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An analytical performance investigation of RCS/RS under a 
class-based access structure over the stack height
Philipp Trost and Michael Eder

Institute of Engineering Design, Technische Universitat Wien, Vienna, Austria

ABSTRACT
The requirements for modern storage systems are steadily increas
ing due to limited space, cost, time, and personnel. Robotic com
pact storage and retrieval systems (RCS/RS), where containers are 
stacked and arranged in a block layout with robots operating from 
above, offer a promising solution. Some systems benefit from a self- 
sorting effect, where robots relocate previously moved containers 
after accessing non-directly accessible ones, resulting in demand- 
based sorted stacks. Despite various analytical models for auto
mated storage systems, RCS/RS remain under-researched. Apart 
from two distinct papers on performance evaluation, there are no 
general, fast, and easy-to-use tools to assess system throughput 
under demand-based access patterns. Additionally, the perfor
mance benefits of self-sorting have not yet been studied. This 
paper presents an analytical approach to predict RCS/RS perfor
mance using a class-based access structure. A discrete event simu
lation validates the model, and an optimization example 
demonstrates the model’s broad applicability and ease of use.
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1. Introduction

The major challenges facing modern supply chains and the logistics sector today can be 
summarised as demographic changes and a shortage of labour, the high costs of land and 
real estate, and the substantial growth in demand driven by the ongoing trend towards 
e-commerce. The looming threat of climate change, and the consequent need for 
sustainability, further exacerbates these challenges. Warehousing, with its essential func
tions of storage and buffering, is invariably associated with high costs due to low 
productivity.

In this context, automated or fully autonomous compact storage systems, charac
terised by high storage densities, high potential throughput rates, and high availability, 
offer solutions to the challenges discussed above.

Robotic compact storage and retrieval systems (RCS/RS) are one example of 
a warehouse that meets these requirements. Some of these systems employ return 
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relocations, meaning that containers previously relocated are immediately return relo
cated after retrieving the required container. The retrieved container is then placed back 
into the warehouse on top of any stack. This process results in a warehouse organised 
from top to bottom by demand – i.e. from low to high demand – following the Last-In- 
First-Out (LIFO) principle. Figure 1 illustrates the sorting principle used by AutoStore, 
with A-movers located in the upper sections of the stacks and C-movers at the base. 
Table 1 provides a list of abbreviations used in this study.

A class-based access structure may enable higher throughput rates, particularly when 
most of the demand is concentrated in the upper range of the container stacks. This 
results in shorter relocation times, as these occur less frequently. Considering these 
effects may influence the early stages of the warehouse selection process. Nowadays, 
material handling providers simulate nearly every new storage system before it is sold to 
the customer and initiated. An analytical tool to predict the expected performance would 
be less time-consuming and computationally intensive. Aside from two relevant analy
tical approaches, there are neither fast nor straightforward methods available. 

Figure 1. RCS/RS type AutoStore showing the principle of self sorting and ABC slotting (source: 
Autostore (2023)).

Table 1. Abbreviations.
3D-AS/RS 3-dimensional automatic storage and retrieval systems

AS/RS Automatic storage and retrieval systems
CTM Cycle time model
DCC Dual command cycle
I/O point Input and output point
LIFO Last-In-First-Out
MQ-LC Multi queue with limited capacity
ORCS/RS Overhead robotic compact storage and retrieval systems
RCS/RS Robotic compact storage and retrieval systems
RMFS Robotic mobile fulfilment system
SBS/RS Shuttle-based storage and retrieval systems
SCC Single command cycle
SOQN Semi-open queuing network
SQ-LC Single queue with limited capacity
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Furthermore, none of the existing analytical approaches for RCS/RS takes into account 
an article demand structure. Consequently, there are no universally valid statements on 
the performance of RCS/RS under a class-based access distribution. Additionally, there 
are neither commercial standards nor reliable market research data providing informa
tion on expected performance.

Given the research gap described above, this paper aims to present an analytical 
approach based on a cycle time model developed by Trost and Eder (2024b), considering 
a class-based zoning over the stack height, based on a Pareto-distributed demand 
structure. Despite the exemplary application of the Pareto distribution, any arbitrary 
access structure can be implemented.

This objective, along with the identified research gap, allows to formulate the follow
ing research questions, which this paper seeks to answer:

(1) How can the cycle time of a single robot operating in an RCS/RS, considering 
a class-based storage policy, be determined analytically?

(2) How can the results of the analytical model be validated using discrete event 
simulation?

(3) How can such a system be optimally designed for a given set of parameters?

Based on the aim of this investigation and the research questions this paper intends to 
address, the following sub-targets can be formulated:

● An extensive literature review of analytical models in the context of multi-deep 
automated storage systems under different operational, particularly class-based, 
policies (Section 2).

● A thorough problem definition based on the research gap and the literature review 
(Section 3).

● A precise definition of the system under investigation, including a detailed process 
description (Section 4).

● The development of an analytical model for cycle time calculation (Section 5).
● The construction of a simulation model using a discrete event simulation (DES) for 

accurate validation (Section 6.1).
● A sensitivity analysis through comprehensive parameter variation (Section 6.2).
● An optimisation example to demonstrate the purpose and applicability of the 

analytical model (Section 6.3).

This analytical model represents the first straightforward and rapid tool for determining 
the cycle time and performance of a single robot. These results can be used as input for 
existing queueing models, such as those from Zou et al. (2018), Lehmann and de Koster 
(2024), or Trost and Eder (2024a). The consideration of demand-based sorted stacks is an 
important innovation both for academic research and practical applications, as the 
warehouse design process often assumes a random storage policy or relies on time- 
consuming and computationally intensive simulation models instead of analytical 
approaches that could also be used for optimisation.

This is a significant novelty since no existing approaches consider the impact of class- 
based policies in the context of RCS/RS. The main advantage is the provision of an easy 
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and fast tool to determine throughput. Hence, this analytical model could be particularly 
valuable for material handling providers, consultants, and customers. The limitation to 
a single robot can be justified by the complexity of the problem, and the fact that there are 
already analytical approaches, such as those by Zou et al. (2018) or Trost and Eder 
(2024a), which consider multiple robots and more than one picking station. These 
approaches could be utilised with input data from this study by applying this analytical 
model.

2. Literature review

The body of literature addressing RCS/RS is still quite limited. There are two notable 
analytical approaches discussing the performance of RCS/RS. The first is by Zou et al. 
(2018), who presented a semi-open queuing network (SOQN), and the second is by Trost 
and Eder (2024b), who developed a cycle time model (CTM) for estimating the perfor
mance of a single robot. Both studies validated their approaches by comparing the results 
with those from numerical simulations, which, alongside analytical formulas, is 
a common method for investigating such storage systems.

Zou et al. (2018) examined dedicated versus shared storage policies per stack and 
random versus zoned storage stacks along the grid. Their model can be used to determine 
the optimal width-to-length ratio and stack height. The key finding is that the dedicated 
policy enables higher throughput than the shared policy, although the latter is not 
favoured as it could result in up to twice the costs. Moreover, the significant advantage 
of the system’s high space utilisation would not be fully leveraged. Despite the quality of 
the approximation, this analytical approach is neither easy nor quick to solve, which is 
one of the main research gaps, as companies continue to rely on numerical simulations to 
predict potential throughput. Chen (2022) and Tutam et al. (2024) also utilised a similar 
SOQN to discuss the performance of a RCS/RS. While Wang et al. (2023) investigated 
overhead robotic compact storage and retrieval systems (ORCS/RS), tested different 
storage policies, and compared ORCS/RS with the AutoStore system, Tutam et al. 
(2024) considered the impact of skewness in the design process of RCS/RS using 
Bender’s curves.

Trost and Eder (2024b) developed an analytical calculation approach for RCS/RS with 
one robot serving multiple stack heights, assuming a uniform article distribution with 
uniform demand. These universally valid approximation formulas can accommodate 
various operational modes and a wide range of system parameters, such as robot velocity, 
grid size, stack height, container size, and the location of the I/O shaft.

In addition to these analytical approaches, several papers have conducted simulation 
studies on RCS/RS performance or control strategies. For instance, Tjeerdsma (2019), 
Galka and Scherbarth (2021), Kartnig et al. (2023), and Trost et al. (2023) developed 
discrete event simulations using a random storage strategy and a single class of items, 
while Beckschaefer et al. (2017) discussed different storage strategies. Chen et al. (2022) 
investigated various article classes to provide insights into the performance of ORCS/RS 
operating without return relocations. They derived the optimal system design for ORCS/ 
RS and found that zoning results in better performance when demand is Pareto 
distributed.
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Given the limited literature on RCS/RS, the research review was extended to include 
multiple-deep automated storage and retrieval systems (AS/RS) and multiple-deep shut
tle-based storage and retrieval systems (SBS/RS) under class-based storage strategies. 
While RCS/RS systems excel in providing high storage densities, flexibility, and scal
ability, SBS/RS systems offer superior performance and faster order processing thanks to 
their use of numerous independent shuttles, each typically serving one tier within an 
aisle. As a result, SBS/RS systems are commonly employed in distribution and e-com
merce warehouses. Conversely, AS/RS systems are primarily designed for larger storage 
units, such as pallets, and for handling heavier loads. However, since a single S/R 
machine serves an entire aisle, these systems have lower throughput rates and are 
generally used for applications with low turnover requirements. RMFS systems, such as 
the Amazon Kiva system, provide exceptional flexibility and scalability but come with the 
drawback of reduced storage densities. Table 2 summarizes the key characteristics of 
these warehouse types.

There are numerous papers discussing the performance of various storage systems 
under class-based storage policies, optimal storage layouts, and the best storage strate
gies. Therefore, the literature review in this context was limited to RCS/R systems and 
analytical approaches developed for performance approximation under class-based sto
rage strategies.

The earliest approaches for AS/RS with class-based storage policies date back to the 
1970s, such as Hausman et al. (1976), who investigated storage policies for AS/RS and 
compared the numerical results for random, two-class, and three-class storage strategies. 
Several further studies have been conducted on classical two-dimensional AS/RS. For 
instance, Petersen et al. (2004) compared the performance of class-based storage assign
ments with random storage assignments in a manual order-picking warehouse, finding 
that a class-based storage policy provides cost savings and enables higher performance 
Yu and de Koster (2008) extended the research on class-based storage policies to 3D-AS 
/RS by developing an analytical approach. Zaerpour et al. (2013) further investigated 3D- 
AS/RS and found that the optimal storage dimension (excluding cuboid shapes) for 
a given number of storage slots is the same, regardless of which of the three storage 
policies mentioned is used. Yu et al. (2015) analysed the impact of using a finite number 
of items, concluding that more classes do not always result in better performance. Ekren 
et al. (2015) studied SBS/RS under class-based storage policies, considering different rack 
designs, and concluded that high-rise warehouse designs work well with class-based 
storage policies.

While Xu et al. (2018) examined multiple deep AS/RS with a two-class storage policy, 
Eder (2022) analysed storage strategies for multiple-deep SBS/RS with two and three 
classes, using a single queue with limited capacity (SQ-LC).

Table 2. Comparison of the different automated warehouse types.
Criterion AS/RS SBS/RS RCS/RS RMFS

Storage density Medium High Very high Medium
Turnover rate Low-Medium High Very high Medium
Item size Large Medium Small Medium
Investment cost Low-Medium High Medium Low-Medium
Flexibility Low High Medium-High Very high
Scalability Low High High Very high
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Table 3 provides an overview of the existing scientific considerations.
As there are few studies investigating RCS/RS and no analytical approaches 

addressing the throughput of storage systems under class-based zoning across stack 
heights, this paper aims to present an analytical approach based on a cycle time 
model developed by Trost and Eder (2024b), taking into account the storage system’s 
demand structure. This approach is novel, as Trost and Eder (2024b) assumed 
a uniform access structure across the stack height. A more detailed definition of the 
problem, along with the basic assumptions and the system under investigation, can be 
found in Sections 3 and 4.

3. Problem definition

In general, storage systems can be operated using one of the following storage assignment 
policies, as outlined by Hausman et al. (1976):

● Random (single class)
● Dedicated (one class for each product)
● Class-based (two or more classes)

A random storage policy, considering only a single class of items, assigns storage goods 
randomly to the first available location. In contrast, the dedicated storage policy reserves 
a specific storage location for each product (i.e. each class). The class-based storage policy 
classifies products into different classes based on criteria such as demand, cost, or size 
(Schenone et al., 2020).

A special case arises in the system depicted in this investigation. In the context of the 
policies discussed above, the storage policy within an RCS/R system involves random 
allocation along the grid. The first accessible stack with space for another container is 

Table 3. Literature overview.
Author System Policy Model DES1

Hausman et al. (1976) AS/RS CTM random & class-based
Petersen et al. (2004) Warehouse3 DES random & class-based
Yu and de Koster (2008) 3D-AS/RS CTM class-based
Zaerpour et al. (2013) 3D-AS/RS CTM class-based
Yu et al. (2015) AS/RS CTM class-based ✓
Ekren et al. (2015) SBS/RS DES class-based
Beckschaefer et al. (2017) RCS/RS DES random
Xu et al. (2018) AS/RS2 CTM random & class-based ✓
Zou et al. (2018) RCS/RS SOQN random & class-based ✓
Galka and Scherbarth (2021) RCS/RS DES random
Eder (2022) SBS/RS2 SQ-LC class-based ✓
Chen et al. (2022) ORCS/RS DES random & class-based
Trost et al. (2023) RCS/RS DES random
Kartnig et al. (2023) RCS/RS DES random
Wang et al. (2023) ORCS/RS SOQN class-based ✓
Trost and Eder (2024b) RCS/RS CTM random ✓
Lehmann and de Koster (2024) AS/RS2 CTM random ✓
Trost and Eder (2024c) RCS/RS SQ-LC random ✓
Trost and Eder (2024a) RCS/RS MQ-LC random ✓
This paper RCS/RS CTM random & class-based ✓

1DES for validation, 2 multiple-deep, 3 aisle-based manual picker warehouse.

6 P. TROST AND M. EDER



assigned, meaning that horizontal zoning along the grid is not applied. Therefore, high- 
demand A-articles are stored near the I/O shaft, while infrequently required C-articles 
are placed at the far edge of the grid. Although this arrangement may seem advantageous, 
horizontal zoning reduces performance because not all frequently accessed A-articles can 
be stored at the top of the grid. Previous studies, such as Trost and Eder (2024b), have 
demonstrated that the robot’s ride time is minimal compared to the relocation times.

Compared to traditional automated storage systems (AS/RS), RCS/R systems can 
achieve high space utilisation rates (up to 400% increase) due to the absence of aisles 
and tiers. This is often accompanied by a potentially large number of relocations, 
depending on demand. Previous studies have shown that the number of relocations is 
significantly influenced by the stack height, in addition to the filling degree. RCS/R 
systems, such as the Jungheinrich Powercube or the AutoStore system, typically feature 
stack heights of up to 25 containers, which may result in a large number of relocations 
depending on demand distribution.

Furthermore, RCS/R systems are appealing for warehouse requirements such as 
scalability, flexible modularity, and easy expandability, though they do not necessarily 
guarantee high output performance. The potentially high number of necessary reloca
tions can significantly impact throughput. This impact varies with article distributions 
featuring inhomogeneous access structures and the execution of return relocations, 
leading to demand-sorted stacks that can be classified into different access classes.

AutoStore asserts that 20% of the article stock in a warehouse generates 80% of the 
demand Autostore (2023). This empirical 80/20 rule is widely known as the Pareto 
principle.

From a logistical perspective, this means that 20% of the articles in a warehouse 
account for 80% of the demand. The impact of this phenomenon can be substantial, 
highlighting the importance of ensuring easy and fast access to high-demand articles. In 
this paper, the Pareto distribution is used as an example to discuss the performance of 
such systems. However, since demand may follow other probability distributions, alter
native distributions can also be implemented.

Since every storage stock can be evaluated and analysed statistically, it is valuable to 
determine the performance of a storage system while considering the access structure. 
Based on an ABC analysis, a storage control system can effectively chart the demand for 
each product and identify the optimal access placement. This is achieved by arranging 
data according to predefined order criteria in descending order from left to right 
Brüggemann and Bremer (2020).

Material handling providers still simulate nearly every new storage system before it is 
sold to the customer. Although this investigation presents an analytical model and 
highlights the advantages of this method – such as simplicity, clarity, and computational 
efficiency – it is important to also acknowledge its drawbacks. Analytical models often 
rely on simplifying assumptions to generate solvable equations, making them less 
effective for describing highly complex systems. Furthermore, they are not well-suited 
for systems that evolve over time, especially when dynamic simulation of system beha
viour is required.

As mentioned in the introduction, the disadvantages often associated with 
simulation models include high computational demands and a lack of generalisa
bility. In contrast, simulations can effectively model real-world scenarios and are 
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particularly useful for visualisation, which is employed for simulation verification 
in this study. Frequently, both methods are used together in a complementary 
manner: an analytical model can provide valuable insights or serve as 
a benchmark, while simulations are better suited for handling more complex or 
realistic scenarios.

An analytical approach that considers a demand-based access structure represents 
a novel development. Such a model could quickly yield appropriate results within a few 
seconds for a given article distribution and parameter setting.

When designing a new storage system, the three main input parameters are the 
required storage capacity, the desired throughput, and the existing article demand 
structure.

The access structure must be analysed and categorised into different classes, such as 
one class for each stack height or three classes following the ABC principle. Based on this 
categorisation, a discrete probability distribution that aligns well with the demand 
structure must be identified. Maximum likelihood estimation could be one method for 
this purpose.

This investigation focuses on throughput depending on the applied distribution and 
its impact on the probability of relocation. The approach developed in this paper can also 
be easily modified and applied to other storage systems.

Building on Trost and Eder (2024b), this paper adapts and extends the developed cycle 
time model (CTM) to consider an inhomogeneous access structure with any demand 
distribution. The Pareto distribution is used as an example, but any discrete demand 
distribution can also be applied. This approach can be used to determine the throughput 
of an RCS/R system operating with one robot and return relocations (e.g. AutoStore). 
Return relocations, while elongating the cycle time, also ensure a self sorting effect over 
the stack. The access structure must be analysed and categorised into different classes, 
such as one class for each stack height. Based on this, a suitable discrete probability 
distribution must be identified.

The primary advantage of this approach is its simplicity and speed in determining the 
cycle time or throughput of an RCS/RS using a class-based access structure. It can be used 
with a given article demand that has already been analysed and assigned to a specific 
distribution, or with theoretical relocation probabilities, such as average digging depth.

4. System description

The system depicted in this paper is a block-arranged, grid-based storage system oper
ated from above by a robot. This configuration enables fully autonomous storage and 
retrieval. Inside the storage system, goods are stored in plastic containers stacked up to 
a height of 25 containers. Consequently, the storage strategy within each stack follows the 
Last-In-First-Out (LIFO) principle. The main advantages of the system are its high 
storage density and scalability. However, due to the high stack heights, the number of 
necessary relocations can also be significant. Figure 2 illustrates an RCS/RS with one 
robot serving a single picking station.

Figure 2 illustrates an RCS/RS. A picking station with an input/output (I/O) shaft 
is positioned at the center of the grid’s wide edge. The robot operates on the grid to 
manage the storage system. Such storage systems typically use a random storage 
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strategy combined with a ‘relocation to next available stack’ relocation policy. A class- 
based storage strategy can optimise throughput by reducing the robot’s ride time on 
the grid.

Additionally, some systems employ return relocations to achieve self sorted stacks, 
effectively implementing a class-based storage strategy within each stack. Return reloca
tions involve returning every relocated container back to its original stack in the reverse 
sequence immediately after the required container is retrieved. The retrieved container is 
then placed on top of any accessible stack within the grid. If this container is needed soon 
afterwards, the necessary relocations to access it are minimal or even zero. Conversely, if 
the container is not needed for an extended period, it will be moved down as other 
containers are placed above it. This approach naturally results in demand-sorted stacks: 
containers with high-demand articles are frequently retrieved and consistently placed at 
the top, while less frequently accessed containers gradually shift to the bottom over time. 
A more detailed description of the storage and retrieval processes, with or without return 
relocations, including graphical illustrations, can be found in Trost and Eder (2024b).

Unlike vertical zoning facilitated by return relocations, horizontal zoning along the 
grid is uncommon. This is because the robot’s ride time is relatively short compared to 
the lengthy container lifting and lowering times and the potentially high relocation times 
due to the numerous relocations required. Therefore, reducing relocations through 
vertical zoning can enhance performance (Kartnig et al., 2023). Although an additional 
horizontal zoning approach could be incorporated into the analytical model, it is not 
implemented here due to its limited practical relevance.

Figure 3 illustrates the storage and retrieval cycle, including a relocation and a return 
relocation, performed in a DCC.

Figure 2. Robotic compact storage and retrieval system.
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The numbers describe the sequence of the robot’s movements. Starting with 
a container to be stored (blue, path 1), this is followed by a retrieval (green, path 2). 
Consequently, the relocation container must be moved to a free relocation stack (paths 3 
and 4). The retrieval container can then be transported to the I/O shaft via path 5. Once 
the retrieval process is complete, the robot picks up another storage container (yellow, 
path 6). After storing this container, the robot rides to the previous relocation stack 
(path 7) and returns the previously relocated container (path 8). The next retrieval order 
can then be processed.

5. Analytical approach

This paper’s analytical approach builds on the work of Trost and Eder (2024b), who 
introduced the first straightforward calculation tool to predict the throughput of a single 
robot within an RCS/RS for any system configuration, irrespective of parameters such as 
warehouse size, stack height, filling degree, container type, or kinematic data. This 
approach served as the foundation for further developments that extended to multiple 
robots and picking stations. The method of re-utilising and refining the existing CTM 
and queueing models from related storage systems, such as AS/RS or SBS/RS, has ensured 
high consistency in the results.

Trost and Eder (2024b), assumed a uniform access structure over the stack height. 
However, this may not reflect real-world applications, such as AutoStore, where many 
RCS/R systems feature an inhomogeneous access structure and leverage the beneficial 
self sorting effect on throughput through return relocations. This paper extends the 
equations from Trost and Eder (2024b), to calculate the performance of storage systems 
with an inhomogeneous demand distribution. The main assumptions are listed below:

● The robot works in a dual command cycle under the First-Come-First-Served rule.
● The systems I/O point is in front of the I/O shaft.
● The I/O shaft is located in the middle of one of the grid’s edges.
● There are always totes waiting at the I/O point in front of the I/O shaft. This 

assumption is necessary for maximum throughput calculations.
● The robot picks up a new container to be stored after dropping off a required 

container.

Figure 3. Overview of the operation cycle performing DCC with return relocations.
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● The robot’s velocity is constant. If not, a realistic velocity rate has to be calculated.
● The container to be relocated is relocated to the nearest available storage location 

using an ‘one-path’ relocation policy.
● The filling degree is limited to a specific value to ensure that relocations can be done.
● The maximum number of classes equals the maximum stack height.
● The order of a container from different classes is given by the storage policy.
● The order of a container from the same class is evenly distributed over all containers 

of the same class.
● Once a container is assigned to a class, the assignment is fixed and can only be 

changed after retrieval.

The cycle time calculation in this paper is divided into the following steps: calculating the 
robot’s ride time (section 5.1) for storage, relocation, and retrieval; determining the 
probability of a relocation (section 5.2); assessing the lifting and lowering times (section 
5.3); and evaluating the service time at the I/O shaft (section 5.4). Table 4 presents the 
notations used in this paper.

The cycle time of a robot can vary depending on the operation mode. This paper 
assumes an inhomogeneously distributed demand and return relocations to achieve 
demand-based sorted stacks. Therefore, the expected cycle time for a combined storage 
and retrieval process, including return relocations in a DCC, is calculated according to 
Trost and Eder (2024b), by Equation 1: 

Table 4. Notation.
α Distribution parameter

Δx Distance between two grid elements along the x-axis
Δz Distance between two grid elements along the z-axis
aR Robot’s acceleration rate for horizontal ride
aT Robot’s acceleration rate for container transfer
EðCTÞ Expectation of the cycle time
f Filling degree
G Gini coefficient
hC Height of a storage container
k0 Position of the picking station along the x-axis
nC Number of classes
nx Number of stacks along the x-axis
nz Number of stack along the z-axis
nSt Number of stacks
prel Probability of a relocation
sh Storage height of a container stack
tCX Time for the container exchange at the picking station
tL Time to open/close the locking claws
tIO DCC Time required at the I/O shaft in a dual command cycle
tR DCC Additional time of a robot to ride in a DCC
tR SCC Time of a robot required to ride in an SCC
tR rel Time of a robot required to ride at the relocation cycle
tT Time required to transfer a container
tT rel Time required to transfer a container in the relocation cycle
tWX Time of a robot to change the wheels from one direction to another
vR Velocity rate of a robot in horizontal direction
vT Velocity rate of a robot for lifting and lowering
wrel Number of necessary relocations per retrieval
wrel uni Number of relocations per retrieval assuming a uniform distribution
y Stack height variable
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In this context, tR SCC represents the robot’s ride time in an SCC, while tR DCC denotes 
the time required for operation in a DCC, specifically the ride from one stack to another. 
Both of these times occur twice in a DCC with return relocations. The term tT calculates 
the lifting and lowering time for storage and retrieval. Additionally, the expression 
wrel � ðtR rel þ 2 � tT relÞ represents the probability of a relocation multiplied by the time 
required for the relocation cycle.

To account for realistic riding characteristics, both acceleration and deceleration must 
be considered for horizontal rides and vertical container transport. Equation 2 distin
guishes between trapezoidal and triangular motion profiles. Depending on the distance 
to be covered, the robot may reach maximum velocity and ride at a constant speed until 
deceleration begins, or it may not reach maximum velocity. For j< v2

R
aR

, the maximum 
velocity will not be reached, and the first equation in Equation 2 should be used Trost and 
Eder (2024b). 

Analogous to the horizontal ride, the vertical lifting and lowering of the containers 
also take into account the acceleration of the robot’s transfer device. Equation 3 presents 
the case distinction. 

If the height y is smaller than v
2
T

aT
, the lifting device accelerates only up to half the height 

before beginning to decelerate, operating in triangular mode. For heights greater than or 
equal to v2

T
aT

, the device reaches the maximum velocity vT and operates in trapezoidal 
mode.

5.1. Robot ride time

The mean ride time of a robot operating in an SCC can be calculated by Equation 4 Trost 
and Eder (2024b). The sign function accounts for possible wheel exchanges by evaluating 
all possible combinations of storage locations along the grid in the x- and z-directions. 

Analogous to the ride time in an SCC, the robot’s ride in a DCC includes an additional 
term (Equation 5) that represents the robot’s ride from a storage stack to a retrieval stack 
Trost and Eder (2024b). 
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For cases where sh> 1, indicating that relocations are necessary, Trost and Eder 
(2024c)provide a closed-form expression for the ride time during a relocation cycle. 
Their model assumes a circular relocation strategy, where the container to be relocated is 
transported to the nearest stack with available space. This paper adopts the relocation 
strategy described by Trost and Eder (2024c), and the robot’s ride time tRrel for 
a relocation cycle is calculated using the same equations as those presented in Trost 
and Eder (2024c),

5.2. Relocation probability

For sh> 1, and with an arbitrarily distributed article access structure, a specific relocation 
probability can be derived. In this investigation, we assume that the demand follows 
a Pareto distribution over the stack height sh. The density function for a variable y, with 
parameters ymin > 0 and α> 0, is given by Schlittgen (2008) and depicted by Equation 6: 

And the distribution function is presented by Equation 7 (Schlittgen, 2008): 

Based on Equation 6, the probability of a relocation for each position n along the stack 
height sh can be calculated by the following expression (Equation 8): 

If a different probability distribution is assumed, Equations 6 to 8 must be adapted 
accordingly. The number of necessary relocations required to retrieve one container, 
given a discrete probability distribution, can be determined as follows (Equation 9): 

Based on Trost and Eder (2024b), the number of relocations per retrieval, assuming 
a uniform access structure over the stack height, can be calculated using the formula 
below (Equation 10). This calculation depends on the filling degree f and the stack 
height sh: 

Finally, building the ratio �rel (Equation 11): 
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This factor adjusts the influence of digging depth in the case of relocations. 
Under a uniform distribution assumption, a storage container would typically be 
found about halfway up the stack, especially in a nearly full warehouse. However, 
with an inhomogeneous distribution, such as the Pareto distribution, containers 
are more likely to be located higher in the stack. The factor � accounts for this 
adjustment by reflecting the change in the expected container location due to the 
skewed distribution.

5.3. Container transfer time

The mean time required for lifting and lowering containers during storage or 
retrieval can be calculated by Equation 12 using the following slightly modified 
expression from Trost and Eder (2024b), incorporating the previously defined 
factor �: 

While the first term, tL, represents the fixed time required for locking and 
unlocking the container, while the second term describes the time needed for lifting 
and lowering, which depends on the stack height (sh), the filling degree (f ), the 
container height (hC), the velocity (vT). Additionally, it accounts for the influence of 
the access structure and digging depth. The g function provides the correct transport 
time.

The mean time for lifting and lowering during a relocation cycle is calculated using 
Equation 13: 

5.4. Picking time

The picking time consists of the time the robot waits on the I/O shaft, the lifting and 
lowering time through the I/O shaft to the picking station, and the container exchange 
time via a conveyor or a rotating plate.

The following Equation 14 is derived from Trost and Eder (2024b) and has been 
adapted for the picking process in a DCC, taking into account the acceleration and 
deceleration of the lifting device. 

Therein, tL represents the time for opening and closing the locking claws, tCX denotes 
the container exchange time within the picking station, and the g function provides the 
correct vertical container transport time based on the container height and the stack height.
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6. Numerical study

In addition to storage capacity, throughput is a key parameter when designing a new 
storage system. For an inhomogeneous demand distribution, such as the classical Pareto 
principle where 20% of the storage items account for 80% of the requisitions, the access 
structure significantly impacts throughput. Therefore, the article demand structure is 
also a crucial factor in warehouse design.

To analyse throughput in relation to the access structure and to validate the analytical 
approach outlined in section 5, a discrete event simulation (DES) was developed. This 
simulation re-models an RCS/R system and its processes using the DES software SIMIO 
(version 15.240).

Table 5 presents the parameters used in the numerical study. All values are derived 
from European material handling providers and represent standard values for RCS/R 
systems.

The primary assumption is that containers are distributed according to the Pareto 
principle across the stack height sh. This paper initially uses a single class for each stack 
height with the corresponding access distribution, but it is also possible to consider 
multiple classes over the stack height, such as AB or ABC.

To validate the analytical approach outlined in section 5, results will be compared with 
data from 30 independent scenarios of the simulation model, each involving 11,000 order 
retrievals. The first 1,000 retrievals are excluded to eliminate the transient phase. The 
simulation experiments range from a few minutes to several hours in duration.

The simulation was verified to ensure that the model accurately represents the 
conceptual design and has been correctly implemented. To achieve this, the simulation 
logic and behaviour within the simulation environment were peer-reviewed to confirm 
that all assumptions were properly applied in the code. Additionally, each simulation 
process was tested independently, and a sensitivity analysis was conducted to evaluate 
whether the outputs responded as expected to variations in input parameters.

The simulation model is built around the four core processes of an RCS/R system: 
storage, retrieval, relocations, and return relocations. In the simulation, the robot is 
assigned to an order and rides to the designated stack. If containers are stored above 

Table 5. Parameters for the RCS/RS.
Parameter Value

Access structure Pareto distributed
Horizontal distance in x Δx ¼ 0:7m
Horizontal distance in z Δz ¼ 0:5m
Container exchange time tCX ¼ 5s
Container height hC ¼ 330mm
Filling degree f 2 f85%; 90%; 95%; 96%; 97%; 98%g

Number of grid elements along the x-axis nx 2 f10; 15; . . . ; 50g
Number of grid elements along the z-axis nz 2 f10; 15; . . . ; 50g
Position of the I/O shaft along the x-axis k0 ¼ nx 2
Robot horizontal acceleration rate aR ¼ 0:8ms2

Robot vertical acceleration rate aT ¼ 2:5ms2

Robot horizontal velocity rate vR ¼ 3:1ms
Robot lifting and lowering velocity rate vT ¼ 1:6ms
Robot time to lock/unlock the container tL ¼ 1s
Robot wheel change time tWX ¼ 1s
Storage height of a container stack sh 2 f1; 2; . . . ; 25g
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the required one, the robot relocates them to free neighbouring stacks. After accessing the 
needed container, the robot transports it to the I/O shaft. Once the container is lowered 
through the I/O shaft, the robot picks up another container from the picking station and 
stores it on any available stack. Finally, the robot return relocates all previously moved 
containers in reverse order to the original stack from which the retrieval was made. The 
order process is complete when the stack’s sorted sequence (excluding the retrieved 
container) is restored.

6.1. Validation of the analytical approach

Validating the analytical approach is a crucial step to ensure that the analytical results 
align with the outputs from the simulation model under comparable conditions. This is 
done by comparing the simulation results with those obtained from the analytical model.

For this study, a factorial approach will be employed to systematically validate the 
analytical model and examine the effects of varying several parameters: filling degree f , 
number of container stacks nSt ¼ nx � nz, stack height sh, and the distribution parameter 
α. Each parameter will be tested at multiple levels to capture both main effects and 
interactions.

The filling degree will be varied across different percentage levels to assess its impact 
on system efficiency. The number of stacks will be adjusted to evaluate its effect on 
classification accuracy and throughput. Stack height will be manipulated to understand 
how vertical dimensioning influences stability and performance. Finally, the distribution 
parameter α will be changed to examine its role in the distribution of demands across the 
stack height.

Starting with the assumption of a Pareto-distributed demand over a stack height of 
sh ¼ 10, corresponding to 10 classes, Figure 4 shows a Pareto chart with the relative and 
cumulative frequencies plotted over the stack height using the parameters α ¼ 0:1 
and ymin ¼ 1.

Figure 4. Example of a pareto plot with the parameters α ¼ 0:1 and ymin ¼ 1.
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Interpreting the plot from Figure 4, approximately 54% of the demand can be met with 
articles stored in the first or second stack height from the top. Furthermore, the inequal
ity is even more pronounced in this case: over 80% of the requests can be fulfilled by 
accessing only the top 50% of the stack height. Accessing containers on the ground floor 
is necessary for only about 3% of the total demand. In the literature, this scenario is 
described as 54/20, indicating that 54% of the demand can be met by accessing just 20% 
of the total stack height.

These factors impact both the relocation probability and the overall system perfor
mance. To understand the extent of this impact and to validate the accuracy of the 
presented analytical model, this section focuses on throughput and relocation 
probability.

Figure 5 illustrates the throughput # as a function of the filling degree f . It compares 
results from the analytical approach (red curve) with those from the DES (blue curve). 
Additionally, results assuming a uniform distribution are shown (brown curve), high
lighting the effect of a non-uniform distribution. The filling degree is varied within 
a practically relevant range from 85% to 98%.

As shown in Figure 5, the impact of the filling degree on throughput is relatively small. 
However, once the filling degree reaches f ¼ 95%, the throughput curve starts to decline 
more sharply. A fully stocked warehouse results in longer relocation ride times and, 
consequently, extended relocation cycles. Compared to a uniform distribution, the Pareto 
distribution provides better performance.

Table 6 presents all the data, including the minor estimation errors.
Figure 6 displays the throughput # as a function of the number of stacks nSt.
Figure 6 illustrates how grid size influences throughput, comparing a Pareto- 

distributed demand to a uniform access structure. The results show that the Pareto- 
distributed access structure (54/20) delivers approximately 20% higher performance. The 
accuracy of the analytical approach is validated as reliable, as evidenced by the error rates 
detailed in Table 7.

Figure 5. Throughput # depending the filling degree f of a 10 by 10 RCS/RS with a stack height of 
sh ¼ 10 (distribution parameter α ¼ 0:1).
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Based on the previous analysis, the effect of stack height and distribution choice on 
system performance will be examined. For this investigation, the parameter is set to 
α ¼ 0:6, which results in an 80/20 distribution with a stack height of sh ¼ 20.

Figure 7 compares the results from the analytical approach with those obtained from 
discrete event simulation. It shows how throughput # and relocation probability wrel vary 
with stack height sh.

The throughput # decreases for an increasing stack height sh. Hence, the throughput #
decreases with increasing inequality. This can be explained by the increasing stack height 
sh while the parameter of the distribution α keeps constantly. Figure 7 shows a good 
approximation quality both for the throughput as well as for the relocation probability. 
The biggest estimation error is smaller than 4%. All the results and the estimation errors 
as well as the Gini coefficient are listed in Table 11.

Table 6. Throughput depending on the filling degree f and the stack height nSt for a stack 
height of sh ¼ 10.

Analytical Simulation Error Uniform

# ½1h� # ½1h� ½%� # ½1h�
f 85% 106.542 104.296 2.153% 79.892

90% 104.196 102.205 1.948% 74.013
95% 101.224 101.554 −0.325% 68.069
96% 100.406 101.319 −0.902% 66.746
97% 99.315 100.159 −0.842% 65.217
98% 97.615 97.807 −0.196% 63.207

Figure 6. Throughput # depending the number of stacks nSt of an RCS/RS with a stack height of 
sh ¼ 10 and a filling degree of f ¼ 90% (distribution parameter α ¼ 0:1).

Table 7. Throughput depending on the filling degree f and the stack height nSt for 
a stack height of sh ¼ 10.

Analytical Simulation Error Uniform
# ½1h� # ½1h� ½%� # ½1h�

nSt 100 104.196 102.205 1.948% 74.013
400 88.621 88.362 0.293% 66.587
900 78.351 77.989 0.464% 60.520

1600 70.055 69.796 0.371% 55.468
2500 63.387 63.162 0.356% 51.195
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To gain further insights and continue evaluating the analytical approach, the 
parameter α, previously considered fixed, will now be varied within a range that is 
realistic for RCS/R systems. Figure 8 shows the throughput and relocation prob
ability for two different stack heights as functions of the parameter α. Additionally, 
the results from the analytical model are compared with those obtained from 
the DES.

Figure 8 illustrates that throughput increases almost linearly with the parameter α, 
though the curve flattens significantly for values above α ¼ 1:5, regardless of stack height 
sh. The relocation probability wrel shows an inverse relationship with α, decreasing 
monotonically. As α and stack height sh increase, the distribution becomes more 
unequal, leading to greater disparity.

Table 10 provides all the data presented in Figure 8, including estimation errors.

Figure 7. Throughput and relocation probability depending on the stack height sh for a grid size of 10 
by 10 and a parameter α ¼ 0:6.

Figure 8. Throughput and relocation probability depending on the parameter α for a grid size of 10 by 
10 and the two stack heights sh ¼ 10 and sh ¼ 20.
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The most significant estimation error occurs at high α values for throughput, but 
remains under 8%. This is due to the low number of relocations required; for example, 
with α ¼ 0:1 and a stack height of sh ¼ 20, an average of more than four relocations per 
retrieval is needed, whereas for α ¼ 2, the relocation probability is about 0.4. Since each 
simulation run involves 10,000 retrievals, the number of relocations is quite low. To 
achieve more accurate results for high α values, approximately 100,000 retrievals would 
be necessary. Overall, the calculated relocation probability aligns well with the results 
from the DES.

6.2. Parameter variation

This subsection aims to demonstrate the breadth and scope of the presented approach. 
Figure 9 shows the relocation probability plotted against stack height sh and the para
meter α.

The evaluated data can be found in Table 12.
As illustrated, the Pareto distribution encompasses a wide range of relocation prob

abilities, starting from higher probabilities at minimal parameters α. As α increases, the 
relocation probability wrel decreases, regardless of the stack height sh.

Similarly, it is important to determine how throughput # varies with the parameter α 
and stack height sh. For this analysis, the grid size of the RCS/RS is set to 10 by 10, 
equating to 100 stacks, and the maximum filling degree is f ¼ 90%.

Figure 10 shows the throughput # for a 10 by 10 RCS/R system with one robot serving 
one picking station, plotted against stack height sh and the parameter α.

Figure 9. Relocation probability wrel plotted over the stack height sh and the parameter α.
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As observed, the throughput # increases almost linearly with rising parameter α, while 
it exhibits distinct convex parabolic characteristics as stack height increases. High stack 
heights combined with highly scattered demands, indicated by low values of α, result in 
lower throughputs. Conversely, a high level of inequality – reflected by a high parameter 
α - leads to higher performance due to fewer required relocations.

6.3. Application example

This section aims to demonstrate the relevance of this approach for warehouse design. It 
involves defining specific requirements for a storage system and identifying the optimal 
system based on various parameters. Table 8 provides the input data needed for the 
application example.

The storage system is required to have a capacity of 10,000 containers. The demand 
structure, which should be analysed based on the evaluated customer data, can be 

Figure 10. Throughput of an RCS/RS depending on the distribution parameter α and the stack height 
sh for a grid size of 10 by 10.

Table 8. Input data for the application example.
Parameter Value

Required storage capacity N ¼ 10; 000 (±2%)
Number of stacks along x-axis nx 2 f10; 15; . . . ; 50g
Number of stacks along z-axis nz 2 f10; 15; . . . ; 50g
Storage height of a container stack sh 2 f6; 7; . . . ; 25g
Filling degree of the storage system f ¼ 90%

Throughput required #requ ¼ 80 1h
Demand distribution 80/20

PRODUCTION & MANUFACTURING RESEARCH 21



approximated by an 80/20 Pareto distribution, where 80% of the orders are fulfilled by 
just 20% of the storage. Additionally, the new storage system, operating with one robot, 
should achieve a throughput of approximately 80 retrievals per hour.

Based on these requirements, the optimisation example aims to address the following 
questions:

● Is there a modification that enables such a performance?
● If yes, how does the system configuration look like?
● How much space and volume demand is required?

Table 9. Application example for RCS/RS with one robot.
no nx x nz sh N α # ½1h� A ½m2� V ½m3�

1 40x10 25 10000 0.518 56.128 196.0 2,009
2 20x20 25 10000 0.518 56.865 168.0 1,722
3 50x10 20 10000 0.600 67.076 245.0 2,107
4 25x20 20 10000 0.600 69.494 210.0 1,806
5 45x15 15 10125 0.728 82.771 299.3 2,080
6 50x20 10 10000 0.969 96.460 420.0 2,226
7 40x25 10 10000 0.969 97.548 406.0 2,152

Table 10. Comparison of the results throughput # and relocation probability wrel analytical approach 
versus discrete event simulation for a grid size of 10 by 10 and a stack height of sh ¼ 10 and sh ¼ 20

Analytical approach Discrete event simulation Estimation error

sh ¼ 20 sh ¼ 10 sh ¼ 20 sh ¼ 10 sh ¼ 20 sh ¼ 10

#½1h� wrel #½1h� wrel #½1h� wrel #½1h� wrel #½1h� wrel #½1h� wrel

α 10� 6 51.724 4.559 97.838 2.414 53.720 4.527 98.492 2.404 3.72% −0.72% 0.66% −0.41%
10� 5 51.724 4.559 97.838 2.414 53.763 4.523 98.652 2.397 3.79% −0.80% 0.83% −0.71%
10� 4 51.728 4.559 97.841 2.414 53.491 4.554 98.100 2.424 3.30% −0.10% 0.26% 0.43%
10� 3 51.761 4.554 97.878 2.412 53.615 4.539 98.597 2.397 3.46% −0.33% 0.73% −0.63%
10� 2 52.094 4.511 98.239 2.394 53.655 4.530 98.425 2.401 2.91% 0.42% 0.19% 0.29%
10� 1 55.581 4.088 101.936 2.216 57.385 4.091 102.071 2.218 3.14% 0.09% 0.13% 0.08%
0.2 59.788 3.643 106.199 2.026 61.859 3.637 106.240 2.017 3.35% −0.15% 0.04% −0.44%
0.3 64.325 3.228 110.594 1.846 66.396 3.219 110.299 1.840 3.12% −0.28% −0.27% −0.30%
0.4 69.156 2.846 115.083 1.675 71.414 2.831 113.793 1.693 3.16% −0.55% −1.13% 1.02%
0.5 74.229 2.499 119.625 1.516 76.053 2.498 117.994 1.528 2.40% −0.05% −1.38% 0.73%
0.6 79.480 2.186 124.177 1.369 80.949 2.194 122.277 1.370 1.81% 0.35% −1.55% 0.09%
0.7 84.834 1.907 128.694 1.232 85.791 1.919 126.215 1.237 1.12% 0.63% −1.96% 0.38%
0.8 90.210 1.660 133.134 1.107 91.216 1.655 130.218 1.102 1.10% −0.31% −2.24% −0.44%
0.9 95.528 1.443 137.458 0.993 96.244 1.428 133.638 0.995 0.74% −1.08% −2.86% 0.20%
1 100.713 1.254 141.632 0.890 100.330 1.261 137.319 0.886 −0.38% 0.54% −3.14% −0.43%

1.1 105.698 1.089 145.626 0.797 104.443 1.097 140.617 0.793 −1.20% 0.71% −3.56% −0.41%
1.2 110.429 0.947 149.418 0.712 108.499 0.956 143.276 0.719 −1.78% 0.96% −4.29% 0.88%
1.3 114.868 0.824 152.992 0.637 111.991 0.829 146.271 0.640 −2.57% 0.59% −4.59% 0.52%
1.4 118.989 0.718 156.337 0.570 115.537 0.716 149.197 0.563 −2.99% −0.34% −4.79% −1.12%
1.5 122.780 0.627 159.450 0.509 118.252 0.631 151.332 0.512 −3.83% 0.60% −5.36% 0.56%
1.6 126.240 0.548 162.331 0.456 121.263 0.543 153.474 0.459 −4.10% −1.03% −5.77% 0.61%
1.7 129.378 0.481 164.984 0.408 123.167 0.485 155.752 0.407 −5.04% 0.78% −5.93% −0.17%
1.8 132.209 0.423 167.417 0.365 125.342 0.423 157.465 0.365 −5.48% 0.13% −6.32% −0.12%
1.9 134.752 0.373 169.642 0.328 126.811 0.378 158.905 0.330 −6.26% 1.56% −6.76% 0.63%
2 137.029 0.329 171.669 0.294 128.642 0.327 160.263 0.298 −6.52% −0.59% −7.12% 1.41%
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This example serves as an ideal use case for demonstrating the analytical approach and its 
intended application. The required storage systems are evaluated based on the geometric 
and throughput requirements outlined in Table 8. Given the vast number of conceivable 
system configurations, the increment for the number of stacks along the x- and z-axes is 
set to 5. Applying a tolerance of ± 2% deviation in total storage capacity reduces the 
number of possible solutions to 7, making the analysis more manageable. The required 
computation time and power are minimal, as no algorithm is needed.

The results derived from the analytical approach are summarised in Table 9 sorted by 
the number of stacks. The space demand includes the area required for the storage system 
and an additional 2 m for the pre-zone with the picking station. The volume calculation 
also accounts for a two-meter gap above the storage grid to accommodate robot opera
tion. Figure 11illustrates four key and illustrative cases from Table 9.

As shown in Table 9, the maximum achievable throughput is approximately 98 picks 
per hour (case number 7). Generally, smaller grid sizes and higher container stacks result 
in lower throughput and reduced space demand. The table also reveals an interesting 
observation: the 20 by 20 grid provides better performance with a smaller footprint and 
volume requirement compared to the 40 by 10 system. This advantage is attributed to the 
positioning of the I/O shaft along the wider axis.

For instance, case number 4 (25 by 20 grid with sh ¼ 20) achieves nearly 70 retrievals 
per hour and requires only 210 m2 of space. Additionally, the volume required is 
comparable to that of the smallest system (case number 2). This configuration offers 
a favourable balance between high performance and compact footprint.

Table 11. Comparison of the results throughput # and relocation probability wrel analytical approach 
versus discrete event simulation for a grid size of 10 by 10 and a parameter α ¼ 0:6

Analytical approach Discrete event simulation Estimation error

#½1h� wrel #½1h� wrel #½1h� wrel

stack height sh 1 226.593 0.000 222.389 0.000 −1.89% 0.00%
2 207.490 0.248 202.172 0.250 −2.63% 0.76%
3 191.636 0.449 186.107 0.450 −2.97% 0.13%
4 178.179 0.621 173.037 0.619 −2.97% −0.43%
5 166.449 0.774 161.734 0.773 −2.92% −0.13%
6 156.079 0.912 152.111 0.906 −2.61% −0.60%
7 146.828 1.038 143.123 1.043 −2.59% 0.47%
8 138.514 1.155 135.690 1.152 −2.08% −0.30%
9 130.999 1.265 128.726 1.260 −1.77% −0.44%

10 124.169 1.369 122.311 1.370 −1.52% 0.07%
11 117.935 1.467 116.628 1.465 −1.12% −0.10%
12 112.222 1.560 111.187 1.561 −0.93% 0.09%
13 106.968 1.649 106.633 1.645 −0.31% −0.21%
14 102.120 1.734 102.119 1.731 0.00% −0.20%
15 97.635 1.816 98.029 1.808 0.40% −0.43%
16 93.474 1.895 94.238 1.887 0.81% −0.43%
17 89.606 1.971 90.827 1.952 1.34% −1.01%
18 86.001 2.045 87.186 2.044 1.36% −0.04%
19 82.634 2.117 84.159 2.110 1.81% −0.34%
20 79.484 2.186 80.949 2.194 1.81% 0.35%
21 76.532 2.254 78.247 2.255 2.19% 0.05%
22 73.760 2.320 75.840 2.316 2.74% −0.14%
23 71.153 2.384 73.478 2.381 3.16% −0.12%
24 68.698 2.446 71.477 2.416 3.89% −1.25%
25 66.383 2.507 68.590 2.519 3.22% 0.46%
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7. Conclusion

The increasing strain on logistics and supply chains due to global crises, coupled with the rise 
in e-commerce, is accelerating the digitalisation and automation of warehousing. RCS/R 
systems are in high demand because they offer fully autonomous operation via robots, high 
storage density, modular scalability, and high availability. However, there are hardly any 

Table 12. Relocation probability wrel depending on the stack height sh and the parameter α.
α 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sh 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.333 0.332 0.318 0.303 0.289 0.275 0.261 0.248 0.235 0.223 0.211
3 0.636 0.633 0.603 0.570 0.538 0.507 0.478 0.449 0.422 0.396 0.371
4 0.919 0.915 0.866 0.813 0.762 0.713 0.666 0.621 0.579 0.538 0.500
5 1.189 1.182 1.114 1.040 0.969 0.901 0.836 0.774 0.715 0.660 0.609
6 1.448 1.439 1.350 1.254 1.162 1.074 0.991 0.912 0.837 0.768 0.703
7 1.698 1.687 1.577 1.458 1.345 1.237 1.134 1.038 0.948 0.864 0.787
8 1.942 1.929 1.796 1.654 1.519 1.390 1.269 1.155 1.050 0.952 0.862
9 2.180 2.164 2.009 1.843 1.685 1.536 1.396 1.265 1.144 1.033 0.930

10 2.412 2.394 2.216 2.026 1.846 1.675 1.516 1.369 1.232 1.107 0.993
11 2.640 2.620 2.418 2.204 2.001 1.809 1.631 1.467 1.315 1.177 1.051
12 2.864 2.841 2.616 2.377 2.151 1.939 1.741 1.560 1.393 1.242 1.106
13 3.085 3.060 2.811 2.546 2.297 2.063 1.847 1.649 1.468 1.304 1.156
14 3.303 3.275 3.001 2.712 2.439 2.184 1.949 1.734 1.538 1.362 1.204
15 3.517 3.487 3.189 2.874 2.577 2.302 2.048 1.816 1.606 1.418 1.249
16 3.729 3.696 3.373 3.033 2.713 2.416 2.143 1.895 1.671 1.470 1.292
17 3.939 3.903 3.556 3.189 2.845 2.527 2.236 1.971 1.733 1.521 1.332
18 4.146 4.108 3.735 3.342 2.975 2.636 2.326 2.045 1.793 1.569 1.371
19 4.351 4.310 3.912 3.494 3.103 2.742 2.414 2.117 1.851 1.616 1.408
20 4.554 4.511 4.088 3.643 3.228 2.846 2.499 2.186 1.907 1.660 1.443
21 4.756 4.710 4.261 3.790 3.351 2.948 2.582 2.254 1.961 1.703 1.477
22 4.955 4.907 4.432 3.934 3.472 3.048 2.664 2.320 2.014 1.745 1.510
23 5.153 5.102 4.602 4.078 3.591 3.146 2.744 2.384 2.065 1.785 1.541
24 5.350 5.296 4.770 4.219 3.709 3.242 2.822 2.446 2.114 1.824 1.572
25 5.545 5.488 4.936 4.359 3.824 3.337 2.898 2.507 2.163 1.862 1.601

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.200 0.189 0.179 0.169 0.159 0.150 0.142 0.133 0.126 0.118 0.111
3 0.347 0.324 0.303 0.283 0.264 0.246 0.229 0.213 0.198 0.184 0.171
4 0.463 0.429 0.397 0.367 0.340 0.313 0.289 0.267 0.246 0.227 0.209
5 0.560 0.515 0.473 0.434 0.398 0.365 0.334 0.306 0.280 0.256 0.234
6 0.643 0.587 0.536 0.488 0.445 0.405 0.369 0.336 0.305 0.278 0.253
7 0.715 0.649 0.589 0.534 0.484 0.438 0.397 0.359 0.325 0.295 0.267
8 0.779 0.704 0.635 0.573 0.516 0.466 0.420 0.378 0.341 0.308 0.278
9 0.837 0.753 0.676 0.607 0.545 0.489 0.439 0.394 0.354 0.319 0.287

10 0.890 0.797 0.712 0.637 0.570 0.509 0.456 0.408 0.365 0.328 0.294
11 0.938 0.836 0.745 0.664 0.592 0.527 0.470 0.420 0.375 0.335 0.300
12 0.983 0.873 0.775 0.688 0.611 0.543 0.483 0.430 0.383 0.342 0.305
13 1.024 0.907 0.803 0.710 0.629 0.557 0.494 0.439 0.390 0.347 0.310
14 1.063 0.938 0.828 0.730 0.645 0.570 0.504 0.447 0.396 0.352 0.314
15 1.100 0.967 0.851 0.749 0.660 0.582 0.513 0.454 0.402 0.357 0.317
16 1.134 0.995 0.873 0.766 0.673 0.592 0.522 0.460 0.407 0.361 0.320
17 1.166 1.020 0.893 0.782 0.686 0.602 0.529 0.466 0.411 0.364 0.323
18 1.197 1.045 0.912 0.797 0.697 0.611 0.536 0.471 0.416 0.367 0.325
19 1.226 1.068 0.930 0.811 0.708 0.619 0.542 0.476 0.419 0.370 0.327
20 1.254 1.089 0.947 0.824 0.718 0.627 0.548 0.481 0.423 0.373 0.329
21 1.281 1.110 0.963 0.836 0.727 0.634 0.554 0.485 0.426 0.375 0.331
22 1.306 1.130 0.978 0.848 0.736 0.641 0.559 0.489 0.429 0.377 0.333
23 1.330 1.149 0.993 0.859 0.745 0.647 0.564 0.492 0.431 0.379 0.334
24 1.354 1.167 1.006 0.869 0.753 0.653 0.568 0.496 0.434 0.381 0.335
25 1.376 1.184 1.019 0.879 0.760 0.659 0.572 0.499 0.436 0.383 0.337
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models available that provide quick and accurate predictions of throughput for specific 
scenarios. Neither academic research nor system suppliers has offered straightforward 
performance approximations that focus on demand structure, which is crucial for RCS/R 
systems where performance is heavily influenced by stack height and the number of required 
relocations.

This paper introduces a novel analytical approach to determine the throughput of an 
RCS/RS with a single operating robot, considering any arbitrary article demand distribu
tion over the stack height. The approach uses the Pareto distribution as an example, 
reflecting the common 80/20 distribution promoted by material handling providers for 
their storage systems.

The time-continuous model builds on a probabilistic CTM developed by Trost and 
Eder (2024b), with extensions to handle probability-distributed access structures. The 
approach has been validated against discrete event simulations, demonstrating high 
accuracy. This model is notable for its fast, straightforward calculations, easy applic
ability, and broad range of uses.

For a 54/20 Pareto-distributed access structure (where 54% of the demand can 
be met with just 20% of the stack height), the relocation probability is reduced by 
nearly half for a stack height of 10 containers, resulting in up to a 50% increase in 
throughput. Increasing the distribution parameter, i.e. rising inequality, while 
keeping stack height constant lowers the relocation probability and increases 
throughput. Conversely, a uniform distribution leads to decreased throughput as 

Figure 11. 4 showcases of the application example.
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stack height increases. The impact of the storage system’s filling degree on per
formance under a Pareto-distributed demand is relatively minor.

This analytical model can benefit system suppliers, warehouse customers, and consultants 
by allowing the analysis of any demand distribution and predicting RCS/RS performance. The 
throughput of one robot can serve as an input parameter for existing performance models 
such as Zou et al. (2018) or Trost and Eder (2024a), which typically assume random access.

Future research could expand this approach to multiple operating robots and 
class-based storage strategies, incorporating different routing logics to enhance 
performance. Additionally, studies could develop a three-dimensional class-based 
zoning approach and investigate scenarios with multiple I/O shafts and picking 
stations along various grid edges. Comparative studies could then assess different 
RCS/RS types and directly compare various storage systems, such as AS/RS, SBS/ 
RS, RCS/RS, or RMFS. Given recent trends in automated storage systems prior
itising energy efficiency due to sustainability concerns, and the emphasis by RCS/ 
RS providers on their high energy efficiency, future research could focus on 
developing analytical models to evaluate the energy consumption of RCS/RS.
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