
    

    
 
 

 

DIPLOMARBEIT 

Comparison of Different Models 
for the Design of Gas-Driven Fire 
Protection Systems: From Ideal 

Gas to Real Gas Models 
 

zur Erlangung des akademischen Grades 

Diplom-Ingenieur 

im Rahmen des Studiums 

Technische Physik 

eingereicht von 

Matthias Kronsteiner 
Matrikelnummer 12009250 

 
 
 
ausgeführt am Institut für Festkörperphysik 
der Fakultät für Physik der Technischen Universität Wien 
(in Zusammenarbeit mit AQUASYS TECHNIK GMBH) 
 
Betreuung 
Betreuer: Associate Prof. Dr. Alessandro Toschi 
Mitwirkung: Dipl.-Ing. Lukas Heschl 
 
 
 
Wien, 19.06.2025     
 (Unterschrift Verfasser) (Unterschrift Betreuer) 



Matthias Kronsteiner

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisor, Alessandro
Toschi, for his guidance, help and constant support and effort throughout the research
and writing of this thesis. Then I want to thank Lukas Heschl, Lukas Etzlstorfer and the
entire AQUASYS TECHNIK GMBH for the opportunity to complete parts of this thesis
under their guidance and the realization of the experiments in their facilities. Finally, I
would like to thank my family, my friends and my fellow students for the great time and
the support they have given me throughout my studies.

2



Matthias Kronsteiner

Abstract

For the design of a GPP (Gas-Powered Power Pack) firefighting system to be used in rail
vehicles, it is legally required to exceed spraying pressure minima at all times throughout
the spraying process. However, because of real gas effects, a purely analytical calculation
of the time dependence of the pressure in the system is hardly possible and a trial-and-
error approach during system construction is economically not feasible. In this thesis
work, three models were developed to numerically simulate the temporal development
of pressure and temperature of a simple GPP firefighting system. They were based, in
order of increasing complexity, on the ideal gas law, the van der Waals gas law and a
real gas description using an experimentally fitted Helmholtz equation of state as well
as tabulated real gas data. While all models were able to capture the qualitative form
of the pressure curves, as one expected, the real gas model yielded the best results when
compared to two experiments specifically performed for the scope of this thesis with
argon at different starting pressures. Due to approximations of the system geometry and
neglected dynamic effects, even the real gas model displayed deviations with respect to
the experiment. However, these errors appear to be small enough, to regard the real gas
model as a promising approach toward the development of realistic simulation tools for
the industrial system layout process.
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Zusammenfassung

Für die Auslegung einer Brandbekämpfungsanlage mit einem Gas-Powered Power Pack
(GPP) ist es aufgrund rechtlicher Vorgaben notwendig, während des Sprühvorgangs zu
jedem Zeitpunkt einen minimalen Sprühdruck zu übertreffen. Wegen Realgaseffekten ist
eine analytische Abschätzung jedoch kaum möglich und ein Trial-and-Error-Verfahren
während der Konstruktion der Anlage wäre nicht wirtschaftlich. Deshalb wurden drei
Modelle zur numerischen Simulation der zeitlichen Entwicklung von Druck und Tem-
peratur einer einfachen GPP-Brandbekämpfungsanlage entwickelt. Diese basieren in
aufsteigender Komplexität auf der idealen Gasgleichung, der van-der-Waals-Gleichung
und einer Realgasbeschreibung, die eine an experimentelle Daten angepasste Helmholtz-
Zustandsgleichung und tabellierte Realgasdaten verwendet. Alle Modelle waren in der
Lage die qualitative Form der Druckkurven zu beschreiben. Das Realgasmodell wies je-
doch, wie zu erwarten, eindeutig die besten Ergebnisse, im Vergleich zu zwei für diese
Arbeit durchgeführten Experimenten mit Argon und unterschiedlichen Startdrücken, auf.
Aufgrund von Näherungen in der Beschreibung der Systemgeometrie und der Vernachläs-
sigung dynamischer Effekte war aber selbst das Realgasmodell nicht in der Lage, perfekte
Vorhersagen zu liefern. Dennoch erscheinen die Fehler des Realgasmodells klein genug,
sodass dieses als vielversprechender Ansatz zur Entwicklung von realistischeren Simu-
lationsprogrammen, welche im industriellen Auslegungsprozess genutzt werden können,
angesehen werden kann.
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1 Introduction

The safety of passengers and personnel is of the utmost importance in rail transporta-
tion. At the same time, economic as well as space constraints limit the size and weight of
firefighting systems. Even so, manufacturers must comply with European and national
regulations. A possibility of providing sufficient firefighting capability under these cir-
cumstances and constraints is given through the use of gas-powered power packs (GPP).
These are systems where a high-pressure operating gas supplies the energy to power the
firefighting process. In practice, they are based on the rapid expansion of the gas under
high pressure. As this implies high densities, where interatomic forces play an important
role, an analytical calculation of the temporal development of the pressure provided by
the gas is not possible.

On the other hand, for a proper design and layout of the system, it is essential to know
the value of the system pressure at any time. In this situation, a trial-and-error approach,
in which the system would actually need to be built and adapted at the manufacturers
facility could be in principle adopted. However, it is quiet evident that sucha procedure
would not be economically feasible. Hence, a possible compromise consists in using a
pressure reducing valve, which lowers the fire extinguishing capacity but enables the us-
age of analytical approximations for the spraying pressure, due to the nearly constant
pressure applied on the water.

This approach is obviously not completely satisfactory either, as the full firefighting ca-
pability of a system will be then not exploited. The aim of this thesis is to evaluate
whether a calculation exploiting a Euler timestepping approach and three different gas
models is capable of yielding sufficiently accurate predictions to be used for the system
design. The three models, listed in order of increasing complexity, are (i) the ideal gas,
(ii) the van der Waals gas, and (iii) the real gas model, which exploits tabulated data
and an empirically fitted Helmholtz equation of state.

The performance of these models for the problem of our interest are then evaluated by
comparing the simulation values with the results of two experiments carried out in the
facilities of AQUASYS TECHNIK GMBH in Linz, a high-pressure water mist firefighting
system manufacturer. In particular, the results of all three models are discussed with
regard to their ability to predict the temporal development of the system pressure and
to approximate correctly the real gas effects.
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2 Firefighting in Rail Vehicles

This chapter introduces the reader to the legal requirements and other challenges of fire-
fighting in rail vehicles in Section 2.1. In Section 2.2 the GPP, one possible firefighting
system in trains is introduced and illustrated.

2.1 Special Requirements for Firefighting in Rail Vehicles

The most important objective of any firefighting system in rail vehicles is to ensure the
safety of staff and passengers. In this perspective, a complete extinguishing of a fire is
desirable, but not absolutely necessary. Above all, it is important to keep temperatures
and smoke formation at such a low level over an extended period of time to allow for a safe
evacuation of the train. In addition, there are specific legal and economical requirements
that need to be considered.

2.1.1 Legal Requirements

Considering the European legislation is necessary due to the interconnectivity and inter-
operability of rail transport within the European Union. This not only provides union-
wide safety standards but also technical standards to help manufacturers design their
products. The legal framework is provided by the DIRECTIVE (EU) 2016/797 OF THE
EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 May 2016 on the interop-
erability of the rail system within the European Union [1] that defines the subsystems of
the European rail system and several Technical Specifications for Interoperability (TSI)
that define technical and operational standards and requirements for those subsystems as
explained in [2]. In addition, national requirements must be met. Very common guide-
lines that are often required to be met are the ARGE (Arbeitsgemeinschaft) guidelines
defined by TÜV in Germany. For example, the second guideline [3] defines standards for
the verification of function of firefighting systems in rail vehicles.

2.1.2 Economical Requirements

To ensure sufficient firefighting capability of a fire extinguishing system, one might ini-
tially consider to build larger, heavier and thus more powerful and longer lasting systems.
However, there are several limitations to the size and weight of a firefighting system. First,
the space in rail vehicles is intrinsically limited. Second, any additional weight, which
has to be carried by a train over its entire life, means additional work, and therefore
additional energy consumption. Thus, manufacturers aim at system dimensions as small
as possible, while still being large enough to ensure adequate firefighting capability.
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2.2 Gas-Powered Power Packs

One solution to provide sufficient firefighting capability in limited space are gas-powered
power packs, in short GPP. GPPs consist of one or more gas vessels filled with some gas,
for example nitrogen, to very high pressures. In the event of a fire, a trigger valve is
opened, and the gas expands through a pipe into one or more water vessels. The sudden
pressure enhancement pushes the water through riser pipes into a piping system that
leads to the nozzle head through which it is sprayed onto the fire. While the advantage of
GPPs is arguably the small space requirement and low weight compared to other pressure
sources, they have one major disadvantage. Due to the relevance of interatomic forces in
these high pressure and high density settings it is impossible to analytically calculate the
temporal development of the system pressure and thus the temporal development of the
water spraying process. In fact, because of the rapid expansion and of the high pressure
of the gas, real gas effects play a major role. This is a problem because regulations define
minimum spraying pressures and spray times that must always be met by the system to be
allowed for an actual usage. One way to solve this problem is to install a pressure reducing
valve between the gas and water vessels. This leads to an approximately constant pressure
applied to the water, as long as the gas pressure does not fall below the pressure defined
by the valve. In this case however, this method has two disadvantages. First, the lower
pressure applied to the water implies that the acceleration of the water through the piping
system is slower and the water reaches the nozzle head later, leading to a significant delay
in the start of spraying. Second, the system does not exploit its full potential in terms of
spray pressure, which leads, in particular, to less water being sprayed at the beginning.
Together, these two disadvantages significantly weaken the initial firefighting capability,
possibly allowing the fire to spread further, damage the train, and threaten the lives
of passengers. Despite these disadvantages, however, pressure reducing valves are still
commonly used in practice due to the fact that the alternative trial-and-error method to
design a high-pressure system without it is too elaborate and expensive.
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3 Statistical Physics

This chapter gives an introduction and an overview of the thermodynamics formalism
relevant to this thesis. In particular, Section 3.1 summarizes the laws of thermodynamics,
and in Section 3.2 the ideal gas equation is derived following the approach in [4]. Then,
the virial expansion of the ideal gas law is shown in Section 3.3. Starting from this, the
van der Waals equation is subsequently derived in Section 3.4. The virial expansion and
derivation of the van der Waals equation follow the lecture slides [5] that use [6], [7], [8]
and [9] as sources. An approach to calculate the Helmholtz energy for a real gas following
[10] is given in Section 3.5. Finally, convective heat transfer, as used in [11], is discussed
in Section 3.6.

3.1 Laws of Thermodynamics

The four laws of thermodynamics are empirically found scientific laws that appear to be
true for all thermodynamical systems at all times.

3.1.1 Zeroth Law

Two physical systems are in thermal equilibrium if there is no net energy transfer between
them when they are connected by a path of possible heat exchange. The zeroth law states:

If a thermodynamical system A is in thermal equilibrium with a thermodynamical
system B and if this thermodynamical system B is in thermal equilibrium with a

thermodynamical system C, then A and C are also in thermal equilibrium.

3.1.2 First Law

The first law of thermodynamics is the thermodynamic equivalent of the conservation of
energy. It states that:

Any change of inner energy of the system can only happen by transport of energy as
work or heat through the boundaries of the system.

Mathematically, this can be written as

dU = δQ+ δW (3.1)

with the differential inner energy dU , the differential heat flow δQ and the differential
work δW . Note that we use a d for the differential energy because it is a state function
and δ for the differential heat and work because they are process functions. Here, the
sign conventions are important in the definition. With the definition in (3.1), δQ is

10
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positive when heat flows into the system and δW when work is done on the system by
the surroundings. We note here that since the inner energy is one of the two quantities
used to calculate the new state after a time step, the first law is of great importance for
this thesis.

3.1.3 Second Law

The first law of thermodynamics would allow processes that are not observed in the real
world. For example, in our case, the net gas flow will always be from the vessel with
higher pressure to the vessel with lower pressure. The reverse process, in which more
gas flows from the low-pressure vessel to the high-pressure vessel increasing the pressure
difference, will not occur, although it would be, in principle, not forbidden by the law of
energy conservation. Such processes of systems going spontaneously from a unordered
state to a more ordered state are prohibited by the second law of thermodynamics. The
second law of thermodynamics is a consequence of probability and statistics. As there are
far more possible configurations that represent a macroscopically unordered state than
the ordered one, it is just far more likely that in thermal equilibrium a system will be in
an unordered state. To quantify this concept at a microscopical level, one can define the
entropy S by

S = kB ln(w) (3.2)

with the Boltzmann constant kB and the probability that the system is in the macroscopic
state w, which can be calculated by dividing the number of microscopic states that
represent the corresponding macroscopic state by the number of all possible states. Now,
the second law of thermodynamics states that:

In a closed system spontaneously happening processes (also called irreversible processes)
always lead to an increase in total entropy.

3.1.4 Third Law

Although it is not important for this thesis, for the sake of completeness, the third law
shall also be mentioned. In its historical formulation it states that

lim
T→0

S(T ) = 0, (3.3)

or in words:

It is impossible to reach a temperature of 0 Kelvin by a finite set of thermodynamical
transformations.

11
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3.2 Ideal Gas Model

The ideal gas law can be derived from the kinetic gas theory. This derivation follows the
steps presented in [4]. The starting point is a gas with infinitesimally small atoms that
do not interact with each other. The pressure p applied by the gas on the container wall
can be then readily defined as

p =
F

A
=

1

A

d

dt
p⊥ (3.4)

with A being the respective surface of the wall and p⊥ the impulse of the wall orthogonal
to its surface. Assuming that all atoms have the velocity v⊥ orthogonal to the wall
surface and that only elastic collisions occur, p⊥ can be calculated,

p⊥ = 2Nmv⊥ (3.5)

with N being the number of atoms that collide with the wall and m the mass of the
atoms. This leads to

p =
d

dt

2Nmv⊥
A

. (3.6)

The number of particles colliding with the wall can be calculated as the product of the
wall area with the velocity of the particles, their density n and a small time increment:

N = nAv⊥dt . (3.7)

Thus, the pressure can be written as

p =
d

dt

2nAv⊥dtmv⊥
A

= 2nmv2⊥ . (3.8)

This definition still has two flaws: First, not all particles have the exact same square
velocity v2⊥ but the average

�
v2⊥

�
=

1

N

	
N(v⊥) v2⊥ dv⊥ (3.9)

should be used. Second, only half the density contributes since approximately half of
the particles will travel in the opposite direction. Thus, the expression for the pressure
further simplifies to:

p = nm
�
v2⊥

�
. (3.10)

Since the directions of the velocities will be equally distributed in all spatial directions,
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one can further assume that �
v2⊥

�
=

1

3

�
v2
�
, (3.11)

and write the pressure as

p =
1

3
mn

�
v2
�
=

2

3
n ⟨Ekin⟩ . (3.12)

With the definition of absolute temperature from [4] as

3

2
kBT = ⟨Ekin⟩ , (3.13)

which could also be proven with the euqipartition theorem or the virial theorem, one gets
the ideal gas law

p = nkBT , (3.14)

or when using the number of particles instead of the density:

pV = NkBT . (3.15)

3.3 Virial Expansion

For the derivation of the ideal gas law, interactions between particles are completely
neglected. However, since the process studied in this thesis occurs under high-pressure
and high-density conditions, particle interactions should be expected to play a major
role. Thus, a Hamiltonian of form

H =

N�
i=1

p⃗2i
2m

+
1

2

N�
i,j=1,i ̸=j

U(x⃗i − x⃗j) (3.16)

with the the momentum of the i-th particle p⃗i and a two particle interaction U should
be considered. A common way to take interactions into account is the virial expansion
of the ideal gas law. This is an expansion of the ideal gas law in powers of the particle
density n:

p

kBT
= n+B2(T ) n

2 +B3(T ) n
3 + ... =

∞�
i=1

Bn(T ) n
i , (3.17)

where, the lowest order term B1(T ), which describes the ideal gas law in the n → 0 limit,
is one.
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Starting point of the corresponding derivation is the grand canonical partition function

ZG =

∞�
N=0

eβµN ZK(N) (3.18)

where

β =
1

kBT
, (3.19)

the canonical partition function ZK(N) reads

ZK(N) =
1

N !h3N

	
e
�N

i=1

p⃗2i
2m

+ 1
2

�N
i,j=1,i ̸=j U(x⃗i−x⃗j)d3x1 ... d3xN d3p1 ... d3pN (3.20)

and µ is the the chemical potential. With the grand canonical partition function, the
grand canonical potential can be then directly calculated:

J(T, V, µ) = −kBT ln(ZG) = −pV (3.21)

In particular, for our scopes, it is convenient to exploit the Taylor expansion for the
logarithm

ln(1 + x) = −
∞�
i=1

(−1)ixi

i
(3.22)

so that the grand canonical potential can be expanded into

J(T, V, µ) = −kBT ln(ZG) (3.23)

= −kBT ln

�
1 +

∞�
N=1

eβµN ZK(N)

�
(3.24)

= −kBT [ZK(1) eβµ + (ZK(2)− Z2
K(1)

2
) e2βµ] + ... . (3.25)

The next step is to find an approximation of eβµ by the average particle number N . To
that end, the derivative of J with respect to µ can be calculated as

14
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N = −∂J

∂µ
(3.26)

= ZK(1) eβµ + 2(ZK(2)− ZK(1)2

2
) e2βµ + ... (3.27)

(3.28)

By iteratively solving for eβµ using a power series ansatz, one gets

eβµ =
N

ZK(1)
− 2N

2

Z3
K(1)

�
ZK(2)− Z2

K(1)

2

�
+ ... . (3.29)

Inserting this into the expression for J , which is equal to −pV , gives

pV = kBT (N − N
2

Z2
K(1)

�
ZK(2)− Z2

K(1)

2

�
+O(N

3
) . (3.30)

Rearranging this equation yields the virial expansion

p

kBT
= n− V

Z2
K(1)

�
ZK(2)− Z2

K(1)

2

�
n2 +O(n3) (3.31)

= n+ V

�
1

2
− ZK(2)

Z2
K(1)

�
n2 ++O(n3) . (3.32)

3.4 Van der Waals Gas Model

Remarkably, already the inclusion of the first correction of the virial expansion in the
form of the coefficient B2(T ) yields a great improvement to the ideal gas law. To that
end, the canonical partition functions for one and two particles need to be calculated:

ZK(1) =
1

h3

3�
i=1

	
e

p2i
2mdpi

	
d3x =

V

λ3
T

. (3.33)

Here, λT is the thermal wavelength, defined as:

λT =

�
h2

2πmkBT
. (3.34)

The two particle canonical partition function can be then directly evaluated starting by
its microscopical definitions:
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ZK(2) =
1

2h6

6�
i=1

	
dpi

	
d3x1d

3x2 e−β U(x⃗1−x⃗2) (3.35)

=
1

2λ6
T

	
d3x1d

3x2 e−β U(x⃗1−x⃗2) . (3.36)

With these two expressions, the coefficient B2(T ) can be calculated:

B2(T ) = V

�
1

2
− ZK(2)

Z2
K(1)

�
(3.37)

= V

�
1

2
− 1

2V 2

	
d3x1d

3x2 e−β U(x⃗1−x⃗2)

�
(3.38)

= − 1

2V

	
d3x1d

3x2

�
e−β U(x⃗1−x⃗2) − 1

�
. (3.39)

To further simplify this expression, the substitution

x⃗ = x⃗1 − x⃗2 (3.40)

is used to get

B2(T ) = − 1

2V

	
d3x2

	
d3x (e−β U(x⃗) − 1) (3.41)

= −1

2

	
d3x (e−β U(x⃗) − 1) . (3.42)

This integral would still be difficult to calculate for true atomic potentials. Thus, to get
a first insight, the hard-sphere model is often used, where U is set to plus infinity if the
particles come closer than the sum of the radii of both spheres r0 and to a very small
negative value elsewhere. With this model, the integral for B2(T ) is separated into two
parts. First, for all x⃗ with norm smaller than r0, the exponential function vanishes and
the integral evaluates to:

−1

2

	
||x⃗||<r0

d3x (e−β U(x⃗) − 1) = 2π

	 r0

0
dr r2 =

2πr30
3

= b . (3.43)

For all x⃗ with greater norm U is assumed to be small and thus a Taylor expansion of the
exponential function can be made:
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− 1

2

	
||x⃗||>r0

d3x (e−β U(x⃗) − 1) (3.44)

= −2π

	 ∞

r0

dr r2(1− βU − 1) (3.45)

=
2π

kBT

	 ∞

r0

dr r2 U (3.46)

= − a

kBT
. (3.47)

The parameter a is defined as negative, since U is assumed to be negative for |r| > r0.
Now, with these values, one can write the second virial coefficient

B2(T ) = b− a

kBT
, (3.48)

in terms of the parameter a and b, which, in practice, are typically experimentally de-
termined for each gas. Inserting these values back into the virial expansion, one gets:

p

kBT
= n+

�
b− a

kBT

�
n2 (3.49)

=
1

v̄
+

�
b− a

kBT

�
1

v̄2
, (3.50)

where v̄ is the volume per particle:

v̄ =
V

N
. (3.51)

Equation (3.50) can be rearranged to

p+
a

v̄2
=

�
1

v̄
+

b

v̄2

�
kBT (3.52)


p+
a

v̄2



v̄

1

1 + b
v̄

= kBT . (3.53)

Using Taylor expansion for the fraction on the left-hand side yields:
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p+

a

v̄2



v̄

�
1− b

v̄

�
= kBT (3.54)


p+
a

v̄2



(v̄ − b) = kBT (3.55)

Equation (3.55) is the well-known van der Waals equation, which is also commonly
expressed using the molar volume

vm =
V

nm
, (3.56)

where nm is the number of moles in the gas that can be calculated through division of
the number of particles N by the Avogadro constant NA:

nm =
N

NA
. (3.57)

With this definition the van der Waals equation can be written as

(p+
a

v2m
)(vm − b) = RT , (3.58)

where R is the molar gas constant:

R = NA kB . (3.59)

We recall that Equation (3.58) could also be derived by using a cluster expansion or a
mean-field approach to calculate the free energy.

In any case, from a physical point of view, the coefficient a represents an effective de-
scription of the attractive interaction between the particles, which reduces the pressure
compared to the ideal gas pressure. The coefficient b accounts effectively for the strong
repulsive effects on short distances in terms of the "finite volume" of the gas particles.
Evidently this reduces the volume available for the gas particles increasing the pressure
compared to the ideal gas. The coefficients for the argon gas, which were used in this
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thesis

a = 0.1355
Pa · m6

mol2
(3.60)

b = 3.2 · 10−5 m3

mol
(3.61)

were taken from [12].

For the inner energy of the van der Waals gas, the Legendre transformation to the
Helmholtz energy with differential

dF = −S dT − p dV =
∂F

∂T

����
V

dT +
∂F

∂V

����
T

dV (3.62)

is considered. From Schwartz’s Theorem

∂2f(x, y)

∂x∂y
=

∂2f(x, y)

∂y∂x
(3.63)

follows that

∂S

∂V

����
T

=
∂p

∂T

����
V

. (3.64)

Thus, the partial derivative of the inner energy with respect to the volume is

∂U

∂V

����
T

= T
∂S

∂V

����
T

− p (3.65)

= T
∂p

∂T

����
V

− p . (3.66)

For the ideal gas one gets

∂p

∂T

����
V

=
N kB
V

=
p

T
. (3.67)

Inserting this solution back into Equation (3.66) yields for the ideal gas

∂U

∂V

����
T

= 0 . (3.68)

This shows that for the ideal gas the inner energy does not depend on the volume, but
only on the temperature.
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At the same time, for the van der Waals gas the derivative of the pressure with respect
to the temperature yields

∂p

∂T

����
V

=
R

vm − b
. (3.69)

Inserting this solution back into Equation (3.66) one gets the following expression:

∂U

∂V

����
T

=
R T

vm − b
− R T

vm − b
+

a

v2m
(3.70)

=
a

v2m
. (3.71)

Thus, the inner energy of a van der Waals gas with volume V in reference to the inner
energy of the ideal gas Uideal is given by

U = Uideal +

	 V

∞
∂U

∂V

����
T

dV (3.72)

= Uideal +

	 V

∞
a n2

m

V 2
dV (3.73)

(3.74)

= Uideal − a n2
m

V
. (3.75)

The here presented derivation of Equation (3.75) is taken from [12].

3.5 Helmholtz Equation of State

An even more advanced method to account for real gas behavior in thermodynamical
calculations is to calculate the Helmholtz energy and, then, to compute thermodynam-
ical quantities as derivatives of this state function. Because the gas used for this thesis
is argon, the approach taken to calculate the Helmholtz energy presented in this chapter
is, as already mentioned, taken from [10]. The resulting equation of state is also the one
exploited in the CoolProp Python package [13], which is actually used to calculate the
values in the implementation.

For the ideal gas, the Helmholtz energy per mole with the two independent variables
density ρ and temperature T is given by
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F 0(ρ, T ) = u0(T )− Ts0(ρ, T ) (3.76)

= h0(T )− pV − Ts0(ρ, T ) (3.77)

= h0(T )−RT − Ts0(ρ, T ) , (3.78)

with the ideal gas molar inner energy u0, the ideal gas molar entropy s0, the ideal gas
molar enthalpy h0 and the universal gas constant R. Typically, the dimensionless version
of this quantity

α0(δ, τ) =
F 0(ρ, T )

RT
(3.79)

is used, where δ is the reduced density,

δ =
ρ

ρc
, (3.80)

with the density at the critical point ρc and τ is the inverse reduced temperature,

τ =
Tc

T
, (3.81)

with the temperature at the critical point Tc. To account for real gas behavior, the
difference between the ideal gas Helmholtz energy and the true Helmholtz energy, which
in the following we will call residual Helmholtz energy αr, needs to be considered:

α(δ, τ) = α0(δ, τ) + αr(δ, τ) (3.82)

For the ideal gas Helmholtz energy, for which an analytical calculation is possible, a point
of reference for both thermodynamical potentials h0 and s0 is needed. For this thesis,
the potentials are set to zero for standard ambient temperature T0 and pressure p0 being
25 °C and one bar following the definitions in [10]. Then one can calculate the enthalpy
correspondingly by

h0(T ) = c0p(T − T0) (3.83)

= T c0p(1−
T0

Tc
τ) , (3.84)

with the molar heat capacity at constant pressure c0p being 2.5 R. Let ρ0 be the density
at T0 and p0, then, the entropy is given by:
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s0(ρ, T ) = c0V ln
T

T0
+R ln

V

V0
(3.85)

= (c0p −R) ln
T

T0
+R ln

ρ0
ρ

(3.86)

= −(c0p −R) ln

�
T0

Tc

Tc

T

�
−R ln

�
ρc
ρ0

ρ

ρc

�
(3.87)

= −(c0p −R)(ln
T0

Tc
+ ln τ)−R(ln

ρc
ρ0

+ ln δ) . (3.88)

(3.89)

In the third row above we just multiply the arguments of the logarithms by Tc
Tc

= 1 and
ρc
ρc

= 1 respectively. Thus, for the dimensionless Helmholtz energy of the ideal gas, one
gets:

α0(δ, T ) =
c0p
R

− c0p T0

R Tc
τ − 1 +

�
c0p
R

− 1

�
ln

T0

Tc
+

�
c0p
R

− 1

�
ln τ + ln

ρc
ρ0

+ ln δ (3.90)

= 1.5

�
1 + ln

T0

Tc

�
+ ln

ρc
ρ0

− c0p T0

R Tc
τ + 1.5 ln τ + ln δ (3.91)

= a01 + a02τ + 1.5 ln τ + ln δ (3.92)

With the critical temperature of argon at Tc = 150.86 K, the critical density at ρc =
535.6 kg

m3 and the density at T0 and p0 of ρ0 = 1.63 kg
m3 the evaluation of the coefficients

gives:

a01 = +8.317 , (3.93)

a02 = −4.947 . (3.94)

For the residual part, a large amount of experimental data was examined that led the
authors of [10] to the following empirical form:

αr =

12�
i=1

niδ
diτ ti +

37�
i=13

niδ
diτ tie−δci +

41�
i=38

niδ
diτ tie−ηi(δ−ϵi)

2−βi(τ−yi)
2
. (3.95)

In particular, the parameters were fitted with a nonlinear regression analysis to the
experimental data and are displayed in [10]. The expression for the total Helmholtz
energy is then valid for the entire region covered by the experimental data, which is
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83.8058 K ≤ T ≤ 700 K ,

0 MPa ≤ p ≤ 1000 MPa .

Thus, it covers the whole region relevant for this thesis. Now other thermodynamic
quantities can be easily calculated using the Helmholtz energy and its derivatives. For
this thesis, the relevant quantities are the pressure

p

ρRT
= − 1

ρRT

∂

∂v
F (3.96)

= −1

ρ

∂

∂v
α (3.97)

= ρ
∂

∂ρ
α (3.98)

= δ
∂

∂δ
α (3.99)

= 1 + δ
∂

∂δ
αr , (3.100)

the molar inner energy

u

RT
=

1

RT
(F + Ts) (3.101)

=
1

RT

�
F − T

∂F

∂T

�
(3.102)

= α− 1

R

∂

∂T
(RTα) (3.103)

= α− 1

R
(Rα+RT

∂

∂T
α) (3.104)

=
Tc

T

∂

∂τ
α (3.105)

= τ
∂

∂τ
α , (3.106)

and the molar enthalpy
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h

RT
=

1

RT
(F − Ts− pv) (3.107)

=
u

RT
+

p

ρRT
(3.108)

= τ
∂

∂τ
α+ 1 + δ

∂

∂δ
αr . (3.109)

It is worth to mention here, that in the algorithm used in this thesis, it is not τ and δ that
are calculated in each time step, but u and δ. Thus, τ has to be calculated iteratively.

3.6 Heat Transfer

Through expansion, the gas in the gas vessel of our system (see Section 7) is expected to
cool considerably. This can also be seen in experiments with the naked eye, as the water
from the ambient air starts to condense on the gas vessel. Thus, a large amount of heat
is likely to flow into the gas through the gas vessel wall, increasing the inner energy. In
this thesis, the heat flow will modeled by

ΔQ = κ A ΔT Δt , (3.110)

with κ being the convective heat transfer coefficient, A the surface area normal to the
direction of heat transfer, ΔT the temperature difference between the vessel wall and the
fluid and Δt the duration of the time step. In particular, for a quantitatively accurate
description, for heat transfer between the vessel wall and ambient air, setting κ to the
specific value of 11 W

m2K has yielded good results. This value is an approximation based
on the range of possible values for free convection in gases given in [14]. In the case of
free convection, the gas only moves due to temperature differences, that are caused by
the convection, which is the case for ambient air. If there is movement in the gas or
fluid caused by any other force, then it is forced convection, which typically has higher
heat transfer coefficients. For the discharging gas in the gas vessel, the gas moves almost
exclusively due to the pressure difference. In this case, the convective heat transfer
coefficient is approximated by calculating the Nusselt number

Nu =
κl

k
, (3.111)

where l is the characteristic length of the vessel and k the thermal conductivity of the
gas. For vertical vessels l was approximated to be the fluids share of the vessel length.
An approximation of the Nusselt number is given in [15] by
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Nu = 0.13Ra0.333 ∀ Ra > 109 , (3.112)

Nu = 0.59Ra0.25 ∀ 104 < Ra < 109 , (3.113)

Nu = 1.36Ra0.2 ∀ Ra < 104 , (3.114)

where Ra is the Rayleigh number that can be calculated by

Ra = Gr Pr (3.115)

with the Grashof number

Gr =
β̃gρ2L3ΔT

η2
(3.116)

and the Prandtl number

Pr =
cpη

k
, (3.117)

where β̃ is the volume expansion coefficient, g is the free fall acceleration and η is the
dynamic viscosity. In particular, the value of β̃ can be obtained by deriving the equation
of state while k and η are taken from [16]. The use of a single Nusselt number for the entire
gas is evidently an approximation, as is experimentally shown in [17]. In this framework,
all necessary values are calculated for a gas with the pressure of the gas interior and a
temperature, which corresponds to the average of the gas bulk temperature and the vessel
wall temperature. For the ideal gas model and the van der Waals gas model, where one
has, obviously, no access to tabulated real gas data, the values were again approximated
based on the given range of values for forced convection in gases and liquids in [14]. The
values for the inner κ were set to 100 W

m2K for the gas, while for water it was set to 1000
W

m2K .
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4 Fluid Dynamics

This chapter gives an overview of the formulas for modeling the flow of gas and water
in the system. In particular, Section 4.1 introduces a formula for calculating the flow of
gas through an orifice. In Section 4.2 a formula for the flow of water through an orifice
or a nozzle head is derived using the Bernoulli equation. Finally, Section 4.3 introduces
the reader to the Darcy-Weisbach equation and the calculation of the friction factor to
compute the pressure loss for water flowing through a piping system.

4.1 Gas Outflow

The gas outflow from the gas vessel is modeled by the flow through an orifice, as described
in [11], which is based on [18]. Following their derivations, the mass flow through an orifice
that separates a gas with pressure p1 and density ρ1 from a gas with lower pressure p2 is
given by

ṁ = Cd A ψ

�
ρ1 p1 γ(

2

γ + 1
)
γ+1
γ−1 , (4.1)

where Cd is the discharge coefficient, ψ the flow coefficient and γ the heat capacity ratio
of the gas at higher pressure

γ =
Cp

CV
. (4.2)

The outflow is called critical or choked when

p1
p2

≥ (
γ + 1

2
)

γ
γ−1 . (4.3)

In this case,

ψ = 1 . (4.4)

For subcritical flow, one has:

ψ =

�
2

γ − 1
(
γ + 1

2
)
γ+1
γ−1 (

p2
p1

)
2
γ (1− (

p2
p1

)
γ−1
γ ) . (4.5)

Typical values for the discharge coefficient range from 0.6 to 0.99. However, in this thesis,
the simple orifice is a model for an orifice followed by a piping that adds additional flow
resistance and good results have been achieved with a Cd value of 0.15. More specifically,
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the value of Cd was fitted to the results of one experiment and then used for the second
experiment to verify whether the fitted value generalizes to the other case of interest.
Formula (4.1) can be derived from the first law of thermodynamics for a quasi-static flow
process as shown in [19].

4.2 Water outflow

A simple expression for the flow of water through an orifice or through a nozzle can be
derived using the Bernoulli equation, as shown for a similar example in [4]. The Bernoulli
equation relates the pressure and flow velocity at different points in a system:

p1 +
1

2
ρv21 = p2 +

1

2
ρv22 (4.6)

Now, assuming that on one side the flow is very slow, which is a reasonable assumption
if one side is a pipe and the other is a large water vessel in case of the orifice or the
environment in case of the nozzle, the velocity on that side can be neglected. Then, one
gets the following expression for the flow:

q = vA (4.7)

= A

�
2

ρ
(p1 − p2) (4.8)

= kv
√
p1 − p2 . (4.9)

Because the neglected velocities will not be exactly zero and the flow might not be laminar
this expression will not be exact, and an effective kv value was fitted to match the results
for one experiment and used again for the second to test whether the fitted value can be
generally applied.

4.3 Darcy-Weisbach Equation

Pipe lengths of 100 meters, or even more, are often used between the water vessel and
the nozzle heads, leading to a significant pressure drop between the two. This pressure
loss is estimated using the Darcy-Weisbach equation expressed in terms of the friction
factor λ. Both the equation and different ways of approximating the friction factor are
explained in detail in [20]. Here, it should be mentioned that the equation and the
different formulas for the friction factor are empirically found relations. For this thesis,
the Darcy-Weisbach equation for a pipe of length L with diameter d and a fluid with
density ρ and velocity v was used in the form

Δp = λ
Lρv2

2d
. (4.10)
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Furthermore, one has to consider that corners in the pipe add additional flow resistance
and, thus, enhance the pressure loss. This can be approximated by modifying the length
to be the sum of the true pipe length L0 plus an equivalent length Lc for each corner:

L = L0 +Nc Lc (4.11)

For perpendicular corners in a pipe with nine millimeter inner diameter and twelve mil-
limeter outer diameter, the length equivalent was taken from [21] which refers to [22]
as:

Lc = 0.31 m . (4.12)

For laminar flow, which is typically assumed for Reynolds numbers

Re =
vl

ν
< 2300 , (4.13)

with kinematic viscosity ν and characteristic lengths of the body in which the fluid flows
l, the friction factor can be approximated by

λ ∼= 64

Re
. (4.14)

For higher Reynolds numbers the implicit Colebrook-White equation

1√
λ
= −2 log10(

K

3.7
+

2.51

Re
√
λ
) (4.15)

with K being the ratio of the pipes equivalent sandwall roughness by its inner diameter
was used, and solved iteratively for λ. For the real gas model ν was calculated with the
method presented in [23], that was already implemented in CoolProp. For the ideal gas
and van der Waals gas models, the Andrade equation, as given in [24],

ν =
a

ρ
e

b
RT (4.16)

was used. The parameters a and b were fitted using least squares with viscosity data
from [4]. The resulting parameters were a = 9.815 · 10−7 Pa · s and b = 16983.17 mol ·
J−1.
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5 Experiment

In the following chapter the experimental setup for both GPP experiments is described
in Section 5.1. First, the setup of the firefighting is explained. This is followed by a
description of the measurement devices and measurement points. In Section 5.2 the
results of the two experiments with argon are displayed. For both experiments, the pressure
at the different measurements is plotted first over the whole duration of the spraying
process and then over the first 30 seconds for a better resolution of the initial expansion
process. Then the measured temperature data throughout the spraying process is displayed.

5.1 Experimental Setup

5.1.1 Fire Suppression System Components

The argon gas was stored in vessels with a volume of 50 liters. The vessels are made of
steel with black paint on the outside. Although they are approved for pressures up to
300 bar, systems are typically built with up to about 200 bar pressure and temperatures
between -25 to +65 °C. They have a diameter of 229 millimeters and a total length of
1405 millimeters. These gas vessels were connected through a trigger valve and approx-
imately one meter of piping with an inner diameter of nine millimeters to another steel
vessel containing water. This vessel had a plastic coating on the inside and was approved
for ambient temperatures in the range from +5 to +55°C. It had a volume of 67.5 liters
with a length of 1430 millimeters and a diameter of 267 millimeters. Both vessels can be
seen in Figure 5.1.

Through a riser pipe and a one-meter-long hose, the water in the vessel had access to
a 96-meter-long piping system with 34 prependicular corners and an inner diameter of
nine millimeters. The piping system can be seen in Figure 5.2. At the end of this piping
system, a stainless steel DKO-R01 nozzle head as seen in Figure 5.3 was attached. It has
a k-factor of 0.4875 liters per minute and bar and is a commonly used nozzle head in rail
vehicles.

29



5 Experiment Matthias Kronsteiner

Figure 5.1: Gas vessel (black) and water vessel (blue) mounted in a GPP fixture. The
three blue cylinders connected to the gray cables are HySense PR 400
piezoelectrive pressure sensors.

Figure 5.2: Piping system to simulate a real life situation where the water has to flow
through long pipes to reach the nozzle head.
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Figure 5.3: A DKO-R01 nozzle head as is typically used in rail vehicles. It is built in with
the nozzles facing downwards.
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5.1.2 Measurement devices

The most important quantity for a GPP is the pressure. To measure the pressure,
piezoresistive pressure sensors were used. More specifically, five Hydrotechnik HySense
PR 400 sensors were exploited to measure pressure at five different points in the system:

1. The gas vessel

2. The pipe right after the trigger valve

3. The pipe right after the water vessel

4. The pipe right after the hose

5. At the nozzle head.

The first three can also be seen in Figure 5.1. The measurement after the hose was made
to ensure that there is no large pressure drop due to the hose itself. Since there was no
significant pressure drop, this data set was not used any further. Similarly, the measure-
ment right after the trigger valve yielded nearly identical pressures as in the gas vessel
and was thus also not used. As water is hardly compressible, the pressure immediately
after the water vessel was assumed to be identical to the pressure in the water vessel.
The pressure loss through the riser pipe is negligible. Typical errors of these sensors are
below 0.25%. The pressures were recorded using a MultiSystem 4070 from Hydrotechnik,
which automatically recognizes connected sensors and sets relevant parameters, such as
the measurement range. The device used can be seen in Figure 5.4.

Furthermore, the temperature of the gas vessel vessel was measured using type K thermo-
couples, which were attached to the vessel wall using thermally insulating self-adhesive
aluminum foil at three points of the gas vessel, one at the bottom, one in the middle and
one at the top, as it can be seen in Figure 5.5.

5.2 Experimental Results

Due to the Joule-Thomson effect, the argon and gas vessels themselves warmed during
the filling process. In a real system, the vessel and the gas have cooled to ambient tem-
perature when triggered. Thus, the vessels were filled a few days before the experiment
to ensure ambient temperature. Furthermore, due to safety regulation, the set-up was
built and triggered by trained personnel in the AQUASYS laboratory at the presence and
under the indications of the author. The two different pressures used for the experiments
are chosen to represent a wide range of actually used working pressures to assess each
model performance for different starting conditions.
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Figure 5.4: Multisystem 4070 used for recording the pressure measurement values. The
gray box on the right is the manual trigger for the trigger valve to open. At the
time when this picture was taken, the valve was still closed, as can be seen on
the multisystem where the gas vessel pressure is at the initial pressure of 202
bar while all other pressures are zero.

Figure 5.6 sketches the expected temporal development of the pressure at the different
measurement points in the system. In the initial phase (i), the gas expands into the water
vessel and presses the water into the piping system. The water outflow is not yet limited
by the spray head at this time. This leads to a very rapid expansion and a rapid pressure
drop in the gas vessel and a pressure increase in the water vessel. Phase (ii) starts when
the water in the piping system reaches the nozzle head. In this phase, the volume outflow
is restricted by the nozzle head leading to a slower gas expansion and smaller pressure
changes. The flow resistance in the piping system causes a pressure drop between the
water vessel and the nozzle head. After some time, the water level in the water vessel
will drop below the entrance of the riser pipe. In this final phase (iii) the gas expands
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Figure 5.5: Type K thermocouples were attached to the gas vessel at three different
positions using self-adhesive and thermally insulating aluminum foil.

into the piping system. The pressure drop of the gas in the piping system is smaller than
the pressure drop of the water. This leads to a convergence of the pressure curves in the
final phase until the gas reaches the nozzle head and the spraying ends. Here, it should
be mentioned that phases (i) and (iii) are typically much shorter than phase (ii). Their
duration has been greatly exaggerated in Figure 5.6 for a better visualization.
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Figure 5.6: Schematic visualization of the form of the expected temporal pressure
development at the different measurement points in the system.

5.2.1 152 Bar Experiment

For the first experiment, the gas vessel was filled with argon up to a pressure of about
152 bar. The water vessel was filled with about 60.8 liters of water, the rest of the volume
was filled with air. The measured pressure at the three measurement points described
above can be seen in Figure 5.7. The spraying process stopped after 810 seconds. Due
to the fact that the riser pipe does not reach all the way to the bottom, about 1.7 liters
of water eventually remained in the water vessel.

The temporal development of the pressure at the measurement points follows the three-
phase progression explained before. In the first few seconds, the initial gas flow from the
gas vessel to the water vessel is large due to the high difference in pressure of these sys-
tems. Therefore, fast expansions and pressure changes occur. In order to better visualize
this initial pressurization, Figure 5.8 shows only the first 30 seconds of Figure 5.7. One
sees that the pressure in the gas vessel (yellow) decreases rapidly while the pressure in the
water vessel (green) increases rapidly. The pressure at the nozzle (blue) remains quite
low as the water is pressed through the piping system and compresses the remaining air
until the water reaches the nozzle head and the pressure rapidly increases after about
eight seconds. The large oscillations of the pressure at the nozzle appear at exactly the
same time when the water first reaches the nozzle head but get damped within a few
seconds. The exact moment when the spraying begins can also be seen in the pressure of
the water vessel. In fact, after activation, the water is pumped into the piping system and
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Figure 5.7: Pressure in bar over time for the whole spraying time in the 152 bar
experiment.

the initial flow resistance is smaller than the flow resistance when the water has reached
the nozzle head. Thus, when the water first reaches the nozzle head, the flow resistance
suddenly increases. This leads to a jump in the pressure being transferred all the way
back to the water vessel. The sudden increase in pressure can be seen in Figure 5.8 and
aligns perfectly with the sudden increase in pressure at the nozzle head. The pressure
loss between the gas and the water vessel becomes negligible after about fifteen seconds.
However, a significant pressure loss remains between the water vessel and the nozzle head.
As expected, because of the Joule-Thomson effect, through expansion the temperature
of the gas declines. However, a direct measurement of gas temperature is not possible, so
the vessel wall temperatures were measured with thermocouples at three evenly spaced
positions of the vessel: one at the bottom (blue), one in the middle (yellow), and one
at the top (green). Figure 5.9 shows the temperature measured at all positions of the
vessel. Since only one overall temperature is calculated in the simulation, the average
temperature (dashed line) is also plotted. The decline is strongest at the beginning when
the gas expands faster and flattens out as the expansion slows down and the ambient
air provides more energy because the heat convection depends linearly on the tempera-
ture difference between the vessel wall and the ambient air, as is explained in Section 3.6.
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Figure 5.8: Pressure in bar over time for the approximately first 30 seconds in the 152 bar
experiment.

Figure 5.9: Gas vessel wall temperature over time during the spraying process for the 152
bar experiment.
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5.2.2 202 Bar Experiment

For the second experiment, the gas vessel was filled with argon to a pressure of 202
bar. The water vessel was filled with 61 liters of water. The pressures at the three
measurement points as a function of the time can be seen in Figure 5.10. Due to the
higher operating pressure over time, water is sprayed faster through the nozzle head, and
thus the water vessel empties faster, in this case after about 730 seconds (compared to
over 800 in the 152 bar experiment).

Figure 5.10: Pressure in bar over time for the whole spraying time in the 202 bar
experiment.

As done before, Figure 5.11 shows the first 30 seconds after the trigger. As the initial
pressure is higher, the water is pressed faster through the piping system. Thus, the time
between the trigger and the start of spraying is shorter.

Similarly to the initial expansion, the temporal decline is also faster, as clearly visualized
in Figure 5.12. Temperatures below the freezing point were measured at the base of
the vessel, and this phenomenon was also evident to the naked eye, as water from the
ambient air condensed on the vessel’s surface.
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Figure 5.11: Pressure in bar over time for the approximately first 30 seconds in the 202
bar experiment.

Figure 5.12: Gas vessel wall temperature over time during the spraying process for the 202
bar experiment.
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6 Computational Methods

This chapter concisely introduces the Euler method following [25] in Section 6.1. A
comparison with CFD methods and an analysis of why Euler might be better suited for
the scope of this thesis work is provided in Section 6.2.

6.1 Euler’s Method

As the system of differential equations given in this thesis cannot be solved analytically,
numerical methods must be used.

As a starting point, we consider the Taylor expansion for a differential equation

dy

dt
= f(y, t) (6.1)

at the discretized timestep ti+1, which is given by

y(ti+1) = y(ti) + y′(ti)(ti+1 − ti) +O((ti+1 − ti)
2) (6.2)

≈ y(ti) + f(y(ti), ti)Δt . (6.3)

Now, with a known starting value, one can formulate the explicit Euler algorithm:

y0 = y(t0) , (6.4)
yi+1 = yi + f(yi, ti)Δt . (6.5)

The error of each individual time step for this method is O(Δt2). However, errors from
previous steps influence the starting values of later steps, so that errors might start to
accumulate. A heuristic approximation can be obtained taking into account that local
step errors decrease with Δt2 while the number of steps increases with Δt. Thus, the
global error should decrease with Δt. For Lipschitz continuous derivatives f this can be
proven, as it is done, for example, in [25]. Thus, the explicit Euler method is considered
to be a first-order method.

6.2 Comparison with CFD

Computational Fluid Dynamics (CFD) is a widely used and probably the most accurate
method to solve fluid mechanics problems. It works by defining the relevant geometries
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using computer-aided design. The geometry is then divided into a fine mesh of finite
volumes or elements. The initial values and boundary conditions must then be defined. If
all these steps are performed with reasonable accuracy, very good results can be obtained.
However, there are also some disadvantages. Inaccuracies in the definition of the geometry
can lead to significant deviations in the result. Furthermore, creating a good mesh is a
complex task. Many packages that would make initialization easier are commercial and
very expensive. With open source packages, the definition of a system of equations is
usually very complicated. Finally, the computational effort for a fine mesh is very high.
This is also the main reason why the Euler method was chosen for this Master thesis
work. If the Euler method can achieve results of high enough accuracy, the computational
effort of CFD methods would be, in fact, unnecessary.
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7 Modeling of the System

In this chapter the simplifications made to model the fire extinguishing system are ex-
plained in Section 7.1. This is followed by the illustration of the calculations for updating
the state for each thermodynamical subsystem in Sections 7.2, 7.3 and 7.4. Finally, the
complete calculation algorithm is shown in Section 7.5.

7.1 Simplification of the system

We start by noting that, since the pressure loss due to flow resistance between the gas
vessel and the water vessel was negligible, it was not included in the calculation. Within
this assumption, the system was modeled as follows. The complex geometry of the gas
and water vessels was schematized to a cylinder geometry and their connection was sim-
plified to be an orifice. Even at the starting time, the water vessel is not fully filled with
water, but there is some residual gas at the top. Although this residual gas is air at
the beginning, the amount of argon increases rapidly and thus the second gas was also
treated with the equations of state fitted for argon. A riser pipe goes down inside the
water vessel and connects the water to a long pipe with multiple 90 degree corners and
finally ends in a nozzle head through which the water is sprayed into the environment.
A sketch of this model can be seen in Figure 7.1.

The whole system was divided into three thermodynamical subsystems. First, the ar-
gon gas in the gas vessel. It delivers the operating pressure of the system by expanding
through the orifice, in this way losing mass and reducing its density. Through the pro-
cess of expansion, it also decreases its temperature. Heat is transferred between the gas
and the environment through the wall of the vessel. Calculations for a single gas vessel
that discharges into the environment were already implemented in the Hyddown Python
package [11] and were taken as a theoretical and code basis for simulation in this thesis.

Then, there is the second gas, which is air at the beginning, but quickly is mostly con-
sisting of argon too. It gets additional mass because of the mass flow through the orifice.
It is in direct contact with the water and presses it into the riser pipe to the nozzle head.
It exchanges heat with the part of the vessel wall it is in contact with and with the water
itself. Because of the high pressure, it also compresses the water a little.

Finally, also the water in the water vessel is treated as a subsystem itself. It loses mass
by flowing into the riser pipe and exchanges heat with the gas and the wall surface with
which it is in contact. Because the riser pipe does not fully reach the bottom of the
vessel, a water amount the size of about two percent of the water vessel volume typically
remains in the water vessel and is not sprayed into the environment. In the following, to
distinguish which subsystem a specific thermodynamic variable, such as pressure, refers

42



7 Modeling of the System Matthias Kronsteiner

to, variables relating to the first gas are assigned a superscript (1), those relating to the
second gas are assigned (2) and those relating to water are assigned (W ). If quantities
refer to the vessel walls, their superscript is (w1) or (w2), respectively, and finally the
values that refer to the nozzle head are assigned the superscript (n).

For the ideal gas model and the van der Waals gas model the molar weight of argon was
needed in the calculations. The used value of

M = 39.948
g

mol
(7.1)

was taken from [26].

Figure 7.1: A sketch of the model used to describe the actual (more complicated) fire
extinguishing system.
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7.2 Gas 1

As mentioned before, the calculations for a single discharging gas vessel can be found in
[11]. Assuming that for some prior time ti the state of the gas is known, as well as the
temperature of the gas vessel wall, the state of the gas at ti+1 can be calculated with the
methods presented in the Chapters 3, 4, and 6. In particular, the mass flow rate can be
computed with Equation (4.1). Then, the new total mass of the gas can be obtained by

m
(1)
i+1 = m

(1)
i −Δmi ≈ m

(1)
i − ṁi Δt , (7.2)

and the new density by

ρ
(1)
i+1 =

m
(1)
i+1

V (1)
. (7.3)

The gas loses inner energy by work. The remaining part of the gas expands by pushing
the flowing gas out of the gas vessel. In addition, it loses the inner energy of the gas that
leaves through the mass flow. Furthermore, heat exchange with the vessel wall must be
taken into account. This leads to a new inner energy value, given by

U
(1)
i+1 = U

(1)
i + δQ

(1)
i + δW

(1)
i − dmi

U
(1)
i

m
(1)
i

(7.4)

≈ U
(1)
i + δQ

(1)
i − p

(1)
i (Δmi

V (1)

m
(1)
i

)−Δmi u
(1)
i (7.5)

= U
(1)
i + δQ

(1)
i −Δmi(u

(1)
i + p

(1)
i v

(1)
i ) (7.6)

= U
(1)
i + δQ

(1)
i −Δmi h

(1)
i . (7.7)

with mass-specific enthalpy hi. The heat exchange is estimated by means of the following
equation:

δQ
(1)
i ≈ κ

(1,w1)
i (T

(w1)
i − T

(1)
i ) A(1) Δt , (7.8)

where A is the inner surface of the vessel. The heat transfer coefficient κ
(1,w1)
i is, as

explained in Section 3.6, explicitly calculated for the real gas model and approximated
by the value 100 W

m2K based on the range of values given in [14] for the ideal gas and the
van der Waals gas. The vessel wall also exchanges heat with the environment. The heat
that flows from the environment into the vessel wall is approximated by

δQ
(w1)
i = κ(w1,amb) (T amb − T

(w1)
i ) Δt , (7.9)
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where the value of κ(w1,amb) is approximated by 11 W
m2K , which is as well an approximation

value based on [14] as explained in Section 3.6. The updated wall temperature can then
be calculated by

T
(w1)
i+1 = T

(w1)
i +

(δQ
(w1)
i − δQ

(1)
i )

cp m(w1)
. (7.10)

In particular, in the case of the ideal gas model the temperature of the gas itself can
be explicitly obtained from the energy-temperature relation, which for a one-atomic gas
reads

T
(1)
i+1 =

2 U
(1)
i+1

3 kB N
(1)
i+1

=
2 U

(1)
i+1 M

3 kB m
(1)
i+1

, (7.11)

with M being, here, the atomic weight of argon. In case of the van der Waals gas, the
dependence of the inner energy on the volume has to be taken into account. This leads
to a slightly more complicated expression:

T
(1)
i+1 =

2 (U
(1)
i+1 +

aN
2(1)
i+1

V (1) )

3 kB N
(1)
i+1

(7.12)

=
2 U

(1)
i+1 V (1) + a N

2(1)
i+1

3 kB N
(1)
i+1 V (1)

(7.13)

=
2 U

(1)
i+1 V (1) M2 + a m

2(1)
i+1

3 kB m
(1)
i+1 V (1) M

. (7.14)

In case of the real gas model, the temperature can instead be obtained from the EOS.
Eventually, the corresponding pressure can be computed from the respective EOS for all
models:

p
(1)
i+1 = EOS(ρ(1)i+1, T

(1)
i+1) . (7.15)

7.3 Gas 2

As the second gas shares a vessel with the water, the corresponding calculations are more
complex than for the first gas. Similarly as before, the updated mass of the gas can be
calculated with

m
(2)
i+1 = m

(2)
i +Δmi ≈ m

(2)
i + ṁi Δt , (7.16)
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and the updated density with

ρ
(2)
i+1 =

m
(2)
i+1

V
(2)
i+1

. (7.17)

But now, the volume is no longer constant as it was for the first gas. It changes through
compression of the water and through flow of water into the riser pipe:

ΔVi = ΔV c
i +ΔV f

i . (7.18)

The volume change for the gas through compression was estimated by the negative change
of volume of the water

ΔV c
i = V

(W )
i−1 − V

(W )
i (7.19)

=
m

(W )
i

ρ
(W )
i−1

− m
(W )
i

ρ
(W )
i

(7.20)

= m
(W )
i

ρ
(W )
i − ρ

(W )
i−1

ρ
(W )
i ρ

(W )
i−1

, (7.21)

where m(W )
i and ρ

(W )
i are the mass and density of water. Note that for the ideal gas model

and the van der Waals gas model, as already mentioned in Section 3.6, no tabulated data
was accessible. Therefore, the water was assumed to be incompressible:

ΔV c
i = 0 . (7.22)

The flow volume change depends on the state of the whole system. In particular, it
depends on whether the water has already reached the nozzle head or not. In both cases,
the volume flow rate can be calculated by Equation (4.9), here given with pressures in
bars for an easier implementation:

qi = k
√
p1 − p2, (7.23)

with a different value of k for the two cases. Specifically, until the water has reached the
nozzle head, k is given by

k1 = 0.097
l

s
√

bar
(7.24)

with l being liters and s seconds. In this case p1 is the pressure in the water vessel and
p2 is estimated by the ambient air pressure of 1 bar. If the water has reached the nozzle
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head instead, the flow through the nozzle head should also be considered, yielding

k2 = 0.008125
l

s
√

bar
, (7.25)

where p1 is the pressure at the nozzle head and p2 again the ambient air pressure of 1
bar. To obtain the pressure at the nozzle head, a minimization algorithm was developed.
The pressure loss was calculated with the method presented in Section 4.3. However, the
Darcy-Weisbach equation uses the flow velocity v explicitly. Furthermore, the velocity is
needed in the calculation of the friction factor λ. The velocity can then be calculated as
the ratio of the flow Qi divided by the cross-section area of the pipes A:

vi =
qi
A

(7.26)

< =
k2
A

�
p
(n)
i − pamb (7.27)

=
k2
A

�
p
(W )
i −Δpi − pamb (7.28)

Thus, the velocity itself depends on the pressure loss. This means that the Darcy-
Weisbach equation becomes, in this case, an implicit equation to be solves self-consistently.
It was then solved in each iteration step by minimizing a function

f(Δpi) = (Δpi −Δpi(vi(Δpi))
2 (7.29)

using the SciPy [27] implementation of the Nelder-Mead algorithm as shown in [28]. An
important detail to be emphasized, once more, is that not all the water in the water
vessel reaches the nozzle head, as a residual water mass mr stays in the water vessel.
This is because the riser pipe does not reach the bottom of the vessel. If the water level
in the water vessel was below the entrance of the riser pipe, the gas would no longer push
more water into the piping system but would expand into the piping system itself. A
calculation of the pressure loss of the gas flowing through the piping system would require
an elaborate approach using the Navier-Stokes equations for compressible flow as given
in [29] and was neglected for simplicity. However, in the case of the gas expanding into
the piping system, the distance that water travels through the piping system decreases.
Assuming that the corners are distributed equidistantly through the piping system, the
effective length for the pressure loss calculation decreases. The updated length is given
by

Li+1 = Li − L
ΔV f

i

r2pπL0
, (7.30)
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where L is the effective length, that includes the flow resistance added by the corners,
L0 is the actual length and rp is the pipe radius. Mathematically, this means that the
volume change was subtracted from the piping systems volume and added to the water
vessel volume. Finally, the flow-induced volume change has been approximated by

ΔV f
i = qi Δt . (7.31)

The change in volume indicates that the gas applies work to the water by pressing it
through the piping system. This introduces an additional term in the formula to update
the inner energy:

U
(2)
i+1 = U

(2)
i + δQ

(2)
i +Δmi h

(1)
i − p

(2)
i ΔV

(2)
i (7.32)

Note that, because of energy conservation, the energy deducted from the first gas by
mass flow must be added to the second gas. The heat flow is calculated similarly to the
case of gas 1, but now the inner surface also changes with every step, and additional heat
exchange with the water should be considered:

δQ
(2)
i = δQ

(2−w2)
i + δQ

(2−W )
i (7.33)

≈ κ
(2,w2)
i (T

(w2)
i − T

(2)
i ) A

(2)
i Δt+ κ

(2,W )
i (T

(W )
i − T

(2)
i ) r2π Δt , (7.34)

where r is the radius of the vessel and the area is updated in each time step by

A
(2)
i+1 = A

(2)
i +

ΔVi

r2π
. (7.35)

With the new ρi+1 and Ui+1 all other quantities can be calculated similarly to the first
gas. However, the vessel wall interacts now not only with the gas but also with the water.
Thus, to update the temperature of the vessel wall, the heat exchange between water
and vessel wall must be calculated first.

7.4 Water

Because the water is in direct contact with the second gas and the pressure propagates
with the speed of sound, the new water pressure in a new time step is approximated by
the pressure in the second gas. Using the volume flow expression of Equation (7.31), the
mass flow can be calculated by:

Δm
(W )
i = ρ

(W )
i ΔVf,i (7.36)

The heat transfer coefficient for water was computed similarly as for the gas in the real
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gas model and was approximated by 1000 W
m2K , which is again an approximation value

based on the range of values given in [14], for the other two models. The heat flow into
the water can be calculated with

δQ
(W )
i = δQ

(W−w2)
i − δQ

(2W )
i (7.37)

≈ κ
(W,w2)
i (T

(w2)
i − T

(W )
i ) (Atotal −A

(2)
i ) Δt− κ

(2,w)
i (T

(W )
i − T

(2)
i ) r2π Δt .

(7.38)

Then, with the heat exchange with ambient air calculated similarly as for the first vessel
wall, the change of the water vessel wall temperature will be given by

T
(w2)
i+1 = T

(w2)
i +

(δQ
(w2)
i − δQ

(2−w2)
i − δQ

(W−w2)
i )

cp m(w2)
, (7.39)

and, thus, the new inner energy will read

U
(W )
i+1 = U

(W )
i + δQ

(W )
i + p

(W )
i ΔV c

i −Δm
(W )
i u

(W )
i . (7.40)

For the real gas model, the pressure and inner energy can be used to calculate the
new temperature and density of the water using the Helmholtz energy equation of state
presented in [30] as implemented in CoolProp. For the other two models, the water was
assumed to be incompressible and the temperature was calculated using

T
(W )
i+1 = T

(W )
i +

δQ
(W )
i

cW m
(W )
i

. (7.41)

7.5 Algorithm

The pseudo-code in the Algorithm-1 shows a comprehensive overview of how a time step
was performed in the ideal gas and van der Waals gas models, assuming all necessary
information from the prior time step is given.
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Algorithm 1 Ideal gas and van der Waals gas model time step

γ = 5
3

if p
(1)
i

p
(2)
i

≥ (γ+1
2 )

γ
γ−1 then

ψ = 1

else

ψ =

�
2

γ−1(
γ+1
2 )

γ+1
γ−1 (

p
(2)
i

p
(1)
i

)
2
γ (1− (

p
(2)
i

p
(1)
i

)
γ−1
γ )

end if

ṁi = Cd A ψ

�
ρ
(1)
i p

(1)
i γ( 2

γ+1)
γ+1
γ−1

if Water has not reached nozzle head then

ΔV f
i = k1

�
p
(2)
i − pamb Δt

else

ΔV f
i = k2

�
p
(n)
i − pamb Δt

end if

V
(2)
i+1 = V

(2)
i +ΔV f

i

m
(1)
i+1 = m

(1)
i − ṁi Δt

m
(2)
i+1 = m

(2)
i + ṁi Δt

m
(W )
i+1 = m

(W )
i −ΔV f

i ρ(W )

ρ
(1)
i+1 =

m
(1)
i+1

V (1)

ρ
(2)
i+1 =

m
(2)
i+1

V
(2)
i+1

ΔQ
(1)
i = 100 A(1)(T

(w1)
i − T

(1)
i )Δt

ΔQ
(2)
i = 100 A

(2)
i (T

(w2)
i − T

(2)
i )Δt+ 100 r2π (T

(W )
i − T

(2)
i ) Δt

ΔQ
(W )
i = 1000 (Atot −A

(w2)
i )(T

(amb)
i − T

(w1)
i )Δt− 100 r2π (T

(W )
i − T

(2)
i ) Δt

ΔQ
(w1)
i = 11 A(w1)(T

(amb)
i − T

(w1)
i )Δt− 100 A(1)(T

(w1)
i − T

(1)
i )Δt

ΔQ
(w2)
i = 11 A(w2)(T

(amb)
i − T
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i )Δt − 100 A

(2)
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(w2)
i − T

(2)
i )Δt − 1000 (Atot −

A
(w2)
i )(T
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i − T

(w1)
i )Δt
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U
(1)
i+1 = U

(1)
i +ΔQ

(1)
i − ṁi h

(1)
i

U
(2)
i+1 = U

(2)
i +ΔQ

(2)
i + ṁi h

(1)
i − p

(2)
i ΔV f

i

T
(w1)
i+1 = T
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i +

ΔQ
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i

cp m(w1)

T
(w2)
i+1 = T

(w2)
i +

ΔQ
(w2)
i

cp m(w2)

T
(W )
i+1 = T

(W )
i +

ΔQ
(W )
i

cW m(W )

if Ideal Gas calculation then

T
(1)
i+1 =

2 U
(1)
i+1M

3 kB m
(1)
i+1

T
(2)
i+1 =

2 U
(2)
i+1M
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i+1

p
(1)
i+1 =

ρ
(1)
i+1

M kBT
(1)
i+1

p
(2)
i+1 =

ρ
(2)
i+1

M kBT
(2)
i+1

else if Van der Waals calculation then

T
(1)
i+1 =

2 U
(1)
i+1 V (1) M2+a m

2(1)
i+1

3 kB m
(1)
i+1 V (1) M

T
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2 U
(2)
i+1 V
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i+1

3 kB m
(2)
i+1 V
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p
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M

ρ
(1)
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−b
− aρ
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p
(2)
i+1 =

kBT
(2)
i+1

M

ρ
(2)
i+1

−b
− aρ

2(2)
i+1
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end if

if Water has reached nozzle head then

if mW > mr then

p
(n)
i+1 = p

(2)
i+1 − arg min

Δp∈[0,p(2)i+1]

f(Δp)

else

Li+1 = Li − L
ΔV f

i
r2pπL0

p
(n)
i+1 = p

(2)
i+1 − arg min

Δp∈[0,p(2)i+1]

f(Δp)

end if

end if
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The pseudo-code in the Algorithm-2 shows the same for the real gas model. Note that
CP stands for CoolProp, the Python package that either uses the Helmholtz equation
of state or tabulated data to calculate the respective values as explained in Section 3.5.
Note that an h with two superscripts is the heat transfer coefficient while an h with one
superscript is the respective mass specific enthalpy.

Algorithm 2 Real gas model time step

γ = CP (ρ
(1)
i , T

(1)
i )
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end if
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ΔV f
i = k1

�
p
(2)
i − pamb Δt
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if Water has reached nozzle head then

if mW > mr then

p
(n)
i+1 = p

(2)
i+1 − arg min

Δp∈[0,p(2)i+1]

f(Δp)

else

Li+1 = Li − L
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i
r2pπL0

p
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(2)
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f(Δp)

end if

end if
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8 Results

In this chapter the simulation results for all three models are presented, in order of in-
creasing complexity of the theoretical treatment, and compared with the measurement
results from Chapter 5. The results of the ideal gas model are displayed in Section 8.1,
the van der Waals gas model in Section 8.2 and the real gas model in Section 8.3. For
each model, the data for two simulations corresponding to the two different experimental
pressures of 152 and 202 bar are shown. For each experiment, the computed pressure at
the different measurement points is shown in comparison to the measurement results for
the whole spraying time. Due to the high gradients in the initial expansion, an additional
graph shows the pressure data of the first 30 seconds of the spraying process for better
visualization. Finally, the simulated gas and vessel wall temperature are displayed and
compared to the measured vessel wall temperature.

8.1 Ideal Gas

Figure 8.1 shows the results of the simulation using the ideal gas model and a starting
pressure of 152 bar. The actual experimental results are also plotted with dashed lines
for comparison. One can see that while the temporal development of the simulation is
of similar form as the experimental results, the simulated pressure from the measured
pressure especially in the beginning.

Figure 8.1: Comparison of ideal gas simulation pressure results with experiment for the
152 bar experiment.
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Because the largest deviations appear at the beginning of the process considered, Fig-
ure 8.2 shows a zoom over the first 30 seconds of simulation and experiment. The
simulated gas can be seen to experience a smaller pressure drop. In addition, the calcu-
lated spraying process started about two seconds earlier than in the experiment. This is
probably caused by an overestimation of the pressure in the water vessel at the beginning
and the approximation of p2 by the ambient air pressure of 1 bar in Equation (7.23). In
reality, the air in the piping system is compressed, which already leads to an increase
in the nozzle head pressure before the start time of the spraying process. This increase
of the back pressure p2 leads to a lower volume flow. Because of this reduced volume
flow the water reaches the nozzle head later in reality. However, a higher pressure at the
nozzle head leads to a higher amount of water sprayed per time interval. Thus, according
to the calculations, the gas would expand and loose pressure faster than in the measure-
ments. However, the simulation results tend to the experimental values at a later time
stage with respect to the one shown in Figure 8.2.

Figure 8.2: Comparison of ideal gas simulation pressure results with experiment for the
first 30 seconds for the 152 bar experiment.

Figure 8.3 shows the simulated gas and gas vessel wall temperatures compared to the
measured gas vessel wall temperature. Although, again, the curves appear to have overall
a similar form, the experimental temperature decreases more rapidly than the simulated
one. The gas temperature itself could not be measured. However, the discrepancy
between the measured and simulated wall temperatures indicates that the simulated gas
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Figure 8.3: Comparison of ideal gas simulation temperature results with experiment for
the 152 bar experiment.

temperature may also be correspondingly off. Figure 8.4 show the comparison of the
results of the ideal gas simulation to the measurement with a starting pressure of 202
bar. While, also in this case, all the curves seem to converge as the spraying process goes
on, there is a significant pressure difference at the beginning, larger than for the 152 bar
experiment. Similarly as before, to better visualize this difference, Figure 8.5 shows the
first 30 seconds of Figure 8.4. The simulated pressure after 10 seconds is about 20 bar
too high. The reason for this behavior will be discussed in Chapter 9. However, we note
that already within the first 30 seconds this difference reduces significantly. Figure 8.6
shows the comparison of the simulated gas and gas vessel wall pressure temperatures
with the experimental value. Here, too, the deviations are larger than for the 152 bar
starting pressure. In particular we notice that, while the actual vessel wall temperature
is below zero, the simulated one is about 7 degrees Celsius higher.
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Figure 8.4: Comparison of ideal gas simulation pressure results with experiment for the
202 bar experiment.

Figure 8.5: Comparison of ideal gas simulation pressure results with experiment for the
first 30 seconds fo the 202 bar experiment.
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Figure 8.6: Comparison of ideal gas simulation temperature results with experiment for
the 202 bar experiment.

8.2 Van der Waals Gas

Figure 8.7 shows the results of the simulation using the van der Waals gas model and
a starting pressure of 152 bar. Again, the actual experimental results are plotted with
dashed lines for comparison. One can see that, in this case, not only the temporal devel-
opment of the simulation displays a similar form as the experimental results, but also the
pressure in the beginning is much closer to the experimental values. This improvement
is better visible in Figure 8.8, which shows the first 30 seconds of the simulation and
experiment. Although the simulated gas still experiences a smaller pressure drop, the
difference is not as large as in the ideal gas model. The improvement compared to the
ideal gas model is also visible in Figure 8.9. The simulated wall temperature is much
closer to the measured temperature than in the ideal gas simulation, suggesting that the
simulated gas temperature might also be closer to the actual gas temperature. For a dis-
cussion of the underlying reasons, we refer the readers to Chapter 9. The improvement
is also visible in the case with the starting pressure of 202 bar. Figure 8.10 shows that
in this case, too, the simulated pressure gets significantly closer to the measurement.
This improvement is also seen in the first 30 seconds in Figure 8.11. However, we note
that with a higher starting pressure, the van der Waals gas model failed to describe the
temperature as accurately as in the case with the lower starting pressure.
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Figure 8.7: Comparison of van der Waals gas simulation pressure results with experiment
for the 152 bar experiment.

Figure 8.8: Comparison of van der Waals gas simulation pressure results with experiment
for the first 30 seconds fo the 152 bar experiment.
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Figure 8.9: Comparison of van der Waals gas simulation temperature results with
experiment for the 152 bar experiment.

Figure 8.10: Comparison of van der Waals gas simulation pressure results with experiment
for the 202 bar experiment.
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Figure 8.11: Comparison of van der Waals gas simulation pressure results with experiment
for the first 30 seconds fo the 202 bar experiment.

Figure 8.12: Comparison of van der Waals gas simulation temperature results with
experiment for the 202 bar experiment.
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8.3 Real Gas

Figure 8.13 shows, eventually, the results of the simulation performed using the real gas
model and the starting pressure of 152 bar. Again, the actual experimental results are
plotted with dashed lines for comparison. As expected, this model yields, overall, the
best results compared to the experimental data. Such a quantitative improvement is
clearly visible in Figure 8.14, which shows the first 30 seconds of the simulation and
experiment, and in Figure 8.15 that shows the simulated and measured temperatures.
Also in the case with a starting pressure of 202 bar, the real gas model yields the most
precise performance with results very close to the actual experimental values, as it can be
seen in Figure 8.16 and in Figure 8.17. Notably, with the real gas model, also in the case
of a higher starting pressure, the simulation yields quite accurate results for the vessel
wall temperature, which indicates a correspondingly better accuracy of the simulation of
the gas temperature.

Figure 8.13: Comparison of real gas simulation pressure results with experiment for the
152 bar experiment.
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Figure 8.14: Comparison of real gas simulation pressure results with experiment for the
first 30 seconds fo the 152 bar experiment.

Figure 8.15: Comparison of real gas simulation temperature results with experiment for
the 152 bar experiment.
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Figure 8.16: Comparison of real gas simulation pressure results with experiment for the
202 bar experiment.

Figure 8.17: Comparison of real gas simulation pressure results with experiment for the
first 30 seconds fo the 202 bar experiment.
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Figure 8.18: Comparison of real gas simulation temperature results with experiment for
the 202 bar experiment.
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9 Discussion

In this chapter the simulation results for all three models are compared and possible rea-
sons for their different performance are considered. First, the pressure data of all three
models is compared. Then, the temporal development of the inner molar energy and den-
sity for all three models is analyzed. Finally, a comparison between the van der Waals
gas model and the real gas model through calculation of "effective" initial van der Waal
gas parameters for the real gas model is given.

We begin our discussion by recalling that, as explained in Chapter 4, the Cd and kv values
were fitted to match the results of the system with a starting pressure of 152 bar. The
fact that these values also yield good results for the system with starting pressure 202
bar indicates that the validity of these fitted values holds over a wide range of starting
pressures. However, it would still be necessary to evaluate whether this is also the case
for a range of different temperatures.

The data simulated with these fitted values and shown in Chapter 8 have clearly shown
that, as one would expect, the real gas model performs best in predicting the temporal
development of pressure and temperature in the system. In order to better quantify this
aspet, Figure 9.1 shows the comparison of the simulated pressure of all the three models
with the experiment at the three different measurement points in the system for a start-
ing pressure of 152 bar. To a closer inspection, one notices that, while, especially in the
first few seconds, the real gas model performs evidently best, all the curves tend to con-
verge towards similar values. Hence, the other models appear able to provide for a gross
prediction of the system behavior. Interestingly, the van der Waals gas model is better
in predicting the initial pressure drop, but the convergence of the ideal gas model to the
actual measurement is faster, and at some point the prediction of the ideal gas model gets
closer to the measurement values than the van der Waals gas models Figure 9.2 again
zooms in to the first 30 seconds, where the differences are better visible. It is important
to note here that the real gas model also cannot (and does not) yield perfect results.
There are a few reasons for this residual inaccuracy. First, as explained in Chapter 7,
simplifications were made to describe the system. Second, classical thermodynamics uses
the assumption of quasistatic processes in which the thermal subsystems are assumed
to always be in thermal equilibrium. But, in our system, there is a rapid expansion in
the first few seconds. Thus, it is plausible that dynamic processes partially alter the
outcome. Finally, there will also be measurement uncertainties as well as inaccuracies
in the experimental setup. For example, the volumes of the vessels are subject to an
inaccuracy of around one percent.
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Figure 9.1: Comparison of pressures at different points in the system between
measurement and the models for the 152 bar system.
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Figure 9.2: Comparison of pressures at different points in the system between
measurement and the models in the first 30 seconds for the 152 bar system.
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A very similar situation is visible in Figure 9.3 and Figure 9.4, which present the same
data for a system with a starting pressure of 202 bar. The overall trend is similar as in
the case of the lower pressure, but, in this case, the van der Waals gas model outperforms
the ideal gas model throughout the whole spraying process. Due to the same reasons
as for the lower pressure experiment, the real gas model again yields the best but not
perfect results.
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Figure 9.3: Comparison of pressures at different points in the system between
measurement and the models for the 202 bar system.
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Figure 9.4: Comparison of pressures at different points in the system between
measurement and the models in the first 30 seconds for the 202 bar system.
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To better understand the microscopical origin of the differences between the models, the
temporal development of the inner molar energy and the density have been analyzed.
Figure 9.5 and Figure 9.6 show the inner molar energy over time for the three models
with both starting pressures, respectively. In both cases, the ideal gas model has the
highest inner molar energy followed by the van der Waals model, and the real gas model
has the least inner molar energy. This reflects the behavior of the models with respect to
the development of pressure over time. Because the inner molar energy for an ideal gas
depends only on the temperature of the gas, the initial values of the inner molar energy
for the ideal gas are identical for both starting pressures. The attractive forces between
the gas atoms, instead, lead to lower inner molar energies for the higher pressure initial
value in the van der Waals gas and real gas models.

Figure 9.5: Comparison of inner molar energy of the gas between the models for the 152
bar system.

Further insight can be gained by the analysis of the temporal evolution of the gas den-
sities in the different cases. In particular, Figure 9.7 and Figure 9.8 show the temporal
development of the density for all three models over time with both starting pressures.
Despite the fact that the ideal gas model has the smallest density, it yields the high-
est pressures in the simulation, because of the much larger inner molar energy. This
nicely illustrates how the attractive interatomic forces can increase the density while
simultaneously decreasing the pressure in an interacting gas.
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Figure 9.6: Comparison of inner molar energy of the gas between the models for the 202
bar system.

Figure 9.7: Comparison of density of the gas between the models for the 152 bar system.
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Figure 9.8: Comparison of density of the gas between the models for the 202 bar system.

In order to compare the real gas model with the van der Waals gas model in a more
quantitative way, it is interesting to provide an effective estimate for the van der Waals
gas parameters a and b from the real gas starting values of inner molar energy and density.
In Chapter 3 it was found that for the van der Waals gas holds

U = Uideal − an2
m

V
(9.1)

=
3

2
nmRT − anm

vm
(9.2)

⇒ um =
3

2
RT − a

vm
(9.3)

⇒ a = vm

�
3

2
RT − um

�
. (9.4)

Parameter b can be then obtained from the van der Waals equation with the calculated
parameter a:

b = vm − RT

p+ a
v2m

(9.5)

75



9 Discussion Matthias Kronsteiner

With the starting values for the system with 202 bar starting pressure, the van der Waals
parameters evaluate to:

ã = 0.1434
Pa · m6

mol2
(9.6)

b̃ = 3.5946 · 10−5 m3

mol
(9.7)

and for the system with starting pressure 152 bar:

â = 0.1451
Pa · m6

mol2
(9.8)

b̂ = 3.7826 · 10−5 m3

mol
(9.9)

On the basis of these effective estimates and their comparison with the corresponding
textbook values given in Equation (3.60), we can infer some qualitative differences be-
tween the van der Waals gas and the real gas microscopic descriptions. In particular, it
appears that for the initial thermodynamic state the real gas model effectively increases
the attractive force represented by a and consistently lowers the inner molar energy com-
pared to the van der Waals gas. At the same time, it also increases the "effective" value
for the parameter b, which is a gross measure of the extended volume occupied by the
interacting gas particles. Thus, it effectively reduces the accessible volume for the other
particles, leading to a lower density of the simulated real gas compared to the van der
Waals gas.

However, it is important to mention that these "effective" values for the parameters a
and b are only valid for getting some theoretical insight on the comparison between the
different model results at the respective pressure and temperature at which they are
calculated. They should not be considered, in any aspect, an "improvement" compared
to the literature values of a and b that are obtained through measurement of the critical
pressure, temperature and density. In fact, any attempt to generate "effective" van der
Waals gas simulation models using the "effective" values ã and b̃ or â and b̂ respectively
yielded far worse results than all of the three models considered prior in this thesis. This
illustrates that two parameters are just too few to accurately describe real gas effects
over a wide range of pressures or temperatures.
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10 Summary and Outlook

In this work three numerical models were developed to predict the pressure and tem-
perature of a fire extinguishing system driven by a gas-powered power pack. They were
based on the ideal gas law, the van der Waals gas law, and a real gas model using an
experimentally fitted Helmholtz equation of state and tabulated data. For all models,
the fire extinguishing system was divided into three thermodynamic subsystems. In each
timestep, the mass flow and the energy flow between these systems were computed and
the thermodynamic states were updated using the respective thermodynamic laws. The
performance of these models was evaluated by comparing their predictions with mea-
sured data from two experiments at different starting system pressures performed in the
facilities of AQUASYS TECHNIK GMBH in Linz under the supervision of the author.

All three models were able to produce reasonable predictions for the fundamental physi-
cal variable controlling the systems time evolution, namely the temporal development of
the system pressure. Due to the dependence of the water outflow on the system pressure
the predictions of the models and the actual measurement tend to reach their asymptotic
value, controlled by the ambient air pressure, over different time scales. Consequently,
the larger deviations between the model predictions and experiments are found in the
initial part of the process and decline over time. As expected, by quantitatively com-
paring with the measured values of the pressure, the real gas model displayed the best
performance followed by the van der Waals gas model with the ideal gas model yielding
overall less accurate predictions. Still, because of approximations, the dynamic nature
of the expansion process and possible measurement errors as well as inaccuracies in the
setup of the experiments the real gas model also did not yield perfect predictions for the
measured values. To account for dynamic effects, and further improving the quantitative
agreement, a computational fluid dynamics simulation, which is clearly beyond the scope
of this Master thesis work, would be necessary.

On a more microscopical perspective, further analysis has shown that the van der Waals
gas model underestimates the attractive as well as the repulsive forces in the initial
high-pressure setting of our system. This observation, while useful for the physical inter-
pretation of the numerical results, cannot be exploited, however, for effectively improving
the performance of the van der Waals model. In fact, attempts to build "effective" van
der Waals gas simulation models by fitting the parameters a and b to the real gas starting
densities and inner molar energies yielded bad predictions when compared to the original
three models, showing that two parameters are too few to accurately describe real gas
behavior over a wide range of pressures and temperatures.

Finally, it is important to recall that only the simplest form of a GPP firefighting system
was simulated in this thesis work. For industrial use, it would be necessary to further
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evaluate the performance of the real gas model when extended to more complicated
systems including multiple gas vessels, water vessels, or nozzle heads in serial or parallel
arrangements. In this context, it may become necessary to resort to CFD simulations
for these geometrically more complicated systems. Furthermore, argon, which has been
used here for both experiments, is a noble gas. Thus, for other operating gases, such as
nitrogen, additional, possibly stronger interaction effects might further lower the model
abilities to predict the temporal development of pressure over time. To summarize,
this thesis should be seen as a proof of principle and a starting point to further develop
simulations for more complicated systems. Developing such a procedure has the potential
to significantly reduce the trial-and-error steps in the layout of a firefighting system,
making the realization of more powerful GPP systems, without pressure reducing valves,
economically feasible.
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