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1 Introduction

Developing the right computer model for a specific purpose is crucial for good modelling practices,
regardless of the area of application. This principle can be found in various modelling guidelines
and tutorials [17, 41]. This pragmatism (compare Stachowiak, definition “model” [42]) refers only
secondarily to the nature of the abstracted system but primarily to the questions to be answered
about the system. It involves selecting the modelling method, database, in- and output, system vari-
ables, and resolution of the model. Especially, modelling in long-lasting decision support projects
is challenging due to the constant need to modify the decision framework based on new tasks and
information about the system.

The most straight forward solution to this problem is to extend or modify the one existing
decision support model. This strategy is usually the quickest, but also the riskiest: If one retains
or extends the model for too long one “may extrapolate beyond the region of fit” or “draw 33rd-
order conclusions from a 1st-order model”, both rendering the model invalid for the given purpose
(we used the terminology of Golomb’s famous “Do’s and Don’ts of Mathematical Modelling” [24]).
Moreover, if an existing model was extended beyond a certain complexity, it becomes inflexible

due to long computation times and high number of model parameters. This causes problems re-
lated to sensitivity, verification, and validation. Finally, also model documentation and thus model
communication becomes continuously more difficult.

To solve the problem, one can completely redevelop and replace the model for the new use
case. This is costly but avoids problems with existing limitations. However, it requires developing,
validating, and verifying a new model, as well as ensuring compatibility with the old one for the
sake of validity, credibility, and reproducibility of the old results.

In this work, we advertise a different mindset for model development: instead of replacing an
old model with a new one, the new model can be seen as an addition to an entire pool of models,
henceforth referred to as a model family (MF), a term which was, to the authors’ knowledge, first
introduced by P.K. Davis in the 1990s in a slightly different context [18, 19]. Hereby, we refer to
a collection of different interacting models with different fields of applications, model boundaries,
and resolutions. Instead of attempting to answer every decision-relevant question using the same
model, the questions are distributed to the most suitable model(s) in the family. A comprehensive
definition and related work will be given in the Methods section.

In general, relying on a framework with not only one but also multiple models is not uncommon,
particularly when large complex systems are involved. An example focusing on urban modelling,
the MARIUS framework, is found in [15]. Also, meteorological institutes usually found their work
on a set of different models for different purposes, including models with high spatial resolution
for short-term forecasts, models with lower resolution for long-term forecasts and even models
for now-casting (compare [33]).

Between 2020 and 2023 a team of researchers from dwh GmbH and TU Wien provided decision
support for Austrian policy makers and health care institutions on the subject of the SARS-COV-2
crisis. The team faced many challenges during these years, including a quickly growing knowledge
base, a continuously evolving system and the constantly changing needs of the decision makers.
To keep up with these changes, the team developed a family of seven different models in total. The
four most relevant are discussed in detail in this work.
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We will show the development and usage of the four decision support models in Austria and
present case studies that illustrate the benefits of a MF versus a standalone model. Additionally, we
will discuss the use of Causal Loop Diagrams to visualise and analyse the relationships and roles
of the models within the family.

The aim of this work is to demonstrate the advantages and challenges of creating and utilising
MFs. We want to encourage modellers working on complex issues like COVID-19 to prioritise
developing a family of models instead of constantly improving a standalone model.

Methods

This chapter will describe our interpretation of the term model family and how we used the con-
cept of CLDs to visualise the role of a model within its family. In addition, we will present the
motivation and development of our COVID-19 MF, provide an introduction to each model, and
provide an overview of their specifications, parameters, and implementation. Details can be found
in the Appendix or previously published material.

General Model Family Concept

Based on the work in [18] and [19], we define an MF as a collection of different individual models
which model different aspects of one large overall system. The models may have different

— modelling approaches,
— resolutions (spatial, temporal,. . . ),
— modelling purposes,
— model boundaries,
— regions of validity, and
— time-frames of validity.

The last refers to the problem that the changing knowledge base of the overall system might render
an existing model at least partially less valid due to novel information. By the term, resolution, we
refer to temporal scale, spatial scale, process detail, object-related structure, and system structure,
as specified in [19].

In any case, a family is well designed, if (a) any subsystem of the regarded overall system is
covered by at least one model and (b) any two models differ by at least one of the aforementioned
points. It is typically seen in context with its genesis and further development: Enhancement can
take place by extending existing models, adding completely new ones which cover areas and ques-
tions previously not included, and also by dividing existing models into individual sub-models to
enhance their flexibility.

To ensure that the family is well designed, it is highly relevant that modellers keep track of
the big picture of the MF, that is which parts of the system are covered by which model, bound-
aries, inputs and outputs of the models in the family, how the models can interact and are/can be
used together, and any other relevant information relevant for joint usage of the models such as
calibration/parametrisation scheme or maturity level of the models. In [45], Zeigler proposed the
term Experimental Frame for something very similar in 1984. The big picture distinguishes an MF
from an arbitrary set of models, and a proper documentation of it ensures, that the MF will remain
agile and synergetic. We will not specify how this documentation should be designed, but we will
present a graphical approach based on CLDs, which might be helpful for this purpose.

We want to emphasise that an MF, in our understanding, does not rely on automated coupling
of the models, neither interfaced, integrated, nor sequential (see [43]). This clearly distinguishes
the concept from multi-method modelling [2], co-simulation [25], or multi resolution modelling [19],
or hybrid simulation (different definitions, e.g., [12] and [36]). The idea of mega-modelling [3] from
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the field of model-based software development can also clearly be distinguished for this reason: the
method eventually leads to one executable source code in which the features of different models are
combined. Moreover, the individual models in the family may follow different modelling purposes
and goals. Therefore, they are not only versions of the same model with different resolution, which
poses a difference to Davis’ ideas of a variable resolution-, multi resolution- or cross resolution model

family [18]. Strategically, the concept is also related to the interaction between a system entity
structure and its model base [30]. However, unlike the MF, the elements of the model base are
usually not independent simulation models and require the system entity structure (pruned entity
structure, to be precise) in order to be put together into a functional simulation model.

Mapping Models with Causal Loop Diagram

The CLD concept was developed together with the modelling approach System Dynamics by. For-
rester in the 1970s [22, 23]. The concept originally analyses causal relations and loops within a
system to develop a System Dynamics model. The diagram uses nodes and directed edges to rep-
resent components and their relationships. Edges are labelled with signs indicating whether the
causality acts reinforcing or balancing.

In our work, we put these diagrams in an entirely different context (e.g., Figure 1), namely to
describe the model families big picture. Instead of using the diagram of the observed system to
generate a model, we instead mark the system components and causal relations and loops covered
by existing models, i.e., the models in our MF. For this use, we defined the following convention:

— Nodes representing system components which are not depicted in the model are coloured
light-grey;

— Nodes representing modelled system components distinguished with respect to their role in
the model: inputs are coloured green, state variables black, and outputs blue;

— Edges representing modelled causal relations are drawn in black, others are coloured light-
grey.

COVID-19 Model Family Development

The COVID crisis is a perfect example for a highly complex, continuously evolving system with
changing knowledge base and changing needs for decision support:

In early 2020, decision makers were primarily interested in scenario forecasts for the potential
impact of the new virus on the population and the health care system. Due to the quick spread of
the disease in spring 2020, the need for non pharmaceutical intervention modelling arose for policy
making. Models had to be quickly adapted to new research on virus parameters, treatments, and
vaccines. As immune escape variants emerged and vaccinations became widely available, models
had to be extended to include population immunity. Finally, in mid-2022, decision makers required
long-term analysis of the system to evaluate exit strategies.

These changes led to new modelling challenges, requiring changes to modelling purpose, bound-
aries, and causal relations. Table 1 in the Appendix provides a timeline of the changes and the
team’s modifications to their MF. We clearly see, that the ABEM played the most important role in
the process, yet was not extended beyond a certain region of validity and usability. Instead, other
models were added to supplement.

The first model in the family is a large-scale epidemiological agent-based model (Agent-Based

Epidemics Model, short ABEM). It was also the model of the family that was first developed and
covers most components of the overall system. Therefore it is often taken as a reference. The sec-
ond model (Immunity Waning Model, short IWM), deals with the immunity of the population,
the third model (Hospitalisation Model, short HM) depicts hospitalisations, and the fourth model
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Fig. 1. Schematic Causal Loop Diagram of all elements regarded in the four models discussed in this work.

The greyed out components are not regarded in the Agent-Based Epidemics Model. The components coloured

in black represent the model states, the components coloured in green the model inputs and the components

coloured in blue the model outputs.

(Age Structure Model, short ASM) solely regards the age-distribution of cases during an epidemic
wave.

Agent-Based Epidemics Model

The Agent-Based Epidemics Model (henceforth ABEM) was the first and most complex member
of the model family to be implemented. Adapted from an existing model to simulate the spread of
influenza, it uses a population of agents and a contact network to model the spread of an infectious
disease. As it reproduces the demographic of Austria and explicitly models contact-locations such
as households, schools and work places, it has many fields of application:

— forecasting of infections (COVID Forecasting Consortium [11]);
— evaluation policies (tracing methods [7]);
— better understanding several aspects of the pandemic (undetected cases [39], immunity wan-

ing, and their impact on the herd immunity [6]);
— support for other logistical and strategic decisions (test logistics [44], vaccination program

[9, 28], wastewater surveillance of virus variants [1]);
— source for synthetic epidemic data [38]

The model was also a cornerstone of many other commissioned modelling studies which were not
published in peer reviewed journals (see https://www.dwh.at/en/projects/covid-19/ for details).

Figure 1 shows a schematic CLD of all elements and interactions regarded by the four models
discussed in this work.

Short Model Description. The ABEM is an agent-based SEIR-model (susceptible–exposed–
infectious–recovered, see [13]). Every inhabitant of the country is depicted as an agent with certain
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sex, age and residence place (coordinate). According to regional and socio-demographic structure,
agents are assigned contact locations (households, school classes, workplaces, care homes) where
they are able to meet other agents. In case of a contact between susceptible and infectious agents,
an infection occurs with a probability depending on many epidemiological factors, such as virus
strain, seasonality, location, shedding, and adherence. Infected agents then follow a disease pro-
gression path including relevant events from infection to immunity loss: start of infectiousness,
symptom onset, recovery or death, start of immunity to immunity loss. While interactions be-
tween agents are evaluated in discrete time steps of one day, the disease progression is simulated
using a discrete event strategy.

The most comprehensive parts of the model are related to the implementation of policies in-
cluding symptomatic/screening tests, quarantine, contact tracing, vaccinations, school/workplace
closure, and increased awareness. Imported cases (tourism) and introduction of new variants are
handled by random external infections.

Its original full model specification including parameter values was published in [7]. Since the
model and its parametrisation is constantly updated to the newest information, its most recent
version can be found on the homepage of dwh GmbH (https://www.dwh.at/en/projects/covid-19/,
section “Technical documents, further information and resources”).

Model Usage. For most usages, the model is calibrated to match the historical number of reported
infections. This way, a population of agents is produced which matches the current Austrian popu-
lation with regard to active or past infections and immunity. The model can than be computed into
the future to make short or medium term forecasts or to analyse several scenarios which simulate
varying strategies (e.g., different test concepts, lockdown strategies, vaccination programs, ...) or
uncertain systemic events (introduction of new variants, immunity against new variants, ...).

Additionally, the simulated population can be used to analyse the past course of the pandemic
with regard to the proportion of undetected cases or infection networks.

Parametrisation and Calibration. The model utilises an enormous number of over 30 different
partially time-, partially location-, dependent model parameters. Values for these were taken from
literature, surveillance data, census data, or were guessed by domain experts. Population data
is mostly taken from the Austrian Bureau of Statistics, same holds true for data for contact lo-
cations. Contacts themselves are parametrised using data from the POLYMOD survey [35] and
mobile phone data (origin-destination matrices). Disease and immunisation data is collected from
literature and the national epidemiological surveillance system. Vaccination data is taken from
aggregated exports of the Austrian electronic health record.

The ground truth for the calibration are reported confirmed cases which are matched with the
outcomes of the symptomatic and screening tests in the model. The free variables of the calibration
process are (mainly) parameters related to the efficiency of policies.

Implementation and Source Code. The model is implemented in JAVA based on our own agent-
based simulation tool (Agent-Based Template, ABT, [21]). One simulation run for Austria with
roughly 9 Mio agents requires about 30-40GB RAM and 15-30sec per simulation-day (i.e., 1.5-3h
per simulation-year). Since the source code (a) is huge with more than 150 Java classes, (b) subject
to constant updates, (c) partially uses parametrisation data subject to privacy, and (d) cannot be
cleaned and prepared for the scientific community with feasible effort, it is not open access. It can
be shared in scientific collaborations though.

Immunity Waning Model

Due to the long course of the pandemic and the emergence of new virus variants, research on
immunity and in particular immunity waning became more and more relevant. Since the number
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Fig. 2. Schematic Causal Loop Diagram of all elements regarded in the four models discussed in this work.

The greyed out components are not regarded in the Immunity Waning Model. The components coloured in

black represent the model states, the components coloured in green the model inputs and the components

coloured in blue the model outputs. The dashed arrow indicates a causal link which is implemented inversely

in the model.

of immunised persons has massive implications on the progress on epidemic waves, estimates
for this quantity became an important variable of interest. Although the ABEM is fully capable of
giving estimates for this number (e.g., see [6] and[40]) long computation times limit its capabilities
to experiment with different waning distributions. The Immunity Waning Model (IWM) was
developed to overcome this problem. Focusing only on the past and current situation, the model
does not include classic epidemiological mechanisms like infections, but treats them as inputs. This
leads to much smaller computation times and improved capabilities for parameter studies.

Short Model Description. The IWM itself is conceptualised based on the idea that the immunisa-
tion level against a certain virus variant is solely dependent on past infections and vaccinations.

As displayed in Figure 2, the model uses this historical data as input and creates immunisation-

events, which are then distributed among the entities. To get a correct picture of the overall
immunity, the officially confirmed infection numbers are not sufficient because not all actual in-
fections are getting detected, e.g., due to a lack of symptoms. To solve this problem model applies
an estimate for the detection rate (taken from literature with corresponding studies) to compute
an estimate for the overall infection count from the detected infections. This is indicated by the
dashed arrow in Figure 2. Undetected infections are furthermore treated and distributed analo-
gously to the detected ones. The distribution process is deliberately kept very simple: the events are
distributed randomly among the subset of eligible entities, regardless of age, gender, or other per-
sonal properties. An entity is considered eligible for an infection-based immunisation-event if they
are not already labelled as immune and they may be assigned a first/second/third/... vaccination-
based immunisation-event if they have already received no/one/two/... shots with sufficient time
between the shots.
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Once an entity has been assigned an immunisation-event, they gain immunit—in specific immu-
nity against infection by an observed SARS-COV-2 variant—with a given probability. In case the
entity has been labelled as immune, an immunity-loss event is scheduled after a certain amount of
time drawn randomly from a previously defined distribution.

In order to evaluate “immunity” against, e.g., a severe disease progression (hospitalisation), a
second immune state is introduced for which different distributions are used.

A detailed model specification is found in the supplemental material, Section 1.

Model Usage. The models’ usage can be split into four areas. First, the model can be used to
estimate the current and past immunisation level against infection. This can be valuable to get an
idea of the immunisation level necessary for natural peaks of disease waves. Second, the model
can be used to estimate the future dynamics of the current immunisation level without regarding
any future infections or vaccinations. Third, the model can be applied to forecasts of case-numbers
and/or vaccination numbers generated by other models to estimate the immunisation level during
an upcoming epidemic wave (see Case Study 3). Finally, the model can also be used for communica-
tion purposes showing differences between immunity against infection and “immunity”1 against
hospitalisation.

Parametrisation and Calibration. Besides input timelines of vaccinations and daily new reported
cases the model is parameterised with various assumptions about the immunisation process, in
specific using distributions and distribution parameters for immunity waning. So far, we estimated
the parameters by fitting survival curves to published data about vaccine effectiveness controlled
for the time since vaccination. Besides, the model requires a feasible assumption for the case-
detection rate. All other model parameters have a smaller impact on the immunisation level and
can be estimated easier.

Implementation and Source Code. The model was implemented in Python3. The source code to
the model implemented in Python3 including a base-parametrisation is found in https://github.
com/dwhGmbH/covid19_model_family.

Hospitalisation Model

Hospital and intensive care unit (ICU) bed occupancy drove Austria’s COVID policies in the
first two years of the pandemic. Overcrowded hospitals posed as the key argument for policies like
quarantine regulations, mandatory face-mask wearing, school closures, and lockdown. To advise
decision-makers, we needed to provide projections for these variables.

Initially, hospitalisations were integrated into the ABEM, but its complexity and long run
times made it difficult to calibrate. So, we created a separate, simpler stock-flow model called the
Hospitalisation Model (HM).

This model was developed by the Gesundheit Österreich GmbH in cooperation with the mem-
bers of the Austrian COVID Forecasting Consortium and uses real and/or predicted reported case
numbers as input and provides estimates for the occupancy. It was introduced in [11] and has
since been modified. Here, we introduce a more flexible and generic version of the model, which
is better suited for long-term analysis. See Figure 3 for a causal map of the model.

Short Model Description. The model makes use of the time-series of daily new confirmed cases
and maps it onto a time series for the hospital occupancy. It uses a scalar hospitalisation rate
and two duration distributions which state (a) how much time passes between positive test

1In this case, this should be interpreted as the additional level of protection against severe disease gained through infection

or vaccination, compared to a fully naive individual.
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Fig. 3. Schematic Causal Loop Diagram of all elements regarded in the four models discussed in this work.

The greyed out components are not regarded in the Hospitalisation Model. The components coloured in

black represent the model states, the components coloured in green the model inputs and the components

coloured in blue the model outputs.

and hospitalisation and (b) how long persons stay in the hospital. The model can be regarded
as a deterministic difference equation model involving discrete convolutions with the duration
distributions:

admissions(i→i+k) = casesi · rate · (distribution admissions)k (1)

admissionsi =

i∑
k=1

admissions(k→i) (2)

releases(i→i+k) = admissionsi · (distribution releases)k (3)

releasesi =

i∑
k=1

releases(k→i) (4)

occupancy
i+1 =

i∑
k=1

admissionsk − releasesk . (5)

A detailed model specification is found in the supplemental material, Section 2.

Model Usage. As a deterministic difference equation model, it can be executed highly efficient.
In the typical case, the model is used on a concatenated input time-series consisting of reported
daily new SARS-CoV-2 cases and a case forecast for a specific federal-state or the country as a
whole. It then produces forecasts for the occupancy of both normal beds and ICU beds. For long-
term forecasts, we usually vary the base hospitalisation rate by including additional assumptions
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for immunity or virulence dynamics using a second input time-series. This makes the result more
feasible and provides a better picture of the uncertainty of the result.

Parametrisation and Calibration. The model is calibrated using historic data of new confirmed
daily cases and hospital occupancy. Usually, the most recent 120 days are regarded, where the first
100 days are used as a transient phase and the latter 20 as calibration window (see, supplemental
material Section 2, for a more detailed description of the calibration process). Note that flattening
is usually not necessary, since the performed convolutions by the model provide a rather smooth
solution anyway.

When writing the two duration distributions as functions of the scalar moments of the distribu-
tion, standard algorithms like Nelder-Mead simplex can be used as a calibration method.

Implementation and Source Code. The model is implemented in Python using vector operations.
The packages Numpy and Scipy provide routines to make this highly efficient. Finally, the Nelder-
Mead simplex implementation from the Scipy’s optimize package is used to find the optimal pa-
rameter set. Full calibration and subsequent simulation only take a few seconds on a standard
notebook. Consequently, also hyper-parameter studies, e.g., for different shapes of distributions
or different calibration time-frames are possible. The source code to the model including sample
input data is found in https://github.com/dwhGmbH/covid19_model_family.

Age Structure Model

The age structure of infected individuals, split by vaccination status, is a crucial input for the HM.
For short-term forecasts, the current distribution can be extrapolated. However, this strategy is
not viable for medium- or long-term scenario simulations.

Although the ABEM can be used to evaluate disease waves with respect to age structure, it is
challenging to calibrate the model for the current age distribution of cases. This is because, like
most other SEIR-type models, simulations cannot be simply started at an arbitrary point in time
(see [8]). Since many events from the past impact the dynamics of the near future, simulations
always have to be started from the very beginning of the pandemic.

To overcome this problem, the Age Structure Model (ASM) was developed. By neglecting the
“exposed”-state of an infected person and limiting the model structure to a SIR-type, the model
became “memoryless” in the sense that it can be initialised with observed data (active cases, vacci-
nated cases, etc.). While the model’s epidemiological accuracy for forecasting case numbers may
suffer from this simplification, the dynamics of the age structure of the cases is well predicted. We
refer to Figure 4 for a causal map of the model, analogous to Figure 1.

Short Model Description. Motivated by a work of McKendrick [32], which he published the year
before his groundbreaking publication about the concept of susceptible—infectious—recovered

(SIR) modelling together with Kermack [29], we decided to develop an epidemic compartment
model wherein age is a second continuous variable next to time. For example, the compartment
of susceptible individuals S = S(a, t) is analysed as a function of time t and age a. This way,
the approach essentially becomes a partial differential equation (PDE). A key feature of the
model is a contact kernel which decides about contact between infectious persons with age a1

with susceptible persons with age a2. Models following this strategy are well known and their
properties are well analysed (see [4], [27], and [20]). Our approach founds on a classic SIR model
published in [27] and was extended by a second disease path to depict vaccinations and vaccine
effectiveness. For more information the reader is referred to the detailed model specification in the
supplemental material, Section 3.
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Fig. 4. Schematic Causal Loop Diagram of all elements regarded in the four models discussed in this work.

The greyed out components are not regarded in the Age Structure Model. The components coloured in black

represent the model states, the components coloured in green the model inputs and the components coloured

in blue the model outputs.

Model Usage. Although the ASM itself is an epidemiological model, its main purpose is not
forecasting of disease numbers. For this purpose the contact process, the disease path and the im-
munisation process are too much simplified. It is purely used to investigate the dynamics of the
age-distribution of infected persons. An age-dependent contact kernel and age-dependent infor-
mation on previous infections and vaccinations are used as model input. Usually the model is then
calibrated to a given disease progression over the course of an epidemic wave to provide informa-
tion about the current age-distribution among the infected cases. Hence, the detected infections
pose both input via the overall number as calibration reference, as well as variable of interest via
their age structure.

Parametrisation and Calibration. Age-dependent surveillance data about previous infections and
vaccinations are evaluated to provide feasible initial conditions. One of the most valuable features
of the model is that it is well capable of being initialised by data with different age resolutions. This
is guaranteed by a kernel density estimation (KDE) performed on top of the datasets. This KDE
is required anyway to make the initial curves differentiable. The age-dependent contact kernel is
the key parameter of the model. Thanks to fantastic studies like POLYMOD [35] or COMIX [14],
in which contact-records from thousands of volunteers were collected over different time periods
in different countries, lots of data is available on this subject.

The calibration to a specific disease progression is done by varying the parameters of the time
dependent infectiousness parameter function β which can be interpreted as a summary of policies,
seasonality and infectiousness of the virus (variant). In principle there is no limitation on where
the calibration reference comes from. Typically, either historic data from previous disease waves
or forecasts from other more accurate models such as the ABEM are used. Calibration is performed
with an iterative bisection method.
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Implementation and Source Code. Due to its great numerical properties, the model is developed
in MATLAB. To solve the PDE a standard Method of Lines approach is chosen with a Numerical
Differential Formula time-integrator (MATLAB’s ode15s solver [31]). The integral parts on the
right-hand side of the differential equation are solved using the trapezoid-method. The source
code of the model can be found in https://github.com/dwhGmbH/covid19_model_family.

Results

This work emphasizes the benefits of using an MF, and therefore our interpretation of a result
differs from classical modelling and simulation studies. We will not delve into specific simulation
outcomes, but rather focus on how the result was generated and used in decision support. Four
case studies will illustrate how the models created value in decision making, and representative
model outcomes will be presented to demonstrate this value. For the result figures displayed in
this work, open data interfaces of the Austrian Ministry of Health and the Austrian Agency

for Health and Food Safety GmbH (AGES) were used to gather the parametrization/input data
for daily new confirmed cases, variant distribution, vaccination rates and hospital occupancy.

Case Study 1: Combined usage of the ABEM and the HM. In April 2020, about a month after the
first detected case of SARS-COV-2 in Austria, the COVID Forecasting Consortium of the Min-
istry of Health was established. By 2023, the consortium produced and published more than 150
short-term forecasts of SARS-CoV-2 case numbers and COVID-19 hospital bed occupancy (see
https://datenplattform-covid.goeg.at/prognosen). Forecast generation involved three modelling
groups each producing a case number forecast using an epidemiological model. The TU Wien
used the ABEM, while the other two groups used macroscopic modelling approaches. These fore-
casts of detected infections were then harmonised into an ensemble forecast which was used as
input for a common occupancy model producing the final forecast for the hospital occupancy. The
HM highlighted in this work and described in detail in Section 2 in the supplemental material is a
simplified version of this pavement model.

The splitting of the forecasting process into caseload and pavement forecasting should prove
to be one of the cornerstones of the consortium’s success. The strategy helps validate, verify, and
compare the epidemiological models, some of which are highly complex. It simplifies and acceler-
ates scenario calculations by allowing for uncertainties and different assumptions in both forecast
sections. Finally, it is also flexible, fail-safe, and the results are easily reproducible.

Figure 5 provides an example of forecasts generated by combining the two models. They were
produced on 2022-05-16 to estimate the potential burden on the hospitals resulting from the emer-
gence of the new variant BA4/5. Assumptions about the higher infectivity and immune escape
of the variant were handled by the ABEM which thus produced different forecasts for the case
numbers. Further assumptions on the virulence were included in the HM which thus generated
different forecast for the hospital occupancy for each of the result scenario of the ABEM. These
forecasts provided an early image of the possible range of hospital occupancy. As soon as better in-
formation for properties of the new variant was available in the literature, the range of the results
could be narrowed down.

Case Study 2: Combined usage of the ASM and epidemiological models. In August 2021, the Aus-
trian COVID Forecasting Consortium (see [11]) was tasked to summarise findings and scenario
based forecasts for the upcoming Delta wave, with a focus on ICU occupancy. Therefore, scenario-
based forecasts for reported cases were developed and the HM was applied to translate cases to
occupancy. Although this strategy has been well applicable for the prior disease waves, vaccinated
persons needed to be factored into the computations now—about 56%, primarily elderly, have re-
ceived at least two vaccination doses by September 2021 [26]. Vaccinated persons were already
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Fig. 5. Combining different case forecast scenarios from the ABEM [a] with different assumptions for viru-

lence (equal and 30% increased) of the a new variant in the HM [b].

known to have a reduced infection, but even lower hospitalisation and ICU risk. In order to quan-
tify this advantage, estimates were needed how the case population would be split into age and
vaccination groups.

Therefore, the ASM was applied in addition to the ABEM. First, a medium-range forecast for
the Delta wave was generated with the ABEM. Then, the ASM was initialised to the current pop-
ulation distribution with respect to vaccinated, recovered and infected persons. Finally, the ASM
was calibrated to match the case number forecast generated by the ABEM. This was done by us-

ing a step-function β(a, t) := β̂(a)
∑6

i=0 1[7i,7i+7)(t)βi for the transmissibility, and by fitting the
seven scalar parameters β0, . . . , β6 (we refer to the model specification for details). The results of
the ASM provided a proper insight into the expected age distribution of overall, vaccinated and
non-vaccinated cases in the upcoming wave and are shown in Figure 6.

Model results (correctly) showed that the Delta wave shifted the active cases towards younger
age cohorts, a result of older age groups being prioritised in the vaccination program, leaving
many children insufficiently vaccinated by autumn 2021. The age distribution of vaccinated and
non-vaccinated cases (lower two plots in Figure 6) illustrate this problem. This stood in contrast to
previous waves, which were initialised with younger cohorts and shifted towards the older ones
during the upswing of case numbers. (see Figure 7). Up to the current date, the Delta wave was
the only one showing this very profile.

Results had important implications for the expected hospitalisation rates. Despite the majority of
cases being non-vaccinated, their relatively young age profile indicated a low hospitalisation risk,
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Fig. 6. Result of the ASM when fitted to a forecast from the ABEM between 30-Oct-2021 to 15-Dec-2021

(Delta wave). Part [a] shows reference data, the fitted simulation result and the split between vaccinated

and unvaccinated cases. Part [b] shows age distributions of all active cases. Parts [c] and [d] show the age

distribution of active cases separately for people with and without vaccination.

with hospitalisation rates less than half the size of rates in a fully non-vaccinated population. Limits
for critical ICU occupancy (33%) were increased from about 2,400 to 5,100 daily new confirmed
cases in the steady state. Results were published on the homepage of the Austrian Ministry of
Health, see [16].

Case Study 3: Combined usage of ABEM and IWM.. Since March 2021, when Austria had already
observed two epidemic waves and the vaccine started to become widely available, the IWM was
used in combination with case data from the official reporting system to generate monthly esti-
mates for the level of immunity against certain targets, typically infection with a specific variant
or severe disease progression. Results help to get an image of the current pandemic risk and were
published monthly on http://www.dexhelpp.at/en/immunization_level.

An example of this model application is shown in Figure 8. Case data up to May 16th, 2022
(part [a]) has been fed into the IWM to estimate the time dynamics of the immunity level of the
population against severe disease progression (part [b]). The historical case data has then been
extended with a forecast for the future dynamics of the new variant Omicron BA.4/5 generated
using the ABEM (grey area in part [a]). Applying the IWM on the joint time-series of case data
and forecast, a prognosis for the immunity level was made, seen in the grey area of part [b] of the
figure.
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Fig. 7. Comparison of the reported age distribution of active cases between the a in autumn 2021 [a] and a

wave in autumn 2020 [b]. Because mainly older people were vaccinated, the 2021 delta-wave showed clearly

different age dynamics than the other waves.

These results provided valuable insights to the decision makers since they gave a proper image of
possible but also impossible long-term strategies to overcome the COVID-19 crisis. For details and
interpretation of the specific results we refer to https://www.dwh.at/en/news/covid-19-scenario-
simulations-for-summer-autumn-winter-2022/.

Case Study 4: Joint usage of the ABEM, IWM and the HM. In the course of the scenario calcula-
tions on the future dynamics of infections driven by Omikron.BA.4/5 (see Case Study 3 and [16],
respectively), the potential impact on the utilisation of Austrian hospitals was also evaluated. For
this purpose, both the case number scenarios of ABEM and the corresponding immunity levels
from IWM were used as input to the HM. The latter idea is based on the basic assumption that
the hospitalisation rate is directly proportional to the proportion of the risk group among those
infected. Defining the risk group as the proportion of those susceptible to infection who are not
protected against a severe disease progression, this ratio can be calculated from the corresponding
result curves of the IWM: Let PS denote being protected against severe disease and PI against
infection, then

hospitalisationrate ∝ P(¬PS |¬PI ) =
P(¬(PS ∨ PI ))

P(¬PI )
=︸︷︷︸

P I⇒PS

P(¬PS)

P(¬PI )
=

1 − P(PS)

1 − P(PI )
. (6)

Figure 9 shows one result from this study. Section [a] visualises the dynamics of the different
levels of protection. The effect on the HM results can be seen in sections [b] when comparing
the blue and yellow curves: fast decreasing protection against infection in the prognosis period
increases the relative protection of susceptibles against severe progression and correspondingly
decreases the overall hospitalisation rate.

This observation was one of many that was valuable to decision makers from this analysis. The
prospect of hospital loads again reaching similar high ranges in the winter of 2022 than in 2021
also provided added value to planning.

2 Discussion

In the present work, we described development, specification and usage of four entirely different
models describing one part of a large system. Each model comes with different modelling purpose,
input, output and limitations due to its view and model boundaries. The four presented case studies
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Fig. 8. Combined usage of IWM and ABEM. The variant specific case numbers [a] are fed into the IWM to

estimate the level of immunity [b] against severe disease progression (i.e., hospitalisation). Combined with a

case number forecast from the ABEM (grey area), a forecast for the immunity level can be made. The shown

forecast was based on data until May 16th, 2022.

are not only examples for the successful joint use of the models, they also highlight the advantages

of the MF in contrast to one large, complex stand-alone model:
Model Resolution and Validity. Each model in the MF is itself stand-alone and can be customised

accordingly in the choice of the modelling method and model resolution to fit the problem. For
example, ABEM and IWM are each microscopic, HM and ASM are considered to be macroscopic.
Also, ABEM and IWM differ greatly in the level of detail of individuals and scalability. The ade-
quate choice of the modelling strategy and resolution are not only basic requirements of general
good modelling practices, but are also in advantage to the large stand-alone model, where the
resolution of the whole model is fixed by the resolution of the component which requires the high-
est resolution. This circumstance is often problematic, as demonstrated in Case Study 2. Due to
its high resolution and high sensitivity the ABEM is not well suited for simulating age shift in
infection waves. However, in the MF it can be supported by the much lower resolution ASM.

Computation time and parametrisation efforts. Because (a) from the MF only those models are
used, which are necessary for the respective problem, and (b) the resolution of the individual mod-
els is usually lower than the one of the stand-alone model, the computational effort for experiments
in the MF is usually lower. The same is true for the parametrisation effort and the potential sources
of error. This advantage was exploited in Case Study 3: Even though in principle all scenarios could

ACM Trans. Model. Comput. Simul., Vol. 35, No. 3, Article 26. Publication date: May 2025.



Ideas towards Model Families for Multi-Criteria Decision Support 26:17

Fig. 9. Comparison of hospital forecast with and without regarding the immunisation level against severe

disease. Part [a] shows the dynamics of the different levels of protection estimated with the IWM. The

dotted lines represent the probability to be immune against infection and severe disease progression (hos-

pitalisation) respectively. The yellow line shows the conditional probability to be protected against severe

disease if one is not protected against infection. Part [b] shows the effect of either neglecting or including

this conditional immunisation as additional input to the HM.

have been computed with ABEM alone, the sequential use of ABEM and IWM greatly reduced the
computational effort, the error-sensitivity and the effort for parametrisation.

Flexibility. The interfaces between the models, i.e., input and output, offer many possibilities
for manual or automated intervention in the process. This makes the models essentially modules,
which can be used even beyond the boundaries of the research institution. Case Study 1 demon-
strates this on the example of the ensemble forecast, which is used as input to the pavement model.

Validation and Verification. Each of the models in the family can be independently validated and
verified. Model uncertainties and parameter sensitivities can be determined individually. Accord-
ingly, experiments based on the linkage of the models are as valid and correct as the individual
models. The uncertainty of the result can be derived from the uncertainties of the individual mod-
els. To perform an appropriate model analysis for a large stand-alone model, each component
of the model would have to be analysed with the same care as the corresponding model of the
MF. However, this would become much more costly with the longer computation time and higher
parametrisation effort of the stand-alone model. As additional bonus, the overlap regions of the
individual models can be used for cross-model validation (see [37]).
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Clearly, the MF also needs to be validated in the big-picture. Even apart from its value in collab-
orative work, the usage of (modified) CLDs has proven useful for representing and validating the
big picture of the MF. First, superimposing the diagrams provides a complete picture of the pro-
cesses mapped in the family. One can see overlapping areas, which can be used for cross-validation,
input-output relationships between the models, which would allow sequential simulation, and
poorly covered areas, which indicate weaknesses in the MF and can serve as motivation to create
new models. The diagram of a single model immediately shows neglected causal relationships and
broken causal loops, which can be useful for validation.

Communication. Good communication of models and model results is one of the cornerstones
in successful model-based decision support: if they are not comprehensible to the decision makers
and domain experts, they lose credibility and face validation is not possible. In this matter, the
MF concept can be helpful as well: In contrast to the stand-alone model, the family provides a
clear structure on how the model and the model results can be communicated. Using separate
documentations and results from the individual models, involved persons face and comprehend
the models one at a time which is easier to digest for the decision makers and helps the domain
experts to focus on their specific area of expertise for face validation.

Efficient creation and use. The MF is also advantageous from a project management (PM) per-
spective. Implementation, maintenance, extension, analysis, execution, etc. can be distributed (and
passed on) much better to several persons or project teams. Thus progress can be made much more
efficient. In the contrast, splitting simulation experiments on multiple models requires a whole and
well understood picture of strengths, weaknesses, in-, output and boundaries of the individual mod-
els. In our applications, we found the CLDs helpful to get a quick overview and proper assignment
of the given tasks to the right model(s).

Undoubtedly, the MF also comes with challenges and problems which are primarily found
on the PM perspective as well. The concept of the MF requires PM to be thought of in at least
two layers: the model itself and the big picture that connects the models. While the lower layers
involves the usual challenges in modelling, the upper layer is where decisions have to be made
as to whether, when and which models are developed and how they are connected. Even if this
approach is basically very compatible with modern agile software development (e.g., Scrum), it
means unavoidable overheads that may not be affordable for smaller research groups or individual
modellers. We will discuss three of these overheads in more detail:

First of all, joint usage of the models could potentially suffer from bottlenecks. Efficient joint
development was before stated as one of the benefits of the strategy, since responsibilities can
be shared. However, this advantage can quickly become a disadvantage, in case the models can
ultimately only be operated by the respective responsible persons. Hence, for every simulation
results which is based on the interaction of models, all those responsible for the models are always
required to operate them and each of them becomes a potential bottleneck for the application
process. Of course, this can be prevented if knowledge about how to operate each of the models
is shared within the team. This is a challenge that increases with the heterogeneity of the models
(modeling approach, programming language, etc.).

Moreover, the additional development time that has to be invested in the adaptation of existing
and the development and validation of new models of the MF, as well as in the documentation
and administration of the big picture is likely the most obvious overhead. With sufficiently fore-
sighted PM, this overhead can be reduced, but never completely avoided. The workflow for the
development of the presented COVID-19 MF was certainly not optimal: Most models were moti-
vated by strong time pressure due to policy making involvement and by failures: as soon as one
of the models did not perform sufficiently well for a specific problem, model parts were extracted,
a new model was developed and was added to the MF. Although this eventually led to a flexible
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MF (which even saved time in the long run, due to the increased stability and smaller run-times
of less complex models), a more foresighted approach is clearly beneficial. Namely, as soon as the
modelling process of a large system is started, modellers should already ask themselves where and
how the system can be broken up in parts in order to develop the different models in parallel (see,
https://www.dwh.at/en/news/ecdc-rahmenvertrag/ for a more recent project in which we decided
for a strategy with more foresight). Note, that the involved systemic split must allow to create
individual models which can be evaluated, verified and validated separately.

This directly leads to the limitation, that this work cannot give any guidance on how a MF is

or should be developed. Every project is different and comes with unique features, challenges and
problems that need to be overcome. However, independent of how the family is developed—slowly
and over time, motivated by the need for change, or in a more foresighted approach – we argue that
the process can be highly successful if the big picture, i.e., the overall system and the interaction
of the models, is omnipresent, documented and continuously updated.

Summarising, we clearly recommend modellers working on decision support in large and com-
plex systems to invest overhead time for the development of model families instead of one large,
complex stand-alone model. Maintaining two or more models in parallel causes overheads, but
pays off in the long run. In this approach, it does not matter, whether a MF was planned right from
the start or existing models are split as soon as they become too large and complex. A CLD of the
overall system, exended by additional features like in and output of the models, is a useful tool to
keep track of the big picture and to find out which links can be neglected or which feedback loops
can be broken without causing additional model errors.

With this case study, however, we are just at the beginning of (re)defining the concept of the
MF and exploring its potential and dangers. We are currently gathering new experience from three
other large projects in which the model family concept is being used, and international exchange is
also being promoted in order to incorporate the experience of other modelling groups. Finally, also
the CLD-based visualisation strategy leaves space for improvement to increase the information
content of the picture, e.g., by including different temporal or spatial resolutions.

Acknowledgments

We thank the Gesundheit Österreich GmbH (GÖG) and the Complexity Science Hub Vienna (CSH)
for their great collaboration in the time of the COVID-19 crisis and the Austrian Ministry of Health
and the Austrian Agency for Health and Food Safety GmbH (AGES) for providing various open
COVID-19 related data.

References

[1] Fabian Amman, Rudolf Markt, Lukas Endler, Sebastian Hupfauf, Benedikt Agerer, Anna Schedl, Lukas Richter, Melanie

Zechmeister, Martin Bicher, Georg Heiler, et al.. 2022. Viral variant-resolved wastewater surveillance of SARS-CoV-2

at national scale. Nature Biotechnology 40, 12 (Jul 2022), 1814—-1822. https://doi.org/10.1038/s41587-022-01387-y

[2] Mariusz A. Balaban. 2015. Toward a Theory of Multi-method Modeling and Simulation Approach. Old Dominion Uni-

versity, Virginia, US. https://doi.org/10.25777/a4d6-fq53

[3] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. 2004. On the need for megamodels. In Proceedings of the 19th

Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications. Citeseer,

ACM, 1–9.

[4] M. Bicher, N. Popper, and G. Schneckenreither. 2017. Comparison of a microscopic and a macroscopic age-dependent

SIR model. Mathematical and Computer Modelling of Dynamical Systems 23, 2 (2017), 177–195.

[5] Martin Bicher, Claire Rippinger, and Niki Popper. 2022. Time dynamics of the spread of virus mutants with increased

infectiousness in Austria. Ifac-papersonline 55, 20 (2022), 445–450.

[6] Martin Bicher, Claire Rippinger, Günter Schneckenreither, Nadine Weibrecht, Christoph Urach, Melanie Zechmeister,

Dominik Brunmeir, Wolfgang Huf, and Niki Popper. 2022. Model based estimation of the SARS-CoV-2 immunization

level in Austria and consequences for herd immunity effects. Scientific Reports 12, 1 (2022), 1–15.

ACM Trans. Model. Comput. Simul., Vol. 35, No. 3, Article 26. Publication date: May 2025.

https://www.dwh.at/en/news/ecdc-rahmenvertrag/
https://doi.org/10.1038/s41587-022-01387-y
https://doi.org/10.25777/a4d6-fq53


26:20 M. Bicher et al.

[7] Martin Bicher, Claire Rippinger, Christoph Urach, Dominik Brunmeir, Uwe Siebert, and Niki Popper. 2021. Evaluation

of contact-tracing policies against the spread of SARS-CoV-2 in Austria: An agent-based simulation. Medical Decision

Making 41, 8 (May 2021), 1017—-1032. https://doi.org/10.1177/0272989X211013306

[8] Martin Bicher, Claire Rippinger, Christoph Urach, Dominik Brunmeir, Uwe Siebert, and Niki Popper.

2021. Evaluation of contact-tracing policies against the spread of SARS-CoV-2 in Austria: An agent-based

simulation. Medical Decision Making 41, 8 (2021), 1017–1032. https://doi.org/10.1177/0272989X211013306

arXiv:https://doi.org/10.1177/0272989X211013306 PMID: 34027734.

[9] Martin Bicher, Claire Rippinger, Melanie Zechmeister, Beate Jahn, Gaby Sroczynski, Nikolai Mühlberger, Julia

Santamaria-Navarro, Christoph Urach, Dominik Brunmeir, Uwe Siebert, and Niki Popper. 2022. An iterative algo-

rithm for optimizing COVID-19 vaccination strategies considering unknown supply. PLOS ONE 17, 5 (May 2022),

e0265957. https://doi.org/10.1371/journal.pone.0265957

[10] Martin Bicher, Christoph Urach, and Niki Popper. 2018. Gepoc ABM: A generic agent-based population model for

Austria. In Proceedings of the 2018 Winter Simulation Conference (WSC’18). IEEE, Gothenburg, Sweden, 2656–2667.

https://doi.org/10.1109/WSC.2018.8632170

[11] Martin Bicher, Martin Zuba, Lukas Rainer, Florian Bachner, Claire Rippinger, Herwig Ostermann, Nikolas Popper,

Stefan Thurner, and Peter Klimek. 2022. Supporting COVID-19 policy-making with a predictive epidemiological multi-

model warning system. Communications Medicine 2, 1 (2022), 157.

[12] Sally C. Brailsford, Tillal Eldabi, Martin Kunc, Navonil Mustafee, and Andres F. Osorio. 2019. Hybrid simulation

modelling in operational research: A state-of-the-art review. European Journal of Operational Research 278, 3 (2019),

721–737. https://doi.org/10.1016/j.ejor.2018.10.025

[13] Fred Brauer. 2008. Compartmental Models in Epidemiology. Springer, Heidelberg, Germany, 19–79.

[14] Pietro Coletti, James Wambua, Amy Gimma, Lander Willem, Sarah Vercruysse, Bieke Vanhoutte, Christopher I. Jarvis,

Kevin Van Zandvoort, John Edmunds, Philippe Beutels, et al. 2020. CoMix: Comparing mixing patterns in the Belgian

population during and after lockdown. Scientific Reports 10, 1 (2020), 1–10.

[15] Clémentine Cottineau, Romain Reuillon, Paul Chapron, Sébastien Rey-Coyrehourcq, and Denise Pumain. 2015. A

modular modelling framework for hypotheses testing in the simulation of urbanisation. Systems 3, 4 (2015), 348–377.

[16] COVID Prognose Konsortium. 2021. Update des Policy Briefs vom 8.7.2021 - Aktualisierung der Risikobewertung,

Szenarien und Handlungsanleitungen für den Herbst 2021. https://www.sozialministerium.at/dam/jcr:8847f88c-b314-

4d86-9d2b-3f169e047b0e/Policy_Brief_Update_20210831.pdf

[17] N. Crout, Teemu Kokkonen, A. J. Jakeman, J. P. Norton, L. T. H. Newham, R. Anderson, H. Assaf, B. F. W. Croke,

N. Gaber, J. Gibbons, et al. 2008. Chapter two: Good modelling practice. Developments in Integrated Environmental

Assessment 3 (2008), 15–31.

[18] Paul K. Davis. 1993. An Introduction to Variable-Resolution Modeling and Cross-Resolution Model Connection. RAND

Corporation, Santa Monica, CA.

[19] Paul K. Davis and James H. Bigelow. 1998. Experiments In Multiresolution Modeling (MRM). RAND Corporation, Santa

Monica, CA.

[20] Klaus Dietz and Dieter Schenzle. 1985. Proportionate mixing models for age-dependent infection transmission. Journal

of Mathematical Biology 22, 1 (June 1985), 117–120. https://doi.org/10.1007/BF00276550

[21] dwh GmbH. 2020. News Entry for the ABT Simulation Framework. http://www.dwh.at/en/news/the-power-of-the-

abt-simulation-framework/. Accessed: 2020-04-17.

[22] Jay W. Forrester. 1970. Urban dynamics. IMR; Industrial Management Review (pre-1986) 11, 3 (1970), 67.

[23] Jay W. Forrester. 1987. Lessons from system dynamics modeling. System Dynamics Review 3, 2 (1987), 136–149.

[24] Solomon W. Golomb. 1971. Mathematical models: Uses and limitations. IEEE Transactions on Reliability 20, 3 (1971),

130–131.

[25] Irene Hafner and Niki Popper. 2017. On the terminology and structuring of co-simulation methods. In Proceedings

of the 8th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools. ACM, New York,

67–76. https://doi.org/10.1145/3158191.3158203

[26] Susanne Herbek, H. A. Eisl, Martin Hurch, Anton Schator, St Sabutsch, Günter Rauchegger, Alexander Kollmann, Th

Philippi, Pia Dragon, Elisabeth Seitz, et al. 2012. The electronic health record in Austria: A strong network between

health care and patients. European Surgery 44 (2012), 155–163.

[27] Frank Hoppensteadt. 1974. An age dependent epidemic model. Journal of the Franklin Institute 297, 5 (May 1974),

325–333. https://doi.org/10.1016/0016-0032(74)90037-4

[28] Beate Jahn, Gaby Sroczynski, Martin Bicher, Claire Rippinger, Nikolai Mühlberger, Júlia Santamaria, Christoph Urach,

Michael Schomaker, Igor Stojkov, Daniela Schmid, Günter Weiss, Ursula Wiedermann, Monika Redlberger-Fritz, Chris-

tiane Druml, Mirjam Kretzschmar, Maria Paulke-Korinek, Herwig Ostermann, Caroline Czasch, Gottfried Endel, Wolf-

gang Bock, Nikolas Popper, and Uwe Siebert. 2021. Targeted COVID-19 vaccination (TAV-COVID) considering lim-

ited vaccination capacities–an agent-based modeling evaluation. Vaccines 9, 5 (2021), 434. https://doi.org/10.3390/

vaccines9050434

ACM Trans. Model. Comput. Simul., Vol. 35, No. 3, Article 26. Publication date: May 2025.

https://doi.org/10.1177/0272989X211013306
https://doi.org/10.1177/0272989X211013306
https://arxiv.org/abs/https://doi.org/10.1177/0272989X211013306
https://doi.org/10.1371/journal.pone.0265957
https://doi.org/10.1109/WSC.2018.8632170
https://doi.org/10.1016/j.ejor.2018.10.025
https://www.sozialministerium.at/dam/jcr:8847f88c-b314-4d86-9d2b-3f169e047b0e/Policy_Brief_Update_20210831.pdf
https://doi.org/10.1007/BF00276550
http://www.dwh.at/en/news/the-power-of-the-abt-simulation-framework/
https://doi.org/10.1145/3158191.3158203
https://doi.org/10.1016/0016-0032(74)90037-4
https://doi.org/10.3390/vaccines9050434


Ideas towards Model Families for Multi-Criteria Decision Support 26:21

[29] W. O. Kermack and A. G. McKendrick. 1927. A contribution to the mathematical theory of epidemics. Proceedings of

the Royal Society A: Mathematical, Physical and Engineering Sciences 115, 772 (Aug. 1927), 700–721. https://doi.org/10.

1098/rspa.1927.0118

[30] T. G. Kim, C. Lee, E. R. Christensen, and B. P. Zeigler. 1990. System entity structuring and model base management.

IEEE Transactions on Systems, Man, and Cybernetics 20, 5 (1990), 1013–1024. https://doi.org/10.1109/21.59966

[31] Mathworks. 2022. ode15s, Solve Stiff Differential Equations and DAEs — Variable Order Method. https://de.mathworks.

com/help/matlab/ref/ode15s.html accessed 2022-05-17.

[32] A. G. McKendrick. 1926. Applications of mathematics to medical problems. Proceedings of the Edinburgh Mathematical

Society 44 (Feb. 1926), 98. https://doi.org/10.1017/S0013091500034428

[33] Florian Meier, Yong Wang, Christoph Wittmann, Xingsheng Xu, Mirela Pietrisi, and Lukas Tüchler. 2018. Development

of a limited area NWP model based nowcasting version for Austria. In EGU General Assembly Conference Abstracts.

European Geosciences Union, Vienna, Austria, 8160.

[34] Florian Miksch, Christoph Urach, Niki Popper, Günther Zauner, Gottfried Endel, I. Schiller-Frühwirth, and F. Breite-

necker. 2011. PIN101 new insights on the spread of influenza through agent based epidemic modeling. Value in Health

14, 7 (2011), A284.

[35] Joël Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk, Marco Massari, Stefania

Salmaso, Gianpaolo Scalia Tomba, Jacco Wallinga, and others. 2017. POLYMOD Social Contact Data.

[36] Theodore H. H. Pian. 1973. Hybrid models. In Numerical and Computer Methods in Structural Mechanics. Elsevier, New

York, US, 59–78.

[37] Nikolas Popper. 2015. Comparative modelling and simulation: A concept for modular modelling and hybrid simulation

of complex systems. Ph.D. Dissertation. TU Wien.

[38] Nikolas Popper, Melanie Zechmeister, Dominik Brunmeir, Claire Rippinger, Nadine Weibrecht, Christoph Urach, Mar-

tin Bicher, Günter Schneckenreither, and Andreas Rauber. 2021. Synthetic reproduction and augmentation of COVID-

19 case reporting data by agent-based simulation. Data Science Journal 20 (Apr 2021), 16. https://doi.org/10.5334/dsj-

2021-016

[39] C. Rippinger, M. Bicher, C. Urach, D. Brunmeir, N. Weibrecht, G. Zauner, G. Sroczynski, B. Jahn, N. Mühlberger, U.

Siebert, et al. 2021. Evaluation of undetected cases during the COVID-19 epidemic in Austria. BMC Infectious Diseases

21, 1 (Jan 2021), 70. https://doi.org/10.1186/s12879-020-05737-6

[40] C. Rippinger, M. Bicher, C. Urach, D. Brunmeir, N. Weibrecht, G. Zauner, G. Sroczynski, B. Jahn, N. Mühlberger, U.

Siebert, and N. Popper. 2021. Evaluation of undetected cases during the COVID-19 epidemic in Austria. BMC Infectious

Diseases 21, 1 (2021), 1–11.

[41] Mark Roberts, Louise B Russell, A David Paltiel, Michael Chambers, Phil McEwan, and Murray Krahn. 2012. Con-

ceptualizing a model: A report of the ISPOR-SMDM modeling good research practices task force–2. Medical Decision

Making 32, 5 (2012), 678–689.

[42] Herbert Stachowiak. 1973. Allgemeine Modelltheorie. Springer, New York, US.

[43] Chris Swinerd and Ken R. McNaught. 2012. Design classes for hybrid simulations involving agent-based and system

dynamics models. Simulation Modelling Practice and Theory 25 (2012), 118–133. https://doi.org/10.1016/j.simpat.2011.

09.002

[44] David Wolfinger, Margaretha Gansterer, Karl F. Doerner, and Nikolas Popper. 2023. A large neighbourhood search

metaheuristic for the contagious disease testing problem. European Journal of Operational Research 304, 1 (2023), 169–

182. https://doi.org/10.1016/j.ejor.2021.10.028 The role of Operational Research in future epidemics/ pandemics.

[45] Bernard P. Zeigler. 1984. Theory of discrete event specified models: Modularity, hierarchy, experimental frames. In-

ternational Journal of General System 10, 1 (1984), 57–84.

ACM Trans. Model. Comput. Simul., Vol. 35, No. 3, Article 26. Publication date: May 2025.

https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1109/21.59966
https://de.mathworks.com/help/matlab/ref/ode15s.html
https://doi.org/10.1017/S0013091500034428
https://doi.org/10.5334/dsj-2021-016
https://doi.org/10.1186/s12879-020-05737-6
https://doi.org/10.1016/j.simpat.2011.09.002
https://doi.org/10.1016/j.ejor.2021.10.028


26:22 M. Bicher et al.

A Appendix

A.1 Model Family Development Timeline

Table 1. Changing Tasks and Knowledge Base as well as Genesis of the Model Family

date changed knowledge base new tasks developments

Jan

2020

SARS-CoV-2 was detected in

Europe

Decision makers required an

estimate of the threat

First version of ABEM was developed from a population (GEPOC

[10]) and influenza model [34].

Feb

2020

SARS-CoV-2 started

spreading in Austria

Decision makers needed

lockdown policy estimates

The policy module of ABEM was developed.

Apr

2020

A common agreement upon

the parameters of COVID-19

and SARS-CoV-2 emerged

The need for a coordinated

forecast arises among

decision makers

The Austrian COVID-19 Forecasting Consortium was founded.

The ensemble forecast strategy was established and A common

hospital model was developed [11].

Jul

2020

Policies of the first wave

needed to be reevaluated

ABEM was extended to cover additional policies, e.g., contact

tracing [7]. A detailed differential equation model was developed

for cross-model validation of the ABEM.

Dec

2020

Vaccines were announced Vaccine prioritsation was

discussed.

ABEM was extended to include vaccinations and prioritisation

scenarios were calculated [9, 28]. A vaccine supply model was

developed for Austria.

Jan

2021

Variants with evolutionary

advantage were detected

(Alpha).

ABEM was extended for multiple variants. A macro model was

developed to analyse the takeover of a new variant and its

evolutionary advantage [5].

Jun

2021

The first reinfections were

detected. Immunity waning

was confirmed.

ABEM was extended from a SIR to SIRS.

Jul

2021

Scenarios for evaluation of

the current immunity level of

the population of Austria

were required

ABEM was deemed too computationally expensive for a problem

that didn’t require its epidemiological core features. Thus, the

IWM was developed as a faster alternative and for cross-model

validation.

Sep

2021

Inhomogeneous vaccination

rates affect the age-shift in

epidemic waves

A forecast of the age-shift in

the upcoming Delta wave

was needed

The ABEM could not depict the age shift in previous waves. The

ASM was developed.

Nov

2021

Hospitalisation rates dropped

and feedback of hospitalised

persons became negligible.

The hospitalisation module was removed from the ABEM.

May

2022

A scenario based outlook for

Autumn 2022 was requested

by the policymakers.

The more flexible HM was developed based on the original model

from Gesundheit Österreich GmbH. The model was applied using

forecasts from ABEM and the IWM.

Grey parts describe vital members of the model family as well, yet we decided not to describe them in the context of

this work.
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