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ABSTRACT ARTICLE HISTORY
The requirements for modern storage systems are steadily increas- Received 2 September 2024
ing due to limited space, cost, time, and personnel. Robotic com- Accepted 19 June 2025

pact storage and retrieval systems (RCS/RS), where containers are

stacked and arranged in a block layout with robots operating from :Ettﬂ(a)tzgitorage systems;
above, offer a promising solution. Some systems benefit from a self- robotic compact storage and
sorting effect, where robots relocate previously moved containers retrieval systems; class-based
after accessing non-directly accessible ones, resulting in demand- storage strategy; cycle time
based sorted stacks. Despite various analytical models for auto- model; probability-based

mated storage systems, RCS/RS remain under-researched. Apart demand
from two distinct papers on performance evaluation, there are no

general, fast, and easy-to-use tools to assess system throughput

under demand-based access patterns. Additionally, the perfor-

mance benefits of self-sorting have not yet been studied. This

paper presents an analytical approach to predict RCS/RS perfor-

mance using a class-based access structure. A discrete event simu-

lation validates the model, and an optimization example
demonstrates the model’s broad applicability and ease of use.

1. Introduction

The major challenges facing modern supply chains and the logistics sector today can be
summarised as demographic changes and a shortage of labour, the high costs of land and
real estate, and the substantial growth in demand driven by the ongoing trend towards
e-commerce. The looming threat of climate change, and the consequent need for
sustainability, further exacerbates these challenges. Warehousing, with its essential func-
tions of storage and buffering, is invariably associated with high costs due to low
productivity.

In this context, automated or fully autonomous compact storage systems, charac-
terised by high storage densities, high potential throughput rates, and high availability,
offer solutions to the challenges discussed above.

Robotic compact storage and retrieval systems (RCS/RS) are one example of
a warehouse that meets these requirements. Some of these systems employ return
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relocations, meaning that containers previously relocated are immediately return relo-
cated after retrieving the required container. The retrieved container is then placed back
into the warehouse on top of any stack. This process results in a warehouse organised
from top to bottom by demand - i.e. from low to high demand - following the Last-In-
First-Out (LIFO) principle. Figure 1 illustrates the sorting principle used by AutoStore,
with A-movers located in the upper sections of the stacks and C-movers at the base.
Table 1 provides a list of abbreviations used in this study.

A class-based access structure may enable higher throughput rates, particularly when
most of the demand is concentrated in the upper range of the container stacks. This
results in shorter relocation times, as these occur less frequently. Considering these
effects may influence the early stages of the warehouse selection process. Nowadays,
material handling providers simulate nearly every new storage system before it is sold to
the customer and initiated. An analytical tool to predict the expected performance would
be less time-consuming and computationally intensive. Aside from two relevant analy-
tical approaches, there are neither fast nor straightforward methods available.

-
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Figure 1. RCS/RS type AutoStore showing the principle of self sorting and ABC slotting (source:
Autostore (2023)).

Table 1. Abbreviations.

3D-AS/RS 3-dimensional automatic storage and retrieval systems
AS/RS Automatic storage and retrieval systems

am Cycle time model

DCC Dual command cycle

1/0 point Input and output point

LIFO Last-In-First-Out

MQ-LC Multi queue with limited capacity

ORCS/RS Overhead robotic compact storage and retrieval systems
RCS/RS Robotic compact storage and retrieval systems

RMFS Robotic mobile fulfilment system

SBS/RS Shuttle-based storage and retrieval systems

ScC Single command cycle

SOQN Semi-open queuing network

SQ-LC Single queue with limited capacity
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Furthermore, none of the existing analytical approaches for RCS/RS takes into account
an article demand structure. Consequently, there are no universally valid statements on
the performance of RCS/RS under a class-based access distribution. Additionally, there
are neither commercial standards nor reliable market research data providing informa-
tion on expected performance.

Given the research gap described above, this paper aims to present an analytical
approach based on a cycle time model developed by Trost and Eder (2024b), considering
a class-based zoning over the stack height, based on a Pareto-distributed demand
structure. Despite the exemplary application of the Pareto distribution, any arbitrary
access structure can be implemented.

This objective, along with the identified research gap, allows to formulate the follow-
ing research questions, which this paper seeks to answer:

(1) How can the cycle time of a single robot operating in an RCS/RS, considering
a class-based storage policy, be determined analytically?

(2) How can the results of the analytical model be validated using discrete event
simulation?

(3) How can such a system be optimally designed for a given set of parameters?

Based on the aim of this investigation and the research questions this paper intends to
address, the following sub-targets can be formulated:

¢ An extensive literature review of analytical models in the context of multi-deep
automated storage systems under different operational, particularly class-based,
policies (Section 2).

o A thorough problem definition based on the research gap and the literature review
(Section 3).

¢ A precise definition of the system under investigation, including a detailed process
description (Section 4).

¢ The development of an analytical model for cycle time calculation (Section 5).

e The construction of a simulation model using a discrete event simulation (DES) for
accurate validation (Section 6.1).

¢ A sensitivity analysis through comprehensive parameter variation (Section 6.2).

¢ An optimisation example to demonstrate the purpose and applicability of the
analytical model (Section 6.3).

This analytical model represents the first straightforward and rapid tool for determining
the cycle time and performance of a single robot. These results can be used as input for
existing queueing models, such as those from Zou et al. (2018), Lehmann and de Koster
(2024), or Trost and Eder (2024a). The consideration of demand-based sorted stacks is an
important innovation both for academic research and practical applications, as the
warehouse design process often assumes a random storage policy or relies on time-
consuming and computationally intensive simulation models instead of analytical
approaches that could also be used for optimisation.

This is a significant novelty since no existing approaches consider the impact of class-
based policies in the context of RCS/RS. The main advantage is the provision of an easy
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and fast tool to determine throughput. Hence, this analytical model could be particularly
valuable for material handling providers, consultants, and customers. The limitation to
a single robot can be justified by the complexity of the problem, and the fact that there are
already analytical approaches, such as those by Zou et al. (2018) or Trost and Eder
(2024a), which consider multiple robots and more than one picking station. These
approaches could be utilised with input data from this study by applying this analytical
model.

2. Literature review

The body of literature addressing RCS/RS is still quite limited. There are two notable
analytical approaches discussing the performance of RCS/RS. The first is by Zou et al.
(2018), who presented a semi-open queuing network (SOQN), and the second is by Trost
and Eder (2024b), who developed a cycle time model (CTM) for estimating the perfor-
mance of a single robot. Both studies validated their approaches by comparing the results
with those from numerical simulations, which, alongside analytical formulas, is
a common method for investigating such storage systems.

Zou et al. (2018) examined dedicated versus shared storage policies per stack and
random versus zoned storage stacks along the grid. Their model can be used to determine
the optimal width-to-length ratio and stack height. The key finding is that the dedicated
policy enables higher throughput than the shared policy, although the latter is not
favoured as it could result in up to twice the costs. Moreover, the significant advantage
of the system’s high space utilisation would not be fully leveraged. Despite the quality of
the approximation, this analytical approach is neither easy nor quick to solve, which is
one of the main research gaps, as companies continue to rely on numerical simulations to
predict potential throughput. Chen (2022) and Tutam et al. (2024) also utilised a similar
SOQN to discuss the performance of a RCS/RS. While Wang et al. (2023) investigated
overhead robotic compact storage and retrieval systems (ORCS/RS), tested different
storage policies, and compared ORCS/RS with the AutoStore system, Tutam et al.
(2024) considered the impact of skewness in the design process of RCS/RS using
Bender’s curves.

Trost and Eder (2024b) developed an analytical calculation approach for RCS/RS with
one robot serving multiple stack heights, assuming a uniform article distribution with
uniform demand. These universally valid approximation formulas can accommodate
various operational modes and a wide range of system parameters, such as robot velocity,
grid size, stack height, container size, and the location of the I/O shatft.

In addition to these analytical approaches, several papers have conducted simulation
studies on RCS/RS performance or control strategies. For instance, Tjeerdsma (2019),
Galka and Scherbarth (2021), Kartnig et al. (2023), and Trost et al. (2023) developed
discrete event simulations using a random storage strategy and a single class of items,
while Beckschaefer et al. (2017) discussed different storage strategies. Chen et al. (2022)
investigated various article classes to provide insights into the performance of ORCS/RS
operating without return relocations. They derived the optimal system design for ORCS/
RS and found that zoning results in better performance when demand is Pareto
distributed.
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Given the limited literature on RCS/RS, the research review was extended to include
multiple-deep automated storage and retrieval systems (AS/RS) and multiple-deep shut-
tle-based storage and retrieval systems (SBS/RS) under class-based storage strategies.
While RCS/RS systems excel in providing high storage densities, flexibility, and scal-
ability, SBS/RS systems offer superior performance and faster order processing thanks to
their use of numerous independent shuttles, each typically serving one tier within an
aisle. As a result, SBS/RS systems are commonly employed in distribution and e-com-
merce warehouses. Conversely, AS/RS systems are primarily designed for larger storage
units, such as pallets, and for handling heavier loads. However, since a single S/R
machine serves an entire aisle, these systems have lower throughput rates and are
generally used for applications with low turnover requirements. RMFS systems, such as
the Amazon Kiva system, provide exceptional flexibility and scalability but come with the
drawback of reduced storage densities. Table 2 summarizes the key characteristics of
these warehouse types.

There are numerous papers discussing the performance of various storage systems
under class-based storage policies, optimal storage layouts, and the best storage strate-
gies. Therefore, the literature review in this context was limited to RCS/R systems and
analytical approaches developed for performance approximation under class-based sto-
rage strategies.

The earliest approaches for AS/RS with class-based storage policies date back to the
1970s, such as Hausman et al. (1976), who investigated storage policies for AS/RS and
compared the numerical results for random, two-class, and three-class storage strategies.
Several further studies have been conducted on classical two-dimensional AS/RS. For
instance, Petersen et al. (2004) compared the performance of class-based storage assign-
ments with random storage assignments in a manual order-picking warehouse, finding
that a class-based storage policy provides cost savings and enables higher performance
Yu and de Koster (2008) extended the research on class-based storage policies to 3D-AS
/RS by developing an analytical approach. Zaerpour et al. (2013) further investigated 3D-
AS/RS and found that the optimal storage dimension (excluding cuboid shapes) for
a given number of storage slots is the same, regardless of which of the three storage
policies mentioned is used. Yu et al. (2015) analysed the impact of using a finite number
of items, concluding that more classes do not always result in better performance. Ekren
et al. (2015) studied SBS/RS under class-based storage policies, considering different rack
designs, and concluded that high-rise warehouse designs work well with class-based
storage policies.

While Xu et al. (2018) examined multiple deep AS/RS with a two-class storage policy,
Eder (2022) analysed storage strategies for multiple-deep SBS/RS with two and three
classes, using a single queue with limited capacity (SQ-LC).

Table 2. Comparison of the different automated warehouse types.

Criterion AS/RS SBS/RS RCS/RS RMFS
Storage density Medium High Very high Medium
Turnover rate Low-Medium High Very high Medium
Item size Large Medium Small Medium
Investment cost Low-Medium High Medium Low-Medium
Flexibility Low High Medium-High Very high

Scalability Low High High Very high
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Table 3. Literature overview.

Author System Policy Model DES'
Hausman et al. (1976) AS/RS CT™M random & class-based

Petersen et al. (2004) Warehouse? DES random & class-based

Yu and de Koster (2008) 3D-AS/RS CT™M class-based

Zaerpour et al. (2013) 3D-AS/RS CT™M class-based

Yu et al. (2015) AS/RS CT™M class-based v
Ekren et al. (2015) SBS/RS DES class-based

Beckschaefer et al. (2017) RCS/RS DES random

Xu et al. (2018) AS/RS? CT™M random & class-based v
Zou et al. (2018) RCS/RS SOQN random & class-based v
Galka and Scherbarth (2021) RCS/RS DES random

Eder (2022) SBS/RS? SQ-LC class-based v
Chen et al. (2022) ORCS/RS DES random & class-based

Trost et al. (2023) RCS/RS DES random

Kartnig et al. (2023) RCS/RS DES random

Wang et al. (2023) ORCS/RS SOQN class-based v
Trost and Eder (2024b) RCS/RS CT™M random v
Lehmann and de Koster (2024) AS/RS? CT™M random v
Trost and Eder (2024c) RCS/RS SQ-LC random v
Trost and Eder (2024a) RCS/RS MQ-LC random v
This paper RCS/RS ™M random & class-based v

'DES for validation, 2 multiple-deep, * aisle-based manual picker warehouse.

Table 3 provides an overview of the existing scientific considerations.

As there are few studies investigating RCS/RS and no analytical approaches
addressing the throughput of storage systems under class-based zoning across stack
heights, this paper aims to present an analytical approach based on a cycle time
model developed by Trost and Eder (2024b), taking into account the storage system’s
demand structure. This approach is novel, as Trost and Eder (2024b) assumed
a uniform access structure across the stack height. A more detailed definition of the
problem, along with the basic assumptions and the system under investigation, can be
found in Sections 3 and 4.

3. Problem definition

In general, storage systems can be operated using one of the following storage assignment
policies, as outlined by Hausman et al. (1976):

e Random (single class)
¢ Dedicated (one class for each product)
o Class-based (two or more classes)

A random storage policy, considering only a single class of items, assigns storage goods
randomly to the first available location. In contrast, the dedicated storage policy reserves
a specific storage location for each product (i.e. each class). The class-based storage policy
classifies products into different classes based on criteria such as demand, cost, or size
(Schenone et al., 2020).

A special case arises in the system depicted in this investigation. In the context of the
policies discussed above, the storage policy within an RCS/R system involves random
allocation along the grid. The first accessible stack with space for another container is
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assigned, meaning that horizontal zoning along the grid is not applied. Therefore, high-
demand A-articles are stored near the I/O shaft, while infrequently required C-articles
are placed at the far edge of the grid. Although this arrangement may seem advantageous,
horizontal zoning reduces performance because not all frequently accessed A-articles can
be stored at the top of the grid. Previous studies, such as Trost and Eder (2024b), have
demonstrated that the robot’s ride time is minimal compared to the relocation times.

Compared to traditional automated storage systems (AS/RS), RCS/R systems can
achieve high space utilisation rates (up to 400% increase) due to the absence of aisles
and tiers. This is often accompanied by a potentially large number of relocations,
depending on demand. Previous studies have shown that the number of relocations is
significantly influenced by the stack height, in addition to the filling degree. RCS/R
systems, such as the Jungheinrich Powercube or the AutoStore system, typically feature
stack heights of up to 25 containers, which may result in a large number of relocations
depending on demand distribution.

Furthermore, RCS/R systems are appealing for warehouse requirements such as
scalability, flexible modularity, and easy expandability, though they do not necessarily
guarantee high output performance. The potentially high number of necessary reloca-
tions can significantly impact throughput. This impact varies with article distributions
featuring inhomogeneous access structures and the execution of return relocations,
leading to demand-sorted stacks that can be classified into different access classes.

AutoStore asserts that 20% of the article stock in a warehouse generates 80% of the
demand Autostore (2023). This empirical 80/20 rule is widely known as the Pareto
principle.

From a logistical perspective, this means that 20% of the articles in a warehouse
account for 80% of the demand. The impact of this phenomenon can be substantial,
highlighting the importance of ensuring easy and fast access to high-demand articles. In
this paper, the Pareto distribution is used as an example to discuss the performance of
such systems. However, since demand may follow other probability distributions, alter-
native distributions can also be implemented.

Since every storage stock can be evaluated and analysed statistically, it is valuable to
determine the performance of a storage system while considering the access structure.
Based on an ABC analysis, a storage control system can effectively chart the demand for
each product and identify the optimal access placement. This is achieved by arranging
data according to predefined order criteria in descending order from left to right
Briiggemann and Bremer (2020).

Material handling providers still simulate nearly every new storage system before it is
sold to the customer. Although this investigation presents an analytical model and
highlights the advantages of this method - such as simplicity, clarity, and computational
efficiency - it is important to also acknowledge its drawbacks. Analytical models often
rely on simplifying assumptions to generate solvable equations, making them less
effective for describing highly complex systems. Furthermore, they are not well-suited
for systems that evolve over time, especially when dynamic simulation of system beha-
viour is required.

As mentioned in the introduction, the disadvantages often associated with
simulation models include high computational demands and a lack of generalisa-
bility. In contrast, simulations can effectively model real-world scenarios and are
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particularly useful for visualisation, which is employed for simulation verification
in this study. Frequently, both methods are used together in a complementary
manner: an analytical model can provide valuable insights or serve as
a benchmark, while simulations are better suited for handling more complex or
realistic scenarios.

An analytical approach that considers a demand-based access structure represents
a novel development. Such a model could quickly yield appropriate results within a few
seconds for a given article distribution and parameter setting.

When designing a new storage system, the three main input parameters are the
required storage capacity, the desired throughput, and the existing article demand
structure.

The access structure must be analysed and categorised into different classes, such as
one class for each stack height or three classes following the ABC principle. Based on this
categorisation, a discrete probability distribution that aligns well with the demand
structure must be identified. Maximum likelihood estimation could be one method for
this purpose.

This investigation focuses on throughput depending on the applied distribution and
its impact on the probability of relocation. The approach developed in this paper can also
be easily modified and applied to other storage systems.

Building on Trost and Eder (2024b), this paper adapts and extends the developed cycle
time model (CTM) to consider an inhomogeneous access structure with any demand
distribution. The Pareto distribution is used as an example, but any discrete demand
distribution can also be applied. This approach can be used to determine the throughput
of an RCS/R system operating with one robot and return relocations (e.g. AutoStore).
Return relocations, while elongating the cycle time, also ensure a self sorting effect over
the stack. The access structure must be analysed and categorised into different classes,
such as one class for each stack height. Based on this, a suitable discrete probability
distribution must be identified.

The primary advantage of this approach is its simplicity and speed in determining the
cycle time or throughput of an RCS/RS using a class-based access structure. It can be used
with a given article demand that has already been analysed and assigned to a specific
distribution, or with theoretical relocation probabilities, such as average digging depth.

4, System description

The system depicted in this paper is a block-arranged, grid-based storage system oper-
ated from above by a robot. This configuration enables fully autonomous storage and
retrieval. Inside the storage system, goods are stored in plastic containers stacked up to
a height of 25 containers. Consequently, the storage strategy within each stack follows the
Last-In-First-Out (LIFO) principle. The main advantages of the system are its high
storage density and scalability. However, due to the high stack heights, the number of
necessary relocations can also be significant. Figure 2 illustrates an RCS/RS with one
robot serving a single picking station.

Figure 2 illustrates an RCS/RS. A picking station with an input/output (I/O) shaft
is positioned at the center of the grid’s wide edge. The robot operates on the grid to
manage the storage system. Such storage systems typically use a random storage
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’A’-article robot grid Assumption: 16 classes

grid level

stack height (retrieval stack): sh = 12
maximum stack height: shyqr = 16

'P’-article container stack  picking station [/O-shaft jumber of storage locations: N = 1,296

Figure 2. Robotic compact storage and retrieval system.

strategy combined with a ‘relocation to next available stack’ relocation policy. A class-
based storage strategy can optimise throughput by reducing the robot’s ride time on
the grid.

Additionally, some systems employ return relocations to achieve self sorted stacks,
effectively implementing a class-based storage strategy within each stack. Return reloca-
tions involve returning every relocated container back to its original stack in the reverse
sequence immediately after the required container is retrieved. The retrieved container is
then placed on top of any accessible stack within the grid. If this container is needed soon
afterwards, the necessary relocations to access it are minimal or even zero. Conversely, if
the container is not needed for an extended period, it will be moved down as other
containers are placed above it. This approach naturally results in demand-sorted stacks:
containers with high-demand articles are frequently retrieved and consistently placed at
the top, while less frequently accessed containers gradually shift to the bottom over time.
A more detailed description of the storage and retrieval processes, with or without return
relocations, including graphical illustrations, can be found in Trost and Eder (2024b).

Unlike vertical zoning facilitated by return relocations, horizontal zoning along the
grid is uncommon. This is because the robot’s ride time is relatively short compared to
the lengthy container lifting and lowering times and the potentially high relocation times
due to the numerous relocations required. Therefore, reducing relocations through
vertical zoning can enhance performance (Kartnig et al., 2023). Although an additional
horizontal zoning approach could be incorporated into the analytical model, it is not
implemented here due to its limited practical relevance.

Figure 3 illustrates the storage and retrieval cycle, including a relocation and a return
relocation, performed in a DCC.
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first storage container

first retrieval container

relocation container

second storage container

second retrieval container

N
{ S

Figure 3. Overview of the operation cycle performing DCC with return relocations.

The numbers describe the sequence of the robot’s movements. Starting with
a container to be stored (blue, path 1), this is followed by a retrieval (green, path 2).
Consequently, the relocation container must be moved to a free relocation stack (paths 3
and 4). The retrieval container can then be transported to the I/O shaft via path 5. Once
the retrieval process is complete, the robot picks up another storage container (yellow,
path 6). After storing this container, the robot rides to the previous relocation stack
(path 7) and returns the previously relocated container (path 8). The next retrieval order
can then be processed.

5. Analytical approach

This paper’s analytical approach builds on the work of Trost and Eder (2024b), who
introduced the first straightforward calculation tool to predict the throughput of a single
robot within an RCS/RS for any system configuration, irrespective of parameters such as
warehouse size, stack height, filling degree, container type, or kinematic data. This
approach served as the foundation for further developments that extended to multiple
robots and picking stations. The method of re-utilising and refining the existing CTM
and queueing models from related storage systems, such as AS/RS or SBS/RS, has ensured
high consistency in the results.

Trost and Eder (2024b), assumed a uniform access structure over the stack height.
However, this may not reflect real-world applications, such as AutoStore, where many
RCS/R systems feature an inhomogeneous access structure and leverage the beneficial
self sorting effect on throughput through return relocations. This paper extends the
equations from Trost and Eder (2024b), to calculate the performance of storage systems
with an inhomogeneous demand distribution. The main assumptions are listed below:

e The robot works in a dual command cycle under the First-Come-First-Served rule.

e The systems I/O point is in front of the I/O shaft.

e The I/O shaft is located in the middle of one of the grid’s edges.

e There are always totes waiting at the I/O point in front of the I/O shaft. This
assumption is necessary for maximum throughput calculations.

e The robot picks up a new container to be stored after dropping off a required
container.
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e The robot’s velocity is constant. If not, a realistic velocity rate has to be calculated.

e The container to be relocated is relocated to the nearest available storage location
using an ‘one-path’ relocation policy.

¢ The filling degree is limited to a specific value to ensure that relocations can be done.

¢ The maximum number of classes equals the maximum stack height.

e The order of a container from different classes is given by the storage policy.

e The order of a container from the same class is evenly distributed over all containers
of the same class.

¢ Once a container is assigned to a class, the assignment is fixed and can only be
changed after retrieval.

The cycle time calculation in this paper is divided into the following steps: calculating the
robot’s ride time (section 5.1) for storage, relocation, and retrieval; determining the
probability of a relocation (section 5.2); assessing the lifting and lowering times (section
5.3); and evaluating the service time at the I/O shaft (section 5.4). Table 4 presents the
notations used in this paper.

The cycle time of a robot can vary depending on the operation mode. This paper
assumes an inhomogeneously distributed demand and return relocations to achieve
demand-based sorted stacks. Therefore, the expected cycle time for a combined storage
and retrieval process, including return relocations in a DCC, is calculated according to
Trost and Eder (2024b), by Equation 1:

Table 4. Notation.

a Distribution parameter

Ax Distance between two grid elements along the x-axis

Az Distance between two grid elements along the z-axis

ag Robot’s acceleration rate for horizontal ride

ar Robot’s acceleration rate for container transfer

E(CT) Expectation of the cycle time

f Filling degree

G Gini coefficient

he Height of a storage container

ko Position of the picking station along the x-axis

ne Number of classes

Ny Number of stacks along the x-axis

n, Number of stack along the z-axis

Nst Number of stacks

Prel Probability of a relocation

sh Storage height of a container stack

tex Time for the container exchange at the picking station

t Time to open/close the locking claws

tio_pcc Time required at the 1/0 shaft in a dual command cycle
tr_pcc Additional time of a robot to ride in a DCC

tr_scc Time of a robot required to ride in an SCC

tR_rel Time of a robot required to ride at the relocation cycle

tr Time required to transfer a container

tr_rel Time required to transfer a container in the relocation cycle
twx Time of a robot to change the wheels from one direction to another
VR Velocity rate of a robot in horizontal direction

vr Velocity rate of a robot for lifting and lowering

Wrel Number of necessary relocations per retrieval

Wrel_uni Number of relocations per retrieval assuming a uniform distribution

y Stack height variable
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E(CT) =2 (tr_scc + trpcc  +tr + Wret - (tr_ret + 2 - tr_ret)) + tio_pcc (1)

In this context, fg_scc represents the robot’s ride time in an SCC, while tg_pcc denotes
the time required for operation in a DCC, specifically the ride from one stack to another.
Both of these times occur twice in a DCC with return relocations. The term tr calculates
the lifting and lowering time for storage and retrieval. Additionally, the expression
Wrel * (tR_rel + 2 * tT_re1) represents the probability of a relocation multiplied by the time
required for the relocation cycle.

To account for realistic riding characteristics, both acceleration and deceleration must
be considered for horizontal rides and vertical container transport. Equation 2 distin-
guishes between trapezoidal and triangular motion profiles. Depending on the distance
to be covered, the robot may reach maximum velocity and ride at a constant speed until
deceleration begins, or it may not reach maximum velocity. For j < 2%, the maximum
velocity will not be reached, and the first equation in Equation 2 should be used Trost and
Eder (2024Db).

N

2- \/Z orj < &

() =4 2 VT @
L for >

Analogous to the horizontal ride, the vertical lifting and lowering of the containers

also take into account the acceleration of the robot’s transfer device. Equation 3 presents
the case distinction.

2. /X <&
sty = |2V P ®

y+ﬂ fOT’y>v—

vr ar — a

2
If the height y is smaller than :—5, the lifting device accelerates only up to half the height
before beginning to decelerate, operating in triangular mode. For heights greater than or
2
equal to :—:, the device reaches the maximum velocity vy and operates in trapezoidal

mode.

5.1. Robot ride time

The mean ride time of a robot operating in an SCC can be calculated by Equation 4 Trost
and Eder (2024b). The sign function accounts for possible wheel exchanges by evaluating
all possible combinations of storage locations along the grid in the x- and z-directions.

Ny Nz

tR_SCC = n% . niz Z Z t(l AZ) + t((|k — kol) . AX) + tWX . sign(|k— kol) (4)
k=1I=1

Analogous to the ride time in an SCC, the robot’s ride in a DCC includes an additional
term (Equation 5) that represents the robot’s ride from a storage stack to a retrieval stack
Trost and Eder (2024b).
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Ny Ny

trpcc = &% t((lm—nl)-Az) +t((|k—1]) - Ax) 5
Y7 k=11=1 m=1n=1 (5)

+twx - sign (([k 1)) - (|m — n))

For cases where sh>1, indicating that relocations are necessary, Trost and Eder
(2024c)provide a closed-form expression for the ride time during a relocation cycle.
Their model assumes a circular relocation strategy, where the container to be relocated is
transported to the nearest stack with available space. This paper adopts the relocation
strategy described by Trost and Eder (2024c), and the robot’s ride time g, for

a relocation cycle is calculated using the same equations as those presented in Trost
and Eder (2024c),

5.2. Relocation probability

For sh> 1, and with an arbitrarily distributed article access structure, a specific relocation

probability can be derived. In this investigation, we assume that the demand follows

a Pareto distribution over the stack height sh. The density function for a variable y, with

parameters y,u, >0 and a >0, is given by Schlittgen (2008) and depicted by Equation 6:
o-yE.

f()/) — ymlﬂ (6)

ya+1

And the distribution function is presented by Equation 7 (Schlittgen, 2008):

) =1- (”;) %

Based on Equation 6, the probability of a relocation for each position #n along the stack
height sh can be calculated by the following expression (Equation 8):

—(a+1)

i) =——— (®)
Z y—(oc+l)
n=1

If a different probability distribution is assumed, Equations 6 to 8 must be adapted
accordingly. The number of necessary relocations required to retrieve one container,
given a discrete probability distribution, can be determined as follows (Equation 9):

sh—1
Wrel = Z ply)-(i—1) )
i=0

Based on Trost and Eder (2024b), the number of relocations per retrieval, assuming
a uniform access structure over the stack height, can be calculated using the formula
below (Equation 10). This calculation depends on the filling degree f and the stack
height sh:

sh—2 sh—1—n ; sh n "
Wrel_uni = Z Z “sh—n n f ’ (1 _f) (10)

n=0 i=1

Finally, building the ratio &,; (Equation 11):
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forsh =1
G = 722 forsh >2 (11)

f'Wn'I_uni

This factor adjusts the influence of digging depth in the case of relocations.
Under a uniform distribution assumption, a storage container would typically be
found about halfway up the stack, especially in a nearly full warehouse. However,
with an inhomogeneous distribution, such as the Pareto distribution, containers
are more likely to be located higher in the stack. The factor £ accounts for this
adjustment by reflecting the change in the expected container location due to the
skewed distribution.

5.3. Container transfer time

The mean time required for lifting and lowering containers during storage or
retrieval can be calculated by Equation 12 using the following slightly modified
expression from Trost and Eder (2024b), incorporating the previously defined
factor &:

sh n—1 .
it = tL"’grel' Z:IZ(:)SFHI-‘M. <5h1_1> 'fShilii' (1 —f)l~2~g(hC'7’l) (12)

While the first term, f;, represents the fixed time required for locking and
unlocking the container, while the second term describes the time needed for lifting
and lowering, which depends on the stack height (sh), the filling degree (f), the
container height (h¢), the velocity (vr). Additionally, it accounts for the influence of
the access structure and digging depth. The g function provides the correct transport
time.

The mean time for lifting and lowering during a relocation cycle is calculated using
Equation 13:

sh n—1 _ . .
troe = tL+ > > ga (Sh 1) (1= f) 2 g(he - n) (13)

n=1 i=0 1

5.4. Picking time

The picking time consists of the time the robot waits on the I/O shaft, the lifting and
lowering time through the I/O shaft to the picking station, and the container exchange
time via a conveyor or a rotating plate.

The following Equation 14 is derived from Trost and Eder (2024b) and has been
adapted for the picking process in a DCC, taking into account the acceleration and
deceleration of the lifting device.

tlo_DCCiZ'tL+tcx+2'g(hc'S]’l) (14)

Therein, t; represents the time for opening and closing the locking claws, tcx denotes
the container exchange time within the picking station, and the g function provides the
correct vertical container transport time based on the container height and the stack height.
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6. Numerical study

In addition to storage capacity, throughput is a key parameter when designing a new
storage system. For an inhomogeneous demand distribution, such as the classical Pareto
principle where 20% of the storage items account for 80% of the requisitions, the access
structure significantly impacts throughput. Therefore, the article demand structure is
also a crucial factor in warehouse design.

To analyse throughput in relation to the access structure and to validate the analytical
approach outlined in section 5, a discrete event simulation (DES) was developed. This
simulation re-models an RCS/R system and its processes using the DES software SIMIO
(version 15.240).

Table 5 presents the parameters used in the numerical study. All values are derived
from European material handling providers and represent standard values for RCS/R
systems.

The primary assumption is that containers are distributed according to the Pareto
principle across the stack height sh. This paper initially uses a single class for each stack
height with the corresponding access distribution, but it is also possible to consider
multiple classes over the stack height, such as AB or ABC.

To validate the analytical approach outlined in section 5, results will be compared with
data from 30 independent scenarios of the simulation model, each involving 11,000 order
retrievals. The first 1,000 retrievals are excluded to eliminate the transient phase. The
simulation experiments range from a few minutes to several hours in duration.

The simulation was verified to ensure that the model accurately represents the
conceptual design and has been correctly implemented. To achieve this, the simulation
logic and behaviour within the simulation environment were peer-reviewed to confirm
that all assumptions were properly applied in the code. Additionally, each simulation
process was tested independently, and a sensitivity analysis was conducted to evaluate
whether the outputs responded as expected to variations in input parameters.

The simulation model is built around the four core processes of an RCS/R system:
storage, retrieval, relocations, and return relocations. In the simulation, the robot is
assigned to an order and rides to the designated stack. If containers are stored above

Table 5. Parameters for the RCS/RS.

Parameter Value
Access structure Pareto distributed
Horizontal distance in x Ax =0.7m

Horizontal distance in z Az = 0.5m

Container exchange time tex =55

Container height he = 330mm

Filling degree f € {85%,90%,95%, 96%, 97 %, 98%}
Number of grid elements along the x-axis ny € {10,15,...,50}
Number of grid elements along the z-axis n, € {10,15,...,50}
Position of the 1/0 shaft along the x-axis ko = ny2

Robot horizontal acceleration rate ag = 0.8ms?

Robot vertical acceleration rate ar = 2.5ms?

Robot horizontal velocity rate Vg = 3.1ms

Robot lifting and lowering velocity rate vr = 1.6ms

Robot time to lock/unlock the container t=1s

Robot wheel change time twx = 1s

Storage height of a container stack she{1,2,...,25}
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the required one, the robot relocates them to free neighbouring stacks. After accessing the
needed container, the robot transports it to the I/O shaft. Once the container is lowered
through the I/O shaft, the robot picks up another container from the picking station and
stores it on any available stack. Finally, the robot return relocates all previously moved
containers in reverse order to the original stack from which the retrieval was made. The
order process is complete when the stack’s sorted sequence (excluding the retrieved
container) is restored.

6.1. Validation of the analytical approach

Validating the analytical approach is a crucial step to ensure that the analytical results
align with the outputs from the simulation model under comparable conditions. This is
done by comparing the simulation results with those obtained from the analytical model.

For this study, a factorial approach will be employed to systematically validate the
analytical model and examine the effects of varying several parameters: filling degree f,
number of container stacks ng = n, - n,, stack height sh, and the distribution parameter
a. Each parameter will be tested at multiple levels to capture both main effects and
interactions.

The filling degree will be varied across different percentage levels to assess its impact
on system efficiency. The number of stacks will be adjusted to evaluate its effect on
classification accuracy and throughput. Stack height will be manipulated to understand
how vertical dimensioning influences stability and performance. Finally, the distribution
parameter o will be changed to examine its role in the distribution of demands across the
stack height.

Starting with the assumption of a Pareto-distributed demand over a stack height of
sh = 10, corresponding to 10 classes, Figure 4 shows a Pareto chart with the relative and
cumulative frequencies plotted over the stack height using the parameters a = 0.1
and Yy = 1.

40%
— 100%
35%
90%
30%
o 80% E
£ 25% g
g <5}
g G =
T 20% 0% 2
< =
E 15% 60% £
&}
10% 50%
" / D D D v
v Bl e
1 2 3 1 5 6 7 8 9 10

Stack height sh

Figure 4. Example of a pareto plot with the parameters a = 0.1 and ypin = 1.
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Interpreting the plot from Figure 4, approximately 54% of the demand can be met with
articles stored in the first or second stack height from the top. Furthermore, the inequal-
ity is even more pronounced in this case: over 80% of the requests can be fulfilled by
accessing only the top 50% of the stack height. Accessing containers on the ground floor
is necessary for only about 3% of the total demand. In the literature, this scenario is
described as 54/20, indicating that 54% of the demand can be met by accessing just 20%
of the total stack height.

These factors impact both the relocation probability and the overall system perfor-
mance. To understand the extent of this impact and to validate the accuracy of the
presented analytical model, this section focuses on throughput and relocation
probability.

Figure 5 illustrates the throughput ¢ as a function of the filling degree f. It compares
results from the analytical approach (red curve) with those from the DES (blue curve).
Additionally, results assuming a uniform distribution are shown (brown curve), high-
lighting the effect of a non-uniform distribution. The filling degree is varied within
a practically relevant range from 85% to 98%.

As shown in Figure 5, the impact of the filling degree on throughput is relatively small.
However, once the filling degree reaches f = 95%, the throughput curve starts to decline
more sharply. A fully stocked warehouse results in longer relocation ride times and,
consequently, extended relocation cycles. Compared to a uniform distribution, the Pareto
distribution provides better performance.

Table 6 presents all the data, including the minor estimation errors.

Figure 6 displays the throughput ¢ as a function of the number of stacks ng;.

Figure 6 illustrates how grid size influences throughput, comparing a Pareto-
distributed demand to a uniform access structure. The results show that the Pareto-
distributed access structure (54/20) delivers approximately 20% higher performance. The
accuracy of the analytical approach is validated as reliable, as evidenced by the error rates
detailed in Table 7.

120

—=— 1) Analytical approach
— 5 9 Qs .
100 ———a— —p —e— ¥ Simulation results

+— 1 Uniform distribution
§ 80
Z 60

®
£ 40
20
0 -
0.85 0.9 0.95 0.98

Filling degree f [1]

Figure 5. Throughput 9 depending the filling degree f of a 10 by 10 RCS/RS with a stack height of
sh = 10 (distribution parameter a = 0.1).
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Table 6. Throughput depending on the filling degree f and the stack height ns; for a stack
height of sh = 10.

Analytical Simulation Error Uniform

9 [1h] 9 [1h] (%] 9 [1h]

f 85% 106.542 104.296 2.153% 79.892
90% 104.196 102.205 1.948% 74.013

95% 101.224 101.554 —-0.325% 68.069

96% 100.406 101.319 —0.902% 66.746

97% 99.315 100.159 —0.842% 65.217

98% 97.615 97.807 —0.196% 63.207

120

—=— 1) Analytical approach

100 .\ —e— ¥ Simulation results

+— 1 Uniform distribution
80

60

Throughput ¢ [1/h]

40

20
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Figure 6. Throughput ¥ depending the number of stacks ns; of an RCS/RS with a stack height of
sh =10 and a filling degree of f = 90% (distribution parameter a = 0.1).

Table 7. Throughput depending on the filling degree f and the stack height ng for
a stack height of sh = 10.

Analytical Simulation Error Uniform

9 [1h] 9 [1h] [%] 9 [1h]

Nst 100 104.196 102.205 1.948% 74.013
400 88.621 88.362 0.293% 66.587

900 78.351 77.989 0.464% 60.520

1600 70.055 69.796 0.371% 55.468

2500 63.387 63.162 0.356% 51.195

Based on the previous analysis, the effect of stack height and distribution choice on
system performance will be examined. For this investigation, the parameter is set to
a = 0.6, which results in an 80/20 distribution with a stack height of sh = 20.

Figure 7 compares the results from the analytical approach with those obtained from
discrete event simulation. It shows how throughput ¢ and relocation probability w,,; vary
with stack height sh.

The throughput ) decreases for an increasing stack height sh. Hence, the throughput ¢
decreases with increasing inequality. This can be explained by the increasing stack height
sh while the parameter of the distribution «a keeps constantly. Figure 7 shows a good
approximation quality both for the throughput as well as for the relocation probability.
The biggest estimation error is smaller than 4%. All the results and the estimation errors
as well as the Gini coefficient are listed in Table 11.
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Figure 7. Throughput and relocation probability depending on the stack height sh for a grid size of 10
by 10 and a parameter a = 0.6.

To gain further insights and continue evaluating the analytical approach, the
parameter «, previously considered fixed, will now be varied within a range that is
realistic for RCS/R systems. Figure 8 shows the throughput and relocation prob-
ability for two different stack heights as functions of the parameter a. Additionally,
the results from the analytical model are compared with those obtained from
the DES.

Figure 8 illustrates that throughput increases almost linearly with the parameter a,
though the curve flattens significantly for values above a = 1.5, regardless of stack height
sh. The relocation probability w,,; shows an inverse relationship with «, decreasing
monotonically. As a and stack height sh increase, the distribution becomes more
unequal, leading to greater disparity.

Table 10 provides all the data presented in Figure 8, including estimation errors.
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- >~ wye Simulation results sh = 20
20
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Distribution parameter a [1]

Figure 8. Throughput and relocation probability depending on the parameter a for a grid size of 10 by
10 and the two stack heights sh = 10 and sh = 20.
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The most significant estimation error occurs at high a values for throughput, but
remains under 8%. This is due to the low number of relocations required; for example,
with & = 0.1 and a stack height of sh = 20, an average of more than four relocations per
retrieval is needed, whereas for « = 2, the relocation probability is about 0.4. Since each
simulation run involves 10,000 retrievals, the number of relocations is quite low. To
achieve more accurate results for high a values, approximately 100,000 retrievals would
be necessary. Overall, the calculated relocation probability aligns well with the results
from the DES.

6.2. Parameter variation

This subsection aims to demonstrate the breadth and scope of the presented approach.
Figure 9 shows the relocation probability plotted against stack height sh and the para-
meter a.

The evaluated data can be found in Table 12.

As illustrated, the Pareto distribution encompasses a wide range of relocation prob-
abilities, starting from higher probabilities at minimal parameters a. As « increases, the
relocation probability w,,; decreases, regardless of the stack height sh.

Similarly, it is important to determine how throughput ¥ varies with the parameter «
and stack height sh. For this analysis, the grid size of the RCS/RS is set to 10 by 10,
equating to 100 stacks, and the maximum filling degree is f = 90%.

Figure 10 shows the throughput « for a 10 by 10 RCS/R system with one robot serving
one picking station, plotted against stack height sh and the parameter a.

- 145

Wrel

Figure 9. Relocation probability w,, plotted over the stack height sh and the parameter a.
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Figure 10. Throughput of an RCS/RS depending on the distribution parameter a and the stack height
sh for a grid size of 10 by 10.

As observed, the throughput ¥ increases almost linearly with rising parameter «, while
it exhibits distinct convex parabolic characteristics as stack height increases. High stack
heights combined with highly scattered demands, indicated by low values of a, result in
lower throughputs. Conversely, a high level of inequality - reflected by a high parameter
« - leads to higher performance due to fewer required relocations.

6.3. Application example

This section aims to demonstrate the relevance of this approach for warehouse design. It
involves defining specific requirements for a storage system and identifying the optimal
system based on various parameters. Table 8 provides the input data needed for the
application example.

The storage system is required to have a capacity of 10,000 containers. The demand
structure, which should be analysed based on the evaluated customer data, can be

Table 8. Input data for the application example.

Parameter Value
Required storage capacity N = 10,000 (+2%)
Number of stacks along x-axis ny € {10,15,...,50}
Number of stacks along z-axis n, € {10,15,...,50}
Storage height of a container stack she {6,7,...,25}
Filling degree of the storage system f=90%

Throughput required Vrequ = 80 1h

Demand distribution 80/20
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Table 9. Application example for RCS/RS with one robot.

no ny x n, sh N a 9 [1h] A [m?] Vv [m?]
1 40x10 25 10000 0.518 56.128 196.0 2,009
2 20x20 25 10000 0.518 56.865 168.0 1,722
3 50x10 20 10000 0.600 67.076 245.0 2,107
4 25x20 20 10000 0.600 69.494 210.0 1,806
5 45x15 15 10125 0.728 82.771 299.3 2,080
6 50x20 10 10000 0.969 96.460 420.0 2,226
7 40x25 10 10000 0.969 97.548 406.0 2,152

Table 10. Comparison of the results throughput ¢ and relocation probability w,. analytical approach
versus discrete event simulation for a grid size of 10 by 10 and a stack height of sh = 10 and sh = 20
Analytical approach Discrete event simulation Estimation error

sh =20 sh=10 sh =20 sh=10 sh =20 sh=10

9 [1 h] Wrel ) [1 h} Wrel 9 [1 h] Wrel ] [1 h] Wrel 9 [1 h] Wrel 9 [1 h] Wrel
a 107 51.724 4559 97.838 2414 53720 4.527 98492 2404 3.72% -072% 0.66% —0.41%
10~% 51724 4559 97.838 2414 53763 4.523 98652 2397 379% -0.80% 0.83% -0.71%
10~% 51728 4.559 97.841 2414 53491 4554 98.100 2424 330% -0.10% 0.26% 0.43%
1073 51761 4.554 97.878 2412 53.615 4.539 98,597 2397 3.46% -033% 0.73% -0.63%
1072 52.094 4511 98239 2394 53.655 4.530 98425 2401 291% 042% 0.19% 0.29%
10~ 55581 4.088 101.936 2216 57.385 4.091 102.071 2218 3.14% 0.09% 0.13% 0.08%
0.2 59788 3.643 106.199 2.026 61.859 3.637 106.240 2.017 3.35% -0.15% 0.04% —0.44%
03 64325 3.228 110594 1.846 66.396 3.219 110.299 1.840 3.12% -0.28% —0.27% -0.30%
04  69.156 2.846 115.083 1.675 71414 2.831 113.793 1.693 3.16% -0.55% -1.13% 1.02%
05 74229 2499 119.625 1516 76.053 2498 117.994 1528 240% -0.05% -138% 0.73%
06  79.480 2.186 124.177 1369 80.949 2.194 122277 1370 1.81% 035% -155% 0.09%
0.7 84834 1907 128694 1.232 85.791 1919 126215 1237 1.12% 0.63% -1.96% 0.38%
08 90.210 1.660 133.134 1.107 91.216 1.655 130.218 1.102 1.10% -0.31% -2.24% -0.44%
09 95528 1.443 137458 0.993 96.244 1428 133.638 0995 0.74% -1.08% -2.86% 0.20%
1 100.713 1.254 141.632 0.890 100.330 1.261 137.319 0.886 —0.38% 0.54% -3.14% -0.43%
1.1 105.698 1.089 145.626 0.797 104.443 1.097 140.617 0.793 -1.20% 0.71% -3.56% -0.41%
1.2 110429 0947 149.418 0.712 108499 0.956 143.276 0.719 -1.78% 0.96% —-4.29% 0.88%
13 114868 0.824 152.992 0.637 111.991 0.829 146.271 0.640 -2.57% 0.59% -4.59% 0.52%
14 118989 0.718 156.337 0.570 115.537 0.716 149.197 0.563 -2.99% —0.34% -4.79% -1.12%
1.5 122780 0.627 159.450 0.509 118.252 0.631 151.332 0.512 -3.83% 0.60% -—536% 0.56%
1.6 126240 0548 162331 0.456 121.263 0.543 153474 0459 -4.10% -1.03% -577% 0.61%
1.7 129378 0.481 164.984 0.408 123.167 0.485 155.752 0.407 -5.04% 0.78% -5.93% -0.17%
1.8 132209 0423 167.417 0.365 125342 0423 157.465 0365 —5.48% 0.13% -6.32% -0.12%
1.9 134752 0373 169.642 0.328 126.811 0.378 158.905 0.330 —-6.26% 1.56% —6.76% 0.63%
2 137.029 0329 171.669 0.294 128.642 0.327 160.263 0.298 -6.52% -0.59% -7.12% 1.41%

approximated by an 80/20 Pareto distribution, where 80% of the orders are fulfilled by
just 20% of the storage. Additionally, the new storage system, operating with one robot,
should achieve a throughput of approximately 80 retrievals per hour.

Based on these requirements, the optimisation example aims to address the following
questions:

o Is there a modification that enables such a performance?
e If yes, how does the system configuration look like?
¢ How much space and volume demand is required?
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Table 11. Comparison of the results throughput ¢ and relocation probability w,. analytical approach
versus discrete event simulation for a grid size of 10 by 10 and a parameter a = 0.6

Analytical approach Discrete event simulation Estimation error
19[1 h] Wrel ’19[1 h] Wrel ’19[1 h] Wrel

stack height sh 1 226.593 0.000 222.389 0.000 -1.89% 0.00%
2 207.490 0.248 202.172 0.250 —2.63% 0.76%
3 191.636 0.449 186.107 0.450 -2.97% 0.13%
4 178.179 0.621 173.037 0.619 -2.97% —0.43%
5 166.449 0.774 161.734 0.773 -2.92% -0.13%
6 156.079 0.912 152111 0.906 -2.61% —0.60%
7 146.828 1.038 143.123 1.043 -2.59% 0.47%
8 138.514 1.155 135.690 1.152 —2.08% —0.30%
9 130.999 1.265 128.726 1.260 -1.77% —0.44%
10 124.169 1.369 122311 1.370 -1.52% 0.07%
1" 117.935 1.467 116.628 1.465 -1.12% —0.10%
12 112.222 1.560 111.187 1.561 -0.93% 0.09%
13 106.968 1.649 106.633 1.645 -0.31% -0.21%
14 102.120 1.734 102.119 1.731 0.00% —0.20%
15 97.635 1.816 98.029 1.808 0.40% -0.43%
16 93.474 1.895 94.238 1.887 0.81% —0.43%
17 89.606 1.971 90.827 1.952 1.34% -1.01%
18 86.001 2.045 87.186 2.044 1.36% —0.04%
19 82.634 2117 84.159 2.110 1.81% —0.34%
20 79.484 2.186 80.949 2.194 1.81% 0.35%
21 76.532 2.254 78.247 2.255 2.19% 0.05%
22 73.760 2320 75.840 2316 2.74% —0.14%
23 71.153 2.384 73.478 2.381 3.16% -0.12%
24 68.698 2.446 71.477 2416 3.89% -1.25%
25 66.383 2.507 68.590 2.519 3.22% 0.46%

This example serves as an ideal use case for demonstrating the analytical approach and its
intended application. The required storage systems are evaluated based on the geometric
and throughput requirements outlined in Table 8. Given the vast number of conceivable
system configurations, the increment for the number of stacks along the x- and z-axes is
set to 5. Applying a tolerance of + 2% deviation in total storage capacity reduces the
number of possible solutions to 7, making the analysis more manageable. The required
computation time and power are minimal, as no algorithm is needed.

The results derived from the analytical approach are summarised in Table 9 sorted by
the number of stacks. The space demand includes the area required for the storage system
and an additional 2 m for the pre-zone with the picking station. The volume calculation
also accounts for a two-meter gap above the storage grid to accommodate robot opera-
tion. Figure 1lillustrates four key and illustrative cases from Table 9.

As shown in Table 9, the maximum achievable throughput is approximately 98 picks
per hour (case number 7). Generally, smaller grid sizes and higher container stacks result
in lower throughput and reduced space demand. The table also reveals an interesting
observation: the 20 by 20 grid provides better performance with a smaller footprint and
volume requirement compared to the 40 by 10 system. This advantage is attributed to the
positioning of the I/O shaft along the wider axis.

For instance, case number 4 (25 by 20 grid with sh = 20) achieves nearly 70 retrievals
per hour and requires only 210 m? of space. Additionally, the volume required is
comparable to that of the smallest system (case number 2). This configuration offers
a favourable balance between high performance and compact footprint.



24 P. TROST AND M. EDER

Table 12. Relocation probability w,, depending on the stack height sh and the parameter a.

a 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sh 0.000 0.000 0.000 0.000 0.000 0000 0000 0000 0000 0.000 0.000
0333 0332 0318 0303 0289 0275 0.261 0248 0235 0223 0211
0636 0633 0603 0570 0538 0507 0478 0449 0422 03% 0371
0919 0915 0866 0813 0762 0713 0666 0.621 0.579 0538  0.500
1.189 1.182 1114 1.040 0969  0.901 0836 0774 0715 0660  0.609
1.448 1.439 1.350 1.254 1.162 1.074 0991 0912 0837 0768  0.703
1.698 1.687 1.577 1.458 1.345 1.237 1134 1038 0948 0864 0787
1.942 1.929 1.796 1.654 1519 1390  1.269 1.155 1.050 0952  0.862
2180 2164  2.009 1.843 1.685 1536  1.396 1.265 1.144 1.033 0930
10 2412 2394 2216  2.026 1.846 1.675 1516 1.369 1.232 1.107  0.993
1 2640 2620 2418 2204  2.001 1.809  1.631 1.467 1.315 1177 1.051
12 2864 2841 2616 2377 2151 1939 1741 1.560 1.393 1.242 1.106
13 3.085 3.060 2811 2546 2297  2.063 1.847 1.649 1.468 1304  1.156
14 3303 3.275 3.001 2712 2439 2184 1949 1734 1538 1.362 1.204
15 3517 3487 3189 2874 2577 2302 2048 1.816 1.606 1418  1.249
16 3729 369 3373 3.033 2713 2416 2143 1.895 1.671 1470 1.292
17 3939 3903 3556  3.189 2845 2527 2236 1.971 1.733 1.521 1332
18 4146 4108 3735 3342 2975 2636 2326 2045 1.793 1569 1371
19 4351 4310 3912 3494 3103 2742 2414 2117 1.851 1616  1.408
20 4554 45N 4088 3.643 3228 2846 2499 2186 1.907 1.660  1.443
21 4756 4710  4.261 3790  3.351 2948 2582 2254  1.961 1.703 1477
22 4955 4907 4432 3934 3472 3.048 2664 2320 2.014 1.745 1510
23 5153 5102 4602 4.078  3.591 3146 2744 2384  2.065 1.785 1.541
24 5350 529 4770 4219 3709 3242 2822 2446 2114 1824 1572
25 5545 5488 4936 4359 3.824 3337 2898 2507 2163 1.862 1.601

LoNOTULTAE WN =

1 1.1 1.2 13 14 1.5 1.6 1.7 1.8 19 2

1 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0200 018 0179 0169 0159 0.150 0.142 0.133 0126 0.118  0.111
3 0347 0324 0303 0283 0264 0246 0229 0213 0798 0.184 0.171
4 0463 0429 0397 0367 0340 0313 0289 0267 0246 0227  0.209
5 0560 0515 0473 0434 0398 0365 0334 0306 0280 0256 0.234
6 0643 0587 0536 0488 0445 0405 0369 0336 0305 0278  0.253
7 0715 0649 0589 0534 0484 0438 0397 0359 0325 0295 0.267
8 0779 0704 0635 0573 0516 0466 0420 0378 0341 0308  0.278
9 0837 0753 0676 0607 0545 0489 0439 0394 0354 0319 0.287
10 08% 0797 0712 0637 0570 0509 0456 0408 0365 0328 0.294
1 0938 0836 0745 0664 0592 0527 0470 0420 0375 0335 0.300
12 0983 0873 0775 0688 0611 0543 0483 0430 0383 0342 0305
13 1.024 0907 0803 0710 0629 0557 0494 0439 039 0347 0310
14 1063 0938 0828 0730 0645 0570 0504 0447 039% 0352 0314
15 1.100 0967  0.851 0749 0660 0582 0513 0454 0402 0357 0317
16 1134 0995 0873 0766 0673 0592 0522 0460 0407 0361 0.320
17 1.166 1.020 0893 0782 068 0602 0529 0466 0411 0364 0323
18 1.197 1.045 0912 0797 0697 0611 0536  0.471 0416 0367 0325
19 1.226 1.068 0930 0811 0708 0619 0542 0476 0419 0370 0327
20 1.254 1.089 0947 0824 0718 0627 0548  0.481 0423 0373 0329
21 1.281 1110 0963 0836 0727 0634 0554 0485 0426 0375 0331
22 1.306 1130 0978 0848 0.736  0.641 0559 0489 0429 0377 0333
23 1.330 1149 0993 0859 0745 0647 0564 0492 0431 0379 0334
24 1354 1.167 1.006 0869 0753 0653 0568 0496 0434 0381 0.335
25 1.376 1184 1019 0879 0760 0659 0572 0499 0436 0383 0337

7. Conclusion

The increasing strain on logistics and supply chains due to global crises, coupled with the rise
in e-commerce, is accelerating the digitalisation and automation of warehousing. RCS/R
systems are in high demand because they offer fully autonomous operation via robots, high
storage density, modular scalability, and high availability. However, there are hardly any
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Figure 11. 4 showcases of the application example.

models available that provide quick and accurate predictions of throughput for specific
scenarios. Neither academic research nor system suppliers has offered straightforward
performance approximations that focus on demand structure, which is crucial for RCS/R
systems where performance is heavily influenced by stack height and the number of required
relocations.

This paper introduces a novel analytical approach to determine the throughput of an
RCS/RS with a single operating robot, considering any arbitrary article demand distribu-
tion over the stack height. The approach uses the Pareto distribution as an example,
reflecting the common 80/20 distribution promoted by material handling providers for
their storage systems.

The time-continuous model builds on a probabilistic CTM developed by Trost and
Eder (2024b), with extensions to handle probability-distributed access structures. The
approach has been validated against discrete event simulations, demonstrating high
accuracy. This model is notable for its fast, straightforward calculations, easy applic-
ability, and broad range of uses.

For a 54/20 Pareto-distributed access structure (where 54% of the demand can
be met with just 20% of the stack height), the relocation probability is reduced by
nearly half for a stack height of 10 containers, resulting in up to a 50% increase in
throughput. Increasing the distribution parameter, i.e. rising inequality, while
keeping stack height constant lowers the relocation probability and increases
throughput. Conversely, a uniform distribution leads to decreased throughput as
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stack height increases. The impact of the storage system’s filling degree on per-
formance under a Pareto-distributed demand is relatively minor.

This analytical model can benefit system suppliers, warehouse customers, and consultants
by allowing the analysis of any demand distribution and predicting RCS/RS performance. The
throughput of one robot can serve as an input parameter for existing performance models
such as Zou et al. (2018) or Trost and Eder (2024a), which typically assume random access.

Future research could expand this approach to multiple operating robots and
class-based storage strategies, incorporating different routing logics to enhance
performance. Additionally, studies could develop a three-dimensional class-based
zoning approach and investigate scenarios with multiple I/O shafts and picking
stations along various grid edges. Comparative studies could then assess different
RCS/RS types and directly compare various storage systems, such as AS/RS, SBS/
RS, RCS/RS, or RMFS. Given recent trends in automated storage systems prior-
itising energy efficiency due to sustainability concerns, and the emphasis by RCS/
RS providers on their high energy efficiency, future research could focus on
developing analytical models to evaluate the energy consumption of RCS/RS.
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