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Abstract
Deterministic parsing of tree-structured data is usually per-
formed sequentially left-to-right. Recently however, also
motivated by the need to process extremely large data sets,
a parallel version thereof has been devised which, thanks
to the theoretical features of operator precedence languages
(OPL) particularly well-suited to split the input into sepa-
rate chunks, provided high improvements w.r.t. traditional
sequential parsing. Further investigation pointed out a re-
striction imposed on the OPL formalism that prevents from
fully exploiting parallelism and proposed an improvement
of the original algorithm which proved effective in many
practical cases. Stimulated by the above contribution here
we remove the mentioned restriction on OPL and build a
new parallel parser generator based thereon. We conducted a
comparative experimentation among the three parallel algo-
rithms that showed a consistent further improvement w.r.t.
both the previous ones (with an exception in the case of
purely sequential execution). Based on these early results,
we believe that the horizon of parallel parsing large tree-
structured data promises dramatic gains of efficiency in the
analysis of this fundamental data structure.
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1 Introduction
Within the countless number of applications based on the
tree data structure and the context-free language (CFL) for-
malism, parsing, i.e., the process of building tree structure(s)
associated with a given input sentence, say 𝑥 , usually and
herewith named syntax-tree (ST) of 𝑥 , represents a funda-
mental part of any automatic elaboration of the string repre-
senting data input and accounts for a major fraction of its
computational effort [21]:

It becomes clear that even for complex queries
that involve joins and aggregations, the total
cost of a query is dominated (> 80%) by parsing
the raw JSON data.

In fact, parsing is also the necessary pre-elaboration for
most of the semantic operations that can be applied to data
input, such as, e.g., compiling, interpreting, data-filtering,
data property verification, . . . ; a major approach to such a
syntax-driven semantic elaboration is based on attribute-
based semantics, where the semantics to be computed is
defined as an attribute associated with the internal nodes of
the ST.
The traditional techniques for deterministic parsing of

data formalized as CFLs, such as those based on the LR or
LL subclasses of CFLs, are intrinsically left-to-right, which
makes them not amenable to exploit the features offered by
modern HW and SW parallel architectures.
Important subclasses of CFLs, however, exhibit the so-

called local parsability property, i.e., the fact that a fragment
of any input sentence 𝑥 can be parsed, and the corresponding
fragment of the ST whose frontier is 𝑥 can be built, indepen-
dently of its context. In the literature there exists at least one
such language family that possesses the locality property
that has been exploited to build highly performant parallel

44

https://orcid.org/0000-0002-0945-5947
https://orcid.org/0000-0003-3039-1084
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3732771.3742712
https://doi.org/10.1145/3732771.3742712
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3732771.3742712&domain=pdf&date_stamp=2025-06-17


SLE ’25, June 12–13, 2025, Koblenz, Germany Michele Chiari, Michele Giornetta, Dino Mandrioli, and Matteo Pradella

and incremental parsers, namely operator precedence lan-
guages (OPLs) [2–4]1. Furthermore, recent and less recent
investigations [9, 10, 22] have shown that OPLs enjoy al-
gebraic and logic properties that make them amenable for
automatic semantic elaboration spanning form traditional
compilation and interpretation to sophisticated model check-
ing (MC) algorithms [6].
The key feature that makes OPLs well amenable for effi-

cient parsing and compilation is that the ST of a sentence is
determined exclusively by three binary precedence relations
over the terminal alphabet that are easily pre-computed from
the grammar productions. For example: the arithmetic sen-
tence 𝑎 + 𝑏 × 𝑐 does not make manifest the natural structure
(𝑎 + (𝑏 ×𝑐)), but the latter is implied by the fact that the plus
operator yields precedence to the times.
The parallel parser generator PAPAGENO has proven

quite effective in reducing time and space complexity w.r.t.
traditional sequential parsing [2]. Recently, however, it has
been observed [20] that in some cases the OPL-based parser
misses important parallelization opportunities. As an exam-
ple, consider the structure of non-parenthesized arithmetic
expressions, say, a sequence of sums: normally OPLs as-
sociate to them STs of the type depicted in Figure 1 (left),
which corresponds to a left-associative semantics of the sum;
the same applies to all four basic arithmetic operations; no-
tice, however that, whereas for subtraction and division the
semantics is necessarily associative to the left, not so for
addition and multiplication which, thanks to their commu-
tative property can be associated both to the left and to the
right indifferently.

As a consequence of such a structure, however, the parsing
of a sequence of plus operators must necessarily proceed
left-to-right, thus missing the opportunity to split a long
sequence into chunks to be computed separately so that
subsequently the partial results can be added together to
obtain the complete sum. This can be obtained by giving the
sequence of pluses a “flat structure” as suggested in Figure 1
(center). For reasons that will be explained later, however,
such a structure cannot be defined by means of traditional
OP grammars (OPGs); thus, in [20] an ad-hoc algorithm has
been developed and implemented that allows to build STs
such as the one given in Figure 1 (right) (despite the risk of
introducing ambiguities in the grammar). As expected, the
new algorithm overtook the original PAPAGENO, mainly
when parsing long sequences of data with flat structure.
Notice that such a circumstance occurs rarely in computer
programs, certainly not in arithmetic expressions, but more
frequently in sequences of switch-like statements; rather, it is
much more frequent in the use of data description languages
such as JSON.

1Parallel and incremental parsing [4, 13] are two strictly connected ways to
exploit the locality property.

We realized that the above inefficiency of parallel pars-
ing based on traditional OPLs is due to a hypothesis on the
operator precedences that has been often assumed to sim-
plify the analysis of algebraic and logic properties of this
language family. Such a hypothesis slightly affects the gener-
ative power of OPGs [11, 22] but, so far, the loss turned out
to be limited to a few counterexamples of pure mathemat-
ical interest. The above recent experience, instead, proved
the opposite, so that we investigated the consequences of
removing the restrictive hypothesis on precedence relations.
As a first result, in [8] we generalized the definition of

OPGs to give them the full power necessary to produce
structures such as that of Figure 1 (center) (notice that STs
describing such a structure are unranked). We also proved
that the generalized version of OPGs maintains all the alge-
braic and logic properties already proved for the restricted
version thereof.

Then, based on the theoretical foundation provided by
[7, 8] we built a new parallel parser generator that overtakes
the above weakness. In this paper, we report on the design
and implementation of the new parallel parser generator
and on the experimentation we carried over, showing that it
overtakes, sometimes in a dramatic way, both the original
PAPAGENO and the new tool by [20]. Section 2 provides the
necessary background on formal language terminology and
the “historical OPLs”; Section 3 summarizes the essential as-
pects of the theoretical revision of OPGs and their accepting
automata reported in [7, 8]; Section 4 describes the architec-
ture of the new parser generator and Section 5 offers some
details on its implementation through the GO language, to
foster reproducibility of the experimental results, which in
turn are reported in Section 6. Section 7 concludes with sug-
gestions to optimize the performance of the present tool and
to build new applications based thereon, mainly in the field
of semantic analysis and program property verification.

2 Background
We assume some familiarity with the classical literature on
formal language and automata theory, e.g., [18, 23]. Here,
we just list and explain our notations for the basic concepts
we use from this theory. The terminal alphabet is usually
denoted by Σ, and the empty string is 𝜀. The character # ∉ Σ
is used as delimiter, and we define Σ# = Σ ∪ {#}.
A context-free (CF) grammar is a tuple 𝐺 = (Σ,𝑉𝑁 , 𝑃, 𝑆)

where Σ and𝑉𝑁 , with Σ∩𝑉𝑁 = ∅, are resp. the terminal and
the nonterminal alphabets, the total alphabet is 𝑉 = Σ ∪𝑉𝑁 ,
𝑃 ⊆ 𝑉𝑁 ×𝑉 ∗ is the rule (or production) set, and 𝑆 ⊆ 𝑉𝑁 , 𝑆 ≠ ∅,
is the axiom set. For a generic rule, denoted as𝐴 → 𝛼 , where
𝐴 and 𝛼 are resp. called the left/right hand sides (lhs/rhs), the
following forms are relevant: axiomatic 𝐴 ∈ 𝑆 ; terminal 𝛼 ∈
Σ+; empty 𝛼 = 𝜀; renaming 𝛼 ∈ 𝑉𝑁 ; operator 𝛼 ∉ 𝑉 ∗𝑉𝑁𝑉𝑁𝑉 ∗,
i.e., at least one terminal is interposed between any two
nonterminals occurring in 𝛼 .
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Figure 1. Left-associative syntax tree (left) vs equal-level (center) and symmetric (right) ones of the plus operator. The left
syntax tree imposes a sequential left-to-right parsing and semantic processing whereas the center one can be –and the right
one is– split onto several branches to be partially processed independently from each other and further aggregated.

A grammar is backward deterministic (BD) if (𝐵 → 𝛼,𝐶 →
𝛼 ∈ 𝑃) implies 𝐵 = 𝐶 . If all rules of a grammar are in operator
form, it is called an operator grammar or O-grammar. The
symbols ==⇒

𝐺
,

∗
==⇒
𝐺

,
+
==⇒
𝐺

denote, respectively, an immediate

derivation, its reflexive and transitive closure, its transitive
closure. The subscript𝐺 will be omitted whenever clear from
the context. We give also for granted the notion of syntax tree
(ST). The frontier of a syntax tree is the ordered left-to-right
sequence of the leaves of the tree.

The language defined by𝐺 , said𝐿(𝐺), is {𝑤 | 𝑤 ∈ Σ∗, 𝐴
∗
==⇒
𝐺

𝑤 ∧𝐴 ∈ 𝑆}. Two grammars defining the same language are
equivalent. Two grammars generating the same set of syntax
trees, up to a renaming of internal nodes, are structurally
equivalent.

From now on, w.l.o.g., we exclusively deal with O-grammars
without renaming and empty rules with the only exception
that, if 𝜀 is part of the language, there is a unique empty rule
whose lhs is an axiom that does not appear in the rhs of any
production. In fact, this is a well-known normal form for CF
grammars [1, 18].
We now define operator precedence grammars (OPGs).

Intuitively, OPGs are O-grammars whose parsing is driven
by three precedence relations (PR), called equal, yield and
take, included in Σ#×Σ#. They are defined in such a way that
every rhs occurring within a ST is enclosed within a pair
yield–take, and all terminals in between are separated by an
equal (nonterminals are irrelevant for precedence relations)
so that the rhs can be reduced to a corresponding lhs by a
typical bottom-up parsing.

Definition 2.1 ([12]). Let𝐺 = (Σ,𝑉𝑁 , 𝑃, 𝑆) be anO-grammar.
Let 𝑎, 𝑏 denote elements in Σ,𝐴, 𝐵 in𝑉𝑁 ,𝐶 either an element
of 𝑉𝑁 or the empty string 𝜀, and 𝛼, 𝛽 range over 𝑉 ∗. The left
and right terminal sets of nonterminals are respectively:

L𝐺 (𝐴) =
{
𝑎 ∈ Σ | ∃𝐶 : 𝐴

∗
==⇒
𝐺

𝐶𝑎𝛼

}
and

R𝐺 (𝐴) =
{
𝑎 ∈ Σ | ∃𝐶 : 𝐴

∗
==⇒
𝐺

𝛼𝑎𝐶

}
.

The operator precedence (OP) relations are defined over
Σ# × Σ# as follows:

Equal in precedence 𝑎 � 𝑏 ⇔ ∃𝐴 → 𝛼𝑎𝐶𝑏𝛽 ∈ 𝑃 .
Takes precedence 𝑎 ⋗ 𝑏 ⇔ ∃𝐴 → 𝛼𝐵𝑏𝛽 ∈ 𝑃, 𝑎 ∈ R(𝐵);
𝑎 ⋗ # ⇔ 𝑎 ∈ R(𝐵), 𝐵 ∈ 𝑆 .
Yields precedence 𝑎 ⋖ 𝑏 ⇔ ∃𝐴 → 𝛼𝑎𝐵𝛽 ∈ 𝑃,𝑏 ∈ L(𝐵);
# ⋖ 𝑏 ⇔ 𝑏 ∈ L(𝐵), 𝐵 ∈ 𝑆.

TheOP relations are collected into a |Σ# |×|Σ# | array, called
the operator precedence matrix of the grammar,𝑂𝑃𝑀 (𝐺): for
each (ordered) pair (𝑎, 𝑏) ∈ Σ# × Σ#,𝑂𝑃𝑀𝑎,𝑏 (𝐺) contains the
OP relations holding between 𝑎 and 𝑏.
An OPM is conflict-free iff ∀𝑎, 𝑏 ∈ Σ#, 0 ≤ |𝑀𝑎,𝑏 | ≤ 1. A

conflict-free OPM is total or complete iff∀𝑎, 𝑏 ∈ Σ#, |𝑀𝑎,𝑏 | = 1.
If𝑀#,# is not empty,𝑀#,# = {�}. An OPM is ¤=-acyclic if the
transitive closure of the ¤= relation over Σ × Σ is irreflexive.

We extend the set inclusion relations and the Boolean
operations in the obvious cell-by-cell way, to any two ma-
trices having the same terminal alphabet. Two matrices are
compatible iff their union is conflict-free.

Definition 2.2 (Operator precedence grammar). A grammar
𝐺 is an operator precedence grammar (OPG) iff the matrix
𝑂𝑃𝑀 (𝐺) is conflict-free. An OPG is ¤=-acyclic if 𝑂𝑃𝑀 (𝐺)
is so. An operator precedence language (OPL) is a language
generated by an OPG.

Figure 2 (left) displays an OPG,𝐺𝐴𝐸 , which generates sim-
ple, unparenthesized arithmetic expressions and its OPM
(center). The left and right terminal sets of𝐺𝐴𝐸 ’s nontermi-
nals 𝐸, 𝑇 and 𝐹 are, resp.: L(𝐸) = {+,×, 𝑛}, L(𝑇 ) = {×, 𝑛},
L(𝐹 ) = {𝑛}, R(𝐸) = {+,×, 𝑛}, R(𝑇 ) = {×, 𝑛}, and R(𝐹 ) =
{𝑛}.
Remark. If the relation ¤= is acyclic, then the length of the
rhs of any rule of 𝐺 is bounded by the length of the longest
¤=-chain in 𝑂𝑃𝑀 (𝐺).
We first illustrate through a simple example how a conflict-

free OPM drives the deterministic parsing of a string to
build its associated ST (if any); those strings whose parsing
succeeds to produce a ST for them are said compatible with
the given OPM and are a universe of sentences with their
unique corresponding STs. Any OPG whose OPM is a subset
of the given one define a language that is a subset of the
universe. We refer the reader to previous literature for a
thorough description of OP parsing.
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𝐺𝐴𝐸 : 𝑆 = {𝐸}
𝐸 → 𝐸 +𝑇 | 𝑇 × 𝐹 | 𝑛
𝑇 → 𝑇 × 𝐹 | 𝑛
𝐹 → 𝑛

+ × 𝑛 #
+ ⋗ ⋖ ⋖ ⋗
× ⋗ ⋗ ⋖ ⋗
𝑛 ⋗ ⋗ ⋗
# ⋖ ⋖ ⋖

𝑁

𝑁

𝑛

+ 𝑁

𝑁

𝑛

× 𝑁

𝑛

Figure 2. 𝐺𝐴𝐸 (left), its OPM (center), and the syntax tree of 𝑛 + 𝑛 × 𝑛 (right).

Example 2.3. Consider the 𝑂𝑃𝑀 (𝐺𝐴𝐸) of Figure 2 and the
string 𝑛 + 𝑛 × 𝑛. Display all precedence relations holding
between consecutive terminal characters, including the rela-
tions with the delimiters # as shown here:

# ⋖ 𝑛 ⋗ + ⋖ 𝑛 ⋗ × ⋖ 𝑛 ⋗ #
Each pair ⋖,⋗ (with no further ⋖,⋗ in between) includes a
possible rhs of a production of any OPG sharing the OPM
with 𝐺𝐴𝐸 , not necessarily a 𝐺𝐴𝐸 rhs. Thus, as it happens in
typical bottom-up parsing, we replace —possibly in parallel—
each string included within the pair ⋖,⋗ with a dummy
nonterminal 𝑁 ; this is because nonterminals are irrelevant
for OPMs. The result is the string #𝑁 + 𝑁 × 𝑁#. Next, we
compute again the precedence relations between consecutive
terminal characters by ignoring nonterminals: the result is
# ⋖ 𝑁 + ⋖𝑁 × 𝑁 ⋗ #.

This time, there is only one pair ⋖,⋗ including a potential
rhs determined by the OPM. Again, we replace the pattern
𝑁 × 𝑁 , with the dummy nonterminal 𝑁 ; notice that there is
no doubt about associating the two 𝑁 to the × rather than
to one of the adjacent symbols: if we replaced, say, just the
× with an 𝑁 we would obtain the string 𝑁 + 𝑁𝑁𝑁 which
cannot be derived by an O-grammar. By iterating the above
procedue we finally end up with the string #𝑁#. The result
of the whole bottom-up reduction procedure is syntheti-
cally represented by the syntax tree of Figure 2 (right) which
shows the precedence of the multiplication operation over
the additive one in traditional arithmetics. It also suggests a
natural association to the left of both operations.
The tree of Figure 2 has been obtained —uniquely and

deterministically— by using exclusively the OPM, not the
grammar 𝐺𝐴𝐸 although the string 𝑛 + 𝑛 × 𝑛 ∈ 𝐿(𝐺𝐴𝐸). The
above procedure, however, could be easily adapted to become
an algorithm that produces a new syntax tree whose internal
nodes are labeled by𝐺𝐴𝐸 ’s nonterminals. Such an algorithm
could be made deterministic by transforming 𝐺𝐴𝐸 into a
structurally equivalent BD grammar sharing the same OPM.

Obviously, all sentences of 𝐿(𝐺𝐴𝐸) can be given a syntax
tree by𝑂𝑃𝑀 (𝐺𝐴𝐸), but there are also strings in the universe
defined by its OPM, e.g. + + +, that are not in 𝐿(𝐺𝐴𝐸). Notice
also that, in general, not every string in Σ∗, e.g. 𝑛𝑛, belongs
to the universe of the OPM.

Thus, an OPG selects a set of STs within the universe
defined by its OPM; a similar selection can be operated by
an operator precedence automaton (OPA) [22].

Definition 2.4 (Operator precedence automaton (OPA)). A
nondeterministicOPA is given by a tuple:A = ⟨Σ, 𝑀,𝑄, 𝐼, 𝐹 , 𝛿⟩
where: Σ is the terminal alphabet,𝑀 an OPM thereon, 𝑄 a
set of states (disjoint from Σ), 𝐼 ⊆ 𝑄 a set of initial states,
𝐹 ⊆ 𝑄 a set of final states, 𝛿 , the transition function, is a
triple of functions 𝛿shift : 𝑄 × Σ → ℘(𝑄), 𝛿push : 𝑄 × Σ →
℘(𝑄), 𝛿pop : 𝑄 ×𝑄 → ℘(𝑄).
We represent a nondeterministic OPA by a graph with 𝑄

as the set of vertices and Σ ∪𝑄 as the set of edge labelings.
We write 𝑝

𝑎−→ 𝑞 iff 𝑞 ∈ 𝛿push (𝑝, 𝑎), 𝑝
𝑎
d 𝑞 iff 𝑞 ∈ 𝛿shift (𝑝, 𝑎),

and 𝑞
𝑝

=⇒ 𝑟 iff 𝑟 ∈ 𝛿pop (𝑞, 𝑝).
To define the semantics of the automaton, we introduce

some notations. We use letters 𝑝, 𝑞, 𝑝𝑖 , 𝑞𝑖 , . . . to denote states
in𝑄 . Let Γ be Σ×𝑄 and let Γ′ be Γ∪{⊥}; we denote symbols in
Γ′ as [𝑎, 𝑞] or ⊥. We set 𝑠𝑦𝑚𝑏𝑜𝑙 ( [𝑎, 𝑞]) = 𝑎, 𝑠𝑦𝑚𝑏𝑜𝑙 (⊥) = #,
and 𝑠𝑡𝑎𝑡𝑒 ( [𝑎, 𝑞]) = 𝑞. Given a string Π = ⊥𝜋1𝜋2 . . . 𝜋𝑛 , with
𝜋𝑖 ∈ Γ , 𝑛 ≥ 0, we set 𝑠𝑦𝑚𝑏𝑜𝑙 (Π) = 𝑠𝑦𝑚𝑏𝑜𝑙 (𝜋𝑛), including
the particular case 𝑠𝑦𝑚𝑏𝑜𝑙 (⊥) = #.

A configuration of an OPA is a triple𝐶 = ⟨Π, 𝑞, 𝑤⟩, where
Π ∈ ⊥Γ∗,𝑞 ∈ 𝑄 and𝑤 ∈ Σ∗#. The first component represents
the contents of the stack, the second component represents
the current state of the automaton, while the third compo-
nent is the part of input still to be read.

A computation or run of the automaton is a finite sequence
of moves or transitions 𝐶1 ⊢ 𝐶2; there are three kinds of
moves, depending on the precedence relation between the
symbol on top of the stack and the next symbol to read:
pushmove: if 𝑠𝑦𝑚𝑏𝑜𝑙 (Π)⋖𝑎 then ⟨Π, 𝑝, 𝑎𝑥⟩ ⊢ ⟨Π[𝑎, 𝑝], 𝑞, 𝑥⟩,
with 𝑞 ∈ 𝛿push (𝑝, 𝑎);
shift move: if 𝑎 � 𝑏 then ⟨Π[𝑎, 𝑝], 𝑞, 𝑏𝑥⟩ ⊢ ⟨Π[𝑏, 𝑝], 𝑟 , 𝑥⟩,
with 𝑟 ∈ 𝛿shift (𝑞,𝑏);
pop move: if 𝑎 ⋗ 𝑏 then ⟨Π[𝑎, 𝑝], 𝑞, 𝑏𝑥⟩ ⊢ ⟨Π, 𝑟 , 𝑏𝑥⟩, with
𝑟 ∈ 𝛿pop (𝑞, 𝑝).

Shift and pop moves are never performed when the stack
contains only ⊥.
Push and shift moves update the current state of the au-

tomaton according to the transition functions 𝛿push and 𝛿shift,
respectively: push moves put a new element on the top of
the stack consisting of the input symbol together with the
current state of the automaton, whereas shift moves update
the top element of the stack by changing its input symbol
only. The pop move removes the symbol on the top of the
stack, and the state of the automaton is updated by 𝛿pop on
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𝑞0 𝑞1
𝑛

𝑞0, 𝑞1+,×

stack state current input
⊥ 𝑞0 𝑛 + 𝑛 × 𝑛#
⊥[𝑛, 𝑞0 ] 𝑞1 +𝑛 × 𝑛#
⊥ 𝑞1 +𝑛 × 𝑛#
⊥[+, 𝑞1 ] 𝑞0 𝑛 × 𝑛#
⊥[+, 𝑞1 ] [𝑛, 𝑞0 ] 𝑞1 ×𝑛#
⊥[+, 𝑞1 ] 𝑞1 ×𝑛#
⊥[+, 𝑞1 ] [×, 𝑞1 ] 𝑞0 𝑛#
⊥[+, 𝑞1 ] [×, 𝑞1 ] [𝑛, 𝑞0 ] 𝑞1 #
⊥[+, 𝑞1 ] [×, 𝑞1 ] 𝑞1 #
⊥[+, 𝑞1 ] 𝑞1 #
⊥ 𝑞1 #

Figure 3. An OPA (top) defined on the OPM of Figure 2 and
an example of computation for 𝐿(𝐺𝐴𝐸) (bottom).

the basis of the pair of states consisting of the current state
of the automaton and the state of the removed stack sym-
bol; notice that in this move the input symbol is used only
to establish the ⋗ relation and it remains available for the
following move.

A configuration ⟨⊥, 𝑞𝐼 , 𝑥#⟩ is initial if 𝑞𝐼 ∈ 𝐼 ; a configura-
tion ⟨⊥, 𝑞𝐹 , #⟩ is accepting if 𝑞𝐹 ∈ 𝐹 . The language accepted
by the automaton is:
𝐿(A) =

{
𝑥 | ⟨⊥, 𝑞𝐼 , 𝑥#⟩ ⊢∗ ⟨⊥, 𝑞𝐹 , #⟩, 𝑞𝐼 ∈ 𝐼 , 𝑞𝐹 ∈ 𝐹

}
.

Example 2.5. The OPA depicted in Figure 3 (top) based
on the same OPM as that in Figure 2 accepts the language
𝐿(𝐺𝐴𝐸). The same figure (bottom) also shows an accepting
computation on input 𝑛 + 𝑛 × 𝑛.

3 Cyclic OPGs and their properties
Previous research [9, 10] has shown that some, but not all, of
the algebraic properties of OPLs depend critically on the ¤=-
acyclicity hypothesis. In particular, whereas it is not needed
to prove closure w.r.t. boolean operations and concatenation,
it is necessary for the closure w.r.t. Kleene *. This is due to
the fact that without such a hypothesis the rhs of an OPG
have an unbounded length but cannot be infinite: e.g., no
OPG can generate the language {𝑎, 𝑏}∗ if 𝑎 � 𝑏 and 𝑏 � 𝑎. In
most cases cycles of this type can be “broken” as it has been
done up to now, e.g., to avoid the + � + relation in arith-
metic expressions by associating the operator indifferently
to the right or to the left. From a theoretical point of view,
the ¤=-acyclicity hypothesis affects the expressive power of
OPGs; thus, the OPL family as generated by OPGs is strictly
included within that accepted by OPAs.2 We assumed so far
the ¤=-acyclicity hypothesis to keep the notation as simple
as possible so that the two formalisms are equivalent.

2The language {𝑎𝑛 (𝑏𝑐 )𝑛 } ∪ {𝑏𝑛 (𝑐𝑎)𝑛 } ∪ {𝑐𝑛 (𝑎𝑏 )𝑛 } ∪ (𝑎𝑏𝑐 )+ cannot be
generated by an OPG because the 𝑎 � 𝑏 � 𝑐 � 𝑎 relations are necessary
[11], but it is accepted by OPAs.

Recently, however, it has been observed [20] that such a
restriction may hamper the benefits achievable by the paral-
lel compilation techniques that exploit the local parsability
property of OPLs: e.g., with reference to Figure 1, the acyclic-
ity hypothesis imposes an associative structure of type (left)
whereas the flat structure of type (center) demands for a
cyclic + � + 3. Thus, we finally augmented traditional OPGs
by avoiding the �-acylicity hypothesis and introducing an
extended version of the OPG’s rhs; we proved that all the
algebraic properties of previously proved for OPLs still hold
and that the extended OPGs now reach the full power of
OPAs [8]. Next we briefly recall the referred result which is
the basis on top of which we built the present new parallel
parser generator4.
Definition 3.1 (Cyclic OPGrammar (C-OPG)). A +-O-expression
on 𝑉 ∗ is an expression obtained from the elements of 𝑉 by
iterative application of concatenation and the + operator5,
provided that any substring thereof has no two adjacent
nonterminals; for convenience, and w.l.o.g., we assume that
all subexpressions that are argument of the + operator are
terminated by a terminal character.

A Cyclic O-grammar (C-OG) is an O-grammar whose pro-
duction rhs are +-O-expressions. For a rule𝐴 → 𝛼 of a C-OG,
the ==⇒

𝐺
(immediate derivation) relation is defined as 𝛽𝐴𝛾 ==⇒

𝛽𝜁𝛾 iff 𝜁 is a string belonging to the language defined by the
+-O-expression 𝛼 , 𝐿(𝛼). The � relation is redefined as 𝑎 � 𝑏

iff ∃𝐴 → 𝛼 ∧ ∃𝜁 = 𝜂𝑎𝐶𝑏𝜃 | (𝐶 ∈ 𝑉𝑁 ∪ {𝜀} ∧ 𝜁 ∈ 𝐿(𝛼)). The
other relations remain defined as for non-cyclic O-grammars.
A C-OG is a C-OPG iff its OPM is conflict-free.

As a consequence of the definition of the immediate deriva-
tion relation for C-OPGs the STs derived therefrom can be
unranked, i.e., their internal nodes may have an unbounded
number of children. For instance, it is immediate to verify
that, by replacing the rule 𝐸 → 𝐸 +𝑇 of 𝐺𝐴𝐸 with the rule
𝐸 → (𝑇+)+𝑇 we obtain, for a sequence of + operations, the
structure of Figure 1(center) instead of that of part (left).
Two symmetric theorems [7, 8] prove that C-OPGs and

OPAs are fully equivalent even without assuming the �-
acyclicity hypothesis. For our purposes, here it suffices to
report only the following one which is the core on the basis
of which our new parallel parser is built.
Theorem 3.2 (From C-OPGs to OPAs). For any C-OPG de-
fined on an alphabet Σ and OPM𝑀 an equivalent OPA can be
effectively built.

A nondeterministic OPA6 A = ⟨Σ, 𝑀,𝑄, 𝐼, 𝐹 , 𝛿⟩ from a
given C-OPG 𝐺 with the same precedence matrix𝑀 as 𝐺 is
3[20] instead adopts a structure of type (right) which generates precedence
conflicts to be managed through an ad hoc solution.
4More details and explanations can be found in [7].
5For our purposes + is more convenient than ∗ without affecting the
generality.
6Any nondeterministic OPA can be transformed into a deterministic one at
the cost of quadratic exponential increase in the size of the state space [22].
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Figure 4. When parsing 𝛼 , the prefix previously under con-
struction is 𝛽 .

built in such a way that a successful computation thereof
corresponds to building bottom-up a syntax tree of 𝐺 : the
automaton performs a push transition when it reads the first
terminal of a new rhs; it performs a shift transition when it
reads a terminal symbol inside a rhs, i.e. a leaf with some left
sibling leaf. It performs a pop transition when it completes
the recognition of a rhs, then it guesses (nondeterministi-
cally) the nonterminal at the lhs. Each state contains two
pieces of information: the first component is the prefix of the
rhs under construction, whereas the second component is
used to recover the rhs previously under construction when-
ever all rhs nested below have been completed (see Figure 4).
Let 𝑃 be the set of rhs 𝛾 where all + and related paren-

theses have been erased. Let 𝑃 be the set of strings 𝛾 ∈ 𝑉 +

belonging to the language of some rhs 𝛾 of 𝑃 that is in-
ductively defined as follows: if (𝜂)+ is a subexpression of 𝛾
such that 𝜂 is a single string ∈ 𝑉 + then 𝜂 = {𝜂, 𝜂𝜂}; if 𝜂 =

𝛼1 (𝛽1)+𝛼2 (𝛽2)+ . . . 𝛼𝑛 where 𝛼𝑖 ∈ 𝑉 ∗, then 𝜂 = {𝜂1, 𝜂1𝜂1}
where 𝜂1 = 𝛼1𝛽1𝛼2𝛽2 . . . 𝛼𝑛 .

E.g., let 𝜂 be (𝐵𝑎(𝑏𝑐)+)+; then 𝜂 = {𝐵𝑎𝑏𝑐} and 𝜂 = {𝐵𝑎𝑏𝑐,
𝐵𝐵𝑎𝑏𝑐𝑏𝑐, 𝐵𝐵𝑎𝑏𝑐𝐵𝑎𝑏𝑐, 𝐵𝑎𝑏𝑐𝑏𝑐𝐵𝑎𝑏𝑐, 𝐵𝑎𝑏𝑐𝐵𝑎𝑏𝑐𝑏𝑐, 𝐵𝑎𝑏𝑐𝑏𝑐𝐵𝑎𝑏𝑐𝑏𝑐}.

Let P = {𝛼 ∈ 𝑉 ∗Σ | ∃𝐴 → 𝜂 ∈ 𝑃 ∧∃𝛽 (𝛼𝛽 ∈ 𝜂)} be the set
of prefixes, ending with a terminal symbol, of strings ∈ 𝑃 ;
define Q = {𝜀} ∪ P∪𝑉𝑁 ,𝑄 = Q× ({𝜀} ∪ P), 𝐼 = {⟨𝜀, 𝜀⟩}, and
𝐹 = 𝑆×{𝜀}∪{⟨𝜀, 𝜀⟩ if 𝜀 ∈ 𝐿(𝐺)}. Note that |Q| = 1+|P|+ |𝑉𝑁 |
is 𝑂 (𝑚ℎ) where𝑚 is the maximum length of the rhs in 𝑃 ,
and ℎ is the maximum nesting level of + operators in rhs;
therefore |𝑄 | is 𝑂 (𝑚2ℎ).

The transition functions are defined by the following for-
mulas, for 𝑎 ∈ Σ and 𝛼, 𝛼1, 𝛼2 ∈ Q, 𝛽, 𝛽1, 𝛽2 ∈ {𝜀} ∪ P, and
where for any expression 𝜉 , 𝜉 is obtained from 𝜉 by erasing
parentheses and + operators:

• 𝛿shift (⟨𝛼, 𝛽⟩, 𝑎) ∋
if 𝛼 ∉ 𝑉𝑁 :

 if
(
∃𝐴 → 𝛾 | 𝛾 = 𝜂 (𝜁 )+𝜃∧
𝛼𝑎 = 𝜂𝜁𝜁 ∧ 𝛼𝑎𝜃 ∈ 𝐿(𝛾) ∩ 𝑃

)
then ⟨𝜂𝜁 , 𝛽⟩ else ⟨𝛼𝑎, 𝛽⟩

if 𝛼 ∈ 𝑉𝑁 :
 if

(
∃𝐴 → 𝛾 | 𝛾 = 𝜂 (𝜁 )+𝜃∧
𝛽𝛼𝑎 = 𝜂𝜁𝜁 ∧ 𝛽𝛼𝑎𝜃 ∈ 𝐿(𝛾) ∩ 𝑃

)
then ⟨𝜂𝜁 , 𝛽⟩ else ⟨𝛽𝛼𝑎, 𝛽⟩

• 𝛿push (⟨𝛼, 𝛽⟩, 𝑎) ∋
{

⟨𝑎, 𝛼⟩ if 𝛼 ∉ 𝑉𝑁
⟨𝛼𝑎, 𝛽⟩ if 𝛼 ∈ 𝑉𝑁

• 𝛿pop (⟨𝛼1, 𝛽1⟩, ⟨𝛼2, 𝛽2⟩) ∋ ⟨𝐴,𝛾⟩

∀𝐴 :
{
if 𝛼1 ∉ 𝑉𝑁 : 𝐴 → 𝛼 ∈ 𝑃 ∧ 𝛼1 ∈ 𝐿(𝛼) ∩ 𝑃

if 𝛼1 ∈ 𝑉𝑁 : 𝐴 → 𝛿 ∈ 𝑃 ∧ 𝛽1𝛼1 ∈ 𝐿(𝛿) ∩ 𝑃

and 𝛾 =

{
𝛼2 if 𝛼2 ∉ 𝑉𝑁
𝛽2 if 𝛼2 ∈ 𝑉𝑁 .

The states reached by push and shift transitions have the
first component in P. If state ⟨𝛼, 𝛽⟩ is reached after a push
transition, then 𝛼 is the prefix of the rhs (deprived of the +

operators) that is currently under construction and 𝛽 is the
prefix previously under construction; in this case 𝛼 is either
a terminal or a nonterminal followed by a terminal.

If the state is reached after a shift transition, and the𝛼 com-
ponent of the previous state was not a single nonterminal,
then the new 𝛼 is the concatenation of the first component
of the previous state with the read character. If, instead, the
𝛼 component of the previous state was a single nonterminal
—which was produced by a pop transition— then the new 𝛼

also includes the previous 𝛽 and 𝛽 is not changed from the
previous state. However, if the new 𝛼 becomes such that a
suffix thereof is a double occurrence of a string 𝜁 ∈ 𝐿((𝜁 )+)
—hence 𝛼 ∈ P— then the second occurrence of 𝜁 is cut from
the new 𝛼 , which therefore becomes a prefix of an element
of 𝑃 .

The states reached by a pop transition have the first com-
ponent in 𝑉𝑁 : if ⟨𝐴,𝛾⟩ is such a state, then 𝐴 is the corre-
sponding lhs, and 𝛾 is the prefix previously under construc-
tion.
For instance, imagine that a C-OPG contains the rules

𝐴 → (𝐵𝑎(𝑏𝑐)+)+𝑎 and 𝐵 → ℎ and that the corresponding
OPA A parses the string ℎ𝑎𝑏𝑐𝑏𝑐ℎ𝑎𝑏𝑐𝑎: after scanning the
prefix ℎ𝑎𝑏𝑐𝑏 A has reduced ℎ to 𝐵 and has 𝐵𝑎𝑏𝑐𝑏 as the first
component of its state; after reading the new 𝑐 it recognizes
that the suffix of the first state component would become a
second instance of 𝑏𝑐 belonging to (𝑏𝑐)+; thus, it goes back
to 𝐵𝑎𝑏𝑐 . Then, it proceeds with a new reduction of ℎ to 𝐵

and, when reading with a shift the second 𝑎 appends 𝐵𝑎 to
its current 𝛽 which was produced by the previous pop so
that the new 𝛼 becomes 𝐵𝑎𝑏𝑐𝐵𝑎; after shifting 𝑏 it reads 𝑐
and realizes that its new 𝛼 would become 𝐵𝑎𝑏𝑐𝐵𝑎𝑏𝑐 , i.e., an
element of (𝐵𝑎(𝑏𝑐)+)+ and therefore “cuts” it to the single
instance thereof, i.e., 𝐵𝑎𝑏𝑐 . Finally, after having shifted the
last 𝑎 it is ready for the last pop.
The result of 𝛿shift and 𝛿push is a singleton, whereas 𝛿pop

may produce several states, in case of repeated rhs. Thus, if
𝐺 is BD, the corresponding A is deterministic. Notice that,
unlike the case of acyclic OPGs, a BD C-OPG may have rules
that are a prefix of other rules, but nevertheless this fact does
not preclude the determinism of parsing.

Example 3.3. Figure 5 (top right) displays a run of the (non-
deterministic) OPA obtained from the (not BD) C-OPG of
Figure 5 (top left) accepting the sentence 𝑛 +𝑛 +𝑛 −𝑛 −𝑛 +𝑛.
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𝐺C-AE :

𝑆 = {𝑃,𝑇 ,𝑀, 𝑁 }
𝑃 → (𝑇+)+𝑇 | 𝑛
𝑇 → 𝑀 − 𝑁 | 𝑛
𝑀 → 𝑀 − 𝑁 | 𝑛
𝑁 → 𝑛

+ − 𝑛 #
+ � ⋖ ⋖ ⋗
− ⋗ ⋗ ⋖ ⋗
𝑛 ⋗ ⋗ ⋗
# ⋖ ⋖ ⋖ �

stack state current input
⊥ ⟨𝜀, 𝜀 ⟩ 𝑛 + 𝑛 + 𝑛 + 𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[𝑛, ⟨𝜀, 𝜀 ⟩ ] ⟨𝑛, 𝜀 ⟩ +𝑛 + 𝑛 + 𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥ ⟨𝑇, 𝜀 ⟩ +𝑛 + 𝑛 + 𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑇+, 𝜀 ⟩ 𝑛 + 𝑛 + 𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [𝑛, ⟨𝑇+, 𝜀 ⟩ ] ⟨𝑛,𝑇+⟩ +𝑛 + 𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑇,𝑇+⟩ +𝑛 + 𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨T+,T+⟩ 𝑛 + 𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [𝑛, ⟨𝑇+,𝑇+⟩] ⟨𝑛,𝑇+⟩ +𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑇,𝑇+⟩ +𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨T+,T+⟩ 𝑛 − 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [𝑛, ⟨𝑇+,𝑇+⟩] ⟨𝑛,𝑇+⟩ −𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑀,𝑇+⟩ −𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [−, ⟨𝑀,𝑇+⟩] ⟨𝑀−,𝑇+⟩ 𝑛 − 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [−, ⟨𝑀,𝑇+⟩] [𝑛, ⟨𝑀−,𝑇+⟩] ⟨𝑛,𝑀−⟩ −𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [−, ⟨𝑀,𝑇+⟩] ⟨𝑁,𝑀−⟩ −𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑀,𝑇+⟩ −𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [−, ⟨𝑀,𝑇+⟩] ⟨𝑀−,𝑇+⟩ 𝑛 + 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [−, ⟨𝑀,𝑇+⟩] [𝑛, ⟨𝑀−,𝑇+⟩] ⟨𝑛,𝑀−⟩ +𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [−, ⟨𝑀,𝑇+⟩] ⟨𝑁,𝑀−⟩ +𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑇,𝑇+⟩ +𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨T+,T+⟩ 𝑛 + 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [𝑛, ⟨𝑇+,𝑇+⟩] ⟨𝑛,𝑇+⟩ +𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑇,𝑇+⟩ +𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨T+,T+⟩ 𝑛 − 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [𝑛, ⟨𝑇+,𝑇+⟩] ⟨𝑛,𝑇+⟩ −𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑀,𝑇+⟩ −𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [−, ⟨𝑀,𝑇+⟩] ⟨𝑀−,𝑇+⟩ 𝑛 + 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [−, ⟨𝑀,𝑇+⟩] [𝑛, ⟨𝑀−,𝑇+⟩] ⟨𝑛,𝑀−⟩ +𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [−, ⟨𝑀,𝑇+⟩] ⟨𝑁,𝑀−⟩ +𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑇,𝑇+⟩ +𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨T+,T+⟩ 𝑛 + 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [𝑛, ⟨𝑇+,𝑇+⟩] ⟨𝑛,𝑇+⟩ +𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑇,𝑇+⟩ +𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨T+,T+⟩ 𝑛#
⊥[+, ⟨𝑇, 𝜀 ⟩ ] [𝑛, ⟨𝑇+,𝑇+⟩] ⟨𝑛,𝑇+⟩ #
⊥[+, ⟨𝑇, 𝜀 ⟩ ] ⟨𝑇,𝑇+⟩ #
⊥ ⟨𝑃, 𝜀 ⟩ #

𝑃
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Figure 5. A C-OPG (top left), its OPM (middle left), a ST generated by them (bottom), and a run of the OPA built from the
C-OPG accepting the sentence 𝑛 +𝑛 +𝑛 +𝑛−𝑛−𝑛 +𝑛 +𝑛−𝑛 +𝑛 +𝑛 (top right). The states truncated by erasing a repeated suffix
𝜁 occurring under the scope of a + operator are emphasized. Notice that the adopted C-OPG is not BD; thus, the corresponding
OPA is nondeterministic and the accepting computation given here is just one among other failing ones.

4 Parallel parsing based on cyclic OPGs
The OPA built by Theorem 3.2 is a pure acceptor of all OPLs
as defined by C-OPGs. To build a parallel parser generator
based thereon, we need two major constructions:

1. As well as a generic pushdown acceptor for CFLs must
be augmented to a pushdown transducer to become a
real parser suitable to build the ST of a CF sentence,
the OPA must be augmented with operations to build
elements of the ST during its analysis of the input.
Notice that in this case the ST to be built must be
unranked.

2. As it was done in [2], mechanisms must be built to:

a. split the input into chunks to be partially parsed by
independent workers;

b. recompose their partial output (ST fragments) into a
new input to be resubmitted to the parser to produce
a complete ST of the original string (possibly by
iterating several passes of parallelization in case of
extremely long input).

As it happened for [2] too, this requires an important
enrichment of the original sequential parser since, after
the first pass, parsingmust work on partially processed
input that is not anymore a simple string on the input
alphabet. We will see, however, that this requires a
major departure from algorithms given in [2].
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In the rest of this section, we describe the global struc-
ture of a parallel parser based on C-OPGs with the help of
a running example consisting of the parallelization of Ex-
ample 3.3. Subsequently, we provide an enriched parsing
algorithm suitable to work on fragments of input strings, to
produce partial STs thereof and to recombine them to obtain
a full ST of the original input.

4.1 Splitting the input string into chunks
Depending on the length of the input string and on the avail-
able parallelism, the input string is split into a number of
chunks to be assigned to the available independent workers.
Whereas in normal parsing of OPLs the input string is always
delimited by the marker #, in this case only the left-(resp.
right-)most chunk is delimited at its left (resp. right) by char-
acter #; thus, a generic chunk may be delimited at its left
and/or right by any character in Σ. Two consecutive chunks
must share the same character that acts as delimiter, resp.
right and left, to allow for driving the parsing by means of
the precedence relations w.r.t. the preceding and following
chunks.
For instance, with reference to the grammar of Exam-

ple 3.3, the input #𝑛+𝑛+𝑛+𝑛−𝑛−𝑛+𝑛+𝑛−𝑛+𝑛+𝑛# could
be split into the three chunks: #𝑛 + 𝑛 + 𝑛 + 𝑛−, −𝑛 − 𝑛 + 𝑛+,
+𝑛 − 𝑛 + 𝑛 + 𝑛#, where the character + plays, respectively,
the role of right and left delimiter for the second and third
chunks, and − acts as the right delimiter for first chunk).

4.2 Partial, parallel parsing of every chunk
Thanks to the local parsability property [2] every chunk can
be parsed independently on the other ones but, in general,
the parsing can proceed only as far as in the chunk there will
be substrings enclosed within a pair of matching ⋖ and ⋗.
Thus, the OPA driving the parsing will stop after producing
a fragment of ST and will remain with a nonempty stack
consisting of two adjacient parts (in some cases one of them
can be empty) containing, respectively, the left side, elements
such that no ⋖ relation holds between two consecutive ones
of them, and the right side elements with no ⋗ PR in between.
To clarify, let us consider how the OPA built from the C-OPG
of Figure 5 performs on the three above chunks. For the first
chunk it produces the transition sequence:

⟨⊥, ⟨𝜀, 𝜀⟩, 𝑛 + 𝑛 + 𝑛 + 𝑛−⟩ ⊢∗ ⟨⊥[+, ⟨𝑇, 𝜀⟩], ⟨𝑀,𝑇+⟩, −⟩
(remember that the symbol − to the right acts as a delimiter
to compute the PR with the preceding character but cannot
be read).
Notice that during this computation the OPA does not

push onto the stack all produced pairs 𝑇+: only the firstly
pushed one remains therein —possibly, but not in this case,
with a different terminal symbol— until no further progress is
possible; they all must be stored in the ST under construction,
however. Thus, the parser at every shift action must also
generate the corresponding nodes to store them and bind
them to their siblings, as shown in Figure 6(a). The last node

labeled 𝑀 is not a sibling of previous ones labeled 𝑇 since
the + that precedes it ⋖ to the − following it.

Consider now the third chunk: it is easy to verify that the
computation ⟨+, ⟨𝜀, 𝜀⟩, 𝑛−𝑛+𝑛+𝑛#⟩ ⊢∗ ⟨+[𝑇, ⟨𝑇, 𝜀⟩], ⟨𝑇,𝑇+⟩, #⟩
will stop after producing the partial ST given in Figure 6(c).
Notice that, whereas the first computation ends with a pend-
ing + ⋖ −, the third one remains with a pending + ⋗ #.

Finally, consider the chunk in between. The OPA’s initial
configuration is ⟨−, ⟨𝜀, 𝜀⟩, 𝑛 − 𝑛 − 𝑛 + 𝑛+⟩; after pushing 𝑛
and immediately reducing it to 𝑁 , it enters configuration
⟨−, ⟨𝑁, 𝜀⟩, −𝑛 −𝑛 +𝑛+⟩ and produces the portion of ST con-
sisting of the node 𝑁 with child 𝑛; the stack consists only
of its bottom storing a − (instead of the usual #) which ⋗
over the − at the beginning of the remaining input; since
the ⋗ is not matched by any ⋖ below it, the OPA cannot
proceed with any further reduction. This is not an error
situation, however: thus, we execute a dummy push (as in
the previous [2]), i.e. we read the next character and push
it onto the stack, paired with the current state; then the
state is re-initialized to ⟨𝜀, 𝜀⟩ to emphasize that the compu-
tation now restarts as if it were the beginning of the input
with the present stack contents acting as its bottom since
it will never be affected. After having pushed and reduced
another𝑛 we find again a ⋗ between the − on top of the stack
and the + to be read; thus, we proceed with a new dummy
push and re-initialization of the state and eventually produce
the configuration ⟨−[−, ⟨𝑁, 𝜀⟩] [+, ⟨𝑁, 𝜀⟩], ⟨𝑇, 𝜀⟩, +⟩ and the
partial ST given in Figure 6(b). This time the PRs between
consecutive terminals of the stack contents, including the
two delimiters are − ⋗ − ⋗ + � +. The corresponding partial
ST is given in Figure 6(b).
Notice that the order between terminals and nontermi-

nals in any element of the stack is inverted w.r.t. the order
of the same symbols in the partial STs: this is because the
terminal component is the read character whereas the state
component is the state of the OPA before the reading.

4.3 Combining the partial outputs and building the
complete ST

We now have to build a new input and, while parsing it,
connect the three ST fragments to obtain the complete one.
First, observe that the parser can be set into an initial

configuration that is the final one of the parse of the first
chunk. Then, the key observation is that, thanks to the local
parsability property, the partial STs built so far by the three
parallel workers will not be affected by further processing:
thus, we use them as the input of the new pass (more precisely,
the new input is the sequence of terminals and nonterminals
yet to be reduced by further processing: e.g., for the second
chunk the new input is −𝑁 − 𝑁 + 𝑇+ where, as usual the
two extreme terminals act as delimiters). This will require
augmenting the present OPA to allow it to read characters
in 𝑉𝑁 too. This is quite simple since nonterminals to be
read are the root of subtrees built in the previous pass, i.e.,
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Figure 6. (a) The partial ST built by the parser while processing #𝑛 + 𝑛 + 𝑛 + 𝑛−. (b) The partial ST built by the parser while
processing −𝑛 − 𝑛 + 𝑛+. (c) The partial ST built by the parser while processing +𝑛 − 𝑛 + 𝑛 + 𝑛#. (d) The partial ST obtained by
recombining (a) and (b).

the 𝛼 component of the state reached after the pop move
that created them, which, in turn, is the lhs of a grammar’s
production —if the OPA is the one built on the basis of the
C-OPG—. On the other hand, the 𝛽 component, i.e. the rhs
previously under construction, is the same as it was when
the parsing of the subtree rooted in the read nonterminal
began; therefore, it remains unaffcted in the new state (see
Figure 4).
To illustrate, let us consider the transition from the first

to the second chunk in our running example.
The first step to join the parsing of the two chunks is to

“read” the character − that acted as right and left delimiter,
resp., of the two chunks: since the terminal 𝑠𝑦𝑚𝑏𝑜𝑙 (Π) =

+ ⋖ −, the transition function to apply is a 𝛿push (it could
also be a 𝛿shift in case of � PR but not a 𝛿pop). Thus, the next
configuration of the OPA is

⟨⊥[+, ⟨𝑇, 𝜀⟩] [−, ⟨𝑀,𝑇+⟩], ⟨𝑀−,𝑇+⟩, 𝑁 − 𝑁 +𝑇+⟩
At this point the next move consists in reading the nonter-

minal 𝑁 : this leads the OPA into the configuration
⟨⊥[+, ⟨𝑇, 𝜀⟩] [−, ⟨𝑀,𝑇+⟩], ⟨𝑀 − 𝑁,𝑇+⟩, −𝑁 +𝑇+⟩ (a con-

figuration that is instead “implicit” in the transition sequence
of Figure 5) and immediately performs the pop move that
leads it to ⟨⊥[+, ⟨𝑇, 𝜀⟩], ⟨𝑀,𝑇+⟩, −𝑁 +𝑇+⟩. In essence, the
reading of 𝑁 has led the OPA from the 17th row of Figure 5
to the 20th one, a little gain in this example, but remember
that the gain is proportional to the size of the subtree rooted
in the read nonterminal.
The computation now proceeds in the same way, finally

reaching the configuration ⟨⊥[+, ⟨𝑇, 𝜀⟩], ⟨𝑇,𝑇+⟩, +⟩ and pro-
ducing the partial tree of Figure 6(d), ready to be completed
by processing the partial tree of Figure 6(c) in the same way
as for the transition from the first to the second chunk, and
therefore producing the ST of Figure 5 (where the tree repre-
sentation has been changed from the one typical of ranked
trees to the one for unranked trees).

Notice that after attaching the fragment of Figure 6(c)
to that of Figure 6(d) through the shared character +, the
parser should repeat the sequence of shift moves to scan
the sequence 𝑇 + 𝑇 + 𝑇#, skipping the subtrees rooted in
the nonterminals. This sequence of moves is obviously an
useless replay, but can be naturally and efficiently avoided by
remembering that a shift move of the OPA does not affect the
stack, apart from the change of the Σ-component of its top.
Thus, when the parser enters the first 𝑇 of the sequence, the
stack left by the worker of the previous pass already refers to
the last + of the sequence (which ⋗#) and closes the sequence
of shift moves. The parser can therefore be repositioned at
that point of the partial ST with a potential dramatic gain
when the input consists of very long sequences of elements
in the � PR.

4.4 Parsing algorithm revised for parallelization
We are now ready for a complete parsing algorithm that is
suitable to:

• Partially parse chunks of the global input.
• Receive and deliver fragments of STs.
• Accept initial —and deliver final— configurations other
than the standard OPA’s ones (with empty stack and
initial and accepting states).

• Receive as input strings ∈ 𝑉 ∗. Such strings consist of
sequences of terminals and nonterminals of partial
STs that have not yet been reduced (due to the lack of
pairs (⋖,⋗) enclosing portions thereof) as exemplified
in Figure 6.

An abstract description of this algorithm is given in Algo-
rithm 1. For simplicity and consistency with previous exam-
ples, we assume that a state is formalized as the pair (𝛼, 𝛽)
described in Section 3, and that the fragments of the ST are
kept as a global variable, built incrementally and in parallel
by the various workers, and implemented in the usual way of
unranked trees. The reader can verify that such an abstract
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algorithm formulation can be easily adapted to different con-
ventions of state and tree representations. The fragments of
ST’s are stored as an ordered sequence of subtrees —whose
roots are possibly linked through one or more terminal char-
acters that are in the PR � between each other as, e.g., in
Figure 6(a)— built so far; initialized to the input string, i.e.,
the sequence of ST’s leaves.
During the first parsing pass, 𝜉 ∈ Σ∗ is a chunk, i.e., a

sequence of contiguous terminals of the global input string
stored in nodes that are leaves of the ST to be built. Later, it
will contain also nonterminals, obtained from the concatena-
tion of several contiguous partial STs sharing the characters
playing the role of respective right and left delimiters.
Thus, after the first pass every character Y of 𝜉 refers to,

and is the label of, a node 𝜏𝑌 of the ST: if Y is a terminal
𝜏𝑌 is a leaf; if Y is a nonterminal, 𝜏𝑌 is the root of one of
the subtrees belonging to the ST fragment (remember that
two consecutive nonterminals are separated by at least one
terminal character).

For simplicity in Algorithm 1 we do not mention explicitly
the creation of leaf nodes in the particular case of the first
pass. We also assume that the state that was entered by the
OPA when the node was lastly visited is always immediately
available —e.g. by storing it as an attribute of the node.

5 Implementation Notes
To support an experimental proof of concept of the effec-
tiveness of parallel parsing based on C-OPGs, we developed
GoPAPAGENO [14, 15]. GoPAPAGENO is the C-OPG evo-
lution of a homonymous tool [17], which in turn is the re-
implementation of the original PAPAGENO [2] in GO, a pro-
gramming language supporting efficient concurrency and
parallel programming.

GoPAPAGENO builds an OPA from a given C-OPG along
the lines illustrated in Theorem 3.2, and performs parallel
parsing as follows: first, it splits the input string into chunks
of a configurable size, then it runs Alg. 1 in parallel on each
chunk, and finally it combines the resulting partial STs, pos-
sibly further exploiting parallelism, in a hierarchical way
similar to previous work [2, 20].

GoPAPAGENO and its predecessor [17] follow a workflow
analogous to that of Flex and Bison [19]. In particular, the
present [15] fully imports from [17] a parallel lexer based on
a standard regular expression matching algorithm.

Furthermore GoPAPAGENO naturally supports the classic
semantic elaboration of tree-structured data based on (syn-
thesized) attributes associated to the nodes of the ST. It also
exploits the fact that STs are unranked in that some semantic
action can be performed even during the construction of a
rhs —i.e., in association with shift parsing actions— with-
out waiting for its reduction to the corresponding lhs: this
feature may be useful, e.g., when the attribute value of the
father node depends on an associative operation applied to

the children’s values, which can be performed online and
even in parallel by the various workers.

To simplify the construction of the OPA from the given C-
OPG we introduced a restriction on the regular expressions
to define grammar rhs: we limited their star-height to 1. From
a theoretical point of view this affects the generative power of
the grammar since it is well-known that regular expressions
are a hierarchy w.r.t. their star height but we deem that
such a limitation has normally no practical effect. In fact,
a hierarchical structure as implied by nested + operators
would better be represented by making it apparent on the
structure of the ST —which, however, would in turn be made
explicit by a non-�-cyclic PR—. Such a restriction could be
easily removed at the cost of producing OPAs with a size
exponentially depending on the star-height.

6 Experimental Evaluation
We compare our C-OPG parsing algorithm (C-OPP) with
the original OP parallel parsing algorithm (OPP) [2] and As-
sociative OP Parsing (AOPP) [20]. To exclude performance
differences due to the use of different programming lan-
guages, and because the tool by [20] is not publicly available,
we implemented both baselines within GoPAPAGENO. We
made an artifact available to replicate the experiments [5].

We evaluate the approaches on the same three JSONdatasets
used in [20]:

• Emojis [16] (180 kB, replicated to 180 MB) contains a
flat list of emoji names associated to URLs pointing to
image files.

• Citylots [25] (180 MB) contains geographic data of San
Francisco’s Subdivision parcels, represented as a list
of records containing several fields;

• Wikidata [24] (180 MB) is a dump of the Wikidata
database, consisting of a list of very complex objects.

We chose the JSON format because it is widely used to rep-
resent large monolithic datasets, that justify the need for
efficient parallel parsing. On the other hand, it features a
hierarchical structure that requires a context-free parser,
unlike other popular but simpler formats such as CSV. Of
the three datasets, Emojis features the flattest structure, and
Wikidata the most deeply nested.

We conducted the experiments on a server equipped with
an AMD EPYC 7551 (32 cores, 2 GHz) CPU and 503 GiB of
RAM, running Debian 6 and Go version 1.23.0. The results
are reported in Figure 7, which shows the time required for
parsing by the three techniques while varying the degree of
parallelism.
When parsing sequentially (1 thread), C-OPP presents a

slowdown up to three-fold with respect to OPP and AOPP.
This is caused by the additional overhead incurred by C-
OPP during initialization, which requires the allocation of
more data structures due to the greater complexity of the
algorithm and to the fact that a few optimization techniques,
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Algorithm 1 Sequential C-OPP Parsing
1: Input: 𝜉 ∈ 𝑉 ∗; a stack Π; 𝑞 = (𝛼, 𝛽) ∈ 𝑄 . Output: Π′, updated stack; 𝑞′ = (𝛼 ′, 𝛽′) ∈ 𝑄 .
2: head := 0
3: X := 𝜉[head]; Y := symbol(top(Π))
4: if 𝑋 ∈ 𝑉𝑁 then // if 𝑋 ∈ 𝑉𝑁 it cannot be 𝛼 ∈ 𝑉𝑁 ; either 𝛼 ∈ 𝑉 ∗Σ# or 𝛼 = 𝜀

5: 𝛼 := 𝛼𝑋 ; head++ // (and Π = ⊥ only if the chunk being processed is the first one).
6: else if 𝑌 = ⊥ or 𝑌 ⋖ 𝑋 then // Push move
7: Push (𝑋,𝑞⋖) where the symbol ⋖ is a special marker attached to the state to remember that the state has been pushed onto the

stack as the consequence of a “real push” as opposed to the “dummy push” used in the case of unmatched ⋗;
8: if 𝛼 = 𝑍 ∈ 𝑉𝑁 then
9: // Thus, 𝑍 is the first element of the rhs under construction and the node 𝜏𝑍 storing it already exists in the partial ST
10: Append 𝜏𝑋 to 𝜏𝑍 as its right sibling;

else
// 𝜏𝑋 is going to become the leftmost child of a future internal node

11: 𝑞′ := 𝛿push (𝑞,𝑋 ); head++
12: else if 𝑌 � 𝑋 then // Shift move
13: if 𝛼 = 𝜂𝑌 then // 𝛼 is necessarily not 𝜀 because 𝑌 � 𝑋

14: Append 𝜏𝑋 to 𝜏𝑌 as its right sibling;
15: else // 𝛼 = 𝜂𝑌𝑍, 𝑍 ∈ 𝑉𝑁 and referring to node 𝜏𝑍
16: Append 𝜏𝑍 to node 𝜏𝑌 , and 𝜏𝑋 to 𝜏𝑍 as their respective right siblings (if not already so);
17: symbol(top(Π)) := X;
18: Update the reference of the 𝑋 item on top of the stack to refer to 𝜏𝑋 ;
19: 𝑞′ := 𝛿shift (𝑞,𝑋 );
20: Update 𝜉[head] to the element referred to by the (updated) element on top of the stack;
21: Reset the state to the state that was entered last time that the node of the ST was visited

// In this way, the whole sequence of shift actions already performed in possible previous pass(es) is skipped.
22: else if 𝑌 ⋗ 𝑋 then
23: if top(Π) = [Y, 𝑞⋖𝑡 ] then // The item was pushed as a “real push”; thus, this is a pop move.
24: Create a new (internal) node, say𝑀 , and make it the father of the leftmost node of the rhs just completed;
25: 𝑞′ := 𝛿pop (𝑞, 𝑞𝑡 )
26: Label𝑀 as the 𝛼 component of 𝑞′ and let it refer to the newly created node𝑀 ;
27: Pop
28: else // The 𝑌 ⋗ 𝑋 is not matched by any ⋖ in the stack
29: Push (𝑋,𝑞);
30: The leaf 𝜏𝑋 remains with with no left sibling;
31: let the item just pushed onto the stack refer to 𝜏𝑋 ;
32: 𝑞′ := ⟨𝜀, 𝜀⟩; head++
33: Repeat from Line 3 until end of the input is reached.

mainly in the construction of the OPA from the C-OPG have
not yet been implemented.
When the number of threads is greater than 1, however,

C-OPP consistently outperforms both OPP and AOPP in all
benchmarks, due to its better scaling capabilities.

Interestingly, as the thread number increases above 1, per-
formance gets worse before improving again. This effect is
more marked for OPP and AOPP than C-OPP, and likely
occurs because the additional time spent allocating memory
is not yet fully compensated by the parallelism.
For all approaches, the benefit of increasing the number

of threads is steeper between 2 and 16, and becomes less
marked afterwards. A possible cause is the lack of guaran-
tees on actual parallel execution of goroutines by the Go
runtime: after a certain threshold, the benefits of adding
more goroutines may diminish due to scheduling overhead.

In general, however, the effect of increasing parallelism is
positive, except for OPP on the Emojis dataset. In this case,
the input string structure is essentially flat, but the OPG
employed by OPP is linearly recursive, and generates an
extremely deep syntax tree, that can only be parsed strictly
sequentially, left-to-right. Indeed, according to Table 1, OPP
produces the highest syntax trees of all approaches, while
those produced by C-OPP are smaller by several orders of
magnitude, thus, fully confirming the effectiveness of C-
OPGs.

7 Concluding remarks
We have designed and implemented a first prototype of the
parallel parser generator GoPAPAGENO which exploits the
peculiar features of cyclic OPGs. Cyclic OPGs, in turn, aug-
ment the generative power of traditional OPGs just with
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Figure 7. Scalability of parallel parsing times for OPP, AOPP, and C-OPP w.r.t. no. of parallel threads (goroutines).

the purpose of further enriching the benefits of parallelism.
In fact, the experimentation we performed on a fairly typi-
cal benchmark already confirmed significant improvements
w.r.t. previous instances of parallel parser, which in turn
dramatically overtook traditional sequential parsers. We ex-
pect, however, much further benefit from the ongoing work,
which is planned along the following lines:

• We will generalize the present benchmark to make it
better represent all applications devoted to the analysis
of tree-shaped data: the present benchmark, in fact, is
deliberately focused on JSON-structured data but other
fields may exhibit much more complex structures.
We will also enlarge the comparison with other widely
known parsers, whether sequential or parallel.

• We are confident that the performances of GoPAPA-
GENO can be further significantly improved by intro-
ducing a few optimization techniques that are not yet
implemented: e.g., the present version is strictly bound
to the translation schema from C-OPG to OPA defined
in Section 3 —which we believe to be the main reason
of the poor performances of the present tool in strictly
sequential parsing— but the OPA could be built and
optimized once and forever thus avoiding much work
during the parsing.
It is also worth investigating the potential benefits,
and relative overheads, obtained by adopting multi-
pass policies as opposed to single pass ones (which

Table 1. Height of generated syntax trees. The AOPP col-
umn contains the minimum value (obtained with 32 threads),
while values for OPP and C-OPP do not depend on the num-
ber of threads.

Input OPP AOPP C-OPP

Emojis 1,935,003 61,280 5
Citylots 206,604 10,443 21
Wikidata 20,045 1,769 37

seem preferable with the present benchmark but not
necessarily in other cases [2]). Similarly, some help
could be obtained by heuristics guiding the choice for
splitting the input into chunks.

• We also look for specific applications, to join parsing
with a semantic analysis based on traditional attribute
computation: this could go from classical compilation
to more recent automatic verification techniques.
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