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We derive the stability result of the dual curvature measure with near-constant density in the even case.
As an application, the existence and uniqueness of solutions to the even dual Minkowski problem for
positive indices in R"+! are obtained with n > 1, provided the density of the given measure is close to
1in the C* norm with o € (0, 1).

1 Introduction

The geometric properties of convex bodies in Euclidean space R™! and their corresponding Minkowski
problems play a central role in the Brunn-Minkowski theory. The classical Minkowski problem, which
characterizes the surface area measure, was originally formulated and studied by Minkowski himself
in [56, 57]. Since then, significant progress has been made regarding the existence, uniqueness, and
regularity of solutions to this problem in a series of works [1, 2, 24-26, 37, 59]. Beyond area measures,
the curvature measures introduced by Federer [60] form another fundamental class of measures within
the Brunn-Minkowski theory.

The L, Brunn-Minkowski theory is a generalization of the Brunn-Minkowski theory, initiated by Firey
and further developed by Lutwak [51, 52] through his introduction of the L, surface area measure.
The L, Minkowski problem, which involves prescribing the L, surface area measure, is a fundamental
problem that was first formulated and solved by Lutwak [51]. Building on Lutwak’s foundational work,
this problem has seen rapid development, as evidenced by numerous works, including [6, 15, 23, 27,
49, 53, 63-65]. Among the most challenging cases are the logarithmic Minkowski problem for p = 0
(see Boroczky-Lutwak-Yang-Zhang [11] and its citations) and the centro-affine Minkowski problem for
p = —n— 1 (see Chou-Wang [25] or Zhu [65], and their citations).

As another parallel extension of the Brunn-Minkowski theory, the dual Brunn-Minkowski theory was
initiated by Lutwak in 1970s [50]. However, it truly gained significant momentum when Huang-Lutwak-
Yang-Zhang [34] discovered a new family of fundamental geometric measures, known as the dual
curvature measures. These measures are dual to Federer’s curvature measures. Their work introduced
the dual Minkowski problem, which concerns the prescription of the dual curvature measures, and
further established sufficient conditions for the existence of even solutions in the case 0 < g <n+1
within the variational framework. Since then, the dual Brunn-Minkowski theory has flourished, leading
to numerous significant results and applications, as explored in [7, 12, 13, 35, 36, 40, 46, 61, 62] and the
references therein.
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In the work of Lutwak-Yang-Zhang [54], they first integrated the dual Brunn-Minkowski theory into
the L, Brunn-Minkowski theory. Furthermore, they introduced a unifying family of geometric measures,
referred to as the (p, q)-th dual curvature measures, which serve as fundamental geometric measures in
the L, dual Brunn-Minkowski theory. The associated Minkowski problem, called the L, dual Minkowski
problem, encompasses all the Minkowski-type problems mentioned above. The precise formulation is
given below.

The L, dual Minkowski problem [54]: given a nonzero finite Borel measure u on the unit sphere §" and
real numbers p, q, what are the necessary and sufficient conditions for u to coincide with (p, q)-th dual
curvature measure of a convex body K containing the origin in its interior?

When the given measure pu has a continuous density f, the solvability of the L, dual Minkowski
problem amounts to solving the following Monge-Ampere equation on S":

h'=P det(V?h + hD)|Dh| ™D =f on §" (1.1)
In the case p = 0, Eq. (1.1) corresponds to the dual Minkowski problem:
hdet(V2h 4 hl)|Dh|4~"*D = on S". (1.2)

Since the publication of [54], significant progress has been made in the study of the existence and
uniqueness of solutions to (1.1), including important contributions from (7, 17, 19, 36, 45, 48, 58]. In
particular, when the density function f is a constant, (1.1) reduces to the isotropic L, dual Minkowski
problem. The uniqueness and non-uniqueness results of solutions to the isotropic case have been widely
investigated in the condition of symmetric or non-symmetric assumptions, for instance, in [4, 16-18, 28,
32,36, 43, 44]. Recently, in the plane case n = 1, Kim-Lee [41] established a uniform diameter estimate
for solutions to (1.1) in R? when 0 < p < 1 and q > 2, and moreover verified the uniqueness and
positivity of solutions to the L, Minkowski problem when f is sufficiently close to a constant in the C*
norm with 0 < a < 1. Separately, Chen-Li [22] provided the diameter estimate for the case p = 0. The
diameter estimate for the case p > q can be readily derived using a maximum principle argument, as
demonstrated in [36]. However, the situation for p < q is more complicated. It is interesting to establish
the diameter estimate of solutions to (1.1) with p < q for higher dimensions n > 2.

In this paper, our first purpose is to establish a stability result for the dual curvature measure with
near-constant density in the even case utilizing the local Brunn-Minkowski inequality, inspired by the
work of Hu-Ivaki [33]. We need recall the following uniqueness result of solutions to the isotropic L,
dual Minkowski problem shown by Ivaki-Milman [39].

Theorem 1.1. [39] Let n > 1. Suppose p > —(n + 1) and q < n + 1 with at least one of these
inequalities being strict. Let 9K be a smooth, strictly convex and origin-centred hypersurface
with the support function h such that h?~1|Dh|"+?~4x = 1. Then 9K is the unit sphere.

When K is additionally assumed to be origin-symmetric, this uniqueness theorem was proved by
Chen-Huang-Zhao [17] from another point of view, provided p > —(n+ 1) and q < min{n + 1,n + 1 + p}
with p # q. Now the stability result for the dual curvature measure is stated as follows.

Theorem 1.2. Letn > 1. Supposen—3 < q < n+1.Let Kbe a smooth, origin-symmetric and strictly
convex body with the support function h. Then

1

_ maxg. (|Dh|2-"+D %) ?

HKB)=B| — o — ,
ming, (|[Dh|a-+D 1)

where 8, is the L?-distance (see Section 2 for its definition), g is a positive constant depending
only on n, and

K

K= I hdo/ o do
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This theorem tells us that if the density of the dual curvature measure of a smooth, origin-symmetric
and strictly convex body regarding to the spherical Lebesgue measure is approximately constant, a
rescaled version of the body is close to the unit ball in the L?-distance. Note that when ¢ = n+ 1 in
(1.2), some progress on the stability of the cone-volume measure was made by Bordczky-De [8], based
on the log-Minkowski inequality in the class of convex bodies with many symmetries, as proved by
Boroczky-Kalantzopoulos [9]. Subsequently, Ivaki [38] proved the stability of the cone-volume measure
in the class of origin-symmetric bodies with respect to the L2-distance, the recent work of Hu-Ivaki [33]
proved a similar stability result without symmetry conditions.

An application of Theorem 1.2 is to get the existence of even solutions to the regular dual Minkowski
problem for positive indices using degree theory methods, as well as its uniqueness, provided the
prescribed data is sufficiently close to 1 in the C* norm for 0 < o < 1.

Theorem 1.3. Suppose that g satisfies either 0 <q <nif 1<n<3,orn—-3<q<nifn> 3. Let
a € (0,1). Let f be an even, smooth, and positive function on S". There exists a constant ¢y > 0
depending only on n, @ such thatif ||f — 1||c= < & for some small ¢ € (0, &), then Eq. (1.2) has a
unique, smooth, origin-symmetric, and strictly convex solution.

It should be stressed that the range of q in Theorem 1.3 guarantees both the existence and uniqueness
of solutions to (1.2). We also remark that, the existence of the even dual Minkowski problem in the
smooth category for q > 0 was previously demonstrated by Li-Sheng-Wang [46] from the perspective
of geometric flows. The key ingredient of deriving the solvability of (1.2) is to obtain the C° estimate of
solutions to (1.2). In addition, partial uniqueness results for solutions to the (anisotropic) dual Minkowski
problem (1.2) have been established. For q < 0, Zhao [61] proved uniqueness; the case q = 0 is classical
and stems from the uniqueness result of integral curvature shown by Aleksandrov; for the logarithmic
Minkowski problem (q = n + 1), uniqueness results were found by Béroczky-Lutwak-Yang-Zhang [10]
when the given measure is even in the planar case n = 1, by Chen-Huang-Li-Liu [21] when the density
f of the given measure is even and close to 1 in the C* norm, building on the local results given by
Kolesnikov-Milman [42], and recently by Chen-Feng-Liu [20] when f is close to 1 in the C* norm without
any symmetry condition in R?, later Boroczky-Saroglou [14] and Hu-Ivaki [33] extended the results of
[20] to higher dimensions independently, along different lines. However, the uniqueness in the case
of 0 < q # n+ 1 has not been previously settled and remains largely open. Meanwhile, it would be
interesting to generalize Theorem 1.3 to the non-even case.

The structure of this paper is organized as follows. In Section 2, we provide some basic facts related
to convex bodies. In Section 3, we present the proof of Theorem 1.2. Finally, the proof of Theorem 1.3 is
given in Section 4.

2 Preliminaries

There are many standard references on the theory of convex bodies, including the comprehensive books
of Gardner [29] and Schneider [60].

Let R™+! denote the (n41)-dimensional Euclidean space. For Y, Z e R™! (Y, Z) represents the standard
inner product. For a vector X € R™!, |X| = /{X,X) is the Euclidean norm. Let B; denote the unit ball
in R™! and " denote the unit sphere. A convex body is defined as a compact convex set of R with
non-empty interior.

The support function of a convex body K in R™* (with respect to the origin) is defined for x € S" as

hg(x) = max{(x,Y) : Y e K}.

Unless it causes confusion, we later abbreviate hg as h.
The radial function px of K is denoted by

ox(uW) =max{s >0:suek}, vueS"

Note that px(uwu € 9K for any u € S". Abbreviate px as p later unless it causes confusion.

G20z AInr Lz uo Jasn yayjoliqig usip NL AQ 202281 8/2614eul/E |/5202/a101e/uiwi/woo dno-olwepede//:sdiy woly papeojumoq



4 | J.Hu

The 12-distance of two convex bodies K1, K, is expressed as

1
1 2
32(K1,K2) = (7f dg A ”’1](1 — thlde')
sn "

and their Hausdorff distance is defined as

su(Ky,Ko) = max lhg, — hg, |.

Given a convex body K in R™?, for H" almost all X € 9K, the unit outer normal of K at X is unique. In
this case, we denote by vx the Gauss map, which assigns to each X € 9’K to its unique unit outer normal,
where H"(0K\0’K) = 0 and 9’K is a Borel set (see, e.g., Schneider [60]). Therefore, the map vk is almost
everywhere defined on 9K. Furthermore, for  C S", the inverse Gauss map vk is expressed as

v (@) = {X € 3'K : w(X) is defined and vk (X) € w}.
For a smooth and strictly convex body K, that is, a body whose boundary is C*-smooth and is of

positive Gauss curvature, we abbreviate vg! as F for simplicity in the subsequent discussion. Then the
support function of K can be represented as

h(x) = (x, F(x)) = (vg(X), X), where x e §", vx(X) = x and X € 9K. (2.1)

Let {e1,es,...,en} be a local orthonormal frame on S% and let h; denote the first order covariant
derivatives of h(-) with respect to a local orthonormal frame on S". Differentiating (2.1) with respect
to e;, we derive

hi = (e;, F(X)) + (x, Fi(x)).
Since F; is tangent to 9K at F(x), there is
hi = (ei, F(x)). 2.2)
Combining (2.1) with (2.2), we have

F(x) = > hie; +hx = Vh+hx. (2.3)

1

Here V denotes the (standard) spherical gradient. On the other hand, since we can extend h(-) to R"+?
as a 1-homogeneous function h(-), restricting the gradient of h(-) on S" yields

Dh(x) = F(x), ¥x € S", (2.4)

where D is the gradient operator in R***. Let h;; be the second-order covariant derivatives of h regarding
a local orthonormal frame on S". Then, applying (2.3) and (2.4), we have

Dh(x) = > hie;+ hx, Fi(x) = > (h;+ hsy)e;.
i j

Denote by oy, (1 < k < n) the k-th elementary symmetric function of principal radii of curvature. The
eigenvalues of matrix {h; + hs;}, denoted by A = (14,...,1,), represent the principal radii of curvature
at the point X(x) € 9K. Consequently, o1 = Ah + nh, where A is the spherical Laplace operator, and the
Gauss curvature « of 9K is given by

1 1

T det(h; + hé;)
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3 Stability of the Dual Curvature Measure

The following lemma is the local version of Aleksandrov-Fenchel inequality and also represents its
spectral formulation, which originates from Hilbert’s work (see, e.g., [3, 5]) and has been further studied,
for example, in [39, 42, 55].

Lemma 3.1. 3, 5] Let f € C?(S") with [, fhordo = 0. Then we get

k / Fhoydo < / S o)V fdo,
SYI SV\ IJ

where o)) = g%j with by = hy + héy. Equality holds if and only if for some vector v € R™, we

have
X

h(x)’u)’ vx e S".

fx=(

By virtue of Lemma 3.1 for k = n, we obtain the following result, see also [44, Lemma 2.15].

Lemma 3.2. Let X =Dh: S" — 9K and « € R. Then we have

ol Jon 1X12 XAV, 2

n [ xprav, <
S"I | n < v,

+ [ 1XI*h(Ah + nhydv,
-

2
+ (az + “) IX|*"h(Vh, VIX|)dVy,
o

where dV,, = hoydo.
Proof. Let {e;}! ; be a local orthonormal frame of S" so that (h; + h&;)(X0) = 2i(X0)8;. Suppose {El}l”:f is
an orthonormal basis of R™*'. Motivated by [39, Lemma 3.2], for | = 1,...,n + 1, we set the functional
fi:S"—> Ras

e Jor 115 (X (0, E1)dVy
fi)) = 1X| <X<><>,EI>—WA

It is clear to see [, fidVy, = 0 for 1 <1 < n+ 1, then by means of Lemma 3.1 to f; and summing over |,
thereis

2
‘ S IX1E XAV,

2 _ a+2 _ 2 g fy.
DY RLELV AL O ol DY A L

Due to ViX = Zj(hij + hﬁi}')ej = Aie; at Xp, we have (e, X) = h; and Zi Ai(ei,X)Q = |X|(Vh, V|X|) at Xo.

Employing ¥, 9222 = 010, and 22 ; = o, for Vi, there holds

ij doy @ @
D o Vifivifi=2 %_((wm D)X, E + IXI2 (ViX, Er)?
Lij Li !

0y (o« « 2
=25 (51172 e, X) (X, E1) + X1 % (haes, En)
N

(3.2)
—zaﬂ,\.? IX|“ + < X[ (€1, X)?
ot 4 v

2
= [X[“100 + (“Z +a) X[~ (V, V|X])oy.
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Then, combining (3.2) with (3.1), and applying dV,, = ho,do, we derive

2
Jor 1X15 XAV,
n| [ xerdv, - ‘87

Jo T dv,

2
< [ hX|%010ndo + (0‘Z + a) IX|1*""h?6,(Vh, V|X|)do
sn st

2
:/ |x|‘1h(Ah+nh)dvﬂ+(O‘Z +a)/ 1X|*"T(Vh, VIX])d V.
SV\ gn

The proof is complete. |
Using Lemma 3.2, we get the following result, which is the main ingredient of proving Theorem 1.2.

Proposition 3.3. Let K be origin-symmetric. Let m,M > 0. Suppose n —3 < q < n+ 1. Letm <
n|Dh|a=+D 1 < M. Then we have

n/ IDhi2do < M/ h(Ah + nhydo.
n m Jan

Proof. Leta := q—(n+1)in Lemma 3.2. It follows that %—}—a <0forn—3 < q <n+1.Since |X|(Vh, VIX]) =
> Aih? > 0| Vh|? where ¢o > 0 depends on 9K. Set dCq = h|Dh|9~*V Lo, thus we have

n/ IDh|*dC, 5/ h(Ah + nh)dC,.
s sn
Based on the assumption, we get

mn/ IDh2do < M/ h(Ah + nhydo

The proof is complete. |
Drawing inspiration from [33], we are in a position to prove Theorem 1.2 via Proposition 3.3.

Proof of Theorem 1.2. Set
M= max (|Dh|q‘(”+“g) ., m= rr%%n (|Dh\q‘(”+1)2) , &= M 1.
In view of Proposition 3.3, integration of parts yields
(n+1+a)/S“|Vh|2da gns/sn 2do. (3.3)
Applying the Poincaré inequality on S" to h, we obtain

g 2
n/ (h— jj" h;:) daf/ \Vhi2do. (3.4)

Combining (3.3) and (3.4), it yields

hdo \ 2
fS” (h - ,{sn dd) dO‘ < & fS“ h2d0 < & fS“ tho‘
Jor do “n+l+4e [odo Tn+1 [ do
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It follows that

2
h Jin h2dor
Jor ([ hdo/ Jn do 1) do __¢ T do
Jor do ~ n+1 (g hdo/ [g do)?”

(3.5)

We now show that the right-hand side of (3.5) is bounded. Let R, = maxg» h. Assume that R, = h(w) for
a unit vector w € S". By the convexity of hypersurface, for any x € S, we have

h(x) > (x, W)Ry,.

Building on this fact, then there exists a positive constant c;, depending on n, to satisfy

fo hdo 1 / Ry /
> hdo > ——— do > 1Ry, 3.6
Jyrdo ™ Jgdo Jiwz1y °= 2 [ do Jixw=12 c=n 3
then it suffices to get
Jo W20 \? 1 [, hdo
( fS" do sfs a fsn do 37)

Substituting (3.7) into (3.5), we obtain

2
b (g —1) & .
Jsn do T+

Therefore the proof is finished. |

4 Existence and Uniqueness of Solutions to the Dual Minkowski
Problem

We first need to obtain the a priori estimates of solutions to (1.2) with the aid of Theorem 1.2.

Lemma 4.1. [60, Lemma 7.6.4] Let K1, K, be two convex bodies in R***. Then the following fact
holds:

8 (K1,K2)? > apdiam(Ks UKp) "8 (Ke, Ko)" 2, (4.7)
where oy, is a dimensional constant and diam(K; U K») is the diameter of the set K; UKo.
Based on Lemma 4.1 and Theorem 1.2, we derive the C° estimate as follows.

Lemma 4.2. Suppose that g satisfies either0 <q<n+1if 1<n<3,orn-3<qg<n+1lifn>3.
Assume that K is a smooth, origin-symmetric, strictly convex body such that

1-¢e< |Dh\q’(”“)g <l+e (4.2)
for some ¢ € (0, eg) With g9 > 0, then there exists C = C(eo,n) > 0 such that
1/C<hx) <C, VxeS", 4.3)
and
1/C<pw) <C, VueS" (4.4)

where h(x) and p(u) are the support function and the radial function of K, respectively.
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8 | J.Hu

Proof. Let u and x be related by p(wu = Vh(x) + h(x)x = Dh(x). Clearly, we have

rré;n h(x) < p(u) < max h(x).

This implies that the validity of (4.3) is equivalent to that of (4.4). So we only need to establish (4.3).

From (3.6), for ¢; > 0, we know that

h()

WO = T o de

IA

1
—, VvxeS"
C1
It follows that
. - 1
diam(KUB) <2 (1 + C—) .
1

By applying Theorem 1.2, we obtain

_ 1
82(K,B1) < Beg .

(4.6)

Combining (4.5) and (4.6) with (4.1), we conclude that there exists a constant ¢, > 0, depending only on

n, such that
_ 1 _ . - BN
81(K, B1) < "7 diam(R U By) 77 8,(K, By) 77 < 6™

Eq. (4.7) gives

|-

h &
Smfl+@80 .

el

n+.
1-— &g

1
Furthermore, for &y equipped with cyej™ < 1, there is

1

maxs: h - 1+ crel™

ming h ~ 1 7C28$ ’

Now, employing (4.2), for q > 0, we obtain
i —(+1) h
(minh)? | do < |Dh|* —do < (1+¢) | do.
S sn Jsn K S

This illustrates that there exists a constant C; > 0 such that

minh < Cy.

SVI

Substituting (4.10) into (4.8), then there is a positive constant C, > 0 depending on n, & so that

mé'ﬁlxh <Cy.
Similarly, for g > 0,

(maxh)q/ do > |Dh|q’("+1>hda >(1—¢o) | do.
sn Sn s K Sn

(4.7)

(4.8)

(4.10)

(4.11)
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It yields that for a positive constant Cs > 0, there is

m;u{h > Cs. (4.12)
Applying (4.12) into (4.8), we also have

r%%nh >Cy
for a positive constant C4 > 0 depending on n, &,. This completes the proof. |

The C! estimate follows from the C° estimate above and the convexity of the hypersurface.

Lemma 4.3. Suppose that ¢ satisfies either 0 < g <n+1if 1<n<3,orn-3<q<n+1lifn> 3.
Leta € (0,1). Let f be an even, smooth, and positive function on ", and K be a smooth, origin-
symmetric, and strictly convex solution to Eq. (1.2). There exists a constant ¢y > 0 depending
only on n, « such that if [|f — 1]jc« < & for some ¢ € (0, &), then there is a constant C > 0
depending on &g, 1, such that

IVh®)| <C, VxeS"

and

[Vow)| <C, VueS".

Proof. Due to p(u)u = Vh(x) + h(x)x = Dh(x), we have

2

P —
VIVpl|? + p?

p? =h?+|Vh[%.

Hence, combining the above facts with Lemma 4.2, we obtain the desired result. |
Next, our goal is to obtain the C? estimate of solutions to (1.2).

Lemma 4.4. Suppose that q satisfies either 0 < g <n+1if 1 <n<3,orn—-3<q<n+1if
n> 3.Leta € (0,1). Let f be an even, smooth, and positive function on S", and K be a smooth,
origin-symmetric, and strictly convex solution to (1.2). There exists a constant ¢y > 0 depending
only on n, @ such that if ||f — 1||c= < & for some ¢ € (0, g0), then for some positive constant C
depending on ¢, 1, the principal curvatures 1, ..., k, of 9K satisfy

1/C<kix)<C, vxeS'i=1,...,n

Proof. The proof is divided into two parts, in the first part, we derive an upper bound for the Gauss
curvature «(x). In the second part, we derive an upper bound for the principal radii of curvature b; =
hij + haij-

Step I: Based on the assumption, for some ¢ € (0, &p) with gy > 0, we have

h
1—e<pt™™D_ <146, (4.13)
K
By Lemma 4.2, and using (4.13), we have
k< pt M Dh———— <Gy (4.14)
1-— &0

for a positive constant Co.
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10 | J.Hu

Step II: Set the auxiliary function as
Qx) = logtr({by}) — Alogh + B|Vh/?,

where tr({b;}) is the sum of the eigenvalues of matrix {by}, A and B are positive constants to be chosen
later. Assume maxs: Q(x) is attained at a point xo € S". By a rotation, we may assume {b;}(xo) is diagonal.
Then we have at xo,

h;

1
0=VvQ = W E VlbD—AW‘-i-QB E hihyi
R k

1 h;
D Z(hjﬁ +hy) — Aﬁ + 2Bh;h;

S b4
4.15
- L Z(hv-- +his; —hy) + . Zhv - AE + 2Bh;h;; o
= ZJ b}} } ] yhdl] 1 Z} b}} J 1 h 1
h;
Z Sh Z(hw + i) — Ayt 2Bhh;;,
where we used the fact that hy, — hy; = h;sy — hidj;, and there holds
0>Vi0= —— S Viby - —— (S Vb))’ — A hi B 2B e hyi + h?
= nQ*z)b}JZ}: i )J_(Z}bﬂ)Z(Z}: l})) - ?_ﬁ + Z kMkii + it
At xo, we also have
0> bl
b g Vil iy —ay (R
- S sy T~ S gt S A v (-
j i
2B b hphy + 2B bih?
+ Z Zk: ki + ZI: ii (4.16)
ii ii hll + h i ii
>Zb iibj Z Zb)zb(va},) Az b +AD D
i
+ 2B Z pi Z hehii + QBZ bﬁ(bﬁ - h)2
i k i
The Ricci identity on sphere reads
Vikbij = Vijbr — 8iibrk + Skebyj — Sikbj + Sjibie.
Then (4.16) becomes
0> Z bt Z(V)}b” +bj —by) — z S bt Z Vibj)? — "A LA z bt
zJ >y b )
(4.17)

+2B> he > b'hy+ 2B by — 4nBh.
k i i
Since

logh = —logdet(V?h + hi) + log(f p"+'~9). (4.18)
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Set @ := log(fp"+'~9). Differentiating (4.18), at xo, it gives

h; .
Wj = —Zblkv}'bik + qu)
ik

= — Z bik(hikj —+ h}‘(sik) + qu)
ik

= — Z biihil’j — hj Zbﬁ + Vj‘b (4.19)
i i
== > bithy + higy —hy) =y Db+ Vi@
i i
= — Z bﬁ(h}ﬁ + hi(sij) +V;o,
i
where bl is the inverse of by, and
L= L = =S bivbi+ > b (Vbi)? + V. (4.20)
i ik

Besides, for each i, there is

> by > b (Viby)?
T
= D> by 2 P (Viby)’
T

2
> (Z bj)-bi)‘(vlbﬂﬂ) (4.21)
J
= IVibh?
j
= (D Viby®.
j
Employing (4.21), one sees

N 1
pi—— > Vib;)? b (Viby)? < 0. 4.22
Zi: (Z} b}.}.)2 Z )J Z b}) Z ik ( )

ij,k

Now, substituting (4.20) into (4.17), employing (4.19) and (4.22), we get

h2 1 11 2
0: 55 Z( ) S5 SHO E  Se- s

T ik

—Z 7 )zbﬂ(vaﬂ)2 - = +AZb“+2Bth Zb hk“+2BZb“ — 4nBh
)

27% Zb ZVJ}¢+AZbH+2Bth( bkkhk+Vk‘1>)

n2
+2B > bi— — 4nBh
IZ il Zj bjj

(4.23)

1 nA 2B|Vh)? ) o 1
— == +(A=2B|Vh) D> b+ == > V;®
ROk 25 )Z J
+2B 2 e Vi @ + 2B 2 bi — ——— — 4nBh.

z} i
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From & = log(fp"*'-1), we get

hhy + hgh
2BthVkCI>—ZBth(J}k 41— )%), (4.24)
and
1 ff)} . hh +h2+h2+2k hkhkjj
ijﬁ;vjp s, Z( L tn+1-9 .
, (4.25)
(hh; + hihy)
n+1-¢q 7.
Z} jj a Z P
Using (4.15), (4.24), (4.25), and Lemmas 4.2 and 4.3, then we get
ZBthwchrLZvﬁcp
k ZibU ]
>—Co—C1B—i-(}’l-i—1—q)zE QBhkhkk-i-Lth" —CQL
- =0’ b4 >;by
|-s-h2 hfh;
-M+1-9q b z pz
(4.26)
ComCiB+m+l—g Y LoShsy A ) o, L
=-Co—C - S| < Ok -1 -C
=\ ST > by
h|bu—h|+(bn—h) h? (bfh>2
-+1-0q b Z}“ —2n+1- q)ZJb ;
. . .1 02+ 2|Vh|?
Z—CQ—C1A—CQB—C3Zb}_j_(Vl-‘rl—q)Tijj

J j
for the positive constants Co, Cq, Cs, Co,C1,Co, Cs depending only on the constants from Lemmas 4.2 and
4.3, Now we take A = 2Bmaxs: |Vh|2 + 1, and

maxs p2 + 2 maxg: |Vh|?
B=mn+1-9) Spmlngp s VA + 1.

Then applying (4.26) into (4.23), we obtain

DA - - ~
O—_LJrh) —Co—C1A —CB— (C34+1n?) +szu 4nhB.
Z} Jj
Thus when Y, b; > 1, we get
P e
i
for a positive constant C. The proof is complete. |

By the Evans-Krylov theorem and the Schauder regularity theory, together with the a priori estimates
in Lemmas 4.2, 4.3, and 4.4, we obtain the following theorem.

Theorem 4.5. Suppose that g satisfies either0 < q <n+1if 1<n<3,orn-3<qg<n+1lifn> 3.
Leta € (0, 1). Let f be an even, smooth, and positive function on ", and K be a smooth, origin-
symmetric, and strictly convex solution to (1.2). There exists a constant ¢y > 0 depending only
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onn, a such thatif ||f — 1||ce < & for some ¢ € (0, &), then forany ¢ > 2 and y € (0, 1), thereis a
constant C > 0 depending on &g, n such that

||hHCZ+]‘y <C.
We are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. We first demonstrate the existence part by employing degree-theoretic argu-
ments. Let T¢(-) : C*%(S") — C>*(S") be a nonlinear differential operator, which is defined as

ntl-q

zft

T:(h) = det(V?h + hl) — h™'(jVh]? + h?)
fort € [0, 1], where
fr=A -t +tf.
For R > 0 fixed, define O c C**(S") by
O ={heC*S": hx) =h(-x), Vx eS§", and ||hllcie@y < R}.

By Theorem 4.5, one sees that T;(h) = 0 has no solution on 3O if R is sufficiently large. Therefore,
the degree of T; is well defined (see, e.g., [47, Section 2] or [31, Section 3] ). Since degree is homotopic
invariant,

deg(To, O,0) = deg(T1, O, 0).

On the one hand, at t = 0, by Theorem 1.1, h = 1is the unique solution of (1.2) when f = 1. On the other
hand, since T is symmetric, it is clear to show that the linearized operator of Tp ath = 11is

Lon = An+qn

for even n € C>(S"), when 0 < q < n, we know that q is not an eigenvalue of (—A) on S*; furthermore, for
the case q = n, if Loy = 0, then 5 are linear functions of R™?, that is, n € Span{x, ..., X1} that are odd,
due to the evenness of 7, one sees that n = 0. Thus the linearized operator L is invertible for 0 < q < n.
Based on this fact, we compute the degree by means of formula

deg(To,0,0) = D (-1)¥,

wj>0

where y; > 0 are the eigenvalues of the linearized operator of Tp and ¢ denotes its multiplicities. Since
the eigenvalues of the Beltrami-Laplace operator A on S" are strictly less than —n, except for the first
two eigenvalues 0 and —n, it follows that for 0 < q < n, there is only one positive eigenvalue of Ly with
multiplicity 1, namely u = q. Consequently,

deg(To, ©,0) = deg(T1,0,0) = —1 # 0.

Hence, there is an even solution to (1.2). The regularity of h follows directly from Theorem 4.5.
The following lemma is essential for proving the uniqueness part. |

Lemma 4.6. Suppose that g satisfies either 0 < g <nif 1<n<3,orn-3<q<nifn> 3. Let
0 <a < 1. Let f be an even, smooth, and positive function on S". There exists a small constant
g0 > 0 such thatif ||f — 1||c« < &0, |lhk — Llloo < €0, and [|hL — 1]|e < €0, Where K and L are smooth,

origin-symmetric, and strictly convex bodies satisfying Eq. (1.2), then K = L.

Proof. By Theorem 4.5, we find

[lhgllc2« < Co,  and  |lhtllcze < Co,
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where Cy > 01is a constant depending only on &y. Moreover,

fﬂgﬂ_q .
— -1 0 0
5] <80 s o
and
n+1l-q
[ — 1| <t>0 as w—o0.
hL Co
It is clear to show
n+l—q
"Khi — 1= det(V?hg + hel) — det(V?1 + 1)
K

1

= % det(V2((1 — t) + thy) + ((1 — t) + th)Ddt
0

o (4.27)
- /O uldt - ((hy — Dy + (g — D)

ij=1

= > aj((hg — Dy + (hg — Dy,

ij=1
where the coefficient a;; = f01 U?dt, and U? is the cofactor matrix of
V(1= 1) + thy) + (1 = t) + thy)l.
Since
I1hkllcze < Co,

and there exists a positive constant C; > 0 such that,
1
al <f{ay} < CiL
This illustrates that (4.27) is uniformly elliptic. Applying the Schauder estimate (see, e.g., [30, Chapter 6])

to (hg — 1), one sees that for a universal positive constant C,

fpn+1—q
Il = Llces < C(|hK ~Uloe |7 ~ 1\)@) < Cleo + o).

Along the same argument, we also derive
[lhe — 1|2« < Cleo + &0).
So K, Llie in the C?-neighbourhood of B;. On the other hand, as mentioned above, the linearized operator
Lo of (1.2) at h = 1is invertible for 0 < q < n. Since K and L satisfy (1.2), by means of the inverse function
theorem, provided that ¢ is sufficiently small, we have K = L. |
Now, utilizing Lemma 4.6, we verify the uniqueness part of Theorem 1.3. Assume, to the contrary,
that there are two different solutions K; and L; for i € N, by Lemma 4.6, we conclude that at least one of

them, say K;, then there exist f; and K; such that

hg, det(V2hg, + h Dpg ™ = £,
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and satisfy
llhg, — Ulloe > €0, lfi = lllce = 0 as i — oo.
Meanwhile, with the aid of Theorem 4.5, for £ > 2 and y € (0, 1), one gets
I llcenr < C

for some positive constant C depending only on o, n. Then by the Arzela-Ascoli theorem, passing to a
subsequence, there exists a smooth, origin-symmetric, and strictly convex body K such that hy, — hg in
the C**! norm as i — oo, and we have

hg|Dhg |4~ ™D det(V?hz + hgl) = 1, (4.28)
equipped with

[lhz — 1llec > €0, &0 > O. (4.29)

However, by the uniqueness of even solutions to the isotropic dual Minkowski problem shown in
Theorem 1.1 with p = 0, we know that (4.28) only admits a solution hz = 1, which contradicts to (4.29).
This completes the proof of Theorem 1.3.
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