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We derive the stability result of the dual curvature measure with near-constant density in the even case.
As an application, the existence and uniqueness of solutions to the even dual Minkowski problem for
positive indices in R

n+1 are obtained with n ≥ 1, provided the density of the given measure is close to
1 in the Cα norm with α ∈ (0, 1).

1 Introduction
The geometric properties of convex bodies in Euclidean space R

n+1 and their corresponding Minkowski
problems play a central role in the Brunn–Minkowski theory. The classical Minkowski problem, which
characterizes the surface area measure, was originally formulated and studied by Minkowski himself
in [56, 57]. Since then, significant progress has been made regarding the existence, uniqueness, and
regularity of solutions to this problem in a series of works [1, 2, 24–26, 37, 59]. Beyond area measures,
the curvature measures introduced by Federer [60] form another fundamental class of measures within
the Brunn–Minkowski theory.

The Lp Brunn–Minkowski theory is a generalization of the Brunn–Minkowski theory, initiated by Firey
and further developed by Lutwak [51, 52] through his introduction of the Lp surface area measure.
The Lp Minkowski problem, which involves prescribing the Lp surface area measure, is a fundamental
problem that was first formulated and solved by Lutwak [51]. Building on Lutwak’s foundational work,
this problem has seen rapid development, as evidenced by numerous works, including [6, 15, 23, 27,
49, 53, 63–65]. Among the most challenging cases are the logarithmic Minkowski problem for p = 0
(see Böröczky–Lutwak–Yang–Zhang [11] and its citations) and the centro-affine Minkowski problem for
p = −n − 1 (see Chou–Wang [25] or Zhu [65], and their citations).

As another parallel extension of the Brunn–Minkowski theory, the dual Brunn–Minkowski theory was
initiated by Lutwak in 1970s [50]. However, it truly gained significant momentum when Huang–Lutwak–
Yang–Zhang [34] discovered a new family of fundamental geometric measures, known as the dual
curvature measures. These measures are dual to Federer’s curvature measures. Their work introduced
the dual Minkowski problem, which concerns the prescription of the dual curvature measures, and
further established sufficient conditions for the existence of even solutions in the case 0 < q < n + 1
within the variational framework. Since then, the dual Brunn–Minkowski theory has flourished, leading
to numerous significant results and applications, as explored in [7, 12, 13, 35, 36, 40, 46, 61, 62] and the
references therein.
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2 | J. Hu

In the work of Lutwak–Yang–Zhang [54], they first integrated the dual Brunn–Minkowski theory into
the Lp Brunn–Minkowski theory. Furthermore, they introduced a unifying family of geometric measures,
referred to as the (p, q)-th dual curvature measures, which serve as fundamental geometric measures in
the Lp dual Brunn–Minkowski theory. The associated Minkowski problem, called the Lp dual Minkowski
problem, encompasses all the Minkowski-type problems mentioned above. The precise formulation is
given below.

The Lp dual Minkowski problem [54]: given a nonzero finite Borel measure μ on the unit sphere S
n and

real numbers p, q, what are the necessary and sufficient conditions for μ to coincide with (p, q)-th dual
curvature measure of a convex body K containing the origin in its interior?

When the given measure μ has a continuous density f , the solvability of the Lp dual Minkowski
problem amounts to solving the following Monge–Ampère equation on S

n:

h1−p det(∇2h + hI)|Dh|q−(n+1) = f , on S
n. (1.1)

In the case p = 0, Eq. (1.1) corresponds to the dual Minkowski problem:

h det(∇2h + hI)|Dh|q−(n+1) = f , on S
n. (1.2)

Since the publication of [54], significant progress has been made in the study of the existence and
uniqueness of solutions to (1.1), including important contributions from [7, 17, 19, 36, 45, 48, 58]. In
particular, when the density function f is a constant, (1.1) reduces to the isotropic Lp dual Minkowski
problem. The uniqueness and non-uniqueness results of solutions to the isotropic case have been widely
investigated in the condition of symmetric or non-symmetric assumptions, for instance, in [4, 16–18, 28,
32, 36, 43, 44]. Recently, in the plane case n = 1, Kim–Lee [41] established a uniform diameter estimate
for solutions to (1.1) in R

2 when 0 < p < 1 and q ≥ 2, and moreover verified the uniqueness and
positivity of solutions to the Lp Minkowski problem when f is sufficiently close to a constant in the Cα

norm with 0 < α < 1. Separately, Chen–Li [22] provided the diameter estimate for the case p = 0. The
diameter estimate for the case p > q can be readily derived using a maximum principle argument, as
demonstrated in [36]. However, the situation for p ≤ q is more complicated. It is interesting to establish
the diameter estimate of solutions to (1.1) with p ≤ q for higher dimensions n ≥ 2.

In this paper, our first purpose is to establish a stability result for the dual curvature measure with
near-constant density in the even case utilizing the local Brunn–Minkowski inequality, inspired by the
work of Hu–Ivaki [33]. We need recall the following uniqueness result of solutions to the isotropic Lp

dual Minkowski problem shown by Ivaki–Milman [39].

Theorem 1.1. [39] Let n ≥ 1. Suppose p ≥ −(n + 1) and q ≤ n + 1 with at least one of these
inequalities being strict. Let ∂K be a smooth, strictly convex and origin-centred hypersurface
with the support function h such that hp−1|Dh|n+1−qκ = 1. Then ∂K is the unit sphere.

When K is additionally assumed to be origin-symmetric, this uniqueness theorem was proved by
Chen–Huang–Zhao [17] from another point of view, provided p ≥ −(n + 1) and q ≤ min{n + 1, n + 1 + p}
with p �= q. Now the stability result for the dual curvature measure is stated as follows.

Theorem 1.2. Let n ≥ 1. Suppose n−3 ≤ q ≤ n+1. Let K be a smooth, origin-symmetric and strictly
convex body with the support function h. Then

δ2(K̄, B1) ≤ β

[
maxSn (|Dh|q−(n+1) h

κ
)

minSn (|Dh|q−(n+1) h
κ
)

− 1

] 1
2

,

where δ2 is the L2-distance (see Section 2 for its definition), β is a positive constant depending
only on n, and

K̄ = K∫
Sn hdσ/

∫
Sn dσ

.
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Dual Minkowski Problem for Positive Indices | 3

This theorem tells us that if the density of the dual curvature measure of a smooth, origin-symmetric
and strictly convex body regarding to the spherical Lebesgue measure is approximately constant, a
rescaled version of the body is close to the unit ball in the L2-distance. Note that when q = n + 1 in
(1.2), some progress on the stability of the cone-volume measure was made by Böröczky–De [8], based
on the log-Minkowski inequality in the class of convex bodies with many symmetries, as proved by
Böröczky–Kalantzopoulos [9]. Subsequently, Ivaki [38] proved the stability of the cone-volume measure
in the class of origin-symmetric bodies with respect to the L2-distance, the recent work of Hu–Ivaki [33]
proved a similar stability result without symmetry conditions.

An application of Theorem 1.2 is to get the existence of even solutions to the regular dual Minkowski
problem for positive indices using degree theory methods, as well as its uniqueness, provided the
prescribed data is sufficiently close to 1 in the Cα norm for 0 < α < 1.

Theorem 1.3. Suppose that q satisfies either 0 < q ≤ n if 1 ≤ n ≤ 3, or n − 3 ≤ q ≤ n if n > 3. Let
α ∈ (0, 1). Let f be an even, smooth, and positive function on S

n. There exists a constant ε0 > 0
depending only on n, α such that if ||f − 1||Cα ≤ ε for some small ε ∈ (0, ε0), then Eq. (1.2) has a
unique, smooth, origin-symmetric, and strictly convex solution.

It should be stressed that the range of q in Theorem 1.3 guarantees both the existence and uniqueness
of solutions to (1.2). We also remark that, the existence of the even dual Minkowski problem in the
smooth category for q > 0 was previously demonstrated by Li–Sheng–Wang [46] from the perspective
of geometric flows. The key ingredient of deriving the solvability of (1.2) is to obtain the C0 estimate of
solutions to (1.2). In addition, partial uniqueness results for solutions to the (anisotropic) dual Minkowski
problem (1.2) have been established. For q < 0, Zhao [61] proved uniqueness; the case q = 0 is classical
and stems from the uniqueness result of integral curvature shown by Aleksandrov; for the logarithmic
Minkowski problem (q = n + 1), uniqueness results were found by Böröczky–Lutwak–Yang–Zhang [10]
when the given measure is even in the planar case n = 1, by Chen–Huang–Li–Liu [21] when the density
f of the given measure is even and close to 1 in the Cα norm, building on the local results given by
Kolesnikov–Milman [42], and recently by Chen–Feng–Liu [20] when f is close to 1 in the Cα norm without
any symmetry condition in R

3, later Böröczky–Saroglou [14] and Hu–Ivaki [33] extended the results of
[20] to higher dimensions independently, along different lines. However, the uniqueness in the case
of 0 < q �= n + 1 has not been previously settled and remains largely open. Meanwhile, it would be
interesting to generalize Theorem 1.3 to the non-even case.

The structure of this paper is organized as follows. In Section 2, we provide some basic facts related
to convex bodies. In Section 3, we present the proof of Theorem 1.2. Finally, the proof of Theorem 1.3 is
given in Section 4.

2 Preliminaries
There are many standard references on the theory of convex bodies, including the comprehensive books
of Gardner [29] and Schneider [60].

Let Rn+1 denote the (n+1)-dimensional Euclidean space. For Y, Z ∈ R
n+1, 〈Y, Z〉 represents the standard

inner product. For a vector X ∈ R
n+1, |X| = √〈X, X〉 is the Euclidean norm. Let B1 denote the unit ball

in R
n+1 and S

n denote the unit sphere. A convex body is defined as a compact convex set of Rn+1 with
non-empty interior.

The support function of a convex body K in R
n+1 (with respect to the origin) is defined for x ∈ S

n as

hK(x) = max{〈x, Y〉 : Y ∈ K}.

Unless it causes confusion, we later abbreviate hK as h.
The radial function ρK of K is denoted by

ρK(u) = max{s > 0 : su ∈ K}, ∀u ∈ S
n.

Note that ρK(u)u ∈ ∂K for any u ∈ S
n. Abbreviate ρK as ρ later unless it causes confusion.
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4 | J. Hu

The L2-distance of two convex bodies K1, K2 is expressed as

δ2(K1, K2) :=
(

1∫
Sn dσ

∫
Sn

|hK1 − hK2 |2dσ

) 1
2

and their Hausdorff distance is defined as

δH(K1, K2) := max
Sn

|hK1 − hK2 |.

Given a convex body K in R
n+1, for Hn almost all X ∈ ∂K, the unit outer normal of K at X is unique. In

this case, we denote by νK the Gauss map, which assigns to each X ∈ ∂ ′K to its unique unit outer normal,
where Hn(∂K\∂ ′K) = 0 and ∂ ′K is a Borel set (see, e.g., Schneider [60]). Therefore, the map νK is almost
everywhere defined on ∂K. Furthermore, for ω ⊂ S

n, the inverse Gauss map νK is expressed as

ν−1
K (ω) = {X ∈ ∂ ′K : νK(X) is defined and νK(X) ∈ ω}.

For a smooth and strictly convex body K, that is, a body whose boundary is C∞-smooth and is of
positive Gauss curvature, we abbreviate ν−1

K as F for simplicity in the subsequent discussion. Then the
support function of K can be represented as

h(x) = 〈x, F(x)〉 = 〈νK(X), X〉, where x ∈ S
n, νK(X) = x and X ∈ ∂K. (2.1)

Let {e1, e2, . . . , en} be a local orthonormal frame on S
n, and let hi denote the first order covariant

derivatives of h(·) with respect to a local orthonormal frame on S
n. Differentiating (2.1) with respect

to ei, we derive

hi = 〈ei, F(x)〉 + 〈x, Fi(x)〉.

Since Fi is tangent to ∂K at F(x), there is

hi = 〈ei, F(x)〉. (2.2)

Combining (2.1) with (2.2), we have

F(x) =
∑

i

hiei + hx = ∇h + hx. (2.3)

Here ∇ denotes the (standard) spherical gradient. On the other hand, since we can extend h(·) to R
n+1

as a 1-homogeneous function h(·), restricting the gradient of h(·) on S
n yields

Dh(x) = F(x), ∀x ∈ S
n, (2.4)

where D is the gradient operator in R
n+1. Let hij be the second-order covariant derivatives of h regarding

a local orthonormal frame on S
n. Then, applying (2.3) and (2.4), we have

Dh(x) =
∑

i

hiei + hx, Fi(x) =
∑

j

(hij + hδij)ej.

Denote by σk (1 ≤ k ≤ n) the k-th elementary symmetric function of principal radii of curvature. The
eigenvalues of matrix {hij + hδij}, denoted by λ = (λ1, . . . , λn), represent the principal radii of curvature
at the point X(x) ∈ ∂K. Consequently, σ1 = 
h + nh, where 
 is the spherical Laplace operator, and the
Gauss curvature κ of ∂K is given by

κ = 1
σn

= 1
det(hij + hδij)

.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/13/rnaf192/8182202 by TU
 W

ien Bibliothek user on 21 July 2025



Dual Minkowski Problem for Positive Indices | 5

3 Stability of the Dual Curvature Measure
The following lemma is the local version of Aleksandrov–Fenchel inequality and also represents its
spectral formulation, which originates from Hilbert’s work (see, e.g., [3, 5]) and has been further studied,
for example, in [39, 42, 55].

Lemma 3.1. [3, 5] Let f ∈ C2(Sn) with
∫
Sn fhσkdσ = 0. Then we get

k
∫
Sn

f2hσkdσ ≤
∫
Sn

∑
i,j

h2σ
ij
k ∇if∇jfdσ ,

where σ
ij
k = ∂σk

∂bij
with bij := hij + hδij. Equality holds if and only if for some vector v ∈ R

n+1, we
have

f (x) = 〈 x
h(x)

, v〉, ∀x ∈ S
n.

By virtue of Lemma 3.1 for k = n, we obtain the following result, see also [44, Lemma 2.15].

Lemma 3.2. Let X = Dh : Sn → ∂K and α ∈ R. Then we have

n
∫
Sn

|X|α+2dVn ≤ n
| ∫

Sn |X| α
2 XdVn|2∫

Sn dVn
+

∫
Sn

|X|αh(
h + nh)dVn

+
(

α2

4
+ α

)∫
Sn

|X|α−1h〈∇h, ∇|X|〉dVn,

where dVn = hσndσ .

Proof. Let {ei}n
i=1 be a local orthonormal frame of Sn so that (hij + hδij)(x0) = λi(x0)δij. Suppose {El}n+1

l=1 is
an orthonormal basis of R

n+1. Motivated by [39, Lemma 3.2], for l = 1, . . . , n + 1, we set the functional
fl : Sn → R as

fl(x) = |X| α
2 〈X(x), El〉 −

∫
Sn |X| α

2 〈X(x), El〉dVn∫
Sn dVn

.

It is clear to see
∫
Sn fldVn = 0 for 1 ≤ l ≤ n + 1, then by means of Lemma 3.1 to fl and summing over l,

there is

n
∑

l

∫
Sn

f2
l dVn = n

⎡⎢⎣∫
Sn

|X|α+2dVn −
∣∣∣ ∫

Sn |X| α
2 XdVn

∣∣∣2∫
Sn dVn

⎤⎥⎦ ≤
∑
l,i,j

∫
Sn

h2σ
ij
n ∇ifl∇jfldσ . (3.1)

Due to ∇iX = ∑
j(hij + hδij)ej = λiei at x0, we have 〈ei, X〉 = hi and

∑
i λi〈ei, X〉2 = |X|〈∇h, ∇|X|〉 at x0.

Employing
∑

i
∂σn
∂λi

λ2
i = σ1σn and ∂σn

∂λi
λi = σn for ∀i, there holds

∑
l,i,j

σ
ij
n ∇ifl∇jfl =

∑
l,i

∂σn

∂λi
((∇i(|X| α

2 ))〈X, El〉 + |X| α
2 〈∇iX, El〉)2

=
∑

l,i

∂σn

∂λi

(α

2
|X| α

2 −2〈λiei, X〉〈X, El〉 + |X| α
2 〈λiei, El〉

)2

=
∑

i

∂σn

∂λi
λ2

i

[
|X|α +

(
α2

4
+ α

)
|X|α−2〈ei, X〉2

]

= |X|ασ1σn +
(

α2

4
+ α

)
|X|α−1〈∇h, ∇|X|〉σn.

(3.2)
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6 | J. Hu

Then, combining (3.2) with (3.1), and applying dVn = hσndσ , we derive

n

⎡⎢⎣∫
Sn

|X|α+2dVn −
∣∣∣ ∫

Sn |X| α
2 XdVn

∣∣∣2∫
Sn dVn

⎤⎥⎦
≤

∫
Sn

h2|X|ασ1σndσ +
(

α2

4
+ α

)∫
Sn

|X|α−1h2σn〈∇h, ∇|X|〉dσ

=
∫
Sn

|X|αh(
h + nh)dVn +
(

α2

4
+ α

)∫
Sn

|X|α−1h〈∇h, ∇|X|〉dVn.

The proof is complete. �

Using Lemma 3.2, we get the following result, which is the main ingredient of proving Theorem 1.2.

Proposition 3.3. Let K be origin-symmetric. Let m, M > 0. Suppose n − 3 ≤ q ≤ n + 1. Let m ≤
h|Dh|q−(n+1) 1

κ
≤ M. Then we have

n
∫
Sn

|Dh|2dσ ≤ M
m

∫
Sn

h(
h + nh)dσ .

Proof. Let α := q−(n+1) in Lemma 3.2. It follows that α2

4 +α ≤ 0 for n−3 ≤ q ≤ n+1. Since |X|〈∇h, ∇|X|〉 =∑
i λih2

i ≥ c0|∇h|2 where c0 > 0 depends on ∂K. Set dCq = h|Dh|q−(n+1) 1
κ
dσ , thus we have

n
∫
Sn

|Dh|2dCq ≤
∫
Sn

h(
h + nh)dCq.

Based on the assumption, we get

mn
∫
Sn

|Dh|2dσ ≤ M
∫
Sn

h(
h + nh)dσ .

The proof is complete. �

Drawing inspiration from [33], we are in a position to prove Theorem 1.2 via Proposition 3.3.

Proof of Theorem 1.2. Set

M = max
Sn

(
|Dh|q−(n+1) h

κ

)
, m = min

Sn

(
|Dh|q−(n+1) h

κ

)
, ε := M

m
− 1.

In view of Proposition 3.3, integration of parts yields

(n + 1 + ε)

∫
Sn

|∇h|2dσ ≤ nε

∫
Sn

h2dσ . (3.3)

Applying the Poincaré inequality on S
n to h, we obtain

n
∫
Sn

(
h −

∫
Sn hdσ∫
Sn dσ

)2

dσ ≤
∫
Sn

|∇h|2dσ . (3.4)

Combining (3.3) and (3.4), it yields

∫
Sn

(
h −

∫
hdσ∫

Sn dσ

)2
dσ∫

Sn dσ
≤ ε

n + 1 + ε

∫
Sn h2dσ∫
Sn dσ

≤ ε

n + 1

∫
Sn h2dσ∫
Sn dσ

.
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Dual Minkowski Problem for Positive Indices | 7

It follows that

∫
Sn

(
h∫

Sn hdσ/
∫
Sn dσ

− 1
)2

dσ∫
Sn dσ

≤ ε

n + 1

∫
Sn h2dσ∫
Sn dσ

(
∫
Sn hdσ/

∫
Sn dσ)2

. (3.5)

We now show that the right-hand side of (3.5) is bounded. Let Rh = maxSn h. Assume that Rh = h(w) for
a unit vector w ∈ S

n. By the convexity of hypersurface, for any x ∈ S
n, we have

h(x) ≥ 〈x, w〉Rh.

Building on this fact, then there exists a positive constant c1, depending on n, to satisfy

∫
Sn hdσ∫
Sn dσ

≥ 1∫
Sn dσ

∫
〈x,w〉≥1/2

hdσ ≥ Rh

2
∫
Sn dσ

∫
〈x,w〉≥1/2

dσ ≥ c1Rh, (3.6)

then it suffices to get

(∫
Sn h2dσ∫
Sn dσ

) 1
2

≤ Rh ≤ 1
c1

∫
Sn hdσ∫
Sn dσ

. (3.7)

Substituting (3.7) into (3.5), we obtain

∫
Sn

(
h∫

Sn hdσ/
∫
Sn dσ

− 1
)2

dσ∫
Sn dσ

≤ ε

(n + 1)c2
1

.

Therefore the proof is finished. �

4 Existence and Uniqueness of Solutions to the Dual Minkowski
Problem
We first need to obtain the a priori estimates of solutions to (1.2) with the aid of Theorem 1.2.

Lemma 4.1. [60, Lemma 7.6.4] Let K1, K2 be two convex bodies in R
n+1. Then the following fact

holds:

δ2(K1, K2)
2 ≥ αndiam(K1 ∪ K2)

−nδH(K1, K2)
n+2, (4.1)

where αn is a dimensional constant and diam(K1 ∪ K2) is the diameter of the set K1 ∪ K2.

Based on Lemma 4.1 and Theorem 1.2, we derive the C0 estimate as follows.

Lemma 4.2. Suppose that q satisfies either 0 < q ≤ n + 1 if 1 ≤ n ≤ 3, or n − 3 ≤ q ≤ n + 1 if n > 3.
Assume that K is a smooth, origin-symmetric, strictly convex body such that

1 − ε ≤ |Dh|q−(n+1) h
κ

≤ 1 + ε (4.2)

for some ε ∈ (0, ε0) with ε0 > 0, then there exists C = C(ε0, n) > 0 such that

1/C ≤ h(x) ≤ C, ∀x ∈ S
n, (4.3)

and

1/C ≤ ρ(u) ≤ C, ∀u ∈ S
n, (4.4)

where h(x) and ρ(u) are the support function and the radial function of K, respectively.
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8 | J. Hu

Proof. Let u and x be related by ρ(u)u = ∇h(x) + h(x)x = Dh(x). Clearly, we have

min
Sn

h(x) ≤ ρ(u) ≤ max
Sn

h(x).

This implies that the validity of (4.3) is equivalent to that of (4.4). So we only need to establish (4.3).
From (3.6), for c1 > 0, we know that

hK̄(x) = h(x)∫
Sn hdσ/

∫
Sn dσ

≤ 1
c1

, ∀x ∈ S
n.

It follows that

diam(K̄ ∪ B1) ≤ 2
(

1 + 1
c1

)
. (4.5)

By applying Theorem 1.2, we obtain

δ2(K̄, B1) ≤ βε
1
2
0 . (4.6)

Combining (4.5) and (4.6) with (4.1), we conclude that there exists a constant c2 > 0, depending only on
n, such that

δH(K̄, B1) ≤ α
− 1

n+2
n diam(K̄ ∪ B1)

n
n+2 δ2(K̄, B1)

2
n+2 ≤ c2ε

1
n+2
0 . (4.7)

Eq. (4.7) gives

1 − c2ε
1

n+2
0 ≤ h∫

Sn hdσ/
∫
Sn dσ

≤ 1 + c2ε
1

n+2
0 .

Furthermore, for ε0 equipped with c2ε
1

n+2
0 < 1, there is

maxSn h
minSn h

≤ 1 + c2ε
1

n+2
0

1 − c2ε
1

n+2
0

. (4.8)

Now, employing (4.2), for q > 0, we obtain

(min
Sn

h)q
∫
Sn

dσ ≤
∫
Sn

|Dh|q−(n+1) h
κ

dσ ≤ (1 + ε0)

∫
Sn

dσ . (4.9)

This illustrates that there exists a constant C1 > 0 such that

min
Sn

h ≤ C1. (4.10)

Substituting (4.10) into (4.8), then there is a positive constant C2 > 0 depending on n, ε0 so that

max
Sn

h ≤ C2.

Similarly, for q > 0,

(max
Sn

h)q
∫
Sn

dσ ≥
∫
Sn

|Dh|q−(n+1) h
κ

dσ ≥ (1 − ε0)

∫
Sn

dσ . (4.11)
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Dual Minkowski Problem for Positive Indices | 9

It yields that for a positive constant C3 > 0, there is

max
Sn

h ≥ C3. (4.12)

Applying (4.12) into (4.8), we also have

min
Sn

h ≥ C4

for a positive constant C4 > 0 depending on n, ε0. This completes the proof. �

The C1 estimate follows from the C0 estimate above and the convexity of the hypersurface.

Lemma 4.3. Suppose that q satisfies either 0 < q ≤ n + 1 if 1 ≤ n ≤ 3, or n − 3 ≤ q ≤ n + 1 if n > 3.
Let α ∈ (0, 1). Let f be an even, smooth, and positive function on S

n, and K be a smooth, origin-
symmetric, and strictly convex solution to Eq. (1.2). There exists a constant ε0 > 0 depending
only on n, α such that if ||f − 1||Cα ≤ ε for some ε ∈ (0, ε0), then there is a constant C > 0
depending on ε0, n, such that

|∇h(x)| ≤ C, ∀x ∈ S
n,

and

|∇ρ(u)| ≤ C, ∀u ∈ S
n.

Proof. Due to ρ(u)u = ∇h(x) + h(x)x = Dh(x), we have

h = ρ2√|∇ρ|2 + ρ2
, ρ2 = h2 + |∇h|2.

Hence, combining the above facts with Lemma 4.2, we obtain the desired result. �

Next, our goal is to obtain the C2 estimate of solutions to (1.2).

Lemma 4.4. Suppose that q satisfies either 0 < q ≤ n + 1 if 1 ≤ n ≤ 3, or n − 3 ≤ q ≤ n + 1 if
n > 3. Let α ∈ (0, 1). Let f be an even, smooth, and positive function on S

n, and K be a smooth,
origin-symmetric, and strictly convex solution to (1.2). There exists a constant ε0 > 0 depending
only on n, α such that if ||f − 1||Cα ≤ ε for some ε ∈ (0, ε0), then for some positive constant C
depending on ε0, n, the principal curvatures κ1, . . . , κn of ∂K satisfy

1/C ≤ κi(x) ≤ C, ∀x ∈ S
n, i = 1, . . . , n.

Proof. The proof is divided into two parts, in the first part, we derive an upper bound for the Gauss
curvature κ(x). In the second part, we derive an upper bound for the principal radii of curvature bij =
hij + hδij.

Step I: Based on the assumption, for some ε ∈ (0, ε0) with ε0 > 0, we have

1 − ε ≤ ρq−(n+1) h
κ

≤ 1 + ε. (4.13)

By Lemma 4.2, and using (4.13), we have

κ ≤ ρq−(n+1)h
1

1 − ε0
≤ C0 (4.14)

for a positive constant C0.
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10 | J. Hu

Step II: Set the auxiliary function as

Q(x) = logtr({bij}) − Alogh + B|∇h|2,

where tr({bij}) is the sum of the eigenvalues of matrix {bij}, A and B are positive constants to be chosen
later. Assume maxSn Q(x) is attained at a point x0 ∈ S

n. By a rotation, we may assume {bij}(x0) is diagonal.
Then we have at x0,

0 = ∇iQ = 1∑
j bjj

∑
j

∇ibjj − A
hi

h
+ 2B

∑
k

hkhki

= 1∑
j bjj

∑
j

(hjji + hi) − A
hi

h
+ 2Bhihii

= 1∑
j bjj

∑
j

(hijj + hjδij − hi) + 1∑
j bjj

∑
j

hi − A
hi

h
+ 2Bhihii

= 1∑
j bjj

∑
j

(hijj + hjδij) − A
hi

h
+ 2Bhihii,

(4.15)

where we used the fact that hijk − hikj = hjδik − hkδij, and there holds

0 ≥ ∇iiQ = 1∑
j bjj

∑
j

∇iibjj − 1
(
∑

j bjj)
2
(
∑

j

∇ibjj)
2 − A

(
hii

h
− h2

i

h2

)
+ 2B

(∑
k

hkhkii + h2
ii

)
.

At x0, we also have

0 ≥ bijQij

=
∑

i

bii 1∑
j bjj

∑
j

∇iibjj −
∑

i

1
(
∑

j bjj)
2

bii(
∑

j

∇ibjj)
2 − A

∑
i

bii

(
hii

h
− h2

i

h2

)

+ 2B
∑

i

bii
∑

k

hkhkii + 2B
∑

i

biih2
ii

≥
∑

i

bii 1∑
j bjj

∑
j

∇iibjj −
∑

i

1
(
∑

j bjj)
2

bii(
∑

j

∇ibjj)
2 − A

∑
i

hii + h
h

bii + A
∑

i

bii

+ 2B
∑

i

bii
∑

k

hkhkii + 2B
∑

i

bii(bii − h)2.

(4.16)

The Ricci identity on sphere reads

∇kkbij = ∇ijbkk − δijbkk + δkkbij − δikbjk + δjkbik.

Then (4.16) becomes

0 ≥
∑

i

1∑
j bjj

bii
∑

j

(∇jjbii + bjj − bii) −
∑

i

1
(
∑

j bjj)
2

bii(
∑

j

∇ibjj)
2 − nA

h
+ A

∑
i

bii

+ 2B
∑

k

hk

∑
i

biihkii + 2B
∑

i

bii − 4nBh.

(4.17)

Since

log h = − log det(∇2h + hI) + log(fρn+1−q). (4.18)
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Dual Minkowski Problem for Positive Indices | 11

Set � := log(fρn+1−q). Differentiating (4.18), at x0, it gives

hj

h
= −

∑
i,k

bik∇jbik + ∇j�

= −
∑
i,k

bik(hikj + hjδik) + ∇j�

= −
∑

i

biihiij − hj

∑
i

bii + ∇j�

= −
∑

i

bii(hiji + hiδij − hj) − hj

∑
i

bii + ∇j�

= −
∑

i

bii(hjii + hiδij) + ∇j�,

(4.19)

where bij is the inverse of bij, and

hjj

h
−

h2
j

h2
= −

∑
i

bii∇jjbii +
∑
i,k

biibkk(∇jbik)
2 + ∇jj�. (4.20)

Besides, for each i, there is ∑
j

bjj

∑
j,k

bkk(∇jbik)
2

≥
∑

j

bjj

∑
j

bjj(∇ibjj)
2

≥
⎛⎝∑

j

√
bjjbjj(∇ibjj)

2

⎞⎠2

= (
∑

j

|∇ibjj|)2

≥ (
∑

j

∇ibjj)
2.

(4.21)

Employing (4.21), one sees∑
i

bii 1
(
∑

j bjj)
2
(
∑

j

∇ibjj)
2 − 1∑

j bjj

∑
i,j,k

biibkk(∇jbik)
2 ≤ 0. (4.22)

Now, substituting (4.20) into (4.17), employing (4.19) and (4.22), we get

0 ≥ 1∑
j bjj

∑
j

(
− hjj

h
+

h2
j

h2

)
+ 1∑

j bjj

∑
i,j,k

biibkk(∇jbik)
2 + 1∑

j bjj

∑
j

∇jj� − n2∑
j bjj

−
∑

i

1
(
∑

j bjj)
2

bii(
∑

j

∇ibjj)
2 − nA

h
+ A

∑
i

bii + 2B
∑

k

hk

∑
i

biihkii + 2B
∑

i

bii − 4nBh

≥ − 1
h

− nA
h

+ 1∑
j bjj

∑
j

∇jj� + A
∑

i

bii + 2B
∑

k

hk

(
− hk

h
− bkkhk + ∇k�

)

+ 2B
∑

i

bii − n2∑
j bjj

− 4nBh

≥ − 1
h

− nA
h

− 2B|∇h|2
h

+ (A − 2B|∇h|2)
∑

i

bii + 1∑
j bjj

∑
j

∇jj�

+ 2B
∑

k

hk∇k� + 2B
∑

i

bii − n2∑
j bjj

− 4nBh.

(4.23)
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12 | J. Hu

From � = log(fρn+1−q), we get

2B
∑

k

hk∇k� = 2B
∑

k

hk

(
fk

f
+ (n + 1 − q)

hhk + hkhkk

ρ2

)
, (4.24)

and

1∑
j bjj

∑
j

∇jj� = 1∑
j bjj

∑
j

(
ffjj − f2

j

f2
+ (n + 1 − q)

hhjj + h2
j + h2

jj + ∑
k hkhkjj

ρ2

)

− 2
1∑
j bjj

(n + 1 − q)
∑

j

(hhj + hjhjj)
2

ρ4
.

(4.25)

Using (4.15), (4.24), (4.25), and Lemmas 4.2 and 4.3, then we get

2B
∑

k

hk∇k� + 1∑
j bjj

∑
j

∇jj�

≥ −C0 − C1B + (n + 1 − q)
∑

k

hk

ρ2

⎡⎣2Bhkhkk + 1∑
j bjj

∑
j

hkjj

⎤⎦ − C2
1∑
j bjj

− (n + 1 − q)
1∑
j bjj

∑
j

[
h|hjj| + h2

jj

ρ2
+ 2

h2
j h2

jj

ρ4

]

= −C0 − C1B + (n + 1 − q)
∑

k

hk

ρ2

⎛⎝− 1∑
j bjj

∑
j

hjδkj + A
hk

h

⎞⎠ − C2
1∑
j bjj

− (n + 1 − q)
1∑
j bjj

∑
j

h|bjj − h| + (bjj − h)2

ρ2
− 2(n + 1 − q)

1∑
j bjj

∑
j

h2
j (bjj − h)2

ρ4

≥ −C̃0 − C̃1A − C̃2B − C̃3
1∑
j bjj

− (n + 1 − q)
ρ2 + 2|∇h|2

ρ4

∑
j

bjj

(4.26)

for the positive constants C0, C1, C2, C̃0, C̃1, C̃2, C̃3 depending only on the constants from Lemmas 4.2 and
4.3. Now we take A = 2B maxSn |∇h|2 + 1, and

B = (n + 1 − q)
maxSn ρ2 + 2 maxSn |∇h|2

minSn ρ4
+ 1.

Then applying (4.26) into (4.23), we obtain

0 ≥ − (n + 1)A
h

− C̃0 − C̃1A − C̃2B − (C̃3 + n2)
1∑
j bjj

+ B
∑

i

bii − 4nhB.

Thus when
∑

i bii � 1, we get

∑
i

bii ≤ C

for a positive constant C. The proof is complete. �

By the Evans–Krylov theorem and the Schauder regularity theory, together with the a priori estimates
in Lemmas 4.2, 4.3, and 4.4, we obtain the following theorem.

Theorem 4.5. Suppose that q satisfies either 0 < q ≤ n+1 if 1 ≤ n ≤ 3, or n−3 ≤ q ≤ n+1 if n > 3.
Let α ∈ (0, 1). Let f be an even, smooth, and positive function on S

n, and K be a smooth, origin-
symmetric, and strictly convex solution to (1.2). There exists a constant ε0 > 0 depending only
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Dual Minkowski Problem for Positive Indices | 13

on n, α such that if ||f − 1||Cα ≤ ε for some ε ∈ (0, ε0), then for any � ≥ 2 and γ ∈ (0, 1), there is a
constant C > 0 depending on ε0, n such that

||h||C�+1,γ ≤ C.

We are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. We first demonstrate the existence part by employing degree-theoretic argu-
ments. Let Tt(·) : C4,α(Sn) → C2,α(Sn) be a nonlinear differential operator, which is defined as

Tt(h) = det(∇2h + hI) − h−1(|∇h|2 + h2)
n+1−q

2 ft

for t ∈ [0, 1], where

ft = (1 − t) + tf .

For R > 0 fixed, define O ⊂ C4,α(Sn) by

O = {h ∈ C4,α(Sn) : h(x) = h(−x), ∀x ∈ S
n, and ||h||C4,α (Sn) < R}.

By Theorem 4.5, one sees that Tt(h) = 0 has no solution on ∂O if R is sufficiently large. Therefore,
the degree of Tt is well defined (see, e.g., [47, Section 2] or [31, Section 3] ). Since degree is homotopic
invariant,

deg(T0,O, 0) = deg(T1,O, 0).

On the one hand, at t = 0, by Theorem 1.1, h = 1 is the unique solution of (1.2) when f = 1. On the other
hand, since T is symmetric, it is clear to show that the linearized operator of T0 at h = 1 is

L0η = 
η + qη

for even η ∈ C2(Sn), when 0 < q < n, we know that q is not an eigenvalue of (−
) on S
n; furthermore, for

the case q = n, if L0η = 0, then η are linear functions of Rn+1, that is, η ∈ Span{x1, . . . , xn+1} that are odd,
due to the evenness of η, one sees that η = 0. Thus the linearized operator L0 is invertible for 0 < q ≤ n.
Based on this fact, we compute the degree by means of formula

deg(T0,O, 0) =
∑
μj>0

(−1)ζj ,

where μj > 0 are the eigenvalues of the linearized operator of T0 and ζj denotes its multiplicities. Since
the eigenvalues of the Beltrami–Laplace operator 
 on S

n are strictly less than −n, except for the first
two eigenvalues 0 and −n, it follows that for 0 < q ≤ n, there is only one positive eigenvalue of L0 with
multiplicity 1, namely μ = q. Consequently,

deg(T0,O, 0) = deg(T1,O, 0) = −1 �= 0.

Hence, there is an even solution to (1.2). The regularity of h follows directly from Theorem 4.5.
The following lemma is essential for proving the uniqueness part. �

Lemma 4.6. Suppose that q satisfies either 0 < q ≤ n if 1 ≤ n ≤ 3, or n − 3 ≤ q ≤ n if n > 3. Let
0 < α < 1. Let f be an even, smooth, and positive function on S

n. There exists a small constant
ε0 > 0 such that if ||f − 1||Cα ≤ ε0, ||hK − 1||∞ ≤ ε0, and ||hL − 1||∞ ≤ ε0, where K and L are smooth,
origin-symmetric, and strictly convex bodies satisfying Eq. (1.2), then K = L.

Proof. By Theorem 4.5, we find

||hK||C2,α ≤ C0, and ||hL||C2,α ≤ C0,
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14 | J. Hu

where C0 > 0 is a constant depending only on ε0. Moreover,

∣∣∣∣∣∣ fρn+1−q
K

hK
− 1

∣∣∣∣∣∣
Cα

≤ ε̂0 → 0 as ε0 → 0,

and

∣∣∣∣∣∣ fρn+1−q
L

hL
− 1

∣∣∣∣∣∣
Cα

≤ ε̂0 → 0 as ε0 → 0.

It is clear to show

fρn+1−q
K

hK
− 1 = det(∇2hK + hKI) − det(∇21 + I)

=
∫ 1

0

d
dt

det(∇2((1 − t) + thK) + ((1 − t) + thK)I)dt

=
n∑

i,j=1

∫ 1

0
Uij

t dt · ((hK − 1)ij + (hK − 1)δij)

=
n∑

i,j=1

aij((hK − 1)ij + (hK − 1)δij),

(4.27)

where the coefficient aij = ∫ 1
0 Uij

t dt, and Uij
t is the cofactor matrix of

∇2((1 − t) + thK) + ((1 − t) + thK)I.

Since

||hK||C2,α ≤ C0,

and there exists a positive constant C1 > 0 such that,

1
C1

I ≤ {aij} ≤ C1I.

This illustrates that (4.27) is uniformly elliptic. Applying the Schauder estimate (see, e.g., [30, Chapter 6])
to (hK − 1), one sees that for a universal positive constant C,

||hK − 1||C2,α ≤ C

(
||hK − 1||∞ +

∣∣∣∣∣∣ fρn+1−q
K

hK
− 1

∣∣∣∣∣∣
Cα

)
≤ C(ε0 + ε̂0).

Along the same argument, we also derive

||hL − 1||C2,α ≤ C(ε0 + ε̂0).

So K, L lie in the C2-neighbourhood of B1. On the other hand, as mentioned above, the linearized operator
L0 of (1.2) at h = 1 is invertible for 0 < q ≤ n. Since K and L satisfy (1.2), by means of the inverse function
theorem, provided that ε0 is sufficiently small, we have K = L. �

Now, utilizing Lemma 4.6, we verify the uniqueness part of Theorem 1.3. Assume, to the contrary,
that there are two different solutions Ki and Li for i ∈ N, by Lemma 4.6, we conclude that at least one of
them, say Ki, then there exist fi and Ki such that

hKi det(∇2hKi + hKi I)ρ
q−(n+1)

Ki
= fi,
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Dual Minkowski Problem for Positive Indices | 15

and satisfy

||hKi − 1||∞ > ε0, ||fi − 1||Cα → 0 as i → ∞.

Meanwhile, with the aid of Theorem 4.5, for � ≥ 2 and γ ∈ (0, 1), one gets

||hKi ||C�+1,γ ≤ C

for some positive constant C depending only on ε0, n. Then by the Arzelà–Ascoli theorem, passing to a
subsequence, there exists a smooth, origin-symmetric, and strictly convex body K̃ such that hKi → hK̃ in
the C�+1 norm as i → ∞, and we have

hK̃|DhK̃|q−(n+1) det(∇2hK̃ + hK̃I) = 1, (4.28)

equipped with

||hK̃ − 1||∞ ≥ ε0, ε0 > 0. (4.29)

However, by the uniqueness of even solutions to the isotropic dual Minkowski problem shown in
Theorem 1.1 with p = 0, we know that (4.28) only admits a solution hK̃ ≡ 1, which contradicts to (4.29).
This completes the proof of Theorem 1.3.
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