queries so that they can be processed with Yannakakis-style
optimization techniques (here: AggJoin) in place.

The second research questions is "How can we extend the state-of-the-art imple-
mentation of AggJoin presented in [LPS24] for query optimization to make it
more applicable to real-world scenarios?"

To answer this question, we will take a closer look at the evaluation result obtained in
Section 6.4.

Overall, our implementation did perform well: It was able to successfully transform all
non-guarded queries in the Syn-TPC-H dataset and more than half of the non-guarded
queries in TPC-H into guarded queries. Furthermore, PartAggJoin was able to correctly
discern guarded from non-guarded queries and only allowed materialization where it was
necessary. When it comes to performance, it was able to speed-up query processing in
60% of our test cases in comparison to the original implementation of the SparkSQL
module.

73

7. Discussion and Results

For the rest of this section, we will discuss the limitations of our implementation that have
been revealed by our benchmarks. Firstly, we will speculate on why some non-guarded
queries of the TPC-H dataset could not be processed. Secondly, we will take a closer
look at the runtime comparison between the original SparkSQL module an PartAggJoin.

Enforcing Guardedness
In our benchmarks, PartAggJoin was able to process 57 out of 59 non-guarded queries,
which is 96.6%. Even though these are exciting results in terms of applicability of our
implementation, we want to discuss the fact that 2 queries of the TPC-H dataset (q3
and q9) could not be evaluated. We note that the given explanations remain partly
speculative because the inner heuristics that SparkSQL applies are very complex and not
easily traceable.

One possible explanation is that the query structure itself might be too complex. One
of the queries (q9) involves 6 relations and contains a subquery. It could be that this
structure might not be recognized either by PartAggJoin or even AggJoin (since there
are also some piecewise-guarded ACQs that cannot be processed by AggJoin in the first
place).

Another explanation regards a certain flakey behavior of the Catalyst optimizer that
might occur due to internal heuristics. In some cases, a query was only evaluated in
some runs, but could not be processed in other iterations. This might be because the
optimizer applies certain optimizations on top of PartAggJoin (such as projecting away
seemingly unnecessary columns) that then alters the logical and/or physical join plan,
which in turn interferes with the intended purpose of PartAggJoin.

Performance
As described in Section 6.4, we compared the runtime of PartAggJoin with the original
SparkSQL implementation by benchmarking the systems on the Syn-TPC-H dataset.

PartAggJoin was able to out-class the original implementation in 60% of all cases, with
an average speed-gain of 1.99 seconds. We also note that the longer query evaluation
takes for a certain query, the bigger the speed up. The biggest speed-up was measured
regarding q39, where PartAggJoin beat SparkSQL by 7.42 seconds. The biggest loss
occurred for q33, where the original implementation was by 3.99 seconds faster than
PartAggJoin. One example, where both implementations took almost the same time to
process the query, was q22 with a runtime difference of only 0.005 seconds. To understand
the performance results of PartAggJoin, we will now take a closer look at these three
queries and discuss their logical query plans. Note that the explanations given in the
following paragraphs are partly based on educated guesses since Spark does not offer
advanced cardinality estimation.

Firstly, let us compare the static features of the three queries q22, q33 and q33 in
Table 7.1. Since both q39, the query where PartAggJoin offered the biggest speed-gain,

74

- #relations #aggregate functions #grouping attributes
q22 4 3 2
q33 6 1 2
q39 6 1 2

Table 7.1: Comparing the features of the queries q22, q33 and q39 of the benchmark
Syn-TPC-H.

and q33, where PartAggJoin performed poorest, we conclude that the critical difference
must be found elsewhere. The original queries can be found in Appendix B.

To look deeper into this problem, let us compare the logical query plans of query q22,
q33 and q39 of the Syn-TPC-H dataset. In this section, we will use simplified query
plans; the original query plans can be found in Appendix B.

According to the benchmarks, q22 has roughly the same runtime for both PartAggJoin and
SparkSQL. The simplified query plan shown in Figure 7.1 corresponds to the query plan
in Figure B.4 in Appendix B. We can see that PartAggJoin only forces one join, whereas
all other joins are taken care of by the AggJoin operator. One possible explanation for
the almost equal runtimes could be that the relations N and R are the biggest relations
of the query. If the other relations are fairly small, joining them with a regular join
instead of AggJoin will not offer much benefit. And since the (presumably) most costly
join, namely N ▷◁ R is executed with full materialization in both implementations, the
runtime will be roughly equal. Furthermore, q22 involves few joins than the other two
queries and the fewer joins are necessary, the more accurate are SparkSQL’s internal
heuristics. Consequently, the speed-up provided by AggJoin is matched by the speed-up
gained by heuristics.

A more interesting insight offer query plans of q33 and q39. The simplified query plan
shown in Figure 7.2 and Figure 7.3 correspond to the query plans depicted in Figure B.5
and Figure B.6 in Appendix B.

While the cardinalities of the involved relations also do play a role in these two instances,
we can also identify a structural problem: q33 does take very long, even though PartAg-
gJoin substitutes only one AggJoin with a full join. However, since it is the "root" join,
it has to join all attributes that have been propagated thus far by the AggJoins in the
subtrees. If we now further assume that some optimizations of the original SparkSQL
module are not available because PartAggJoin forces the logical plan into this structure,
it becomes apparent why PartAggJoin was not able to leverage its optimization potential
in this case..

A completely different logical plan can be seen in case of q39. The root join is still an
AggJoin, so the heaviest lifting is delegated to Yannakakis-style optimization. Further-
more, if we assume that the relations PS and P are relatively small, the subtree that
is evaluated by join with materialization does not involve a lot of cost. In this case,
PartAggJoin offers a big speed-gain in comparison to the original optimization, that

75

7. Discussion and Results

Figure 7.1: Simplified logical query plan of q22.

Figure 7.2: Simplified logical query plan of q33.

Figure 7.3: Simplified logical query plan of q39.

would have to materialize 3 more expensive joins.

This analysis shows once more, that PartAggJoin offers great optimization, but would
immensely benefit from some sort of cardinality estimation.

76

CHAPTER 8
Conclusion

In this thesis, we sought to find a method to apply Yannakakis-style optimization to
non-guarded queries. To this end, we presented three possible methods: Upfront Joins,
PartAggJoin and GroupAggJoin. Since GroupAggJoin is currently being developed by
the authors of [LPS24], the focus of this thesis was to find out which approach - Upfront
Joins or PartAggJoin - is more suitable in an SparkSQL environment.

Upon comparing the two methods in theory and in practice, we came to the conclusion
that PartAggJoin is a better suited approach for a Spark environment, since it better
utilizes the given program structure of Spark’s Catalyst query optimizer. On top of
that, it avoids unnecessary traversals of a given logical plan in order to sort out relations
that contain applicable grouping attributes. Our implementation was able to evaluate
all non-guarded queries of our new benchmark dataset and more than half of the non-
guarded queries in the TPC-H dataset. It successfully transforms non-guarded queries
to queries that can be evaluated by Yannakakis-style optimization by splitting the join
treeinto subtrees. If a subtree does not contain applicable grouping attributes, it can be
evaluated by AggJoin [LPS24]. Should a subtree contain applicable grouping attributes,
minimal necessary materialization is chosen for this subtree. This way, a query that was
originally not able to be evaluated by AggJoin can now still be partially evaluated by
this optimization and thus profit from the speed-gain obtained by this method. Since
PartAggJoin is an extension for AggJoin, it is applicable for the same aggregate functions
as AggJoin, namely MIN, MAX, SUM, COUNT and AVG.

The evaluation of PartAggJoin has shown that our implementation is able to transform
non-guarded queries into guarded queries and thus make them eligible for Yannakakis-
style optimization. Furthermore, we have also shown that it does this by only allowing
minimal necessary optimization while still outperforming the original SparkSQL module
in 60% of the cases evaluated. The comparison of the end-to-end runtimes of PartAggJoin
and the original SparkSQL distribution showed an overall speed-gain of 10% over the non-

77

8. Conclusion

guarded queries of the Syn-TPC-H dataset, which means that on average PartAggJoin
sped up the processing of each query by 0.89 seconds.
As has been noted in Section 6.3 and Chapter 7, there are some worst case instances
of join trees that will not profit greatly from our extension. In particular, these worst
cases are instances where a) AggJoin is rarely applied due to the distribution of grouping
attributes in the join tree, b) the joins to be performed are very costly and c) the query
involves complex query structures where SparkSQL’s internal optimizations interfere
with the measures of PartAggJoin.
In conclusion, our work was able to answer the two research questions that were proposed:

• How can we algorithmically restructure non-guarded ACQs into guarded ACQs
in a both time and space efficient way in order to make them eligible for the
query optimization proposed in [LPS24]? PartAggJoin is a method that
successfully allows non-guarded ACQs to be evaluated by Yannakakis-
style optimization while still minimizing materialization.

• How can we extend the state-of-the-art implementation of AggJoin presented
in [LPS24]for query optimization to make it more applicable to real-world scenarios?
Our implementation of PartAggJoin as described in Section 6.3 has
extended AggJoin by splitting a query tree into subtrees that are either
processed by AggJoin or (if applicable grouping attributes are present)
by joins with materialization. This has widened the field of application
for Yannakakis-style optimization insofar that more than half of the
non-guarded queries of the TPC-H dataset and all of the non-guarded
queries in the Syn-TPC-H dataset could be evaluated that previously
could not be processed by AggJoin.

As future work, there are two possibilities to extend the research of this paper. One
possibility would be to implement PartAggJoin in other DBMS like like PostgreSQL 1 or
Oracle 2 which, unlike Spark, offer rich and advanced cardinality estimation. In such
systems, one could apply a simple cost-based heuristic that decides whether PartAggJoin
should be applied or not. The other option is to leverage machine learning to extract
features from queries (like query structure, number of grouping attributes, etc.) in
order to deduce the magnitude of optimization a query might gain by PartAggJoin
in a SparkSQL environment. Both approaches will reduce the limitations identified
in Section 6.4 and Chapter 7. It would also be interesting to compare GroupAggJoin
and PartAggJoin in future evaluations, to see whether GroupAggJoin offers even more
speed-gain despite involving a bigger computational overhead.
As of now, we have shown that Yannakakis-style optimization is not restricted to
(piecewise-)guarded queries and have also shown a way to reduce the cost of query
evaluation in future systems.

1https://www.postgresql.org/docs/current/row-estimation-examples.html
2https://blogs.oracle.com/optimizer/post/cardinality-and-dynamic-statistics

78

APPENDIX A
Syn-TPC-H

In this table, a detailed overview of all queries in the created Syn-TPC-H dataset is given.

79

A. Syn-TPC-H

ID #relations #aggregates #grouped method
1 2 2 1 AggJoin
2 2 1 2 PartAggJoin
3 4 1 1 AggJoin
4 4 2 1 AggJoin
5 5 2 1 AggJoin
6 2 2 2 PartAggJoin
7 2 1 2 PartAggJoin
8 2 1 2 PartAggJoin
9 2 1 2 PartAggJoin
10 2 1 2 PartAggJoin
11 3 1 2 PartAggJoin
12 3 1 2 PartAggJoin
13 3 1 2 PartAggJoin
14 4 1 1 AggJoin
15 2 1 2 PartAggJoin
16 2 1 2 PartAggJoin
17 3 1 2 PartAggJoin
18 5 1 1 AggJoin
19 3 1 1 AggJoin
20 3 1 2 PartAggJoin
21 3 1 2 PartAggJoin
22 4 3 2 PartAggJoin
23 2 2 2 PartAggJoin
24 2 3 2 PartAggJoin
25 2 4 2 PartAggJoin
26 3 3 2 PartAggJoin
27 4 2 2 PartAggJoin
28 2 1 2 PartAggJoin
29 2 3 2 PartAggJoin
30 6 2 2 AggJoin
31 6 2 2 AggJoin
32 6 1 2 PartAggJoin
33 6 1 2 PartAggJoin
34 6 1 2 PartAggJoin
35 6 1 2 PartAggJoin
36 3 4 2 PartAggJoin
37 6 1 1 AggJoin
38 6 1 2 PartAggJoin
39 6 1 2 PartAggJoin
40 2 3 2 PartAggJoin
41 5 1 3 PartAggJoin
42 4 1 3 PartAggJoin
43 3 2 3 PartAggJoin
44 4 1 4 PartAggJoin
45 3 2 3 PartAggJoin

Table A.1: A detailed description of the queries in the Syn-TPC-H dataset. #relations
describes the number of involved relations and #aggregates and #grouped the number
of aggregate expressions and number of attributes in GROUP BY statements.

80

APPENDIX B
Queries and Query Plans

The details of the queries q33, q39 and q22 of the Syn-TPC-H dataset.

SELECT
r_name AS Region,
n_name AS Nation,
COUNT(DISTINCT s_suppkey) AS Supplier_Count,
MIN(ps_supplycost) AS Min_Supply_Cost,
MAX(ps_availqty) AS Max_Available_Quantity

FROM
region

JOIN
nation ON r_regionkey = n_regionkey

JOIN
supplier ON n_nationkey = s_nationkey

JOIN
partsupp ON s_suppkey = ps_suppkey

GROUP BY
r_name, n_name

ORDER BY
Supplier_Count DESC;

Figure B.1: q22 of the Syn-TPC-H dataset.

81

B. Queries and Query Plans

SELECT
c_custkey AS Customer_ID,
o_orderstatus AS Order_Status,
AVG(l_extendedprice) AS AVG_Sales

FROM
customer

JOIN
nation ON c_nationkey = n_nationkey

JOIN
region ON n_regionkey = r_regionkey

JOIN
orders ON c_custkey = o_custkey

JOIN
lineitem ON o_orderkey = l_orderkey

JOIN
supplier ON l_suppkey = s_suppkey

GROUP BY
c_custkey, o_orderstatus;

Figure B.2: q33 of the Syn-TPC-H dataset.
SELECT

s_suppkey AS Supplier_ID,
p_brand AS Part_Brand,
AVG(l_extendedprice) AS AVG_Sales

FROM
supplier

JOIN
nation ON s_nationkey = n_nationkey

JOIN
partsupp ON s_suppkey = ps_suppkey

JOIN
part ON ps_partkey = p_partkey

JOIN
lineitem ON p_partkey = l_partkey

JOIN
orders ON l_orderkey = o_orderkey

GROUP BY
s_suppkey, p_brand

ORDER BY
AVG_Sales DESC;

Figure B.3: q39 of the Syn-TPC-H dataset.

82

Figure B.4: The logical plan of q22.

Figure B.5: The logical plan of q33.

83

B. Queries and Query Plans

Figure B.6: The logical plan of q39.

84

Overview of Generative AI Tools
Used

We used ChatGPT with the models GPT-3.5 and GPT-4 for the following use-cases:

Use-case 1: Formatting Latex code
AI was used to format and re-format latex code such as tables, trees and figures with
subfigures.

Example prompt:

"Please arrange the following table as a tree in the following order: Medication is the
root, Dog is a child of Medication and Owner and Visit are children of Dog.

[referring to the table in Figure 3.11]

Use-case 2: Data Generation
AI was used to generate a small database of data to refer to throughout the thesis. This
data was then edited and expanded by the authors.

The following are some representative prompts that serve as example:

• Can you please generate 6 rows of data for the following table of medication for
dogs in latex table row format. one of them should be Bravecto: id, name, brand,
dosage, price

• thank you! now please generate 7 entries for the following table of dogs: ID, Name,
Breed, Weight, Medication, OwnerID

• thank you! now please generate 4 entries for the table owners as below: ID,
Firstname, lastname, Addr, Bank, Tel

• ...

85

Use-Case 3: Generate Latex Pseudo Code from our Written Pseudo
Code
AI was also used to transform our written pseudo-code into latex format Prompt: Please
generate latex pseudo code from my written pseudo-code. This is a code of an algorithm.
[valid latex pseudo code of another example]

Please format the following pseudo code in the same way in latex as the code above:
PartAggJoin: S joins R (R = parent node, S = child node)

input: two lists R,S of tuples with the same values of the join attributes input: List
IsofindicesofaggregateattributesAggs, presentinbothRandS(needtobeupdatedinR)input :
ListIrofindicesofaggregateattributesAggr, presentonlyinR− > onlythefreq.ofthetuplethatjoinhastobetakenintoaccountinput :
ListGsthatcontainallapplicablegroupingattributesinS

Function PartAggJoin:
if(G_s.isEmpty):

return AggJoin(R, S, I_s, I_r)
else:

if (S.isLeaf):
// Initialize values
foreach s in I_s do:

if A_s in {MIN, MAX} then val_s <- init[s]
else if A_s in {SUM, COUNT} then val_s <- 0

// Add attributes c = 1 to every tuple in S
// Add val_s for every Agg_i in I_s to S
S.initialize(I_s)

// Join R and S
Join(R,S)

// Project c and Agg_i so that R has the same values as S for c and Agg_i
projected_tuples <- project(R, c, Agg_i)

foreach tuple t in projected_tuples do:
if t exists in R:

// propagate value from S to R for Agg_i
foreach i in I_s do:

if A_i is MIN then R[t][i] <- min(R[t][i], S[t][i])
else if A_i is MAX then R[t][i] <- max(R[t][i], S[t][i])
else if A_i is SUM then R[t][i] <- R[t][i] + S[t][i]
else if A_i is COUNT then R[t][i] <- S[t][i] * R[t][i]

86

//propagate c from S to R
foreach i in I_r do:

R[t][i] <- R[t][i] * S[t].count

return R

87

List of Figures

3.1 Left: A simple connected graph. Right: A multi-graph with additional edges
e7 and e8. 10

3.2 Directed graph . 11
3.3 A hypergraph H = {a,b,c,d,e,f,g} (left) and its dual (right). The stars of the

vertices in H are the following: H(r) = {a, b}, H(s) = {b, c}, H(t) = H(u) =
{d, c}, H(v) = {e, c, f, g}. 13

3.4 Querying the database for all payments of Chihuahua owners that have been
to the vet on a certain day in SQL. 13

3.5 Querying the database for all payments of Chihuahua owners that have been
to the vet on a certain day in datalog. 13

3.6 The constructed hypergraph from the query above (see 3.4) 14
3.7 The hypergraph of the a query containing the relations {Dog, Owner, Visit,

Medication} and two possible join trees with M = Medication, D = Dog, O
= Owner and V = Visit . 15

3.8 An acyclic hypergraph [Fag83] . 18
3.9 A cyclic hypergraph [Fag83] . 18
3.10 A simple CQ. 20
3.11 A join tree for a query that contains the relations Owner O, Medication M,

Visit V, and Dog D. 21
3.12 Owner ⋊ Dog . 22
3.13 V isit ⋊ Dog . 22
3.14 Dog ⋊ Medication . 23
3.15 Medication ⋊ Dog . 23
3.16 Dog ⋊ Owner . 24
3.17 Dog ⋊ V isit . 24

4.1 The corresponding join tree of the query above. S = supplier, N = nation, R
= region, PS = partsupp, P = part . 28

4.2 Evaluation of the query from join tree 4.1 [LPS24] 29
4.3 An example query that is not fully guarded, but piecewise-guarded. The goal

of the query is to find out which owner was willing to pay most for a single
medication in September 2024. 34

4.4 One possible join tree for the query in Figure 4.3, where the group guard
OWNER has been chosen as root. 35

89

4.5 A more detailed join tree for Figure 4.4, containing the relations Owner O,
Dog D, Visit V, and Medication M. 35

4.6 A join tree for a query that contains the relations Owner O, Dog D, Visit
V, and Medication M, with added initialized columns c and Agg_1 for the
respective relations. 36

4.7 The result of applying AggJoin to solve the query in Figure 4.3. The columns
c and Agg_1 have been added and computed for every tuple. 38

5.1 Spark Architecture [ZCD+12] . 40
5.2 The core concepts of MapReduce: The mapping step sorts the values according

to intermediate keys (here: k2) and reduce then produces the final output,
that is relating every value v2 that has the same key k2 [DG08]. 41

5.3 The two dataframes employees and depts are joined and filtered with additional
grouping and aggregating [AXL+15]. 41

5.4 Each step of query processing and execution planning in SparkSQL. Rectangles
with rounded corners represent query trees. [AXL+15] 42

5.5 Flowchart on join type selection in Spark [Pip21] 43
5.6 Adaptive Query Planning (AQE) in Spark. Information gained during execu-

tion is used to switch to a different execution plan [AXL+15, Pip21] . . . 44

6.1 The average amount of relations that are involved in the queries of the Bench-
marks JOB [LGM+15], TPC-DS [TPCa], TPC-H [TPCb], LSQB [MLK+21],
STATS [HWW+21], and SNAP [LK14]. 47

6.2 The average amount of attributes that appear in GROUP BY statements in the
Benchmarks JOB [LGM+15], TPC-DS [TPCa], TPC-H [TPCb], LSQB [MLK+21],
STATS [HWW+21], and SNAP [LK14]. 47

6.3 The average amount of attributes that appear in aggregates in the Bench-
marks JOB [LGM+15], TPC-DS [TPCa], TPC-H [TPCb], LSQB [MLK+21],
STATS [HWW+21], and SNAP [LK14]. 48

6.4 Overview of the applicability of the AggJoin developed in [LPS24]s. The
table shows the number of queries (#), equi-join aggregate queries (▷◁-agg),
acyclic queries (acyc), piecewise-guarded queries (pwg), guarded queries (g),
and 0MA queries [LPS24]. 48

6.5 A query over the TPC-H database [TPCb] that is non-guarded (o_orderpriority
and l_shipmode are from different relations) and cannot be evaluated by
AggJoin. 50

6.6 An example of a non-guarded query (M.name and O.lastname are from
different relations) . 51

6.7 Enforcing guardedness via upfront joins. 51
6.8 A non-guarded query. Note that "..." is a placeholder for one or more further

joins that involve relations that hold no grouping attributes. 53
6.9 One possible join tree for the query in Figure 6.8. The logical join operators

(written in red) are selected by PartAggJoin accordingly. 53

90

6.10 Comparison of the join tree before and after applying GroupAggJoin. In this
example, the query contains GROUP BY B.X, hence all values of X have to
be propagated from relation B to relation A. 55

6.11 A query that is neither guarded nor piecewise-guarded. Note that "..." is a
placeholder for one or more further joins that involve relation that hold no
grouping attributes. 61

6.12 The initial join tree for the query in Figure 6.11. Note that "..." is a placeholder
for an arbitrary number of child nodes that hold no grouping attributes. . 62

6.13 The first intermediate result B1 = B ▷◁ C is obtained by full materialization
of a join. Cells that have been added as a result of the join have a green
border. 63

6.14 The second intermediate result is B2 = D ▷◁AggJoin B1. Since D does not
hold any grouping attributes, AggJoin can be applied. Note that D holds the
propagated frequencies and aggregates of the children of node (D). 63

6.15 After the final join, relation A contains all aggregates and grouping attributes
needed to evaluate the query. 64

6.16 The final result of the query in Figure 6.11, evaluated on the join tree depicted
in Figure 6.12. 64

6.17 Example of a piecewise-guarded query (q3 of the Syn-TPC-H dataset) . . 65
6.18 The logical query plan of the query in Figure 6.17 containing the AggJoin

operator (depicted in the image as CountJoin for legacy reasons), highlighted
in yellow . 65

6.19 Example of a non-guarded query (q34 of the Syn-TPC-H dataset) 66
6.20 The logical query plan of the query in Figure 6.19 containing both the

AggJoin operator (CountJoin Inner, highlighted in yellow), and the normal
join operator (Join Inner, highlighted in orange) as part of the PartAggJoin
procedure. 67

6.21 An example of an optimal case for partial AggJoin: Assume that A and B
are small relations and the only ones that contain grouping attributes. . . 67

6.22 Assume that the grouping attributes of a query are contained in the relations
A, D and E. In this worst case scenario, the whole join tree has to be
evaluated by materializing every single join. 67

6.23 Non-guarded query that should be evaluated by allowing one join with full
materialization of the relations region and nation. The query corresponds to
q22.sql of the Syn-TPC-H dataset. 70

6.24 (Optimized) Logical plan of the query shown in Figure 6.23. As one can see,
PartAggJoin allows for exactly one join (written as Join, Inner, marked in
orange), whereas all other joins are evaluated by the AggJoin operator (here
named CountJoin). For spatial reasons, the image was cropped. 70

6.25 Comparison of runtimes for the non-guarded queries in the Syn-TPC-H dataset.
In red, the runtime of our optimization (PartAggJoin) is depicted, the blue
bars indicate the runtime of the original SparkSQL module. 72

91

6.26 Comparison of the end-to-end for the non-guarded queries in the Syn-TPC-H
dataset. In red ("opt"), the runtime of our optimization (PartAggJoin) is
depicted, the blue bar ("ref") indicates the end-to-end runtime of the original
SparkSQL module. 72

7.1 Simplified logical query plan of q22. 76
7.2 Simplified logical query plan of q33. 76
7.3 Simplified logical query plan of q39. 76

B.1 q22 of the Syn-TPC-H dataset. 81
B.2 q33 of the Syn-TPC-H dataset. 82
B.3 q39 of the Syn-TPC-H dataset. 82
B.4 The logical plan of q22. 83
B.5 The logical plan of q33. 83
B.6 The logical plan of q39. 84

92

List of Tables

2.1 Attributes of the relation DOG. 5
2.2 Attributes of the relation OWNER. 5
2.3 Attributes of the relation MEDICATION. 5
2.4 Attributes of the relation VISIT. 5

3.1 The final result of the join, projection applied. 21

6.1 Overview of applicability of AggJoin and PartAggJoin to the benchmarks
Syn-TPC-H and TPC-H. The columns mark the number of queries (#queries),
the number of aggregate queries (▷◁-agg), the number of acyclic queries (acyc.)
and the number of queries that could be evaluated by the two methods AggJoin
and PartAggJoin. 69

7.1 Comparing the features of the queries q22, q33 and q39 of the benchmark
Syn-TPC-H. 75

A.1 A detailed description of the queries in the Syn-TPC-H dataset. #relations
describes the number of involved relations and #aggregates and #grouped
the number of aggregate expressions and number of attributes in GROUP BY
statements. 80

93

List of Algorithms

3.1 GYO-reduction [YO79, Gra79] . 16

4.1 Hash Join with aggregate propagation 37

6.1 Partial Aggregation Join . 60

95

Bibliography

[AC99] Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: building
histograms without looking at data. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’99, page 181–192, New York, NY, USA, 1999. Association for Computing
Machinery.

[Apa09] Apache spark project documentation, 2009. http://spark.apache.org (ac-
cessed: 12.03.2025).

[AXL+15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali
Ghodsi, and Matei Zaharia. Spark sql: Relational data processing in spark.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, page 1383–1394, New York, NY, USA,
2015. Association for Computing Machinery.

[BB16] Johann Brault-Baron. Hypergraph acyclicity revisited. ACM Comput. Surv.,
49(3), December 2016.

[BKN24] Altan Birler, Alfons Kemper, and Thomas Neumann. Robust join processing
with diamond hardened joins. Proc. VLDB Endow., 17(11):3215–3228, July
2024.

[BMT20] A. Bonifati, W. Martens, and T. Timm. An analyitcal study of large sparql
query logs. The VLDB Journal 29, page 655–679, 2020.

[CHW+22] Jeremy Chen, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Ken
Salem. Accurate summary-based cardinality estimation through the lens of
cardinality estimation graphs. Proc. VLDB Endow., 15(8):1533–1545, April
2022.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In Symposium on the Theory
of Computing, 1977.

97

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[Fag83] Ronald Fagin. Acyclic database schemes (of various degrees): A painless
introduction. In Giorgio Ausiello and Marco Protasi, editors, CAAP’83,
Trees in Algebra and Programming, 8th Colloquium, L’Aquila, Italy, March
9-11, 1983, Proceedings, volume 159 of Lecture Notes in Computer Science,
pages 65–89. Springer, 1983.

[FGLP21] Wolfgang Fischl, Georg Gottlob, Davide Mario Longo, and Reinhard Pichler.
Hyperbench: A benchmark and tool for hypergraphs and empirical findings.
ACM J. Exp. Algorithmics, 26, July 2021.

[GLL+23a] Georg Gottlob, Matthias Lanzinger, Davide Mario Longo, Cem Okulmus,
Reinhard Pichler, and Alexander Selzer. Structure-guided query evaluation:
Towards bridging the gap from theory to practice, 2023.

[GLL+23b] Georg Gottlob, Matthias Lanzinger, Davide Mario Longo, Cem Okulmus,
Reinhard Pichler, and Alexander Selzer. Structure-guided query evaluation:
Towards bridging the gap from theory to practice, 2023. v2 of the paper.

[GLPN93] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen.
Directed hypergraphs and applications. Discrete Applied Mathematics,
42(2):177–201, 1993.

[GLS01] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of
acyclic conjunctive queries. J. ACM, 48(3):431–498, May 2001.

[GPS22] Lukas Grasmann, Reinhard Pichler, and Alexander Selzer. Integration of
skyline queries into spark sql, 2022.

[Gra79] Marc Graham. On the universal relation (tech. rep.). University of Toronto,
1979.

[GTH+20] Fayed F. M. Ghaleb, Azza A. Taha, Maryam Hazman, Mahmoud Abd Ellatif,
and Mona Abbass. Rdf-bf-hypergraph representation for relational database.
International Journal of Mathematics and Computer Science, 15:41–64, 01
2020.

[HW23] Xiao Hu and Qichen Wang. Computing the difference of conjunctive queries
efficiently. Proc. ACM Manag. Data, 1(2), June 2023.

[HWW+21] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei
Tan, Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, Jiangneng Li, and Bin Cui. Cardinality estimation in dbms: a
comprehensive benchmark evaluation. Proc. VLDB Endow., 15(4):752–765,
dec 2021.

98

[KAK+14] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli,
Daniel Lupei, and Amir Shaikhha. Dbtoaster: higher-order delta processing
for dynamic, frequently fresh views. VLDB J., 23(2):253–278, 2014.

[LGM+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,
and Thomas Neumann. How good are query optimizers, really? Proc. VLDB
Endow., 9(3):204–215, November 2015.

[LK14] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large net-
work dataset collection, 2014. http://snap.stanford.edu/data (accessed:
11.09.2024).

[LPS24] Matthias Lanzinger, Reinhard Pichler, and Alexander Selzer. Avoiding
materialisation for guarded aggregate queries, 2024.

[LPS25] Matthias Lanzinger, Reinhard Pichler, and Alexander Selzer. Avoiding
materialisation for guarded aggregate queries. Extension of AggJoin to
GroupAggJoin, 2025.

[MD88] M. Muralikrishna and David J. DeWitt. Equi-depth multidimensional his-
tograms. In Proceedings of the 1988 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’88, page 28–36, New York, NY, USA,
1988. Association for Computing Machinery.

[MLK+21] Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and
Gábor Szárnyas. Lsqb: a large-scale subgraph query benchmark. In Proceed-
ings of the 4th ACM SIGMOD Joint International Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network Data Analyt-
ics (NDA), GRADES-NDA ’21, New York, NY, USA, 2021. Association for
Computing Machinery.

[Pic23] Reinhard Pichler. Lecture notes in database theory, November 2023.

[Pip21] Antonio Pipita. Dynamic query optimization in spark. Master’s thesis, Po-
litecnico Milano, 2021. https://www.politesi.polimi.it/handle/10589/186065
(accessed: 14.04.2025).

[pro] Apache Spark project. Performance tuning.
https://spark.apache.org/docs/latest/sql-performance-tuning.html (ac-
cessed: 14.04.2025).

[R-p93] R-project for statistical computing. documentation, 1993. http://www.r-
project.org (accessed: 12.03.2025).

[SBO13] Denys Shabalin, Eugene Burmako, and Martin Odersky. Quasiquotes for
scala, 2013.

99

[SOAK+19] Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q. Ngo,
and XuanLong Nguyen. A layered aggregate engine for analytics workloads.
In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD ’19, page 1642–1659, New York, NY, USA, 2019. Association for
Computing Machinery.

[TGR22] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Toward re-
sponsive dbms: Optimal join algorithms, enumeration, factorization, ranking,
and dynamic programming. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE), pages 3205–3208, 2022.

[TPCa] Tpc-ds benchmark. https://www.tpc.org/tpcds/ (accessed: 30.10.2024).

[TPCb] Tpc-h benchmark. https://www.tpc.org/tpch/ (accessed: 11.09.2024).

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceedings
of the Seventh International Conference on Very Large Data Bases - Volume
7, VLDB ’81, page 82–94. VLDB Endowment, 1981.

[YO79] C.T. Yu and M.Z. Ozsoyoglu. An algorithm for tree-query membership of a
distributed query. In COMPSAC 79. Proceedings. Computer Software and
The IEEE Computer Society’s Third International Applications Conference,
1979., pages 306–312, 1979.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’12, page 2, USA, 2012.
USENIX Association.

100

	Kurzfassung
	Abstract
	Contents
	Introduction
	Conjunctive Queries
	Conjunctive Queries (CQs)
	Complexity of Evaluating CQs

	Hypergraphs and Acyclicity
	Hypergraphs
	Acyclicity and Join Trees
	GYO-Reduction
	Yannakakis' Algorithm

	Beyond ACQs: 0MA and Guarded Aggregate Queries
	Boolean ACQs
	0MA Queries
	Guarded Aggregate Queries and their Evaluation
	Piecewise-guarded Aggregate Queries
	AggJoin

	Spark and SparkSQL
	Spark
	SparkSQL

	Implementation and Evaluation
	Benchmark Datasets and Analysis
	Enforcing Guardedness
	Implementation
	Evaluation

	Discussion and Results
	Conclusion
	Syn-TPC-H
	Queries and Query Plans
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

