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Kurzfassung

Für die Zuverlässigkeit von Halbleiterbauelementen spielen auf Fehlstellen zurückführ-
bare Phänomene wie Bias Temperature Instability (BTI) und Trap Assisted Tunneling
(TAT) eine wichtige Rolle. BTI bezeichnet die reversible und irreversible Änderung
der Threshold Spannung mit Temperatur und Bias Stress durch Elektroneneinfang und
-emission. TAT bezeichnet Leckströme die ebenfalls durch Elektronenaustausch entste-
hen. Es wurde eine Reihe von Modellen zur Erklärung von BTI entwickelt. Ursprünglich
wurde davon ausgegangen, dass BTI vom Ladungsträgereinfang von unabgesättigten
Bindungen der Silizium Atome an der Silizium-Siliziumdioxid Grenzschicht und den
von diesen Atomen dissoziierten Wasserstoffspezies resultiert. Neuere Erkenntnisse be-
legen, dass es sich jedenfalls beim reversiblen Teil um einen Einfang von Ladungen
in bereits vorhandene Fehlstellen handelt und sich der Ladungsträgeraustausch durch
non-radiative multi phonon (NMP) Übergänge beschreiben lässt.

In dieser Arbeit wird auf ein bestehendes NMP Modell aufgebaut. Die vorhandenen Ra-
tengleichungen beschreiben Ladungsträgeraustausch zwischen Halbleitern oder Metallen
mit Isolatoren. Zusätzliche, feldabhängige Ratengleichungen zum Leitungs- und Valenz-
band im eigenen Material sind notwendig für Simulationen von Fehlstellen in Halblei-
termaterialien, z.B. für GaN/AlGaN high electron mobility Transistoren (HEMTs) und
High-k Dielektrika. Eine Erweiterung am Modell ermöglicht die Berechnung statischer
Tunnel- und transienter Umladeströme erzeugt durch einzelne Fehlstellen.

Mathematische Näherungen in den Ratengleichungen erlauben eine analytische Ab-
schätzung der Raten für verschiedene Bereiche der Feldstärke. Die Temperaturabhängig-
keit der Bandraten folgt einem Arrhenius-Gesetz, wobei die scheinbare thermische Bar-
riere mit der Feldstärke sinkt. Ein Vergleich von Simulationen der Capture- und Emission-
Zeiten mit und ohne den Bandraten zeigt für welche Situationen das Einbeziehen der
Bandraten nicht mehr vernachlässigt werden kann. Mit den erweiterten Raten konnten
die Leckströme im Sperrbetrieb in einem GaN/AlGaN HEMT simuliert werden. Die
Ergebnisse zeigen ein Verhalten ähnlich dem Frenkel-Poole Modell für niedrige Felder
und hohe Temperaturen, und ein Verhalten ähnlich dem Fowler-Nordheim Modell für
hohe Felder und tiefe Temperaturen, qualitativ in guter Übereinstimmung mit Messer-
gebnissen aus einschlägiger Literatur. Die transiente Simulation eines MOSFET zeigt
Umlade- und Transportströme während Stress- und Erholungsphasen, und den Anteil
einzelner Fehlstellen an diesen Strömen.
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Abstract

Bias temperature instability (BTI) and trap assisted tunneling (TAT) play an important
role for the reliability of semiconductor devices. Both phenomena can be traced back
to defects. BTI denotes the reversible and irreversible change in threshold voltage
with temperature and bias stress, TAT denotes leakage currents resulting from electron
capture and emission of defects. A number of models aiming to describe BTI have been
developed. Initially, it was assumed that BTI is a result of dangling bonds at silicon
atoms near the silicon-silicon dioxide interface and the hydrogen species dissociating
from these atoms. However, newer results show that at least the reversible part of BTI
is caused by the capture of charge in pre-existing defects and that the charge transfer
can be described by non-radiative multi phonon (NMP) transitions.

This work is based on an existing NMP model. The existing rate equations of the
NMP model describe the charge exchange between semiconductors or metals and in-
sulators. Additional, field dependent rate equations to conduction and valence band
near the defect are necessary for simulation of traps in semiconducting materials, e.g.
for GaN/AlGaN high electron mobility transistors (HEMTs) and transistors with high-
k dielectrics. An extension to the model enables the simulation of static tunnel and
transient displacement currents for individual traps.

Mathematical approximations in the rate equations allow an estimation of the rates for
different regimes of the electric field. The temperature dependence of the band rates
follows an Arrhenius-law, whereby the apparent thermal barrier decreases with field
strength. A comparison of simulations of capture and emission times with and without
band rates shows for which situations the band rates can not be neglected. With the
extended rates reverse leakage currents in a GaN/AlGaN HEMT could be simulated.
The results show Frenkel-Poole like behaviour for low fields and high temperatures and
Fowler-Nordheim like behaviour for high fields and low temperatures in good agreement
with measurement results in literature. The transient simulation of a MOSFET shows
the displacement and transport currents during stress and recovery cycles, and the
contribution for each of the traps.
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CHAPTER 1 Introduction

I want to begin this work with a short presentation of two important phenomena for
semiconductor reliability, namely bias temperature instability (BTI) and trap assisted
tunneling (TAT). BTI as a phenomenon, characterization of BTI and modeling of BTI
will be summarized in section 1.1. TAT as the mechanism responsible for reverse bias
leakage in high electron mobility transistors (HEMTs) and stress induced leakage current
(SILC) will be presented in section 1.2.

This work will focus on the numerical simulation of defects in semiconductor devices,
generally attributed to be the cause of these phenomena. Simulations will be done in the
framework of the four-state non-radiative multi phonon (NMP) model. The model will
be extended to allow for charge exchange between defects and the conduction or valence
bands close to the defect and the calculation of currents resulting from the defects. The
model and its extensions will be covered in the theory chapter, chapter 2 of this work.

The behaviour of the extension and its significance will be discussed in the first part
of the results chapter, chapter 3, before simulations on realistic devices will be done.
Simulations of a GaN/AlGaN HEMT will yield reverse bias leakage currents which will
be compared to currents resulting from the Fowler-Nordheim and Frenkel-Poole models.
A MOSFET will be simulated to show displacement and transport currents resulting
from oxide traps.

1.1 Bias Temperature Instability

Bias temperature instability (BTI) as a phenomenon has been known for a long time and
was first described in 1966 [1]. Only in recent years however, it has gained more interest.
Reasons are, among other circumstances, the introduction of nitrogen into the gate oxide
of MOS transistors [2] and the higher electric fields in the oxide due to miniaturization
[3]. Lateral scaling of devices decreases the number of defects and increases the influence
of single defects and the distribution of their properties on degradation. BTI is a major
concern to the reliability of microelectronic devices.
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INTRODUCTION 1.1. Bias Temperature Instability

Bias temperature instability refers to the change in the threshold voltage of a MOS
device as it is biased in inversion. Its name indicates its sensitivity to temperature and
bias voltage, both of which accelerate the degradation of the device. BTI can be broken
down further into positive BTI (PBTI) and negative BTI (NBTI). NBTI refers to the
instability observed at negative gate bias and PBTI to the instability at positive bias.
NBTI is most prominent in p-channel MOSFETs operating in CMOS circuits and PBTI
in high-k nMOS devices. While both effects cause an increase in the absolute value of
the threshold voltage, NBTI further affects the subthreshold behaviour of the device
and causes gm degradation. This is attributed to different locations of charge trapping
in n- and pMOS devices [2]. The defects responsible for BTI in pMOS devices are close
to the channel, this leads to strong Coulomb scattering which degrades the mobility of
the carriers there.

1.1.1 Characterization of BTI

A number of experimental methods to characterize BTI have been developed during
recent years. Two of them, the commonly used measure-stress-measure (MSM) method
and time dependent defect spectroscopy (TDDS) will be summarized in this section.

The Measure-Stress-Measure (MSM) method, also called the stress-and-sense
method, is a frequently used characterization method for BTI and can be used with
MOSFET and MOSCAP devices [2]. Before stressing, the device or a similar one is
characterized. Then the first stress cycle starts and stress is applied for a defined
time. After stress, the threshold voltage shift is measured and the next stress cycle is
started. The delay between stressing the device and measuring should be as short as
possible, because recovery of BTI starts immediately after stress is removed. This has
led to the development of short measurement methods such as ultra short pulse Id-Vg
measurements [4] or spot C-V measurements (for MOSCAP structures). With these
methods, instead of doing a full characterization of the device after stress, only a single
measurement is taken at a reference voltage and compared to the reference curve of the
device to evaluate the threshold voltage shift.

If the dynamics of BTI recovery is of interest, recovery measurements of the drain current
as proposed in [5], with logarithmic distributed sampling times can be done between the
stress cycles. This is illustrated in figure 1.1. A similar measurement will be simulated
in section 3.3.2 of the results chapter to evaluate displacement and transport currents
occurring during stress and recovery.

To gain a better understanding of the mechanisms of NBTI, a method called Time-
Dependent Defect Spectroscopy (TDDS) is used. The first measurement was reported
in 1988 but only recently the technique has gained interest [2]. It allows to learn about
the behaviour of individual defects and their position within a device.

Time-Dependent Defect Spectroscopy (TDDS) is a measurement method allow-
ing to monitor charge capture and emission times for individual defects. For small
area devices with a small number of defects it is possible to see discrete steps in the
drain current each time a defect changes its charge state. The individual step height

2



INTRODUCTION 1.1. Bias Temperature Instability

|Vg|

t

Vmeasure

Vstress

Figure 1.1: Gate voltage and measurement points for the extended MSM method. The
sampling rate during measurement cycles is increased logarithmic to collect
as much information on the recovery as possible in the measurement phase.
Figure adopted from [5].

each defect shows depends on its position in the oxide. Together with its specific, bias
and temperature dependent time constants this allow to map the observed events to
individual defects.

To stimulate capture and emission events the device is repeatedly stressed and recovered.
During recovery emission events can be directly observed in the drain current of the
device. The capture events can not be observed directly because of high noise and
limited resolution in the strong inversion regime where the device is stressed [2]. To
evaluate the capture times the width of the stress cycle is varied and the capture events
for each stress time counted. As the events are stochastic in nature, the measurements
have to be repeated until the confidence intervals are small enough to extract distribution
parameters.

The behaviour of capture and emission times observed for different stress voltages and
temperatures provides information that have led to a better understanding of the phys-
ical nature of the defects.

1.1.2 Modeling of NBTI

In 1977, the first model for NBTI, the reaction-diffusion (RD) model [6] was de-
veloped. In the RD model, it is assumed that hydrogen atoms, introduced during
manufacturing of the device are responsible for the degradation. The hydrogen atoms
are introduced to passivate dangling silicon bonds at the interface between silicon and
SiO2, which otherwise create defect states at the interface. During stress, the hydrogen
atoms dissociate from the silicon atoms (reaction) and then diffuse towards the oxide
(diffusion). For low stress times, the amount of hydrogen atoms dissociated is assumed

3



INTRODUCTION 1.1. Bias Temperature Instability

to be reaction limited and increases linear in this regime. At some point, the rate be-
comes diffusion limited and the de-passivated bonds increase with t1/4. A schematic
drawing of the processes happening in the RD model can be found in figure 1.2.

The RD model was modified as later experimental results did not agree with the initial
power-law exponent. Recent publications questioned the validity of the model [7] and
the suitability of reaction rate equations for the particle densities involved. It was
since realized that the RD model can not explain the BTI, especially the recovery
behaviour and the decorrelated capture and emission time constants of the defects.
TDDS measurements have shown charging and discharging of individual pre-existing
defects as the mechanism behind BTI.

a b

silicon oxygen hydrogen

Si SiO2
c

Figure 1.2: Schematic drawing of the processes happening in the reaction-diffusion
model, adopted from [8]. Dangling bonds of silicon atoms at the Si-SiO2 in-
terface are passivated with hydrogen during manufaction (a). During stress,
the hydrogen atoms dissociate from the silicon (reaction) and leave positively
charged silicon ions (b). The hydrogen atoms diffuse away and some form
H2 (diffusion, c). Early during stress, the reaction is the rate-limiting factor,
later the diffusion of hydrogen and subsequent conversion to H2 limits the
rates.

Realization that charge trapping in pre-existing oxide defects might be responsible for
BTI have led to the development of new models. Early models were based on elastic
tunneling [9, 10]. Later, modified versions of the Shockley-Read-Hall (SRH) model
to account for tunneling [11] were used and phenomenologically extended with energy
barriers by Kirton and Uren [12]. It was understood that non-radiative multi phonon
transitions are responsible for charging and discharging of the traps. The two-stage
model (TSM) [13] phenomenologically introduced a field enhancement factor, but the
model was still not correctly reflecting the nature of microscopic trapping [14]. This led

4



INTRODUCTION 1.2. Trap Assisted Tunneling

to the development of the extended non-radiative multi phonon (eNMP) model
[14]. It has additional metastable states, necessary for the description of the observed
weakly correlated capture and emission times and the bias dependence observed with
TDDS. Its NMP charge transfer reaction is strictly derived from quantum mechanics.

The extended NMP model will be covered in the theory chapter, chapter 2, of this
work. The model, currently describing interaction of the traps with the bands of the
adjacent semiconductor or metal layers, will be extended to allow interactions with the
conduction and valence band near the trap position in section 2.3.4. While these
interactions are not relevant in SiO2 due to its high band gap energy, they can become
relevant for traps in wide band gap and high-k materials such as Gallium Nitride (GaN)
and Silicon Nitride (Si2N3). An evaluation of the effect of these rates on the capture
and emission times depending on the band gap and trap energies can be found in the
results section 3.2.

1.2 Trap Assisted Tunneling

Trap Assisted Tunneling (TAT) describes the transport of charges between two points
by capture and emission of a trap. It is regarded as the mechanism for leakage through
nitrided and tunnel oxides, for stress-induced leakage currents (SILC) and at least par-
tially for the reverse leakage of GaN/AlGaN high electron mobility transistors (HEMTs)
[15].

A variety of analytical models have been developed for trap assisted tunneling. Fleischer
and Lai [16] developed a model for TAT currents through triangular barriers, Houng
et al. [17] a generalized model for triangular and trapezoid barriers. Sathaiya and
Karmalkar [15] extended these models further by including thermally activated electrons.
Illustrations of the tunneling paths for these models can be found in figure 1.3.

E(x)

x

(a) Fleischer and Lai

E(x)

x

(b) Houng et al.

E(x)

x

(c) Sathaiya and Karmalkar

Figure 1.3: Band diagrams for trap assisted tunneling models, adopted from [15]. The
blue line is the conduction band edge of the layer containing the traps,
the horizontal black line on the left indicates the fermi niveau in the metal
contact. The dotted line represents the traps and the arrows the charge
transport.
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For HEMTs, the measured leakage currents are often fitted with the popular Frenkel-
Poole [18] and Fowler-Nordheim [19] models.

The Fowler-Nordheim model describes the current emitted from a metal through a
triangular barrier and is usually written in the form

JFN ∝ F 2e−
A
F (1.1)

with a parameter A. It shows a low temperature dependence and is usually used to fit
the leakage current at low temperatures and high fields.

The Frenkel-Poole model describes the current produced by carriers thermally emitted
from a trap state to a band with the lowering of the thermal barrier by an electric field.
The resulting current density can be written as

JPF ∝ Fe
− qΦt−B

√
F

kBT (1.2)

with parameters B and the trap depth Φt. Its temperature dependence follows an
Arrhenius law and it is used to fit leakage currents at high temperatures and low fields.
These formulas will be used in section 3.3.1.

In this work, TAT currents are calculated directly in the framework of the NMP model.
This allows to calculate the transient displacement and static transport currents for
each individual trap in the device. In section 3.3 of the results chapter, simulations
for two TAT scenarios, one of them also using the rate equations to the semiconductor
bands, will be discussed.

1.2.1 Reverse Leakage in HEMTs

Some III-V semiconductor high electron mobility transistors, e.g. GaN/AlGaN HEMTs,
show large gate leakage currents in reverse bias. Possible leakage paths are the vertical
path from the gate to the channel and the lateral path from gate to drain or source.
This is illustrated in figure 1.4. According to [20], the vertical part dominates over the
lateral part in III-V nitride HEMTs. This is in contrast to other materials where the
lateral path dominates.

While the exact physical mechanisms for the leakage current are not known, it does
not seem to be direct tunneling. Unrealistic assumptions of the charge at the interface
have to be made to fit the measurements [21] and the temperature dependence of the
measured currents does not agree with direct tunneling. This leaves some form of trap
assisted tunneling as a likely candidate for the leakage currents.

In section 3.3.1 of the results chapter, simulated reverse leakage currents in a GaN/Al-
GaN device will be compared against the Frenkel-Poole and Fowler-Nordheim models
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S

Gate

DBarrier

Figure 1.4: Schematic geometry of a HEMT and possible leakage paths. The vertical
path is indicated by solid blue arrows, the lateral path with dashed red
arrows. S and D denote Source and Drain.

often used to fit to the measured leakage currents in these devices. The simulation was
done using the NMP model with the rates to the local conductance and valence bands
derived in section 2.3.4.

1.2.2 Stress Induced Leakage Current

A phenomenon possibly linked to NBTI is Stress Induced Leakage Current (SILC). As
the name suggests, SILC describes a leakage current through the oxide of a MOS device
after high field stress. SILC is a concern for the reliability of devices with an oxide
thickness smaller than about 10 nm, especially for non volatile memory devices [22].
The SILC has also been attributed to trap assisted tunneling [23].

In section 3.3.2 of the results chapter, we will take a look at the transient and static
trap assisted leakage currents simulated for a stressed MOSFET to gain understanding of
the energetic and spatial distribution of defects causing TAT currents in thin oxides.
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CHAPTER 2 Theory

In this chapter the four-state NMP model used in this work will be described and
extended. First, in section 2.1 a short introduction to Markov chains will be given, as a
principal understanding will be necessary later. In section 2.2 the basic principle of the
four-state model will be outlined, without detailed explanation of the transition rates
between states. It will be shown how transport and charging currents can be calculated
in the framework of the model. Later, in section 2.3, the physical theory behind the
charge trapping, the non-radiative multi phonon (NMP) theory and the derivation of the
charge transfer rates used in the four-state model will be summarized. The model will
be extended to cover field-assisted charge transfer to the local conduction and valence
bands. At the end of the chapter, in section 2.4, thermal transitions, used in the four-
state model for transitions without charge transfer, will be covered.

2.1 Markov Chains

Before advancing to the trap model in the next section, a short introduction to Markov
chains, commonly used to describe traps in semiconductors, should be given.

Markov chains can be split in discrete-time Markov chains (DTMC) and continous-
time Markov chains (CTMC). As there is no time discretization in the physical systems
investigated in this work, we will focus on the continous-time type.

A Markov process is a random process that retains no memory of its past. This is called
the Markov property. It means that future states of the process are only influenced by
its current state and not by the past. A Markov chain is a Markov process with a finite
set of states.

Mathematically, a continuous time Markov chain has a state space I with a finite set of
states i and a transition matrix K with a dimension equal to the number of states and
row sums of zero. The process (Xt)t≥0 is then defined (infinitesimal definition) [24] for
h→ 0 as
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THEORY 2.2. The Four-State Model

P(Xt+h = j|Xt = i) = δij + kijh+ o(h). (2.1)

In the following, the occupancies of the states will be treated probabilistically. The
probabilities ~P of the system occupying one of the states i can then be written as a
master equation, a set of differential equations.

d~P (t)

dt
= K~P (t) (2.2)

2.2 The Four-State Model

Traps in semiconductor devices are commonly described using two-state Markov chains
with a neutral and a charged state. Time dependent defect spectroscopy (TDDS) mea-
surements in oxides [25] have shown trapping behaviour which can not be described by
the dynamics of a two-state model. The four-state model has an additional metastable
state in the Markov chain for each charge state of the trap. With these additional states,
many observed experimental features can be explained. Visual representations of the
two- and four-state Markov chains can be found in figure 2.1.

1 2

k12

k21

1

1′

2

2′

k11′

k12′

k1′1

k1′2

k2′1

k2′2

k21′

k22′

Figure 2.1: Markov chains of a two-state model (left) and the four-state model (right).
States denoted as 1 and 2 are the charged and uncharged states respectively,
metastable states are dashed. Transitions involving a charge transfer are
drawn solid (NMP transitions), those without (thermal transitions) dashed.

The stable states in the four-state model will in the following be denoted as 1 and 2 for
the charged and uncharged states respectively, metastable states will be marked with
dash (′). Depending on the type of trap, the charged states 2 and 2′ in this model have a
different physical meaning. For hole traps, the charged states indicate the more positive
state of the trap, while for electron traps it represents the more negative one.

Transitions involving a change transfer, 1-2′ and 1′-2, are modeled as non-radiative multi
phonon transitions (see section 2.3), transitions without charge transfer, 1-1′ and 2-2′,
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as pure thermal transitions (section 2.4). The physical meaning of transitions between
the states change with trap type as the carrier involved in the transition is either an
electron or a hole.

To calculate the transition rates between states, the trap model has a set of parameters
describing a parabolic adiabatic potential energy surface in the configuration coordinate
diagram for each configuration of the trap. This will also be explained in section 2.3.

Unless stated otherwise, in the following sections electron traps will be assumed.

2.2.1 Trap State Occupancies and Charge

With the definition of the Markov chain and the transition rates, expressions for the trap
occupancies, trap charge, capture/emission times and charge transport can be found.
All these quantities depend on time, but time dependence is not stated explicitly, unless
necessary to shorten formulas and improve readability, e.g. pn = pn(t).

As the Markov chain has to be always in one of the states i, the occupation probabilities
of the states have to add up to one at any time.

∑
m

pm = 1 (2.3)

Initial conditions must be chosen accordingly. Usually one of the stable states is chosen
as the initial state and its occupation probability set to one, the occupation of the other
states to zero.

The change in occupancy of a trap state n can then be calculated by adding the
rates to and from connected states m multiplied by the respective occupation probability
p as in equation 2.2.

dpn
dt

=
∑
m6=n

(pmkmn − pnknm) (2.4)

Here, knm are the rates from state n to m. For the Markov chain in the four-state model
the resulting equation system is:

ṗ1 = p1′k1′1 + p2′k2′1 − p1(k11′ + k12′) (2.5a)

ṗ1′ = p1k11′ + p2k21′ − p1′(k1′1 + k1′2) (2.5b)

ṗ2 = p1′k1′2 + p2′k2′2 − p2(k21′ + k22′) (2.5c)

ṗ2′ = p1k12′ + p2k22′ − p2′(k2′1 + k2′2) (2.5d)

The dot above the occupancies pn denotes time derivatives here, i.e. ṗn = dpn
dt

.
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The occupancies in equilibrium can be calculated by setting the all time derivatives
to 0 i.e.

ṗ1 = ṗ1′ = ṗ2 = ṗ2′ = 0 (2.6)

and solving the resulting equation system.

The trap charge can be found by summing the occupancy of the charged states m
and multiplying them by the charge of the carriers involved qc = ±q0.

q = qc
∑
m

pm (2.7)

A more in detail description of the four-state model, including the capture and emission
times can be found in [26].

2.2.2 Carrier Transport, Trap Assisted Tunneling

A trap in the four-state model is generally not limited to a single reservoir within the
device, but can exchange charge with all of the surrounding materials. While doing so,
it not only changes its own charge, but also transports charge between the reservoirs.
The rates knm that govern the NMP transitions in the Markov chain are then sums of
individual exchange rates knm,u between the trap and the corresponding reservoir u.

knm =
∑
u

knm,u (2.8)

To illustrate this, a sample configuration is shown in figure 2.2. The rate k12′ (charge
trapping to the metastable charged state) for example, would be composed of a number
of individual rates:

k12′ = k12′,contact + k12′,cb,barrier + k12′,vb,barrier + k12′,cb,bulk + k12′,vb,bulk.

In this example, the bulk and contact rates are NMP rates to adjacent materials from
the existing NMP model. Rates k12′,cb,barrier and k12′,barrier are NMP rates to the local
conduction and valence bands, which will be derived as part of this work in section
2.3.4.

The resulting sum rates knm are used to calculate the occupancies of the trap states
as explained in section 2.2.1. With the occupancies of the states, the rate of carrier
transport ru to each exchange point u can be calculated.
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E(x)

x

GaN AlGaN metal

rcb,bulk

rvb,bulk

rcb,barrier

rvb,barrier

rcontact

Figure 2.2: Band diagram of an example GaN/AlGaN heterostructure. The arrows show
the possible paths of charge exchange with each reservoir. The trap inside
the semiconducting barrier can exchange charge with the local conduction
(blue) and valence bands (red), the bands of the bulk material and the metal
contact.

ru =
∑
nm

(pnknm,u − pmkmn,u) (2.9)

For the four-state model, indices nm refer to the transitions from the charged states n
= 2 and 2′ to the uncharged states m = 1 and 1′. The rate ru to the reservoir u can be
expressed as a current iu to the reservoir simply by multiplying it by the charge of the
involved carriers qc.

iu = qcru (2.10)

The currents must obey Kirchhoffs law, i.e. the sum of the currents to the trap must
be equal to zero in equilibrium. More general, the sum of the currents must be equal
to the change in trap charge with time. This can be shown by doing the sum over all
points of exchange and substituting back equations 2.4, 2.7, 2.8 and 2.9.

∑
u

iu = qc
∑
u

ru

= qc
∑
u

∑
nm

(pnknm,u − pmkmn,u)

= qc
∑
nm

(pnknm − pmkmn)

= −qc
∑
n

ṗn∑
u

iu = −q̇
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2.3 Non-Radiative Multi Phonon Transitions

In the previous section we described the Markov chain used to model the behaviour of
a trap and showed expressions for its charge, occupancies and carrier transport. The
key processes that govern the behaviour of the Markov chain however, the transition
rates knm between the Markov states, are still left to explain. In the next two sections,
expressions for these transitions will be given. This section will focus on the NMP
transitions between the charged and uncharged states of the trap.

The first part of this section will focus on the derivation of transfer rates of electrons
between a single trapped and an untrapped state. In the second part this rate will
be extended for transitions between the trapped state and a remote band of states,
to describe interaction of the trap with adjacent materials. Then, in the third part,
transitions between the trapped state and a local band of states will be derived for
traps in semiconducting materials or dielectrics with reachable band states. Finally, the
rates obtained will be simplified to yield analytical expressions suitable for use in device
simulation.

2.3.1 NMP Transitions

To describe the transfer of charge to or from a trap, commonly called the charge transfer
reaction, non-radiative multi phonon theory is used in the four-state NMP model. It
can be derived directly from quantum mechanics.

To start the derivation, the behaviour of the system consisting of the trap and all
involved atoms is expressed by their Schrödinger equation. The Schrödinger equation
is then split into separate equations for electrons and nuclei, using the Huang-Born
approximation, which uncouples electronic from nuclei states (adiabatic approximation)
and thus allows for the separation [2].

(
T̂e + V̂ee(r) + V̂en(r; R) + V̂nn(R)

)
ϕi(r; R) = Vi(R)ϕi(r; R) (2.11)(

T̂n + V̂i(R)
)
ηiα(R) = Eiαηiα(R) (2.12)

The terms in the Hamiltonians are interaction (V̂ ) and kinetic contributions (T̂ ), indices
e and n indicate electrons and nuclei respectively. The separated wave functions are
termed ϕi(r; R) for the electronic system and ηiα(R) for the system of nuclei (vibrational
system). Vi(R) is the solution of the electron system, commonly termed adiabatic
potential energy, and is dependent on the configuration of the nuclei. Eiα is the energy
of the nuclear system. Indices i and iα indicate the quantum states of the electronic
and vibrational systems.

The coordinates R of all nuclei involved in the transition can be reduced to a single
configuration coordinate q, a generalized coordinate describing the positions in their
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trajectories during the reaction. The adiabatic potential energy V (q) plotted over the
configuration coordinate q is called configuration coordinate diagram. For sufficiently
small changes in the position of the involved atoms, the adiabatic potential can be
approximated as parabolic. Approximated sample adiabatic potential energy surfaces
with parameters V, c, and q in the configuration coordinate diagram are shown in figure
2.3. The relative position and the shapes of the parabolas in the configuration coordinate
diagram depend on intrinsic properties of the atomic structure, their relative energetic
position is modified by the carrier energy E of the reservoir state [27].

The parabolic shape of the approximated system in the configuration coordinate diagram
allows to model it as a quantum harmonic oscillator. To derive the transition proba-
bility from an electronic state i to j, perturbation theory along with the Frank-Condon
approximation is used [2, 28, 29].

kij = Aijfij (2.13)

The transition rate kij from state i to j can be expressed as the product of an electronic
matrix-element A and a lineshape function f .

Aij =
2π

~
|〈ϕi|V ′|ϕj〉|2 (2.14)

fij = ave
α

∑
β

|〈ηiα|ηjβ〉|2 (2.15)

V (q)

q

ci cj

Vj

Vi

Eji

qi qj

Figure 2.3: Adiabatic potential energy surfaces in the configuration coordinate diagram
for example states i and j. Vi and Vj are the energy minimas of the parabo-
las, qi and qj the configuration coordinates at the minima. ci and cj are
the curvatures of the parabolas. The lineshape function Aij will later be
calculated from these parameters and the energy difference Eji = Vj − Vi.

The lineshape function f(~ω), evaluated at ~ω = 0 for non-radiative transitions, is the
thermal average (denoted ave) over all probabilities for starting in a vibrational state
iα and ending in any vibrational state jβ. Aij is the matrix element of the electron
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wave functions of the undisturbed eigenstates i and j with the pertubation V ′. It is a
measure for the electronic transition probability. A and f will later be approximated by
simple analytical expressions for implementation in device simulators.

In the following, f will be written parametrized as a function of the energy difference
between the final and the starting position of the electron, i.e. fij(Ej − Ei). The
curvatures and positions of the parabolas are not stated explicitly. They are described
by the starting and end state i and j. A will be written as a function of the electron
energy and either the tunnel distance or the electric field, Aij(E, xt) or Aij(E,F ).

2.3.2 Transitions to a Band of States

Equation 2.13 gives the transition rates from any state i to j. To calculate transitions
between a trap state and a whole band of states, as shown in figure 2.4a, the rates
are integrated over a continuum of band states (equation 2.16a). For simplicity, the
following equations are given for two-state electron traps. Starting configurations for
the lineshape function and the matrix element will always be denoted as i, final states
as j. This section and the following section on the band edge approximation are based
on [26] and [2]. All equations are for electron traps, indices 1 and 2 change for hole
traps.

V (q)

q

Vj

Vi

Eji

qi qj

(a) Adiabatic potential energy surfaces in the
configuration coordinate diagram for an
example state j and a band of states i.

E(x)

x

k12,cb

0 xt

(b) Band diagram showing the capture of an
electron from the conduction band of a
neighbouring layer and the resulting trape-
zoidal tunneling barrier.

Figure 2.4: Transition k12 from a band of states to a trap in the configuration coordinate
diagram (a) and the band diagram (b).

Equation 2.16a gives the rate of electron capture from the conduction band to the trap.
Dn is the density of states in the conduction band and fn is the electron occupancy, the
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factor Dnfn is the effective density of states at a specific energy.

k12,cb =

∫ ∞
Ec

Dn(E)fn(E)Aij(E, xt)fij(Et − E) dE (2.16a)

k21,cb =

∫ ∞
Ec

Dn(E)(1− fn(E))Aij(E, xt)fij(E − Et) dE (2.16b)

k12,vb =

∫ Ev

−∞
Dp(E)(1− fp(E))Aij(E, xt)fij(Et − E) dE (2.16c)

k21,vb =

∫ Ev

−∞
Dp(E)fp(E)Aij(E, xt)fij(E − Et) dE. (2.16d)

The rates for electron emission use the inverse of the electron occupancy 1 − fn. For
interactions with the valence-band occurrences of the electron occupancy are replaced
with the hole occupancy fn = 1− fp.

2.3.3 Band Edge Approximation

To simplify the equations above, the energy of the carriers in the bands can be approx-
imated with the band edge energy. This allows to move the lineshape function and the
electronic matrix-element out of the integration.

The inverse fermi-dirac distributions 1− fn and 1− fp are expressed as

1− fn(E) = fp(E) = 1− 1

1 + eβ(E−Ef )
= eβ(E−Ef )fn (2.17)

1− fp(E) = fn(E) = 1− 1

1 + eβ(Ef−E)
= eβ(Ef−E)fp (2.18)

with β = 1
kBT

, the Boltzmann constant kB and the temperature T. The rate equations
can then be written as

k12,cb = Aij(Ec, xt)fij(Et − Ec)
∫ ∞
Ec

Dn(E)fn(E) dE (2.19a)

k21,cb = Aij(Ec, xt)fij(Ec − Et)
∫ ∞
Ec

Dn(E)fn(E)e−β(Ef−Ec) dE (2.19b)

k12,vb = Aij(Ev, xt)fij(Et − Ev)
∫ Ev

−∞
Dp(E)fp(E)e−β(Ev−Ef ) dE (2.19c)

k21,vb = Aij(Ev, xt)fij(Ev − Et)
∫ Ev

−∞
Dp(E)fp(E) dE. (2.19d)
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The integral terms can be identified as the equations for electron and hole densities:

n =

∫ ∞
Ec

Dn(E)fn(E) dE (2.20)

p =

∫ Ev

−∞
Dp(E)fp(E) dE, (2.21)

to yield

k12,cb = Aij(Ec, xt)fij(Et − Ec)n (2.22a)

k21,cb = Aij(Ec, xt)fij(Ec − Et)ne−β(Ef−Ec) (2.22b)

k12,vb = Aij(Ev, xt)fij(Et − Ev)pe−β(Ev−Ef ) (2.22c)

k21,vb = Aij(Ev, xt)fij(Ev − Et)p (2.22d)

Analytical expressions for the lineshape function and the matrix element will be given
in section 2.3.5.

2.3.4 Field-assisted Transitions

In the previous section, transitions to a band of states were covered. This allows for
example to calculate the transition rates for oxide traps in MOS transistors interacting
with the adjacent gate and bulk layers. The trap is assumed to interact with the closest
points in these reservoirs.

If the trap is located sufficiently close to its local band edges, the bands will also act as
reservoirs for the trap. But unlike the reservoirs distant to the trap, no single point of
interaction can be defined for them. Additionally, the reservoir for these transitions does
not shift relative to the trap with the electric field as it does for interactions with distant
reservoirs. No implicit field dependence of the rates exists if only local transitions to
the bands are considered.

The idea behind field-assisted transitions is that a carrier moving from a trap to a state
in the band can gain an energetic advantage by doing the transition non-local, i.e. by
tunneling to a position where the band edge is at a more favourable level.

We will start by looking at the system at a more abstract level, expressing the rates as
integrals over the probabilities of separated processes, as done in [30]. Using the earlier
results from chapter 2.3.2, we will find detailed expressions for capture and emission
rates. At the end we will simplify those expressions for implementation in a device
simulator.

To evaluate the influence of the electric field on the capture and emission rates of a trap,
a situation as depicted in figure 2.5 is used. A trap is located inside a semiconducting
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material with conduction and valence bands at energies Ec and Ev, and a homogeneous
electric field F is assumed along the device.

E(x)

x

Ec

Ev

ET

Ec(0)

Ev(0)

Ec(xt)

F

xt0

Figure 2.5: Possible paths of interaction between trap and bands. A trap is located at
energy ET inside a semiconducting material. Band edges Ec(x) and Ev(x)
are sloped due to a constant electric field F .

Like earlier in this chapter, using the Huang-Born approximation to split the quantum
mechanical system into an electronic and vibrational system, the emission or capture of
an electron can be expressed as a combination of three seperate processes.

Taking for example the emission of an electron the processes would be:

• The energy of the system in the bound state rises to a higher potential due to
thermal excitation of the vibrational system.

• The vibrational system migrates from its charged configuration to an uncharged
one.

• The electron system migrates from a state with the electron located at the trap
position to a state with the electron located in the band.

Expressing each of these processes as a probability yields an expression for the transition
rate. A visualization of the separate processes in the configuration coordinate diagram
and the band diagram of the device can be seen in figure 2.6.

r ∝ Pe(ε)Pd(E , ε)PT (E) (2.23)

Here, parameter ε is the change in potential of the band edge due to tunneling, and E
is the energy of thermal excitation of the vibrational system.

• PT (E), the thermal excitation, is the probability of the bound state vibrational
system being excitated to a state E > ET .

• Pe(ε) is the probability of electron tunneling, i.e. the probability of the electronic
system changing from state i to j. It depends on the distance the electron has to
tunnel through the barrier and thus, for a given energy on the electric field.
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V (q)

q

ε
PT (E) Pd(E , ε)

(a) Configuration coordinate diagram

Ec(x)

x

ε

Pe(ε)

(b) Band diagram

Figure 2.6: Seperated processes happening during emission of an electron to the conduc-
tion band. PT is the probability of thermal excitation, Pd the probability of
the vibrational wave function migrating from a state iα to jβ and Pe is the
probability of the electronic wave function changing from state i to j. E is
the thermal energy and ε is the change in band edge energy relative to the
one at the trap position.

• Pd(E , ε) is the probability of the the vibrational system changing from state iα to
jβ, it depends on both the thermal excitation of system and the lowering of the
adiabatic potential due to tunneling.

Comparing the rate equation at this point with equation 2.13 we can see that PTPd can
be identified with the lineshape function fij, and the electron tunneling propability Pe
with the matrix element Aij.

The total emission rate with the influence of the field can then be evaluated by integrat-
ing the probabilities over all valid energy combinations. For the emission of an electron
to the conduction band, for example, this means a thermal excitation E > 0 and a field
dependent lowering of the band edge by ε < 0.

r(F ) =

∫∫
E,ε
Pe(ε, F )Pd(E , ε)PT (E) dεdE (2.24)

Now we will split this rate in a field dependent and an independent part.

r(F ) = r′ + r′′(F ) (2.25)

If we dismiss electron tunneling for the moment, i.e. we only look at the case of no
electric field, we get the pure thermal rate to or from the local band edge
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r′ = Pe(0)

∫
E
Pd(E)PT (E) dE . (2.26)

This equation is basically an abstract version of the equations 2.16a in section 2.3.2,
except for the fact that the electron does not have to tunnel to another position in
the device. We can assume that the electronic transition time is much lower due to
the large overlap of the wave functions i with all the electron wave functions j in the
conduction band at or close to the trap position. Using equations 2.22 and exchanging
the tunneling length dependent electronic matrix element Aij(Ec, xt) with a local version
A0, the resulting equations read

k′12,cb = A0fij(Et − Ec)n (2.27a)

k′21,cb = A0fij(Ec − Et)ne−β(Ef−Ec) (2.27b)

k′12,vb = A0fij(Et − Ev)pe−β(Ev−Ef ) (2.27c)

k′21,vb = A0fij(Ev − Et)p. (2.27d)

Going back to the general case F 6= 0, the assumed homogeneous electric field across
the device results in a triangular potential barrier seen by the electron. It has a height
of ε and a field dependent length of xt = |ε/qF |. Tunneling through this barrier allows
to reach states at an energy below the band edge energy at the trap location and gives
an additional, field dependent contribution to the rate.

r′′(F ) =

∫∫
ε 6=0,E

Pe(ε, F )Pd(E , ε)PT (E) dεdE (2.28)

For each infinitesimal lowering of the barrier, an amount of new states

D(Ec,0 + ε)fn(Ec,0 + ε)dε = −∂n(xt)

∂ε
dε (2.29)

D(Ec,0 + ε)fp(Ec,0 + ε)dε =
∂p(xt)

∂ε
dε (2.30)

can be reached. The increase in transition rate however, is limited by the falling trans-
parency of the barrier given by the electronic matrix element. Outside the potential
well of the trap, the energy of the electron is lower than the barrier energy and its
wave function diminishes exponentially. The matrix element in this case is again much
smaller than for local emission and dependent on the strength of the field.

The product of states, electronic matrix element and lineshape function are then summed
over the barrier lowering ε. Introducing expressions for the band energy of the lowered
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barrier E ′c = Ec,0 + ε, and expressing n and p as a function of ε, the additional field
dependent rates are

k′′12,cb = −
∫
ε

dn(ε)

dε
fij(Et − E ′c)Aij(E ′c, F ) dε (2.31a)

k′′21,cb = −
∫
ε

dn(ε)

dε
fij(E

′
c − Et)Aij(E ′c, F )e−β(Ef−E

′
c) dε (2.31b)

k′′12,vb =

∫
ε

dp(ε)

dε
fij(Et − E ′v)Aij(E ′v, F )e−β(E

′
v−Ef ) dε (2.31c)

k′′21,vb =

∫
ε

dp(ε)

dε
fij(E

′
v − Et)Aij(E ′v, F ) dε. (2.31d)

Together with equations 2.27, they yield the rate equations for the interaction with the
local bands.

k12,cb = A0fij(Et − Ec)n

−
∫
ε

dn(ε)

dε
fij(Et − E ′c)Aij(E ′c, F ) dε (2.32a)

k21,cb = A0fij(Ec − Et)ne−β(Ef−Ec)

−
∫
ε

dn(ε)

dε
fij(E

′
c − Et)Aij(E ′c, F )e−β(Ef−E

′
c) dε (2.32b)

k12,vb = A0fij(Et − Ev)pe−β(Ev−Ef )

+

∫
ε

dp(ε)

dε
fij(Et − E ′v)Aij(E ′v, F )e−β(E

′
v−Ef ) dε (2.32c)

k21,vb = A0fij(Ev − Et)p

+

∫
ε

dp(ε)

dε
fij(E

′
v − Et)Aij(E ′v, F ) dε. (2.32d)

In the following chapter these equations will be simplified for implementation in a device
simulator.
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2.3.5 Practical Considerations For Implementation

To further simplify the equations allowing them to be implementated in device sim-
ulators, simplified analytical expressions for the electronic matrix element A and the
lineshape function f are used. The derivatives of the carrier concentration will be ap-
proximated to allow the usage of local variables.

The Lineshape Function

The lineshape function fij has its main contribution at the intersection point and peaks
there in the classical limit [27]. We will assume transitions in the vibrational system to
happen only at the intersection point of the two parabolas in the configuration coordi-
nate diagram. This reduces the propability of defect tunneling Pd to a dirac peak at the
energy of intersection EIP . The number of states available for reaction will therefore be
taken as the states available at the intersection point PT (εij).

fij(E) ≈ PT (εij(E)) (2.33)

The probability that the vibrational system is excited by an energy E is given by Boltz-
mann statistics and is proportional to a factor e−βE .

PT (εij) ∝ e−βεij (2.34)

V (q)

q

VIP

Vj

Vi

εij

εji

Eji

qi qj

Figure 2.7: Adiabatic potential energy surfaces in the configuration coordinate diagram
for two example states i and j. Vi and Vj are the base energies of the
parabolas, VIP their intersection point, εij the NMP barrier from state i to
j and εji the NMP barrier in the reverse direction.

The height of the thermal barrier εij is given by the intersection of the two parabolas in
the configuration coordinate diagram as shown in figure 2.7. It can be calculated from
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the difference in ground state energies Eji = Vj − Vi, the curvatures of the parabolas
ci, cj and the distance qj − qi of the parabolas in the configuration coordinate diagram
[2].

εij =
ci(qj − qi)2(

ci
cj
− 1
)2
1±

√
ci
cj

+
(Eji)(

ci
cj
− 1)

cj(qj − qi)2

2

(2.35)

While two different parabolas generally have either two points of intersection or none
at all, the smaller solution will be used as transition there is more likely. A different
way of parametrizing the parabolas is using the Huang-Rhys factor Sij and the ratio of
curvatures Rij.

Sij =
ci(qj − qi)2

~ω
(2.36)

Rij =

√
ci
cj

(2.37)

Using these definitions, equation 2.35 can be rewritten as

εij =
Sij~ω

(R2
ij − 1)2

1−Rij

√
Sij~ω + Eji(R2

ij − 1)

Sij~ω

2

. (2.38)

For the special case of Rij = 1, there is, in general, only one intersection point and the
formula above fails. The thermal barrier for this case can be calculated as

εij =
(Sij~ω + Eji)2

4Sij~ω
. (2.39)
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The Electronic Matrix Element

While it is possible to find analytical solutions for the wave functions in triangular poten-
tial wells (Airy functions) [31], insufficient knowledge of the exact shape of the potential
well around the trap refrains us from calculating the matrix element Aij. Thus it is
usually approximated by an effective capture cross section σ0 multiplied by the thermal
velocity vth of the carriers and a tunneling factor λ after Wentzel–Kramers–Brillouin
(WKB).

Aij(E, xt) ≈ A0λ(E, xt) = σ0vthλ(E, xt) (2.40)

For a trapezoidal barrier as shown figure in 2.8a, the tunneling factor λ(E, x) is given
as [14, 19]

λ(E, x) = exp

(
− 4

√
2m∗xt

3~q0(φ2 − φ1)
((φ2 − E)3/2 − (φ1 − E)3/2)

)
. (2.41)

Here, φ1 and φ2 are the potentials of the barrier and E the energy of the electron. The
triangular barrier, shown in 2.8b, is a special case of the trapezoid barrier. Using the
barrier height ε and the tunneling distance xt = |ε/qF |, this equation simplifies to

λ(ε, F ) = exp

(
−4
√

2m∗

3~q0F
|ε|

3
2

)
. (2.42)

Φ1

E

Φ2

xt

(a) Trapezoidal barrier

|ε|

F

(b) Triangular barrier

Figure 2.8: Band diagrams showing triangular and trapezoidal tunneling barriers and
the parameters used to describe them.

It equals the asymptotic expansion of the Airy function [31].
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The Additional States Reachable By Tunneling

To find a suitable expression for the number of states ∂n
∂ε
dε, we start with the electron

density n(xt) at position xt.

n(xt) =

∫ ∞
EC(xt)

Dn(E − EC(xt))fn(E − Ef ) dE (2.43)

Or, equivalent, expressed as a function of ε.

n(ε) =

∫ ∞
EC,0+ε

Dn(E − (EC,0 + ε))fn(E − Ef ) dE (2.44)

Substituting E = E ′+ε and assuming a Fermi-Dirac distribution of the carriers yields

n(ε) =

∫ ∞
EC,0

Dn(E ′ − EC,0)fn(E ′ + ε− Ef ) dE ′ (2.45)

=

∫ ∞
EC,0

Dn(E ′ − EC,0)
1

1 + eβ(E
′+ε−Ef )

dE ′. (2.46)

We can now derive n(ε) and find

dn(ε)

dε
=

∫ ∞
EC,0

Dn(E ′ − EC,0)
1

1 + eβ(E
′+ε−Ef )

eβ(E
′+ε−Ef )

1 + eβ(E
′+ε−Ef )

(−β) dE ′ (2.47)

=

∫ ∞
EC,0

Dn(E ′ − EC,0)fn(·)(1− fn(·))(−β) dE ′ (2.48)

=

∫ ∞
EC,0

Dn(E ′ − EC,0)(fn(·)− (fn(·))2)(−β) dE ′. (2.49)

If we assume the lowest point of integration to be still well above Fermi level i.e. fn << 1,
f 2
n can be neglected and the result can be approximated as

dn(ε)

dε
≈ −βn(ε). (2.50)

Doing the same calculation for p yields
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dp(ε)

dε
≈ βp(ε). (2.51)

Not surprisingly, the same factor (∓β) is obtained directly if Boltzmann distribution of
the carriers is assumed.

n(ε) =

∫ ∞
EC,0

Dn(E ′ − EC,0)e−β(E
′+ε−Ef ) dE ′ (2.52)

dn(ε)

dε
= −β

∫ ∞
EC,0

Dn(E ′ − EC,0)e−β(E
′+ε−Ef ) dE ′ (2.53)

Using the simplifications for the lineshape function (equations 2.33, 2.34) and the matrix
element (equation 2.40), equations 2.22 for interaction with a band of states can be
written as

k12,cb = σ0vthne
−β(εij(Et−Ec))λ(E, xt) (2.54a)

k21,cb = σ0vthne
−β(εij(Ec−Et))e−β(Ef−Ec)λ(E, xt) (2.54b)

k12,vb = σ0vthpe
−β(εij(Et−Ev))e−β(Ev−Ef )λ(E, xt) (2.54c)

k21,vb = σ0vthpe
−β(εij(Ev−Et))λ(E, xt). (2.54d)

With the same simplifications and the simplification for the additional states (equations
2.50 and 2.51), equations 2.32 for the interaction with local bands can be simplified to

k12,cb(F ) = σ0vth

(
n(0)e−β(εij(Et−Ec))

+ β

∫
ε

n(ε)λ(ε, F )e−β(εij(Et−E
′
c)) dε

)
(2.55a)

k21,cb(F ) = σ0vth

(
n(0)e−β(εij(Ec−Et))e−β(Ef−Ec)

+ β

∫
ε

n(ε)λ(ε, F )e−β(εij(E
′
c−Et))e−β(Ef−E

′
c) dε

)
(2.55b)

k12,vb(F ) = σ0vth

(
p(0)e−β(εij(Et−Ev))e−β(Ev−Ef )

+ β

∫
ε

p(ε)λ(ε, F )e−β(εij(Et−E
′
v))e−β(E

′
v−Ef ) dε

)
(2.55c)

k21,vb(F ) = σ0vth

(
p(0)e−β(εij(Ev−Et))

+ β

∫
ε

p(ε)λ(ε, F )e−β(εij(E
′
v−Et)) dε

)
. (2.55d)
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Carrier Concentrations

Further simplifications which are useful for implementation and discussion of the model
can be made for the carrier concentrations n(ε) and p(ε) for two special cases in the
behaviour of the band edges and the Fermi level shown in figure 2.9.

n(0)
n(0)

(a) Fermi level with a constant offset to the
band edges

n(0)
n(0)e−βε

(b) Constant Fermi level, sloped conduction
and valence band edges

Figure 2.9: Band diagrams showing the dependence of carrier concentration n on the
slope of the fermi level for two special cases.

For the case of the Fermi level having a constant offset to the band, n(ε) and p(ε) are
constant and can be replaced with n(0) and p(0). For the case of the Fermi level being
constant, n(ε) and p(ε) in the integral can be replaced with:

n(ε) = n(0)e−βε (2.56)

p(ε) = p(0)eβε (2.57)

Polarization charges resulting from some material combinations can lead to such a situ-
ation at zero bias. Assuming the difference in slope between fermi level and band stays
constant, the carrier densities can then be calculated as:

n(ε) = n(0)e−βεFπ/F (2.58)

p(ε) = p(0)eβεFπ/F (2.59)

With the polarization induced field Fπ.
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2.4 Thermal Transitions

Transitions without a transfer of charge, i.e. between meta-stable and stable states 1-1′

and 2-2′ are called thermal transitions. The two configurations of the trap are separated
by an energy barrier in the configuration coordinate diagram. The exact shape of the
barrier is not relevant, a visualization is given in figure 2.10. Transitions happen once
an activation energy εij is overcome, so the rate is proportional to a Boltzmann factor
e−βεij . With the definition of an attempt frequency ν0 the rate equation for thermal
transitions is:

kij = ν0e
−βεij (2.60)

V (q)

q

VB

Vj

εji

qj

Vi

εij

qi

Figure 2.10: Configuration coordinate diagram for a thermal transition between stable
and meta-stable states j and i. Vi and Vj are the energy minima of the
states, VB the energy of the thermal barrier, εij the thermal barrier from
state i to j and εji the thermal barrier in the reverse direction. Graphic
adopted from [26].
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CHAPTER 3 Results

In the first part of this chapter the four-state model and especially the field dependent
rates to the local bands will be discussed (section 3.1). A simple test structure will
be used to show dependence of the rates on electric field (section 3.1.1) and temper-
ature (section 3.1.2). Different domains of field dependence will be identified and the
dependence of the apparent thermal energy barrier on the field will be evaluated.

In the latter part of the chapter, realistic MOS or HEMT structures will be used for
simulation. The influence of the local band interaction on capture and emission rates
of the traps in a MOS structure in dependence of the band gap energy, trap level and
device length will be discussed in section 3.2. Trap assisted tunneling currents in a
GaN/AlGaN device calculated with the NMP model will be compared to the currents
resulting from the popular Fowler-Nordheim and Frenkel-Poole models in section 3.3.1.
Finally in section 3.3.2, transient charging and static tunnel currents resulting from the
traps in a MOSFET in a MSM measurement setup will be discussed.

3.1 Capture and Emission Rates

To take a closer look on the resulting rates to the local bands, a simple test structure
containing only a single trap will be used in this section. The test structure is shown in
figure 3.1. For simplicity silicon was chosen as the semiconducting material under test
and the metastable states in the four-state model are not used, making it an effective
two-state model. If not specified otherwise, in the following the rates are to or from the
conduction band, and the temperature is 300 K. The trap parameters can be found in
table 3.1 and a plot of the resulting configuration coordinate diagram in figure 3.2.

As stated in section 2.3.4, the emission rates knm are composed of a pure thermal part
k′nm(T ) and a field dependent part k′′nm(T, F ).

knm(T, F ) = k′nm(T ) + k′′nm(T, F ) (3.1)
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Metal

Si

Metal

20 nm

(a) Geometry

Ec(x)

Ev(x)

Et

F

(b) Band diagram

Figure 3.1: Test structure used in section 3.1. A single trap is centered in a Si layer at
0 eV (midgap).

Table 3.1: Simulation parameters for the discussion of capture and emission rates in
section 3.1.

Parameter Value Description

E1 0.0 eV Trap level

R12 0.6 Ratio of curvatures for transitions 1-2

S12 2.3 eV Huang-Rhys parameter S times ~ω
σ0 1× 10−23 cm2 Capture cross section

In figure 3.3a the total capture rate k12 from the conduction band, the pure thermal
part k′12 and field dependent part k′′12 of the capture rate of our test trap are shown.
Figure 3.3b shows the same quantities for the emission rate. Additionally four general
regions (A,B,C,D) have been defined, used in the following discussion.

At low fields the rates for capture and emission are very close. This is because the trap
is positioned at the Fermi level and the system is in thermal equilibrium. At higher
electric fields the rates for emission gain much more than the capture rates.

This is due to the behaviour of the NMP barrier and the resulting probabilities PT of
thermal excitation. It can be seen from figure 3.2 that the lowering of the band energy
has a high influence on the NMP barrier from the trap to the band. The reverse NMP
barrier changes less and increases with ε in for this set of trap parameters.

The regions shown in figure 3.3 are named:

• A - Low electric fields

• B - Voltage limited region

• C - Field limited region

• D - Saturation

While the widths of regions A and D are arbitrary, the transition between regions B
and C is definite. The regions will be explained in the following.
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V (q)

q
q2 q1

V1(0)

V2 = V1(εmax)

Figure 3.2: Adiabatic potential energy surfaces in the configuration coordinate diagram
for the trap parameters R12 = 0.6 and S12~ω = 2.3 eV over the range of ε.
The topmost, thick parabola belongs to the uncharged (conduction band)
state for ε = 0.0 eV, the bottommost for εmax ≈ 0.6 eV.
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Figure 3.3: Plot of the total rates k(F ) over the electric field, its thermal and field
dependent parts k′ and k′′(F ) respectively, for capture and emission.

A - Low electric fields: In this region, the rates are dominated by the local, pure
thermal transitions. The field-dependent contribution is negligible.

knm,A ≈ k′nm (3.2)

B - Voltage limited region: As illustrated in figure 3.4a, for low electric fields and
thin layers, the band edge energy never reaches the trap energy. This limits the possible
barrier lowering and in turn the states available for interaction. The field limit for this
region is
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FB <

∣∣∣∣Ec/v(0)− Et
xmax

∣∣∣∣ (3.3)

with the distance of the trap to the edge of the semiconducting layer xmax, the band edge
energy at trap position Ec/v(0) and trap energy Et. In our test structure this happens
until about 1.2 V across the 30 nm Si layer, or at a field strength of about 0.4 MV/cm.

In this region two mechanisms are responsible for the increase of the rates. The tunneling
distance to the already reachable states decreases and additional states become available
for tunneling.

Approximate analytical expressions for the behaviour of the rates in regions B and C
are given in section 3.1.1.

C - Field limited region: Illustrated in 3.4b. All thermal states of the trap contribute
to the rates and the rates increase with the decreasing tunneling distance.

D - Saturation: At very high electric fields, the tunneling distances become very short
and the rates saturate. They are limited by the thermal activation of the trap and the
states available in the band.

knm,D ≈ k′nm + k′′nm,sat (3.4)

Ec(x)

k′′nm
k′nm

Ev(x)

F

B
xmax

ε

(a) Voltage limited region B. With higher elec-
tric fields more states in the conduction
band become available for tunneling at
lower thermal excitations of the trap.

E
c (x)

E
v (x)

Et

F

εmax

C

(b) Field limited region C. All thermally ex-
cited states of the trap system contribute
to the rates, higher fields reduce the tun-
neling distance.

Figure 3.4: Band diagrams of the test structure in voltage (B) and field (C) limited
regions. In region B, the lowest energy of the conduction band edge limits
the barrier lowering.
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3.1.1 Field Dependence

In this section we will focus on the behaviour of the field dependent rates k′′(F ). We
will try to simplify the rate equations to yield analytical expressions for their field
dependences. The field dependent rates k′′ visible in figure 3.3 are plotted again in
figure 3.5.
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Figure 3.5: Plots of the capture and emission rates k′′ over F with regions of different
field dependence.

Looking at this plots we can define three regions of the field dependence, termed
(L,M,H) for low, intermediate, and high fields. The rates show a growth obeying a
power law in the L and exponential growth in the M region. In region H they saturate.
For the capture rate k12 there is no exponential growth for this set of trap parameters.

As we have to assume the field dependence to differ between the voltage limited and
field limited cases defined before, they will be treated separately.

Voltage Limited Region

To assess the field dependence in the voltage limited region, we first rewrite the integral
in rate k′′nm from an integral over the energy to an integral over the tunneling distance
to keep the integration borders constant.

k′′nm = −σ0vth
∫ εmax(F )

0

dn(ε)

dε
λ(ε, F )PT (ε) dε (3.5)

= −σ0vth
∫ xmax

0

dn(xF )

dε
λ(x, F )PT (x)F dx (3.6)

To simplify the expression for the probability of thermal excitation PT (ε), the depen-
dence of the NMP barrier on ε is approximated by a constant B.
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dεnm
dε
≈ B (3.7)

Depending on the configuration of the parabolas, this can be a rather crude approxi-
mation but it allows to describe the different domains of the capture and emission rates
qualitatively. The value of B depends on the electron-phonon coupling regime of the
transitions. With equations 2.42 and 2.34, equation 3.6 reads:

k′′nm,B ≈ −σ0vthF
∫ xmax

0

dn(xF )

dε
e

(
− 4
√

2m∗
3~q0

x
3
2

)√
F
e−β(εnm(Et−Ec)−BFx) dx (3.8)

The number of states dn
dε
dε = −βn(0)dε are constant in our test structure, because the

Fermi level has a constant offset to the band edges. A lower slope of the Fermi level
would lead to a higher value for B.

k′′nm,B ≈ βnσ0vthF

∫ xmax

0

e

(
− 4
√

2m∗
3~q0

x
3
2

)√
F
e−β(εnm(Et−Ec)−BFx) dx (3.9)

The constants and the electric field in the WKB factor are subsumed in an effective
tunneling length x0(F ) as a measure for the width of this factor in x.

x
3
2
0 =

1
4
√
2m∗

3~q0

√
F

(3.10)

x0 =

(
3~q0

4
√

2m∗

)2/3

F−1/3 (3.11)

Substituting x0 and factoring out the constant NMP barrier yields

k′′nm,B ≈ βnσ0vthe
−βεnm(Et−Ec)F

∫ xmax

0

e
−
(

x
x0(F )

) 3
2 +βBFx

dx. (3.12)

Or, with equation 2.27

k′′nm,B ≈ k′nm βF

∫ xmax

0

e
−
(

x
x0(F )

) 3
2 +βBFx

dx. (3.13)

This equation is now used to discuss the field dependence for Low (L), Medium (M),
and High (H) fields in the voltage limited region B.
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L - Low fields: For low fields, the WKB factor dominates the behaviour of the in-
tegrand. The barrier lowering is negligible and the rates can be further approximated
as

k′′nm,B−L ≈ k′nm βF

∫ xmax

0

e
−
(

x
x0(F )

) 3
2

dx. (3.14)

At very low fields, x0 is much larger than xmax and the integral evaluates to xmax. The
rates are proportional to F.

k′′nm,B−L ≈ k′nm βFxmax (3.15)

At higher fields, x0 becomes shorter than xmax. The integrand has its highest contribu-
tion at short distances and its effective width decreases with F−1/3 due to the increasing
height of the tunneling barrier with the field. Due to the fast decay of the integrand for
x > x0, the integral can be estimated with

∫ ∞
0

e
−
(
x
x0

) 3
2

dx = Γ(
5

3
)x0 ≈ 0.9x0. (3.16)

The states available still increase proportional to F and thus the rates in the low field
region are proportional to F 2/3.

k′′nm,B−L ≈ k′nm β 0.9

(
3~q0

4
√

2m∗

)2/3

F 2/3 (3.17)

M - Medium electric fields: As the triangular barrier gets steeper, the positive
exponential term in equation 3.13, representing the lowering of the NMP barrier, starts
dominating for short distances. The integrand will reach its maximum between 0 and
xmax. To approximate the rates, we will calculate the location of the maxima, assume
a gaussian shape of the integrand and do a series expansion around the maxima to get
the amplitude and variance.

The exponential function is monotonous, so the location of its maximum can be found
by finding the maximum of the exponent.

d

dxi

(
−
(
xi
x0

) 3
2

+ βBFxi

)
!

= 0 (3.18)

xi =

(
2

3
βBF

)2

x30 (3.19)
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Doing the series expansion yields

k′′nm,B−M ≈ k′nm βFe
−
(
xi
x0

) 3
2 +βBFxi

∫ xmax

0

e
− (x−xi)

2

16/9βBFx3
0 dx. (3.20)

Using the relation for the area under a Gauss curve

∫ ∞
−∞

e−
(x+b)2

a =
√

(aπ), (3.21)

the equation for simplifies to

k′′nm,B−M ≈ k′nm βFe
− 4

27
(βBFx0)3

4

3

√
πβBFx30 (3.22)

≈ k′nm β
4

3

√
πβB

(
3~q0

4
√

2m∗

)
Fe

4
27

(βB)3
(

3~q0
4
√

2m∗

)2
F 2

. (3.23)

Subsuming all linear constants A and exponential constants in C shows the field depen-
dence more clearly:

k′′nm,B−M ≈ k′nmAFe
CF 2

(3.24)

In this domain the effective energy barrier gets lower and the rates increase exponentially
with F 2. If the dependence of the NMP barrier on ε is very low this domain will not be
reached. For negative dependences of the barrier energy on ε, as in capture rate k′′12 of
the test structure used in this chapter, the exponential dependence leads to saturation.

For the case of negative B, there is no positive exponential term and the maximum is
always at x = 0. To approximate this case, we drop the WKB factor from the integral
and use its effective tunneling width x0 as the upper integral bound.

k′′nm,B−M ≈ k′nm βF

∫ x0

0

eβBFx dx (3.25)

This can now be integrated to

k′′nm,B−M ≈ k′nm
1

B
(eβBFx0 − 1) (3.26)

≈ k′nm
1

B
(e
βB

(
3~q0

4
√

2m∗

)2/3
F 2/3

− 1). (3.27)
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H - High fields: To reach the high field region while simultaneously being voltage
limited, the trap has to be positioned very close to the edge of the semiconducting
layer. The rates show no saturation even at high fields due to the new states reachable.
The WKB factor can be neglected and the rates results in

k′′nm,B−H ≈ k′nm βF

∫ xmax

0

eβBFx dx (3.28)

≈ k′nm
1

B
(eβBFxmax − 1). (3.29)

Field Limited Region

Going back to an integration over energy, again to keep constant integral borders, and
using the same approximations, the rates read

k′′nm,C ≈ k′nm β

∫ εmax

0

e
− 4
√

2m∗
3~q0

1
F
ε

3
2 +βBε

dε. (3.30)

Similar to the effective tunneling length, we can define an effective tunneling barrier
ε0. It is a measure for the width in ε of the exponentially decaying WKB part of the
integrand.

ε0 =

(
3~q0

4
√

2m∗

) 2
3

F
2
3 (3.31)

With this definition, the rate can be written as

k′′nm,C ≈ k′nm β

∫ εmax

0

e
−
(
ε
ε0

) 3
2 +βBε

dε. (3.32)

L - Low fields: The integral has its highest contribution at high energies due to the
WKB factor. This is analogous to the low field case in the voltage limited region.

Due to the low field, ε0 is large and the dependence of the WKB factor on ε is much
higher than that of the thermal probability. The NMP barrier stays effectively constant
in the relevant energy range.

k′′nm,C−L ≈ k′nm β

∫ εmax

0

e
−
(
ε
ε0

) 3
2

dε (3.33)

39



RESULTS 3.1. Capture and Emission Rates

The effective width of the integral increases with ε0 and the approximated rate results
in

k′′nm,C−L ≈ k′nm β 0.9ε0 (3.34)

≈ k′nm β 0.9

(
3~q0

4
√

2m∗

)2/3

F 2/3 (3.35)

for low fields. This is the same result we obtained in equation 3.17, in the voltage
limited region. The increase in the maximum tunneling height has no effect on the
approximated rates because the integrand has its main contribution at low tunneling
distances and heights.

M - Medium electric fields: At higher electric fields and B > 0, the positive expo-
nential term in equation 3.32 starts dominating for low ε. The maxima of the integrand
lies between 0 and εmax. The rates can be approximates with a series expansion around
this maximum as done in the voltage limited region.

d

dεi

(
−
(
εi
ε0

) 3
2

+ βBεi

)
!

= 0 (3.36)

εi =

(
2

3
βB

)2

ε30 (3.37)

Doing the series expansion yields

k′′nm,C−M ≈ k′nm βe
−
(
εi
ε0

) 3
2 +βBεi

∫ εmax

0

e
− (ε−εi)

2

16/9βBε30 dx (3.38)
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4
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(βBε0)3
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)
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4
27

(βB)3
(

3~q0
4
√

2m∗

)2
F 2

. (3.40)

Again, the result stays the same as in the voltage limited region, as the maximum of
the integrand in the medium field region is located between 0 and εmax. This leads to
the same exponential increase of the rates with F 2 for medium electric fields.

For B < 0, the maxima is always at ε = 0 and the rates can be approximated again by
dropping the WKB factor from the integral changing the upper bound of the integration
to ε0.

k′′nm,C−M ≈ k′nm
1

B
(e
βB

(
3~q0

4
√

2m∗

)2/3
F 2/3

− 1) (3.41)
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H - High fields: At high fields, the WKB factor becomes small for all energies and
the effective energy barrier stops getting lower. The rate k′′ saturates with e−C/F . The
total rate can be approximated as the product of all states and the WKB factor at the
weighted average position of the states.

k′′nm,C−H ≈ k′nm βe
− 4
√

2m∗
3~q0

1
F
ε

3
2
w

∫ εmax

0

eβBεdε (3.42)

≈ k′nm
(
eβBεmax − 1

) 1

B
e
− 4
√

2m∗
3~q0

1
F
ε

3
2
w (3.43)

With the weighted average of the states energy

εw =

∫ εmax
0

εeβBεdε∫ εmax
0

eβBεdε
(3.44)

=
eβBεmax

eβBεmax − 1
− 1

βB
. (3.45)

In this region the rates increase exponentially with -1/F.

Conclusion

To conclude this section, the field dependences of the simplified rates k′′ evaluated in
this chapter are shown in table 3.2.

Table 3.2: Field dependences of rate k′′

Region Dependence

L - Low Fields - linear F 2/3

M - Medium Fields B > 0 exponential F 2

M - Medium Fields B < 0 exponential −F 2/3

H - High Fields Voltage limited exponential BF

H - High Fields Field limited exponential −1/F

In figure 3.6, plots for the field dependent rates with their simplifications are shown.
They show good agreement indicating that the approximation of the NMP barrier low-
ering with a constant B (equation 3.7) works well for the trap tested.

More detailed plots of the energy distributions of the integrands in k′′nm can be found in
section 3.1.3.
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Figure 3.6: Plots of the capture and emission rates k′′ and the approximations made in
this section.
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3.1.2 Temperature Dependence

Since both parts of the rates require thermal activation they must obey the Arrhenius
equation [32]

k = Ae
− Ea
kBT (3.46)

with the activation energy Ea, the Boltzmann constant kB, the temperature T and a
prefactor A. This can be shown by plotting the rates at different temperatures in an
Arrhenius plot. In figure 3.7 this was done for the capture and emission rates of our
sample trap for temperatures from 100 K to 400 K and electric field strengths of 106

V/m to 109 V/m.
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Figure 3.7: Arrhenius plots showing the capture and emission rates k12 and k21 at field
stengths 106, 107, 108 and 109 V/m.

For the lowest field strength plotted, the Arrhenius plots for capture and emission are
very similar. At higher fields the curves for electron capture shift slightly upwards due
to the higher number of states reachable but its slope stays effectively constant. The
curves for emission on the other hand change both their slope and height, indicating an
additional change in the activation energy. The slope of the curve changes most between
107 and 108 V/m. At higher fields it shifts mainly in magnitude, indicating that the
increase in this region comes from the change in tunneling distance.

Using the Arrhenius equations, apparent activation energies Ea can be extracted from
the slope of the rates. These activation energies are plotted in figure 3.8 for capture and
emission.

EA = kB ln

(
k2
k1

)(
1

T1
− 1

T2

)−1
(3.47)
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Figure 3.8: Apparent activation energies for emission and capture Ea,21 and Ea,12 over
the electric field extracted from the temperature dependence of the rates k21
and k12.

In figure 3.8 the apparent activation energy for electron emission starts declining at
107 V/m. At this point the lowering of the NMP barrier (proportional to ε) starts
dominating over the WKB limitation (proportional to ε3/2 and 1/F ) in a wider energy
range. The lower energies gain more influence in the rate integral and thus the apparent
activation energy falls until the field dependent exponent becomes negligible and the
rates reach their thermal limit.

This does not happen for electron capture for this trap because both the NMP barrier
and the tunneling barrier increase with higher |ε|. This is explained in more detail in
the next section.
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3.1.3 Energy Distribution

To get a more detailed understanding of the rates and their dependences on electric
field evaluated in section 2.3.4, knowledge about the behaviour of the integrand in k′′nm
is required.

In this section a closer look will be taken on the integrands PT (ε), the probability of
thermal excitation and λ(ε), the WKB factor.

Capture Rate k12

Figure 3.9 shows integrand product PT (ε)λ(ε) over ε for different electric field strengths
for the capture rate k12.
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Figure 3.9: Energy distribution of the integrand PTλ of capture rate k′′12 for electric field
strengths 106,107,108 and 109 V/m. B and C refers to the voltage and field
limited general regions, see figure 3.4.

For low electric fields, the possible barrier lowering ε is limited by the device length. In
this region, termed voltage limited before, the width of the integral increases with the
field. At higher fields, all thermal states can be reached and the rates are governed only
by the increase of the WKB factor. As the tunneling distances decrease the integrand
converges to its thermal limit. Tunneling close to the conduction band edge at the
trap position always dominates the rates because with the chosen parameters the NMP
barrier height for electron capture increases with lower band energies.

Detailed plots of the contributions of λ(ε) and PT (ε) at different field strengths can be
found in figure 3.10.
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The top two plots show the assumption made in section 2.3.4, that the thermal barrier
stays effectively constant for low fields, is justified. At higher electric fields, shown in the
third plot, both the thermal probability and the WKB factor decrease the contributions
at low energies. The lower right plot shows the situation at high electric fields, where
the integral is essentially an integration over the thermal probability.
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Figure 3.10: WKB factors λ(ε), propability of thermal excitation PT (ε) and their prod-
uct PTλ over energy for capture and field strengths 106 V/m to 109 V/m.

46



RESULTS 3.1. Capture and Emission Rates

10−30

10−28

10−26

10−24

10−22

10−20

10−18

10−16

10−14

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

In
te

gr
an

d
P
T

(ε
)λ

(ε
)

Barrier lowering ε / eV

1e
6

V
/m1e
7

V
/m

1e8 V/m

1e9 V/m

B

C

Figure 3.11: Energy distribution of the integrand PTλ of emission rate k′′21 for electric
field strengths 106,107,108 and 109 V/m. B and C refers to the voltage and
field limited general regions, see figure 3.4.

Emission Rate k21

Figure 3.11 shows integrand product PT (ε)λ(ε) over ε for different electric field strengths
for the the emission rate k21.

Again, for low electric fields, the possibility of emitting to lower energies is limited by
the device length and the width of the integral increases with the field. At higher fields,
all thermal states can be reached and the rates are governed by the increase of the WKB
factor. As the tunneling distances decrease, the maximum of the distribution shifts to
lower energies, which is what caused the apparent activation energy in section 2.4 to
decrease.

Figure 3.12 shows the detailed plots with the contributions of λ(ε) and PT (ε) for the
emission rate.

As before, the plot for 106 V/m and 107 V/m show than the assumption made in section
2.3.4 is justified. The third plot for 108 V/m shows the integrand in region C, with the
thermal factor dominating for high energies and the WKB factor dominating for low
energies. At 109 V/m, the thermal factor dominates the integral for all energies and the
WKB factor merely controls saturation.
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Figure 3.12: WKB factors λ(ε), propability of thermal excitation PT (ε) and their prod-
uct PTλ over energy for emission and field strengths 106 V/m to 109 V/m.
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3.2 Significance of the Local Band Interactions

Now that we discussed the behaviour of the NMP rates to the local conduction and
valence bands, we take a look at their effect on the behaviour of traps in a more practical
setup. In this section we will compare capture and emission times calculated with and
without the rates to the local bands in the semi-insulating layer of a MIS device.

The capture and emission times τc and τe are the expected time it takes a trap to capture
or emit a carrier after the last emission or capture event.

The structure tested in this section is a MIS structure, consisting of a silicon bulk, a
dielectric layer and a metal contact on top. An illustration of the simulation setup can
be seen in figure 3.13.
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SiN / dielectric

Metal

d

(a) Geometry

E(x)

x

Si

SiN / dielectric

Metal
Φ0

Φt

Et

(b) Band diagram

Figure 3.13: Test structure used in section 3.2. A metal contact is insulated from the
silicon bulk by a dielectric layer. For the simulations SiN was used as
material for the dielectric.

The dielectric layer has a thickness d of either 3 nm or 6 nm and the trap is always
located in the middle, at d/2. The energetic position of the trap is characterized either
by its absolute energetic position in the band diagram Et or by its energetic offset to
the conduction band edge Φt. The band gap energy of the dielectric layer is defined by
Φ0. Other parameters of the trap and the dielectric layer are shown in table 3.3. The
values for the effective mass and permittivity were taken from SiN, however their exact
values does not change the qualitative behaviour of the results discussed.

The trap in this device has four reservoirs to interact with: silicon, gate and the SiN
conduction and valence bands. For a given set of trap parameters and constant gate
voltage, we can expect the interaction with the silicon and metal reservoirs to be mainly
governed by the distance from the trap to the reservoir and their relative energetic po-
sition, while the interaction with the conduction and valence bands will depend heavily
on the trap depth Φt.
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Table 3.3: Simulation parameters for the evaluation capture and emission times with
and without local band interaction in section 3.2

Parameter Value Description

R12p 0.6 Ratio of curvatures for transition 1-2’

S12p 2.3 eV Huang-Rhys parameter S times ~ω for transition 1-2’

R1p2 0.6 Ratio of curvatures for transition 1’-2

S1p2 0.7 eV Huang-Rhys parameter S times ~ω for transition 1’-2

εT2 0.7 eV Energy difference between states 2’ and 2

ε1p1 0.4 eV Thermal barrier between states 1 and 1’

ε2p2 0.4 eV Thermal barrier between states 2 and 2’

σ 1× 10−23 cm2 Capture cross section

εr 7.0 Relative permittivity of the dielectric layer

m∗ 0.321 m0 Effective mass of the dielectric layer

With this in mind, we will compare the capture and emission times over the band gap
energy for two different device lengths and the cases of a deep trap with constant trap
level Et relative to the silicon and metal reservoirs and a more shallow trap with a
constant trap level Φt relative to the energies of conduction and valence bands.

Constant Et, 6 nm dielectric

We will start by taking a look at simulation results for the longer, 6 nm device and
constant trap parameters E1 = 0.4 eV and E1′ = 0.5 eV for the energies of the stable
and metastable trap states. The voltage applied at the metal is 2.0 V which results in
an electric field in the dielectric of about 2.3× 108 V/m. The constant trap level and
the constant voltage in this simulation leads to a constant energetic offset between the
trap states and the silicon and metal reservoirs.

Figure 3.14 shows the capture and emission times τc and τe over the band gap energy
Φ0.

The first thing noticeable is that while the emission times shows a significant lowering
with band interaction enabled, the capture rates stay effectively the same. This is due
to the very low amount of carriers available for capturing in the conduction band of the
dielectric.

The capture and emission times calculated without band interaction both show a similar
increase with the band gap energy in the logarithmic plot. As we keep the energetic
offset between the trap and these reservoirs constant, this increase can only be attributed
to the higher tunneling barrier between the trap and the reservoirs.

For electron emission with band interaction enabled, up to around 5 eV bandgap, the
emission to the local band causes a significant decrease in τe. The emission time in this
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Figure 3.14: Simulated capture and emission times with and without enabled band rates
over the band gap energy. The trap is at a fixed energy in the middle of a
6 nm dielectric.

area increases exponentially with the band gap energy, as it changes the energetic offset
between trap and conduction band. With higher temperature, the slope of the emission
time gets lower as this barrier is easier to overcome.

Constant Et, 3 nm dielectric

For the shorter device, a lower voltage of 1.5 V was applied to the device, resulting in
an electric field strength of about 2.9× 108 V/m. The resulting capture and emission
times can be seen in figure 3.15.

With the thickness of the dielectric layer d = 3 nm the tunneling distances to the silicon
and metal reservoirs decrease to 1.5 nm. This has a strong effect on the capture and
emission times and decreases them significantly compared to the results for the longer
dielectric.
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At low temperatures, the effect of the rates to the band becomes completely neglegible
even at low band gap energies. For higher temperatures again a lowering of the emission
times can be seen at band gap energies of up to 3 eV.
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Figure 3.15: Simulated capture and emission times with and without enabled band rates
over the band gap energy. The trap is at a fixed energy in the middle of a
3 nm dielectric.

Constant Φt, 6 nm dielectric

Now, instead of keeping the level of the trap constant with respect to the silicon and
metal reservoirs, we keep the trap level at a constant offset to the conduction band edge.
This will shift the interaction of the trap with the silicon and metal reservoirs into focus.
It also means that the trap will now be shallow at high band gaps compared to the deep
trap in the previous part.

To fix Φt at 0.8 eV, the trap parameters were defined as E1 = E1′ = Φ0/2− 0.8 eV. The
resulting plots of the capture and emission times for the longer device with d = 6 nm
can be seen in figure 3.16.
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Figure 3.16: Simulated capture and emission times with and without enabled band rates
over the band gap energy. The trap is at an energy of Ec−0.8 eV and located
in the middle of a 6 nm dielectric.

Due to the relatively low and constant energetic distance of the trap to the conduction
band, the emission times now stay effectively constant for all band gap energies if the
interaction with the bands is enabled.

With the band rates disabled, the emission and capture times now show the behaviour
of the NMP barriers to and from the metal and silicon reservoirs. Their height depends
on the intersection of the parabolas representing the adiabatic potential energy surface
in the configuration coordinate diagram. At higher temperatures the NMP barriers are
easier to overcome and their effect on the capture and emission times decrease.

Again, the plots show no effect of the band interaction on the capture rate due to the
very low amount of free carriers in the conduction band of the semi-insulating layer.

Constant Φt, 3 nm dielectric

Finally, the plots for constant Φt and the short device are shown in figure 3.17.
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Figure 3.17: Simulated capture and emission times with and without enabled band rates
over the band gap energy. The trap is at an energy of Ec−0.8 eV and located
in the middle of a 3 nm dielectric.

Due to the shorter distance to the silicon and metal reservoirs, the times calculated
without the band rates are now a few orders of magnitude smaller than for the longer
device. Their qualitative behaviour stays the same, which reassures the earlier state-
ment that their behaviour is governed by the NMP barriers. The plots with the band
interaction enabled show no clear domination of either mechanism. For high temper-
atures the emission to the bands dominates more often while for low temperature the
emission to silicon and metal shows is dominant.

To conclude this section, it can be said that capturing from the band can be ne-
glected for dielectric layers with low doping and few free carriers. The significance of
emission to the band depends on temperature, trap depth and device length. It increases
for higher temperatures, longer devices and, in general, shallower traps. Emission should
never be neglected for shallow traps with Φt < 1 eV. For deep traps it may be neglected
for high band gap energies above about 6 eV or thin layers under about 3 nm.
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3.3 Trap Assisted Tunneling

As discussed in section 2.2.2, a trap with more than one reservoir will in general transport
charge between the reservoirs if it is not in thermal equilibrium.

This tunneling current resulting from traps is responsible, at least partially, for various
leakage phenomena in semiconductor devices. Two scenarios will be shown in this
section. In the first part, a simulation of trap induced leakage currents in a high electron
mobility transistor (HEMT) using the NMP model will be discussed and compared to
the analytical Frenkel-Poole model and the Fowler-Nordheim tunneling mechanisms. In
the second part, stress, recovery and leakage currents resulting from oxide traps in a 2D
MOS structure will be evaluated and discussed.

3.3.1 Reverse Leakage Currents in a HEMT

A phenomenon where traps located in a semiconducting material are a key factor are
the reverse leakage currents found in GaN/AlGaN high electron mobility transistors
(HEMTs).

Measurements [33, 34] have found leakage currents which show Frenkel-Poole like be-
haviour at low bias and high temperatures and Fowler-Nordheim like behaviour at
high bias and at low temperatures. In this section we will simulate a HEMT with
the NMP model and compare the resulting currents with the Frenkel-Poole and the
Fowler-Nordheim models. The simulation of the HEMT was done one dimensional,
which means that source and drain contacts were not simulated. This is reasonable as,
like stated in chapter 1 and according to [20], the leakage current from gate to channel
dominates for AlGaN/GaN HEMTs.

To evaluate the currents, a test structure as depicted in figure 3.18 is used. The test
structure is a GaN/AlGaN heterostructure with a Schottky contact on top of an AlGaN
barrier layer and a GaN bulk. The AlxGa1−xN layer has a thickness of 8.5 nm and an
Al content of x = 0.25.

The traps are distributed uniformly across the barrier layer and their energetic position
is slightly below the Fermi level at the Schottky contact. The trap and simulation
parameters can be found in table 3.4.

This simulation again uses the extension of the NMP rates to the local bands derived
in section 2.3.2. This allows for two trap assisted leakage paths through the barrier.
The first path is traps capturing from the metal and emitting directly to the GaN
conduction band. The second is traps capturing from the metal and emitting to the
AlGaN conduction band. Judging from the results of the previous section 3.2, the
emission to the band should dominate for all traps close to the metal as their distance
to the GaN conduction band is large. For traps close to the channel, emission to the
channel should dominate over emission to the local conduction band, but these traps
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GaN

Al0.25Ga0.75N

Metal
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(a) Geometry
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x

traps

ΦBΦt

(b) Band diagram

Figure 3.18: Test structure used in section 3.3.1. A metal Schottky contact is on top of
an AlGaN barrier and a GaN bulk.

Table 3.4: Simulation parameters for the discussion of TAT in a HEMT in section 3.3.1.

Parameter Value Variance Description

E1 2.8 eV - Trap level

R12 0.5 0.1 Ratio of curvatures for transitions 1-2

S12 0.6 eV 0.1 eV Huang-Rhys parameter S times ~ω
σ0 1× 10−23 cm2 - Capture cross section

ΦB 0.8 eV - Schottky barrier

εr 8.5 - Relative permittivity of the barrier layer

m∗ 0.2 m0 - Effective mass in the barrier layer

generally have large capture times from the metal, again due to the large distance, which
limits their influence on the leakage current.

The resulting tunneling currents over the electric field and for temperatures ranging
from 200 K to 350 K can be found in figure 3.19.

Comparison With Other Models

In the papers that inspired these simulations, the measured leakage currents are com-
pared to currents resulting from the Fowler-Nordheim and the Frenkel-Poole models.

In [33], Zhang et al. measured an AlGaN/GaN Schottky device over a wide range of
temperatures and found the leakage current to show Frenkel-Poole like behaviour at
high temperatures and Fowler-Nordheim like behaviour at very low temperatures.

Ganguly et al. measured the leakage current of an InAlN/AlN/GaN HEMT [34] and
found it to resemble Fowler-Nordheim emission at high electric fields. To analytically
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Figure 3.19: Tunneling current through the barrier layer of a GaN/AlGaN heterostruc-
ture resulting from the NMP traps in the barrier. Different colours show
the current at temperatures ranging from 200 K to 350 K.

describe the current at low fields, they used a modification of the Frenkel-Poole model
to account for the polarization fields found in III-Nitride devices.

Fowler-Norheim model

The Fowler-Nordheim model describes the current emitted from a metal through a
triangular barrier and is usually written in the form

JFN = CF 2e−
A
F (3.48)

with a pre-factor C, and

A =
4
√

2m∗T (qΦB)3

3q~
. (3.49)

Here, ~ is the reduced Planck constant, m∗T the effective tunneling mass and ΦB the
barrier height in eV. For the parameters m∗T = 0.2m0 and ΦB = 0.8 eV, A evaluates to
2.19× 109 m/V.

Current data believed to follow a Fowler-Nordheim behaviour are commonly plotted
as log(J/F 2) on the vertical axis against 1/F on the horizontal axis. This is called a
Fowler-Nordheim plot and the resulting curve should be a straight line. The slope of the
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line is defined by the parameters ΦB and m∗ in the exponent of the Fowler-Nordheim
equation.

A Fowler-Nordheim plot of the currents simulated with the NMP model at different
temperatures and the analytically calculated current for the parameters m∗ and φB are
shown in figure 3.20 for electric field strengths from 2 MVcm−1 to 4 MVcm−1.
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Figure 3.20: Fowler-Nordheim plots of the simulated NMP tunnel current and the an-
alytical Fowler-Nordheim current for a barrier height of ΦB = 0.8 eV and
m∗T = 0.2m0.

The first thing that comes to mind when looking at this plot is the temperature depen-
dence. The Fowler-Nordheim emission current calculated from the analytical formula
shows no dependence on temperature while the NMP model generally does so. This is
however not in contradiction with the measurement results obtained from Zhang et al.
and Ganguly et al. who found the currents to follow Fowler-Nordheim behaviour best
at low temperatures and high fields. It can be seen from the plots that the temperature
spread decreases with increasing field strength. The slopes of the curves decrease with
temperature which indicates a lowering of the effective barrier with temperature.
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Frenkel-Poole model

The Frenkel-Poole model describes the current produced by carriers thermally emitted
from a trap state to a band with the lowering of the thermal barrier by an electric field.
The resulting current density can be written as

JPF = CFe
− qΦt−A

√
F

kBT (3.50)

with a constant prefactor C, the trap depth Φt, and

A = q0

√
q0

πε0εs
. (3.51)

Here, q0 is the value of the electron charge, ε0 the permittivity of free space, and εs the
relative permittivity of the barrier. For εs = 8.5, A evaluates to 4.17× 10−24 As(Vm)0.5.
Ganguly et al. corrected the model for electric fields induced by polarization charge in
their work [34]. The modified equation for the current density reads

JPF = Ce
− qΦt
kBT

(
Fe

A
√
F

kBT − Fπe
A
√
Fπ

kBT

)
(3.52)

with the electric field induced by polarization charges Fπ.

Similar to the Fowler-Nordheim plots before, currents following a Frenkel-Poole be-
haviour are commonly plotted with log(J/F ) on the vertical and

√
F on the horizontal

axis. Again, the resulting curves should be straight lines. For the modified equation,
log(J/Fext) with the applied field Fext = F − Fπ is plotted on the vertical axis.

Plots for the currents resulting from the modified Frenkel-Poole equation and the NMP
model are shown in figure 3.21 for a electric field range from 0.8 to 1.7 MV/cm.

The figure shows good agreement of the currents for high temperatures and low elec-
tric fields. For higher fields the temperature dependence of the NMP model decreases
compared to the Frenkel-Poole model. Similar behaviour can also be found in the ex-
perimental data obtained by Ganguly et al.
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Figure 3.21: Plots of the currents resulting from the modified Frenkel-Poole model (a)
and the NMP model (b).
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Conclusion

The current simulated using the NMP model follows both analytical models depending
on both the temperature and the electric field. At high fields and low temperatures,
the NMP current expresses behaviour similar to that of the Fowler-Nordheim model.
At low fields the NMP currents show a temperature dependence similar to that of the
Frenkel-Poole model. The model always shows a temperature dependence, although it
decreases with increasing field. This behaviour does not stand in contradiction with the
measurement results from Zhang et al. and Ganguly et al. and further allows to model
the “crossover region” [34] where neither analytical model is usable. Plots showing the
NMP current compared with both the Fowler-Nordheim and the Frenkel-Poole models
can be found in figure 3.22.
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Figure 3.22: Plots of the leakage currents resulting from the NMP model, the Poole-
Frenkel and the Fowler-Nordheim model. At low temperature, the NMP
current behaves like the Fowler-Nordheim current for most of the field
range, while higher temperatures the thermal activation dominates and
tunneling dominated behaviour shifts to higher fields.

61



RESULTS 3.3. Trap Assisted Tunneling

3.3.2 Stress and Recovery Currents in a MOS Transistor

In the last part of this work, we will focus on the currents resulting from oxide defects in
a MOSFET. The simulation data including the trap set were thankfully received from
Gerhard Rzepa, who calibrated them to fit measurements on a real device. A schematic
drawing of the device can be found in figure 3.23.

Si

Bulk

S Gate D 2.2 nm

100 nm

Figure 3.23: Geometry of the MOSFET used in section 3.3.2. The gate oxide is 2.2 nm
thick, 100 nm wide and 1.5µm long SiO2. The dots in the oxide indicate
the positon of the traps.

The device features a 2.2 nm thick, 100 nm wide and 1.5µm long oxide. The trap density
used for the simulation is 2× 1019 cm−3 and the traps are distributed homogeneous in
the lower half of the oxide. The remaining parameters used for simulation can be found
in table 3.5.

Table 3.5: Simulation parameters for the discussion of trap currents in a MOSFET in
section 3.3.2

Parameter Value Variance Description

E1 −1.400 eV 0.260 eV Trap level in state 1

E1p −0.395 eV 0.462 eV Trap level in state 1’

R12p 0.237 0.225 Ratio of curvatures for transition 1-2’

S12p 1.392 eV 0.364 eV Huang-Rhys parameter S times ~ω (1-2’)

R1p2 0.376 0.332 Ratio of curvatures for transition 1’-2

S1p2 1.063 eV 0.010 eV Huang-Rhys parameter S times ~ω (1’-2)

εT2 0.343 eV 0.384 eV Energy difference between states 2’ and 2

ε1p1 0.233 eV 0.271 eV Thermal barrier between states 1 and 1’

ε2p2 0.429 eV 0.279 eV Thermal barrier between states 2 and 2’

σ0 1× 10−23 cm2 - Capture cross section

T 443 K - Temperature
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The device was measured in a measure-stress-measure (MSM) setup, as introduced
in section 1.1.1. The transient simulation reproduces this measurement, and with the
expressions given in section 2.2.2 allows us to extract the resulting currents. The voltages
applied to the device during stress and recovery phases are shown in figure 3.24. The
gate voltage switches between −2.7 V for stress and −0.5 V for recovery, and the drain
voltage between 0.005 V and −0.2 V.
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Figure 3.24: Gate, source, and drain voltages Vg, Vs and Vd during MSM measurement.

The sampling points are spread logarithmic across each stress and recovery phase. The
durations of the stress phases increase from 1.1× 10−6 s to 1.1× 104 s.

In figure 3.25 the currents from the gate and the channel to the traps are plotted for
the fifth stress cycle with a stress time of 10−2 s.
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Figure 3.25: Currents during stress. A sum current Isum results from charging of the
traps. It is sourced by the hole-current from the channel Ic,h. The gate
current Ig and the electron current from the channel Ic,e play a minor role.
Overlayed is a transport current from the channel to the gate.
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In addition to the gate and channel currents, the sum current is shown. It is the current
resulting from the change of the trap charges, sourced by the capture of holes from the
channel. After about 10−5 s, a static transport current from the channel to the gate
dominates.

Figure 3.26 shows the same currents during recovery, again for the fifth cycle.
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Figure 3.26: Currents during recovery. A sum current Isum results from discharging of
the traps. It is sourced by both the hole-current from the channel Ic,h and
the gate current Ig. The electron current from the channel Ic,e plays a
minor role. Overlayed is a transport current from the channel to the gate.

During recovery, the negative discharging current comes from both, channel and gate.
After about 10−2 s, the small static transport current from the channel to the gate starts
dominating and the current from the channel changes its sign to positive.

The stress and recovery currents for stress times ranging from 10−6 s to 104 s can be
found in figure 3.27 (stress) and figure 3.28 (recovery).

It can be seen that the decrease of the charging current is almost linear in the double
logarithmic plot, except for the beginning of the stress cycle. The static transport
currents do not change with stress time.

The recovery current plots show higher currents for longer stress times. The slope of the
recovery current is lower for higher stress times which indicates that more traps with
longer emission times were charged during stress.
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Figure 3.27: Currents during stress for stress times ranging from 1.1× 10−6 s (blue) to
1.1× 104 s (red). The plots differ only slightly as the recovery phases were
sufficiently long to discharge most of the traps.
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Figure 3.28: Currents during recovery for stress times ranging from 1.1× 10−6 s (blue)
to 1.1× 104 s (red). Notice the sign change in the channel current plots.
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In figures 3.29, 3.30 and 3.31 the individual contributions of the traps to the charging,
discharging and transport currents are shown in the band diagram of the device for the
last stress and recovery cycle with a stress time of 104 seconds.
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Figure 3.29: Band diagram showing the carrier transport to the individual traps during
stress. The lightly green coloured area on the left is silicon, the white area
the oxide and the gray area on the right the metal gate.

Figure 3.29, shows the charge currents during the stress cycle. Shortly after starting
the stress cycle, traps higher in energy show the highest charging rates. With increasing
stress time, the charging currents generally decrease and traps below the fermi level
quickly become inactive as their equilibrium occupancy during stress differs only slightly
from that during recovery.

After the switch to the recovery cycle, shown in figure 3.30, the traps that were above
the fermi level during stress and low in energy now show the highest discharge current.
The current decreases and its distribution shifts higher in energy.

At the end of the stress and recovery cycles, the static transport current from bulk
to gate dominates the gate current, shown in figure 3.31. Both stress and recovery
transport currents are mainly caused by traps close to the center of the oxide, both
energetically and spatially.
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Figure 3.30: Band diagram showing the carrier transport from the individual traps dur-
ing recovery. The lightly green coloured area on the left is silicon, the white
area the oxide and the gray area on the right the metal gate.
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Figure 3.31: Band diagram showing the traps contributing to the transport current dur-
ing stress and recovery. The lightly green coloured area on the left is silicon,
the white area the oxide and the gray area on the right the metal gate.
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Conclusion

The current resulting from the traps in the oxide generally consists of a transient charg-
ing current and a static transport current. Both the transient stress and recovery cur-
rents show approximately linear decrease when plotted in a double logarithmic plot.

The charging current is higher for traps higher in effective energy and decreases faster
for traps below the channel Fermi level. The discharging current after stress comes
mainly from traps in the active energy area, i.e. from the traps that were above or close
to the channel Fermi level during stress.

Biggest contributors to the static transport current are traps located energetically be-
tween the channel and metal Fermi levels. The fraction of traps contributing to the
transport current increases for positions closer to the center of the oxide. This is shown
more clearly than in the earlier 2D plots in figure 3.32.
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Figure 3.32: Energetic and spatial distribution of transport rates of individual traps.
The transport rates of the traps decrease strongly below the channel Fermi
level at 0 eV. Traps located closer to the center of the oxide are more likely
to transport charge and higher transport rates are possible. It should be
noted that the distribution of the traps in the device is homogenous in x
and gaussian in E.
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CHAPTER 4 Summary, Outlook

In the framework of the non-radiative multi phonon (NMP) model, rates describing
the charge transfer between a trap in a semiconducting material and the conduction
and valence bands of this material have been derived. This was done to supplement
the rates to adjacent materials that already existed and allow simulation of traps in
semiconductors. These rates were discussed to find their dependence on electric field
and temperature. They were implemented in a device simulator together with equations
for the currents to each exchange point to enable simulation of trap assisted tunneling
(TAT).

Capture and emission times were simulated for a MIS device to discuss the importance
of the additional charge transfer mechanism depending on the band gap and thickness
of the semiconducting or semi insulating material used, and trap depth. Reverse leak-
age in a GaN/AlGaN HEMT was simulated and compared with the Fowler-Nordheim
and Frenkel-Poole models often used to fit parts of the measured data. Depending on
field and temperature, the simulations show behaviour comparable with both models
depending on temperature and field and qualitative agreement with measurements in
the literature. Finally, a MOSFET in a MSM setup has been simulated to evaluate
transient charging and static transport currents during stress and recovery phases and
the contribution of individual traps to these currents.

While it has been shown that the NMP model can be used to calculate TAT for individual
traps, this is limited to short tunneling distances as direct charge transfer between traps
is not yet accounted for. Thus hopping transport over longer distances is not possible
at the moment. Implementation of trap-trap interaction is challenging as the number
of interactions between traps increases quadratic with their number. Even worse, the
necessary computation time for the solution of this equation system with its densely
populated matrix would increase with n3. A suitable metric will have to be found to
limit the amount of traps each trap interacts with.
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