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1. Introduction

Production companies face volatility through mass cus-
tomization, fast market changes or global disturbances leading
to more frequently changing production and smaller lot sizes.
Those changes often require adapting the parts’ machining
setup and clamping situation within a CAM-System. Workers
usually clamp the parts, making the process vulnerable to hu-
man error. Wrong clamping setup can lead to scrap production,
tool breakage or machine crashes, production interruptions, and
additional costs. Machine vision applications are used to check
if parts are correctly clamped with the suitable clamping device
to counter manual errors in the clamping process.

Machine vision applications must be trained with image
data, requiring training and test sets of the actual application.
This procedure is cost-intensive because (i) images often have
to be taken in the production environment, leading to down-
times, and (ii) it has to be performed by machine vision experts,
making it not feasible for small lot sizes.

Digital Twins (DTs) are a promising concept for tackling
those issues as they offer a virtual representation of the produc-
tion environment, allowing simulation, visualization, and tests
without disrupting production. We propose a DT toolchain for

training machine vision applications with synthetical images by
extending the framework of Alexopoulos et al. [1]. Our attempt
reduces the requirements for synthetical images by using open-
source pretrained deep-learning models. We compare eight dif-
ferent algorithms and benchmark them against a commercial
solution within an industrial case study.

This DT approach enables the automation of the toolchain
from CAM planning to machine vision, which (i) minimizes
the risk of human errors and (ii) makes small lot sizes feasi-
ble through cost reduction. Therefore, we can increase the re-
silience of the manufacturing system.

This paper is structured as follows: In section 2, we
briefly overview related work. In section 3, we propose the
CAM2Vision toolchain and elaborate on the critical machine
learning functionality within a case study in section 4. Then,
we discuss and summarise our findings in section 5.

2. Related work

2.1. Digital Twin frameworks and standardization

DTs propose seamless integration between the physical and
virtual worlds. Besides the consensus in academia that a DT
consists of a digital and a physical representation of an artefact,
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many different concepts, standards, and frameworks exist. The
majority follows either the 3-dimension model developed by
Grieves [2] and characterized by Kritzinger et al. [3] or the ex-
tended 5-dimension model by Tao et al. [4]. As summarized by
Latsou et al. [5] “. . . , a detailed methodology and standardiza-
tion are needed to address the absence of a common framework,
facilitating the creation of DTs . . . ”. Their proposed framework
focuses on reusability and scalability, e.g. by using ontologies.

One standard is ISO 23247 [6], offering distinct functional
elements. Wallner et al. [7] applied this standard in a manufac-
turing cell and introduced a feature set categorization by rate-
of-changes. In our approach, we focus on tackling the medium-
frequency changes, characterized by changes “. . . that occur
during the production of the default portfolio . . . ” [7]. Although
the ISO 23247 still lacks essential features, e.g. verification,
validation [5], or proper life-cycle coverage [7], it offers es-
sential modularity within the framework to build DTs in the
manufacturing domain.

Alexopoulos et al. [1] propose a DT-framework to train ma-
chine learning applications on synthetical images. They high-
light the advantages and needs of automatic image generation
and labeling and give an insight into the challenges of creating
photo-realistic renderings. Their approach requires a high setup
time for the rendering environment (1 hour), medium-sized data
sets (300 images) and expert knowledge for image generation.
Although we follow the approach basically, we try reducing the
requirements for the test image generation by using basic set-
tings and CAM-inbuilt rendering options. Also, we extend the
approach by proposing an ontology-based reasoning for the im-
age evaluation.

The importance of DTs for resilience is shown by Bakopou-
los et al. [8]. They propose a resilience manufacturing frame-
work using Asset Administration Shell (AAS), data spaces, re-
silience assessment, and reconfiguration services.

2.2. Machine Learning for Machine Vision

Although there are approaches that focus on part localiza-
tion for robot applications [9, 10, 1] or defect detection for
quality control [11, 12] classification of real-world images with
artificial counterparts lacks discussion. Approaches like metric
learning with Siamese networks [13] optimize image similarity,
while CycleGANs [14] improve synthetic image realism to mit-
igate domain shifts. Both methods facilitate classification but
require large datasets for optimal performance.

Transfer learning [15] presents a more data-efficient option
by fine-tuning models pretrained on large datasets, also high-
lighted by [10]. This method leverages existing representations
to boost classification accuracy in real-world contexts without
extensive retraining. These pretrained models can extract fea-
tures from images, which can subsequently be classified using
a variety of machine-learning algorithms. To leverage this capa-
bility, we implement a two-part architecture consisting of a fea-
ture extractor and a classifier. The feature extractor utilizes deep
learning models pretrained on large datasets, while the classifier
applies machine learning methods to process the extracted fea-

tures. We will evaluate these deep learning models as a baseline
compared to traditional computer vision techniques.

3. The CAM2Vision Toolchain

3.1. Digital Twin Enabled Decision Making

As proposed by the related work, it is beneficial to modu-
larise DTs and develop individual functions. Similar to Alex-
opoulos et al. [1], we propose an attempt that uses synthetically
generated images to train the machine vision application. Fig-
ure 1 shows our proposed toolchain: In the CAM-System, the
setup situation is defined. The main parameters are the required
clamping device (workpiece pallet), raw material dimensions,
and material position. The image evaluator later uses those pa-
rameters for decision-making. The CAM-System also defines
the camera settings for the creation of synthetic images. Those
images then get passed together with the parameters to the
machine learning pipeline, which will be described in subsec-
tion 3.3. In the setup station, the orders are prepared and set
up according to the information from the CAM-System. After
the prepared workpiece is released to the manufacturing cell, an
image gets taken and provided to the image-evaluator.

Using machine learning and an underlying ontology, the im-
age evaluator determines the appropriate next steps for pro-
cessing the clamped workpiece. We define three scenarios: (i)
Reclamp: the deviations are too big, and the setup process
needs to be repeated. Reclamping is necessary when the wrong
clamping device is used or the raw material is mounted outside
tolerances and can’t be machined. (ii) Replan: the raw mate-
rial is clamped slightly outside the tolerances, and the CAM-
System needs to verify the NC-Code (iii) Offset: the raw mate-
rial is clamped within the tolerances, and the offset (e.g. G54) is
passed to the CNC-Machine, and the production starts. In this
publication, we focus on the Reclamp-functionality by detect-
ing three different clamping situations.

3.2. Synthetic Image Creation

The synthetic image creation aims to create proper input for
the training algorithm without needing the physical setup. Many
CAM-Software offer inbuilt rendering solutions covering part
material, light sources, perspective, and background. The pri-
mary aim of those rendering tools is to create photo-realistic
pictures for marketing purposes, requiring high setup time and
tweaking for proper settings, e.g. material or lighting. Our ap-
proach is to use basic settings as much as possible, reducing
setup effort and rendering time.

A crucial step is automating this image rendering pipeline. In
the end, the camera settings of the actual camera should match
the settings used in the rendering process. One way to achieve
this is by using a camera that offers an AAS and using an inter-
face, e.g. REST API, to change the settings inside the Software
accordingly.
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Fig. 1: Architecture of CAM2Vision Toolchain

3.3. Machine Learning Pipeline

This section presents our machine learning pipeline, which
involves a series of key steps: preprocessing, feature extraction,
and feature classification. The complete architecture of this ap-
proach is depicted in Figure 1. The source code of the machine
learning pipeline is available on GitHub [23].

The preprocessing stage focuses on preparing images to en-
hance the effectiveness of subsequent feature extraction algo-
rithms. This process includes resizing to a uniform size, nor-
malizing, and scaling the images. These steps ensure consistent
and optimally formatted input data.

We employ various methods for feature extraction as seen in
Table 1. When using SIFT, we apply the Bag of Visual Words
model, which is particularly effective for representing local im-
age features. The Color Histogram approach, on the other hand,
focuses on capturing the distribution of colors within an im-
age. It involves computing a histogram representing how pixel
values are distributed across different color ranges in the RGB
space. For the deep learning models, including SqueezeNet1 1,
Inceptionv3, DenseNet161, ResNet152, ResNext101 64x4d,
and ViT-H/14, we leverage pretrained weights from the Ima-
geNet [24] dataset. These pretrained models allow us to extract

Table 1: Comparison of model characteristics and performance metrics.

Model Memory Feature Accuracy Precision Recall F1
(MB) Count Score

vit h 14 [16] 2416.74 1280 0.95 0.96 0.95 0.95
resnext101 64x4d [17] 319.6 2048 1.0 1.0 1.0 1.0
resnet152 [18] 230.7 2048 1.0 1.0 1.0 1.0
densenet161 [19] 110.7 2208 1.0 1.0 1.0 1.0
inceptionv3 [20] 104.12 2048 1.0 1.0 1.0 1.0
squeezenet1 1 [21] 4.78 512 1.0 1.0 1.0 1.0
colorhistogram 0.119 768 0.33 0.11 0.33 0.17
sift [22] 0.066 100 0.68 0.66 0.68 0.65

high-level features directly from the images. The features ex-
tracted from these models capture complex patterns and se-
mantic information, making them highly effective for image
analysis. Finally, the extracted features are utilized by a fea-
ture classifier to categorize the images. We have selected a Sup-
port Vector Machine (SVM) classifier for this task. SVMs are
well-suited for image classification because they handle high-
dimensional feature spaces, which is common when working
with complex image features.

3.4. Evaluation Metrics

We evaluate our approach through a comprehensive set of
metrics that capture various aspects. Our evaluation is orga-
nized into three essential parts: (i) performance, (ii) memory
efficiency and inference speed, and (iii) quality of the features
extracted.

The selected performance metrics include accuracy, preci-
sion, recall, and F1-score. Accuracy gauges the overall correct-
ness of the model, while precision reflects the proportion of
true positives among predicted positives, helping to reduce false
positives. Recall measures the model’s capability to identify all
relevant instances. The F1-score, as a harmonic mean of pre-
cision and recall, provides a balanced measure of the model’s
performance, mainly when dealing with imbalanced datasets.

We also assess memory efficiency and inference speed. In-
ference speed is essential for real-time applications, indicat-
ing how quickly the model can predict. Memory efficiency
measures the memory required during inference, which is cru-
cial for deployment in resource-constrained environments. Pre-
cisely, we measure the time it takes for the model to predict a
single image and the memory space the algorithm occupies.

Finally, we assess the quality of the extracted features by ex-
amining the formation of clusters in 2D space. Well-defined,
distinct clusters corresponding to different classes indicate that
the feature extractor effectively captures discriminative fea-
tures, while overlapping clusters may suggest lower feature
quality or insufficient class separation.
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(a) Cat. chuck training image (b) Cat. vice training image (c) Cat. empty training image

(d) Cat. chuck test image (e) Cat. vice test image (f) Cat. empty test image

Fig. 2: Image categories for training (a-c) and testing (d-f)

4. Case Study

4.1. Cell setup

The manufacturing cell in focus follows the same setup as
already explained by [7]. In addition to the EMCO CM55 ma-
chine tool and the ABB IRB 120 robot, we integrated a cam-
era system as described in subsection 4.2. The case study fo-
cuses on categorizing the clamping devices for supporting the
Reclamp-functionality of the toolchain. As CAM-Software, we
use SIEMENS NX in version 1969. Three different clamping
pallets are available in the case study as shown in Figure 2: Cat.
chuck for cylindrical raw material, Cat. vice for prismatic raw
material, and Cat. empty pallet for individual clamping setup.

4.2. Optical Setup

This experimental setup evaluates a deep learning model
trained solely on SIEMENS NX CAM renderings. The objec-
tive is to validate whether this model can accurately recognize
actual images of the same parts captured with the setup de-
scribed below. The camera is mounted using profile technol-
ogy, positioned approximately 1 meter above the workspace
and oriented vertically downward to capture a clear, top-down
view of each clamping device. Ambient ceiling lighting is used
throughout the setup, increasing exposure times to compen-
sate for lower light levels. In real-world applications, additional
lighting is beneficial to reduce exposure time and prevent mo-
tion blur, but this setup achieved sufficient quality for the con-
trolled experiments.

We use a 5-megapixel Opto Engineering COE-050-C-POE-
050-IR-C color camera (Sony IMX264 sensor, 2448 x 2048 res-
olution, 2/3” format) configured for monochrome imaging in
our setup. It features a global shutter for sharp captures without
motion blur and achieves a frame rate of 23.5 fps. The camera

uses an IR cut filter, ensuring image quality under ambient light.
The 25 mm fixed-focus lens (Opto Engineering EN2MP2514)
offers a sharp image at the required working distance. The aper-
ture, adjustable from f/1.4, allows for depth-of-field control on
a 2/3” sensor with minimal distortion (0.27%) and supports a
large image circle of 11 mm.

4.3. Training and Test Sets

The training set was intentionally kept simple, with basic
materials used for rendering and relying on built-in functional-
ity. We aimed to match the virtual camera settings to the phys-
ical camera, though not all camera parameters are available in
the CAM-Software. The images were rendered manually, each
taking approximately 1-2 minutes on a standard laptop. We fo-
cused on a small training set of 21 images to keep the process
efficient. The test set consists of 375 grayscale images to eval-
uate the model’s performance. Figure 2 shows the visual differ-
ences between the training set (2a-2c) and the test set (2d-2f).

4.4. Machine Learning Method

Memory Usage and Efficiency: When comparing machine
learning models, significant disparities in memory consumption
and feature extraction capabilities emerge, reflecting their ar-
chitectural complexities and intended applications. Regarding
memory consumption, SIFT and Color Histogram are the most
lightweight models, making them efficient for low-resource
scenarios. SqueezeNet1 1 also demonstrates minimal memory
overhead, while more sophisticated models, such as ResNet50,
InceptionV3, and DenseNet161, require significantly more
memory but remain manageable. Conversely, models like
ResNeXt101 64x4d and ViT-H/14 necessitate much larger
memory allocations, with the latter being particularly demand-
ing. Table 1 shows the memory consumption of each model.
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(a) Color Histogram (b) SIFT (c) SqueezeNet1 1 (d) InceptionV3

(e) DenseNet161 (f) ResNet152 (g) ResNext101 64x4d (h) ViT-H/14

Fig. 3: t-SNE visualisation of features extracted by different models.

Feature extraction capabilities also vary considerably among
these models. DenseNet161, ResNet152, ResNeXt101 64x4d,
and InceptionV3 showcase abilities to capture intricate data
patterns. In contrast, SqueezeNet1 1 is suitable for resource-
constrained environments, while traditional methods like SIFT
produce only 100 features, potentially limiting their perfor-
mance in complex tasks. The transformer-based ViT-H/14 out-
puts 1280 features, balancing complexity and efficiency. This
comparison shows the inherent trade-offs between feature rich-
ness and memory efficiency. While lightweight models are
more memory-efficient, they may compromise predictive capa-
bilities relative to their larger, more complex counterparts.

Performance: Table 1 illustrates the performance com-
parison of the machine learning models, revealing sig-
nificant disparities in their effectiveness as indicated by
accuracy, precision, recall, and F1 score. Models like
ResNet152, ResNeXt101 64x4d, DenseNet161, InceptionV3,
and SqueezeNet1 1 all achieve perfect scores across all met-
rics, showcasing their robust capabilities in accurately identify-
ing and classifying data. In contrast, the Color Histogram model
shows much poorer performance, with an accuracy of only 0.33
and a particularly low precision of 0.11, indicating limited ef-
fectiveness in classification tasks. The SIFT model performs
moderately well, with an accuracy of 0.68 and balanced preci-
sion and recall scores. In contrast, the ViT-H/14 model exhibits
high performance with an accuracy of 0.95 and excellent pre-
cision and recall (0.96 and 0.95). Overall, the results highlight
that while deep learning models excel in performance metrics,
traditional methods like Color Histogram and SIFT lag signif-
icantly behind, emphasizing the advantages of advanced archi-
tectures in machine learning applications.

Quality of the extracted features: Figure 3 presents visual
representations of the features extracted by each model we
tested, using t-SNE [25]. T-SNE is a technique that projects

data into a lower-dimensional space, typically for visualiza-
tion. In each figure, circles represent synthetical images from
the training dataset, while “x” symbols denote real-world im-
ages. Additionally, when using t-SNE for dimensionality reduc-
tion, some information from the original high-dimensional data
is inevitably lost, as t-SNE cannot perfectly preserve all rela-
tionships from the original space when projecting to fewer di-
mensions. As a result, while t-SNE can highlight patterns and
clusters for easier visual interpretation, it may not fully capture
the complexity of the original data, leading to a potential loss of
certain nuances in the data structure. The initial observation is
that each model effectively clustered the test set, demonstrating
a clear visual separation. However, of greater significance is the
observation that the models faced greater difficulty in clustering
artificial images alongside real-world images.

While deep learning models can extract significant features
and prioritize the most relevant ones, it is crucial to empha-
size preprocessing when training with synthetical images. We
can minimize visual discrepancies by ensuring these images
closely mimic real-world counterparts through effective pre-
processing, ultimately enhancing model performance during
testing. The analysis of the color histogram is shown in Fig-
ure 3a, where it struggles to differentiate between the train-
ing categories. SIFT’s effectiveness in aligning images from
Cat. empty, though limited in distinguishing between simi-
lar types like Cat. vice and Cat. chuck, is illustrated in Fig-
ure 3b. SqueezeNet1 1 lacks clear visual separation in t-SNE
plots, as seen in Figure 3c. More complex models like In-
ceptionV3, DenseNet161, ResNet152, and ResNext101 64x4d
demonstrate improved separation of artificial image categories
and better alignment with real-world data, shown in Figures 3d-
3g, respectively. The ViT-H/14 model best separates categories
and closely aligns artificial images with real test images, as il-
lustrated in Figure 3h.
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4.5. Commercial Benchmark

We used the proprietary image processing library Zebra Au-
rora Vision to determine whether the results achieved in sub-
section 4.4 could also be obtained with a commercial software
solution. The same training and test datasets were employed.
Similar to the presented results of the open-source solution,
an extractor classification approach was utilized. This two-step
process consists of a Detect Features filter and a Classify Ob-
ject filter. The Detect Features filter is used to locate the rele-
vant clamping pallets in the image, segment the corresponding
regions, and define these as Regions of Interest for the Classify
Object filter. This process significantly improved the model’s
reliability. All images in the test set were correctly classified, al-
beit with varying confidence levels. On average, correct classi-
fication was achieved with confidence of 99.9% for Cat. chuck,
62.5% for Cat. vice, and 100% for empty. The low confidence
for Cat. vice is due to high variety of clamping positions in the
test set and the simple training set.

5. Discussion and Conclusions

This paper proposes a DT-toolchain for generating syntheti-
cal images and training machine vision applications based on
a CAM-Setup. It could be shown that using pretrained deep
learning models provides robust performance across various ar-
chitectures, making this a reliable and practical approach. It
shows that solving this problem is relatively general and flex-
ible, as it doesn’t require the development of a highly special-
ized or overly complex model. Instead, even standard pretrained
models can achieve substantial results, indicating that the prob-
lem can be addressed without custom-built, intricate solutions.
Since most models showed good accuracy, precision, and re-
call, we favor SqueezeNet1 1 due to its high memory efficiency.
Furthermore, we showed that basic rendering functionality and
small training sets also allow suitable model training.

Our future research will focus on the automation of the re-
maining toolchain by integrating the Siemens NXOpen inter-
face for renderings, AAS for camera configuration and extend-
ing the image evaluator to address the Replan and Offset func-
tionality.

Acknowledgements

This research has been partially funded by the Horizon
Europe FLEX4RES project with Grant Agreement Number
101091903 and by the project fund “Arbeit 4.0” of AK
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