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ABSTRACT 
Optimal energy scheduling for sector-coupled multi-energy systems is becoming increasingly im-
portant as renewable energies such as wind and photovoltaics continue to expand. They are very 
volatile and difficult to predict. This creates a deviation between generation and demand that can 
be compensated for by energy storage technologies. For these, rule-based control is well estab-
lished in industry, and mixed-integer model predictive control (MPC) is an area of research that 
promises the best results, usually regarding minimal costs. Drawbacks of MPC include the need 
for an adequate system model, often associated with high modeling effort, high computational 
effort for larger prediction horizons, and complications with stochastic variables. In this work, Re-
inforcement Learning is used in an attempt to overcome these difficulties without applying elabo-
rate mixed-integer linear programming. The self-learning algorithm, which requires no explicit 
knowledge of the system behavior, can learn a control policy and uncertainties of the variables 
just by interaction with the (simulated) system model. It is demonstrated that Reinforcement 
Learning (exchange factor = 36.8 %) can learn complex system behavior with comparable quality 
to model predictive control (ex. = 32.4 %) and outperforms rule-based control (ex. = 41.8 %). This 
is done in a case study with the goal of minimizing the exchange of energy with the grid, with a 
battery and hydrogen system providing storage flexibility. These results were achieved in the con-
text that the Reinforcement Learning agent only has instantaneous rather than predictive infor-
mation, i.e., a very limited state of information compared to the MPC. The trained policy is then 
deployed while significantly decreasing the computational effort. 
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INTRODUCTION 
Due to the energy transition, the share of renewable 

sources of energy, such as wind and photovoltaic, is 
steadily increasing [1-3]. These are highly volatile, result-
ing in a discrepancy between generation and demand, 
which must be balanced by storage at any time but which 
is difficult to predict [2]. To accomplish this balancing ef-
ficiently and reliably, sector-coupled multi-energy sys-
tems (MES) combined with battery and hydrogen storage 
systems are deployed. These include batteries for daily 
fluctuations and electrolyzers, fuel cells and hydrogen 
storage systems for weekly volatility, for example. [1,2] 
As wind energy and photovoltaics, in particular, are de-
centralized and distributed, the electricity grid can be 

strained by uneven feed-in. More flexibility is therefore 
required at the place of power supply, whereby the en-
ergy exchange between production and load and the grid 
should be minimized. [1] 

The optimal and safe operation of such MES re-
quires operational planning, typically done by rule-based 
controllers (RBC) in industry [3]. In contrast, more elabo-
rate model predictive control (MPC) strategies are the 
subject of current research. This form of optimal control 
is generally seen as delivering the best possible perfor-
mance, usually aiming for minimum operating costs in 
compliance with the system-relevant constraints. [2,3] 

However, the main obstacle to realizing MPC is that 
the optimization depends on an adequate model of the 
system dynamics. In addition, the uncertain prediction of 
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stochastic fluctuating quantities such as renewable en-
ergy generation, demand, and electricity prices signifi-
cantly affect the control performance. Moreover, in sce-
narios that require long prediction horizons and detailed 
models, the arising mixed-integer optimization problems 
may require excessive computational effort. [2] 

For these reasons, a control system that delivers 
optimal online performance without major computing ef-
fort is required. This can, for example, be achieved 
through Reinforcement Learning (RL), a form of machine 
learning that requires no explicit prior knowledge of the 
system dynamics. It can learn a control policy and the un-
certainties of the input variables on the system only 
through repetitive interaction with the system model. RL 
has achieved excellent results in various disciplines, such 
as robotics and operational planning in industrial energy 
systems. [4] 

Key contributions of this work are a consistent com-
parison between RBC, MPC and RL and an RL-based con-
troller with comparable performance to MPC. It is demon-
strated that this is possible with limited, instantaneous 
state information. 

THEORETICAL BACKGROUND 
The basic control methods of MPC [5] and RL [4], as 

well as their corresponding advantages and disad-
vantages with regard to industrial energy systems, are 
described below.  

Model Predictive Control  
In model predictive control, a mathematical model of 

the system dynamics called the design model hereafter 
is used to predict the system's future behavior based on 
the current state and a sequence of future control input 
values. The controlled system’s response is optimized 
over a specific prediction horizon ∆𝑇𝑇pred. The schematic 
control loop is shown in Figure 1. 

 
Figure 1. Model predictive control loop with control 
variables 𝑢𝑢𝑡𝑡, system state prediction 𝑥𝑥�𝑡𝑡…𝑡𝑡+𝑇𝑇pred output 𝑦𝑦𝑡𝑡, 
disturbance 𝑧𝑧𝑡𝑡 and reference 𝑟𝑟𝑡𝑡 for timestep 𝑡𝑡 and 
prediction horizon ∆𝑇𝑇pred adapted from [5]. 

For simplicity of time discrete notation, index 𝑡𝑡 re-
fers to the current sample, 𝑡𝑡 + 1 to the next, and 𝑡𝑡 + ∆𝑇𝑇pred 
to the last sample in the current prediction horizon where 
the full trajectory 𝜊𝜊𝑡𝑡…𝑡𝑡+∆𝑇𝑇pred is denoted hereafter with only 
the basis 𝜊𝜊. The sequence of the control variables 𝑢𝑢, is 
determined so that a predefined objective 𝐽𝐽, a cost func-
tion, is minimized, see Equation 1. These can be, for ex-
ample, minimal costs, minimal deviations from a refer-
ence trajectory 𝑟𝑟 or minimal energy consumption. Con-
straints are imposed on the system’s input variables 𝑢𝑢 
and design model state estimates 𝑥𝑥� via equality (ℎ(∙) = 0) 
and inequality (𝑔𝑔(∙) ≤ 0) constraints to ensure safe and 
physically feasible operation. The set X contains both real 
and integer-valued variables.  

 

argmin
𝑢𝑢

   𝐽𝐽(𝑥𝑥�,𝑢𝑢, 𝑧̂𝑧, 𝑟𝑟) 

s. t.     ℎ(𝑥𝑥,𝑢𝑢) = 0 
𝑔𝑔(𝑥𝑥,𝑢𝑢) ≤ 0 
𝑥𝑥 ∈ 𝑋𝑋,𝑢𝑢 ∈ 𝑈𝑈 

(1) 

Only the control variables 𝑢𝑢𝑡𝑡 of the first-time step 𝑡𝑡 are 
applied to the system; all others are discarded. At the 
next time step, 𝑡𝑡 + 1, this iterative optimization process is 
repeated, using new predictions and measured values of 
the output 𝑦𝑦𝑡𝑡+1 and associated, updated system state es-
timate 𝑥𝑥�𝑡𝑡+1, also known as receding horizon control. It is 
particularly suitable for multivariable systems that con-
tain complex relationships, relevant constraints and well-
predictable inputs. 

When both continuous and discrete variables are in-
volved, as is often the case with energy systems, the op-
timal control problem (1) is usually formulated as a mixed-
integer linear program (MILP) and solved using branch 
and bound algorithms [12]. Since the variables are typi-
cally linked across several time steps and constraints, it 
is difficult to decompose the problem. Binary variable for-
mulations lead to combinatorial complexity, which be-
comes intractable as problem size increases. However, 
for practical applications, a large prediction horizon is of-
ten required, increasing the number of decision variables 
with each discrete time step and, therefore, the compu-
tational effort significantly. Although the MILP problem 
can be solved, it may be too complex for the necessary 
sampling time step size.  

 
Reinforcement Learning 

In Reinforcement Learning, an entity called agent in-
teracts with its environment with the purpose of learning 
to make sequential decisions. It receives a state obser-
vation 𝑠𝑠𝑡𝑡 and prior reward 𝑟𝑟𝑡𝑡 signal and performs an action 
𝑎𝑎𝑡𝑡 that influences the environment, which evolves ac-
cording to the internal system dynamics. The successor 
state 𝑠𝑠𝑡𝑡+1 and reward 𝑟𝑟𝑡𝑡+1 are the result. This process is 
sketched in Figure 2 and is understood in a stochastic 
sense as a Markov Decision Process (MDP).  
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Here, the agent learns by trial and error, guided by a re-
ward function. Its goal is to maximize the discounted, cu-
mulative reward over the considered period (episode)  

 max   �𝑟𝑟(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1) ∙ γ𝑡𝑡−1
𝑇𝑇

𝑡𝑡=1

, (2) 

with discount factor 𝛾𝛾. While deriving a control law 𝑎𝑎𝑡𝑡 =
𝜋𝜋(𝑠𝑠𝑡𝑡), which maps states to actions. Striking a good bal-
ance between exploration, i.e., visiting new state-action 
combinations, and exploitation, i.e., taking the actions 
with the highest cumulative reward expectation, is es-
sential to the training process.  

 
Figure 2. Reinforcement Learning control loop with 
control variables 𝑢𝑢, output 𝑦𝑦 and disturbance 𝑧𝑧, as well 
as, state observation 𝑠𝑠𝑡𝑡, action 𝑎𝑎𝑡𝑡 and reward 𝑟𝑟𝑡𝑡 for 
timestep 𝑡𝑡 adapted from [4]. 

In deep RL, the internal relationships in the agent are 
represented by deep neural networks (NN), which en-
dows it with the ability to model any non-linear, high-di-
mensional function. Another advantage is that RL does 
not depend on modeling using first principles but learns 
from direct experience, allowing it to adapt to changing 
system dynamics even after the training process. This al-
lows the performance to improve over time and can help 
reduce the prediction's uncertainty.  

However, this method has difficulties with perfor-
mance and stability guarantees, as it is challenging to 
provide for neural networks. In addition, the learning pro-
cess is very sample-inefficient and a convergent learning 
process is not guaranteed in general. These topics are 
highly active fields of research. [6] 

METHODS 
This chapter first outlines the use case and the un-

derlying modeling adapted from [3]. It then links to the 
control methods and discusses the parameterization and 
implementation. 

Use Case 
RL’s potential is demonstrated through a 

representative use case, a MES providing storage flexi-
bility. It consists of a battery (BSS) and a hydrogen stor-
age system (HSS) comprising an electrolyzer, a fuel cell 
and a hydrogen storage unit. This MES, shown in Figure 
3, is influenced, on the one hand, by generation 𝑝𝑝gen and 
consumption 𝑝𝑝de and, on the other hand, by the energy 
exchange not compensated for by the storage systems 
with the grid (𝑝𝑝gr

in,𝑝𝑝gr
out). All quantities are non-negative. 

 
Figure 3. Multi-energy system (MES) with battery (b) and 
hydrogen storage systems, comprising electrolyzer (ey), 
storage (H2) and fuel cell (fc). 

The components can be modeled using the following re-
lationships for the battery 

 socb,t+1 = socb,t +
Δtsim

Cb
�

𝑝𝑝b,𝑡𝑡
in ∙ 𝜂𝜂b, charge

−𝑝𝑝b,𝑡𝑡
out

𝜂𝜂b
� ,   discharge

  (3) 

where socb is the state-of-charge, 𝜂𝜂 the efficiency and 𝐶𝐶b 
the battery’s capacity. The battery can either be charged 
by 𝑝𝑝b

in or discharged by 𝑝𝑝b
out. The hydrogen storage is 

modeled using 

 socH2,t+1 = socH2,t +
Δ 𝑡𝑡sim ∙  ηH2

𝐶𝐶H2

�𝑤𝑤H2,𝑡𝑡
in − 𝑤𝑤H2,𝑡𝑡

𝑜𝑜𝑜𝑜𝑜𝑜�, (4) 

and analogously socH2 is the state-of-charge and 𝐶𝐶H2 is 
the capacity of the hydrogen storage. The energy level is 
increased when hydrogen is fed in (𝑤𝑤H2

𝑖𝑖𝑖𝑖) and decreased 
by 𝑤𝑤H2

out. The electrolyzer and the fuel cell are modeled 
using non-linear equations 𝑤𝑤ey = 𝑓𝑓ey�𝑝𝑝ey� and 𝑤𝑤fc = 𝑓𝑓fc(𝑝𝑝fc), 
respectively. An isentropic compressor, used to increase 
the pressure 𝑝𝑝𝑝𝑝, using power 𝑝𝑝c = 𝑓𝑓c�𝑤𝑤ey, 𝑝𝑝𝑝𝑝�, is located 
upstream of the storage tank, whereby the following ap-
plies, 𝑤𝑤H2

𝑖𝑖𝑖𝑖 = 𝑤𝑤ey.  Downstream of the hydrogen storage 
there is a valve for which 𝑤𝑤H2

out = 𝑤𝑤fc applies. For the MPC 
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design model all non-linear equations are piecewise line-
arized.  

The energy equation  

 
𝑝𝑝gen − 𝑝𝑝de + 𝑝𝑝fc − 𝑝𝑝ey + 𝑝𝑝b

out − 𝑝𝑝b
in −

𝑝𝑝c + 𝑝𝑝gr
in − 𝑝𝑝gr

out = 0   
(5) 

links the various components’ powers. The performance 
indicator, the exchange factor 𝜖𝜖𝑡𝑡, is defined as the ratio 
between the energy exchange with the grid and the dif-
ference of generation and demand sampled with ∆t𝑠𝑠𝑠𝑠𝑠𝑠 

 ϵ𝑡𝑡 =
∑ 𝑝𝑝gr,τ

inτ=𝑡𝑡
τ=0 + 𝑝𝑝gr,τ

out

∑ �𝑝𝑝gen,τ − 𝑝𝑝de,τ�τ=𝑡𝑡
τ=0

. (6) 

Here, 𝜖𝜖𝑡𝑡 = 0 means that storage flexibility can compen-
sate for any difference between generation and con-
sumption. If 𝜖𝜖𝑡𝑡 = 1, the entire difference is passed 
through to the grid. 

Control Engineering 
In the control engineering sense, the process varia-

bles for the MPC can be divided up as follows. The con-
trol variable 𝑢𝑢𝑡𝑡 consists of the power flows into and out 
of the battery, the electrolyzer and the fuel cell 

 
𝑢𝑢𝑡𝑡 = �𝑝𝑝b

in 𝑝𝑝b
out 𝑝𝑝ey 𝑝𝑝fc� 𝑡𝑡𝑇𝑇 . (7) 

The system’s output 𝑦𝑦𝑡𝑡 comprises the state-of-charge for 
battery and hydrogen storage and the power exchange 
with the grid: 

 
𝑦𝑦𝑡𝑡 = �socb socH2 𝑝𝑝gr

in 𝑝𝑝gr
out� 𝑇𝑇𝑡𝑡. (8) 

The disturbance forecast z�, sampled with ∆topt, consists 
of the generation and demand prediction from timestep 𝑡𝑡 
to the prognosis horizon 𝑡𝑡 + ∆𝑇𝑇pred acting on the system 

 𝑧̂𝑧 = �
𝑝𝑝gen,𝑡𝑡 𝑝𝑝de,𝑡𝑡
⋮ ⋮

𝑝𝑝gen,𝑡𝑡+∆𝑇𝑇pred 𝑝𝑝de,𝑡𝑡+∆𝑇𝑇pred

�

𝑇𝑇

. (9) 

The objective of the MPC is to minimize the exchange of 
energy with the grid, i.e., the area under the absolute 
value of the power curve using a sampling time of ∆𝑡𝑡opt, 

 
argmin

𝑢𝑢
� �𝑝𝑝gr,𝑡𝑡

in + 𝑝𝑝gr,𝑡𝑡
out� ∙ ∆𝑡𝑡opt

𝑡𝑡+∆𝑇𝑇pred

𝑡𝑡
. (10) 

The action 𝑎𝑎𝑡𝑡 of the RL agent is equivalent to the control 
variable 𝑢𝑢𝑡𝑡. The observation state 𝑠𝑠𝑡𝑡 consists in part of 
the system output 𝑦𝑦𝑡𝑡 and the disturbance 𝑧̂𝑧𝑡𝑡 and can be 
written as 

 
𝑠𝑠𝑡𝑡 = [socb socH2 𝑝𝑝gen 𝑝𝑝de] 𝑇𝑇𝑡𝑡 (11) 

and reward information comprises 
 

𝑟𝑟𝑡𝑡 = �𝑝𝑝gr
in 𝑝𝑝gr

out� 𝑇𝑇𝑡𝑡. (12) 

The reward function of the RL agent, sampled with ∆topt, 

and chosen discount factor as 𝛾𝛾 = 0.99 can be written as 
 

max� −�𝑝𝑝gr,𝑡𝑡
in + 𝑝𝑝gr,𝑡𝑡

out� ∙ ∆𝑡𝑡opt ∙ 𝛾𝛾𝑡𝑡−1
𝑡𝑡+∆𝑇𝑇pred

𝑡𝑡
, (13) 

and a sampling time of ∆𝑡𝑡opt is used. All system-specific 
constraints are represented in the design model for the 
MPC and inherently in the simulation model for RL training 
and for the method comparison. 

Parameters & Data 
Generation and demand data for Austria for 2023 

were used as the data basis [7]. Five representative 
weeks according to their distribution were calculated, 
and one exemplary week (Figure 4, 19.6 - 26.6.2023) was 
used to test the use case. Energy production comprises 
75 % photovoltaics and 25 % wind power. The data was 
normalized and scaled so that, on average, the demand 
is 𝑃𝑃de���� = 250 𝑘𝑘𝑘𝑘 and generation 𝑃𝑃gen����� = 300 𝑘𝑘𝑘𝑘, respec-
tively.  The data was subjected to white noise, whereby 
the signal-to-noise ratio is a factor of 20. The non-noisy 
data is used for the prediction of the MPC and for training 
the RL agent, while the noisy curves are declared as 
ground truth in the simulation. 

 
Figure 4. Demand and generation for a representative 
summer week of Austria, 2023 [7].  

The MES components' parameters are listed in Table 1, 
and the simulation data in Table 2. 

Table 1. MES Properties 

Battery System Hydrogen System  
Property Value Property Value Unit 
𝐶𝐶b  𝐶𝐶H2  kWh 
𝑝𝑝b
𝑚𝑚𝑚𝑚𝑚𝑚  𝑝𝑝𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  kW 

  𝑝𝑝𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  kW 
socb

𝑚𝑚𝑚𝑚𝑚𝑚  socH2
𝑚𝑚𝑚𝑚𝑚𝑚  - 

socb
𝑚𝑚𝑚𝑚𝑚𝑚  socH2

𝑚𝑚𝑚𝑚𝑚𝑚  - 
𝜂𝜂b  ηH2  - 

Simulation & Training 
In the simulation environment, the system equations 

are solved with a time step size of ∆𝑡𝑡sim. After ∆𝑡𝑡opt, either 
the optimization for the MPC is solved or the trained neu-
ral network for RL is evaluated. For the MPC, the 
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prediction horizon ∆𝑇𝑇pred is divided into 96 time-steps 
with size ∆𝑡𝑡opt. The RL agent is trained with a sampling 
time of ∆𝑡𝑡opt. Proximal Policy Optimization (PPO) [8] is 
used as the RL algorithm, where it is trained for ~104 ep-
isodes. 

Table 2. Simulation Properties 

Property Value Unit 
∆𝑡𝑡sim  min 
∆𝑡𝑡opt  min 
∆𝑇𝑇pred  h 
∆𝑇𝑇sim  h 

 
The neural network architecture used for the value-func-
tion critic is a fully connected, feedforward NN with 
~1200 degrees of freedom. A stochastic Gaussian actor 
is implemented with ~3500 degrees of freedom. 

Implementation 
The simulation environment was programmed in 

MatLab [9], whereby the optimization problem (MPC) 
was set up with YALMIP [10] and solved with Gurobi [11]. 
The PPO agent was trained with the MatLab Reinforce-
ment Learning Toolbox [12] and 64 parallel workers. 
These were simulated on a system with 128 cores and 
256 GB RAM (AMD EPYC 7702P).  

RESULTS & DISCUSSION 
The results of the simulation are the process varia-

bles of the use case, whereby the control variables re-
sulting from the optimization (MPC, NN-RL) and the 
state-of-charges are shown in Figure 6. Two tiles are 
used for the MPC (top) and two for the RL (bottom). 
These, in turn, are divided into hydrogen-related varia-
bles of the electrolyzer 𝑝𝑝ey, the fuel cell 𝑝𝑝fc and the stor-
age tank 𝑝𝑝H2 as well as battery-related variables charge 
𝑝𝑝b

in, discharge 𝑝𝑝b
out and state of charge socb. The powers 

are normalized, i.e. divided by the maximum power, be-
cause of 𝑝𝑝min = 0. Without loss of relevant information as-
pects, three days were chosen from the test week and 

 
Figure 5. Setpoints electrolyzer power 𝑝𝑝ey, fuel cell power 𝑝𝑝fc and fill level of storage tank socH2 as well as battery-
related variables charging power 𝑝𝑝b

in, discharging power 𝑝𝑝b
outand state-of-charge socb for multi-energy system use 

case for model predictive control and Reinforcement Learning. 
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displayed for better visualization. In principle, as can be 
seen in Figure 5, two different operating modes can be 
identified: If more energy is generated than consumed, 
battery charging and electrolyzer are activated, and if 
there is a negative residual load, the battery is dis-
charged, and the fuel cell is used. This only works as long 
as the storage units are not at their limits. Therefore, Pre-
dictive information is required on how the externally im-
posed energy flows will adjust to provide optimal flexibil-
ity. However, only the MPC has access to the inherent 
forecast information 𝑧̂𝑧𝑡𝑡…t+∆𝑇𝑇pred . The RL agent, which only 
has access to instantaneous observations, can only learn 
an implicit average prediction for future states through 
the sequence of observed states (trajectory). However, 
this assumes a similarity between the trained and tested 
generation and demand curves, which has been fulfilled 
in the tested scenario. Figure 6 shows the exchange fac-
tor 𝜀𝜀𝑡𝑡 for MPC and RL, whereby the first 24 h can be re-
garded as a run-in effect, as the MPC has a forecast hori-
zon of 1 day. The performance is comparable in the first 
5 days; a difference can only be seen when a lot of re-
newable energy is produced and little is consumed.  

In these situations, it is optimal to use a discontinu-
ous switching behavior of the storage. It can be con-
cluded that the lack of predictive information hinders the 
RL agent from performing better. After a one-week test 
phase, there is a difference in exchange factor of approx. 
4 %.  

 
Figure 6. Energy exchange factor 𝜀𝜀𝑡𝑡 with grid for 1 week. 

CONCLUSION & OUTLOOK 
In this study, the performance of a Reinforcement 

Learning-based control strategy for sector-coupled 
multi-energy systems providing storage flexibility was 
evaluated. With Reinforcement Learning, a performance 
comparable to that of model predictive control can be 
achieved, which can be regarded as the upper limit in the 
nominal case. The Reinforcement Learning agent can 
outperform the industry standard rule-based control. 
With only instantaneous observations and without com-
plex mixed-integer linear program modeling, the system 
can be controlled by a self-learning algorithm. The fol-
lowing questions are to be answered in a further study:  

Can the Reinforcement Learning agent achieve better 
control quality if the same predictive information is pro-
vided for complete comparability? Can the self-learning 
system accomplish the same performance as model pre-
dictive control if unpredictable errors can be learned bet-
ter than represented by a deterministic MPC?  
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