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Abstract

The motivation for this work is an existing computer program developed by AFRY
Austria. The program receives hydrological inflow time series and can simulate
electricity generation based on the water flow distribution and hydro power plant
characteristics. The aim of this work is to improve the modelling of the electro-
mechanical equipment by solving the optimisation task of optimal load distribution
in a hydro power plant with an arbitrary number of machine sets. For this purpose,
a computer program was developed, which creates a Radial Basis Function Neural
Network (RBFNN) and optimises its parameters with the NSGAII algorithm.

The work consists of the mathematical formulation of the objective function for
the underlying problem, the development of an RBFNN and the optimisation of
the network parameters with the NSGAII algorithm. A special RBFNN structure
is proposed and adapted to the problem. An equation for estimating a proper
network size according to the simulated power plant was developed. For validating
the results, a second algorithm was developed. It finds the optimal solution to
the problem by brute force, meaning that it calculates every possible solution and
selects the optimum. The results of both programs are compared and analysed.

The results confirmed that the RBFNN is capable of approximating the objective
function. However, compared to the validation method, the RBFNN´s output
could not reach the optimum of the objective function. For tasks with several power
units of different characteristics, it was not possible to optimise the RBFNN´s
parameters to achieve satisfying results. The work concludes that the RBFNN can
be used in a machine learning task for the same problem, but the method using an
optimiser for finding the optimal RBFNN parameters proves to be computationally
inefficient, while lacking transparency of the solution process.
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Kurzfassung

Als Grundlage dieser Arbeit dient ein Computerprogramm der Firma AFRY Austria.
Das Programm erhält hydrologische Zuflusszeitreihen und kann auf Grundlage
der Wasserbilanz die Stromerzeugung eines Wasserkraftwerkes simulieren. Das
Ziel dieser Arbeit ist es die Modellierung der elektromechanischen Ausrüstung zu
verbessern, indem das Optimierungsproblem der optimalen Lastverteilung auf eine
beliebig wählbare Anzahl an Maschinensätzen im Kraftwerk gelöst wird. Zu diesem
Zweck wurde ein Neuronales Netz mit radialen Basisfunktionen erstellt und dessen
Parameter mit dem NSGAII-Algorithmus optimiert. Die Arbeit besteht aus der
Formulierung der Zielfunktion für das vorliegende Problem, der Entwicklung des aus
Radialen Basis Funktionen bestehenden Neuronalen Netzwerkes (RBFNN) und der
Optimierung der Parameter unter Verwendung des NSGAII-Algorithmus. Es wird
eine angepasst Netzwerkstruktur vorgeschlagen und eine Gleichung zur optimalen
Auswahl der Netzwerkgröße präsentiert, welche im Laufe der Arbeit entwickelt
wurde. Um die Ergebnisse validieren zu können, wurde ein zweiter Algorithmus
entwickelt. Dieser berechnet die optimale Lösung durch die Methode der rohen
Gewalt, das bedeutet es werden alle möglichen Lösungen berechnet und anschließend
der optimale Lösungspfad ausgewählt. Die Ergebnisse der beiden Programme werden
verglichen und analysiert. Die Ergebnisse bestätigen die Fähigkeit des RBFNN
die Zielfunktion zu approximieren. Im Vergleich zur Validierungsmethode konnte
das Ergebnis des RBFNN jedoch nicht das Optimum mit der gleichen Genauigkeit
bestimmen. Bei komplexeren Aufgaben war es nicht möglich die Parameter des
RBFNN ausreichend zu optimieren, um zufriedenstellende Ergebnisse zu erhalten.
Die Arbeit diskutiert, dass das entwickelte RBFNN Modell für maschinelles Lernen
verwendet werden könnte. Für die aktuelle Anwendung mit einem Optimierer zur
Suche der optimalen RBFNN-Parameter, erweist sich die Methode auf Grund des
hohen Rechenaufwandes und der mangelnden Transparenz der Berechnung als
ineffizient.
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Chapter 1

Introduction

1.1 Motivation

The foundation for this work is an existing computer program simulating hydropower
plants, which was developed by AFRY Austria. The program can simulate all types
of hydropower plants, such as storage, diversion, run-of-river and pumped storage
power plants, based on their technical characteristics.

The technical characteristics describe the hydraulic (reservoir, headrace) and electro-
mechanical (turbine, generator, transformer) components of planned or existing
hydropower plants. An application is to provide the program with hydrological
inflow time series to dynamically simulate energy generation based on the water
balance and power equation for each timestep. The decisive factor is how much
water is to be released by the turbines at a particular time. This is determined
using optimisation methods (machine learning) and framework conditions, which
allow for target functions to be defined. For water management issues, AFRY´s
program usually forecasts daily behaviour. Therefore, the electro-mechanical data
was simplified. The E&M module of the program is now to be improved in order
to better answer energy management questions and increase temporal accuracy.

The aim of this work is to consider the electro-mechanical components in more
detail. It should be possible to define the type of turbine, the number of turbines,
and the generator, including the actual efficiencies as well as the load distribution
between the hydropower units. The program is developed further to fulfil these
requirements and amplify the capabilities of the existing program.
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Introduction

The mathematical description of a hydropower unit and the corresponding electrical
equipment is well-studied. Adding several units together in one power plant creates
a non-trivial function. Many approaches for optimising this function exist [24]. This
thesis creates the foundation for introducing a new approach, which uses artificial
neural networks. It offers the unique possibility to provide a continuous function
as output. This characteristic might offer the possibility of real-life applications
once the parameters of the network are optimised.

1.2 Scope of work

Based on the aforementioned motivational statements, the research question of this
thesis is defined as:

Can an artificial neural network be used to simulate the optimum load distribution
in a hydropower plant with an arbitrary number of machine sets?

The main goal of the thesis is to develop a neural network capable of simulating
various types of hydropower plants and optimising their production by selecting
the optimal volume flow distribution on their power units. Therefore, this thesis
focuses on the following key aspects:

1. Selection of a suitable neural network

2. Mathematical description of the problem

(a) Mathematical description of the hydraulic machine(s)

(b) Mathematical description of the generator(s)

(c) Mathematical description of the transformer(s)

(d) Definition of the boundary condition of all components

3. Optimising the neural network

4. Validation of the results

The original intent was to develop an artificial neural network which gets trained
by real-world data. However, it became apparent that this task would be too
extensive. AFRY is an engineering consulting company which is often involved in
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Introduction

the tendering process of new hydro power plant projects. For this reason, a program
which is able to simulate a future power plant, without the need for real-world
data, is far more beneficial. Due to those two reasons, the scope was altered to
optimising a neural network with the help of a numerical optimiser, instead of
training it with training data. This approach still allows for future development of
a machine learning application with the same neural network.

It should be highlighted that the developed program does not have a time dis-
cretisation. However, in connection with AFRY´s program, mentioned in 1.1, it is
used for simulating power generation on basis of time steps, which can reach from
hourly to every 15 minutes, allowing the problem to be limited to quasi-steady
operating conditions. For this reason, it is not necessary to investigate transient
flow conditions. The developed program finds the best flow distribution just based
on the total inflow and the provided system parameters. The time steps of AFRY´s
program do not serve as input to the newly developed program.
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Chapter 2

Theory

The theoretical background of this work can be categorised into three fields: Hy-
dropower plants, Neural Networks, and Optimisation Algorithms. These categories
are also used to structure this chapter. Because all topics could be described in
detail, only the theory which was directly used in this thesis is described.

2.1 Hydropower Plants

2.1.1 General

Hydroelectric power uses the kinetic energy of water to produce electricity [12].
Four main types of hydropower plants exist. Run-of-river hydropower uses the
natural flow of a river for power generation. Storage hydropower also uses natural
inflow, while storing it for later usage in a reservoir. Pumped storage hydropower
pumps water from a lower reservoir to a higher reservoir. It stores the energy
supplied by pumping as potential energy and is able to convert the energy back
at a later point. Finally, there is also offshore hydropower, which is getting more
and more established in recent years [2]. These different kinds of hydropower can
overlap or be combined in one project. For example, run-of-river projects have
some amount of storage capability.

Hydropower plants have to be adapted to the local conditions. The basic com-
ponents are always the same and are listed in 2.1. From an electromechanical
point of view, the intake, penstock, hydraulic machine, draft tube, generator and
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Theory

Figure 2.1: Components of a hydropower plant [2]

transformer are of the highest importance because they highly contribute to the
overall efficiency of a power plant.

2.1.2 Mathematical formulation

Hydraulic machine power and efficiency

The power production of a hydraulic machine can be calculated by the equation

P = ηhρgHQ̇ (2.1)

where ρ is the water density, g is the gravitational constant, H is the water head,
and Q̇ the volume flow rate [30]. Equation 2.1 shows that the available energy
depends on the potential energy of the water, which is a function of the upper and
lower water levels (water head), and the volume of water. The power production is
limited by the rate at which this water can be released. The hydraulic machine
also has an efficiency, ηh. It depends on the volume flow rate, water head, and
rotational speed of the hydraulic machine runner. It can be obtained through hill
chart measurements. The efficiency hill chart shows the efficiency as a function of
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Figure 2.2: Efficiency hill chart [14]

the rotational speed and volume flow rate at a certain water head, which can be
expressed as,

ηh = ηh(ω, H, Q̇) . (2.2)

Efficiency hill charts of hydraulic machines are typically created by using charac-
teristic model runners due to the high effort and related costs. The test should
cover the entire operating range of a hydraulic machine. The result is a table with
operating points, which can be displayed as a hill chart. The rotational speed is
the ordinate, and the volume flow is the abscissa. Operating points with the same
efficiency are connected through interpolated lines. Additional information like
guide-vane angles curves, output limiting line, and cavitation curves are added to
hill charts, as shown in Figure 2.2 [14].
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Penstock head losses

The head losses of a penstock can be categorised into friction losses hf and minor
losses hr. The friction losses result from the fluid’s viscosity. For a laminar flow,
the frictional losses can be written as

hf = λ
l

d

v2

2g
(2.3)

which is referred to as the Darcy–Weisbach equation. Minor losses occur in pipe
installations like elbows, valves, or manifolds. They are a result of energy dissipation
due to mixing processes in turbulent flows. Minor local losses can be described as
the product of a minor loss coefficient ζ and the flow velocity head

hr = ζ1
v2

1
2g

. (2.4)

The sum of both head loss types

hl =
�

hf +
�

hr (2.5)

is the total head loss of a penstock. As visible in equations 2.3 and 2.4, frictional
head losses as well as minor head losses both depend on the flow velocity squared
and therefore on the volume flow rate squared. [28]

The total head losses of an existing penstock can be measured during its operation.
To perform this calculation, two specific points along the penstock must be defined.
The required measurements include static pressure, p, volumetric flow rate, Q̇,
cross-sectional area, A, and the elevation difference between these two points, Δz.
Using these parameters, the head loss of the penstock can be computed using the
following equation derived from the Bernoulli equation [32]:

hl =
�

p1

ρg
+ Q̇2

1
2gA2 + z1

�
−

�
p2

ρg
+ Q̇2

2
2gA2 + z2

�
(2.6)

As a simplification, the head losses of the whole penstock can be described in one
loss coefficient. That way, the penstock losses at specific volume flow rates can be
approximated.
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Figure 2.3: Schematic reproduction of a synchronous generator
efficiency curve adapted from [18]

Generator

The generator in a hydropower plant is attached to the hydraulic machine´s shaft
and converts the mechanical energy to electrical energy. Typically, synchronous
or asynchronous generators are used. The latter is mainly used for small hydro
(less than 5 MW) due to their lower cost [13]. Generator losses can be classified
into electrical losses and mechanical losses. The main losses are copper, iron, core,
rotational, and friction losses. [29] The generator efficiency is a function of the
load factor, x, and the power factor, cosθ [19]

ηg = f(x, cosθ) . (2.7)

The typical efficiency curve of a generator is shown in Figure 2.3, where the efficiency
ηg is plotted over the power output [18].

Pump storage hydropower plants using pump turbines use their generator also as
a motor. The basic design is the same as for a machine just used as a generator.
Generator motors just need additional equipment for start-up. [13]
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Transformer

A transformer is a stationary electrical machine used in power transmission to
transfer electrical energy between circuits. It functions as a voltage regulation device
commonly applied in AC power distribution and transmission systems. Transformers
are designed to step-up or step-down the AC voltage while maintaining the same
frequency by establishing a conductive link between circuits. They are particularly
used between the primary distribution circuits and the power generator. They play
a crucial role in distribution networks. [7]

Similar to generators, transformers have copper, iron, and core losses. Copper losses
are induced by the ohmic resistance in the copper coils. These are quadratically
proportional to the current. The iron and core losses are caused by the reversal of
magnetism, which is quadratically proportional to the voltage and the frequency.
Additional iron core losses are induced by eddy currents in the iron core. Similar
to the copper losses, the eddy currents are induced by the ohmic resistance and,
therefore, are quadratically proportional to the current. [3]. Thus, the transformer
efficiency can be described as,

ηt = ηt(U2, I2, f, cosφ) . (2.8)

In figure 2.4, the relative partial load losses and efficiency curves are plotted,
showing that the transformer has a high efficiency which remains constant over a
wide range of partial load.

2.2 Artificial Neural Networks

2.2.1 General

An Artificial Neural Network (ANN) comprises an arbitrary number of intercon-
nected nodes. One node is the smallest computational component of an ANN. The
most common type of node is the "threshold" node, which can be mathematically
described as,

Yi = f(
�

j

wi,jXj − θi) (2.9)
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Figure 2.4: Schematic reproduction of a transformer
efficiency curve adapted from [3]

where Xj are the inputs from preceding nodes, wi,j are the corresponding weights
from nodes j to node i and Yi is the summed output. [26] The basic structure of a
node is shown in Figure 2.5. When the accumulated sum of the weighted input
Xjwj reaches the threshold θi, the node is activated and sends its output to the
following nodes. The function, f , is called the activation function.

Activation functions

There exist many different activation functions. One of the first ANNs proposed
by McCulloch and Pitts used a simple step function [23],

Θ(X; θi) =
0 �

j(Xjwi,j) > 1
1 �

j(Xjwi,j) < 1
. (2.10)

Another common activation function is the sigmoid-shaped function. [13] It was
first proposed by Rumelhart et al. in 1986 and is defined as [14]

Θ(X; θi) = 1
1 + e−

�
j
(Xjwi,j−θi)

(2.11)

The sigmoid-shaped activation function is often used because of its nonlinearity
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Xj=1 wi,1

Xj=2 wi,2

Xj=3
wi,3

Xj=n
wi,n

fi Yi

Figure 2.5: Single node of an ANN.

and differentiability. Without the nonlinear property of the activation function,
an ANN could not perform nonlinear transformations. Depending on the studied
problem, nonlinearity is essential for the network to accomplish its target function.
The differentiability is required to output continuous functions [25].

Input layer

X1

X2

Xni

fhid,1,1

fhid,1,2

fhid,1,3

fhid,1,nh

Hidden layers
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fhid,m,2

fhid,m,3

fhid,m,nh

Output layer

Y1

Y2

Yno

Figure 2.6: Topology of an ANN
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General Topology

The nodes of ANNs are organised as layers. Typically, an ANN has one input layer
and one output layer. Additionally, an ANN can have none or several hidden layers
in between, as shown in Figure 2.6. The number of nodes and layers depends highly
on the type of network and the complexity of the problem to be solved [33].

Node connectivity

An ANN can be classified into feed-forward and feed-backward networks depending
on its node connections. Feed-forward networks can only send signals in one
direction between layers. The second type, feed-backward networks, can also send
information from a subsequent layer to a preceding layer [33]. These different types
of connections result in fundamental differences between networks. Feed-forward
networks associate one output with one input, whereas feed-backward networks
produce many outputs for the same input until they reach an equilibrium during
training.

Training methods

ANNs can be trained with different methods. Typically, supervised or unsupervised
learning is applied. To successfully train a network, a dataset representing the
whole feature space is required. In the case of the data instances being labelled,
the training method is referred to as supervised learning. The learning algorithm
changes the network parameters depending on the error between the labelled data
and the network outputs [20]. Training algorithms, which do not utilise training
data labels, are classified as unsupervised learning methods [11].

2.2.2 Radial Basis Function Neural Networks

In this thesis, a Radial Basis Function Neural Network (RBFNN) was chosen,
because it was already successfully used to optimize water resources systems [21].
The basis for such networks was led by Powell in 1987, who used Radial Basis
Functions (RBFs) for interpolation in high-dimensional spaces [27]. This technique
was further developed into a multilayer network, which today is called RBFNN.
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Figure 2.7: Topology of an RBFNN

This type of ANN consists of an input layer, a hidden layer and an output layer as
visualised in figure 2.7 [22]. The vectors between the layers show that the RBFNN
is a feed-forward network as described in 2.2.1.

The basic RBFN with n-hidden nodes and a single output can be formulated as

f( ↼X) =
n�

i=0
ωiΦi(|| ↼X − ↼µi||, ↼θi) (2.12)

where ↼X ∈ R is the input vector, ωi are the weights of the network, and Φi are the
RBFs. There exist many different RBFs. In general, the same RBF is used for all
hidden nodes. In equation 2.12, ↼µi describes the centers of the RBFs, ↼θi describe
the width of the RBFs and || || denotes the Euclidean norm [8].

RBFNNs are well-suited for universal approximation tasks. Theoretically, they
are able to approximate any continuous function as long as the number of hidden
nodes is chosen accordingly and the centres and widths are adjusted to the specific
task. The chosen function has to be continuous, integrable and locally bounded.[31]
A few examples of typical RBFs are provided in table 2.1. The approximation
capability is not dependent on the type of RBF.[31]

The activation function plays an important role in an RBFNN. As mentioned
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RBF type Mathematical formulation

Gaussian function Φ(X) = exp (−||X − µ||2
θ2 )

Inverse multi-quadric function Φ(X) = (||X − µi||2 + θ2)−1/2

Multi-quadric function Φ(X) = (||X − µi||2 + θ2)1/2

Thin-plate-spline function Φ(X) = X2ln(X)

Table 2.1: Typical radial basis functions [1]

in Chapter 2.2.1, activation functions are necessary for approximating nonlinear
functions. For RBFNNs, the type of activation function combined with randomly
generated hidden nodes does not influence their convergence capabilities as long
as they fulfil the following requirements: The activation function has to be an
unbounded non-constant piecewise continuous function g : R → R. [17] The study
also claims that the RBFs of the hidden nodes can be randomly initiated, although
this theory is not proven. A brief overview of the advantages and disadvantages of
RBFNNs from the literature is presented below.

RBFNNs Advantages

• Simple architecture: Their single hidden layer makes their design and inter-
pretation far simpler compared to other types of ANNs [31].

• Good local generalization capabilities: Changes in the input space only effect
nearby outputs [31].

• Great approximation capabilities: They can approximate any continuous
function as long as a sufficient number of nodes is provided [31].

• Interchangeable RBFs: Different types of RBF can be used, appropriate to
different tasks [31]

RBFNNs Disadvantages

• Poor approximation capabilities for constant functions: They can also approx-
imate total or partially constant functions, but there is a trade-off between
precision and local sensitivity [8].
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• Scalability: For a high number of decision variables many nodes are needed
requiring a high computational effort [8].

2.3 Genetic algorithms

2.3.1 General

One type of optimisation algorithm are genetic algorithms, which have analogies
to evolution in biology. The two main features of evolution are:

• Inheritance and

• Mutation.

Inheritance is the transfer of features from one generation to the next, while not
remaining identical. Mutation describes that over time, a major, unpredictable
change occurs. Most of these easily noticeable changes are lethal and thus cannot
be sustained over time. However, some mutations result in a significant advantage
over previous generations and thus spread quickly in preceding generations. By
taking advantage of those two characteristics, genetic algorithms follow the basic
scheme presented below [15]:

1. Create and evaluate the initial population

2. Select a pair of solutions and create new ones by a process named cross over

3. Include some major changes to simulate mutation

4. Evaluate new solutions

5. Add the solution gained by crossover to the new population

6. If the new population has fewer members than the original one, repeat from
step two onward and otherwise, continue to the next step

7. Keep new population and start again at step two, unless stopping criteria
are met, then terminate process

All steps above, despite evaluation, are driven by random number generators.
Therefore, generic algorithms are part of stochastic optimisation methods.
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2.3.2 Non-Dominant Sorting Genetic Algorithm II

The Non-Dominant Sorting Genetic Algorithm II (NSGAII) algorithm used in this
thesis was introduced by researchers from the Indian Institute of Technology Kanpur.
The NSGAII is a multi-objective evolutionary algorithm which can find multiple
Pareto-optimal solutions in a single run. Compared to similar algorithms, the
NSGAII is less computationally expensive, can maintain diversity among obtained
solutions, has a fast sorting procedure, and offers a parameter-less approach [9].
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Chapter 3

System description

In this chapter, the computer program, which was implemented in Python, is
described. The system comprises the neural network, the mathematical description
of the the electro-mechanical hydropower plant components, and the NSGAII
algorithm. The nomenclature was adjusted for this and the following chapters to
highlight the change from the general description to the application. The RBFNN
input is changed from X to Q, and the output from Y to r. Because the output
of the RBFNN is passed through an activation function and a post-processing
procedure, the output gets transformed from r to rsoftmax to rdist.

3.1 Problem definition

The goal of the computer program is to optimise the water flow distribution in a
hydropower plant with more than one hydraulic machine based on the hydrological
inflow time series and the mechanical and electrical characteristics of this power
plant. These characteristics have to be defined a priori and can be taken from
a real or a fictitious power plant. To limit the complexity of the problem, some
simplifications were made, which will be described in this chapter. The required
input comprises:

1. Physical constants and parameters, as stated in A.2

2. Efficiency data of the hydraulic machine A.1
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Uniti with i=1,2,..,N

Hydraulic machine Generator Transformer

Figure 3.1: Single unit layout

3. Operational limits of the hydraulic machine

4. Efficiency data of the generator, as stated in A.4

5. Efficiency data of the transformer, as stated in A.9

The reason for this selection of input data is presented in the following paragraphs.
The model output is a parameter set of an RBFNN. The network is capable of
returning the optimal flow distribution by receiving a discretised volume flow rate
and a fixed water head. Additionally, it saves a table which lists all outputs of
the network depending on the discretised input vector of volume flows and the
water head. It, therefore, displays the discretised solution space of the network.
An example of the output can be found in the appendix A.3.

Basic layout of the hydropower plant

The components of a hydropower plant are described in Section 2.1. The computer
program only allows for a serial combination of one hydraulic machine with one
generator and one transformer. This kind of arrangement is state-of-the-art in
hydropower. No real-life examples of connecting several generators to one trans-
former or combining different numbers of hydraulic machines with generators could
be found in the literature. Thus, this choice is reasonable, guarantees a good
user experience and avoids unnecessary complexity of the code. The code allows
for combining as many parallel-arranged units consisting of hydraulic machines,
generators, and transformers as required. This feature is essential because it is
inherent to the problem to be solved. The option for using a single unit is realised
in the code as well, although the solution to this problem is trivial. The simple
layout of one unit is shown in Figure 3.1.
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Power output of the hydraulic machine

After the basic layout has been defined, each component of this layout is described.
Three main types of runners for hydraulic machines exist, as mentioned in [4]. The
working principles of Francis and Kaplan runners compared to Pelton runners are
fundamentally different. Since transient flows are neglected in the present approach,
it is possible to avoid looking into the exact working principles of each runner
type. It was decided that the basic power Equation 2.2, which is applicable for
all runner types, is sufficient for the task. The equation has as parameters the
density, ρ, and the gravitational constant g. These two can be adjusted before the
optimisation and are assumed to be constant. The variables in the equation 2.2
are the efficiency, η, the water head, H, and the volume flow rate, Q̇. The latter
two are scalar inputs to the neural network. The water head and the volume flow
rate are given values that describe the current state state of the hydropower power
plant. The water head has an upper and lower limit defined by the upper and lower
reservoirs of the power plant or the tailwater rating curve. However, in this stage of
development the head is assumed to be constant. The volume flow rate is limited
by the hydraulic machine itself. These limits are defined upfront and cannot be
exceeded by the developed computer program. The efficiency is determined by the
computer program according to a given efficiency table A.1. Such a table is the
foundation for an efficiency hill chart described in Chapter 2.1.2. The computer
program is able to interpolate the current efficiency from the efficiency table by
receiving the current volume flow rate and water head. Currently, the rotational
speed is fixed and cannot be varied. In a future developing step, the rotational
speed could be implemented as an additional input.

Power output of the generator

The generator is incorporated as an additional efficiency factor. As previously stated
in Section 2.1.2, the generator efficiency can be described as a function of the load
factor and power factor. As an approximation, the generator efficiency ηg is provided
as a table A.4, which sets the relative power input to the generator in relation
to the generator efficiency. The actual value is acquired through interpolation.
As input serves the mechanical power output of the hydraulic machine, described
in the paragraph above, divided by the nominal power of the hydraulic machine.
Alternatively, the generator efficiency can also be provided as a fixed value.
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Power output of the transformer

The transformer efficiency curve was explained in Section 2.1.2, which remains
nearly constant over its operating range. Similar to the generator, the transformer
efficiency is obtained through interpolation from a table, which sets the relative
power input in relation to the transformer efficiency A.9. For simplification, the
relative power of the generator is directly reused for the transformer. Similar to
the generator, the transformer efficiency can also be set to a fixed value instead of
interpolation.

Objective function

To find the optimal solution to the problem, the RBFNN needs an objective function
which shall be optimised. By combining all the above efficiencies, the final objective
function is obtained, which can be written as,

max(Ptot) = max( ρ g H Q̇ ηh(H, Q̇, ω) ηg(Pm) ηt(Pe)). (3.1)

The maximum of this function has to be determined for each possible operating
point. Section 3.2.1 provides a more detailed description.

3.2 Code structure

The program has two main modes: Optimisation and operation. Optimisation is
required for any newly defined hydropower plant. If optimisation was completed
before, the saved output can be reused for running the RBFNN with discharge
time series and calculating, for example, the yearly power generation.

3.2.1 Optimisation mode

The program structure in optimisation mode is visualised as a flow chart in Figure
3.2. The computer program can be divided into three sections: Data preparation,
optimisation, and Evaluation. During Data Preparation, the computer program
imports all files, which are provided in a folder structure as ".xlsx" files. The
"import data" function imports all files and saves their content in arrays. The
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Data Preparation

Start Import data

ηh - tableSettings ηg - table ηt - table

norm. ↼̇Q

Optimisation
Q̇norm

RBFNN

Post-processing

H

NSGAII

Evaluation

evaluate results save best param. set export result

exported Data

Stop

Figure 3.2: Flow chart - optimisation mode
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settings data and efficiency table data are used by the "normalisation ↼̇Q" function.
It calculates the maximum possible volume flow rate of the total power plant and
normalises the vector. Thereby, the volume flow rates always take values between
zero and one, which is the required input format for the RBFNN. Optimisation is
happening in a loop, which is controlled by the NSGAII algorithm. The optimiser
is responsible for generating the best parameters for the RBFNN and deciding
when to terminate the optimisation loop. A detailed explanation is found in Section
3.2.2. Noteworthy is that the RBFNN is always receiving a single element of the
normalised volume flow rate vector at a time. The post-processing module receives
the RBFNN´s output as well as the current water head as inputs to evaluate the
efficiencies correctly. If the termination criteria are met, the NSGAII algorithm
interrupts the optimisation. The result evaluation function receives all parameter
sets from the NSGAII algorithm. It decides on the best parameter set depending on
the objective function 3.1, which is the summed power output of all discretisation
steps. The best parameters set is run once with all discretised volume flow rates
from the normalised ↼̇Q and exports this data for later analysis. The set itself is
saved and exported as well. Then, the program is stopped.

Program core: Development of the RBFNN model

In the course of this thesis, a neural network was developed suitable for the
specific task. The goal is to approximate a function describing the output power
of a hydropower plant. Due to the great capability of RBFNNs in function
approximation, this type of network was chosen [31]. The network went through
several development stages. Only the final stage is presented here. The focus was
on finding a trade-off between a neural network which is complex enough to fulfil
the task while keeping the optimisation time down to a minimum. The final neural
network layout, the evaluation of the efficiency factors and the calculation of the
power output are sketched in Figure 3.3. Circles visualise network nodes, and
rectangles stand for functions and variables. The core of the computer program
code can be separated into two modules, the RBFNN itself and a post-processing
module. The latter is required because the neural network was not trained as in
machine learning with training data, but optimised with an optimiser algorithm.

RBFNN - Module

The neural network is a feed-forward network that consists of three layers and one
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Figure 3.3: Schematic view of code structure

activation function:

• Input layer

• Output layer

• Hidden layer

• Activation function

The Input layer is always a single node which receives the current volume flow rate
as the input variable. The current volume flow rate refers to the discretization step
of the volume flow for the total power plant, which is transferred to the RBFNN.
Since the discretization steps are handed over one after another, "current" refers to
whichever step is currently being handed over. The volume flow rate is normalised
according to the maximum discharge of the whole hydropower plant, to always be
in the interval of [0; 1]. The input node has a connection to all hidden nodes. The
hidden layer consists of a certain number of hidden nodes, depending on the number
of hydraulic machines in the hydropower plant. The hidden nodes accommodate
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the radial basis functions, which can be written as,

fhid,i(Q̇) = e− (Q̇−µ)2

θ2 , (3.2)

where µ is the centre of the specific RBF, θ is the centre of exactly the same RBF,
and Q̇ is the current flow rate. The index i is defined over the interval i ∈ [0, n],
with n being equal to the number of hydraulic machines N multiplied by the factor
of 9, i.e. n = 9N . For the application, a Gaussian radial basis function was used.
The Gaussian function is favourable as an RBF because it is compact, positive,
and converges to zero when its input approaches infinity. Thus, it does not need
to be limited on any side. Helpful with the selection of RBF is the fact that the
approximation capability of an RBFNN is not dependent on the type of RBF.[31]
Each hidden node has a connection to one output node, called the connection
weight of i-th node ωi.

The number of output nodes corresponds to the number of hydraulic machines, N ,
of the simulated hydropower plant. The reason for this selection is that one output
weight, rj with j ∈ [1, N ], per output node is required, which is representative of
the relative amount of optimal water discharge that the corresponding machine
shall receive. The output of the output nodes can be written as,

rj(Q̇) =
n�
0

ωie
− (Q̇−µ)2

θ2 . (3.3)

A node weight ω is always associated with exactly the same node connection
between hidden nodes and output nodes. The rest of the term is the output of a
hidden node, equivalent to Equation 3.2. The output of the RBFNN is, therefore,
a vector of output weights, ↼r, with the dimension dim ↼r = RN .

In a standard neural network, each output node has an activation function, as
explained before in Section 2.2.1. However, a special activation function was used
for the present task. The neural network receives a normalised volume flow rate
as input, which cannot exceed 1. The output of the neural network shall be the
vector ↼r, whose elements’ sum shall always be 1. By multiplying the input by the
summed output, the total current volume flow rate is obtained. To achieve this,
the Softmax function was used. The function was first used in machine learning by
Bridle, who explained its use as follows: "For any input, the outputs must all be
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positive and they must sum to unity." [5]. The softmax function is defined as:

↼rsoftmax = erj�N
k=0 erk

. (3.4)

The softmax function can be described as an exponential normalisation of inputs
[5]. Conveniently, the number of inputs is arbitrary. The softmax function receives
the RBFNN´s output nodes output ↼r as input, and provides ↼rsoftamax as output.
The function allows for a resizing of the output vector to a magnitude of 1. Because
of the exponential function in the softmax function, small elements of the output
vector get neglected, smoothening the output vector. This characteristic justifies
the name of the function as an activation function. It can deactivate nodes that do
not exceed a certain threshold by introducing a variable threshold that depends
on the magnitude of all outputs. The variable threshold is what distinguishes
it from standard activation functions like the sigmoidal function, mentioned in
Section 2.2.1. The softmax function is an activation function combined with a
vector normalisation.

Post-processing - Module

The output of the Softmax function ↼rsoftmax, contains the distribution for the current
water flow discrtization step. The optimiser does not include any constraints on the
maximum volume flow rates on the individual hydraulic machines. The objective
function has a single objective: the maximisation of the power plant´s total power
output.

Therefore, the algorithm is only limited to distributing the power plants’ maximum
possible water flow to the hydraulic machines, without being bound to the individual
limits of each machine. Because of that, the post-processing module was developed.
It is responsible for complying with the physical limits of the hydraulic machines.

If the neural network was trained by training data, the preprocessing module would
not be required. The output vector could be directly compared to the training
data. Since the training data had to stick to physical constraints, the network
would learn to behave the same way. Optimisation with an optimising algorithm
requires some additional artificial constraints. The described tasks are handled in
the post-processing module by the physical constraint function, as shown in Figure
3.3.
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This constraint checks after each run of the RBFNN, if any of the hydraulic
machines receives more water than its specified limit. If this is the case, the surplus
is calculated and split among not fully utilised units. The algorithm behind this
physical constraint function is fairly simple. It does not account for any efficiency
gains. However, it acts like a penalty for the optimisation algorithm. The optimiser
is hindered from adjusting the RBFNN´s weights in a direction that does not fulfil
the constraints of the individual units.

The output rdist of the physical constraint function is the final distribution of water
flow. It is also a vector with the dimension dim ↼rdist = RN . The second function in
the post-processing module is the efficiency evaluation. This function receives the
vector from the physical constraint function as one input and the current water
head as the second input. The water head, which at this stage stays constant, is
necessary to determine the correct efficiency value at the current flow rate. As
described in Section 3.1, the efficiency of the hydraulic machine is interpolated
from a previously provided efficiency table. One unit consists of the hydraulic
machine, the generator, and the transformer, as shown in Figure 3.1. The power
output is used for the calculation of the generator efficiency and the transformer
efficiency. Those two efficiencies can either be determined by interpolation from
efficiency tables or provided as fixed values. The equation

Pobj = ρg
N�
i

HQ̇iηh,iηg,iηt,i = ρgQ̇plant,max

N�
i

Hrdist,iηh,iηg,iηt,i (3.5)

serves as the objective function for the optimisation algorithm. The total power
is the output of the code´s core. It is a single scalar, which is returned to the
post-processing module and handed over to the optimiser.

3.2.2 Parameter evaluation

Because no training data was available for training the neural network, it was
decided to use an optimiser for determining the optimal parameters of the RBFNN.
The program is written in Python, leading to the Platybus module, which is a
framework for generic algorithms. Platybus focuses on multi-objective algorithms
and supports the NSGAII algorithm [16]. The NSGAII optimiser needs only a few
inputs. The initial population size was provided, the number of generations as an
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additional stopping criterion and the objective function of the problem.

The neural network layout depends on the problem that should be solved. The
hidden layer gets equipped with 9N nodes, which means the network has 9N -
RBFs, with N being the number of units in the power plant. This fact is important
to note for the correct optimiser selection. One radial basis function has a centre
µ, and a width θ, summing up to two parameters per node. Furthermore, a
hidden node is connected to all output nodes, and each of these connections is
equipped with a connection weight. This leads to a total of 9N ∗ N connection
weights, which are also parameters of the RBFNN. To sum up, the optimiser
receives 2 ∗ 9N + 9N2 = 9N(2 + N) parameters to optimise the RBFNN. These
parameters get handed over to the optimiser as decision variables. The objective
to be optimised is the total power output of the hydropower plant, as described
in Equation 3.5. The problem can be described as single-objective multi-variable
optimisation.

The NSGAII algorithm is a computationally efficient, generic algorithm with a fast
sorting process. Because the number of decision variables is growing exponentially
with the number of machines, the optimisation can get computationally intensive
for power plants with many hydraulic machines. To allow for optimisation on a
standard computer, the NSGAII algorithm offers a great opportunity.

The computer program code structure for the optimiser is shown in Figure 3.4.
The core of the computer program is now simplified by a dashed box, which houses
the RBFNN and the post-processing modules. As inputs serve the volume flow rate
and the water head. The output consists of the vector of optimal water distribution,
the corresponding total efficiency factor, which consists of ηh, ηg, ηt, and finally,
the total power output of the hydropower plant. All parameters of the RBFNN
are explicitly displayed in the RBFNN module box. Underneath, the NSGAII is
visualised as a separate box. As input, it receives the total power output of the
hydropower plant and the current volume flow rate.

To evaluate the parameters in such a way that the neural network is capable of
mapping the whole operating range of the hydropower plant, the total range of
volume flow rate and water head has to be fed to the optimiser. For that reason,
the user has to provide the limits for each hydraulic machine beforehand. The
program calculates the total maximum and minimum volume flow rate and creates
a discretised vector of volume flow rates. This vector is normalised, and each
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Figure 3.4: Optimiser structure

element is handed over to the optimiser individually. The optimiser then feeds
these elements to the computer program core.

3.2.3 Operation mode

The operation mode is currently designed as a single-time run-through application.
It is used for calculating the power output for a predefined volume flow rate time
series. The operation mode can be divided into two sections: Data Preparation
and Operation. During Data Preparation, the program imports all files as before
in the optimisation mode. However, this time there are two new imports added:
The volume flow rate time series ↼̇Qexternal, and the best parameter set, which was
calculated during optimisation. The time series can be provided as an input with
volume flow rates arbitrarily discretised over time. The volume flow rate table gets
imported and saved in an array. During optimisation, this vector was calculated by
the program itself, because it was only a discretisation of the total possible volume
flow rates. The volume flow rate time series gets normalised with the help of the
power plant limits. The normalised volume flow rates are provided as input to the
RBFNN one by one. The RBFNN is initialised with the best parameter set of the
optimisation mode. It is a fixed transformation of the input to the optimal relative
distribution. The post-processing and export functions work exactly the same as
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Figure 3.5: Flow chart - Operation mode

before during optimisation. After the total series run through the RBFNN, the
program is stopped.

Another possible usage would be a life application of the RBFNN, where a volume
flow rate is provided to the network, and it gives back the optimal distribution.
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Results

This chapter presents the optimisation results of the RBFNN. It starts with a
simple example of two hydraulic machines and compares it to an optimal solution,
computed by brute force. Then, two examples of how the optimal settings for the
system were found. Finally, a more complex example is presented, highlighting the
limitations of the program.

4.1 Basic example

This chapter describes the first approach for validating the program’s output. The
program was developed in stages. The first stage only considered the hydraulic
machines. It was decided to be the most crucial part of the development, because
the hydraulic machine’s power output depends on the volume flow rate, squared.
Additionally, finding the hydraulic machine’s efficiency is challenging. To allow for
validation of the results, certain simplifications were made, which are valid for all
results presented in Chapter 4.1:

• Fixed rotational speed

• Fixed water head

• Same efficiency table for all hydraulic machines

• Penstock efficiency of 100%
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• Generator efficiency of 100%

• Transformer efficiency of 100%

• No minimum inflow for the hydraulic machine was set

Results from early development stages were reproduced with the final program
by copying the system parameters and inputs. This allows for direct comparison
between the results and for ruling out deviations due to different development
stages of the code.

The basic example presented in this chapter is a fictitious power plant developed
for an AFRY project. It represents a run-of-river power plant. For the project
it had to be decided if one hydraulic machine with a maximum inflow of 30m3

s

or two hydraulic machines with a maximum inflow of 15m3

s
each, would generate

more power due to a higher efficiency of the hydraulic units. According to he
simplification described above, a simplified efficiency table could also be used for
the calculation, which is valid for a fixed water head and rotational speed, leaving
only the volume flow rate as the input variable. The efficiency values for the
machines with a maximum flow rate of 15m3

s
are stated in Figure A.1.

The calculation result is presented in Figure 4.1. The solution is simplistic in the
way that the RBFNN output r1 receives 100% of the volume flow until its limit
of 15m3

s
is reached. Then the volume flow gets distributed equally on both units,

resulting in r1 = r2 = 50%.

Three observations merit attention:

1. The transition of r1 from 1 to 0.5, and of r2 from 0 to 0.5, seem to describe a
step function. However, the RBFNN cannot describe a perfect step function.
By examining the data, it becomes apparent that the graph has rounded
edges. The impact of this fact is described later on.

2. The plot shows the RBFNN outputs ri and rdist,i. The plot shows that the
previously described post-processing of the RBFNN outputs becomes visible
(see Chapter 3.2.1). The graphs of r1 and rdist,1 overlap perfectly despite the
interval Q = [15; 16.5]. Here, the final distribution was adjusted to comply
with the maximum volume flow of the hydraulic machine with index 1.

3. There is a slight deviation from the equal distribution of 50% at 17m3

s
.

31



Results

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Qtot (m3

s
)

r i
,

η t
o
t

(−
)

Basic example

r1 r2
rdist,1 rdist,2
ηtot

Figure 4.1: Plot of the RBFNN´s output ri, and the total efficiency factor of the
hydraulic machines ηtotal over the total volume flow rate Qtot

The red graph of the plot displays 4.1 the power plant’s total efficiency. The total
efficiency factor ηtot can be derived from equation 3.5 leading to

�N
0 ρgHqiηh,i

ρgHQtot

. (4.1)

Because no minimum flow rate was defined, the efficiency curve follows the efficiency
table of the hydraulic machine perfectly between Q = [0; 15]m3

s
. Afterwards, a

section follows which is approximately linear. This section is linear because the
volume flow rate of unit 1 is kept constant, as it reached its maximum inflow
limit, and the remaining volume flow is not enough for unit two to generate any
power output. At a certain point, which will be referred to as turning point, the
volume flow of both units jumps to an equal distribution. The turning point will
be explained in more detail in Chapter 4.1.1.

The objective function defined in Equation 3.1 is plotted in Figure 4.2 as a red graph.
If point a ∈ [0; 30] is an arbitrary volume flow, Pobj is equal to the accumulated
sum of all Ptot from 0 to a. Therefore, the relation between Ptot and Pobj is
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Figure 4.2: Plot of the objective function Pobj, and the total power output Ptot

over the total volume flow rate Qtot

Pobj(Qtot = a) =
a�

i=0
Ptot,i . (4.2)

The blue graph in Figure 4.2 shows that the power is increasing nearly continuously
with increasing volume flow until the maximum of one unit is reached. The second
unit has no power output in the transition between Q = [15; 16.5] because the
efficiency table states an efficiency factor of 0. As soon as both units are used with
an equal distribution, the power again increases with nearly the same continuous
rate. Zooming in on the Ptot graph makes a mistake in approximating the optimal
solution visible. It is plotted in Figure 4.3.

The power output deviates from the approximate linear function at the discretisation
step of 16.4m3

s
, marked as a red dot. The reason for this deviation is that the

RBFNN’s parameters and weights were not optimised enough to fully make the
step from an unequal distribution to an equal one in a single discretisation step of
ΔQ = 0.05m3

s
.

In the interval Q = [16.95; 17]m3

s
the distribution of rdist,i deviates from 0.5. The

reason for this is explained in Section 4.1.1.
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Figure 4.3: Zoomed view on the plot of the total power output and the relative
distribution on machine 1, with a red mark at rdist,1(Qtot = 16.4m3

s
).

4.1.1 System Validation

An additional code was developed to validate the results just presented in Chapter
4.1. This code is a relatively simple algorithm, which utilises the same power
equation 2.2 and efficiency tables as the basic example. It receives a vector from 0
to 1 in steps of 0.001 as an additional input. This vector is used for discretising the
volume flow Qtot into 1000 possible distributions like rdist,1 and rdist,2. All power
outputs are calculated with these distributions, and the maximal one is selected.
That way, the highest power output is found. Therefore, a search algorithm
calculates the maximum possible power output by brute force. This approach is
fundamentally different to the RBFNN. The validation method optimises each
discretisation point individually without considering the previous or preceding ones.
The RBFNN optimises a continuous function to gain the maximal power output
over the whole input range.

In Plot 4.4, the optimal distribution weights rman,1, rman,2 of the validation method
and the corresponding total efficiency ηman,tot are plotted over the volume flow rate
Qtot.

For Qtot = [0; 16.3]m3

s
, the results of both methods are nearly identical and confirm
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Figure 4.4: Plot of the validation algorithm´s output rman,i, and the total effi-
ciency factor of the hydraulic machines ηtotal over the total volume
flow rate Qtot

each other. Even the transition from one active unit to two units is calculated
sufficiently by the RBFNN. As visualised in Figure 4.5, the power curves do
not line up perfectly at Qtot = 16.4m3

s
, as foreseen in the previous section. For

Qtot = [16.5; 30]m3

s
the graphs seem to line up perfectly again. By summing up all

power outputs over the whole volume flow rate range, which corresponds to the
objective function of the RBFNN 3.1, the results can be compared regarding their
performance. The validation method achieves a power output of 138, 739, 932.5W ,
while the RBFNN only manages to achieve 138, 738, 854.9W . The RBFNN therefore
achieves 99% of the power of the validation method’s result.

The results are also confirmed by comparing the actual distributed volume flows
qi. In Figure 4.6, the normalized volume flows qnorm,i = qi

Qtot
of the RBFNN and

qman,norm,i = qman,i

Qtot
of the validation algorithm are presented. The plot shows a

linear increase in the volume flow rate on the first hydraulic machine, followed by
a constant section in combination with a linear increase in the volume flow rate on
the second hydraulic machine. In the interval Qtot = [16.5; 30]m3

s
follows a linear

increase with half the inclination of the first linear function.

Eye-catching is the graph course of the validation algorithm, which might already
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Figure 4.5: Comparison of the RBFNN’s and validation algorithm’s power output
in the interval Qtot = [14.5; 17]m3

s

have been noticed in Figure 4.4. The weights rman,i and thus also the volume flow
rates qman,i are not constant in the range of Qtot = [16.5; 30]m3

s
. The reason for

these fluctuations is of a numerical nature, which becomes visible by plotting not
just the optimal solution of the validation algorithm, but all of them.

Plot 4.7 shows a selection of power outputs at fixed total volume flow rates over all
possible rman,1. With these visualisations, it is possible to explain the just described
fluctuations of rman,i, as well as the mistake of the RBFNN at Qtot = 16.4m3

s
. All

previous plots, where Qtot was on the abscissa, showed three phases: Distribution on
a single unit, transition phase, and distribution on two units. These phases are also
visible in Figure 4.7. The first phase, where the total volume flow is distributed on
a single unit, is outstanding due to its global maxima at rman,1 = 0 and rman,1 = 1.
During this phase, a small local maximum is noticeable at rman,1 = 0.5. It gets
more dominant with increasing power. In the transition phase, horizontal lines
appear for the first time. Those mark the limited maximum flow rate through a
single hydraulic machine. In this phase, the absolute difference between the local
and global maximum decreases because the restricted volume flow rate limits the
global maxima. At Qtot = 16.4m3

s
the global maximum is for the first time at

rman,1 = 0.5.
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of each unit according to RBFNN qnorm,i and to the validation algo-
rithm qman,norm,i over the total volume flow rate Qtot

Because the RBFNN is creating a continuous function from RBFs, this function has
to perfectly follow the switch from two global maxima to one global maximum. If
the parameters and weights are not trained enough for approximating this switch,
the solution will have a slight mistake, as presented in Figure 4.3.

Going back to the fluctuations of rman,i, which appear in the third phase. In this
phase, the power curves over rman,1 have one global maximum, which should be
a trivial optimisation task for the algorithm. However, by zooming in on these
power curves at Q = [18, 18.75, 19.5]m3

s
it becomes apparent that there is no perfect

continuous function, but consists of points which were interpolated. In Figure 4.8,
all three curves show edges, which are located where the product of rman,1 and
Qtot results in a value that is explicitly mentioned in the efficiency table of the
hydraulic machines. The efficiency data had to be linearly interpolated between the
two edges from the resulting values of qman,i. This interpolation includes a small
error, which is largest in the middle of the two original points. For this reason,
the power output dips in between. For Qtot = 18m3

s
and Qtot = 19.5m3

s
, the equal

distribution falls perfectly on values in the efficiency table. For all values in-between
unfortunate not, resulting in slightly better power output for distributions deviating
from rman,1 = 0.5. For Qtot = 18.75m3

s
, this results in a relative power decrease of
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Figure 4.7: All possible power outputs at selected fixed total volume flow rates
(shown in the legend) plotted over all possible distributions of rman,1.

0,03%, which is seen as negligible for the program’s application.

4.2 Setting system parameters

As the system description in Chapter 3 presented, the program consists of three
fields: Hydro power, RBFNNs, and NSGAII optimiser. For the latter two, the
correct layout, system parameters, and settings had to be researched and evaluated
using an empirical study. This work identified two crucial settings, which shall be
described in the following two chapters.

4.2.1 Optimal number of nodes

In this chapter, the term node refers only to hidden nodes of the RBFNN. For a
review of the structure of an RBFNN, refer to Chapter 2.2.2. The number of hidden
nodes of an RBFN can be compared to the number of parameters in regression
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Figure 4.8: Zoomed view on all possible power outputs at Ptot(Q =
[18, 18.75, 19.5]) from Figure 4.7 in the interval rman,1 = [0.35; 0.65]

models. The number of hidden nodes can be adjusted to match the degree of the
function to be approximated [6]. However, as presented in the previous chapter, the
objective function can be structured into three parts, and the task for the RBFNN
was to approximate a single continuous function. Thus, the degree of the function
could only be estimated.

An empirical approach was chosen to identify the required number of nodes for the
problem. Choosing too few hidden nodes has noticeable implications on the result.
For the example in Plot 4.9, a node number of 3N = 6 instead of 9N = 18 was
chosen. For enabling a direct comparison, all other parameters were set identically
to the basic example from Section 4.1.

The limited number of nodes does not influence the sections of linear increase at
low volume flows Qtot = [0; 15]m3

s
and high volume flows Qtot = [23; 30]m3

s
. In the

transition, the most crucial part of the calculation, the absence of the required
number of nodes becomes apparent. The prior described step, from r1 = 1 to
r1 = 0.5, shows two problems.

Firstly, the step is not approximated sharply enough to avoid a drop in efficiency
and the power output. In the red graph of ηtot, the drop is clearly visible.

Secondly, fluctuations in the RBFNN output, r1 and r2, can be observed after
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Figure 4.9: Example for using not enough hidden nodes for the function approxi-
mation
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Qtot = 16.4m3

s
. Because these fluctuations cannot be eliminated through longer

optimisation by increasing the number of generations of the NSGAII algorithm, it
is assumed that the parameters of the limited number of nodes cannot be set to
approximate the optimal solution.

Choosing too many nodes is also possible, although this case is more complicated
to detect than choosing not enough nodes. The function approximation will work
perfectly fine and give good results. However, the optimisation will take more time
than necessary. To find out if too many nodes were used, the RBFs have to be
examined directly. As [31] states, too many nodes result in RBFs with a thin width
θ and small weights ω. In case of the Gaussian RBF, there will be many thin bell
curves, with negligible ω weights.

Several optimisations with only a few nodes were performed to evaluate a good
number of nodes. The number of nodes was increased successively until reasonable
results were found. This approach is similar to the constructive approach described
in [31], which is an automated way to find the correct number of nodes. Afterwards,
the RBF´s parameters were examined to confirm the results.

Because the degree of the objective function increases with the number of hydraulic
machines, an equation was derived that sets the number of nodes in relation to the
number of machines. The number of nodes n is recommended to be equal to 9N .

4.2.2 Finding optimal settings for NSGAII

The second crucial parameter is the setting of the NSGAII algorithm. As described
in Chapter 2.3, the NSGAII is a generic algorithm. It has two main input settings:
the original population size and the number of generations. During the first runs of
optimisations, the population size for the NSGAII was set far too low, resulting in
insufficient optimised parameters for the RBFNN. These results were reproduced
and are plotted in Figure 4.10.

On first sight, the plot looks similar to the results of Chapter 4.2.1, where insufficient
hidden nodes for the RBFNN were used. It makes these two problems difficult
to distinguish from each other. For Qtot = [0; 15]m3

s
the RBFNN was optimized

perfectly. In the transition phase, the insufficient optimisation becomes apparent.
First, there is a drop of r2. Followed by a too steep curve, instead of a sudden
step of the RBFNN outputs r1 and r2. The result is a drop in efficiency and power
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Figure 4.10: Example for using a too small population size for the NSGAII
algorithm

output. For Qtot = [15; 30]m3

s
, the RBFNN´s outputs are fluctuating around their

desired value of 0.5. It is the most noticeable difference compared to the case of
using not enough hidden nodes, where the fluctuations only occurred for a shorter
interval of Qtot = [16.4; 23]m3

s
.

Research revealed that the number of nodes and the optimal population size of the
NSAGII algorithm are related. As the paper [10] states, the population size should
be about four times the number of decision variables in the problem being solved.
The optimal population size for any problem in this program can be calculated
with

Pop_size = 4[9N(N + 2)] , (4.3)

where the term in the squared brackets is the number of decision variables, as
described in Chapter 3.2.2. While an arbitrarily high population size can be set, it
will have an adverse effect on the calculation time. This equation provides a simple
estimation.
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4.3 Four unit example

A fictitious but more complex example than the basic example was created to test
the limitations of the RBFNN. It consists of 4 hydraulic units, each connected to
one generator and one transformer. As basis for the efficiency data of the hydraulic
machines serves the model tests of an old project executed by AFRY. The generator
and transformer data are taken from a comparable project, because no data from
the same project was available for all components.

In Chapter 4.1, it was shown that the RBFNN is capable of calculating the optimal
solution for two machines with the same efficiency curves. Further simulations
showed that more than two units can also achieve the result. However, to add more
complexity to the problem, the data was altered between the units. Units 1 and 4
use the original efficiency table for the hydraulic machine, the generator, and the
transformer. The efficiency table of Unit 2 and Unit 3 for the hydraulic machines
was altered. The generator and transformer efficiency tables are equal to those of
Unit 1 and Unit 4.

This experiment aimed to evaluate the program’s capability to optimise the RBFNN
for a specific application. The investigated scenario involves two hydraulic machines,
distinguished by distinct optimal operating points: one machine performs better at
lower volume flow rates, while the other achieves optimal performance at higher flow
rates. These boundary conditions result in a solution in which, at lower flow rates,
the entire volume flow is distributed to the machine with the lower optimal flow
rate. Once this machine reached its optimal operating point, there is a certain point
at which the entire flow rate gets redirected to the machine with the higher optimal
flow rate. To examine this scenario, all efficiency points of Unit 2’s efficiency table
were altered to occur one discretisation step before those of Units 1 and 3.

The efficiency table of Unit 3 is similar to that of Units 1 and 4, but with an
efficiency decrease by a factor of 0.04 over all discrete points. Therefore, this
machine should receive water only if all other machines are already used.

In Chapter 4.1, a validation method was introduced. The same approach is also
used for this example. Of course, the generator and transformer efficiencies were
also implemented in the validation algorithm to guarantee a comparable result. The
plots presented below show more abrupt changes compared to the ones in Chapter
4.1 and 4.2, because the discretisation of the volume flow rate was reduced due to
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the higher capacity of the hydraulic machines. It allows for shorter optimisation
times.

Figure 4.11 shows the optimal solution according to the validation algorithm. All
four units have the same maximal volume flow rate capacity of 190m3

s
. The plot

can be separated into four sections:

1. Q = [0; 190]m3

s

2. Q = [190; 380]m3

s

3. Q = [380; 570]m3

s

4. Q = [570; 760]m3

s

The local minima can easily detect individual sections in the total efficiency ηtot

curve. The first section highlights perfectly the previously explained motivation for
this example’s setup. The total volume flow rate is directed to Unit 2, because its
optimal operating point is at lower volume flow rates compared to Units 1 and 4.
The best efficiency point is an instantaneous switch from Unit 2 to Unit 4. The
switch is so abrupt because the efficiency table of Unit 2 was altered by just moving
the efficiency values by one discretisation step. In the second section, Unit 2 is
used at lower flow rates before Units 1 and 3 receive equal amounts of volume flow
rate. In the third section, Units 1,2, and 4 are used because Unit 3 has the worst
efficiency of all units. Further, it is noticeable that the optimal operating point of
Unit 2 is lower compared to Units 1 and 4.

In Figure 4.12, the RBFNN’s result is plotted. The basic order of the units is the
same as that of the validation algorithm. However, it is visible that the network’s
output uses one machine per section and does not redirect the volume flow as soon
as another machine would be more efficient. Further, section three of the four has
an equal distribution between Units 1,2, and 4. Therefore, Unit 2 is not run at its
optimal operating point. Finally, by summing up all power outputs of the total
range Q = [0; 760]m3

s
, which corresponds to the result of the objective function, the

two results can be quantitatively compared. The RBFNN achieves a total output
of 3.0832 ∗ 107 W and the validation algorithm 3.1495 ∗ 107 kW . The RBFNN
achieves a summed power output that is therefore 2.1% smaller compared to the
validation method.
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Figure 4.11: Result of validation algorithm for distributing the volume flow over
four differing power units, with the resulting total efficiency

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

Qtot
m3

s

r i
,

η t
o
t

(−
)

Four unit example

r0 r1 r2
r4 ηtot
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Chapter 5

Discussion

The results presented show that the RBFNN is able to model the objective function
for maximising the power output of a hydro power plant with an arbitrary number
of units. The network type was selected appropriately as suggested by the literature.
RBFNNs were developed and therefore are well suited for function approximation
tasks [17].

For fulfilling the defined task, the network’s structure had to be adjusted and
its output had to be post-processed. The network structure was complemented
with the Softmax function as an activation function. It allowed for an elegant
mathematical formulation to resize the network’s output vector to a magnitude of
1 while avoiding losing the relative differences of the output elements´ magnitudes.
The Softmax function, therefore, limited the output of the network to the maximum
physically possible volume flow of the total power plant. The post-processing of
the network’s outputs was necessary because neither the objective function nor
the network’s structure implied physical limitations of the individual units. The
network was optimised with the NSGAII algorithm, which had the maximisation of
the objective function as the optimisation goal. Therefore, additional constraints
were implemented in the post-processing module.

The results suggest that the network structure has a major impact on the approxi-
mation capabilities of the RBFNN. A sufficient number of nodes is required for
achieving satisfactory results. Large network structures result in high computa-
tional efforts. An equation has been developed for estimating a reasonable network
structure, and is presented in Chapter 4.2.1.
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5.1 Validation of the RBFNN results

The RBFNN was not able to evaluate the optimal solution as precisely as the
validation method used. This was first demonstrated using the basic example
in Chapter 4.1, where a slight decrease in power output was observed for one
discretisation step of the volume flow rate. The reason for the result deviations
between the RBFNN and the validation method is most likely the fundamental
difference in the output properties of both methods. The RBFNN is able to
provide a continuous function. It reaches that goal by optimising the objective
function to gain a maximal power output over its whole input range. The validation
method just takes discrete steps and evaluates the optimal solution for each one of
them. Each discretisation step is evaluated independently of the previous and the
proceeding one. Because both results are plotted from discrete points with lines
as connections, the visualisation can lead to wrong assumptions that both results
have the same properties.

The RBFNN´s performance on a more complex example with four hydraulic
machines and varying efficiency curves was insufficient. It directed the volume flow
rate to the best-performing unit, depending on which had the highest efficiency
over its whole range of volume flow rates. However, the RBFNN failed to redirect
the volume flow for differing optimal operating points between hydraulic machines
as shown in Chapter 4.3. Reasons for this behaviour could not be proven during
this thesis. Some ideas for potential causes are discussed here.

The RBFNN´s structure was found to be sufficient for the task. The RBFNN
should be capable of approximating the optimal solution as calculated by the
validation algorithm. The observation that the networks’ output during various
test runs always produced solutions with an equal distribution of volume flow rates
across all machines, regardless of their differing optimal operating points, indicates
that the underlying problem is the NSGAII algorithm. Two potential sources were
identified:

1. The optimiser receives as an objective function the sum of power outputs of
the whole input space, but it has to optimise a large number of parameters
and weights. These preconditions may make it extremely difficult to converge
to an optimal solution.

2. The post-processing module simply cuts off certain areas of the solution space.
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It is unclear how this practice influences the optimiser.

Overall, it must be pointed out that the program is inefficient. The computational
effort required to optimise a relatively large neural network for this application
proves to be high. As the number of units in the power plant increases, the number
of decision variables grows exponentially, due to the suggested equation for node
number selection. This characteristic leads to scalability issues.

This thesis examined stationary operating points. Taking this into account, it
is reasonable to look at each operating point individually to gain the maximum
efficiency at this exact operating point. This argument benefits the validation
methods approach. The initially assumed advantage of the RBFNN´s continuous
output turned out to be a drawback in the context of this specific use case.

However, hydro power plants are not operated in the same state continuously.
Optimising for just a discrete point can lead to unrealistic operating procedures for
real-life applications. Unfortunately, it cannot be proven that the RBFNN result
would lead to better outcomes in real applications compared to the validation
method.

A benefit of the RBFNN is that it does not optimise for the numerical patterns
in the data. No exact reason can be provided for this behaviour. A potential
explanation is again the optimisation of the continuous function over the whole
input range.

The primary drawback of the computer program is its lack of transparency regarding
its solution process. Once the problem reached a certain complexity, it is nearly
impossible to trace back how the program came to its result. Due to this limited
transparency in combination with its suboptimal optimisation results, it is found
to be inappropriate for the intended application.

5.2 Future works

This work concludes that the applied method is inefficient for the given task.
However, this finding is limited to the combination of optimising an RBFNN using
the NSGAII algorithm for a certain application. Nonetheless, the work lays the
foundation for a potential machine learning application for the same problem.
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As this work showed, it is possible to optimise the RBFNN to represent a continuous
function, which allows for deriving the optimal volume flow distribution on an
arbitrary number of hydraulic machines. The simplifications of a fixed water head
and fixed rotational speed were introduced to reduce the scope of this work. In a
further development step, the introduction of a variable water head and variable
speed is feasible. Because the efficiency hill chart changes depending on the water
head and the rotational speed, the RBFNN structure might need further adjustment
to solve such a problem sufficiently. The verification of this claim is a potential
future research question.

The approach to optimise the parameters of an RBFNN with the NSGAII algorithm
is inefficient, because the optimiser could also be used directly on the problem.
The approach was picked because of the initial motivation to use machine learning.
Due to the lack of data, the machine learning approach was abandoned. This
work showed that, in principle, the underlying problem could be solved by using
an artificial neural network of the RBF type. The structure of the network, as
well as its size, can be reused for a machine learning application. The optimiser
needs to be replaced by a learning algorithm. Sufficient training data would need
to be acquired. Obtaining the required measurements should be straightforward.
A potential hindrance could be gaining data with a high enough resolution of
all possible stationary operating points. If only data from the usual operation is
gained, the machine learning algorithm is likely to just replicate these operating
points.
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Chapter 6

Conclusion

The aim of the current thesis was to use an artificial network for the optimisation
of hydroelectric power generation. The central research question was:

Can an artificial neural network be used to simulate the optimum load distribution
in a hydropower plant with an arbitrary number of machine sets?

An appropriate artificial neural network of the Radial Basis Function type was
selected as the literature suggested. This type stands out because of its universal
approximation capabilities. Due to the lack of sufficient training data, a machine
learning approach was ruled out and replaced with an optimisation task. As
a simple to use multi-objective optimiser, the NSGAII algorithm was selected.
A computer code was developed which consists of a self-developed Radial Basis
Function Neural Network, the NSGAII module, and some pre- and post-processing
automations.

The network was expected to easily model the optimised objective function of the
problem. Then, more complexity could be added by a variable water and a variable
rational speed. By using an RBFNN with a sufficient number of hidden nodes, it
was expected to model and optimise any described hydro power plant.

In the absence of validation data, another method for validating the results was
developed. A specially developed algorithm calculated the optimal solution to the
problem by brute force. The results of both methods were compared to each other.

Although the RBFNN showed potential to model the objective function properly,
the final goal was not achieved as expected. By using the validation algorithm,
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it could be demonstrated that the computer program is able to approximate the
objective function of the problem, but with limited precision. The conclusion
drawn is that an RBFNN is capable of approximating a function which defines the
optimum load distribution in a hydro power plant with an arbitrary number of
machine sets. However, it is questioned if the approach might be inappropriate
because of the RBFNN´s output type, which is a continuous function. For the
application also a discrete solution in combination with interpolation might be
sufficient. Additionally, the NSGAII algorithm was found to be inefficient for the
application. The computational effort is very high for a system which offers limited
to no transparency on its solution process.

The approach showed that RBFNNs are able to fulfil the task. It was not determined
if the system could also work for varying head and variable speed applications.
Therefore, two fields of future work were identified: The examination of optimising
variable water head and variable speed systems, and applying machine learning to
the same optimisation tasks using RBFNNs. For the latter, the RBFNN structure
developed in this thesis could be reused.
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Appendix A

Tables

A.1 Basic example

A.1.1 Input files

This table is the input files which was used for the basic example. Because the
rotational speed is constant, it can be viewed as a 2 dimensional cut through
an efficiency hill chart of an hydraulic machine. Each volume flow rate has an
according efficiency factor.

n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 0.00 0.000000 1 2.1
300 0.05 0.000000 1 2.1
300 0.10 0.000000 1 2.1
300 0.15 0.000000 1 2.1
300 0.20 0.000000 1 2.1
300 0.25 0.000000 1 2.1
300 0.30 0.000000 1 2.1
300 0.35 0.000000 1 2.1
300 0.40 0.000000 1 2.1
300 0.45 0.000000 1 2.1
300 0.50 0.000000 1 2.1
300 0.55 0.000000 1 2.1
300 0.60 0.000000 1 2.1
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n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 0.65 0.000000 1 2.1
300 0.70 0.000000 1 2.1
300 0.75 0.000000 1 2.1
300 0.80 0.000000 1 2.1
300 0.85 0.000000 1 2.1
300 0.90 0.000000 1 2.1
300 0.95 0.000000 1 2.1
300 1.00 0.000000 1 2.1
300 1.05 0.000000 1 2.1
300 1.10 0.000000 1 2.1
300 1.15 0.000000 1 2.1
300 1.20 0.000000 1 2.1
300 1.25 0.000000 1 2.1
300 1.30 0.000000 1 2.1
300 1.35 0.000000 1 2.1
300 1.40 0.000000 1 2.1
300 1.45 0.000000 1 2.1
300 1.50 0.000000 1 2.1
300 1.55 0.013450 1 2.1
300 1.60 0.024562 1 2.1
300 1.65 0.045080 1 2.1
300 1.70 0.055207 1 2.1
300 1.75 0.065333 1 2.1
300 1.80 0.075460 1 2.1
300 1.85 0.085587 1 2.1
300 1.90 0.095713 1 2.1
300 1.95 0.105840 1 2.1
300 2.00 0.115967 1 2.1
300 2.05 0.126093 1 2.1
300 2.10 0.136220 1 2.1
300 2.15 0.146347 1 2.1
300 2.20 0.156473 1 2.1
300 2.25 0.166525 1 2.1
300 2.30 0.175200 1 2.1
300 2.35 0.183800 1 2.1
300 2.40 0.192400 1 2.1
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n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 2.45 0.201000 1 2.1
300 2.50 0.209600 1 2.1
300 2.55 0.218200 1 2.1
300 2.60 0.226800 1 2.1
300 2.65 0.235400 1 2.1
300 2.70 0.244000 1 2.1
300 2.75 0.252600 1 2.1
300 2.80 0.261200 1 2.1
300 2.85 0.269800 1 2.1
300 2.90 0.278400 1 2.1
300 2.95 0.286943 1 2.1
300 3.00 0.294889 1 2.1
300 3.05 0.302767 1 2.1
300 3.10 0.309933 1 2.1
300 3.15 0.317100 1 2.1
300 3.20 0.324267 1 2.1
300 3.25 0.331433 1 2.1
300 3.30 0.338600 1 2.1
300 3.35 0.345767 1 2.1
300 3.40 0.352933 1 2.1
300 3.45 0.360100 1 2.1
300 3.50 0.367267 1 2.1
300 3.55 0.374433 1 2.1
300 3.60 0.381600 1 2.1
300 3.65 0.388767 1 2.1
300 3.70 0.395933 1 2.1
300 3.75 0.402990 1 2.1
300 3.80 0.408901 1 2.1
300 3.85 0.414807 1 2.1
300 3.90 0.420660 1 2.1
300 3.95 0.426513 1 2.1
300 4.00 0.432367 1 2.1
300 4.05 0.438220 1 2.1
300 4.10 0.444073 1 2.1
300 4.15 0.449927 1 2.1
300 4.20 0.455780 1 2.1
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n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 4.25 0.461633 1 2.1
300 4.30 0.467487 1 2.1
300 4.35 0.473340 1 2.1
300 4.40 0.479193 1 2.1
300 4.45 0.485000 1 2.1
300 4.50 0.490324 1 2.1
300 4.55 0.495593 1 2.1
300 4.60 0.500287 1 2.1
300 4.65 0.504980 1 2.1
300 4.70 0.509673 1 2.1
300 4.75 0.514367 1 2.1
300 4.80 0.519060 1 2.1
300 4.85 0.523753 1 2.1
300 4.90 0.528447 1 2.1
300 4.95 0.533140 1 2.1
300 5.00 0.537833 1 2.1
300 5.05 0.542527 1 2.1
300 5.10 0.547220 1 2.1
300 5.15 0.551913 1 2.1
300 5.20 0.556607 1 2.1
300 5.25 0.561216 1 2.1
300 5.30 0.564953 1 2.1
300 5.35 0.568687 1 2.1
300 5.40 0.572380 1 2.1
300 5.45 0.576073 1 2.1
300 5.50 0.579767 1 2.1
300 5.55 0.583460 1 2.1
300 5.60 0.587153 1 2.1
300 5.65 0.590847 1 2.1
300 5.70 0.594540 1 2.1
300 5.75 0.598233 1 2.1
300 5.80 0.601927 1 2.1
300 5.85 0.605620 1 2.1
300 5.90 0.609313 1 2.1
300 5.95 0.612973 1 2.1
300 6.00 0.616280 1 2.1
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n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 6.05 0.619547 1 2.1
300 6.10 0.622393 1 2.1
300 6.15 0.625240 1 2.1
300 6.20 0.628087 1 2.1
300 6.25 0.630933 1 2.1
300 6.30 0.633780 1 2.1
300 6.35 0.636627 1 2.1
300 6.40 0.639473 1 2.1
300 6.45 0.642320 1 2.1
300 6.50 0.645167 1 2.1
300 6.55 0.648013 1 2.1
300 6.60 0.650860 1 2.1
300 6.65 0.653707 1 2.1
300 6.70 0.656553 1 2.1
300 6.75 0.659343 1 2.1
300 6.80 0.661533 1 2.1
300 6.85 0.663720 1 2.1
300 6.90 0.665880 1 2.1
300 6.95 0.668040 1 2.1
300 7.00 0.670200 1 2.1
300 7.05 0.672360 1 2.1
300 7.10 0.674520 1 2.1
300 7.15 0.676680 1 2.1
300 7.20 0.678840 1 2.1
300 7.25 0.681000 1 2.1
300 7.30 0.683160 1 2.1
300 7.35 0.685320 1 2.1
300 7.40 0.687480 1 2.1
300 7.45 0.689618 1 2.1
300 7.50 0.691532 1 2.1
300 7.55 0.693420 1 2.1
300 7.60 0.695040 1 2.1
300 7.65 0.696660 1 2.1
300 7.70 0.698280 1 2.1
300 7.75 0.699900 1 2.1
300 7.80 0.701520 1 2.1

59



Tables

n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 7.85 0.703140 1 2.1
300 7.90 0.704760 1 2.1
300 7.95 0.706380 1 2.1
300 8.00 0.708000 1 2.1
300 8.05 0.709620 1 2.1
300 8.10 0.711240 1 2.1
300 8.15 0.712860 1 2.1
300 8.20 0.714480 1 2.1
300 8.25 0.716065 1 2.1
300 8.30 0.717290 1 2.1
300 8.35 0.718513 1 2.1
300 8.40 0.719720 1 2.1
300 8.45 0.720927 1 2.1
300 8.50 0.722133 1 2.1
300 8.55 0.723340 1 2.1
300 8.60 0.724547 1 2.1
300 8.65 0.725753 1 2.1
300 8.70 0.726960 1 2.1
300 8.75 0.728167 1 2.1
300 8.80 0.729373 1 2.1
300 8.85 0.730580 1 2.1
300 8.90 0.731787 1 2.1
300 8.95 0.732981 1 2.1
300 9.00 0.734045 1 2.1
300 9.05 0.735093 1 2.1
300 9.10 0.735987 1 2.1
300 9.15 0.736880 1 2.1
300 9.20 0.737773 1 2.1
300 9.25 0.738667 1 2.1
300 9.30 0.739560 1 2.1
300 9.35 0.740453 1 2.1
300 9.40 0.741347 1 2.1
300 9.45 0.742240 1 2.1
300 9.50 0.743133 1 2.1
300 9.55 0.744027 1 2.1
300 9.60 0.744920 1 2.1
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n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 9.65 0.745813 1 2.1
300 9.70 0.746707 1 2.1
300 9.75 0.747582 1 2.1
300 9.80 0.748271 1 2.1
300 9.85 0.748960 1 2.1
300 9.90 0.749640 1 2.1
300 9.95 0.750320 1 2.1
300 10.00 0.751000 1 2.1
300 10.05 0.751680 1 2.1
300 10.10 0.752360 1 2.1
300 10.15 0.753040 1 2.1
300 10.20 0.753720 1 2.1
300 10.25 0.754400 1 2.1
300 10.30 0.755080 1 2.1
300 10.35 0.755760 1 2.1
300 10.40 0.756440 1 2.1
300 10.45 0.757114 1 2.1
300 10.50 0.757727 1 2.1
300 10.55 0.758333 1 2.1
300 10.60 0.758867 1 2.1
300 10.65 0.759400 1 2.1
300 10.70 0.759933 1 2.1
300 10.75 0.760467 1 2.1
300 10.80 0.761000 1 2.1
300 10.85 0.761533 1 2.1
300 10.90 0.762067 1 2.1
300 10.95 0.762600 1 2.1
300 11.00 0.763133 1 2.1
300 11.05 0.763667 1 2.1
300 11.10 0.764200 1 2.1
300 11.15 0.764733 1 2.1
300 11.20 0.765267 1 2.1
300 11.25 0.765792 1 2.1
300 11.30 0.766229 1 2.1
300 11.35 0.766667 1 2.1
300 11.40 0.767100 1 2.1
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n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 11.45 0.767533 1 2.1
300 11.50 0.767967 1 2.1
300 11.55 0.768400 1 2.1
300 11.60 0.768833 1 2.1
300 11.65 0.769267 1 2.1
300 11.70 0.769700 1 2.1
300 11.75 0.770133 1 2.1
300 11.80 0.770567 1 2.1
300 11.85 0.771000 1 2.1
300 11.90 0.771433 1 2.1
300 11.95 0.771864 1 2.1
300 12.00 0.772264 1 2.1
300 12.05 0.772660 1 2.1
300 12.10 0.773020 1 2.1
300 12.15 0.773380 1 2.1
300 12.20 0.773740 1 2.1
300 12.25 0.774100 1 2.1
300 12.30 0.774460 1 2.1
300 12.35 0.774820 1 2.1
300 12.40 0.775180 1 2.1
300 12.45 0.775540 1 2.1
300 12.50 0.775900 1 2.1
300 12.55 0.776260 1 2.1
300 12.60 0.776620 1 2.1
300 12.65 0.776980 1 2.1
300 12.70 0.777340 1 2.1
300 12.75 0.777694 1 2.1
300 12.80 0.777991 1 2.1
300 12.85 0.778287 1 2.1
300 12.90 0.778580 1 2.1
300 12.95 0.778873 1 2.1
300 13.00 0.779167 1 2.1
300 13.05 0.779460 1 2.1
300 13.10 0.779753 1 2.1
300 13.15 0.780047 1 2.1
300 13.20 0.780340 1 2.1

62



Tables

n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 13.25 0.780633 1 2.1
300 13.30 0.780927 1 2.1
300 13.35 0.781220 1 2.1
300 13.40 0.781513 1 2.1
300 13.45 0.781974 1 2.1
300 13.50 0.782085 1 2.1
300 13.55 0.781513 1 2.1
300 13.60 0.781455 1 2.1
300 13.65 0.781396 1 2.1
300 13.70 0.781337 1 2.1
300 13.75 0.781279 1 2.1
300 13.80 0.781220 1 2.1
300 13.85 0.781161 1 2.1
300 13.90 0.781103 1 2.1
300 13.95 0.781044 1 2.1
300 14.00 0.780985 1 2.1
300 14.05 0.780927 1 2.1
300 14.10 0.780868 1 2.1
300 14.15 0.780809 1 2.1
300 14.20 0.780751 1 2.1
300 14.25 0.780692 1 2.1
300 14.30 0.780633 1 2.1
300 14.35 0.780575 1 2.1
300 14.40 0.780516 1 2.1
300 14.45 0.780457 1 2.1
300 14.50 0.780399 1 2.1
300 14.55 0.780340 1 2.1
300 14.60 0.780281 1 2.1
300 14.65 0.780223 1 2.1
300 14.70 0.780164 1 2.1
300 14.75 0.780105 1 2.1
300 14.80 0.780047 1 2.1
300 14.85 0.779988 1 2.1
300 14.90 0.779929 1 2.1
300 14.95 0.779871 1 2.1
300 15.00 0.779812 1 2.1
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n (rpm) Q11 (m3

s
) Eta (−) a0 (−) H (m)

300 15.05 0.779753 1 2.1

Table A.1: Efficiency table for both units

The parameter file of the program only consists out of 3 entries. These are the
required physical constants. This file was also supposed to contain settings of the
program for users who are not familiar with Python.

Abb Number Unit Description
N 2.0 (−) Number of Units

Roh 1000.0 kg
m3 Density

g 9.81 m
s2 Acceleration of gravity

Table A.2: Parameter File

A.1.2 Output files

The output file contains a table with the optimal distribution and the corresponding
volume flow, efficiency factors and power output for each total volume flow rate.

Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9998 0.0002
0.05 0.0 0.0 0.0 0.0017 0.0 0.0 0.9998 0.0002
0.1 0.0 0.0 0.0 0.0033 0.0 0.0 0.9998 0.0002
0.15 0.0 0.0 0.0 0.005 0.0 0.0 0.9998 0.0002
0.2 0.0 0.0 0.0 0.0067 0.0 0.0 0.9998 0.0002
0.25 0.0 0.0 0.0 0.0083 0.0 0.0 0.9998 0.0002
0.3 0.0 0.0 0.0 0.01 0.0 0.0 0.9998 0.0002
0.35 0.0 0.0 0.0 0.0117 0.0 0.0 0.9998 0.0002
0.4 0.0 0.0 0.0 0.0133 0.0 0.0 0.9998 0.0002
0.45 0.0 0.0 0.0 0.015 0.0 0.0 0.9998 0.0002
0.5 0.0 0.0 0.0 0.0167 0.0 0.0 0.9998 0.0002
0.55 0.0 0.0 0.0 0.0183 0.0 0.0 0.9998 0.0001
0.6 0.0 0.0 0.0 0.02 0.0 0.0 0.9999 0.0001
0.65 0.0 0.0 0.0 0.0217 0.0 0.0 0.9999 0.0001
0.7 0.0 0.0 0.0 0.0233 0.0 0.0 0.9999 0.0001
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Tables

Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

0.75 0.0 0.0 0.0 0.025 0.0 0.0 0.9999 0.0001
0.8 0.0 0.0 0.0 0.0267 0.0 0.0 0.9999 0.0001
0.85 0.0 0.0 0.0 0.0283 0.0 0.0 0.9999 0.0001
0.9 0.0 0.0 0.0 0.03 0.0 0.0 0.9999 0.0001
0.95 0.0 0.0 0.0 0.0317 0.0 0.0 0.9999 0.0001
1.0 0.0 0.0 0.0 0.0333 0.0 0.0 0.9999 0.0001
1.05 0.0 0.0 0.0 0.035 0.0 0.0 0.9999 0.0001
1.1 0.0 0.0 0.0 0.0367 0.0 0.0 0.9999 0.0001
1.15 0.0 0.0 0.0 0.0383 0.0 0.0 0.9999 0.0001
1.2 0.0 0.0 0.0 0.04 0.0 0.0 0.9999 0.0001
1.25 0.0 0.0 0.0 0.0417 0.0 0.0 0.9999 0.0001
1.3 0.0 0.0 0.0 0.0433 0.0 0.0 0.9999 0.0001
1.35 0.0 0.0 0.0 0.045 0.0 0.0 0.9999 0.0001
1.4 0.0 0.0 0.0 0.0467 0.0 0.0 0.9999 0.0001
1.45 0.0 0.0 0.0 0.0483 0.0 0.0 0.9999 0.0001
1.5 0.0 0.0 0.0 0.05 0.0 0.0 0.9999 0.0001
1.55 436.8575 0.0137 0.0 0.0517 0.0 0.0137 0.9999 0.0001
1.6 809.5245 0.0246 0.0 0.0533 0.0 0.0246 0.9999 0.0001
1.65 1532.3436 0.0451 0.0 0.055 0.0 0.0451 0.9999 0.0001
1.7 1941.6659 0.0554 0.0 0.0567 0.0 0.0554 0.9999 0.0001
1.75 2355.2945 0.0653 0.0 0.0583 0.0 0.0653 0.9999 0.0001
1.8 2798.1926 0.0755 0.0 0.06 0.0 0.0755 0.9999 0.0001
1.85 3271.3525 0.0858 0.0 0.0617 0.0 0.0858 0.9999 0.0001
1.9 3746.3027 0.0957 0.0 0.0633 0.0 0.0957 0.9999 0.0001
1.95 4251.7992 0.1058 0.0 0.065 0.0 0.1058 0.9999 0.0001
2.0 4788.7966 0.1162 0.0 0.0667 0.0 0.1162 0.9999 0.0001
2.05 5325.0684 0.1261 0.0 0.0683 0.0 0.1261 0.9999 0.0001
2.1 5893.1633 0.1362 0.0 0.07 0.0 0.1362 0.9999 0.0001
2.15 6493.9982 0.1465 0.0 0.0717 0.0 0.1465 0.9999 0.0001
2.2 7091.5917 0.1565 0.0 0.0733 0.0 0.1565 0.9999 0.0001
2.25 7718.8026 0.1665 0.0 0.075 0.0 0.1665 1.0 0.0
2.3 8313.1416 0.1754 0.0 0.0767 0.0 0.1754 1.0 0.0
2.35 8898.0688 0.1838 0.0 0.0783 0.0 0.1838 1.0 0.0
2.4 9512.7178 0.1924 0.0 0.08 0.0 0.1924 1.0 0.0
2.45 10157.7881 0.2012 0.0 0.0817 0.0 0.2012 1.0 0.0
2.5 10794.7922 0.2096 0.0 0.0833 0.0 0.2096 1.0 0.0
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Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

2.55 11462.6024 0.2182 0.0 0.085 0.0 0.2182 1.0 0.0
2.6 12161.8863 0.227 0.0 0.0867 0.0 0.227 1.0 0.0
2.65 12850.9674 0.2354 0.0 0.0883 0.0 0.2354 1.0 0.0
2.7 13571.9388 0.244 0.0 0.09 0.0 0.244 1.0 0.0
2.75 14325.4363 0.2528 0.0 0.0917 0.0 0.2528 1.0 0.0
2.8 15066.5943 0.2612 0.0 0.0933 0.0 0.2612 1.0 0.0
2.85 15840.7269 0.2698 0.0 0.095 0.0 0.2698 1.0 0.0
2.9 16648.3697 0.2786 0.0 0.0967 0.0 0.2786 1.0 0.0
2.95 17438.1989 0.2869 0.0 0.0983 0.0 0.2869 1.0 0.0
3.0 18225.0132 0.2949 0.0 0.1 0.0 0.2949 1.0 0.0
3.05 19038.9994 0.3029 0.0 0.1017 0.0 0.3029 1.0 0.0
3.1 19793.1481 0.3099 0.0 0.1033 0.0 0.3099 1.0 0.0
3.15 20577.6179 0.3171 0.0 0.105 0.0 0.3171 1.0 0.0
3.2 21392.8285 0.3244 0.0 0.1067 0.0 0.3244 1.0 0.0
3.25 22190.3746 0.3314 0.0 0.1083 0.0 0.3314 1.0 0.0
3.3 23019.1454 0.3386 0.0 0.11 0.0 0.3386 1.0 0.0
3.35 23879.534 0.3459 0.0 0.1117 0.0 0.3459 1.0 0.0
3.4 24720.4775 0.3529 0.0 0.1133 0.0 0.3529 1.0 0.0
3.45 25593.5493 0.3601 0.0 0.115 0.0 0.3601 1.0 0.0
3.5 26499.1159 0.3674 0.0 0.1167 0.0 0.3674 1.0 0.0
3.55 27383.4569 0.3744 0.0 0.1183 0.0 0.3744 1.0 0.0
3.6 28300.8298 0.3816 0.0 0.12 0.0 0.3816 1.0 0.0
3.65 29251.5744 0.3889 0.0 0.1217 0.0 0.3889 1.0 0.0
3.7 30179.3128 0.3959 0.0 0.1233 0.0 0.3959 1.0 0.0
3.75 31132.5042 0.403 0.0 0.125 0.0 0.403 1.0 0.0
3.8 32027.9923 0.409 0.0 0.1267 0.0 0.409 1.0 0.0
3.85 32899.7346 0.4148 0.0 0.1283 0.0 0.4148 1.0 0.0
3.9 33797.465 0.4207 0.0 0.13 0.0 0.4207 1.0 0.0
3.95 34725.3899 0.4266 0.0 0.1317 0.0 0.4266 1.0 0.0
4.0 35628.5573 0.4324 0.0 0.1333 0.0 0.4324 1.0 0.0
4.05 36562.4694 0.4382 0.0 0.135 0.0 0.4382 1.0 0.0
4.1 37527.2931 0.4442 0.0 0.1367 0.0 0.4442 1.0 0.0
4.15 38465.9052 0.4499 0.0 0.1383 0.0 0.4499 1.0 0.0
4.2 39435.9999 0.4558 0.0 0.14 0.0 0.4558 1.0 0.0
4.25 40437.7225 0.4618 0.0 0.1417 0.0 0.4617 1.0 0.0
4.3 41411.7791 0.4675 0.0 0.1433 0.0 0.4675 1.0 0.0
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Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

4.35 42418.0564 0.4733 0.0 0.145 0.0 0.4733 1.0 0.0
4.4 43456.594 0.4793 0.0 0.1467 0.0 0.4793 1.0 0.0
4.45 44461.9379 0.485 0.0 0.1483 0.0 0.485 1.0 0.0
4.5 45455.2814 0.4903 0.0 0.15 0.0 0.4903 1.0 0.0
4.55 46473.2283 0.4957 0.0 0.1517 0.0 0.4957 1.0 0.0
4.6 47409.2738 0.5003 0.0 0.1533 0.0 0.5003 1.0 0.0
4.65 48374.3824 0.505 0.0 0.155 0.0 0.505 1.0 0.0
4.7 49368.5579 0.5098 0.0 0.1567 0.0 0.5098 1.0 0.0
4.75 50333.0238 0.5144 0.0 0.1583 0.0 0.5144 1.0 0.0
4.8 51327.1443 0.5191 0.0 0.16 0.0 0.5191 1.0 0.0
4.85 52350.9062 0.5238 0.0 0.1617 0.0 0.5238 1.0 0.0
4.9 53343.7923 0.5284 0.0 0.1633 0.0 0.5284 1.0 0.0
4.95 54366.9248 0.5331 0.0 0.165 0.0 0.5331 1.0 0.0
5.0 55420.2731 0.5379 0.0 0.1667 0.0 0.5379 1.0 0.0
5.05 56441.5795 0.5425 0.0 0.1683 0.0 0.5425 1.0 0.0
5.1 57493.724 0.5472 0.0 0.17 0.0 0.5472 1.0 0.0
5.15 58576.6586 0.552 0.0 0.1717 0.0 0.552 1.0 0.0
5.2 59626.3853 0.5566 0.0 0.1733 0.0 0.5566 1.0 0.0
5.25 60698.4997 0.5612 0.0 0.175 0.0 0.5612 1.0 0.0
5.3 61704.4035 0.565 0.0 0.1767 0.0 0.565 1.0 0.0
5.35 62677.8006 0.5687 0.0 0.1783 0.0 0.5687 1.0 0.0
5.4 63674.6421 0.5724 0.0 0.18 0.0 0.5724 1.0 0.0
5.45 64699.0554 0.5761 0.0 0.1817 0.0 0.5761 1.0 0.0
5.5 65690.5489 0.5798 0.0 0.1833 0.0 0.5798 1.0 0.0
5.55 66710.22 0.5835 0.0 0.185 0.0 0.5835 1.0 0.0
5.6 67757.9157 0.5872 0.0 0.1867 0.0 0.5872 1.0 0.0
5.65 68771.7741 0.5908 0.0 0.1883 0.0 0.5908 1.0 0.0
5.7 69814.2757 0.5945 0.0 0.19 0.0 0.5945 1.0 0.0
5.75 70885.2538 0.5983 0.0 0.1917 0.0 0.5983 1.0 0.0
5.8 71921.477 0.6019 0.0 0.1933 0.0 0.6019 1.0 0.0
5.85 72986.8091 0.6056 0.0 0.195 0.0 0.6056 1.0 0.0
5.9 74080.9875 0.6094 0.0 0.1967 0.0 0.6094 1.0 0.0
5.95 75135.5186 0.613 0.0 0.1983 0.0 0.613 1.0 0.0
6.0 76175.8936 0.6163 0.0 0.2 0.0 0.6163 1.0 0.0
6.05 77237.7097 0.6196 0.0 0.2017 0.0 0.6196 1.0 0.0
6.1 78213.5431 0.6224 0.0 0.2033 0.0 0.6224 1.0 0.0
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Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

6.15 79215.5008 0.6252 0.0 0.205 0.0 0.6252 1.0 0.0
6.2 80243.3355 0.6281 0.0 0.2067 0.0 0.6281 1.0 0.0
6.25 81236.4067 0.6309 0.0 0.2083 0.0 0.6309 1.0 0.0
6.3 82255.9612 0.6338 0.0 0.21 0.0 0.6338 1.0 0.0
6.35 83301.741 0.6367 0.0 0.2117 0.0 0.6367 1.0 0.0
6.4 84312.0501 0.6395 0.0 0.2133 0.0 0.6395 1.0 0.0
6.45 85349.2014 0.6423 0.0 0.215 0.0 0.6423 1.0 0.0
6.5 86412.9262 0.6452 0.0 0.2167 0.0 0.6452 1.0 0.0
6.55 87440.4732 0.648 0.0 0.2183 0.0 0.648 1.0 0.0
6.6 88495.2213 0.6509 0.0 0.22 0.0 0.6509 1.0 0.0
6.65 89576.8913 0.6538 0.0 0.2217 0.0 0.6538 1.0 0.0
6.7 90621.6761 0.6566 0.0 0.2233 0.0 0.6566 1.0 0.0
6.75 91686.038 0.6593 0.0 0.225 0.0 0.6593 1.0 0.0
6.8 92691.7438 0.6616 0.0 0.2267 0.0 0.6616 1.0 0.0
6.85 93661.8772 0.6637 0.0 0.2283 0.0 0.6637 1.0 0.0
6.9 94652.7778 0.6659 0.0 0.23 0.0 0.6659 1.0 0.0
6.95 95667.8781 0.6681 0.0 0.2317 0.0 0.6681 1.0 0.0
7.0 96647.331 0.6702 0.0 0.2333 0.0 0.6702 1.0 0.0
7.05 97651.5829 0.6724 0.0 0.235 0.0 0.6724 1.0 0.0
7.1 98680.2997 0.6746 0.0 0.2367 0.0 0.6746 1.0 0.0
7.15 99672.8324 0.6767 0.0 0.2383 0.0 0.6767 1.0 0.0
7.2 100690.4364 0.6788 0.0 0.24 0.0 0.6788 1.0 0.0
7.25 101732.7697 0.681 0.0 0.2417 0.0 0.681 1.0 0.0
7.3 102738.3822 0.6832 0.0 0.2433 0.0 0.6832 1.0 0.0
7.35 103769.3383 0.6853 0.0 0.245 0.0 0.6853 1.0 0.0
7.4 104825.2223 0.6875 0.0 0.2467 0.0 0.6875 1.0 0.0
7.45 105840.6748 0.6896 0.0 0.2483 0.0 0.6896 1.0 0.0
7.5 106846.8903 0.6915 0.0 0.25 0.0 0.6915 1.0 0.0
7.55 107872.1732 0.6935 0.0 0.2517 0.0 0.6935 1.0 0.0
7.6 108820.5508 0.695 0.0 0.2533 0.0 0.695 1.0 0.0
7.65 109791.9788 0.6967 0.0 0.255 0.0 0.6967 1.0 0.0
7.7 110786.0758 0.6983 0.0 0.2567 0.0 0.6983 1.0 0.0
7.75 111744.2633 0.6999 0.0 0.2583 0.0 0.6999 1.0 0.0
7.8 112725.7055 0.7015 0.0 0.26 0.0 0.7015 1.0 0.0
7.85 113730.0148 0.7032 0.0 0.2617 0.0 0.7032 1.0 0.0
7.9 114698.0121 0.7048 0.0 0.2633 0.0 0.7048 1.0 0.0
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7.95 115689.4683 0.7064 0.0 0.265 0.0 0.7064 1.0 0.0
8.0 116703.99 0.708 0.0 0.2667 0.0 0.708 1.0 0.0
8.05 117681.7971 0.7096 0.0 0.2683 0.0 0.7096 1.0 0.0
8.1 118683.2674 0.7112 0.0 0.27 0.0 0.7112 1.0 0.0
8.15 119708.0014 0.7129 0.0 0.2717 0.0 0.7129 1.0 0.0
8.2 120695.6184 0.7145 0.0 0.2733 0.0 0.7145 1.0 0.0
8.25 121701.2297 0.7161 0.0 0.275 0.0 0.7161 1.0 0.0
8.3 122667.1885 0.7173 0.0 0.2767 0.0 0.7173 1.0 0.0
8.35 123597.288 0.7185 0.0 0.2783 0.0 0.7185 1.0 0.0
8.4 124546.3944 0.7197 0.0 0.28 0.0 0.7197 1.0 0.0
8.45 125516.8501 0.721 0.0 0.2817 0.0 0.721 1.0 0.0
8.5 126451.4938 0.7221 0.0 0.2833 0.0 0.7221 1.0 0.0
8.55 127408.0588 0.7233 0.0 0.285 0.0 0.7233 1.0 0.0
8.6 128386.1211 0.7246 0.0 0.2867 0.0 0.7246 1.0 0.0
8.65 129328.0717 0.7258 0.0 0.2883 0.0 0.7258 1.0 0.0
8.7 130292.0958 0.727 0.0 0.29 0.0 0.727 1.0 0.0
8.75 131277.7648 0.7282 0.0 0.2917 0.0 0.7282 1.0 0.0
8.8 132227.0223 0.7294 0.0 0.2933 0.0 0.7294 1.0 0.0
8.85 133198.5054 0.7306 0.0 0.295 0.0 0.7306 1.0 0.0
8.9 134191.7354 0.7318 0.0 0.2967 0.0 0.7318 1.0 0.0
8.95 135146.0415 0.733 0.0 0.2983 0.0 0.733 1.0 0.0
9.0 136098.4624 0.734 0.0 0.3 0.0 0.734 1.0 0.0
9.05 137068.5778 0.7351 0.0 0.3017 0.0 0.7351 1.0 0.0
9.1 137974.5729 0.736 0.0 0.3033 0.0 0.736 1.0 0.0
9.15 138901.2537 0.7369 0.0 0.305 0.0 0.7369 1.0 0.0
9.2 139848.1751 0.7378 0.0 0.3067 0.0 0.7378 1.0 0.0
9.25 140759.5798 0.7387 0.0 0.3083 0.0 0.7387 1.0 0.0
9.3 141691.7827 0.7396 0.0 0.31 0.0 0.7396 1.0 0.0
9.35 142644.3357 0.7405 0.0 0.3117 0.0 0.7405 1.0 0.0
9.4 143561.1499 0.7413 0.0 0.3133 0.0 0.7413 1.0 0.0
9.45 144498.875 0.7422 0.0 0.315 0.0 0.7422 1.0 0.0
9.5 145457.0594 0.7432 0.0 0.3167 0.0 0.7432 1.0 0.0
9.55 146379.2832 0.744 0.0 0.3183 0.0 0.744 1.0 0.0
9.6 147322.5304 0.7449 0.0 0.32 0.0 0.7449 1.0 0.0
9.65 148286.3464 0.7458 0.0 0.3217 0.0 0.7458 1.0 0.0
9.7 149213.9797 0.7467 0.0 0.3233 0.0 0.7467 1.0 0.0
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9.75 150159.1667 0.7476 0.0 0.325 0.0 0.7476 1.0 0.0
9.8 151086.5769 0.7483 0.0 0.3267 0.0 0.7483 1.0 0.0
9.85 151978.6686 0.749 0.0 0.3283 0.0 0.749 1.0 0.0
9.9 152889.003 0.7496 0.0 0.33 0.0 0.7496 1.0 0.0
9.95 153818.8014 0.7503 0.0 0.3317 0.0 0.7503 1.0 0.0
10.0 154713.3273 0.751 0.0 0.3333 0.0 0.751 1.0 0.0
10.05 155627.8648 0.7517 0.0 0.335 0.0 0.7517 1.0 0.0
10.1 156561.9498 0.7524 0.0 0.3367 0.0 0.7524 1.0 0.0
10.15 157460.5934 0.753 0.0 0.3383 0.0 0.753 1.0 0.0
10.2 158379.3343 0.7537 0.0 0.34 0.0 0.7537 1.0 0.0
10.25 159317.7061 0.7544 0.0 0.3417 0.0 0.7544 1.0 0.0
10.3 160220.4673 0.7551 0.0 0.3433 0.0 0.7551 1.0 0.0
10.35 161143.4117 0.7558 0.0 0.345 0.0 0.7558 1.0 0.0
10.4 162086.045 0.7565 0.0 0.3467 0.0 0.7565 1.0 0.0
10.45 162991.6898 0.7571 0.0 0.3483 0.0 0.7571 1.0 0.0
10.5 163904.3554 0.7577 0.0 0.35 0.0 0.7577 1.0 0.0
10.55 164834.5247 0.7583 0.0 0.3517 0.0 0.7583 1.0 0.0
10.6 165713.9897 0.7589 0.0 0.3533 0.0 0.7589 1.0 0.0
10.65 166612.8536 0.7594 0.0 0.355 0.0 0.7594 1.0 0.0
10.7 167530.6435 0.7599 0.0 0.3567 0.0 0.7599 1.0 0.0
10.75 168413.3381 0.7605 0.0 0.3583 0.0 0.7605 1.0 0.0
10.8 169315.4988 0.761 0.0 0.36 0.0 0.761 1.0 0.0
10.85 170236.6508 0.7615 0.0 0.3617 0.0 0.7615 1.0 0.0
10.9 171122.5749 0.7621 0.0 0.3633 0.0 0.7621 1.0 0.0
10.95 172028.0325 0.7626 0.0 0.365 0.0 0.7626 1.0 0.0
11.0 172952.5465 0.7631 0.0 0.3667 0.0 0.7631 1.0 0.0
11.05 173841.7002 0.7637 0.0 0.3683 0.0 0.7637 1.0 0.0
11.1 174750.4546 0.7642 0.0 0.37 0.0 0.7642 1.0 0.0
11.15 175678.3307 0.7647 0.0 0.3717 0.0 0.7647 1.0 0.0
11.2 176570.7141 0.7653 0.0 0.3733 0.0 0.7653 1.0 0.0
11.25 177480.8276 0.7658 0.0 0.375 0.0 0.7658 1.0 0.0
11.3 178389.3465 0.7662 0.0 0.3767 0.0 0.7662 1.0 0.0
11.35 179262.8566 0.7667 0.0 0.3783 0.0 0.7667 1.0 0.0
11.4 180154.5089 0.7671 0.0 0.38 0.0 0.7671 1.0 0.0
11.45 181064.732 0.7675 0.0 0.3817 0.0 0.7675 1.0 0.0
11.5 181939.9562 0.768 0.0 0.3833 0.0 0.768 1.0 0.0
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11.55 182834.287 0.7684 0.0 0.385 0.0 0.7684 1.0 0.0
11.6 183747.2418 0.7688 0.0 0.3867 0.0 0.7688 1.0 0.0
11.65 184625.09 0.7693 0.0 0.3883 0.0 0.7693 1.0 0.0
11.7 185522.0995 0.7697 0.0 0.39 0.0 0.7697 1.0 0.0
11.75 186437.786 0.7701 0.0 0.3917 0.0 0.7701 1.0 0.0
11.8 187318.2582 0.7706 0.0 0.3933 0.0 0.7706 1.0 0.0
11.85 188217.9464 0.771 0.0 0.395 0.0 0.771 1.0 0.0
11.9 189136.3502 0.7714 0.0 0.3967 0.0 0.7714 1.0 0.0
11.95 190018.7408 0.7719 0.0 0.3983 0.0 0.7719 1.0 0.0
12.0 190912.8324 0.7723 0.0 0.4 0.0 0.7723 1.0 0.0
12.05 191824.4074 0.7727 0.0 0.4017 0.0 0.7727 1.0 0.0
12.1 192692.1415 0.773 0.0 0.4033 0.0 0.773 1.0 0.0
12.15 193578.6768 0.7734 0.0 0.405 0.0 0.7734 1.0 0.0
12.2 194483.526 0.7737 0.0 0.4067 0.0 0.7737 1.0 0.0
12.25 195353.4401 0.7741 0.0 0.4083 0.0 0.7741 1.0 0.0
12.3 196242.2007 0.7745 0.0 0.41 0.0 0.7745 1.0 0.0
12.35 197149.3193 0.7748 0.0 0.4117 0.0 0.7748 1.0 0.0
12.4 198021.4133 0.7752 0.0 0.4133 0.0 0.7752 1.0 0.0
12.45 198912.3993 0.7755 0.0 0.415 0.0 0.7755 1.0 0.0
12.5 199821.7873 0.7759 0.0 0.4167 0.0 0.7759 1.0 0.0
12.55 200696.0613 0.7763 0.0 0.4183 0.0 0.7763 1.0 0.0
12.6 201589.2726 0.7766 0.0 0.42 0.0 0.7766 1.0 0.0
12.65 202500.93 0.777 0.0 0.4217 0.0 0.777 1.0 0.0
12.7 203377.384 0.7773 0.0 0.4233 0.0 0.7773 1.0 0.0
12.75 204271.3567 0.7777 0.0 0.425 0.0 0.7777 1.0 0.0
12.8 205168.1277 0.778 0.0 0.4267 0.0 0.778 1.0 0.0
12.85 206030.0885 0.7783 0.0 0.4283 0.0 0.7783 1.0 0.0
12.9 206909.8929 0.7786 0.0 0.43 0.0 0.7786 1.0 0.0
12.95 207807.7364 0.7789 0.0 0.4317 0.0 0.7789 1.0 0.0
13.0 208670.7863 0.7792 0.0 0.4333 0.0 0.7792 1.0 0.0
13.05 209552.4038 0.7795 0.0 0.435 0.0 0.7795 1.0 0.0
13.1 210452.0964 0.7798 0.0 0.4367 0.0 0.7798 1.0 0.0
13.15 211316.9226 0.78 0.0 0.4383 0.0 0.78 1.0 0.0
13.2 212200.3533 0.7803 0.0 0.44 0.0 0.7803 1.0 0.0
13.25 213101.8951 0.7806 0.0 0.4417 0.0 0.7806 1.0 0.0
13.3 213968.4975 0.7809 0.0 0.4433 0.0 0.7809 1.0 0.0
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13.35 214853.7415 0.7812 0.0 0.445 0.0 0.7812 1.0 0.0
13.4 215758.0563 0.7815 0.0 0.4467 0.0 0.7815 1.0 0.0
13.45 216671.8671 0.782 0.0 0.4483 0.0 0.782 1.0 0.0
13.5 217508.4523 0.7821 0.0 0.45 0.0 0.7821 1.0 0.0
13.55 218170.1786 0.7815 0.0 0.4517 0.0 0.7815 1.0 0.0
13.6 218942.8095 0.7815 0.0 0.4533 0.0 0.7815 1.0 0.0
13.65 219731.4073 0.7814 0.0 0.455 0.0 0.7814 1.0 0.0
13.7 220535.4917 0.7813 0.0 0.4567 0.0 0.7813 1.0 0.0
13.75 221307.7673 0.7813 0.0 0.4583 0.0 0.7813 1.0 0.0
13.8 222096.0024 0.7812 0.0 0.46 0.0 0.7812 1.0 0.0
13.85 222899.717 0.7812 0.0 0.4617 0.0 0.7812 1.0 0.0
13.9 223671.6373 0.7811 0.0 0.4633 0.0 0.7811 1.0 0.0
13.95 224459.5098 0.781 0.0 0.465 0.0 0.781 1.0 0.0
14.0 225262.8546 0.781 0.0 0.4667 0.0 0.781 1.0 0.0
14.05 226034.4197 0.7809 0.0 0.4683 0.0 0.7809 1.0 0.0
14.1 226821.9295 0.7809 0.0 0.47 0.0 0.7809 1.0 0.0
14.15 227624.9044 0.7808 0.0 0.4717 0.0 0.7808 1.0 0.0
14.2 228396.1143 0.7808 0.0 0.4733 0.0 0.7808 1.0 0.0
14.25 229183.2615 0.7807 0.0 0.475 0.0 0.7807 1.0 0.0
14.3 229985.8665 0.7806 0.0 0.4767 0.0 0.7806 1.0 0.0
14.35 230756.7211 0.7806 0.0 0.4783 0.0 0.7806 1.0 0.0
14.4 231543.5057 0.7805 0.0 0.48 0.0 0.7805 1.0 0.0
14.45 232345.7409 0.7805 0.0 0.4817 0.0 0.7805 1.0 0.0
14.5 233116.2402 0.7804 0.0 0.4833 0.0 0.7804 1.0 0.0
14.55 233902.6621 0.7803 0.0 0.485 0.0 0.7803 1.0 0.0
14.6 234704.5276 0.7803 0.0 0.4867 0.0 0.7803 1.0 0.0
14.65 235474.6716 0.7802 0.0 0.4883 0.0 0.7802 1.0 0.0
14.7 236260.7309 0.7802 0.0 0.49 0.0 0.7802 1.0 0.0
14.75 237062.2265 0.7801 0.0 0.4917 0.0 0.7801 1.0 0.0
14.8 237832.0153 0.78 0.0 0.4933 0.0 0.78 1.0 0.0
14.85 238617.7119 0.78 0.0 0.495 0.0 0.78 1.0 0.0
14.9 239418.8377 0.7799 0.0 0.4967 0.0 0.7799 1.0 0.0
14.95 240188.2712 0.7799 0.0 0.4983 0.0 0.7799 1.0 0.0
15.0 240973.6052 0.7798 0.0 0.5 0.0 0.7798 1.0 0.0
15.05 240973.6052 0.7798 0.0 0.5 0.0017 0.7798 1.0 0.0
15.1 240973.6052 0.7798 0.0 0.5 0.0033 0.7798 1.0 0.0
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15.15 240973.6052 0.7798 0.0 0.5 0.005 0.7798 1.0 0.0
15.2 240973.6052 0.7798 0.0 0.5 0.0067 0.7798 1.0 0.0
15.25 240973.6052 0.7798 0.0 0.5 0.0083 0.7798 1.0 0.0
15.3 240973.6052 0.7798 0.0 0.5 0.01 0.7798 1.0 0.0
15.35 240973.6052 0.7798 0.0 0.5 0.0117 0.7798 1.0 0.0
15.4 240973.6052 0.7798 0.0 0.5 0.0133 0.7798 1.0 0.0
15.45 240973.6052 0.7798 0.0 0.5 0.015 0.7798 1.0 0.0
15.5 240973.6052 0.7798 0.0 0.5 0.0167 0.7798 1.0 0.0
15.55 240973.6052 0.7798 0.0 0.5 0.0183 0.7798 1.0 0.0
15.6 240973.6052 0.7798 0.0 0.5 0.02 0.7798 1.0 0.0
15.65 240973.6052 0.7798 0.0 0.5 0.0217 0.7798 1.0 0.0
15.7 240973.6052 0.7798 0.0 0.5 0.0233 0.7798 1.0 0.0
15.75 240973.6052 0.7798 0.0 0.5 0.025 0.7798 1.0 0.0
15.8 240973.6052 0.7798 0.0 0.5 0.0267 0.7798 0.9999 0.0001
15.85 240973.6052 0.7798 0.0 0.5 0.0283 0.7797 0.9999 0.0001
15.9 240973.6052 0.7798 0.0 0.5 0.03 0.7797 0.9999 0.0001
15.95 240973.6052 0.7798 0.0 0.5 0.0317 0.7797 0.9998 0.0002
16.0 240973.6052 0.7798 0.0 0.5 0.0333 0.7796 0.9997 0.0003
16.05 240973.6052 0.7798 0.0 0.5 0.035 0.7795 0.9996 0.0004
16.1 240973.6052 0.7798 0.0 0.5 0.0367 0.7793 0.9994 0.0006
16.15 240973.6052 0.7798 0.0 0.5 0.0383 0.779 0.999 0.001
16.2 240973.6052 0.7798 0.0 0.5 0.04 0.7783 0.998 0.002
16.25 240973.6052 0.7798 0.0 0.5 0.0417 0.7761 0.9952 0.0048
16.3 240973.6052 0.7798 0.0 0.5 0.0433 0.7669 0.9835 0.0165
16.35 240973.6052 0.7798 0.0 0.5 0.045 0.7154 0.9174 0.0826
16.4 240070.729 0.7438 0.6642 0.318 0.2287 0.7105 0.5817 0.4183
16.45 242436.4512 0.7153 0.7153 0.2742 0.2742 0.7153 0.5 0.5
16.5 243402.4594 0.7161 0.7161 0.275 0.275 0.7161 0.5 0.5
16.55 244349.0176 0.7167 0.7167 0.2759 0.2758 0.7167 0.5 0.5
16.6 245334.377 0.7173 0.7173 0.2767 0.2767 0.7173 0.5 0.5
16.65 246245.0763 0.7179 0.7179 0.2775 0.2775 0.7179 0.5 0.5
16.7 247195.0899 0.7185 0.7185 0.2784 0.2783 0.7185 0.5 0.5
16.75 248181.2087 0.7191 0.7191 0.2792 0.2792 0.7191 0.5 0.5
16.8 249092.7889 0.7197 0.7197 0.28 0.28 0.7197 0.5 0.5
16.85 250043.761 0.7203 0.7203 0.2809 0.2808 0.7203 0.5 0.5
16.9 251033.7002 0.721 0.721 0.2817 0.2817 0.721 0.5 0.5
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Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

16.95 251976.2062 0.7275 0.7154 0.2907 0.2743 0.7216 0.5145 0.4855
17.0 252964.5443 0.7273 0.7169 0.2905 0.2762 0.7223 0.5126 0.4874
17.05 253897.378 0.7228 0.7228 0.2842 0.2842 0.7228 0.5 0.5
17.1 254816.1175 0.7233 0.7233 0.285 0.285 0.7233 0.5 0.5
17.15 255774.5486 0.724 0.7239 0.2859 0.2858 0.7239 0.5 0.5
17.2 256772.2422 0.7246 0.7246 0.2867 0.2867 0.7246 0.5 0.5
17.25 257694.5613 0.7251 0.7251 0.2875 0.2875 0.7251 0.5 0.5
17.3 258656.722 0.7258 0.7257 0.2884 0.2883 0.7258 0.5 0.5
17.35 259658.2928 0.7264 0.7264 0.2892 0.2892 0.7264 0.5 0.5
17.4 260584.1915 0.727 0.727 0.29 0.29 0.727 0.5 0.5
17.45 261550.0817 0.7276 0.7275 0.2909 0.2908 0.7276 0.5 0.5
17.5 262555.5297 0.7282 0.7282 0.2917 0.2917 0.7282 0.5 0.5
17.55 263485.008 0.7288 0.7288 0.2925 0.2925 0.7288 0.5 0.5
17.6 264454.6277 0.7294 0.7293 0.2934 0.2933 0.7294 0.5 0.5
17.65 265463.9529 0.73 0.73 0.2942 0.2942 0.73 0.5 0.5
17.7 266397.0109 0.7306 0.7306 0.295 0.295 0.7306 0.5 0.5
17.75 267370.3601 0.7312 0.7312 0.2959 0.2958 0.7312 0.5 0.5
17.8 268383.4708 0.7318 0.7318 0.2967 0.2967 0.7318 0.5 0.5
17.85 269317.9019 0.7324 0.7324 0.2975 0.2975 0.7324 0.5 0.5
17.9 270292.1832 0.733 0.733 0.2984 0.2983 0.733 0.5 0.5
17.95 271282.2411 0.7335 0.7335 0.2992 0.2992 0.7335 0.5 0.5
18.0 272196.9248 0.734 0.734 0.3 0.3 0.734 0.5 0.5
18.05 273148.2162 0.7346 0.7345 0.3009 0.3008 0.7346 0.5 0.5
18.1 274137.1556 0.7351 0.7351 0.3017 0.3017 0.7351 0.5 0.5
18.15 275024.4007 0.7355 0.7355 0.3025 0.3025 0.7355 0.5 0.5
18.2 275949.7019 0.736 0.736 0.3034 0.3033 0.736 0.5 0.5
18.25 276912.6121 0.7365 0.7365 0.3042 0.3042 0.7365 0.5 0.5
18.3 277802.5073 0.7369 0.7369 0.305 0.305 0.7369 0.5 0.5
18.35 278730.5696 0.7373 0.7373 0.3059 0.3058 0.7373 0.5 0.5
18.4 279696.3503 0.7378 0.7378 0.3067 0.3067 0.7378 0.5 0.5
18.45 280588.8956 0.7382 0.7382 0.3075 0.3075 0.7382 0.5 0.5
18.5 281519.719 0.7387 0.7386 0.3084 0.3083 0.7387 0.5 0.5
18.55 282488.37 0.7391 0.7391 0.3092 0.3092 0.7391 0.5 0.5
18.6 283383.5654 0.7396 0.7396 0.31 0.31 0.7396 0.5 0.5
18.65 284317.1499 0.74 0.74 0.3109 0.3108 0.74 0.5 0.5
18.7 285288.6714 0.7405 0.7405 0.3117 0.3117 0.7405 0.5 0.5
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Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

18.75 286186.5169 0.7409 0.7409 0.3125 0.3125 0.7409 0.5 0.5
18.8 287122.8625 0.7414 0.7413 0.3134 0.3133 0.7413 0.5 0.5
18.85 288097.2543 0.7418 0.7418 0.3142 0.3142 0.7418 0.5 0.5
18.9 288997.7499 0.7422 0.7422 0.315 0.315 0.7422 0.5 0.5
18.95 289936.8566 0.7427 0.7427 0.3159 0.3158 0.7427 0.5 0.5
19.0 290914.1189 0.7432 0.7432 0.3167 0.3167 0.7432 0.5 0.5
19.05 291817.2646 0.7436 0.7436 0.3175 0.3175 0.7436 0.5 0.5
19.1 292759.1323 0.744 0.744 0.3184 0.3183 0.744 0.5 0.5
19.15 293739.265 0.7445 0.7445 0.3192 0.3192 0.7445 0.5 0.5
19.2 294645.0609 0.7449 0.7449 0.32 0.32 0.7449 0.5 0.5
19.25 295589.6897 0.7454 0.7453 0.3209 0.3208 0.7454 0.5 0.5
19.3 296572.6928 0.7458 0.7458 0.3217 0.3217 0.7458 0.5 0.5
19.35 297481.1387 0.7463 0.7463 0.3225 0.3225 0.7463 0.5 0.5
19.4 298428.4567 0.7467 0.7467 0.3234 0.3233 0.7467 0.5 0.5
19.45 299410.6856 0.7472 0.7472 0.3242 0.3242 0.7472 0.5 0.5
19.5 300318.3334 0.7476 0.7476 0.325 0.325 0.7476 0.5 0.5
19.55 301227.3755 0.7479 0.7479 0.3259 0.3258 0.7479 0.5 0.5
19.6 302173.1539 0.7483 0.7483 0.3267 0.3267 0.7483 0.5 0.5
19.65 303046.8777 0.7486 0.7486 0.3275 0.3275 0.7486 0.5 0.5
19.7 303957.8496 0.749 0.7489 0.3284 0.3283 0.749 0.5 0.5
19.75 304903.9103 0.7493 0.7493 0.3292 0.3292 0.7493 0.5 0.5
19.8 305778.0061 0.7496 0.7496 0.33 0.33 0.7496 0.5 0.5
19.85 306689.3918 0.75 0.75 0.3309 0.3308 0.75 0.5 0.5
19.9 307637.6029 0.7503 0.7503 0.3317 0.3317 0.7503 0.5 0.5
19.95 308513.7159 0.7507 0.7507 0.3325 0.3325 0.7507 0.5 0.5
20.0 309427.2033 0.751 0.751 0.3334 0.3333 0.751 0.5 0.5
20.05 310377.5993 0.7514 0.7514 0.3342 0.3342 0.7514 0.5 0.5
20.1 311255.7296 0.7517 0.7517 0.335 0.335 0.7517 0.5 0.5
20.15 312171.3187 0.752 0.752 0.3359 0.3358 0.752 0.5 0.5
20.2 313123.8997 0.7524 0.7524 0.3367 0.3367 0.7524 0.5 0.5
20.25 314004.0472 0.7527 0.7527 0.3375 0.3375 0.7527 0.5 0.5
20.3 314921.738 0.7531 0.753 0.3384 0.3383 0.753 0.5 0.5
20.35 315876.5039 0.7534 0.7534 0.3392 0.3392 0.7534 0.5 0.5
20.4 316758.6687 0.7537 0.7537 0.34 0.34 0.7537 0.5 0.5
20.45 317678.4613 0.7541 0.754 0.3409 0.3408 0.7541 0.5 0.5
20.5 318635.4121 0.7544 0.7544 0.3417 0.3417 0.7544 0.5 0.5
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Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

20.55 319519.5941 0.7547 0.7547 0.3425 0.3425 0.7547 0.5 0.5
20.6 320441.4884 0.7551 0.7551 0.3434 0.3433 0.7551 0.5 0.5
20.65 321400.6242 0.7554 0.7554 0.3442 0.3442 0.7554 0.5 0.5
20.7 322286.8234 0.7558 0.7558 0.345 0.345 0.7558 0.5 0.5
20.75 323210.8195 0.7561 0.7561 0.3459 0.3458 0.7561 0.5 0.5
20.8 324172.09 0.7565 0.7565 0.3467 0.3467 0.7565 0.5 0.5
20.85 325059.1001 0.7568 0.7568 0.3475 0.3475 0.7568 0.5 0.5
20.9 325983.6695 0.7571 0.7571 0.3484 0.3483 0.7571 0.5 0.5
20.95 326932.4141 0.7574 0.7574 0.3492 0.3492 0.7574 0.5 0.5
21.0 327808.7107 0.7577 0.7577 0.35 0.35 0.7577 0.5 0.5
21.05 328720.8099 0.758 0.758 0.3509 0.3508 0.758 0.5 0.5
21.1 329669.0494 0.7583 0.7583 0.3517 0.3517 0.7583 0.5 0.5
21.15 330530.4784 0.7586 0.7586 0.3525 0.3525 0.7586 0.5 0.5
21.2 331428.5187 0.7589 0.7589 0.3534 0.3533 0.7589 0.5 0.5
21.25 332362.6961 0.7591 0.7591 0.3542 0.3542 0.7591 0.5 0.5
21.3 333225.7072 0.7594 0.7594 0.355 0.355 0.7594 0.5 0.5
21.35 334125.396 0.7597 0.7597 0.3559 0.3558 0.7597 0.5 0.5
21.4 335061.287 0.7599 0.7599 0.3567 0.3567 0.7599 0.5 0.5
21.45 335925.8803 0.7602 0.7602 0.3575 0.3575 0.7602 0.5 0.5
21.5 336827.2174 0.7605 0.7605 0.3584 0.3583 0.7605 0.5 0.5
21.55 337764.8221 0.7607 0.7607 0.3592 0.3592 0.7607 0.5 0.5
21.6 338630.9976 0.761 0.761 0.36 0.36 0.761 0.5 0.5
21.65 339533.9831 0.7613 0.7613 0.3609 0.3608 0.7613 0.5 0.5
21.7 340473.3015 0.7615 0.7615 0.3617 0.3617 0.7615 0.5 0.5
21.75 341341.0592 0.7618 0.7618 0.3625 0.3625 0.7618 0.5 0.5
21.8 342245.6931 0.7621 0.7621 0.3634 0.3633 0.7621 0.5 0.5
21.85 343186.7252 0.7623 0.7623 0.3642 0.3642 0.7623 0.5 0.5
21.9 344056.0649 0.7626 0.7626 0.365 0.365 0.7626 0.5 0.5
21.95 344962.3473 0.7629 0.7629 0.3659 0.3658 0.7629 0.5 0.5
22.0 345905.093 0.7631 0.7631 0.3667 0.3667 0.7631 0.5 0.5
22.05 346776.015 0.7634 0.7634 0.3675 0.3675 0.7634 0.5 0.5
22.1 347683.9457 0.7637 0.7637 0.3684 0.3683 0.7637 0.5 0.5
22.15 348628.4051 0.7639 0.7639 0.3692 0.3692 0.7639 0.5 0.5
22.2 349500.9092 0.7642 0.7642 0.37 0.37 0.7642 0.5 0.5
22.25 350410.4884 0.7645 0.7645 0.3709 0.3708 0.7645 0.5 0.5
22.3 351356.6615 0.7647 0.7647 0.3717 0.3717 0.7647 0.5 0.5
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22.35 352230.7478 0.765 0.765 0.3725 0.3725 0.765 0.5 0.5
22.4 353141.9364 0.7653 0.7653 0.3734 0.3733 0.7653 0.5 0.5
22.45 354087.8513 0.7655 0.7655 0.3742 0.3742 0.7655 0.5 0.5
22.5 354961.6553 0.7658 0.7658 0.375 0.375 0.7658 0.5 0.5
22.55 355852.3059 0.766 0.766 0.3759 0.3758 0.766 0.5 0.5
22.6 356778.693 0.7662 0.7662 0.3767 0.3767 0.7662 0.5 0.5
22.65 357634.3349 0.7664 0.7664 0.3775 0.3775 0.7664 0.5 0.5
22.7 358526.2299 0.7667 0.7667 0.3784 0.3783 0.7667 0.5 0.5
22.75 359452.9801 0.7669 0.7669 0.3792 0.3792 0.7669 0.5 0.5
22.8 360309.0179 0.7671 0.7671 0.38 0.38 0.7671 0.5 0.5
22.85 361201.3402 0.7673 0.7673 0.3809 0.3808 0.7673 0.5 0.5
22.9 362129.4641 0.7675 0.7675 0.3817 0.3817 0.7675 0.5 0.5
22.95 362986.7874 0.7678 0.7678 0.3825 0.3825 0.7678 0.5 0.5
23.0 363880.449 0.768 0.768 0.3834 0.3833 0.768 0.5 0.5
23.05 364809.9652 0.7682 0.7682 0.3842 0.3842 0.7682 0.5 0.5
23.1 365668.574 0.7684 0.7684 0.385 0.385 0.7684 0.5 0.5
23.15 366563.575 0.7686 0.7686 0.3859 0.3858 0.7686 0.5 0.5
23.2 367494.4836 0.7688 0.7688 0.3867 0.3867 0.7688 0.5 0.5
23.25 368354.3779 0.769 0.769 0.3875 0.3875 0.769 0.5 0.5
23.3 369250.7182 0.7693 0.7693 0.3884 0.3883 0.7693 0.5 0.5
23.35 370183.0192 0.7695 0.7695 0.3892 0.3892 0.7695 0.5 0.5
23.4 371044.199 0.7697 0.7697 0.39 0.39 0.7697 0.5 0.5
23.45 371941.8786 0.7699 0.7699 0.3909 0.3908 0.7699 0.5 0.5
23.5 372875.5719 0.7701 0.7701 0.3917 0.3917 0.7701 0.5 0.5
23.55 373738.0372 0.7704 0.7704 0.3925 0.3925 0.7704 0.5 0.5
23.6 374637.0562 0.7706 0.7706 0.3934 0.3933 0.7706 0.5 0.5
23.65 375572.1419 0.7708 0.7708 0.3942 0.3942 0.7708 0.5 0.5
23.7 376435.8927 0.771 0.771 0.395 0.395 0.771 0.5 0.5
23.75 377336.251 0.7712 0.7712 0.3959 0.3958 0.7712 0.5 0.5
23.8 378272.7003 0.7714 0.7714 0.3967 0.3967 0.7714 0.5 0.5
23.85 379137.0467 0.7716 0.7716 0.3975 0.3975 0.7716 0.5 0.5
23.9 380037.8706 0.7719 0.7719 0.3984 0.3983 0.7719 0.5 0.5
23.95 380967.3043 0.7721 0.7721 0.3992 0.3992 0.7721 0.5 0.5
24.0 381825.6649 0.7723 0.7723 0.4 0.4 0.7723 0.5 0.5
24.05 382719.5097 0.7725 0.7725 0.4009 0.4008 0.7725 0.5 0.5
24.1 383648.8148 0.7727 0.7727 0.4017 0.4017 0.7727 0.5 0.5
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s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

24.15 384498.8357 0.7728 0.7728 0.4025 0.4025 0.7728 0.5 0.5
24.2 385384.815 0.773 0.773 0.4034 0.4033 0.773 0.5 0.5
24.25 386306.2647 0.7732 0.7732 0.4042 0.4042 0.7732 0.5 0.5
24.3 387157.3535 0.7734 0.7734 0.405 0.405 0.7734 0.5 0.5
24.35 388044.4455 0.7736 0.7736 0.4059 0.4058 0.7736 0.5 0.5
24.4 388967.052 0.7737 0.7737 0.4067 0.4067 0.7737 0.5 0.5
24.45 389819.2087 0.7739 0.7739 0.4075 0.4075 0.7739 0.5 0.5
24.5 390707.4134 0.7741 0.7741 0.4084 0.4083 0.7741 0.5 0.5
24.55 391631.1766 0.7743 0.7743 0.4092 0.4092 0.7743 0.5 0.5
24.6 392484.4013 0.7745 0.7745 0.41 0.41 0.7745 0.5 0.5
24.65 393373.7186 0.7746 0.7746 0.4109 0.4108 0.7746 0.5 0.5
24.7 394298.6386 0.7748 0.7748 0.4117 0.4117 0.7748 0.5 0.5
24.75 395152.9312 0.775 0.775 0.4125 0.4125 0.775 0.5 0.5
24.8 396043.3613 0.7752 0.7752 0.4134 0.4133 0.7752 0.5 0.5
24.85 396969.4379 0.7754 0.7754 0.4142 0.4142 0.7754 0.5 0.5
24.9 397824.7985 0.7755 0.7755 0.415 0.415 0.7755 0.5 0.5
24.95 398716.3412 0.7757 0.7757 0.4159 0.4158 0.7757 0.5 0.5
25.0 399643.5746 0.7759 0.7759 0.4167 0.4167 0.7759 0.5 0.5
25.05 400500.0032 0.7761 0.7761 0.4175 0.4175 0.7761 0.5 0.5
25.1 401392.6586 0.7763 0.7763 0.4184 0.4183 0.7763 0.5 0.5
25.15 402321.0487 0.7764 0.7764 0.4192 0.4192 0.7764 0.5 0.5
25.2 403178.5452 0.7766 0.7766 0.42 0.42 0.7766 0.5 0.5
25.25 404072.3133 0.7768 0.7768 0.4209 0.4208 0.7768 0.5 0.5
25.3 405001.8601 0.777 0.777 0.4217 0.4217 0.777 0.5 0.5
25.35 405860.4246 0.7772 0.7772 0.4225 0.4225 0.7772 0.5 0.5
25.4 406755.2759 0.7773 0.7773 0.4234 0.4233 0.7773 0.5 0.5
25.45 407684.4892 0.7775 0.7775 0.4242 0.4242 0.7775 0.5 0.5
25.5 408542.7134 0.7777 0.7777 0.425 0.425 0.7777 0.5 0.5
25.55 409421.9194 0.7778 0.7778 0.4259 0.4258 0.7778 0.5 0.5
25.6 410336.2554 0.778 0.778 0.4267 0.4267 0.778 0.5 0.5
25.65 411180.6513 0.7781 0.7781 0.4275 0.4275 0.7781 0.5 0.5
25.7 412060.6911 0.7783 0.7783 0.4284 0.4283 0.7783 0.5 0.5
25.75 412975.1917 0.7784 0.7784 0.4292 0.4292 0.7784 0.5 0.5
25.8 413819.7858 0.7786 0.7786 0.43 0.43 0.7786 0.5 0.5
25.85 414700.0436 0.7787 0.7787 0.4309 0.4308 0.7787 0.5 0.5
25.9 415615.4727 0.7789 0.7789 0.4317 0.4317 0.7789 0.5 0.5
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25.95 416460.937 0.779 0.779 0.4325 0.4325 0.779 0.5 0.5
26.0 417342.1015 0.7792 0.7792 0.4334 0.4333 0.7792 0.5 0.5
26.05 418258.4731 0.7793 0.7793 0.4342 0.4342 0.7793 0.5 0.5
26.1 419104.8075 0.7795 0.7795 0.435 0.435 0.7795 0.5 0.5
26.15 419986.8786 0.7796 0.7796 0.4359 0.4358 0.7796 0.5 0.5
26.2 420904.1928 0.7798 0.7798 0.4367 0.4367 0.7798 0.5 0.5
26.25 421751.3974 0.7799 0.7799 0.4375 0.4375 0.7799 0.5 0.5
26.3 422634.3751 0.7801 0.78 0.4384 0.4383 0.78 0.5 0.5
26.35 423552.6318 0.7802 0.7802 0.4392 0.4392 0.7802 0.5 0.5
26.4 424400.7066 0.7803 0.7803 0.44 0.44 0.7803 0.5 0.5
26.45 425284.591 0.7805 0.7805 0.4409 0.4408 0.7805 0.5 0.5
26.5 426203.7901 0.7806 0.7806 0.4417 0.4417 0.7806 0.5 0.5
26.55 427052.7351 0.7808 0.7808 0.4425 0.4425 0.7808 0.5 0.5
26.6 427937.5261 0.7809 0.7809 0.4434 0.4433 0.7809 0.5 0.5
26.65 428857.6678 0.7811 0.7811 0.4442 0.4442 0.7811 0.5 0.5
26.7 429707.483 0.7812 0.7812 0.445 0.445 0.7812 0.5 0.5
26.75 430593.1806 0.7814 0.7814 0.4459 0.4458 0.7814 0.5 0.5
26.8 431516.1127 0.7815 0.7815 0.4467 0.4467 0.7815 0.5 0.5
26.85 432411.2293 0.7817 0.7817 0.4475 0.4475 0.7817 0.5 0.5
26.9 433342.3383 0.782 0.782 0.4484 0.4483 0.782 0.5 0.5
26.95 434213.9048 0.782 0.782 0.4492 0.4492 0.782 0.5 0.5
27.0 435016.9045 0.7821 0.7821 0.45 0.45 0.7821 0.5 0.5
27.05 435663.2817 0.7818 0.7818 0.4509 0.4508 0.7818 0.5 0.5
27.1 436340.3573 0.7815 0.7815 0.4517 0.4517 0.7815 0.5 0.5
27.15 437097.4037 0.7815 0.7815 0.4525 0.4525 0.7815 0.5 0.5
27.2 437886.092 0.7815 0.7815 0.4534 0.4533 0.7815 0.5 0.5
27.25 438705.9423 0.7814 0.7814 0.4542 0.4542 0.7814 0.5 0.5
27.3 439462.8146 0.7814 0.7814 0.455 0.455 0.7814 0.5 0.5
27.35 440251.3217 0.7814 0.7814 0.4559 0.4558 0.7814 0.5 0.5
27.4 441070.9834 0.7813 0.7813 0.4567 0.4567 0.7813 0.5 0.5
27.45 441827.6817 0.7813 0.7813 0.4575 0.4575 0.7813 0.5 0.5
27.5 442616.0074 0.7813 0.7813 0.4584 0.4583 0.7813 0.5 0.5
27.55 443435.4806 0.7812 0.7812 0.4592 0.4592 0.7812 0.5 0.5
27.6 444192.0049 0.7812 0.7812 0.46 0.46 0.7812 0.5 0.5
27.65 444980.1493 0.7812 0.7812 0.4609 0.4608 0.7812 0.5 0.5
27.7 445799.434 0.7812 0.7812 0.4617 0.4617 0.7812 0.5 0.5
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Tables

Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

27.75 446555.7842 0.7811 0.7811 0.4625 0.4625 0.7811 0.5 0.5
27.8 447343.7473 0.7811 0.7811 0.4634 0.4633 0.7811 0.5 0.5
27.85 448162.8435 0.7811 0.7811 0.4642 0.4642 0.7811 0.5 0.5
27.9 448919.0197 0.781 0.781 0.465 0.465 0.781 0.5 0.5
27.95 449706.8015 0.781 0.781 0.4659 0.4658 0.781 0.5 0.5
28.0 450525.7092 0.781 0.781 0.4667 0.4667 0.781 0.5 0.5
28.05 451281.7113 0.781 0.781 0.4675 0.4675 0.781 0.5 0.5
28.1 452069.3117 0.7809 0.7809 0.4684 0.4683 0.7809 0.5 0.5
28.15 452888.0309 0.7809 0.7809 0.4692 0.4692 0.7809 0.5 0.5
28.2 453643.859 0.7809 0.7809 0.47 0.47 0.7809 0.5 0.5
28.25 454431.2782 0.7808 0.7808 0.4709 0.4708 0.7808 0.5 0.5
28.3 455249.8088 0.7808 0.7808 0.4717 0.4717 0.7808 0.5 0.5
28.35 456005.4629 0.7808 0.7808 0.4725 0.4725 0.7808 0.5 0.5
28.4 456792.7007 0.7807 0.7808 0.4734 0.4733 0.7808 0.5 0.5
28.45 457611.0429 0.7807 0.7807 0.4742 0.4742 0.7807 0.5 0.5
28.5 458366.5229 0.7807 0.7807 0.475 0.475 0.7807 0.5 0.5
28.55 459153.5794 0.7807 0.7807 0.4759 0.4758 0.7807 0.5 0.5
28.6 459971.7331 0.7806 0.7806 0.4767 0.4767 0.7806 0.5 0.5
28.65 460727.0391 0.7806 0.7806 0.4775 0.4775 0.7806 0.5 0.5
28.7 461513.9142 0.7806 0.7806 0.4784 0.4783 0.7806 0.5 0.5
28.75 462331.8794 0.7805 0.7805 0.4792 0.4792 0.7805 0.5 0.5
28.8 463087.0113 0.7805 0.7805 0.48 0.48 0.7805 0.5 0.5
28.85 463873.7052 0.7805 0.7805 0.4809 0.4808 0.7805 0.5 0.5
28.9 464691.4818 0.7805 0.7805 0.4817 0.4817 0.7805 0.5 0.5
28.95 465446.4398 0.7804 0.7804 0.4825 0.4825 0.7804 0.5 0.5
29.0 466232.9522 0.7804 0.7804 0.4834 0.4833 0.7804 0.5 0.5
29.05 467050.5404 0.7804 0.7804 0.4842 0.4842 0.7804 0.5 0.5
29.1 467805.3243 0.7803 0.7803 0.485 0.485 0.7803 0.5 0.5
29.15 468591.6555 0.7803 0.7803 0.4859 0.4858 0.7803 0.5 0.5
29.2 469409.0551 0.7803 0.7803 0.4867 0.4867 0.7803 0.5 0.5
29.25 470163.665 0.7803 0.7803 0.4875 0.4875 0.7803 0.5 0.5
29.3 470949.8148 0.7802 0.7802 0.4884 0.4883 0.7802 0.5 0.5
29.35 471767.026 0.7802 0.7802 0.4892 0.4892 0.7802 0.5 0.5
29.4 472521.4618 0.7802 0.7802 0.49 0.49 0.7802 0.5 0.5
29.45 473307.4303 0.7801 0.7801 0.4909 0.4908 0.7801 0.5 0.5
29.5 474124.453 0.7801 0.7801 0.4917 0.4917 0.7801 0.5 0.5
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Qtot (m3

s
) Ptot (W ) η1 (−) η2 (−) q0 (−) q1 (−) ηtot (−) r0 (−) r1 (−)

29.55 474878.7147 0.7801 0.7801 0.4925 0.4925 0.7801 0.5 0.5
29.6 475664.5019 0.78 0.78 0.4934 0.4933 0.78 0.5 0.5
29.65 476481.3361 0.78 0.78 0.4942 0.4942 0.78 0.5 0.5
29.7 477235.4238 0.78 0.78 0.495 0.495 0.78 0.5 0.5
29.75 478021.0297 0.78 0.78 0.4959 0.4958 0.78 0.5 0.5
29.8 478837.6753 0.7799 0.7799 0.4967 0.4967 0.7799 0.5 0.5
29.85 479591.589 0.7799 0.7799 0.4975 0.4975 0.7799 0.5 0.5
29.9 480377.0136 0.7799 0.7799 0.4984 0.4983 0.7799 0.5 0.5
29.95 481193.4707 0.7798 0.7798 0.4992 0.4992 0.7798 0.5 0.5
30.0 481947.2104 0.7798 0.7798 0.5 0.5 0.7798 0.5 0.5

Table A.3: Output file for basic example

A.2 Four unit example

A.2.1 Input files

The four unit example used a lower discretization, therefore the efficiency tables
also had a lower discretization. Underneath are the input files for generator and
transformer attached, as well as for the four different hydraulic machines.

Relative Power Efficiency
0.0 0.886
0.1 0.932
0.2 0.96
0.3 0.979
0.4 0.986
0.5 0.9866
0.6 0.9879
0.7 0.9888
0.8 0.9893
0.9 0.9896
1.0 0.9898

1.109 0.9915

Table A.4: Generator input file for all units
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Tables

n (rpm) Q (m3/s) η (%) H (m)
187.5 21.1074 0.0016 119.0
187.5 30.915 0.3412 119.0
187.5 42.8005 0.5636 119.0
187.5 55.1577 0.6853 119.0
187.5 68.6911 0.7772 119.0
187.5 82.7798 0.8446 119.0
187.5 97.0035 0.8948 119.0
187.5 111.3193 0.9271 119.0
187.5 113.2619 0.9294 119.0
187.5 115.2548 0.9312 119.0
187.5 117.3523 0.9329 119.0
187.5 119.2807 0.9329 119.0
187.5 121.2895 0.9341 119.0
187.5 122.4947 0.9356 119.0
187.5 123.5393 0.9343 119.0
187.5 124.6117 0.9333 119.0
187.5 125.8293 0.9351 119.0
187.5 127.4296 0.9399 119.0
187.5 128.6878 0.9429 119.0
187.5 130.1225 0.9426 119.0
187.5 130.7656 0.9436 119.0
187.5 137.3596 0.9497 119.0
187.5 150.1756 0.965 119.0
187.5 161.5806 0.9607 119.0
187.5 171.2357 0.9561 119.0
187.5 180.9942 0.9452 119.0
187.5 189.568 0.9337 119.0

Table A.5: Hydraulic machines input file unit 1
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Tables

n (rpm) Q (m3/s) η (%) H (m)
187.5 21.1074 0.0015 1.0
187.5 30.915 0.3243 1.0
187.5 42.8005 0.5357 1.0
187.5 55.1577 0.6513 1.0
187.5 68.6911 0.7387 1.0
187.5 82.7798 0.8027 1.0
187.5 97.0035 0.8504 1.0
187.5 111.3193 0.8812 1.0
187.5 113.2619 0.8833 1.0
187.5 115.2548 0.885 1.0
187.5 117.3523 0.8866 1.0
187.5 119.2807 0.8867 1.0
187.5 121.2895 0.8877 1.0
187.5 122.4947 0.8892 1.0
187.5 123.5393 0.888 1.0
187.5 124.6117 0.887 1.0
187.5 125.8293 0.8887 1.0
187.5 127.4296 0.8933 1.0
187.5 128.6878 0.8961 1.0
187.5 130.1225 0.8959 1.0
187.5 130.7656 0.8968 1.0
187.5 137.3596 0.9026 1.0
187.5 150.1756 0.9171 1.0
187.5 161.5806 0.913 1.0
187.5 171.2357 0.9086 1.0
187.5 180.9942 0.8983 1.0
187.5 189.568 0.8873 1.0

Table A.6: Hydraulic machines input file unit 2
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Tables

n (rpm) Q (m3/s) η (%) H (m)
187.5 21.1074 0.3344 1.0 nan nan
187.5 30.915 0.5523 1.0 nan 9.8075
187.5 42.8005 0.6716 1.0 nan 11.8856
187.5 55.1577 0.7617 1.0 nan 12.3571
187.5 68.6911 0.8277 1.0 nan 13.5334
187.5 82.7798 0.8769 1.0 nan 14.0887
187.5 97.0035 0.9086 1.0 nan 14.2237
187.5 111.3193 0.9109 1.0 nan 14.3158
187.5 113.2619 0.9126 1.0 nan 1.9426
187.5 115.2548 0.9142 1.0 nan 1.9929
187.5 117.3523 0.9143 1.0 nan 2.0975
187.5 119.2807 0.9154 1.0 nan 1.9284
187.5 121.2895 0.9169 1.0 nan 2.0088
187.5 122.4947 0.9156 1.0 nan 1.2053
187.5 123.5393 0.9147 1.0 nan 1.0446
187.5 124.6117 0.9164 1.0 nan 1.0724
187.5 125.8293 0.9211 1.0 nan 1.2176
187.5 127.4296 0.924 1.0 nan 1.6004
187.5 128.6878 0.9238 1.0 nan 1.2582
187.5 130.1225 0.9247 1.0 nan 1.4347
187.5 130.7656 0.9307 1.0 nan 0.6431
187.5 137.3596 0.9457 1.0 nan 6.594
187.5 150.1756 0.9414 1.0 nan 12.8159
187.5 161.5806 0.9369 1.0 nan 11.405
187.5 171.2357 0.9263 1.0 nan 9.6551
187.5 180.9942 0.915 1.0 nan 9.7585
187.5 189.568 0.8987 1.0 nan 8.5738

Table A.7: Hydraulic machines input file unit 3
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Tables

n (rpm) Q (m3/s) η (%) H (m)
187.5 21.1074 0.0016 1.0
187.5 30.915 0.3412 1.0
187.5 42.8005 0.5636 1.0
187.5 55.1577 0.6853 1.0
187.5 68.6911 0.7772 1.0
187.5 82.7798 0.8446 1.0
187.5 97.0035 0.8948 1.0
187.5 111.3193 0.9271 1.0
187.5 113.2619 0.9294 1.0
187.5 115.2548 0.9312 1.0
187.5 117.3523 0.9329 1.0
187.5 119.2807 0.9329 1.0
187.5 121.2895 0.9341 1.0
187.5 122.4947 0.9356 1.0
187.5 123.5393 0.9343 1.0
187.5 124.6117 0.9333 1.0
187.5 125.8293 0.9351 1.0
187.5 127.4296 0.9399 1.0
187.5 128.6878 0.9429 1.0
187.5 130.1225 0.9426 1.0
187.5 130.7656 0.9436 1.0
187.5 137.3596 0.9497 1.0
187.5 150.1756 0.965 1.0
187.5 161.5806 0.9607 1.0
187.5 171.2357 0.9561 1.0
187.5 180.9942 0.9452 1.0
187.5 189.568 0.9337 1.0

Table A.8: Hydraulic machines input file unit 4
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Tables

Relative Power Efficiency
0.0 0.886
0.1 0.932
0.2 0.96
0.3 0.979
0.4 0.986
0.5 0.9866
0.6 0.9879
0.7 0.9888
0.8 0.9893
0.9 0.9896
1.0 0.9898

1.109 0.9915

Table A.9: Transformer input file for all units
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