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Kurzfassung

Symbolische künstliche Intelligenz ist exakt und zuverlässig. Allerdings verhindern sogenannte
combinatorial Explosions das Lösen vieler Industrieprobleme. In dem Logikprogrammierpara-
digma Answer Set Programming (ASP), kommt dieses Phänomen der combinatorial Explosions
häufig in der Grounding Phase vor. Grounding, also das Ersetzen von Variablen durch ihre
Domäne, führt zu einem exponentiell größeren Programm. Dieses Problem wird auch Grounding
Bottleneck genannt.

Die hier vorliegende Diplomarbeit zeichnet sich durch zwei primäre Beiträge zur Lösung des
Grounding Bottlenecks aus: (i) Die effektive Kombination zwischen Body-decoupled Grounding
(BDG) und (traditionellem) semi-naivem Grounding, und (ii) durch die Weiterentwicklung des
BDG-Ansatzes für normale und zyklische Regeln.

Im Detail sind die Beiträge wie folgt: (1) Wir führen Hybrid Grounding ein, welches die freie (ma-
nuelle) Aufteilung eines Programmes in einen durch traditionelle Techniken und einen durch BDG
gegroundeten Teil ermöglicht. (2) Weiters präsentieren wir automated Hybrid Grounding, welches
die manuelle Aufteilung unter Verwendung von Heuristiken automatisiert. (3) Auch stellen wir
eine verbesserte BDG-Reduktion für normale ASP-Programme vor, welche die Grounding-Zeit
von O(|Π| · |dom(Π)|2·a) auf O(|Π| · |dom(Π)|a+1) reduziert. (4) Schließlich demonstrieren
wir durch Lazy-BDG das effektive Grounden von zyklischen Programmen. Hierbei wird der
Aufwand, der in der BDG-Grounding Phase anfällt, auf die Lösungsphase über Propagatoren
verschoben.

Unsere Ergebnisse für (1) und (2) zeigen, dass BDG effizient implementiert und auf eine Weise
verwendet werden kann, die orthogonal zu traditionellem Grounding ist. Dies führt zu einer Groun-
dingmethode, die bei schwer lösbaren Problemen weder Effizienzeinbußen noch -steigerungen
bewirkt, bei schwer zu grundierenden Problemen jedoch Zugewinne verbuchen kann. Weiterhin
zeigen unsere Experimente zu (3) und (4), dass diese Ansätze sehr vielversprechend sind, da wir
sowohl traditionelle Grounder, als auch die bisherige BDG-Methode übertreffen.
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Abstract

Symbolic Artificial Intelligence is known for its reliability and exactness. Unfortunately, many
symbolic approaches suffer from combinatorial explosions that render industry problems unsolv-
able. This is especially prevalent in the grounding phase of the logic-programming paradigm
Answer Set Programming (ASP). Grounding, replacing variables with their domain, yields an
exponentially larger program, the so-called grounding bottleneck. Body-decoupled grounding
(BDG), a state-of-the-art method for easing the grounding bottleneck, achieves good results on
grounding-heavy scenarios. However, it lacks interoperability with other state-of-the-art methods
like semi-naive grounding and performs poorly on normal and non-tight ASP programs.

We tackle the challenges of BDG by (i) enabling the interoperability of BDG with semi-naive
grounding, by introducing hybrid grounding and automated hybrid grounding, and (ii) advancing
the BDG approach for normal and non-tight rules with FastFound and Lazy-BDG.

In more detail, we introduce hybrid grounding, which enables the free (manual) partitioning of a
program into a part grounded by traditional techniques and a part grounded by BDG. Next, with
automated hybrid grounding, we developed heuristics for automatically deciding when a usage
of BDG is appropriate. We implemented this approach in our prototype newground3, which
we compared experimentally to gringo and idlv. While on solving-heavy benchmarks, the
difference in solved instances is less than 1%, newground3 manages to increase the number of
solved instances by about 35% on grounding-heavy benchmarks. This leads us to conclude that
BDG can be used orthogonally to traditional grounders.

Furthermore, we improve the BDG reduction with FastFound, a method that enables a reduction
in grounding size from O(|Π| · |dom(Π)|2·a) to O(|Π| · |dom(Π)|a+1). Lazy-BDG enables the
effective grounding of non-tight programs by shifting effort spent in the grounding phase to the
solving phase using propagators. Further, we demonstrate the usefulness of FastFound and Lazy-
BDG by implementing them in our prototype newground3 and beating both the original BDG
formulation and the state-of-the-art grounders gringo and idlv on synthetic benchmarks.
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CHAPTER 1
Introduction

Answer Set Programming (ASP) [71] is a logic-programming paradigm widely used in symbolic
Artificial Intelligence (symbolic AI). ASP and its related symbolic AI approaches are employed in
problem solving scenarios where certainty is a crucial factor, such as in train schedule design [1],
or optimizing aircraft schedules [109]. However, one crucial standing deficiency of ASP is its
grounding bottleneck [64]. In practice, the grounding bottleneck prohibits the usage of ASP for
large industrial or scientific problems [49]. This thesis advances the state-of-the-art by proposing
alternative solutions for solving the grounding bottleneck based on the novel body-decoupled
grounding (BDG) [12] technique.

We begin by emphasizing the importance of using ASP for the prominent stable-matching
(SM) [52] problem, followed by an introduction to the grounding bottleneck and the motivation
for using BDG to alleviate this issue (Section 1.1). Next, we briefly outline the major challenges
of BDG and explain how this thesis contributes to solving the grounding bottleneck (Section 1.2).
We then provide an overview of the thesis structure in Section 1.3 and conclude the chapter by
discussing related work (Section 1.4).

1.1 From the Stable Matching Problem to BDG

The stable matching (SM)1 problem [52] is about matching individuals of two groups. Its
introduction and subsequent discussion were the essential contributions for the award of the 2012
Nobel Memorial Prize in Economic Science [110]. SM was originally posed as a problem of
finding stable marriages between men and women. However, we pose2 it in the context of the
current ongoing debate in Artificial Intelligence between symbolists (henceforth called logicians)

1Historically called the stable marriage problem. SM and its derivatives are in widespread usage, such as for
assigning graduated medicine students to universities [79]. An overview is given in [50].

2We describe the detailed setting in the Appendix (Page 156).
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1. INTRODUCTION

Kurt: (G., Y.)

Ludwig: (Y., G.)

Geoffrey: (K., L.)

Yoshua: (L., K.)

Logicians Differentialists

(a) Stable matching

Kurt: (G., Y.)

Ludwig: (Y., G.)

Geoffrey: (K., L.)

Yoshua: (L., K.)

Logicians Differentialists

(b) Unstable matching

Figure 1.1: Matching logicians and differentialists (e.g., Kurt and Geoffrey), based on their
preference lists. An edge between two vertices indicates a current match, Figure 1.1a depicts a
stable match, whereas Figure 1.1b shows an unstable one.

and subsymbolists (henceforth called differentialists), who need to find each other: The goal is to
match logicians and differentialists exactly one-to-one.

Each individual has a preference list that must be taken into account. Let us make matters concrete
by saying Kurt and Ludwig are logicians, while Geoffrey and Yoshua are differentialists. Further,
Kurt prefers to work with Geoffrey rather than with Yoshua, which we write as the following
preference list: Kurt:(G., Y.). Everyone has such a preference list: Ludwig: (Y., G.); Geoffrey:
(K., L.); Yoshua: (L., K.). Given the preference list, matching Kurt with Geoffrey and Ludwig
with Yoshua results in a stable matching. However, the matching is unstable if Kurt matches with
Yoshua and Ludwig matches with Geoffrey. We illustrate this example in Figure 1.1.

To make matters precise, we define the strong stability condition via its negation: A matching is
unstable whenever (i) an individual X of a group is matched to a partner Z of the other group,
although X prefers Y to Z, and additionally, (ii) Y prefers X to their current match. A matching
is stable whenever it is not unstable.

The goal is to find a stable matching, where we assume we have n logicians and n differentialists.
Specialized algorithms can solve SM in O(n2) [50]. Although a quadratic increase is reasonable
for many practical problems, specialized algorithms cannot easily be tweaked to changes. In the
following, we consider two small changes in our SM problem definition to showcase this: (1)
Assume that matchings must not exactly be one-to-one, so we allow logicians and differentialists
to have multiple collaborators. How do we have to change the algorithm for that? Is the algorithm
still in O(n2)? Alternatively, consider the following slight change in the problem definition: (2)
We want to allow for a few violations of the strong stability condition. How would we have to
adapt the algorithm this time?

Answering these questions requires special effort and likely adaptation of the algorithm. These
investigations and adaptations will take up precious time for scientists or developers. To save time,
ideally, we (only) want to specify the problem description without detailing how the problem is
solved. This is what symbolic AI wants to achieve.

2



1.1. From the Stable Matching Problem to BDG

Answer Set Programming: Symbolic AI approaches like Answer Set Programming (ASP) [71]
operate on a declarative paradigm: One encodes the problem statement directly in ASP and ASP
systems compute an answer.

Take our SM3 example from before, with Kurt, Ludwig, Geoffrey, and Yoshua. As the preferences
of our logicians and differentialists are known upfront, we call them facts and encode them by two
predicates: logAssScore (logician assigns score to differentialist) and diffAssScore (differentialist
assigns score to logician). As the predicates have to relate three things (logicians, differentialists,
scores), we say their arity is 3. Encoding the preference lists produces the following listing:

1 logAssScore(kurt,geoffrey,2). logAssScore(kurt,yoshua,1).
2 logAssScore(ludwig,geoffrey,1). logAssScore(ludwig,yoshua,2).
3 diffAssScore(geoffrey,kurt,2). diffAssScore(geoffrey,ludwig,1).
4 diffAssScore(yoshua,kurt,1). diffAssScore(yoshua,ludwig,2).

Besides the facts, we must also include our SM problem definition in an encoding. An encoding
consists of rules and typically follows the so-called guess-and-check paradigm. According to
this paradigm, we first guess possible matches and later restrict those matches to actual stable
matches by constraints.

We encode the guess in two rules. The intuition behind the guess is that we either want to derive
that they are surely matched or certainly not matched, which we express in the predicates match
and nonMatch respectively. Both predicates have arity 2, as they relate logicians to differentialists.
As we want this rule to hold for arbitrary logicians and differentialists, we use variables (L,D)
instead of concrete names. The encoding shown in the listing below displays a common pattern
seen in ASP: Guessing answers with rules that negatively (not) depend on each other.

1 match(L,D) :- logAssScore(L,_,_), diffAssScore(D,_,_), not nonMatch(L,D).
2 nonMatch(L,D) :- logAssScore(L,_,_), diffAssScore(D,_,_), not match(L,D).

After guessing all possible matches we restrict them to stable matches by constraints. For this, we
first must discuss the necessary ASP syntax: An ASP rule is comprised of a head (Hr) and a body
(Br): Hr ← Br. A constraint is a rule where the head is empty (Hr = ∅), a rule is disjunctive
whenever |Hr| > 1, and a rule is normal whenever |Hr| ≤ 1.

Our first check ensures an exact one-to-one match, so each logician matches precisely to one
differentialist, and one differentialist matches to precisely one logician. We show this in two
encodings, where the first one below shows how we restrict each individual to have at most one
match:

1 :- match(L1,D), match(L,D), L != L1. :- match(L,D), match(L,D1), D != D1.

Our next encoding shows how we ensure that each logician and each differentialist has at least
one match. For this, we introduce the assigned predicate which expresses that a logician, or a
differentialist has an assigned match.

1 assigned(L) :- match(L,_). assigned(D) :- match(_,D).
2 :- logAssScore(L,_,_), not assigned(L). :- diffAssScore(D,_,_), not assigned(D).

3Problem encoding adapted from the 2014 ASP-Competition [25].
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Encode
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Figure 1.2: The traditional state-of-the-art ground-and-solve approach for ASP systems. A
problem (Stable Matching) is encoded into a non-ground program Π. Grounding instantiates its
variables with the respective domain values. Solving generates answer set(s), the solution(s) of
the problem.

Combining both encodings above, so that each individual has at most one match and that each
individual has at least one match, we infer that each individual has exactly one match.

The only check left is to ensure the strong stability condition. As we require each answer set to
resemble a stable matching, we encode it via a constraint4. This expresses that whenever there is
a logician L, that is currently in a match D1, however there is another differentialist D s.t. the
score of D is higher than the one of D1 (Sld > Sld1), and D prefers L to its current match L1
(Sdl ≥ Sdl1), then the matching is unstable.

1 :- match(L,D1), logAssScore(L,D,Sld), D1 != D, logAssScore(L,D1,Sld1), Sld > Sld1,
2 match(L1,D), diffAssScore(D,L,Sdl), diffAssScore(D,L1,Sdl1), Sdl >= Sdl1.

The full ASP encoding is shown in the listing below:
1 % Facts: logAssScore/3. diffAssScore/3.
2 % Guess matching
3 match(L,D) :- logAssScore(L,_,_), diffAssScore(D,_,_), not nonMatch(L,D).
4 nonMatch(L,D) :- logAssScore(L,_,_), diffAssScore(D,_,_), not match(L,D).
5 % Exactly a one-to-one match:
6 :- match(L1,D), match(L,D), L != L1. :- match(L,D), match(L,D1), D != D1.
7 % All must be assigned:
8 assigned(L) :- match(L,_). assigned(D) :- match(_,D).
9 :- logAssScore(L,_,_), not assigned(L). :- diffAssScore(D,_,_), not assigned(D).

10 % Strong stability condition
11 :- match(L,D1), logAssScore(L,D,Sld), D1 != D, logAssScore(L,D1,Sld1), Sld > Sld1,
12 match(L1,D), diffAssScore(D,L,Sdl), diffAssScore(D,L1,Sdl1), Sdl >= Sdl1.

Adapting the encoding above to the SM variants described in (1) and (2) is now easy. For
(1), we only need to remove Line (6) from the encoding. To incorporate (2), we introduce the

4We are aware that more efficient encodings exist, however we opted for a direct encoding. Both encodings, the
shown and the more efficient one can be found in the 2014 ASP-Competition [25] benchmark suite.

4



1.1. From the Stable Matching Problem to BDG

sscf predicate, which expresses a matching error, and the relaxation predicate, which holds
the number of matching errors we may perform. Further, we have to change the encoding by
transforming the strong stability condition from a constraint to a rule, which enables the counting
of the number of matching errors. Counting, or other arithmetic operations over sets, can be
encoded by aggregates. The listing below shows a selection of the adapted encoding. We use the
count-aggregate (#count) in Line (5) to count (L, D) tuples.

1 relaxation(6).
2 % Strong stability condition
3 sscf(L,D) :- match(L,D1), logAssScore(L,D,Smw), D1 != D, logAssScore(L,D1,Smw1), Smw > Smw1,
4 match(L1,D), diffAssScore(D,L,Swm), diffAssScore(D,L1,Swm1), Swm >= Swm1.
5 :- X <= #count{L,D:sscf(L,D)}, relaxation(X).

Given such an encoding, there is only one thing left: We have to compute an answer to our
encoding. In ASP we can use tools such as clingo [58] or DLV [93] to derive answer sets. These
tools operate on the ground-and-solve paradigm [64], where first grounding and then solving
are performed. Grounding refers to instantiating variables with their respective domain. In our
stable matching example, the domain consists of the logicians kurt and ludwig, the differentialists
geoffrey and yoshua, and the scores 1 and 2. The solving phase then computes the answer sets by
a conflict-driven-nogood-learning (CDNL) algorithm. In Figure 1.2, we show a schematics of the
ground-and-solve approach.

Grounding Bottleneck: The grounding bottleneck [64], [126] arises in the grounding phase
in the context of the ground-and-solve paradigm in state-of-the-art systems. Essentially, it is an
incarnation of a combinatorial explosion problem that prohibits the solving of large practical
instances. In our SM encoding from above, the bottleneck arises in the one-to-one constraints:

1 :- match(L1,D), match(L,D), L != L1. :- match(L,D), match(L,D1), D != D1.

This line consists of two rules, where each rule has three variables. As each variable is replaced
with all domain values, the grounding size is cubic5 in the domain size. More formally, given our
Π and its domain dom(Π), then the grounding size is in O

(︁
|Π| · | dom(Π)|3

)︁
.

In practice, modern grounders do not naively instantiate variables by their domain values but
instead, use the bottom-up/semi-naive grounding techniques [61]. State-of-the-art systems include
clingo’s gringo [56], or DLV’s idlv [23]. These specialized grounding techniques enable
simplifications, like on-the-fly evaluation of stratified programs or fact propagation. Still, in the
worst case6 their grounding size is exponential in the number of variables.

We follow for the general case: Let Π be a program, dom(Π) be the domain (non-ground terms)
of Π and V the maximum number of variables of any rule in Π. Then, the grounding size of a
program Π is in the worst-case displayed in Equation 1.1:

O(|Π| · |dom(Π)|V) (1.1)

5Note that the strong stability condition (Lines (11)-(12)) of the original encoding has more (8) variables.
However, instance definitions, state-of-the-art grounders, and alternative (non-intuitive) encodings effectively reduce
its grounding size from being to the power of 8, to (effectively) only being quadratic in the domain size.

6See Chapter 5 for an in-depth discussion.
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(b) BDG decomposes the rule and encodes semantics explicitly.

Figure 1.3: Schematic comparison how traditional grounding (Figure 1.3a) works in comparison
to BDG (Figure 1.3b). Given a rule r ∈ Π, traditional grounding takes the rule as it is and
instantiates the variables var = {M1, W, M} (V = |var(r)| = 3) with all possible domain
values. Traditional grounding has an exponential grounding size in the number of variables:
≈ |dom(Π)|V . BDG decomposes the rule into its literals (indicated by different colors and lines).
The predicate arities are: a(match) = 2 and a(M ̸= M1) = 2. Therefore, the maximum arity
is a = 2. BDG has an exponential grounding size in the maximum arity: ≈ |dom(Π)|a. Thus,
while traditional grounding has a cubic (≈ |dom(Π)|3) grounding size, BDG has only a quadratic
one (≈ |dom(Π)|2).

The grounding bottleneck is a direct consequence of Equation 1.1. This problem prevents the
solving of larger industrial applications [49]. Fortunately, many approaches try to solve or at
least ease the grounding bottleneck. Examples of these are lazy-grounding [130], compilation
based approaches [38], or body-decoupled grounding [12] (BDG). While lazy-grounding and
compilation based techniques describe a system-level approach that drops grounding altogether,
BDG is essentially a rewriting technique. We argue that the further development of BDG
is promising for alleviating the grounding bottleneck, as it can be effectively combined with
state-of-the-art solvers and is compatible with the use of lazy-grounding and compilation based
approaches7 .

Body-decoupled Grounding (BDG): Historically, BDG was inspired by complexity theory as
it is a complexity theoretic reduction from non-ground normal ASP to ground disjunctive ASP.
Its practical significance stems from the fact that it decouples non-ground rules in the sense that
each predicate is grounded on its own. Semantics is ensured by explicitly encoding satisfiability
and foundedness. This has the benefit that, in comparison to semi-naive grounding, its grounding
size is only exponential in the maximum arity of the program.

7The main requirement is that lazy-grounding and compilation based techniques support cyclic disjunctive rules.
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Take the one-to-one constraints from our SM example above, which we recall in the listing below:

1 :- match(L1,D), match(L,D), L != L1. :- match(L,D), match(L,D1), D != D1.

Grounding these constraints via traditional grounding yields a grounding size that is cubic in the
domain size, as there are 3 variables. In contrast to this, BDG’s grounding size is only quadratic
in the domain size, as the maximum arity is 2.

More generally, let Π be a program, dom(Π) be the domain of the program and a be the
maximum arity of the program. Then we depict the grounding size of Π grounded with BDG in
Equation (1.2):

O(|Π| · |dom(Π)|a) (1.2)

Comparing Equation (1.2) to Equation (1.1), observe that while traditional grounding has a
grounding size exponential in the number of the variables, BDG has a grounding size exponential
in the maximum arity. We show in Figure 1.3 a schematic comparison of traditional state-of-the-
art techniques (Figure 1.3a), to BDG (Figure 1.3b).

1.2 Challenges and Contributions

Body-decoupled grounding shows significant improvements upon the state-of-the-art on the
grounding bottleneck. However, we identify two main challenges that hinder its widespread
adoption. The first one is its limited interoperability with other state-of-the-art techniques. This
problem is intensified by BDG being best used for fragments, or even single rules, of a program.
The intuitive reason for that is that BDG pushes effort from grounding to solving and, therefore,
should only be used on grounding-heavy problems. An additional reinforcing factor is that it is
currently unclear for which parts or for which rules BDG should best be used.

The second major deficiency of BDG is its poor performance for (non-ground) normal and
non-tight rules. Normal rules are rules with a non-empty head. Non-tight rules have a cycle in the
respective positive dependency graph. Let Π be a program, dom(Π) be its domain, and a be its
maximum arity, then the grounding size of the program is in O(|Π| · |dom(Π)|a) for constraints,
in O(|Π| · |dom(Π)|2·a) for normal rules, and O(|Π| · |dom(Π)|3·a) for non-tight (normal) parts.
For practical problems, every increase beyond domain size to the power of a is infeasible.

We show a detailed discussion of the current major challenges of BDG in Section 3.3.

1.2.1 Aim of this Thesis

In its entirety, this thesis aims at easing the grounding bottleneck by (1) investigating the in-
teroperability of the body-decoupled grounding approach with other state-of-the-art grounding
techniques and (2) advancing BDG to be competitive with state-of-the-art grounders and solvers,
for normal and non-tight rules.
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1.2.2 Contributions

We consider the following four points as our main contributions, which are in line with our two
main identified challenges of BDG and the general aim of the thesis:

1. Hybrid grounding (Chapter 4): Enabling the interoperability between body-decoupled
grounding and state-of-the-art semi-naive grounders. We published hybrid grounding as a
part of our publication at IJCAI24 [10].

2. Automated hybrid grounding (Chapter 5): The development and testing of heuristics for
deciding when a BDG usage is beneficial.

3. FastFound (Chapter 6): Improving the BDG reduction for normal ASP programs, from
being exponential in 2 · a, to only being exponential in a + 1.

4. Lazy-BDG (Chapter 7): Making cyclic programs feasible for BDG by deferring cyclical
evaluations to the solving phase.

In addition to the four major contributions in the bullet points above, we count our identification
of BDG’s current issues (Section 3.3) and the novel partial applicability result for BDG in
non-ground disjunctive programs (Section 4.3), as our minor results.

While we already published hybrid grounding [10], we are working on publications for the rest of
the contributions.

1.3 Structure of this Thesis

This introductory chapter (Chapter 1) provides a gentle introduction into the field of Answer Set
Programming and the grounding bottleneck. Further, it states the main contributions of this thesis
(Section 1.2) and an extensive related work section (Section 1.4).

In Chapter 2 we provide the reader with general background on the field of Answer Set Program-
ming and related concepts, while in Chapter 3 we give a detailed background on body-decoupled
grounding. We provide the reader with information on our understanding of symbolic AI (Sec-
tion 2.1), an introduction to Answer Set Programming (Section 2.2), necessary concepts from
complexity theory (Section 2.3), background on current state-of-the-art grounders (Section 2.4),
and an introduction how current state-of-the-art solvers work, with a focus on how they handle
non-tight rules (Section 2.5). In the BDG, chapter we first introduce the BDG reduction in
Section 3.1, followed by the current state-of-the-art of BDG (Section 3.2), and close with our
discussion on the current major challenges that BDG faces (Section 3.3).

In Chapter 4 we introduce hybrid grounding [10]. We provide an intuition of Hybrid Groundin in
Section 4.1, show the details of the hybrid grounding reduction in Section 4.2, and obtain novel
results on the applicability of BDG in Section 4.3.

Chapter 5 introduces automated hybrid grounding, where we first recall the main results of
the state-of-the-art techniques (Section 5.1), followed by the introduction of our heuristics
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(Section 5.2), and discuss its implementation in newground3 (Section 5.3). We close the
chapter by showcasing the experimental results of newground3 in Section 5.4.

Chapter 6 introduces FastFound, the improved BDG reduction for normal rules. We state the
reduction in Section 6.1, extend it to HCF programs in Section 6.2, show examples thereof in
Section 6.3, and close with our conducted experiments in Section 6.4.

Our final main chapter is Chapter 7 which is all about how cyclic rules can be handled with BDG
and hybrid grounding. We first demonstrate how BDG dismantles cycles (Section 7.1), go on to
state the level mappings technique for hybrid grounding (Section 7.2), discuss a first idea how
cycles can be repaired (Section 7.3), and finally state the lazy cycle repair algorithm (Lazy-BDG)
in Section 7.4. The chapter is closed by the experiments section (Section 7.5).

Finally, Chapter 8 closes this thesis with a summary and conclusions.

1.4 Related Work

Although the roots of Answer Set Programming (ASP) [71] can be traced back as far as Pro-
log, most important work was achieved by defining the stable model semantics [73] and the
introduction of answer sets [72]. Another major contribution was the definition of the Logic of
Here-and-There [115], which has led to years of fruitful research on the theoretical foundations
of ASP [20], [112]. Overviews of these developments are provided by [19], [44], [82], [119].

A significant part of ASP’s practical success can be attributed to the availability of grounders
and solvers from early on. Historically, the SMODELS system [122] was one of the earliest
solvers, followed by the DLV system [93]. These were followed by SAT-based solvers like
Cmodels [96] and ASSAT [99]. Nevertheless, research is still conducted in this direction [80].
However, arguably the most important development in solvers was the development of conflict-
driven answer set solving systems [63], such as CLASP [59] and WASP [3]. Internally, these
systems use a conflict-driven-nogood-learning (CDNL) algorithm [63], which is similar to
conflict-driven-clause-learning (CDCL) [101] in SAT-solving.

Grounding [85] is the instantiation of variables with domain values. Most modern solvers have a
grounder attached to them. Historically, to enable finite groundings, programs were forced to
comply with ω−, or λ−restricted programs [69], [125]. Parallel to λ−restricted programs, the
first version of Gringo the grounder was introduced [69]. State-of-the-art (SOTA) grounders,
like the latest version of Gringo [56], the grounder of DLV [47], and I-DLV [23], use more
involved instantiation techniques, such as semi-naive database evaluation techniques. Further,
idlv uses advanced treewidth-guided rule-rewriting techniques and heuristics to decide when to
use them [24]. Further, machine learning based rewriting heuristics have been evaluated [102].

In SOTA systems, grounders and solvers are combined into one coherent system, like Clingo [58].
The so-called ground- and solve-paradigm stems from the inherent grounding and solving phases
of these systems. Multi-shot-solving reduces the amount of grounding necessary for repeated
grounding calls [60]. For communication between grounders and solvers intermediate languages
are used. idlv uses the SMODELS Lparse [124] format, while gringo uses the ASPIf (ASP
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Intermediate Format) [86]. Other intermediate languages have been proposed [81], such as ASPils
(ASP Intermediate Language Standard) [57]. An overview of ground-and-solve systems is given
in [87]. ASP competitions enable the comparison of systems and encodings. Typically, ASP
competitions feature system tracks that compare ASP systems on a fixed encoding. There have
been seven ASP competitions [2], [25], [26], [35], [65]–[67], where an overview is given in [68].
We took benchmark instances and encodings from the fifth competition [25].

As the grounding step is highly exponential (in the worst case) and the evaluation of non-ground
ASP programs is NEXPTIME complete in general [31], large groundings may prohibit the
evaluation of programs. This problem is called the grounding bottleneck [64], [126].

Multiple techniques were developed to cope with the grounding bottleneck. The first discussed is
lazy-grounding, which combines grounding and solving into a conceptually single step. The goal
is to prevent unnecessary instantiations of rules, which is achieved by instantiating rules if their
body is satisfied. Although the technique is promising, SOTA lazy-systems are not competitive
with SOTA-ground-and-solve systems [64]. Prominent traditional lazy-grounding approaches
are GASP [30], ASPeRiX [91], and Omiga [32], which rely on sequences of firing rules, on
which also the respective search space relies (which is different from the predicate (atom) focused
CDNL approaches). The lazy-grounding system of ALPHA [130] adapts the CDNL-algorithm to
combine the benefits of lazy-grounding, with the benefits of CDNL. Other research has extended
the input language of lazy-solvers to include aggregates [17]. Also, some techniques try to use
lazy-grounding with specialized search-techniques [33]. Further, others investigate and introduce
prominent solver techniques in lazy-grounding, like domain-independent heurstics for speeding
up the procedure [94], [131].

An approach related to lazy-grounding is the compilation based approach. Herein, parts of a
program are typically grounded in a traditional way and serve as a domain, whereas the other parts
are compiled into efficient subprocedures. These subprocedures take over both the grounding and
solving step of these parts, and in order to ensure semantics they inject additional constraints, or
nogoods.

In one of the earlier compilation based approaches, a partial answer set is iteratively extended
by a compiled process that injects additional constraints [29]. This compiled process uses
compiler techniques to be competitive, such as loop unrolling. A very similar approach is
DualGrounder [97], which instead of compiling rules to optimized C++ procedures, exploits
clingo’s multi-shot capabilities.

The other prominent branch of compilation techniques uses extensions of the CDNL-procedure
(propagators), which was demonstrated to be a feasible approach [27]. The first pure propagator
based approach included the compilation of constraints in ASP [28]. In contrast to the constraint
injecting approach, this version directly extends the set of nogoods of the CDNL-algorithm.
Later versions extend the syntax of ASP to aggregates [103] and to tight programs [39]. Further,
traditional grounding techniques have been combined with compilation based techniques [38].

ASP Modulo Theory is yet another approach that can be used to circumvent the grounding
bottleneck. It does this by integrating the best methods and tools of other fields, like constraint
programming [63]. ASP-solvers enhanced with CSP are CLINGCON [7], [113], EZCSP [6], and
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EZSMT [123]. For a comparative analysis of these see [95]. Also, ASP-solvers enhanced with
mixed-integer programing exist, such as MINGO [100]. Additional developments include the
language extension of HEX-programs, which eases the integration of external problem solving
tools [41], or the bound-founded ASP extension, with the system named CHUFFED [5].

These prominent examples share that they extend the ASP input language with other language
constructs. Further, these language constructs are nowadays implemented mainly by extending
the CDNL-algorithm loop of modern solvers [58], [84].

In stark contrast to the developments above, recently a complexity theoretic grounding ap-
proach [10], [12] was introduced. Its foundations lie in the complexity theoretic discussions
of ASP [31], where it is a well known result that ground disjunctive ASP is ΣP

2 complete [40].
Later results showed that under the assumption of bounded predicate arities, non-ground normal
ASP is also ΣP

2 complete. For this reason [12] introduced the body-decoupled grounding (BDG)
reduction from non-ground normal to ground disjunctive ASP. This work also showed excellent
practical results upon instances having the grounding bottleneck. Later work added aggregates to
the input language and extended the reduction to a hybrid grounding procedure, where programs
are split (manually) into parts grounded by the BDG reduction and parts that are grounded by
other state-of-the-art methods [10]. Other related complexity theoretic approaches extend the
input language to disjunctive ASP, with a reduction to epistemic logic programming (ELP) [13],
or propose a reduction from ELPs to disjunctive ASP [15].

Completely different approaches than the ones discussed thus far are those that make use of
heuristics to improve grounding [24] and an approach that tries to estimate the grounding sizes of
logic programs [77]. Further, some approaches facilitate treewidth to split up big programs into
smaller programs [107], which was significantly extended in the LPOPT tool [14].

A well known alternative technique is metaprogramming [84]. The core concept behind metapro-
gramming is to give a program another program as an input, where computations are performed
on the input program. Metaprogramming has many applications in ASP. The compilation based
approaches discussed above, utilize the metaprogramming paradigm, although the metaprograms
are not written in ASP. Using ASP-only metaprograms, one can alter the semantics of ASP [84].
Also, metaprogramming was used in various different approaches, such as for manifold programs,
which enables the computation of consequences (such as brave/cautious) [48]. This concept was
used in the ASPRIN system as well, which introduces advanced preference handling for ASP [18].
Further, metaprogramming was used in the planning domain for PLASP [37]. Lastly, it was used
in [45] for the automatic integration of guess and check programs.
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CHAPTER 2
Background

The background chapter sets the stage for the following discussion. It will provide the necessary
background material and will put things into perspective to understand the subsequent thesis’s
main chapters. In Section 2.1 we will briefly discuss AI and symbolic AI. We continue by
introducing ASP in Section 2.2, which is followed by relevant definitions from complexity theory
in Section 2.3. The remaining sections discuss state-of-the-art techniques for the ground-and-solve
paradigm in detail, namely semi-naive grounding in Section 2.4 and Conflict-Driven-Nogood-
Learning in Section 2.5.

2.1 (Symbolic) Artificial Intelligence

Artificial Intelligence (AI) does not have one generally accepted definition. In [116], they classify
definitions according to two axes: the thinking/acting axis and the human-like/rational axis.
Acting definitions put a focus on the (externally) perceived human likeness or rationality of an
agent. Thinking definitions focus on the internals of the agent. Be it in the sense that an agent’s
internal processes think like a human or like a rational agent (in the logical sense).

Our working definition puts a focus on the acting side, with no distinction between human-like
and rational concepts: Artificial Intelligence consists of the concepts, introduced by entities,
that (should) reproduce (fragments of) intelligence1. With this definition, we emphasize that
AI was developed by some entities and is therefore artificial. Further, we do not limit the
definition to any particular technique or paradigm, like neural-networks or logic programming

1To the best of our knowledge, this (exact) definition has not been stated before. Our definition was shaped
by definitions from lectures, subsequent discussions thereof with fellow students, professors, or colleagues. More
concretely, this definition was influenced by the lectures of Thomas Eiter (Intro. to AI) and Wulfram Gerstner (Comp.
Neurosc.: Neur. Dyn.), by the lectures and discussions of the first, second, and third edition of the ACM Digital
Humanism Summer School (2022, 2023 and 2024 respectively; chaired by Stefan Woltran et. al.), by the first AI
Summer School 2023 at TU Wien, and by various books and publications, such as [75], [83], [89], [104], [106], [116],
[118], [120], [128], [132].
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(concepts). Additionally, we do not dare to define what intelligence is (“[...] (should) reproduce
[...] intelligence.”). Moreover, we consider work that focuses on a particular fragment2 of
intelligence as part of AI.

The field of AI is generally split into the sub-fields of symbolic, subsymbolic, and neurosymbolic
AI. The distinction between symbolic and subsymbolic approaches can be made on their level of
computation, while neurosymbolic techniques are the combinations thereof. Symbolic approaches
operate on the level of manipulating high-level symbols [55], while subsymbolic approaches
take computation to levels below, such as vector manipulations. We illustrate their difference by
stating how the two approaches differ in solving the following example: If there is a cat and the
cat is petted, then the cat purrs. This can be encoded in the following logical rule:

purr← cat, pet

A symbolic approach then knows the logical rule and infers purr from knowing whether both cat
and pet are present in its knowledge base. On the contrary, a subsymbolic approach has vector
embeddings of the atoms cat, pet, and purr, and of the implication (←). The inference is then
based on manipulating the vectors of cat and pet in the context of the implication (←), from
which it (approximately) derives the vector purr.

Typically, symbolic approaches are considered to be exact and discrete, while subsymbolic
approaches are probabilistic and continuous3. Prominent examples of symbolic AI include logic
programming (such as Prolog [88] or ASP [71]), automated theorem proving (such as Z3 [108]),
planning (such as STRIPS [51]), or expert systems (such as R1 [105]), while subsymbolic AI
includes deep-learning [90], reinforcement-learning [121], or large language models [89] and its
underlying transformer architecture [129].

This thesis belongs to the field of symbolic AI, with a specific focus on the ASP paradigm. Rooted
in symbolic AI, ASP has a precisely defined syntax and semantics.

We conclude by putting two pointers on what AI is: In the seminal work the Philosphy of AI
and the AI of Philosphy by McCarthy [104], the field of AI is discussed from a philosophical
standpoint. They bring presuppositions of AI to light, provide advice on how philosophers should
deal with AI, and mainly discuss symbolic AI. Two of the Three problems in computer science
(by Valiant [128]), can be attributed to AI. The characterization of a semantics for cognitive
computation, can be seen as a problem how to combine symbolic and subsymbolic AI. Further,
the characterization of cortical computation is concerned with the study of “how knowledge is
represented in the brain and what the algorithms are for computing the most basic behavioral
tasks” [128], which can be seen as the problem of how to obtain general AI.

2.2 Answer Set Programming

Answer Set Programming (ASP) [71] is a popular problem-modelling- and solve-paradigm,
rooted in symbolic AI and logic programming. A program Π is defined as a set of rules r ∈ Π.

2Like logical thinking, pattern recognition, or planning.
3This is in striking similarity with the distinction between thinking fast and slow by Kahneman [83].
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From a practical perspective, a program Π typically consists of an encoding (the scenario, e.g.,
finding a clique in a graph) and an instance (the data, e.g., a graph of 18 vertices). In more detail,
an encoding often follows the guess (or sometimes called generate) and check paradigm, where
one first generates possible answers, which are later restricted (checked) by constraints [44].
An important distinction in ASP programs is the ground/non-ground distinction. In contrast to
ground programs, non-ground programs may have variables that are an abstract placeholder for a
concrete instantiation of a domain value.

We show a small example that illustrates the ground/non-ground distinction. The following
program consists of three rules, where two are facts (b(1) and b(2)) and one is non-ground
(a(X, Y )← b(X), b(Y )).

1 b(1). b(2).
2 a(X,Y) :- b(X), b(Y).

Grounding4 refers to the instantiation of the variables by their domain. In the example, grounding
translates to instantiating the variables X and Y with the domain values 1 and 2, which produces
the following ground program:

1 b(1). b(2).
2 a(1,1) :- b(1), b(1). a(1,2) :- b(1), b(2).
3 a(2,1) :- b(2), b(1). a(2,2) :- b(2), b(2).

Notice that the one non-ground rule gave rise to four ground rules.

For describing rules, we use the← notation for theoretical concepts and algorithms, while we
use the :- notation for listings, as they are consistent with the ASP-Core-2 standard [22]. Further,
we use in theoretical discussions ¬ and ∨, while we use not and | for the listings respectively. In
the following, we introduce ASP along the ground (Section 2.2.1), non-ground (Section 2.2.2)
distinction, and close with a brief discussion on applications (Section 2.2.4). The following
definitions of ASP were mainly taken from [10], [12], [44].

2.2.1 Ground ASP

Ground ASP programs consist of ground rules. Ground rules contain atoms ai. As the name
suggests, atoms are indivisible. Indivisible in the sense that they are the smallest building blocks
semantics can be assigned to, which is assigned in a propositional way, so either true or false
(potentially unknown when including strong negation).

Syntax

We show in Equation (2.1) a (disjunctive) ground rule r, of a program Π (r ∈ Π). ai are atoms
and i is a non-negative integer. The head Hr is defined as Hr := {a1, . . . , al}, the (positive)
body B+

r as B+
r := {al+1, . . . , am}, the (negative) body B−r as B−r := {am+1, . . . , an}, and the

4The concept of grounding in ASP is not to be confused with grounding in other areas of symbolic AI, which
typically stated as the grounding problem, is the problem of assigning meaning to abstract symbols [76].
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body as Br := B+
r ∪B−r . Further, the size of a rule is |r| = |Hr ∪B+

r ∪B−r | and of a program
|Π| =

∑︁
r∈Π |r|.

a1 ∨ . . . ∨ al⏞ ⏟⏟ ⏞
Hr

←
B+

r⏟ ⏞⏞ ⏟
al+1, . . . , am,

B−
r⏟ ⏞⏞ ⏟

¬am+1, . . . ,¬an⏞ ⏟⏟ ⏞
body:Br:=B+

r ∪B−
r

(2.1)

A rule r is normal iff |Hr| ≤ 1. In the special case of |Hr| = 0, r is considered to be a
constraint. |Hr| > 1 is called disjunctive. If a program Π contains a disjunctive rule r, it
is called a disjunctive program. r is a fact whenever |Hr| = 1 and |B+

r ∪ B−r | = 0. We
denote the set of facts as F . A normal program consists only of normal rules. The set of
atoms at(r) occurring in r as at(r) := Hr ∪ B+

r ∪ B−r and the set of atoms of the entire
program at(Π) as at(Π) :=

⋃︁
r∈Π at(r) (we sometimes write at instead of at(Π)). We define

body(Π) := {Br | r ∈ Π} and bodyΠ(p) := {Br | r ∈ Π, p ∈ Hr}. heads(Π) is defined as
heads(Π) := {p | p ∈ Hr, r ∈ Π}.

Graph Theory for Ground ASP

We assume the reader to be familiar with the basic concepts of graph theory. Therefore, we only
introduce notions of graph theory necessary for the following discussion. More information
can be found in any graph theory textbook, such as [36]. A graph G is a mathematical tuple
G = (V, E), where V is the set of vertices and E is the set of edges. In directed graphs, an edge
(u, v) ∈ E has a direction from u to v, whereas in an undirected graph (u, v) ∈ E, there is no
direction.

v is reachable from u (denoted as vRu), iff there exists a corresponding sequence of edges
((u, v1), . . . , (vn, v)). A cycle exists if v is reachable from v. A graph is cyclic if it contains a
cycle (vRv). For a directed graph, a strongly connected component (SCC) is a set of vertices, iff
∀v, u ∈ SCC : v ̸= u→ vRu. A directed acyclic graph (DAG) is a directed graph that has no
cycles.

Definition 2.1 (Reduction of a directed graph). The reduction GR of a directed graph G, is defined
as GR = (V R, ER), s.t. V R are the SCCs of G, whereas ER is given by the edges between the
SCCs.

Observe that any GR is a directed-acyclic graph (DAG). Next we introduce the dependency graphs
of a program Π and define stratified, tight, and head cycle free programs.

Definition 2.2 (Dependency Graph (Ground ASP)). We denote the dependency graph of a
program Π as D. The vertices are defined as: V :=

⋃︁
r∈Π Hr ∪B+

r ∪B−r . The edges are defined
as: For every r ∈ Π, there is an edge (b, h)+ for every two atoms b ∈ B+

r , h ∈ Hr and for every
r ∈ Π, there is an edge (b, h)− for every two atoms b ∈ B−r , h ∈ Hr. We consider an edge
(b, h)+ as positive and an edge (b, h)− as negative.

Definition 2.3 (Stratified Program). A program Π is not stratified, iff there is a cycle in its
dependency graph D that contains at least one negative edge. Conversely, a program Π is
stratified iff no such cycle exists.
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Definition 2.4 (Positive Dependency Graph (Ground ASP)). We denote the positive dependency
graph of a program Π as DP . The vertices are defined as: V :=

⋃︁
r∈Π Hr ∪B+

r . The edges are
defined as: For every r ∈ Π, there is an edge (b, h) for every two atoms b ∈ B+

r , h ∈ Hr.

Given the program Π, we denote with SCC(Π) the set of strongly connected components of the
positive dependency graph. Further, given DP = (V, E) and a ∈ V , then SCC(Π, a) returns the
strongly connected component of a w.r.t. DP . With |SCC(Π, a)| we measure the size of the SCC,
where we abuse notation5 by stating that whenever |SCC(Π, a)| = 1, a is tight in Π. Further, let
S ∈ SCC(Π), then rules(S) = {r | r ∈ Π, Hr ∩ S ̸= ∅, B+

r ∩ S ̸= ∅}, and p ∈ hpred(Π),
then rules(p) = {r | r ∈ Π, p ∈ Hr}.

Definition 2.5 ((Tight) Normal Program). A (normal) program Π is not tight, iff there is a cycle
in its positive dependency graph DP . Conversely, Π is tight iff no such cycle exists.

Definition 2.6 (Head Cycle Free (HCF) Program). A (disjunctive) program Π is not HCF, iff
there is a cycle in its positive dependency graph DP . Conversely, Π is HCF iff no such cycle
exists.

The notion of a stratified program is important for state-of-the-art grounding techniques. Further,
observe our clear distinction between (tight) normal and HCF (disjunctive) programs. We use
this non-standard terminology in order to compactly write normal (HCF) programs to express
that a program may either be normal or HCF.

Example 2.1. We show examples for non-tight and not-stratified programs. The program
ΠG1 shown in the next listing is non-tight. This comes as in its (positive) dependency graph
DP = (V, E): {(b, a), (a, b)} ⊆ E.

1 a :- b
2 b :- a.

The next program ΠG2 is not-stratified. This comes as there are two negative edges in its
dependency graph D = (V, E): {(b, a)−, (a, b)−} ⊆ E.

1 a :- not b.
2 b :- not a.

The last program ΠG3 shows a HCF program.

1 a | b | c :- d.

Semantics

In the following, we define semantics of ground ASP. Intuitively, for a rule r ∈ Π, whenever the
body holds, the head must hold as well. If this is the case for all rules of the program, then we
have an answer set.

5Note that by our definition, self-loops have a size of |SCC(Π, a)| ̸= 1.
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There are multiple definitions of how to characterize the semantics of ASP [98]. For our
discussion, however, the well-founded semantics [117] (characterized by satisfiability and by
foundedness), and the Gelfond-Lifschitz reduct [73], are the most relevant.

An interpretation I is a set of atoms. An interpretation satisfies a rule r ∈ Π iff (Hr∪B−r )∩I ≠ ∅,
or B+

r \ I ̸= ∅. If all rules of the program Π are satisfied, then the program is satisfied and I is
called a model.

Taking ΠG2 from above, we consider two interpretations: I1 = {a, b} and I2 = {a}. Observe
that both interpretations are models.

Definition 2.7 (Gelfond-Lifschitz reduct (GL)). To obtain the GL reduct ΠI of a program Π
w.r.t. I, one (i) removes all rules r ∈ Π with B−r ∩ I ̸= ∅, and (ii) for all remaining rules r ∈ Π,
removing all atoms ¬ai, where ai ∈ B−r .

The GL reduct for I1 is ΠI1
G2 = ∅. For I2 it is ΠI2

G2 = {a}.

Definition 2.8 (Answer Set (GL)). A model I is an answer set of a program Π, iff it is the
minimal model (w.r.t. ⊆) of ΠI .

We use AS(Π) to express the set of all answer sets of Π.

As I1 is not a model of ΠI1
G2, I1 is not an answer set. On the other hand, I2 is a minimal model

of ΠI2
G2 and therefore an answer set.

Definition 2.9 (Foundedness). Let I be an interpretation, Π be a normal (HCF) program, s.t. I
is a model of Π. Then the rule r ∈ Π is suitable for justifying an atom a ∈ I iff (1) a ∈ Hr, (2)
B+

r ⊆ I, (3) I ∩B−r = ∅, and (4) I ∩ (Hr \ {a}) = ∅ hold.

Given an interpretation I and a normal (HCF) program Π, s.t. I is a model of Π, then an atom
h ∈ I is founded iff (1) there exists a rule r ∈ Π, s.t. r is suitable for justifying h ∈ Π, and (2)
there exists a function ϕ, s.t. ϕ : I → {0, ..., |I| − 1} and for all p ∈ B+

r it must be the case that
ϕ(p) < ϕ(h).

Note that there is no rule suitable for justifying in program ΠG2 for any atom of I1. Therefore,
I1 is not founded. For I2 there exists a rule suitable for justifying the (only) atom in I2. Further,
as ΠG2 is tight I2 is founded.

Switching to program ΠG1, observe that both I1 and I2 are not founded. For I2 this arises, as
there is no rule suitable for justifying {a}. In contrast to this, for I1 there exist rules suitable for
justifying I1. However, there does not exist a function ϕ.

Definition 2.10 (Answer Set (Well-Founded)). A model I is an answer set of a normal (HCF)
program Π, iff it is founded.

For ΠG2 the interpretation I1 is not an answer set, whereas I2 is an answer set. For ΠG1 both
interpretations are not answer sets.
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2.2. Answer Set Programming

Observation 2.1 (Equivalence of Answer Set Formulations). Observe that the definitions based
on the Gelfond-Lifschitz reduct (GL) and the Well-Founded semantics coincide, for normal (HCF)
programs.

2.2.2 Non-ground ASP

Non-ground ASP has literals consisting of terms. A literal is similar to an atom, although it
allows for additional language constructs. Grounding refers to the instantiation of variables in
terms with their domain values. Semantics is defined by the grounded version of the program.

Syntax

Rules consist of literals, which consist of terms. We start by defining terms.

Definition 2.11 (Term (Adapted from [22])). A term can be a constant, a variable, an arithmetic
term, or a functional term. We say a term is non-ground iff it contains a variable.

We continue with defining literals, where our definitions are based on the ASP-Core-2 input
language format [22]. For details, we refer to the standard. Note that we assume that each
literal has a (multiple of) literal name(s). For predicate literals, the literal name coincides with
its predicate name, whereas for comparison and aggregate literals we take all predicate names
occurring inside the literal as a set.

Definition 2.12 (Literal (Adapted from [22])). We consider literals to fall into three different
categories: A predicate, a comparison, and an aggregate literal.

A predicate literal has the form p(t1, . . . , tn), where p is the predicate name and t1 to tn are
terms. n = |t1, . . . , tn| = |T | is the arity of the predicate literal.

A comparison literal has the form t ≺ u. t and u are terms, and the comparison operator ≺ has
the operators ≺∈ {“<”,“≤”,“>”,“≥”,“=”,“̸=”}. We require comparison literal occurrence
to be restricted to the body of the rule. Anticipating the semantic discussion, semantically the
operators are defined as usual.

An aggregate literal is defined as aggr(E) ≺ u, where aggr ∈ {count, sum, min, max} , E is
an element multiset, ≺∈ {“<”, “≤”, “>”, “≥”, “=”, “ ̸=”}, and u is a term. We require
aggregate literal occurrence to be restricted to the body of the rule.

Syntactically, we define a choice literal as aggregate literals occurring in the head. It is typically
written as l ≺ aggr(E) ≺ u, where l defines a lower bound and u an upper bound. The literal
derives its name, as semantically it can be used to guess between u- and l-many predicates
occurring in its element multiset set E.

Non-ground rules have the form displayed in Equation (2.2). We define Hr, B+
r , B−r , and most

other related concepts as in the ground case. However, p(X) ∈ Hr∪B+
r ∪B−r is a literal. Further,
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(a) Variable graph D (rgraph). (b) Tree decomposition of D (rgraph).

Figure 2.1: Graph structures for Example 2.3.

let |Π| =
∑︁

r∈Π ||r||, where |r| = ||Hr|| + ||B+
r || + ||B−r ||, and ||W|| = 1 +

∑︁
p(X)∈W |X|,

whereW ∈ {Hr; B+
r ; B−r }. Lastly, a set of rules is a program Π.

p1(X1) ∨ . . . ∨ pl(X l)⏞ ⏟⏟ ⏞
Hr

←
B+

r⏟ ⏞⏞ ⏟
pl+1(X l+1), . . . , pm(Xm),

B−
r⏟ ⏞⏞ ⏟

¬pm+1(Xm+1), . . . ,¬pn(Xn)⏞ ⏟⏟ ⏞
body:Br:=B+

r ∪B−
r

(2.2)

Example 2.2. The following listing depicts a rule with all types of literals. It consists of a
predicate d(X, Y ), a comparison X < Y , an aggregate #count{Z : e(Z, X)} < 3, and a
choice construct 0 ≤ {a(X); b(X); c(X)} ≤ 3.

1 0 <= {a(X);b(X);c(X)} <= 3 :- d(X,Y), X < Y, #count{Z: e(Z,X)} < 3.

We use bold-faced vector notation for variable vectors X = ⟨x1, . . . , xm⟩. Checking membership
of xi is done by xi ∈ X . We write a non-ground literal p(x1, . . . , xm) as p(X). Further, let
hpred(Π) := {p(X) | p(X) ∈ Hr, r ∈ Π}, pred(Π) := {p(X) | p(X) ∈ Hr ∪B+

r ∪B−r }. For
a rule r, let var(r) =

⋃︁
pi(Xi)∈Hr∪B+

r ∪B−
r

Xi be the variables occurring in the rule. Further, we
define hpred(Π) := {p(X) | p(X) ∈ Hr, r ∈ Π}, pred(Π) := {p(X) | p(X) ∈ Hr ∪ B+

r ∪
B−r , r ∈ Π}. For non-ground rules, we let at := {p | p(X) ∈ Hr ∪ B+

r ∪ B−r , r ∈ Π} be the
literal names.

We assume for any rule r ∈ Π, that for any p(X) ∈ Hr ∪ B+
r ∪ B−r it holds that |X| ≤ a,

where a is the arity of p. This means that we do not allow literals such as p(f(X, Y ), Z) to occur.
However, we note that our theory still holds when we adapt the arity formulation to a number of
(global) variables per literal formulation.

Graph Theory for Non-Ground ASP

We introduce the necessary concepts from graph theory for non-ground ASP. For additional
details, we refer the reader to [36]. The notions of dependency graph (non-ground)D and positive
dependency graph (non-ground) DP carry over by switching the wording of atoms to literal
names.
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2.2. Answer Set Programming

Definition 2.13 (Variable Graph of a rule r ∈ Π). Let D (r) be the variable graph of the rule
r ∈ Π. We then define the undirected graph D (r) = (var(r), E), where there is an edge
(xi, xj) ∈ E iff they occur together in a literal (∃pi(Xi) ∈ Hr ∪B+

r ∪B−r : {xi, xj} ⊆Xi).

Example 2.3. We show the variable graph of the following rule rgraph in Figure 2.1a.

1 :- f(X1,X2), f(X1,X3), f(X2,X3), f(X1,X4), f(X4,X5), f(X1,X6), f(X3,X7).

Definition 2.14 (Tree Decomposition (Adapted from [36])). Given an undirected graph G =
(V, E), a tree-decomposition T is a tuple T = (T, χ), where T is a tree, and χ is a function
χ : T → V , s.t. for a t ∈ T , then χ(t) ⊆ V is called bag.

Then T = (T, χ) must fulfill the following conditions: (i) For every v ∈ V it must hold
∃t ∈ T : v ∈ χ(t), (ii) for every (u, v) ∈ E it must hold ∃t ∈ T : {u, v} ⊆ χ(t), (iii) every
occurrence of v ∈ V must form a connected subtree in T w.r.t. χ, i.e., ∀t1, t2, t3 ∈ T , s.t.
whenever t2 is on the path between t1 and t3, it must hold χ(t1) ∩ χ(t3) ⊆ χ(t2).

The width of a decomposition is defined as the largest cardinality of a bag minus one, so
maxt∈T |χ(t)| − 1. The treewidth is the minimal width among all decompositions (TW ).

We show a (minimal) tree-decomposition of rule rgraph in Figure 2.1b.

Semantics

In order to obtain the answer sets of a non-ground program the program is first grounded and
then the ground program is evaluated according to the semantics as defined in Section 2.2.1.
Grounding refers to the process of the instantiation of the variables with their domain.

We introduce the naive grounding procedure by restricting ASP to non-ground ASP without
arithmetics, comparison operators, or aggregates. Given a set of facts F , let p(D) be a literal,
D be the (grounded) term vector, and d ∈D be a term. Then, we can define the domain of the
program as dom(Π) := {d | d ∈D, p(D) ∈ F}. For brevity, we use dom instead of dom(Π) in
some cases.

Let X = var(r), D ∈ dom(X), and X1 ⊆ X . Then a subscript D⟨X1⟩ refers to the term
vector D restricted to X1. Observe |X1| = |D⟨X1⟩| ≤ |X| = |D|. Take for example
X = ⟨x1, x2, x3⟩, D = ⟨1, 2, 3⟩, and X1 = ⟨x1, x3⟩, then D⟨X1⟩ = ⟨1, 3⟩.

Definition 2.15 (Naive Grounding). Given a non-ground program Π, naive grounding refers to
the process where for every rule r, we instantiate every variable of r with all domain values. So,
for every r ∈ Π, D ∈ dom(var(r)):

p1(D⟨X1⟩) ∨ . . . ∨ pl(D⟨Xl⟩)← pl+1(D⟨Xl+1⟩), . . . , pm(D⟨Xm⟩),
¬pm+1(D⟨Xm+1⟩), . . . ,¬pn(D⟨Xn⟩)

We show an example for naive grounding. Take the listing below:
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1 a(1,2).
2 b(X1,X2) :- a(X1,X2).

Then naive grounding produces the following grounded program:

1 a(1,2).
2 b(1,1) :- a(1,1). b(1,2) :- a(1,2).
3 b(2,1) :- a(2,1). b(2,2) :- a(2,2).

Note that more intelligent grounders would produce the following program:

1 a(1,2). b(1,2).

Observation 2.2 (Grounding Size of Naive Grounding). Observe that the grounding size of
naive grounding is exponential in the number of the variables. Let |Π| be the size of the program,
|dom(Π)| be the size of the domain (inferred from the facts F), and let V = maxr∈Π |var(r)| be
the maximum number of variables. Then the grounding size is in O

(︂
|Π| · |dom(Π)|V

)︂
.

Note that we sometimes write ≈ |dom(Π)|V , or ≈ |dom|V instead of O
(︂
|Π| · |dom(Π)|V

)︂
for

brevity.

2.2.3 The Saturation Technique

The saturation technique [43] is an encoding paradigm that can be used to perform a for-all
check, to assert a property holds for all assignments. We explain the technique along the lines of
ensuring satisfiability for a rule. Consider the following program:

1 {b(1);b(2)}.
2 a(X) :- b(X).

We use saturation to explicitly encode satisfiability of the rule in the second line. The first part
of the saturation technique consists of a disjunctive guess. For satisfiability this guess is the
guess of all variable assignments. As the domain dom(Π) is {1, 2}, it suffices to check variable
assignments {X ← 1, X ← 2}. We show the guess in the next listing, where we encode a
variable guess with a sat_x predicate.

1 sat_x(1) | sat_x(2).

The second part of the saturation technique is the encoding of the property. For satisfiability, this
boils down to checking whether either a b(X) does not hold, or an a(X) holds. When any of the
two conditions is fulfilled, the rule is satisfied. We encode this in the following listing.

1 sat :- sat_x(1), not b(1). sat :- sat_x(2), not b(2).
2 sat :- sat_x(1), a(1). sat :- sat_x(2), a(2).

The final part consists in closing the loop. This is done by saturating the variable guesses, where
we set all variables to true whenever we can derive sat. This is shown in the next listing.

1 sat_x(1) :- sat. sat_x(2) :- sat.
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2.3. Computational Complexity Theory

This example demonstrates the saturation technique.

We can extend the above example by removing the original a(X)← b(X) rule and instead guess
the a-atoms by {a(1); a(2)}. Additionally, we can restrict the answer sets to the models of the
original program by ¬sat. For answer sets we need to encode foundedness, which can be done
for our toy example by specifying two constraints. We show the resulting program below.

1 {b(1);b(2)}. {a(1);a(2)}.
2 % Saturation technique:
3 sat_x(1) | sat_x(2).
4 sat :- sat_x(1), not b(1). sat :- sat_x(2), not b(2).
5 sat :- sat_x(1), a(1). sat :- sat_x(2), a(2).
6 sat_x(1) :- sat. sat_x(2) :- sat.
7 :- not sat.
8 % Foundedness (toy-problem):
9 :- not b(1), a(1). :- not b(2), a(2).

The saturation technique is a substantial part of the body-decoupled grounding approach. Note
that the above example demonstrates the application of body-decoupled grounding to a toy
problem. Additional information and examples can be found in [44].

2.2.4 Applications

Prominent industrial examples include a decision-support system for space shuttles [111], train
scheduling for the Swiss Federal Railways [1], optimizing aircraft schedules [109], or robot-
planning in factories [46]. Furthermore, symbolic approaches are an integral part of neuro-
symbolic AI [53]. Examples include NeurASP [133], or a framework for explainable-AI [42].

On a didactical and practical side, ASPChef [4] introduces recipes and provides visualizations of
results. On the other hand, Clinguin [9] introduces graphical user interfaces purely defined in
ASP.

2.3 Computational Complexity Theory

Computational complexity theory “[...] is the area of computer science that contemplates the
reasons why some problems are so hard to solve by computers.” [114, p. v] We expect that the
reader is familiar with basic notions of complexity theory, such as Turing machines and the P
vs. NP debate. We mainly consider decision problems P , which consist of a question and an
instance. The question is a yes-no question. An introduction into these concepts is given in [114].

P are the (decision) problems that are solvable by a deterministic Turing machine in polynomial
time. NP are the (decision) problems solvable by a non-deterministic Turing machine in polyno-
mial time. co-NP are the reversed (decision) problems solvable by a non-deterministic Turing
machine in polynomial time. For our purposes, we define a complexity class C to be the set of
problems, that are decidable for a given model of computation (Turing machine), in a certain
mode (deterministic vs. non-deterministic), with a given resource limit (polynomial time). Let A
be a problem s.t. A ∈ C. Subsequently, we say A is a member of C, or is in C. P, NP, and co-NP
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are complexity classes. Example: The Horn-satisfiability problem is in P, NP, and co-NP, the
boolean-satisfiability problem is in NP, and the boolean-tautology problem is in co-NP.

One distinctive feature of the NP class is that given a “yes” instance, the solution (≈ certificate)
can be verified in polynomial time by a deterministic turing machine. Conversely, a certificate for
a “no” instance for the co-NP class can be verified in polynomial time by a deterministic turing
machine.

Reductions: A reduction is intuitively the mapping of one problem A, to another problem B.
This can be of use when efficient solvers for B exist, but not for A, or for proving complexity
results.

Definition 2.16 (Many-One Reduction). Let A and B be problems, and A and B their respective
sets of instances. Then, a reductionR is a mappingR : A→ B, s.t. instance i ∈ A is a positive
instance of A, iffR(i) ∈ B is a positive instance of B.

We requireR to be efficiently computable. Therefore,R needs to be computable by a deterministic
Turing machine in polynomial time. Further, we require that the algorithm for problem B is only
called (at most) once.

Reductions define a weaker/stronger order between different complexity classes. For the problems
A and B, and a many-one reductionR from A to B, we write A ≤R B.

This gives rise to two important concepts: Hardness and completeness.

Definition 2.17 (Hardness and Completeness). Let C be a complexity class, and D be a problem.
Then D is C-hard if any problem E ∈ C can be many-one reduced to D, so E ≤R D.

If additionally, D is a member of C (D ∈ C), then D is said to be C-complete.

Prominent problems related to logic that are complete in the respective classes include the
Horn-satisfiability problem that is P-complete, the boolean-satisfiability problem that is NP-
complete, or the boolean-tautology problem that is co-NP-complete. It is widely believed that
P ̸= NP ̸= co-NP.

Polynomial Hierarchy: Reductions define an order. The order that extends the P, NP, and
co-NP classes, is called the polynomial hierarchy. Given complexity classes C and D, putting
D as a superscript of C, defines that D is used as an oracle CD. An oracle D means that all
problems in D can be solved in constant time. Take for example PNP, which is the class that
solves problems in polynomial time, provided it can solve problems in NP in constant time.

The hierarchy is typically written as the symbols ∆P
i , ΣP

i , and ΠP
i , where the superscript P says

that we are in the polynomial hierarchy and the subscript i defines the position in the order.
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∆P
0 = ΣP

0 = P = ΠP
0 = ∆P

1

ΣP
1 = NP

ΠP
1 = co-NP

∆P
2

ΣP
2

ΠP
2

∆P
3

. . .

. . .

Figure 2.2: Diagram of the polynomial hierarchy. An edge (A, B) symbolizes that complexity
class A is included in class B. The left side ∆P

0 = ΣP
0 = P = ΠP

0 depicts the base case
(Equation (2.3)). The other layers are inductively defined in Equations (2.5)–(2.7). Lastly, ∆P

1 is
shown in Equation (2.4).

The hierarchy is inductively defined. Equation (2.3) shows the base case. For i ≥ 0 the
induction is shown in Equations (2.5)–(2.7), and Equation (2.4) shows the specific case for ∆P

1 .

∆P
0 = ΣP

0 = P = ΠP
0 (2.3)

∆P
1 = PΣP

0 = PP = P (2.4)

∆P
i+1 := PΣP

i (2.5)

ΣP
i+1 := NPΣP

i (2.6)

ΠP
i+1 := co-NPΣP

i (2.7)
ASP and Complexity Theory: Lastly, we focus on decision problems for ASP and state their
complexities. In [31], they state the computational complexity results for ASP (ground and
non-ground), while in [40], they explicitly focus on bounded predicate arities. Typical ASP
decision problems are:

1. Answer Set Check: Let Π be a program and I be an interpretation. Is I an answer set?

2. Answer Set Existence: Let Π be a program. Does Π have an answer set?

3. Brave Reasoning: Let Π be a program and p be a ground literal. Does there exist an answer
set I of Π, s.t. p ∈ I?

4. Cautious Reasoning: Let Π be a program and p be a ground literal. Does every answer set
I of Π have the property p ∈ I?

In the following, we will focus on the answer set existence problem, as this is also essential for
BDG. For the complexity results, we need to distinguish between different classes of programs.
In general, we can identify three axes with each having three categorical values: (i) ground/non-
ground(bounded-arities)/non-ground, (ii) no negation/stratified negation/not-stratified, (iii) non-
disjunctive/HCF/disjunctive. Depending on the exact combination, we obtain different results.
We show the overview table, which we adapted from [40], in Table 2.1.
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{} {nots} {not}
Ground ASP

{} P P NP
{∨h} NP NP NP
{∨} NP ΣP

2 ΣP
2

Non-Ground (bounded-arity) ASP

{} co-NP ∆P
2 ΣP

2
{∨h} ΣP

2 ΣP
2 ΣP

2
{∨} ΣP

2 ΣP
3 ΣP

3

Table 2.1: Complexity classes for the answer set existence problem for ground, non-ground
(bounded predicate arities), and non-ground ASP. Each entry signifies membership and hardeness
(completeness). Columns: {not} non-stratified default negation, {nots} stratified default negation,
{} no negation. Rows: {∨} (cyclic/non-tight) disjunction, {∨h}HCF programs (tight disjunction),
{} no disjunction (normal programs). Note the increase in complexity from ground to non-ground
(bounded predicate arities) and observe classes with matching computational complexity (which
give rise to possible reductions). Adapted from [40].

Generally speaking, ground normal ASP with no negation is the weakest problem (P-complete),
whereas non-ground disjunctive ASP is the hardest one (NEXPNP-complete). However, for
practical purposes non-ground (general) ASP can largely be ignored, as the (maximal) arities
of a program are known beforehand. Therefore, the table entries for ground and non-ground
(bounded-arity) ASP are of special practical value. Observe that cells with matching complexity
classes give rise to many-one reductions.

Prominent reductions for ASP are: The alternative grounding procedure BDG [12], which is
from non-ground (bounded-arity) normal ASP to ground disjunctive ASP. A reduction [13] from
non-ground (bounded-arity) disjunctive ASP to epistemic logic programming (ELP). Note that
(ground) ELPs are also ΣP

3 -complete. The selp reduction [15] reduces ELPs to disjunctive ASP.

2.4 Bottom-up/Semi-naive Grounding

Bottom-up/Semi-naive grounding [23], [61] refers to the currently used state-of-the-art grounding
technique used by grounders such as gringo or idlv. As we aim at integrating body-decoupled
grounding (BDG) with SOTA grounding in Chapter 5, we introduce in this section the basic
workings behind bottom-up/semi-naive grounding. The name bottom-up grounding stems from
the way one can think of how this grounding technique works. Given a program Π, bottom-up
grounding first analyzes the (positive) dependency graph DP (Definition 2.2) of the program. It
continues by analyzing the dependency graph for its SCCs, and creating the reduced dependency
graph DR

P (Definition 2.1). Next they define the topological order LΠ over DR
P .

Now a crucial observation is that one can ground all rules in a single v ∈ V (DR
P ), independently

of its successors in LΠ. Observe that v ∈ V (DR
P ) translates to a SCC in DP . Therefore, bottom-
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up grounding boils down to traversing LΠ and iteratively ground the vertices v ∈ V (DR
P ) (the

SCCs of DP ).

Going from intuition to a more precise formulation, let HB(Π) be the Herbrand Base, the set of all
ground literals, which can be inferred by naive grounding. Then, let the candidate set D (D ⊆ HB)
be the set that is obtained via bottom-up/semi-naive grounding. D is iteratively computed by
expanding the candidate set. In the base case D = F . For each iteration, the candidate set
is expanded by those head atoms that can be inferred from D. We define groundD(Π) as all
ground rules that can be inferred from D, G(Π) is the set of ground rules (naive grounding). In
more detail, if the positive body B+

r is in the candidate set D, then it is also in groundD(Π)
(Equation (2.8)).

groundD(Π) = {r | r ∈ G(Π), B+
r ⊆ D} (2.8)

Example 2.4. Let ΠE1 be:

1 e(1,2). f(X,Y) :- e(X,Y).
2 a(X,Y) :- f(X,Y). f(Y,X) :- a(X,Y).
3 c(X,Y) :- a(X,Y). :- c(X,Y), c(Y,X).

Let D = F = {e(1, 2)}, then groundD(Π) = {e(1, 2); f(1, 2)← e(1, 2)}.

The simplest form of the bottom-up algorithm is depicted in Algorithm 2.1. It does not use the
topological order, but recursively calls itself to obtain a fixed-point on the newly inferred heads
from Equation (2.8). In more detail, given a non-ground program Π and a candidate set D, in
Line (1) Equation (2.8) is called. In Line (2) the fixed-point check is performed, in Line (3) the
algorithm calls itself recursively, and in Line (5) the algorithm returns the grounded program.

Algorithm 2.1: Bottom-up-grounding; Algorithm adapted from [61].
Data: Program Π, candidate set D
Result: Grounded program G

1 G← groundD(Π) ;
2 if hpred(G) ̸⊆ D then
3 return bottom-up-grounding(Π, D ∪ hpred(G)) ;
4 end
5 return G

Example 2.5. We show how Algorithm 2.1 works on program ΠE1. Initially, let D = F =
{e(1, 2)}, which gets extended in 5 recursive calls (we write iteration henceforth). At iteration 5
we have hpred(G) ⊆ D. Observe how G is re-derived at every iteration (#It.).
Although the above algorithm works, in principle, it has one serious drawback: it re-derives
already grounded rules. Therefore, the more advanced form of the bottom-up algorithm, depicted
in Algorithm 2.2, performs grounding along the topological order LΠ defined over the SCCs.

Given a program Π, and a candidate set D = F , Algorithm 2.2 performs bottom-up grounding
along the SCCs. Line (1) initializes the grounded program, Line (2) iterates over the topo-
logical order. Then, Line (3) takes the current SCC C and calls Algorithm 2.1 to infer the
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#It. D G hpred(G)

0 {e(1, 2)} {e(1, 2); f(1, 2)← e(1, 2)} {e(1, 2); f(1, 2)}

1 {e(1, 2); f(1, 2)} {e(1, 2); f(1, 2)← e(1, 2);
a(1, 2)← f(1, 2)}

{e(1, 2); f(1, 2); a(1, 2)}

2 {e(1, 2); f(1, 2); a(1, 2)} {e(1, 2); f(1, 2)← e(1, 2);
a(1, 2)← f(1, 2); f(2, 1)← a(1, 2);

c(1, 2)← a(1, 2)}

{e(1, 2); f(1, 2); a(1, 2)
f(2, 1); c(1, 2)}

3 {e(1, 2); f(1, 2); a(1, 2)
f(2, 1); c(1, 2)}

{e(1, 2); f(1, 2)← e(1, 2);
a(1, 2)← f(1, 2); f(2, 1)← a(1, 2);
c(1, 2)← a(1, 2); a(2, 1)← f(2, 1)}

{e(1, 2); f(1, 2); a(1, 2)
f(2, 1); c(1, 2); a(2, 1)}

4 {e(1, 2); f(1, 2); a(1, 2)
f(2, 1); c(1, 2); a(2, 1)}

{e(1, 2); f(1, 2)← e(1, 2);
a(1, 2)← f(1, 2); f(2, 1)← a(1, 2);
c(1, 2)← a(1, 2); a(2, 1)← f(2, 1);
c(2, 1)← a(2, 1); f(1, 2)← a(2, 1)}

{e(1, 2); f(1, 2); a(1, 2)
f(2, 1); c(1, 2); a(2, 1);

c(2, 1)}

5 {e(1, 2); f(1, 2); a(1, 2)
f(2, 1); c(1, 2); a(2, 1);

c(2, 1)}

{e(1, 2); f(1, 2)← e(1, 2);
a(1, 2)← f(1, 2); f(2, 1)← a(1, 2);
c(1, 2)← a(1, 2); a(2, 1)← f(2, 1);
c(2, 1)← a(2, 1); f(1, 2)← a(2, 1);
← c(1, 2), c(2, 1);← c(2, 1), c(1, 2)}

{e(1, 2); f(1, 2); a(1, 2)
f(2, 1); c(1, 2); a(2, 1);

c(2, 1)}

grounded program of the current SCC. In Line (4) the returned program G′ is added to G,
and the candidate set D is expanded. Finally, in Line (6) the grounded program is returned.

Algorithm 2.2: Ordered bottom-up-grounding; Algorithm adapted from [61].
Data: Program Π, candidate set D
Result: Grounded program G

1 G← ∅ ;
2 for C in LΠ do
3 G′ ← bottom-up-grounding(C, D) ;
4 (G, D)← (G ∪G′, D ∪ hpred(G′)) ;
5 end
6 return G

Example 2.6. We show how Algorithm 2.2 works on program ΠE1. Initially, let D = F =
{e(1, 2)}. We define the topological order LΠ to be LΠ = ({e}; {f ; a}; {c}). Constraints are
handled as soon as possible. Observe how bottom-up grounding does not re-derive already
derived rules or candidate set atoms.
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#It. D G G′ hpred(G)

0 {e(1, 2)} ∅ {e(1, 2)} {e(1, 2)}

1 {e(1, 2)} {e(1, 2)} {f(1, 2)← e(1, 2);
a(1, 2)← f(1, 2);
f(2, 1)← a(1, 2);
a(2, 1)← f(2, 1);
f(1, 2)← a(2, 1)}

{f(1, 2); f(2, 1);
a(1, 2); a(2, 1)}

2 {e(1, 2)
f(1, 2); f(2, 1);
a(1, 2); a(2, 1)}

{e(1, 2); f(1, 2)← e(1, 2);
a(1, 2)← f(1, 2);
f(2, 1)← a(1, 2);
a(2, 1)← f(2, 1);
f(1, 2)← a(2, 1)}

{c(1, 2)← a(1, 2);
c(2, 1)← a(2, 1);
← c(1, 2), c(2, 1);
← c(2, 1), c(1, 2)}

{c(1, 2), c(2, 1)}

Algorithm 2.2 achieves not re-deriving grounded rules, as long as the SCCs are not cyclic. If
they are cyclic, these are re-derived in Line (3) of the algorithm. For cyclic SCCs, the semi-
naive grounding approach is proposed. Intuitively, semi-naive grounding keeps track of all new
atoms that were instantiated in the last call to the ground-rule-procedure, and prohibits their
re-instantiation. The details can be found in [61], however they are not necessary to understand
the remaining chapters of the thesis.

2.4.1 Simplifications

SOTA grounders use multiple simplifications that are enabled by the bottom-up grounding
procedure. Important for these simplifications is the split of the candidate set D, into DT , the
surely true literals, and Dpot, the potentially true atoms. Conversely, if a literal p ̸∈ DT ∪Dpot, p
is surely false. This simplification can be titled propagation of true atoms. It encompasses: (1)
removal of facts from the positive body, (2) discarding of rules with negative literals over a fact
(3) discarding of rules whenever the head is a fact, and (4) gathering of new facts whenever a rule
body is empty.

Further, they use propagation of false atoms. With these simplifications, they can evaluate certain
constraints and obtain new facts. Further, they can evaluate the whole class of stratified programs
(Definition 2.3).

Example 2.7. Simplifications for program ΠE1. Observe that ΠE1 is stratified. In Example 2.6
we saw that the constraints {← c(1, 2), c(2, 1);← c(2, 1), c(1, 2)} are part of the grounding. As
we can derive {c(1, 2); c(2, 1)} ⊆ DT , we know that ΠE1 has no answer sets.

2.4.2 Rule Instantiation

In Algorithm 2.3, we depict the simplified rule instantiation mechanism of state-of-the-art
grounders (adapted from [61]). Let r ∈ Π, D be the candidate set, DT (DT ⊆ D) be the surely
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Algorithm 2.3: ground-backtrackr,R,D; Algorithm adapted from [61].

Data: Substitution σ, true candidate set DT , safe body ordering (b1, . . . , bn)
Result: grounded rule(s) G, true candidate set DT

1 if n = 0 then
2 H = {hσ | h ∈ Hr(r)};
3 B = {pσ | p ∈ B+

r , pσ ̸∈ DT } ∪ ;
4 {not aσ | a ∈ B−r \R, aσ ∈ D}∪ ;
5 {not aσ | a ∈ B−r ∩R} ;
6 B− = {pσ | p ∈ B−r } ;
7 if B = ∅ then
8 DT ← DT ∪H;
9 end

10 return ({H ← B | B− ∩DT = ∅, H ∩DT = ∅}, DT ) ;
11 else
12 G← ∅ ;
13 foreach σ′ ∈ matchDT ,D(σ, b1) do
14 (G, F )← (G, F ) ∪ ground-backtrackr,R,D(σ′, DT , (b2, . . . , bn)) ;
15 end
16 return (G, DT ) ;
17 end

true atoms in the candidate set, R all literals occurring recursively in D (overall, not positive
dependency graph), σ a (ground) substitution (σ : var(r) → dom(r)), and (b1, . . . , bn) a safe
body ordering. A body ordering is safe whenever a variable occurrence in a negative body
literal is preceded by a positive occurrence. Further, let matchDT ,D(σ, b1) be a set of possible
substitutions, inferred by σ and D, w.r.t. DT and D.

Then the algorithm intuitively traverses the safe body order (Lines (12)–(16)), intantiates the
rule r by recursively calling itself (Line (14)), and if it finds an assignment (Lines (1)–(10)), it
returns the rule (Line (10)). By backtracking (Line (14)) it generates all rules and returns them
(Line (16)). In more detail, the final assignment instantiates the head (Line (2)) and the body
(Lines (3)–(5)). The positive body literals are integrated if they are not surely true (Line (3)),
whereas for the negative body, if they are not recursive and in the candidate set, then they are
added (Line (4)), and if they are recursive, they are always added (Line (5)). The negative body is
instantiated in Line (6). If the body is empty, then the head is surely true (a fact) (Lines (7)–(8)).
In any case, the rule is instantiated in Line (10), as long as no literal of the negative body, or the
head, is in DT .

Although Algorithm 2.3 incorporates several simplifications, it still is in the worst case a naive
instantiation procedure. Therefore, it is still exponential in the number of variables in the
worst-case.
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Example 2.8. We demonstrate how Algorithm 2.3 works by an example. We want to instantiate
the following rule r:

1 a(X) :- b(X,Y), c(Y,Z), not d(Z).

We assume D = {b(2, 1); b(1, 2); c(2, 3); c(2, 4); c(2, 5); d(4); d(5)}, DT = {d(4); c(2, 5)},
R = ∅, and G = ∅. We show the instantiation in Table 2.2, where we focus on σ and (b1, . . . , bn).
Let (b1, . . . , bn) = (b(X, Y ); c(Y, Z); not d(Z)) be our safe body order. Note that a body
ordering like (b(X, Y ); not d(Z); c(Y, Z)) is not safe. We handle negative body literals in
Lines (2)–(10) of the algorithm and let them pass through Lines (13)–(15). Note that in Table 2.2
we show the current iteration at Line (15) of the algorithm. The procedure yields two instantiated
rules: {a(1)← b(1, 2), c(2, 3); a(1)← b(1, 2), not d(5)}.

#It. σ (b1, . . . , bn)

0 ∅ (b(X, Y ); c(Y, Z); not d(Z))
1 {X ← 2; Y ← 1} (c(Y, Z); not d(Z))

return Line (16): (∅, DT ), as matchDT ,D(σ, c(Y, Z)) = ∅

2 {X ← 1; Y ← 2} (c(Y, Z); not d(Z))
2.1 {X ← 1; Y ← 2, Z ← 3} (not d(Z))
2.1.1 {X ← 1; Y ← 2, Z ← 3} ()

return Line (10): ({a(1)← b(1, 2), c(2, 3)}, DT ), as not d(3) ̸∈ D

2.2 {X ← 1; Y ← 2, Z ← 4} (not d(Z))
2.2.1 {X ← 1; Y ← 2, Z ← 4} ()

return Line (10): (∅, DT ), as B− ∩DT = {d(4)} ≠ ∅

2.3 {X ← 1; Y ← 2, Z ← 5} (not d(Z))
2.3.1 {X ← 1; Y ← 2, Z ← 5} ()

return Line (10): ({a(1)← b(1, 2), not d(5)}, DT ), as c(2, 5) ∈ DT

Table 2.2: Instantiation of rule a(X)← b(X, Y ), c(Y, Z), not d(Z) according to Algorithm 2.3
and Example 2.8.

2.5 Conflict-Driven-Nogood-Learning (CDNL)

We present the main ideas and concepts behind Conflict-Driven-Nogood-Learning (CDNL) and
thereby present how ASP solvers work, with a focus on preventing cyclic derivations. See [63]
for a detailed discussion about the topic.

The solving step takes a ground program Π, translates the program into nogoods and then performs
the Conflict-Driven-Nogood-Learning (CDNL) [62], [63] to obtain an answer set. Cycles are
checked with the unfound-set approach and a lazy-solving algorithm. CDNL is conceptually
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similar to Conflict-Driven-Clause-Learning (CDCL) [101], which is the SOTA algorithm for
boolean-satisfiability (SAT) solving.

A nogood is a conjunction of (signed) atoms {T α1, . . . , F αz}, which represents a forbidden
assignment. Meaning, that whenever all T α1, . . . , F αz hold, then we know there cannot be an
answer set. Such a signed atom is typically written as T α1 resembling that α1 occurs positively
in the nogood, whereas F indicates a negative occurrence. Very similar to this concept are clauses
(as in SAT), which are a disjunction of atoms. The relation between nogoods and clauses is that
{T α1, . . . , F αz} holds iff ¬α1 ∨ . . . ∨ αz does not hold.

Solvers encode ASP programs as a set of nogoods. We focus in this section on the representation
of the program as nogoods, with a particular emphasis on nogoods that are part of the cyclic
derivation prevention. However, we provide an intuition how the CDNL algorithm works (details
in [63]): Each atom is assigned a truth value (T true, or F for false). A full assignment is denoted
as A, the restriction to the true assignment as AT , and conversely for the false assignment as
AF . CDNL iteratively assigns truth values to atoms. If a nogood is unit (all except one atom
evaluates to true under A), it uses unit propagation to infer that the last atom must evaluate
to false. However, if in the process a nogood is true, we are in a conflict. Therefore, we must
backtrack, use conflict analysis and resolution to learn new (better) nogoods, and assign other
truth values. If everything is assigned and there is no conflict we have an answer set, but if we
have a conflict and cannot backtrack we know that there is no answer set.

2.5.1 Tight Nogoods

Nogoods can in principle be put into two categories, those for tight and those for non-tight
programs. As the nogoods for the non-tight part build upon the concept of the tight part, we start
by presenting nogoods for the tight part. The nogoods of the tight part heavily depend on the
concept of Clark completion. Therefore, we will first define the Clark completion, followed by
the encoding of the nogoods. Afterwards, we will discuss the unfound-set method.

Definition 2.18 (Clark Completion, adapted from [63]). The clark completion of a ground tight
normal program Π is defined as the following propositional logic formula C:

C ={pBr ↔ p2 ∧ . . . ∧ pm,¬pm+1, . . . ,¬pn | (2.9)
Br ∈ body(Π), Br = {p2, . . . , pm,¬pm+1, . . . ,¬pn}}∪

{p↔ pB1
r
∨ . . . ∨ pBk

r
| p ∈ at(Π), bodyΠ(p) = {B1

r , . . . , Bk
r }} (2.10)

Given a ground tight program Π and a set of atoms I, and let B′ ⊆ B = {pBr ∈ body(Π)}. I is
an answer set whenever I ∪ B′ satisfies C.

Intuitively, Clark completion captures the notion of answer sets in a similar way to the satisfiability
and foundedness notions (for tight programs). While Equation (2.9) captures the notion that a
body holds whenever all of its atoms are true. Equation (2.10) encodes that if an atom p holds,
there must exist a suitable body, and if there is a body that holds, then its respective head must
holds as well.
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This notion is directly encoded into nogoods, by defining:

δ(Br) = {F Br, T p2, . . . , T pm, F pm+1, . . . , F pn} (2.11)

∆(Br) = {{T Br, F p2}, . . . , {T Br, F pm}, {T Br, T pm+1}, . . . , {T Br, T pn}} (2.12)

∆(p) = {{F p, T B1
r}, . . . , {F p, T Bk

r }} (2.13)

δ(p) = {T p, F B1
r , . . . , T Bk

r } (2.14)

Notice how nogood Equations (2.11)–(2.12) capture Clark’s Equation (2.9), and how nogood
Equations (2.13)–(2.14) capture Clark’s Equation (2.10).

Using Equations (2.11)–(2.14) we obtain the following nogoods for the (whole) program Π:

∆body(Π) = {δ(Br) | Br ∈ body(Π)} ∪ {δ | δ ∈ ∆(Br), Br ∈ body(Π)} (2.15)

∆atom(Π) = {δ(p) | p ∈ atom(Π)} ∪ {δ | δ ∈ ∆(p), p ∈ atom(Π)} (2.16)

∆Π = ∆body(Π) ∪∆atom(Π) (2.17)

Equation (2.15) captures the body nogoods, Equation (2.16) captures the nogoods for the atoms,
and Equation (2.17) combines the body and the atoms nogoods.

In [63] they establish the result that an answer set of a ground tight normal program Π corresponds
to the unique solution of Equation (2.17):

Theorem 2.1 (Adapted from Theorem 3.3 in [63]). Let Π be a ground tight normal program and
I ⊆ at(Π) be a set of atoms, and let the assignment A be defined as follows:

A ={T p | p ∈ I} ∪ {F p | p ∈ at(Π) \ I}∪
{T Br | Br ∈ body(Π), B+

r ⊆ I, B−r ∩ I = ∅}∪

{F Br | Br ∈ body(Π),
(︂
B+

r ∩ (at(Π) \ I)
)︂
∪ (B−r ∩ I) ̸= ∅}

Then, I is an answer set of Π iff A is the unique solution for ∆Π s.t. AT ∩ at(Π) = I.

Example 2.9. To show the added nogoods in an example, let Π be:

1 e(1). q(1). f(1) :- e(1), q(1). f(1) :- q(1).

We get the following nogoods:

∆body(Π) ={{F ∅}, {F {e(1), q(1)}, T e(1), T q(1)}, {F {q(1)}, T q(1)}, (2.18)

{T {e(1), q(1)}, F e(1)}, {T {e(1), q(1)}, F q(1)}, {T {q(1)}, F q(1)}}
∆atom(Π) ={{T e(1), F ∅}, {T q(1), F ∅}, {T f(1), F {e(1), q(1)}, F {q(1)}} (2.19)

{F e(1), T ∅}, {F q(1), T ∅}, {F f(1), T {e(1), q(1)}}, {F f(1), T {q(1)}}}
∆Π =∆body(Π) ∪∆atom(Π) (2.20)
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A short note on the facts e(1) and q(1): Observe nogood {F ∅} in Equation (2.18), which de
facto assigns true to ∅. Together with the two nogoods {T e(1), F ∅}, {T q(1), F ∅}, this leads the
unit propagation to always fulfill e(1) and q(1).

Let I = {e(1), q(1), f(1)} and A be defined as A = {T e(1), T q(1), T f(1), T {e(1), q(1)},
T {q(1)}}. Then I is an answer set, as A is the unique solution of ∆Π.

2.5.2 Unfound-set and Loop Nogoods

In the case that a ground normal program Π is not tight, the nogoods from ∆Π do not suffice
to capture the answer set semantics. In fact, they only capture supported models. Therefore,
one has to add additional nogoods. The method presented in [63] and also discussed here is the
unfound-set method. The basic idea is the following: Knowing that there is a cyclic component
in the ground dependency graph, one tries to find external support from outside of the cyclic
component. External support manifests itself in the dependency graph as an incoming edge into
the SCC. Alternatively, if the external support is a fact, then there is no incoming edge.

In more detail, given a ground normal program Π, let U ⊆ at(Π), we define the external bodies
EBΠ(U) of U for Π as:

EBΠ(U) = {Br
r | r ∈ Π, h ∈ Hr, h ∈ U, B+

r ∩ U = ∅}

This directly leads us to the notion of the unfounded set. Intuitively, a Br
r ∈ EBΠ(U) can

provide non-circular support for U . Therefore, if Br
r holds for an assignment A, it provides

non-circular support. Conversely, if no external body can be found for U that holds for A, we
find an unfounded set.

Definition 2.19 (Adapted from Definition 3.1 in [63]). Let Π be a ground normal program, A an
assignment and U ⊆ at(Π). Then U is an unfounded set of Π w.r.t. A, iff EBΠ(U) ⊆ AF .

With the notion of unfound set defined, we continue to define the loop formula for U ⊆ at(Π)
in Equation (2.21). Intuitively this loop formula encodes that if at least one atom of the set U
holds, there must exist at least one external support body. This is encoded in the loop nogood in
Equation (2.22). Lastly, in Equation (2.23) we add loop nogoods for all conceivable sets U .⎛⎝ ⋁︂

p∈U

p

⎞⎠→
⎛⎝ ⋁︂

Br∈EBΠ(U)
pBr

⎞⎠ (2.21)

λ(p, U) = {T p, F B1
r , . . . , F Bk

r } (2.22)

ΛΠ =
⋃︂

∅⊂U⊆at(Π)
{λ(p, U) | p ∈ U} (2.23)

With the combination of ΛΠ and ∆Π we capture the answer set semantics for ground normal
programs:
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2.5. Conflict-Driven-Nogood-Learning (CDNL)

Theorem 2.2 (Adapted from Theorem 3.7 in [63]). Given a ground normal program Π and a set
of atoms I ⊆ at(Π), we define the assignment A as:

A ={T p | p ∈ I} ∪ {F p | p ∈ at(Π) \ I}∪
{T β | β ∈ body(Π), B+

r ⊆ I, B−r ∩ I = ∅}∪

{F β | β ∈ body(Π),
(︂
B+

r ∩ (at(Π) \ I)
)︂
∪ (B−r ∩ I) ̸= ∅}

Then I is an answer set of Π iff A is the unique solution for ∆Π ∪ ΛΠ s.t. AT ∩ at(Π) = I.

Example 2.10. We show the loop nogoods in an example. Let Π be:

1 a(1) :- b(1). b(1) :- a(1).

This program has only one answer set that is empty. To check this, we generate the nogoods:

∆body(Π) ={{F {b(1)}, T b(1)}, {F {a(1)}, T a(1)}, {T {b(1)}, F b(1)}, {T {a(1)}, F a(1)}}
(2.24)

∆atom(Π) ={{F a(1), T {b(1)}}, {F b(1), T {a(1)}}, {T a(1), F {b(1)}}, {T b(1), F {a(1)}}}
(2.25)

ΛΠ ={{T a(1), F {b(1)}}, {T b(1), F {a(1)}}, {T a(1)}, {T b(1)}} (2.26)

∆Π ∪ ΛΠ =∆body(Π) ∪∆atom(Π) ∪ ΛΠ (2.27)

Observe the two loop nogoods {T a(1)}, {T b(1)} in Equation (2.26). Therefore, let I = ∅ and
A = {F a(1), F b(1), F {b(1)}, F {a(1)}}. Then I is an answer set, as A is the unique solution
to ∆Π ∪ ΛΠ.

2.5.3 Unfound Set Algorithm

Although we capture with this the answer set semantics, there still remains a significant practical
problem. ΛΠ is exponential in the size of Π (in general). Therefore, most solvers lazily add
λ(p, U) ∈ ΛΠ, meaning they are added only if required. Algorithm 2.4 shows the adapted
unfound-set algorithm from [63]. Line (1) gathers all atoms that occur in any SCC in the set
S. These are the atoms we have to check for their unfoundedness. Line (3) gets a single atom
from an arbitrary SCC. This amounts to selecting the current SCC under investigation. Therefore,
Lines (3)–(17) operate on a single SCC. Line (5) checks whether U is an unfounded set. If so it
is returned. Lines (8)–(16) iterate over all positive bodies. If an external support body Br was
found outside of the current SCC (Line (9)), all directly supported atoms are removed from the
unfounded set U and from S (Line (11)). However, if Br is from the current SCC its positive
body atoms are added to the unfounded set (Line (14)). We simplified the algorithm from [63] by
not taking into account source pointers. Their inclusion would reduce the number of investigated
atoms in S on successive calls.
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Algorithm 2.4: Adapted UnfoundSet from Algorithm 3 in [63]
Data: Logic program Π, assignment A, and information about SCCs.
Result: An unfounded set of Π w.r.t. A.

1 S = {p | p ∈ at(Π), |SCC(Π, p)| > 1, p ∈ AT } ; /* All cyclic atoms. */
2 while S ̸= ∅ do
3 U ← {p} s.t. p ∈ S ; /* Take a single arbitrary p ∈ S */
4 do
5 if EBΠ(U) ⊆ AF then
6 return U ;
7 end
8 for Br ∈ EBΠ(U) \ AF do
9 if B+

r ∩ (SCC(Π, p) ∩ S) = ∅ then
10 for q ∈ U s.t. Br ∈ bodyΠ(q) do
11 U ← U \ {q}; S ← S \ {q};
12 end
13 else
14 U ← U ∪

(︁
B+

r ∩ (SCC(Π, p) ∩ S)
)︁

;
15 end
16 end
17 while U ̸= ∅;
18 end

Example 2.11 (Ctd. Example 2.10). The following shows the workings of the unfound set
algorithm for the program in Example 2.10 and an assignment AT ∩ at(Π) = {a(1); b(1)}. We
show in Table 2.3 how the UnfoundSet algorithm derives U = {b(1); a(1)}. This results in the
following two nogoods being added, which prevents the cyclic derivation:

ΛΠ(U) = {{T a(1)}, {T b(1)}}

#It. Line Event #It. Line Event

0 1 S = {a(1); b(1)} 2 5 EBΠ(U) = ∅

3 U = {b(1)}; p = b(1) (arbitrarily
chosen)

9 return U = {b(1); a(1)}

1 5 EBΠ(U) = {a(1)}

8 Br = {a(1)}

14 U = {b(1); a(1)}

Table 2.3: Execution of Algorithm 2.10, for Example 2.11. The algorithm derives that additional
nogoods are needed.
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CHAPTER 3
Body-decoupled Grounding

Body-decoupled grounding (BDG) [12] is a novel grounding procedure. Originally, it was
introduced as a complexity theoretic reduction from non-ground (bounded-arity) normal, to
ground disjunctive ASP. This comes as it is a well known result in ASP that non-ground (bounded-
arity) normal ASP is ΣP

2 complete, as is ground disjunctive ASP [40]. Its practical usefulness
stems from its performance on grounding-heavy instances. It is therefore, considered as a
promising approach towards solving the grounding bottleneck.

This chapter serves as a background on body-decoupled grounding. We start by introducing the
BDG reduction in Section 3.1 and show in Section 3.2 improvements and extensions of BDG. In
Section 3.3 we state the deficiencies of the BDG approach. We consider the detailed discussion
of the BDG shortcomings, as our first contribution, as to the best of our knowledge, this is the
first time this has been done in such detail and length.

3.1 BDG Reduction for tight ASP

Body-decoupled grounding intuitively works by taking an arbitrary rule r, decoupling it, while
still preserving semantics. By decoupling we mean grounding each literal on its own. Semantics
is preserved by encoding the well-founded model semantics of ASP, thereby explicitly encoding
satisfiability and foundedness. Satisfiability is encoded with saturation, which implicitly checks
every variable instantiation. For foundedness, a direct approach is used, where for each guessed
head-literal, an existence check is made if a suitable rule can be found, whose body is fulfilled.

Regarding the limits of BDG, recall that BDG is a reduction from non-ground (bounded-arity)
normal ASP, to ground disjunctive ASP. This definition inherently limits the applicability of
BDG to non-ground normal (HCF) programs. Conversely, disjunctive programs can not be
handled in their entirety. Note that by abusing notation, we drop the explicit mentioning of
“(bounded-arity)”.
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3. BODY-DECOUPLED GROUNDING

Guess Answer Set Candidates
h(D) ∨ h(D)← for every h(X) ∈ heads(Π), D ∈ dom(X) (3.1)

Ensure Satisfiability⋁︂
d∈dom(x)

satx(d)← for every r ∈ Π, x ∈ var(r), (3.2)

satr ← satx1 (D⟨x1⟩), . . . , satxt (D⟨xt⟩),¬p(D) for every r ∈ Π, p(X) ∈ B+
r ,

D ∈ dom(X), X = ⟨x1, . . . , xt⟩ (3.3)

satr ← satx1 (D⟨x1⟩), . . . , satxt (D⟨xt⟩), p(D) for every r ∈ Π, p(X) ∈ B−
r ∪Hr,

D ∈ dom(X), X=⟨x1, . . . , xt⟩ (3.4)

sat← satr1 , . . . , satrn Π = {r1, . . . , rn} (3.5)

satx(d)← sat for every r ∈ Π, x ∈ var(r),
d ∈ dom(x) (3.6)

← ¬sat (3.7)

Prevent Unfoundedness⋁︂
d∈dom(y)

ufy(⟨D, d⟩)← h(D) for every r ∈ Π, h(X) ∈ Hr,

D ∈ dom(X), y ∈ var(r), y /∈ X (3.8)
ufr(DX)←ufy1(D⟨X,y1⟩),. . ., ufyt(D⟨X,yt⟩),¬p(DY) for every r∈Π1, h(X)∈Hr,

p(Y)∈B+
r , D∈ dom(⟨X,Y⟩),

Y=⟨y1,. . ., yt⟩ (3.9)

ufr(DX)←ufy1 (D⟨X,y1⟩),. . ., ufyt (D⟨X,yt⟩), p(DY) for every r∈Π1, h(X)∈Hr,
p(Y)∈B−

r ∪ (Hr\{h(X)}),
D∈ dom(⟨X,Y⟩), Y=⟨y1,. . ., yt⟩ (3.10)

← ufr1(D), . . . , ufrm(D) for every h(X) ∈ heads(Π), D ∈ dom(X),
{r1, . . . , rm} = {r|r ∈ Π, h(X) ∈ Hr} (3.11)

Figure 3.1: The body-decoupled grounding (BDG) procedure, defined for a non-ground tight
program Π (BDG(Π)). Let |Π| be the size of a program, | dom(Π)| be the size of the domain,
and a be the maximum arity. Then BDG decouples rules, which results in a grounding size that is
exponential in the arity: O(|Π| · |dom(Π)|2·a). Adapted from [12].

We now proceed with the details of BDG, which we show in Figure 3.1 and we refer to it
as the reduction BDG. BDG assumes a non-ground (tight) normal program as an input. In
essence, BDG works by (i) guessing head literals (Equation (3.1)), (ii) ensuring satisfiability of
the rules (Equations (3.2)–(3.7)), and (iii) ensuring foundedness of the literals in the answer set
(Equations (3.8)–(3.11)). Keep in mind that although it is a reduction, it can also be seen as a
rewriting procedure that takes a program Π and rewrites it into another the program BDG(Π).
Recap that an interpretation I satisfies a rule iff (Hr ∪ B−r ) ∩ I ≠ ∅ or B+

r \ I ̸= ∅. This is
precisely encoded in Equations (3.2)–(3.7) with the help of the saturation technique.

The second part of the reduction encodes foundedness. For foundedness, remind yourself that I is
an answer set iff all its atoms are founded. Foundedness for tight programs reduces to checking if
every atom in I has a rule r that is suitable for justifying it. A rule r ∈ Π is suitable for justifying
an atom a ∈ I iff (1) a ∈ Hr, (2) B+

r ⊆ I, (3) I ∩ B−r = ∅, and (4) I ∩ (Hr \ {a}) = ∅ hold.
This is precisely encoded in the Equations (3.8)–(3.11).

In even more detail, Equation (3.1) guesses head atoms, Equation (3.2) guesses the variable
assignments for a rule, Equations (3.3)–(3.4) encode satisfiability for a given variable assignment,
Equation (3.5) encodes that all rules must be satisfied, Equation (3.6) is part of the saturation guess,
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3.1. BDG Reduction for tight ASP

to check every variable assignment and Equation (3.7) encodes that if a rule is not satisfied, then
it is not an answer set. Further, Equation (3.8) guesses variable assignments for the foundedness
check of those variables that are not part of the head variables, Equations (3.9)–(3.10) encode
foundedness for a given variable assignment and Equation (3.11) encodes that there must exist at
least one rule that justifies the head.

Example 3.1. We demonstrate the BDG rewriting on the program Π in the listing below.

1 {f(1,1);f(1,2); f(2,1)}.
2 #program rules.
3 c(X1) :- f(X1,X2), f(X1,X3), f(X2,X3).

We apply BDG to the rule in Line (3). The rule has three positive body literals and one head literal.
Program Π has a domain of dom(Π) = {1; 2}, also dom(X1) = dom(X2) = dom(X3) =
{1; 2}, however dom(⟨X1, X2⟩) = dom(⟨X1, X3⟩) = dom(⟨X2, X3⟩) = {(1, 1);
(1, 2); (2, 1); (2, 2)}, and dom(⟨X1, X2, X3⟩) = {(1, 1, 1); (1, 1, 2); (1, 2, 1); (1, 2, 2); (2, 1, 1);
(2, 1, 2); (2, 2, 1); (2, 2, 2)}. The next listing shows the head-guess (Equation (3.1)). Note that
instead of using the disjunction we used a more compact formulation with a choice construct.

1 {c(1);c(2)}.

The next we must encode satisfiability of the rule. We do this by applying Equations (3.2)–(3.7).

1 % Guess Variables:
2 sat_X1(1)|sat_X1(2). sat_X2(1)|sat_X2(2). sat_X3(1)|sat_X3(2).
3 % f(X1,X2):
4 sat_r:-sat_X1(1),sat_X2(1),not f(1,1).sat_r:-sat_X1(1),sat_X2(2), not f(1,2).
5 sat_r:-sat_X1(2),sat_X2(1),not f(2,1).sat_r:-sat_X1(2),sat_X2(2), not f(2,2).
6 % f(X1,X3):
7 sat_r:-sat_X1(1),sat_X3(1),not f(1,1).sat_r:-sat_X1(1),sat_X3(2), not f(1,2).
8 sat_r:-sat_X1(2),sat_X3(1),not f(2,1).sat_r:-sat_X1(2),sat_X3(2), not f(2,2).
9 % f(X2,X3):

10 sat_r:-sat_X2(1),sat_X3(1),not f(1,1).sat_r:-sat_X2(1),sat_X3(2), not f(1,2).
11 sat_r:-sat_X2(2),sat_X3(1),not f(2,1).sat_r:-sat_X2(2),sat_X3(2), not f(2,2).
12 % c(X1):
13 sat_r:-sat_X1(1), c(1). sat_r:-sat_X1(2), c(2).
14 % All rules satisfied:
15 sat:-sat_r.
16 % Saturation:
17 sat_X1(1):-sat. sat_X1(2):-sat. sat_X2(1):-sat. sat_X2(2):-sat.
18 sat_X3(1):-sat. sat_X3(2):-sat.
19 % Ensure satisfiability:
20 :- not sat.

Finally, we encode foundedness of our rule, by applying Equations (3.8)–(3.11).

1 % Guess Variables:
2 1{uf_X2(1,1);uf_X2(1,2)}1 :- c(1). 1{uf_X2(2,1);uf_X2(2,2)}1 :- c(2).
3 1{uf_X3(1,1);uf_X3(1,2)}1 :- c(1). 1{uf_X3(2,1);uf_X3(2,2)}1 :- c(2).
4 % f(X1,X2):
5 uf_r(1):-uf_X2(1,1), not f(1,1). uf_r(1):-uf_X2(1,2), not f(1,2).
6 uf_r(2):-uf_X2(2,1), not f(2,1). uf_r(2):-uf_X2(2,2), not f(2,2).
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3. BODY-DECOUPLED GROUNDING

7 % f(X1,X3):
8 uf_r(1):-uf_X3(1,1), not f(1,1). uf_r(1):-uf_X3(1,2), not f(1,2).
9 uf_r(2):-uf_X3(2,1), not f(2,1). uf_r(2):-uf_X3(2,2), not f(2,2).

10 % f(X2,X3):
11 uf_r(1):-uf_X2(1,1), uf_X3(1,1), not f(1,1).
12 uf_r(1):-uf_X2(1,1), uf_X3(1,2), not f(1,2).
13 uf_r(1):-uf_X2(1,2), uf_X3(1,1), not f(2,1).
14 uf_r(1):-uf_X2(1,2), uf_X3(1,2), not f(2,2).
15 uf_r(2):-uf_X2(2,1), uf_X3(2,1), not f(1,1).
16 uf_r(2):-uf_X2(2,1), uf_X3(2,2), not f(1,2).
17 uf_r(2):-uf_X2(2,2), uf_X3(2,1), not f(2,1).
18 uf_r(2):-uf_X2(2,2), uf_X3(2,2), not f(2,2).
19 % Prevent Unfoundedness:
20 :-uf_r(1). :-uf_r(2).

Solving and restricting BDG(Π) to at(Π), yields the 8 desired answer sets:
AS(BDG(Π))∩at(Π) = AS(Π) = {∅; {f(2, 1)}; {f(1, 2)}; {f(1, 2); f(2, 1)}; {f(1, 1); c(1)};
{f(1, 1); f(1, 2); c(1)}; {f(1, 1); f(2, 1); c(1); c(2)}; {f(1, 1); f(1, 2); f(2, 1);
c(1); c(2)}}. Note that the foundedness part of literal f(X2, X3) has a cubic size.

3.2 Extensions and Improvements of BDG

The original BDG reduction BDG, as shown in Figure 3.1, assumes a non-ground (tight) normal
program as an input. Besides introducing the original formulation in [12], they further ex-
tended BDG to normal programs and introduced the variable justifying independence technique.
Specialized aggregate rewriting techniques were introduced as a part of the publication in [10].

In the following section, we will briefly introduce BDG for normal ASP, the variable justifying
independence technique, and aggregate rewritings for BDG. Note that we consider the extension
to Epistemic Logic Programming [13] as out of scope of this thesis.

3.2.1 BDG for Cyclic Programs

To extend BDG to normal programs, in [12] they propose to use level mappings. We show this
extension in Figure 3.2. The level mappings technique is an additional rewriting step that explicitly
defines an order upon the atom derivation. Equation (3.12) guesses a derivation order for every
pair of head-literals, Equation (3.13) prevents non-transitive derivations, and Equation (3.14)
incorporates the derivation order into the foundedness check. Worst case grounding size increases
to be in O(|Π| · |dom(Π)|3·a).

Example 3.2. We adapt Π from Example 3.1 to be a cyclic program ΠBDG′ and use level
mappings to prevent cyclic derivations.

1 {f(1,1);f(1,2);f(2,1)}.
2 #program rules.
3 c(X1) :- f(X1,X2), f(X1,X3), f(X2,X3).
4 f(X1,X2) :- c(X1), c(X2).
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Add. Rules for Found. of Normal Programs:
[p(D) ≺ p′(D′)] ∨ [p′(D′) ≺ p(D)]← for every p(X), p(X′) ∈ heads(Π), D ∈ dom(X),

D′ ∈ dom(X′), p(D) ̸= p′(D′) (3.12)

← [p1(D1) ≺ p2(D2)], [p2(D2) ≺ p3(D3)], for every p1(X1), p2(X2), p3(X3) ∈ heads(Π),
[p3(D3) ≺ p1(D1)] D1 ∈ dom(X1), D2 ∈ dom(X2), D3 ∈ dom(X3),

p1(D1) ̸= p2(D2), p1(D1) ̸= p3(D3), p2(D2) ̸= p3(D3) (3.13)

ufr(DX)← ufy1(D⟨X,y1⟩), . . . , for every r ∈ Π, h(X) ∈ Hr, p(Y ) ∈ B+
r , D ∈ dom(⟨X, Y ⟩),

ufyl (D⟨X,yl⟩),¬[p(DY ) ≺ h(DX)] Y = ⟨y1, . . . , yl⟩, p(DY ) ̸∈ F (3.14)

Figure 3.2: Using level mappings for non-ground normal ASP. Worst case grounding size
increases to be in O(|Π| · |dom(Π)|3·a). Adapted from [12].

We have already shown how BDG can be used for Line (3) in Example 3.1. In the following, we
show the additional needed rules defined by Equations (3.12)–(3.14). Note that using BDG for
Line (4) carries over and is therefore not shown.

There are 5 heads that need to be taken into account: heads(Π) = {c(1); c(2); f(1, 1); f(1, 2);
f(2, 1)}. The first part of the encoding guesses the order, which we show in the listing below.

1 prec(c(1),c(2))|prec(c(2),c(1)). prec(c(1),f(1,1))|prec(f(1,1),c(1)).
2 prec(c(1),f(1,2))|prec(f(1,2),c(1)). prec(c(1),f(2,1))|prec(f(2,1),c(1)).
3 prec(c(2),f(1,1))|prec(f(1,1),c(2)). prec(c(2),f(1,2))|prec(f(1,2),c(2)).
4 prec(c(2),f(2,1))|prec(f(2,1),c(2)). prec(f(1,1),f(1,2))|prec(f(1,2),f(1,1)).
5 prec(f(1,1),f(2,1))|prec(f(2,1),f(1,1)).
6 prec(f(1,2),f(2,1))|prec(f(2,1),f(1,2)).

The next step is to prevent non-transitive guesses (Equation (3.13)). We show in the following
listing only a snippet, as there are already 30 ground rules, which are needed for this encoding.

1 :-prec(c(1),c(2)), prec(c(2),f(1,1)), prec(f(1,1),c(1)).
2 :-prec(c(1),c(2)), prec(c(2),f(1,2)), prec(f(1,2),c(1)).
3 :-prec(c(1),c(2)), prec(c(2),f(2,1)), prec(f(2,1),c(1)).
4 :-prec(c(1),f(1,1)), prec(f(1,1),f(1,2)), prec(f(1,2),c(1)).
5 % ... 26 more rules ...

The last check is the incorporation into the foundedness property (Equation (3.14)). We show
in the listing below how the encoding of Example 3.1 has to be extended, to account for the
prevention of cyclic derivations for the body literals f(X1, X2).

1 % f(1,X2) < c(1):
2 uf_r(1) :- uf_X2(1,1), not prec(f(1,1),c(1)).
3 uf_r(1) :- uf_X2(1,2), not prec(f(1,2),c(1)).
4 % f(2,X2) < c(2):
5 uf_r(2) :- uf_X2(2,1), not prec(f(2,1),c(2)).
6 uf_r(2) :- uf_X2(2,2), not prec(f(2,2),c(2)).

Note the substantial increase in grounding size in grounding size for even a small example. This
comes, as in general the prevention of non-transitive guesses (Equation (3.13)) is responsible
for the increase in grounding size to O(|Π| · |dom(Π)|3·a). However, Equation (3.12) and
Equation (3.14) still have a grounding size that is quadratic in the domain.
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Improved Foundedness, replacing Rules (3.9)–(3.11) of Figure 3.1
ufrch(Y ,X)(D⟨rch(Y ,X)⟩)←ufy1(D⟨X,y1⟩),. . ., ufyt(D⟨X,yt⟩),¬p(DY) for every r∈Π, h(X)∈Hr,

p(Y)∈B+
r , D∈ dom(⟨X,Y⟩),

Y=⟨y1,. . ., yt⟩ (3.15)

ufrch(Y ,X)(D⟨rch(Y ,X)⟩)←ufy1 (D⟨X,y1⟩),. . ., ufyt (D⟨X,yt⟩), p(DY) for every r∈Π, h(X)∈Hr,
p(Y)∈B−

r ∪ (Hr\{h(X)}),
D∈ dom(⟨X,Y⟩), Y=⟨y1,. . ., yt⟩ (3.16)

← h(D),
⋀︂

r∈{r′|r′∈Π,h(X)∈H′
r}

⎡⎣ ⋁︂
p(Y )∈B+

r ∪B−
r

ufrch(Y ,X)(D⟨rch(Y ,X)⟩)

⎤⎦ for every h(X) ∈ heads(Π), D ∈ dom(X)

(3.17)

Figure 3.3: Using variable independence for an improved body-decoupled grounding (BDG)
procedure BDG′. BDG′ is defined for a non-ground tight program Π (BDG′(Π)). However, worst
case grounding size is still in O(|Π| · |dom(Π)|2·a). Adapted from [12].

3.2.2 Variable justifying Independence

Variable justifying Independence is a technique for improving the grounding size of the founded-
ness part of BDG [12]. The essential idea is to minimize the number of variables of the head that
need to be instantiated, by exploiting the structure of the rule. In the best case this can lead to a
reduction in grounding size.

In more detail, given a rule r ∈ Π they construct a variable graph1 D′(r) that takes (only) into
account body variable connections (and no head variable connections). The procedure works by
checking whether body variables can reach head variables. If no, they can exploit this knowledge,
by disregarding the unreachable head variables.

LetW = var(Π) be the set of variables, r ∈ Π a rule, X = var(Hr), and Y = var(Br). Then
rch(Y , X) is the function rch(Y , X) :W2 →W , that returns those variables X , reachable by
Y . More formally, let E(D′(r)) denote the set of edges of D′(r), then:

rch(Y , X) := {x | x ∈X; ∃y ∈ Y : xRy = ((y, v1), . . . , (vn, x)) ;
{(y, v1); . . . ; (vn, x)} ⊆ E(D′(r))}

Note that rch(Y , X) ⊆ X . With this defined we are ready to present the updated reduction
in Figure 3.3. Equations (3.15)–(3.16) encode the semantics of foundedness w.r.t. the set of
reachable head variables. Lastly, Equation (3.17) is adapted to account for all occurrences of
ufrch(Y ,X)(D⟨rch(Y ,X)⟩).

Example 3.3 (Variable Independence). Take the following rule:

1 h(X1,Y1) :- a(X1,X2), a(X1,X3), a(X2,X3),
2 b(Y1,Y2), b(Y1,Y3), b(Y2,Y3),
3 c(Z1,Z2), c(Z1,Z3), c(Z2,Z3).

Intuitively, using variable justifying independence, we can ground the literals
{a(X1, X2), a(X1, X3), a(X2, X3)} without taking Y 1 into account. The converse holds for

1Observe the difference to Definition 2.13.
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the {b(Y 1, Y 2), b(Y 1, Y 3), b(Y 2, Y 3)} literals. Further, the {c(Z1, Z2), c(Z1, Z3), c(Z2, Z3)}
literals can safely ignore both X1 and Y 1. Observe that rch({X1, X2, X3}, {X1, Y 1}) =
{X1}, rch({Y 1, Y 2, Y 3}, {X1, Y 1}) = {Y 1}, and rch({Z1, Z2, Z3}, {X1, Y 1}) = ∅. There-
fore, the foundedness part of BDG when using BDG′, when grounding the literals a and b yields a
grounding size ofO(|Π| · |dom(Π)|3), while the grounding size of literals c isO(|Π| · |dom(Π)|2).

3.2.3 Aggregate Rewritings for BDG

Aggregate rewriting techniques were introduced as one part2 of the publication [10]. These
rewritings split the aggregates into their parts and keep the resulting maximum rule-arity low.
Thereby, they enable efficient grounding of aggregates with BDG. In the following, we provide
the intuition behind the two most promising rewriting techniques: RMcount and RA. Further,
we show two examples which shall highlight the basic ideas.

RMcount dismantles the aggregate into its parts. Take for example an aggregate count{X :
f(X, Y )} ≥ 3. The idea is to explicitly encode that at least 3 different X occur. This can be done
by enumerating the variables accordingly and introducing appropriate constraints. We show two
listings, where the first listing depicts the input rule, whereas the second one shows the rewritten
rule.

1 a(Z) :- b(Z), #count{X:f(X,Y)} >= 3.

We rewrite the rule from the listing above with theRMcount technique and obtain the following
rewritten rule.

1 a(Z) :- b(Z), f(X1,Y1), f(X2,Y2), f(X3,Y3), X1 != X2, X1 != X3, X2 != X3.

RMcount is applicable for monotonic aggregates occurring in the positive body of a rule that
contain a fixed integer bound. These restrictions are dropped by extending theRMcount technique
to theRS technique, as detailed in [10].

TheRA technique decomposes the aggregate into rules. These rules can then be grounded with
BDG. We directly show an example in the next listing as our input:

1 a(Z) :- b(Z), #count{X1: f(X1,X2), f(X1,X3), f(X2,X3)} >= 3.

In more detailRA introduces for each aggregate element3(X1 : f(X1, X2), f(X1, X3),
f(X2, X3)) one rule, which is subsequently grounded by BDG. The rewritten program is shown
in the listing below, where the part grounded by BDG is indicated by the #program rules. line.

1 a(Z) :- b(X), #count{X1 : r(X1)} >= 3.
2 #program rules.
3 r(X1) :- f(X1,X2), f(X1,X3), f(X2,X3).

2Our IJCAI24 publication [10] is split into two parts: One part about hybrid grounding (which is part of this
thesis) and one part about aggregate rewriting techniques (which was part of a Bachelor’s Thesis [8]).

3An aggregate element has the form T : B+
r , B−

r .
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3.2.4 Observations

In [12] they prove correctness of the reduction, further show its grounding size, and go on to
discuss partial applicability. Their partial applicability theorem states that a program Π can
be split into two parts, Π1 and Π2, where one part is grounded by BDG and the other part by
standard-techniques. However, their split has two major shortcomings. One is that shared heads
are not allowed and the other one that shared cycles are forbidden. We discuss this in Section 3.3.1
and present hybrid grounding in Chapter 4, which overcomes this deficiency.

Further, let |Π| be the size of a program, | dom(Π)| be the size of the domain, and a be the
maximum arity. Then the grounding size of BDG is in general exponential in the arity: O(|Π| ·
|dom(Π)|a). In more detail it is a for constraints, 2 · a for tight rules, and 3 · a for non-tight
(cyclic) normal rules. The 2 · a and 3 · a prevent BDG from being used for normal and cyclic
programs in practice. We discuss this deficiency in Section 3.3.4.

3.3 Shortcomings of Body-decoupled Grounding

In the following, we will detail current shortcomings of BDG. In Section 3.3.1 we talk in
detail about limited interoperability, in Section 3.3.2 we discuss current syntax limitations, in
Section 3.3.3 we discuss what it takes to automate hybrid grounding (splitting), in Section 3.3.4
performance problems with normal and cyclic BDG are discussed, in Section 3.3.5 arity splitting
problems are discussed, in Section 3.3.6 we talk about domain grounding, and in Section 3.3.7
we discuss commonly brought up objections.

3.3.1 Limited Interoperability

Arguably, the most pressing shortcoming of BDG is its limited interoperability, resulting from
Theorem 3 in [12].:

Theorem 3.1. Partial applicability (Adapted4from Theorem 3 in [12]): Given a non-ground
normal program Π, a partition Π1, Π2 with hpred(Π1) ∩ hpred(Π2) = ∅ s.t. ∀S ∈ SCC(Π) :
either S ∩ hpred(Π1) ̸= ∅, or S ∩ hpred(Π2) ̸= ∅ (no shared cycles). The answer sets of
BDG(Π1) ∪ G(Π2) restricted to at(G(Π)) match those of G(Π).

Note the two important restrictions in Theorem 3: (i) hpred(Π1) ∩ hpred(Π2) = ∅ and (ii) no
shared cycles. Requirement (i) forces us to have distinct heads. We illustrate this with an example:

1 c(X1) :- g(X1).
2 c(X1) :- f(X1,X2), f(X1,X3), f(X1,X4), f(X2,X3), f(X2,X4), f(X3,X4).

Ideally, we would want to ground Line (1) with SOTA grounders and Line (2) with BDG. This
comes as Line (2) has four (densely interacting) variables. However, we cannot do this as
requirement (i) prevents shared heads between BDG and SOTA techniques.

Requirement (ii) prevents us from having shared cycles. Take the example in the listing below:
4Changed notation for shared cycles and reduction to notation used in the thesis.
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1 f(X1,X2) :- g(X1,X2).
2 g(X1,X2) :- f(X1,X2), f(X1,X3), f(X1,X4), f(X2,X3), f(X2,X4), f(X3,X4).

Again, we would want to ground Line (1) with SOTA techniques and Line (2) with BDG. Notice
however the cycle of {f, g} in the positive dependency graph DP . Therefore, requirement (ii)
prohibits this.

To address this problem, we introduced hybrid grounding [10], see also Section 4.1. Hybrid
grounding enables the free splitting of a program Π, into a part Π1 and a part Π2, where Π1 is
grounded by BDG, and Π2 is grounded by SOTA techniques.

3.3.2 Limited accepted Syntax

Theoretically, the original BDG formulation accepted the standard ASP syntax, so a normal
(HCF) program Π where each rule is composed of:

p1(X1) ∨ . . . ∨ pl(X l)← pl+1(X l+1), . . . , pm(Xm),¬pm+1(Xm+1), . . . ,¬pn(Xn)

Arguably, this included the whole ASP-Core-2.0 standard, although it was left open how special
literals like aggregates, or comparison operators are treated.

On the practical side, the tool newground, the original implementation of BDG, supported
predicates and comparisons. Comparisons were handled at grounding time with a pre-defined
semantics. This comes, as at grounding time the truth value of 1 ̸= 1, or 1 < 3 is already known.
However, there were several limitations, such as not supporting arithmetics (Y + 1), or variable
assignments (X = Y + 1).

In [10] special techniques for handling aggregates were suggested, which were based on [8].
Further, the next iteration of the prototype NaGG featured support for aggregates, partial support
for arithmetics and variable assignments.

Still, many questions were left open. First and foremost, the effective integration of arithmetics is
crucial for practical purposes. Further, variable assignments in comparisons or aggregates are
currently only partially supported and not efficient. These two problems are closely linked to the
domain problem (Section 3.3.6). Further work must also be put into an efficient integration of
choice rules (head-aggregates), weak constraints, and recursive aggregates.

3.3.3 When should BDG be used?

The introduction of hybrid grounding in [10] (Section 4.1) raises the question which part of a
program to ground using BDG and which part to ground with traditional means. This question
was already raised in [12] and in [10].

In Chapter 5 we develop a heuristics (Algorithm 5.3) that marks program parts to be grounded by
BDG, and parts to be grounded by traditional means. This algorithm analyzes the rule structure,
the instance data, and builds upon the results from hybrid grounding. We thereby also introduce
the notion of a dense rule, which is intuitively a rule with many variables, which are closely
linked together. We illustrate the intuition of a dense rule in the listing below.
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1 :- f(X1,X2), f(X2,X3), f(X3,X4).
2 :- f(X1,X2), f(X1,X3), f(X1,X4), f(X2,X3), f(X2,X4), f(X3,X4).

While the rule in Line (1) has more variables (4) than the maximum arity (2), the variables are
not closely linked together (densely interacting, see Chapter 5). In contrast, Line (2) has both
more variables than the maximum arity and has densely interacting variables. Therefore, it is
marked for grounding with BDG (if the data (instance) permits this, see Section 3.3.6).

We implemented Algorithm 5.3 in our prototype newground3, where we conducted benchmarks
on both solving and grounding-heavy scenarios. Thereby, we demonstrate its practical usefulness.

3.3.4 Bad Performance for Normal and for Cyclic Programs

BDG and hybrid grounding state that the grounding time and size is (only) exponentially depen-
dent on the maximum arity a: O (|Π| · |dom(Π)|a). However, this only holds for constraints. For
(tight) normal fragments this increases to 2 · a and for normal ones to 3 · a.

We show the significance of this increase in the following example. Firstly, consider a constraint
with four densely interacting variables. Grounding it with BDG yields a grounding size of
≈ |dom(Π)|2, as the arity a = 2. Observe that SOTA techniques have a grounding size of
≈ |dom(Π)|4.

1 :- f(X1,X2), f(X1,X3), f(X1,X4), f(X2,X3), f(X2,X4), f(X3,X4).

In the listing below we modify this rule to be (tight) normal. Grounding this rules with BDG
increases the grounding size to ≈ |dom(Π)|4, due to the additional effort used for checking
foundedness. Observe that the grounding size of BDG equals the grounding size of SOTA
grounding. Therefore, we argue that using BDG is not beneficial in this case, as BDG pushes
effort to the solver, which likely decreases the solving performance.

1 g(X1,X2) :- f(X1,X2), f(X1,X3), f(X1,X4), f(X2,X3), f(X2,X4), f(X3,X4).

Moving to non-tight normal programs, grounding line 2 with BDG yields a grounding size of
≈ |dom(Π)|6, while state-of-the-art grounding remains at ≈ |dom(Π)|4. Therefore, using BDG
is clearly not beneficial.

1 f(X1,X2) :- g(X1,X2).
2 g(X1,X2) :- f(X1,X2), f(X1,X3), f(X1,X4), f(X2,X3), f(X2,X4), f(X3,X4).

A considerable part of this thesis (two chapters) is entirely devoted to solving these problems.
In Chapter 6 we introduce a novel foundedness encoding (FastFound) that reduces normal
grounding size from 2 · a to 1 + a. Further, in Chapter 7 we introduce Lazy-BDG. Lazy-BDG
skips the grounding phase for checking cyclic derivation entirely and ensures non-cyclic derivation
(foundedness) via an adapted unfound-set approach. This is also in line with possible applications
of BDG in lazy-grounding, as discussed in [10].
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3.3.5 The Arity Problem

When looking at a single rule, BDG reduces the grounding size from ≈ |dom|V (V number of
variables), to ≈ |dom|a (a arity). This eases the grounding bottleneck for a considerable number
of instances. However, there are still some cases where the grounding bottleneck prevails. One of
the causes thereof is the arity problem discussed here.

To illustrate the arity problem note the rule in the listing below (Grounding Explosion Problem
taken from [94]).

1 b(X1,X2,X3,X4,X5,X6) :- a(X1),a(X2),a(X3),a(X4),a(X5),a(X6).

Observe that predicate b has arity 6. If we use BDG for this rule r, BDG has the same asymptotic
grounding size, as if we would ground r with SOTA techniques. This comes, as each body variable
is contained in the head and therefore we do not need to guess it. In these cases, the grounding
size of non-groung normal ASP grounded by BDG reduces from ≈ |dom|2·a to ≈ |dom|a.

Splitting b into smaller parts results in a significantly reduced grounding size. However, it is
unknown how this can be done. Therefore, we state it as an open problem to identify predicates,
or rules, where we are able to split a predicate into one (or several) with smaller arity5.

3.3.6 Domain Dependent Grounding

The nature of the bottom-up/semi-naive grounding algorithm (see Section 2.4) in SOTA tech-
niques, enables the incorporation of some domain knowledge. However, this is only partially
possible in BDG. We illustrate this in the following example:

1 e(1,2). e(2,3). e(3,4). e(4,5). e(5,6), ..., e(n-1,n).
2 {f(X,Y)} :- e(X,Y).
3 :- f(X1,X2), f(X1,X3), f(X1,X4), f(X2,X3), f(X2,X4), f(X3,X4).

Our example is a graph problem with edge facts e (Line (1)), where we guess a subgraph defined
by the predicate f (Line (2)). Intuitively, the encoding states that no clique of size four may occur
in the subgraph (Line (3)). Further, we assume that our instance defined by the edge facts e is a
line, starting at vertex 1, going to vertex n.

Let F be the facts (the input graph) and |F| = n− 1. Then, grounding above program by SOTA
techniques, will result in a grounded program of size ≈ 2 · (n − 1) ∈ O(n), i.e., linear in the
input. One side effect of using the bottom-up/semi-naive techniques is that they are able to infer
that the rule in Line (3) can never be satisfied. This comes as the join-operation over the four
variables {X1, X2, X3, X4} will never result in a success, as (i) no clique in the input graph exists,
and therefore, (ii) no clique in the subgraph can exist.

On the other hand, BDG’s grounding is domain based. Therefore, if we would apply BDG to the
rule in Line (3) in the above example, we first get |dom(F)| = n, and therefore a grounding size

5SOTA techniques like idlv apply partial arity reduction by removing isolated variables [23], however, we aim
for a more involved reduction technique.
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of ≈ n2 ∈ O(n2). Therefore, the impact of the instance is striking: while for SOTA techniques
we get a grounding size that is linear, BDG has a grounding size that is quadratic.

Now let us change F to be a complete graph, with |F| ≈ n2, and dom(F) = n. The change in
grounding size is significant: While BDG (still) has a quadratic grounding size ≈ n2 ∈ O(n2),
SOTA techniques have a grounding size of ≈ n4 ∈ O(n4).

We draw the following conclusions for improving BDG: (i) Any efficient integration of BDG into
modern grounders needs to take into account the instance, and (ii) it would be desirable to encode
the instance properties directly into BDG. In this thesis we propose a heuristics that solves (i)
(Chapter 5.3), while we leave (ii) as an open problem.

3.3.7 Shifting effort from the Grounder to the Solver

A frequent6 objection regarding the BDG approach is: “what we gain in grounding, we lose in
solving,” i.e., it is unclear that there is an overall benefit by shifting effort from grounding to
solving. However, empirical results [10], [12] have shown that BDG is indeed capable of solving
more instances. In Sections 5.4.5, 6.4, and 7.5, we will further highlight this observation.

Still, using BDG blindly for entire programs is not beneficial, as programs may contain parts
where applying BDG results in worse performance. This is especially prevalent for the ASP
competition encodings, whose grounding size (and grounding time) is comparatively small to
their solving time (see also Section 5.4.5). Therefore, it is crucial to analyze the program in detail
before applying BDG and apply BDG only to those parts that are critical in grounding.

The loss in solving performance stems from shifting effort from the grounder to the solver. This
comes, as BDG can in principle be seen as a trade-off between structure and size: applying
BDG breaks the rule structure in order to save space at grounding. The loss in structure makes
the job for the solver harder and raises the question how this can be prevented. We take a first
approach in easing this problem in Chapter 7 by introducing Lazy-BDG, which reinfers structure
for non-tight ASP. Still, how structure can be preserved for other parts of the BDG reduction is
an open problem.

Apart from the discussion above, which focuses on the answer set existence problem, we want to
raise possible future vectors of research by asking what effect BDG has on problems that require
multiple answer sets, such as brave- or cautious-reasoning, counting problems, or optimization.
This stems from the fact that the nogoods inferred by the solver differ between a program
grounded by BDG and one grounded by standard techniques.

6Raised after our presentations and the following discussions during IJCAI24 (33rd International Joint Conference
on Artificial Intelligence on Jeju, South Korea) and TAASP24 (Workshop on Trends and Applications of Answer Set
Programming, in Klagenfurt, Austria).
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CHAPTER 4
Hybrid Grounding

The advent of alternative grounding procedures, such as body-decoupled grounding [11] (BDG,
Section 3), was an essential step towards solving the grounding bottleneck. Take for example the
rule r in the following listing, and imagine it being embedded in a program Π:

1 :- f(X1,X2), f(X1,X3), f(X2,X3).

This rule has three variables {X1, X2, X3}. In traditional ASP we obtain an answer by grounding
(variable instantiations) and solving (obtaining an answer). However, the size of the grounded
program is exponential in the number of variables. Therefore, the grounding size of the rule is
cubic in the domain size (≈ |dom|3). For many practical instances a cubic size is not feasible,
which leads to non-solvable instances. Using BDG instead of traditional techniques yields a
grounding size that is only dependent on the (maximum) arity, and quadratic in the above example
(≈ |dom|2).

Still, BDG has major disadvantages on its own: Its limited interoperability with other state-of-
the-art approaches, the missing knowledge where and when to actually use BDG, or its relatively
bad performance on normal and cyclic rules.

In this chapter we tackle the problem of the limited interoperability, by introducing hybrid
grounding. Hybrid grounding enables the free (manual) splitting of a program Π into a part Π1
grounded by BDG, and a part Π2 grounded by traditional means.

In more detail, this chapter starts with the intuition behind hybrid grounding (Section 4.1) and
continues by stating the details of the hybrid grounding reduction (Section 4.2). Further, we
introduce in this chapter novel results about applicability of body-decoupled grounding in non-
tight disjunctive programs (Section 4.3). Most parts of this chapter are based on the hybrid
grounding part of our publication Bypassing the ASP Bottleneck: hybrid grounding by Splitting
and Rewriting [10], with the exception of the applicability of BDG for non-tight disjunctive
programs. Note that we show hybrid grounding’s non-tight version in Chapter 7, Section 7.2.
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Standard
Grounding

BDG'

Splitting Joining

Figure 4.1: Schematics of the workings of hybrid groundingH(Π1, Π2). A (tight) normal (HCF)
program Π is split into Π1 and Π2. Π2 is grounded by standard state-of-the-art (SOTA) grounders,
while Π1 is grounded by an adapted body-decoupled grounding (BDG’) procedure. Joining the
resulting grounded programs yields Π′, the grounded program Π′ = H(Π1, Π2).

4.1 Hybrid Grounding for tight ASP

Conceptually, hybrid grounding enables the free (manual) splitting of a program Π into a part
grounded by state-of-the-art grounders and a part grounded by an adapted BDG procedure.
The need for hybrid grounding originates in BDG’s limited interoperability, as discussed in
Section 3.3.1. In Figure 4.1 we display the schematics of hybrid grounding.

BDG on its own allows limited partial applicability. Given a program Π, that is split into Π1 and
Π2, it must be the case that hpred(Π1) ∩ hpred(Π2) = ∅. Put otherwise, BDG does not allow for
shared heads. This stems from the foundedness check in BDG.

Example 4.1. The foundedness check in BDG is the root cause for limited interoperability: We
illustrate this in the following program snippet:

1 c(X) :- a(X).
2 % BDG GROUNDED:
3 #program rules.
4 c(X1) :- f(X1,X2), f(X1,X3), f(X1,X4), f(X2,X3), f(X2,X4), f(X3,X4).

We assume that the rule in Line (1) is grounded by traditional means, whereas the rule in Line (4)
is grounded by BDG. Intuitively, the foundedness check of BDG tries to prove foundedness for a
particular variable configuration for a given interpretation I. If the foundedness check fails I
cannot be an answer set (unfound).

Let us assume for the sake of explanation that Line (1) can justify c(2), while Line (4) can justify
c(1) (but not c(2)). Then the foundedness in BDG fails, as although c(2) was derived, it cannot
be justified by Line (4).
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In more detail, the foundedness check in BDG works by only considering the part grounded by
BDG (Line (4)). BDG encodes that a particular rule (r = 4, Line (4)) is unable to justify a head
atom c(2) with the atom uf4(2). We assumed that Line (4) cannot derive c(2), therefore uf4(2) is
derived.

The actual check is encoded by a constraint that says, if for all rules r in the BDG part ufr(2)
holds, then the program is unfound. We showcase in the following listing this constraint in our
case:

1 :- uf_4(2).

This comes, as the only rule in the BDG part that can possibly justify c(2) is the rule in Line (4).
However, as we fail in its justification, subsequently the constraint fires, leading to an erroneous
behavior.

Grounding all rules by BDG would resolve partial applicability. However, this is not advised
as using BDG for all parts leads to a loss in performance. Therefore, our approach relies on
splitting. Abstractly, we partition Π into Π1 (grounded by BDG) from Π2, by introducing
auxiliary predicates in Π1. Intuitively, these auxiliary predicates enable inference of the exact
source responsible for justifying an atom a in an interpretation I.

4.2 Hybrid Grounding Reduction for tight ASP

We show in Figure 4.2 the details of the tight hybrid grounding reduction. Let Π be a non-ground
normal (HCF) program and Π1 and Π2 be a partition thereof. Then,H(Π1, Π2) defines the hybrid
grounding procedure, whereas BDG grounds Π1 and Π2 is grounded by SOTA techniques. We
require Π1 to be tight, and that ∀a ∈ heads(Π1) : |SCC(Π, a)| = 1 (no shared cycles in the
positive dependency graph), and that a has no self-loop. Conversely, there can be cycles in Π2.

In the following, we discuss in detail the workings of the hybrid grounding procedure. Rules (4.1)–
(4.3) introduce the auxiliary predicates (Rules (4.1)–(4.2)), and add the SOTA-grounded rules
(Rule (4.3)). The satisfiability check (Rules (4.4)–(4.10)) works precisely as in BDG (Section 3).

The foundedness check (Rules (4.11)–(4.14)) is adapted to account for the auxiliary predicates.
In particular, Rule (4.11) has been adapted to guess non-head variables, only if the respective
auxiliary head holds. Further, Rule (4.14) was adapted for the auxiliary predicate h′ for the
particular rule r. The other rules (Rules (4.12)–(4.13)) remain untouched.

Lemma 1. Correctness, adapted from [10]: Given a partition of any non-ground HCF program Π
into a tight program Π1 and a program Π2=Π\Π1, s.t. ∀a ∈ hpred(Π1) : |SCC(Π, a)| = 1, and
a has no self-loop. Then, the answer sets ofH(Π1, Π2) restricted to at(G(Π)) match bijectively
those of G(Π).
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Glue Π2 to Π1 and Ground Π2

h′(D) ∨ h′(D)← for every h(X) ∈ hpred(Π1),
D ∈ dom(X) (4.1)

h(D)← h′(D) for every h(X) ∈ hpred(Π1),
D ∈ dom(X) (4.2)

r for every r∈G(Π2) (4.3)

Satisfiability of Π1⋁︂
d∈dom(x)

satx(d)← for every r ∈ Π1, x ∈ var(r),
where Π1 = {r1, . . . , rn} (4.4)

sat← satr1 , . . . , satrn for every r ∈ Π1, x ∈ var(r),
where Π1 = {r1, . . . , rn} (4.5)

satr ← satx1 (D⟨x1⟩), . . . , satxt (D⟨xt⟩),¬p(D) for every r ∈ Π1, p(X) ∈ B+
r ,

D ∈ dom(X), X = ⟨x1, . . . , xt⟩ (4.6)

satr ← satx1 (D⟨x1⟩), . . . , satxt (D⟨xt⟩), p(D) for every r ∈ Π1, p(X) ∈ B−
r ,

D ∈ dom(X), X=⟨x1, . . . , xt⟩ (4.7)

satr ← satx1 (D⟨x1⟩), . . . , satxt (D⟨xt⟩), h(D) for every r ∈ Π1, h(X) ∈ Hr,

D ∈ dom(X), X=⟨x1, . . . , xt⟩ (4.8)

satx(d)← sat for every r ∈ Π1, x ∈ var(r),
d ∈ dom(x) (4.9)

← ¬sat (4.10)

Prevent Unfoundedness of Atoms in Π1⋁︂
d∈dom(y)

ufy(⟨D, d⟩)← h′(D) for every r ∈ Π1, h(X) ∈ Hr,

D ∈ dom(X), y ∈ var(r), y /∈ X (4.11)
ufr(DX)←ufy1(D⟨X,y1⟩),. . ., ufyt(D⟨X,yt⟩),¬p(DY) for every r∈Π1, h(X)∈Hr,

p(Y)∈B+
r , D∈ dom(⟨X,Y⟩),

Y=⟨y1,. . ., yt⟩ (4.12)

ufr(DX)←ufy1 (D⟨X,y1⟩),. . ., ufyt (D⟨X,yt⟩), p(DY) for every r∈Π1, h(X)∈Hr,
p(Y)∈B−

r ∪ (Hr\{h(X)}),
D∈ dom(⟨X,Y⟩), Y=⟨y1,. . ., yt⟩
D∈ dom(⟨X,Y⟩), Y=⟨y1,. . ., yt⟩ (4.13)

← ufr(D), h′(D) for every r∈Π1, h(X)∈Hr,
D ∈ dom(X) (4.14)

Figure 4.2: The hybrid grounding procedure H(Π1, Π2). Given a non-ground normal (HCF)
program Π and a partition thereof into Π1 and Π2, H(Π1, Π2) creates a ground disjunctive
program. We require ∀a ∈ Π1 : |SCC(Π, a)| = 1 (Π1 is tight, and no shared cycles in positive
dependency graph), and that a has no self-loop. We thereby interleave classical grounding on Π2
with body-decoupled grounding on Π1.

Observation 4.1. Runtime, adapted from [10]: Let Π be any non-ground tight program, where
predicate arities are bounded by a. Then,H(Π, ∅) runs in:

• O((|Π|) · |dom(Π)|a), if the only non-ground rules in Π are constraints.

• O((|Π|) · |dom(Π)|2·a), otherwise.
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Example 4.2. We show the workings of hybrid grounding with a small example, consider for this
the program ΠHG in the listing below.

1 {f(1);f(2)}. {g(1);g(2)}.
2 c(X) :- f(X).
3 #program rules.
4 c(Y) :- g(Y).

We use the hybrid grounding reduction by using standard grounding techniques for Lines (1)–
(2), and use BDG for Line (4). So we apply H(Π1, Π2) where Π1 = {c(Y ) ← g(Y )}, and
Π2 = Π \ Π1. The next listing depicts the code that is grounded by standard techniques
(Equation 4.3).

1 {f(1);f(2)}. {g(1);g(2)}.
2 c(X):-f(X).

The split is performed by the Equations (4.1)–(4.2). They guess the head atoms and the auxiliary
head atom c′.

1 {c’(1);c’(2)}. c(1):-c’(1). c(2):-c’(2).

The satisfiability part (Equations (4.4)–(4.10)) is encoded in the same way as it is done for BDG.
We show it in the next listing.

1 sat_Y(1)|sat_Y(2).
2 sat_r:-sat_Y(1),c(1). sat_r:-sat_Y(2),c(2).
3 sat_r:-sat_Y(1),not g(1). sat_r:-sat_Y(2),not g(2).
4 sat_Y(1):-sat. sat_Y(2):-sat.
5 sat:-sat_r. :- not sat.

Foundedness differs from normal BDG, as the foundedness check is only invoked, when the
auxiliary head c′ holds. This is in contrast to BDG, where it is always checked as long as c holds.
Recall that in Example 4.1 we discussed that this difference leads BDG to not being interoperable
with standard grounding techniques. We show the foundedness check of hybrid grounding in the
listing below.

1 uf_r(1):-not g(1). uf_r(2):-not g(2).
2 :-uf_r(1),c’(1). :-uf_r(2),c’(2).

4.3 Partial Application of BDG for Non-Ground Disjunctive
Programs

BDG is in general not applicable for non-ground cyclic programs, as the reduction of BDG is
defined from non-ground normal (HFC) programs (ΣP

2 complete), to ground disjunctive programs
(ΣP

2 complete). However, the complexity class rises from ΣP
2 completeness to ΣP

3 completeness
for non-ground disjunctive programs (See Table 4.1).

Despite that, we show in Theorem 4.1 that it is still possible to apply BDG to fragments of
a non-ground disjunctive program. We define in the following theorem the conditions for the
fragment that are required for applicability. The conditions intuitively say that we can either
apply BDG to the fragment if the fragment is tight, or the fragment is strictly normal.
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{} {nots} {not}
{}

co-NP ∆P
2 ΣP

2
{∨h}

ΣP
2 ΣP

2 ΣP
2

{∨}
ΣP

2 ΣP
3 ΣP

3

Table 4.1: Complexity classes for the answer set existence problem of non-ground ASP under
bounded predicate arities. BDG (Section 3) is applicable for classes in blue (normal and HCF
programs), but not for those in red (cyclic disjunctive programs). We show that BDG can
be applied for a subprogram of a cyclic disjunctive program, where its SCC of the positive
dependency graph is HCF or normal. Table adapted from [40].

Theorem 4.1. (Partial application of BDG in non-ground disjunctive programs) Let SCC(Π),
rules(S), and at(r) be defined as usual. Further, let Π1, Π2 be a partition of a non-ground
disjunctive program Π, s.t. for every p ∈ hpred(Π1), one of the following holds:

1. |SCC(Π, p)| = 1 and p has no self-loop; So p occurs in a tight fragment.

2. |SCC(Π, p)| > 1 and S = SCC(Π, p), ∀q ∈ S : ∀r ∈ rules(q) |Hr| = 1.
Then the answer sets ofH(Π1, Π2) restricted to at(G(Π)) bijectively match those of G(Π).

Proof. (Idea) We need to prove two things: (i) given an answer set I ∈ AS(G(Π)), then ∃IH ∈
AS(H(Π1, Π2)) s.t. IH ∩ at(G(Π)) = I, and (ii) given an answer set IH ∈ AS(H(Π1, Π2)),
then ∃I ∈ AS(G(Π)) s.t. IH∩at(G(Π)) = I . The proofs for both sides amount to first checking
whether the answer set candidates are models and then verify that they are answer sets.

To check (i), we must first extend I to IH. Then we need to check whether IH satisfies all
rules and whether IH is indeed the minimal model (w.r.t. ⊆) of H(Π1, Π2)IH . For checking
satisfiability we can restrict ourselves to the newly introduced rules byH(Π1, Π2).

For the other direction we first set I = at(G) ∩ IH (remind yourself that our assumption is that
IH is an answer set ofH(Π1, Π2)). Then we need to check whether I satisfies G(Π) and whether
I is the minimal model of G(Π)I .

Example 4.3. We illustrate the application of Theorem 4.1 on the following example. The
example illustrates an application where there is a saturation check (Lines (1)–(3)) and is later
followed by a BDG call (Line (7)). The rule in Line (7) could also be a disjunctive (HCF) rule.
Observe however that it is not possible to use BDG for a rule in Lines (2)–(3), as there is a cycle
({a, disj}) and a occurs disjunctively in Line (1).

1 a(1)|a(2). {z(1);z(2)}.
2 disj :- a(X), not z(X).
3 a(1) :- disj. a(2) :- disj.
4 e(1,1). e(1,2). e(1,3).
5 {f(X,Y)} :- e(X,Y), disj.
6 #program rules.
7 d(X1) :- f(X1,X2), f(X1,X3), f(X2,X3).
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CHAPTER 5
Automated Hybrid Grounding

An automated decision procedure for deciding whether to use body-decoupled grounding or
bottom-up grounding is highly desirable. This comes, as the results of Hybrid Grounding
(Chapter 4) enable the free (manual) partition of a normal (HCF) program Π into a part Π1 that
is grounded via body-decoupled grounding (BDG) and a part Π2 that is grounded by means of
state-of-the-art techniques.

This chapter derives the Data Heuristics, which takes both structure and data (instance) into
account. The structure is intuitively the denseness of a rule in terms of its treewidth in the variable
graph. We approximate the number of instantiated rules, to incorporate the instance into our data
heuristics. Our experiments show that using the Data Heuristics our prototype newground3
is able to obtain state-of-the-art performance on solving-heavy tasks, while surpassing them on
grounding-heavy tasks.

We start by reviewing the state-of-the-art grounders and their strengths and weaknesses (Sec-
tion 5.1), which is followed by the introduction of our heuristics (Section 5.2). This is continued
by showing our novel prototype newground3, which is an effective integration of the data
heuristics into a bottom-up grounding procedure (Section 5.3). We close by verifying our claims
with our experiments (Section 5.4).

5.1 State-of-the-art Grounding

We shortly summarize the main results of state-of-the-art grounders, necessary for deriving our
heuristics.

5.1.1 SOTA-Grounding (Bottom-up/Semi-naive techniques)

gringo and idlv use (bottom-up) semi-naive database instantiation techniques to ground a
program Π [23], [61]. This is performed by analyzing the positive-dependency graph DP of
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Π. As DP may form cycles, they first analyze DP for SCCs and create the respective reduced
dependency graph DR

P (See also Section 2.1). Grounding is performed along a topological order
Lp of theDR

P . The bottom-up grounding algorithm is the algorithm defined that grounds along Lp,
while additionally keeping track of a candidate set D. This candidate set D intuitively keeps track
of the tuples that are possibly derivable. Conversely, if a tuple is not in D it is surely false. Rules
are instantiated according to the candidate set D. If an SCC contains a cycle, then semi-naive
techniques are used to prevent unnecessary derivations [23], [61].

Observe that by following this technique, grounding is in the worst-case exponential in the maxi-
mum number of variables of a rule r ∈ Π, where V = maxr∈Π | var(r)|: O

(︂
|Π| · | dom(Π)|V

)︂

5.1.2 Bottom-up grounding evaluates Stratified Programs

Bottom-up grounding is typically implemented in a way that enables full evaluation of stratified
programs. Technically, this is implemented by partitioning the candidate set D into a surely
derived set DT and a potentially derived set Dpot. Conversely, for any a ̸∈ Dpot ∪DT we know
that we can never derive a. This idea leads to the following improvements when instantiating
a rule r ∈ Π: (i) If a ∈ DT and a ∈ B+

r , then remove a from B+
r . (ii) When a ̸∈ Dpot ∪DT ,

a ∈ B+
r , then do not instantiate r. (iii) If a ∈ DT and a ∈ Hr, then do not instantiate r. (iv) If

a ∈ DT and a ∈ B−r , then do not instantiate r. (v) If a ̸∈ Dpot ∪DT , then remove a from B−r .
(vi) Gather facts, whenever a rule body is empty.

Together, these improvements enable the evaluation of stratified programs. Remind yourself that
stratified programs do not have negative cycles, i.e., cycles in their dependency graph which
contain at least one negative edge. However, these improvements have in the worst case no effect
on the grounding size of non-stratified programs, and grounding still remains exponential in the
maximum number of variables.

5.1.3 Treewidth aware rewritings

Utilizing the rule structure to rewrite non-ground rules is performed by Lpopt. It computes a
minimum size tree decomposition, which is then used to introduce fresh rules with a preferably
smaller grounding size.

In more detail, for every rule r ∈ Π it first creates the variable graphD (r) (See also Section 2.13).
After computing a minimum size tree decomposition (Section 2.14), it introduces fresh predicates
and fresh rules for every bag of the tree decomposition. The arity of the fresh predicates
correspond to the respective bag size, as does the number of variables per rule.

Let TW (D (r)) be the treewidth, then B = TW (D (r)) + 1 is its bag size. It was shown that
Lpopt produces a rewriting that is exponential in B, where B ≤ V (V = maxr∈Π |var(r)|):
O(|Π| · | dom(Π)|B).

More details can be found in [14], [107]. Internally idlv uses the concepts of Lpopt to reduce
the grounding size [24].

56



5.2. Automated Splitting Heuristics

Algorithm 5.1: Heurstruct(r, marker); Variable Heuristics
Data: Rule r, ground instructions marker

1 if IsStratified(r) then
2 marker← marker ∪ (r, SOTA) ;
3 else if | var(r)| > a∧ IsConstraint(r) ∧AP(r) then
4 marker← marker ∪ (r, BDG) ;
5 else if | var(r)| > 2 · a∧ IsTight(r) ∧AP(r) then
6 marker← marker ∪ (r, BDG) ;
7 else if | var(r)| > 3 · a ∧ AP(r) then
8 marker← marker ∪ (r, BDG) ;
9 else

10 marker← marker ∪ (r, SOTA) ;
11 end

5.1.4 Body-decoupled Grounding

Body-decoupled grounding produces grounding sizes that are exponential in the maximum arity.
We discussed the details in Chapter 3 and restrict ourselves here to state the main results w.r.t.
the grounding size. Let a be the maximum arity (a = maxr∈Π maxp(X)∈Hr∪Br

|X|), then BDG
has a grounding size in O(|Π| · | dom(Π)|C), where c = a for constraints, c = 2 · a for (tight)
normal (HCF) programs, and c = 3 · a for (non-tight) normal programs. Note that the other
improvements we discussed, such as Variable Justifying Independence (Section 3.2.2), do not
lead to an improvement in the worst-case grounding size of BDG.

5.2 Automated Splitting Heuristics

Automated Splitting is enabled by the development of heuristics that take into account both the
structure of a rule and the data of the instance. We start by introducing the variable heuristics
(Algorithm 5.1), followed by the structural heuristics (Algorithm 5.2), which is then extended to
the data-structural heuristics (Algorithm 5.3).

5.2.1 Variable Heuristics

We incorporate the results from bottom-up grounding and BDG discussed so far in the variable
heuristics in Algorithm 5.1. Therefore, stratified parts are grounded with bottom-up procedures,
whereas BDG is used for non-stratified parts whenever the (adjusted) arity is strictly smaller than
the number of variables. Let a be the maximum arity of a rule, IsConstraint(r) be true iff r is
a constraint, and IsTight(r) be true iff r is tight. With AP(r) we denote that BDG can handle
the rule r in principle, so that it is in a normal (HCF) component and its literals are syntactically
supported. The marker set denotes the result and saves which rule should be grounded with which
technique. It is initially an empty set that is then filled with tuples of (r, type), where r is a rule
and type is type ∈ {BDG, SOTA}.
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In more detail, stratified rules are always grounded with SOTA-grounders (Lines (1)–(2)). If
r is a constraint and its maximum arity is strictly smaller than the number of variables in the
rule, then it is grounded with BDG (Lines (3)–(4)). The same holds when r is (tight) normal and
the maximum arity times 2 is strictly smaller than the number of variables (Lines (5)–(6)), or
when it is cyclic and the maximum arity times 3 is strictly smaller than the number of variables
(Lines (7)–(8)). If none of these cases hold, it is grounded by SOTA-techniques (Lines (9)–(10)).
Note that the strictly smaller condition is necessary, as BDG performs worse than standard
grounders when their asymptotic grounding sizes match.

Theorem 5.1. Let Π be a non-ground normal (HCF) program grounded with the markings
produced by Algorithm 5.1, where AP(r) holds for every r ∈ Π. Then its grounding size is in
O

(︁
|Π| · | dom |3·a

)︁
.

Proof. For any non-ground normal (HCF) program Π we apply Algorithm 5.1 rule by rule. If a
rule is in a stratified part, then it is grounded by bottom-up grounding and has a grounding size
that is in O (||r|| · | dom |a).

The remaining cases of the algorithm (Lines (3)–(11)) decide whether to use BDG. Note that by
assumption AP(r) holds for all rules r ∈ Π. We now perform a case distinction. Whenever r is
a constraint and | var(r)| > a then we use BDG for constraints and obtain a grounding size of
O (||r|| · | dom |a). Conversely, if r is a constraint and | var(r)| ≤ a, then it is also exponential
in the arity. For r being normal, tight, and | var(r)| > 2 · a, we ground with BDG and obtain a
grounding size of O

(︁
||r|| · | dom |2·a

)︁
. Conversely when | var(r)| ≤ 2 · a, the grounding size is

still bounded by O
(︁
||r|| · | dom |2·a

)︁
when grounded by bottom-up grounding. We are left with

(non-tight) normal rules, which are grounded with BDG whenever | var(r)| > 3 · a, where we
obtain a grounding size of O

(︁
||r|| · | dom |3·a

)︁
with BDG. The converse gives us a grounding

size that is bounded by the same asymptotic time.

As O (||r|| · | dom |a) ∈ O
(︁
||r|| · | dom |2·a

)︁
∈ O

(︁
||r|| · | dom |3·a

)︁
, we obtain an overall bound

per rule of O
(︁
||r|| · | dom |3·a

)︁
. For the program Π we follow O

(︁
|Π| · | dom |3·a

)︁
.

Example 5.1. We show several rules and their classification according to Algorithm 5.1. Let Π
be a program s.t. Π = Π1 ∪Π2 is a partition. Π1 is shown in the next listing.

1 e(1,2). e(1,3). e(1,4). e(1,5). % ... additional input
2 c(X,Y) :- e(X,Y).
3 {f(X,Y)} :- e(X,Y).
4 {g(X,Y)} :- e(X,Y).

The next rules shown are part of Π2, i.e., r ∈ Π2. The rule shown in the next listing depicts a rule
that is stratified and therefore grounded by bottom-up grounders.

1 d(X1) :- c(X1,X2), c(X1,X3), c(X2,X3).

The next rule is in the non-stratified part, has 4 variables, and a maximum arity of 2. It is therefore
grounded by BDG.

1 :- f(X1,X2), f(X2,X3), f(X3,X4).
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Our rule shown below is similar to the rule above. It has 3 variables and a maximum arity of 2,
and thereby grounded by BDG.

1 :- f(X1,X2), f(X1,X3), f(X2,X3).

The next rule is a normal rule with 5 variables. It has a maximum arity of 2. So we ground it with
BDG.

1 c(X1) :- f(X1,X2), f(X1,X3), f(X1,X4), f(X1,X5), f(X2,X3), f(X2,X4), f(X2,X5)
, f(X3,X4), f(X3,X5), f(X4,X5).

We finally show a cyclic rule with 7 variables. It has a maximum arity of 2 that is grounded with
BDG.

1 d(X1) :- g(X1,X2), g(X1,X3), g(X1,X4), g(X1,X5), g(X1,X6), g(X1,X7), g(X2,X3)
, g(X2,X4), g(X2,X5), g(X2,X6), g(X2,X7), g(X3,X4), g(X3,X5), g(X3,X6), g
(X3,X7), g(X4,X5), g(X4,X6), g(X4,X7), g(X5,X6), g(X5,X7), g(X6,X7).

2 g(X1,X2) :- d(X1), d(X2).

5.2.2 Structural Heuristics

We introduce the Structural Heuristics (Algorithm 5.2) by extending the variable heuristics
(Algorithm 5.1) with the support to rewrite rules with Lpopt. The heuristics is structural in the
sense that it takes into account the variable graph structure of the rule. This is done by performing
a tree decomposition and analyzing the treewidth of each rule. Let TW (D (r)) be the treewidth
of the variable graph of r and B(r) = TW (D (r)) + 1 be its bagsize. Note that the bagsize
corresponds to the number of variables in the rewritten rule. flagLpopt denotes a flag which is true
or false, depending on the user’s choice whether to use Lpopt. The other notions are defined as
for the variable heuristics.

In detail the structural heuristics grounds stratified rules with bottom-up grounders (Lines (1)–(2)).
Lpopt is invoked whenever the bag size of the tree decomposition is smaller than the number of
variables (Lines (3)–(7)). First the Lpopt procedure is invoked in Line (4) to produce a rewritten
rule. Next it recursively calls the structural heuristics, to determine whether the rewritten rules
are grounded with BDG or with bottom-up grounding (Lines (5)–(7)). The algorithm continues
by taking a case distinction, similar to the variable heuristics, whether to use BDG or bottom-up
grounding (Lines (8)–(16)).

Next we derive a result about the number of generated non-ground rules of Lpopt. Up to now
only the number of generated ground rules was discussed [14], [107].

Lemma 2. We rewrite a rule r ∈ Π with Lpopt, where Π is a program. Let k be the treewidth
of the variable graph of r. Then the resulting set of (non-ground) rules γ = Lpopt(r) is in
γ ∈ O (||r|| · k).

Proof. Lpopt(r) produces a set γ of rules. This is done by performing a tree decomposition on
the variable graph and then creating a new rule for each bag of the tree decomposition. Lpopt
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Algorithm 5.2: Heurstruct(r, marker); Structural Heuristics
Data: Rule r, ground instructions marker

1 if IsStratified(r) then
2 marker← marker ∪ (r, SOTA) ;
3 else if B(r) < | var(r)| ∧ flagLpopt then
4 Rl ← lpopt(r) ;
5 for rl in Rl do
6 Heurstruct(rl, marker) ;
7 end
8 else if B(r) > a∧ IsConstraint(r) ∧AP(r) then
9 marker← marker ∪ (r, BDG) ;

10 else if B(r) > 2 · a∧ IsTight(r) ∧AP(r) then
11 marker← marker ∪ (r, BDG) ;
12 else if B(r) > 3 · a ∧ AP(r) then
13 marker← marker ∪ (r, BDG) ;
14 else
15 marker← marker ∪ (r, SOTA) ;
16 end

introduces fresh literals for each bag (with the exception of the root bag). Additionally, they
introduce fresh domain literals for the variables of a rule.

We assume an Lpopt implementation where each literal p(X) ∈ r is introduced exactly once.
For negative body literals Lpopt needs to ensure variable safety by introducing variable domain
literals for the variables of negative body literals, which we denote as dom(Xi). Note that
||p(X)|| = |X|+ 1, and ||dom(Xi)|| = 2. So for each literal ||p(X)||+

∑︁
Xi∈X ||dom(Xi)|| =

3|X| + 1. Note the inequality 3|X| + 1 ≤ 3|X| + 3 = 3 · ||p(X)||. Therefore, by summing
over all literals we get

∑︁
p(X)∈r 3 · ||p(X)|| = 3 · ||r|| ∈ O(||r||).

We continue with the size of the fresh literals. For join nodes of the nice tree decomposition,
we generate rules that have 3 freshly introduced literals (which is the maximum). Let χ(n) and
χ(n− 1) be bags s.t. χ(n) is the parent of χ(n− 1). Then the variables of the freshly introduced
literal pχ(n−1)(Y ) are defined by Y = χ(n) ∩ χ(n − 1). Observe how |Y | ≤ B(r) = k + 1.
Further, it is a well known result that nice tree decompositions exist that are linear (4 · n) in the
number of vertices (n) of the input graph [16]. We have |var(r)| vertices, so we follow that we
have at most 4 · |var(r)| many bags and 4 · |var(r)| − 1 many edges (as the bags form a tree).
We follow that the overall size of the freshly introduced literals is 4 · |var(r)| · (3 · (k + 1)) ∈
O(|var(r)| · k).

Lastly, we need to generate |var(r)|many domain literals dom(Xi). For each such generated rule
dom(Xi)← br(X) we need to find a suitable body literal br(X) (s.t. Xi ∈X). It needs to hold
br ∈ B+

r and ideally br should be as small as possible. However, in the worst case |X| = k + 1.
Therefore, the size of every such rule is bounded by ||dom(Xi)||+ ||br(X)|| ≤ 2+k +2 ∈ O(k).
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We need to introduce |var(r)| many, so the size of the domain rules is in O(|var(r)| · k).

Combining the three parts we obtain O(|var(r)| · k) ⊆ O(||r|| · k), as |var(r)| ≤ ||r|| by
definition.

We continue with our theorem about the grounding size of Algorithm 5.2.

Theorem 5.2. Let Π be a non-ground normal (HCF) program grounded with the markings
produced by Algorithm 5.2, where AP(r) holds for every r ∈ Π, let c be the number of rules of
Π, let k be the maximum treewidth of any rule of Π, and let flagLpopt be true.

Then its grounding size is in O
(︁
(|Π| · k) · | dom |3·a

)︁
.

Proof. For any non-ground normal (HCF) program Π we apply Algorithm 5.2 rule by rule. If
a rule is in a stratified part, then it is grounded by bottom-up grounding and has a grounding
size that is inO (||r|| · | dom |a). As flagLpopt is true, we apply Lpopt. If B(r) < | var(r)| then
Lpopt is applied. The naive usage of Lpopt applied to the rule r yields a set of rules γ, that
have max B(r) variables. Further, Lpopt generates |γ| ∈ O (||r|| · k) many (non-ground) rules
(Lemma 2). Therefore its naive grounding size is in O

(︂
(||r|| · k) · | dom |B(r)

)︂
. We perform a

recursive call in Line (6) which bounds it to the maximum arity (as shown next).

Observe that for Lines (8)–(16) the max bag size and the number of variables match (B(r) =
| var(r)|), due to the Lpopt procedure. Note that by assumptionAP(r) holds for all rules r ∈ Π.
These lines decide whether to use BDG, where we now proceed with a case distinction. Whenever
r is a constraint and B(r) > a then we use BDG for constraints and obtain a grounding size of
O (||r|| · | dom |a). Conversely, if r is a constraint and B(r) ≤ a, then it is exponential in the
arity. For r being normal, tight, and B(r) > 2 · a, we ground with BDG and obtain a grounding
size of O

(︁
||r|| · | dom |2·a

)︁
. Conversely when B(r) ≤ 2 · a, the grounding size is still bounded

by O
(︁
||r|| · | dom |2·a

)︁
when grounded by bottom-up grounding. We are left with (non-tight)

normal rules, which are grounded with BDG whenever B(r) > 3 ·a, where we obtain a grounding
size of O

(︁
||r|| · | dom |3·a

)︁
with BDG. The converse gives us a grounding size that is bounded

by the same asymptotic time.

As O (||r|| · | dom |a) ∈ O
(︁
||r|| · | dom |2·a

)︁
∈ O

(︁
||r|| · | dom |3·a

)︁
, every rule which was not

rewritten by Lpopt has a grounding size that is inO
(︁
||r|| · | dom |3·a

)︁
. For the Lpopt rewritten

rules we obtain O
(︁
||r|| · k · | dom |3·a

)︁
. As

∑︁
r∈Π ||r|| · k = k ·

∑︁
r∈Π ||r|| = k · |Π|, we follow

O
(︁
|Π| · k · | dom |3·a

)︁
.

The difference between the theoretical grounding size of the variable heuristics (Theorem 5.1) and
the structural heuristics (Theorem 5.2) is only minor, and results from the treewidth of the variable
graph. Keep in mind that the variable heuristics grounds rules with BDG that are rewritten with
Lpopt in the structural heuristics. Therefore, it is expected that the variable heuristics performs
worse on those problems, as BDG pushes effort from the grounder to the solver.
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Example 5.2. We display the changes in used grounders compared to Example 5.1. The only
difference occurs for the rule shown in the next listing, which is a rule with a variable graph of
treewidth 1, bagsize of 2, but has 4 variables. Therefore, Lpopt is used to rewrite the rule.

1 :- f(X1,X2), f(X2,X3), f(X3,X4).

The Lpopt rewritten rules are depicted in the next listing.

1 % Lpopt Rewritten Rule:
2 temp_decomp_0_0(X3) :- f(X3,X4).
3 temp_decomp_0_1(X2) :- f(X2,X3), temp_decomp_0_0(X3).
4 :- f(X1,X2), temp_decomp_0_1(X2).

As for each rewritten rule |var(r)| < 2 · a, or respectively |var(r)| < a holds, bottom-up
grounding is used to ground these rules.

5.2.3 Data-Structural Heuristics

The data heuristics (Algorithm 5.3) incorporates instance knowledge in the selection process.
This stems from the fact that although Heurstruct has nice theoretical properties, it can fail due
to its lack of instance considerations. One of the major contributing factors to these failures is
caused by SOTA-techniques using instance knowledge, which BDG cannot use. While BDG
uses domain-grounding, SOTA-techniques use candidate set grounding, which propagates facts,
or surely false atoms. Further, applying Lpopt can lead to an increase in grounding size, as
it (partially) destroys the structure of the rule, thereby making variable join operations more
difficult1. Both shortcomings are particularly prevalent on sparse instances.

To alleviate these issues, first observe that rule instantiations with SOTA-techniques, are similar
to joins in a database system. It resembles joins of the predicates of the postive body B+

r [92].
Interestingly for us, one can estimate the resulting size of the join [54], which only depend on the
tuple size T (p) of a predicate p, and the domain size |dom X| of a variable X in a rule. This
aligns with the data that is needed to compute the size of instantiated BDG rules. Therefore, the
idea of the data heuristics is to take the method that has a smaller estimated number of instantiated
rules, where we compare the estimate of the join size of SOTA-grounders to the estimate of the
number of instantiated rules of BDG.

We estimate the SOTA-grounding size according to the join-selectivity criterion of [92], which
is similar to the method proposed in [54]. Further, note that a variant of this criterion is used in
idlv [24]. We compute the join size in an iterative fashion, for a rule r with a positive body
pl+1, . . . , pm, Let pi+1 be the current predicate under investigation, Ai be the positive predicatess
up to and including pi. Therefore, let T (pi+1) be the number of tuples of pi+1, and T (Ai) be the
estimated join size up to and including predicate pi. Let dom(X, pi+1) be the domain of variable
X for predicate pi+1, and dom(X, Ai) be the domain of X up to and including pi+1. We update

1Therefore, applying Lpopt blindly on the whole program is not reasonable. A more reasonable approach is to
estimate the grounding size and only use it, if the projected grounding size is smaller. idlv does this in a similar
way [24], however, idlv is closed source and does not feature suitable callbacks to integrate additional heuristics or
rewritings. Thus, an integration into idlv is not possible.
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dom(X, Ai+1) as dom(X, Ai+1) = min{dom(X, Ai), dom(X, pi+1)}. Equation (5.1) shows
our join size estimation for SOTA-grounding, and with T▷◁(r) we denote the estimated join size
of the rule r.

T (Ai ▷◁ pi+1) = T (Ai) · T (pi+1)
ΠX∈var(Ai)∩var(pi+1) max{dom(X, Ai), dom(X, pi+1)} (5.1)

For hybrid grounding the size estimation is straight-forward according to the definition provided
in Rules (4.1)–(4.14). We assume to have pre-computed the variable domains dom(X) for a
rule r, s.t. X ∈ var(r). Then Equation (5.2) details the estimation of the head-guess size,
for the respective Equations (4.1) and (4.2). Note that there is no need to estimate the impact
of Equation (4.3), as we consider a single rule r. Equations (5.3)–(5.5) estimate the size of
the satisfiability encoding, where Equation (5.3) estimates the impact of variable guessing and
saturation (Respective Equations (4.4) and (4.9)). Equation (5.4) accounts for the constant parts
(Respective Equations (4.5) and (4.9)), and Equation (5.5) computes the estimate for the literals
(Respective Equations (4.6)–(4.8)). Equations (5.6)–(5.8) estimate the size of the unfound-part.
Equation (5.6) estimates the size of the constraint (Respective Equation (4.14)), Equation (5.7)
estimates the size of the variable instantiations (Respective Equation (4.11)), and Equation (5.8)
estimates the size of the literals (Respective Equations (4.12) and (4.13)). Finally, Equation (5.9)
sums up all contributions.

T G
H (r) = 2 ·

(︂
Σh(X)∈Hr

ΠX∈X,h(X)∈Hr
|dom(X)|

)︂
(5.2)

T S1
H (r) = 2 · ΣX∈var(r)| dom(X)| (5.3)

T S2
H (r) = 2 (5.4)

T S3
H (r) = Σp(X)∈rΠX∈X |dom(X)| (5.5)

T F 1
H (r) = Σh(X)∈Hr

ΠX∈X |dom(X)| (5.6)

T F 2
H (r) = Σh(X)∈Hr

(︂
ΣY ∈var(r)\X (|dom(Y )| ·ΠX∈X | dom(X)|)

)︂
(5.7)

T F 3
H (r) = Σh(X)∈Hr

(︂
Σp(Y )∈r\h(X) (ΠY ∈Y |dom(Y )| ·ΠX∈X |dom(X)|)

)︂
(5.8)

TH(r) = T G
H (r) + T S1

H (r) + T S2
H (r) + T S3

H (r) + T F 1
H (r) + T F 2

H (r) + T F 3
H (r) (5.9)

We update Algorithm 5.2 to account for the estimates of the grounding sizes, which is depicted
in Algorithm 5.3. Note that for Lpopt (Lines (1) and (4)–(7)) we compute the grounding
sizes of the rewritten program as a whole. Therefore, T (r) is the best (smaller) estimate of r,
Rl = Lpopt(r), and T▷◁(Rl) is Σrl∈Rl

T (rl). Furthermore, we incorporate in Lines (7)–(12)
that we only ground via BDG if the estimated rule size is actually smaller than the estimated rule
size of the join.

Example 5.3. We show an example of the estimated number of instantiations according to the
rule in Line (3) of the following listing. Note that this rule has 3 densely interacting variables.
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Algorithm 5.3: Heur(r, marker); Data-Structural Heuristics
Data: Rule r, ground instructions marker

1 Rl ← lpopt(r) ;
2 if IsStratified(r) then
3 marker← marker ∪ (r, SOTA) ;
4 else if B(r) < | var(r)| ∧ flagLpopt ∧ T▷◁(r) > T▷◁(Rl) then
5 for rl in Rl do
6 Heurstruct(rl, marker) ;
7 end
8 else if B(r) > maxa∈r a∧ IsConstraint(r) ∧AP(r)∧TH(r) < T▷◁(r) then
9 marker← marker ∪ (r, BDG) ;

10 else if B(r) > 2 ·maxa∈r a∧ IsTight(r) ∧AP(r)∧TH(r) < T▷◁(r) then
11 marker← marker ∪ (r, BDG) ;
12 else if B(r) > 3 ·maxa∈r a ∧AP(r)∧TH(r) < T▷◁(r) then
13 marker← marker ∪ (r, BDG) ;
14 else
15 marker← marker ∪ (r, SOTA) ;
16 end

Therefore its grounding size is cubic in the domain for bottom-up grounding procedures. As its
maximum arity is 2, BDG’s grounding size is quadratic.

1 e(1,2). e(1,3). % ... facts, assumed as input to the program.
2 {f(X,Y)} :- e(X,Y).
3 :- f(X1,X2), f(X1,X3), f(X2,X3).

The facts resemble a graph defined by the edge facts e(X, Y ). We analyze the behavior on
different graph densities (number of edges divided by edges of complete graph) and graph sizes
(1 to 100 vertices). The estimation is performed along Equation (5.1) for bottom-up grounding
and with Equation (5.9) for BDG. The results are shown in Figure 5.1. Density has an effect
on estimation for bottom-up (SOTA) grounders, but not on BDG. High density graphs (like the
complete graph with density 1.0) show a rapid increase in the number of estimated rules. Sparse
graphs (e.g., 0.01) show a very mild increase. BDG has a comparatively large constant, therefore
the usage of SOTA-techniques on small graphs is suggested.

5.3 newground3: Prototype Implementation

Our prototype newground3 is a full-fledged grounder that combines SOTA and BDG grounders.
Algorithm 5.3 is used to decide between SOTA and BDG grounding. Furthermore, the algorithm
does not pre-impose on the user which SOTA grounder to use, and therefore, offers integra-
tion with gringo and idlv. In this section, we discuss implementation choices, highlight
implementation challenges, and present the structure of the prototype.
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Figure 5.1: Plot comparing the estimated number of grounded rules for the encoding of Ex-
ample 5.3, for various graph densities (number of edges divided by edges of complete graph),
between bottom-up (SOTA), and body-decoupled grounding (BDG). Denser graphs yield a
sharper increase in estimation. BDG’s estimation is independent of the graph density. Further,
BDG has a relatively large constant, which prevents its usage for sparse graphs. The x-axis shows
number of vertices, whereas y-axis shows estimated number of rules.

Two major problems emerged in the implementation of newground3: (I) Integration and
communication with gringo and idlv, and (II) suitable domain inference for rule estimations
of Algorithm 5.3. Note that we performed a full-scale redevelopment of the earlier versions of
newground3 (newground and NaGG). We further extended its input language to the ASP-
Core-2 [22] input language standard2 and improved the grounding performance of newground.
On a high level, we did this by interleaving semi-naive grounding with body-decoupled grounding.
For the semi-naive grounding parts we use either gringo, or idlv, whereas, for the body-
decoupled grounding part we use a completely redesigned BDG-instantiator. Further, we combine
Python with Cython3 and C code to additionally increase its performance.

2As not all ASP-Core-2 constructs can be handled with rewritings based on BDG, we implemented checks s.t.
only constructs are considered to be grounded by BDG that can be grounded, while the non-groundable ones are
grounded by SOTA-techniques. Non-BDG groundable concepts include non-tight disjunctive parts, and at the time of
writing parts where arithmetics is used to infer variables (e.g., X = Y + Z).

3https://cython.org/
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Figure 5.2: Schematics of the newground3 prototype. Given a program Π, newground3
outputs a grounded program G(Π). The fact splitter and analyzer (Fact Splitter) separates facts
from encoding. The dependency graph creator and analyzer (D Analyzer) analyzes SCCs. Using
Lpopt is optional. The structural heuristics decides whether BDG is useful. This is taken into
account by the grounding strategy creator, which produces a bottom-up grounding and BDG
compliant grounding strategy. The grounding strategy handler grounds according to the grounding
strategy. In that, it incorporates the data heuristics (Estimator).

5.3.1 Structure - Overview

The general architecture of the prototype consists of 6 parts, where we show a schematics in
Figure 5.2. (i) The fact splitter and analyzer, separates facts from the encoding. It further
computes the number of facts, and fact-domain. (ii) The dependency graph creator and analyzer
computes a (positive and negative) dependency graph from the encoding. Further, it infers which
parts of the program are stratified and analyzes the strongly connected components (SCCs) of
the dependency graph. (iii) Our Lpopt (optional) heuristics, estimates from the results of the
dependency graph analyzer and from the fact-domain, if a treewidth-aware rewriting is useful
(Lpopt part of Algorithm 5.3). (iv) Next, we call the structural Algorithm 5.2 to decide up-front
which parts are eligible for grounding with BDG and which are (definitely) not. (v) Based on the
SCCs of the dependency graph and the results of the Algorithm 5.2, we compute the grounding
strategy. (vi) The grounding strategy handler uses the previous results to iteratively invoke either
gringo or idlv, or our completely overhauled BDG instantiator. Importantly, in this step we
obtain and utilize the domain and tuple information, as needed for Algorithm 5.3.

We stress that we decided to split Algorithm 5.3 into three parts in our implementation. First,
we approximate whether the usage of Lpopt is beneficial. Next, we decide with the structural
heuristics, which parts are eligible for grounding with BDG. And finally, we decide on the
estimated number of instantiated rules if BDG is actually used. These implementation choices
improve performance. The grounding strategy handler makes successive calls to gringo and
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idlv, and infers the domain and tuples values for the estimation process. However, these calls
are expensive and should better be avoided. Therefore, we do not infer the domain if the result of
the structural heuristics tells us that BDG should not be used. Further, our grounding strategy
creator minimizes the number of needed calls to SOTA grounders. We stress that in a (direct)
future implementation of BDG in a SOTA grounder, these calls are not necessary, which would
improve grounding performance even further.

5.3.2 Fact Splitter and Analyzer

Written in Cython, the fact splitter and analyzer resembles a parser-like structure, which takes a
(syntactically correct) program and proceeds by splitting it into a fact and an encoding part. We
base our choice of implementation on the observation that, while in pure Python it is relatively
easy to process complex algorithmical concepts (like a saturation check), Python is relatively
slow when presented with too many input rules. The splitting enables Python to be called for a
relatively small (non-ground) encoding, as typically, the (non-ground) encoding is much smaller
than the fact-base.

5.3.3 Dependency Graph Creator and Analyzer

From our non-ground encoding, we proceed with the creation of the dependency graph. We utilize
from clingo’s AST-library the transformer4, and the NetworkX library for this task. While we
create the dependency graph, we further parse the non-ground rules into our rule-representation.
In our rule-representation, among other parameters, we save whether the rule occurrence is tight,
its corresponding SCC in the dependency graph, and its variable-graph treewidth5.

The transformer of clingo’s AST-library (abbrevation for Abstract Syntax Tree) parses a logic
program, and enables developers callback points in various stages in the parsing. For example,
by implementing the visit_Rule callback, one gets access to the parsed AST-object of a rule. We
showcase in Example 8.1 in the Appendix how to use the clingo transformer.

5.3.4 Lpopt Heuristics

Regarding the usage of Lpopt we approximated the number of instantiations according to the
Data-Heuristics (Algorithm 5.3). Therefore, we only deem the usage of Lpopt useful, if it is
structurally possible to achieve an improvement, and the estimated number of generated ground
rules of Lpopt is smaller than the number of estimated rule-instantiations of the original rule.
As at the decision time the exact domains, and tuple-sizes are not known, we need to approximate
them. This is done by observing the (max) arity of the fact base and the total fact-base size. Let
T be the number of tuples in the fact-base, and a be the maximum arity of the fact base. Then Tα

is the approximated tuple size per arity: Tα = T
1
a We use Tα in the Equations (5.1)–(5.9).

4https://potassco.org/clingo/python-api/current/clingo/ast.html
5Which is actually computed in our structural algorithm.
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Figure 5.3: Dependency graph (a), reduced dependency graph (b), and grounding strategy (c) of
Example 5.4. (a): Red node indicates rule grounded with BDG. (b) Reduced dependency graph
resembles a DAG. c1, . . . , c6 shows a topological ordering. (c) Grounding strategy (boxes I to
III). Blue box (I) is grounded first. Then the red box (II) with the rule marked for possible
BDG grounding. And lastly, the green box (III).

5.3.5 Structural Heuristics

In the next step we use Algorithm 5.2 for marking rules for being grounded with SOTA, or with
BDG methods. In this step, we further compute additional metrics for the rules, like the variable
graph treewidth. To combine, both the heuristics and the additional computation, we extend a
clingo transformer.

5.3.6 Grounding Strategy Creator

Provided the markings of rules from the structural heuristics, the grounding strategy creator,
generates a semi-naive grounding compliant order. In essence, this means that the program is
analyzed according to the dependency graph D, and whether rules are marked with BDG.

The first step in the creation of the strategy is the computation of a topological order on the reduced
dependency graph DR

P . From this topological order bins6 are created. Bins are a collection of
rules, with the constraint that all rules in one bin can be grounded either, (a) by one SOTA-ground
call, or (b) by one BDG call. If no rule is eligible for grounding with BDG, then all rules are put
in a single bin. Note that we keep the relative ordering of the bins w.r.t. the dependency graph.

6We use bin and grounding-level interchangebly.
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Example 5.4. We illustrate this in an example. Let us consider the following program:

1 a(1). a(2). a(3). a(4).
2 {b(X)} :- a(X). {c(X,Y)} :- a(X), a(Y).
3 d :- c(X1,X2), c(X1,X3), c(X2,X3), X1 < X2, X1 < X3, X2 < X3.
4 d :- h.
5 h :- d.
6 e(Z) :- c(X,Y), Z = X + Y.
7 e(X) :- b(X), b(Y), X < Y.
8 f(X) :- e(X), d.

We depict in Figure 5.3a the dependency graph of the program above. The rule in Line (3) is
marked for grounding with BDG (red node in Figure 5.3a). In Figure 5.3b we show the reduced
dependency graph and one topological ordering. The topological ordering is indicated by the c1
to c6. Figure 5.3c shows the produced grounding strategy, from the reduced graph. The boxes
mark the bins with the ordering (I) to (III).Observe that c1 to c3 are put into one bin. This comes,
as there is no rule marked for grounding with BDG in these nodes. Additionally, there is no node
on a path between any of the nodes of the bin, where there is a rule marked for grounding with
BDG. However, as c4 contains a node marked for grounding with BDG, it must be put in a bin
different from c1 to c3. Further, c6 cannot be put into bin (I), as the path c2 − c4 − c6 contains a
node (c4), where at least rule is marked for grounding with BDG.

However, c5 could be put into bin (I). Therefore, observe that there are multiple possible bin
configurations, which depend on the topological ordering. To showcase this, another possible bin
configuration would be: I: c1, c2; II: c4; III: c3, c5, c6.

5.3.7 Data Heuristics (Grounding Strategy Handler)

Making use of the generated bins, the grounding strategy handler implements the final parts of
the data heuristics. This corresponds to the implementation of the estimations of the instantiated
rule sizes. We show the pseudo-code in Algorithm 5.4.

Let F be the facts, B be the bins, and (bS , bB) ∈ B is a tuple that denotes the rules that are
marked for SOTA- (bS) and for BDG-grounding (bB), respectively. H is the hybrid-, and G is the
SOTA-grounding procedure. domain_inference infers the domain that is needed for the rule size
estimation. Finally, G(Π) is the grounded program.

Intuitively, the algorithm grounds each bin bS , bB ∈ B iteratively. Thereby, we ensure accurate
domain inference for the estimation procedure and for the instantiation of BDG. Line (1) initializes
the grounding G(Π) with the facts. Lines (2)–(14) iterate over each bin bS , bB ∈ B. Then,
Lines (3)–(11) iterate over every rule rB marked with BDG by the structural heuristics. For each
rB it is decided (Line (4)) whether to be grounded with BDG (Lines (5)–(7)), or to be grounded
by SOTA means (Line (9)). Rules that are to be grounded with SOTA grounders are grounded in
Lines (12)–(14).

Due to the communication challenges between newground3 and SOTA grounders, we discuss
Lines (5)–(7) and (12)–(14) in more detail. idlv and gringo take a standard ASP-Core-2 [22]
as its input. However, (I) their standard output formats differ, and (II) they were not designed for
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successive grounding calls. On standard settings idlv uses the SMODELS output format (or
Lparse format) [124], while gringo uses the ASPIf (ASP Intermediate Format) [86]. Note that
there was an ongoing discussion on intermediate formats [81], and other proposals such as the
ASPils (ASP Intermediate Language Standard) [57].

Algorithm 5.4: Handler(B,F); Grounding Strategy Handler
Data: Bins B, Facts F
Result: Grounded program G(Π)

1 G(Π)← F ;
2 for (bS , bB) ∈ B do
3 for rB ∈ bB do
4 if TH(rB) < T▷◁(rB) then
5 Πt ← H(rB, ∅) ;
6 domain_inference(Πt) ;
7 G(Π)← G(Π) ∪Πt;
8 else
9 bS ← bS ∪ rB ;

10 end
11 end
12 Πt ← G(bS , G(Π)) ;
13 domain_inference(Πt) ;
14 G(Π)← G(Π) ∪Πt;
15 end
16 return G(Π) ;

Algorithm 5.4 requires iterative grounding calls. However, neither gringo, nor idlv, are
able to take one of their standard output formats as an input. Furthermore, their string output
format was not designed to be used for successive grounding calls. This comes, as idlv deviates
from the ASP-Core-2 standard in some cases, when they use heuristics for producing smaller
groundings. They deviate in predicate naming, as they use upper-case-letters as the first letter.
Take for example Valves Location Problem from the 2014 ASP-Competition [25]. There we
obtain for idlv7 the following rule in the grounded program:

1 Aux_10(5,1,pipe(1,2)):-deliver(pipe(1,2),pipe(1,5)).

The predicate Aux_10 has an upper-case first-letter, which is not supported by the ASP-Core-2
standard. Therefore, a successive solver call to clingo (as clingo accepts a valid (extended)
ASP-Core-2 program) results in a syntax error. In contrast, with gringo8, we obtain (among
other rules) the following rule:

1 #delayed(1).

7Tested with the new encoding of Valves Location Problem, and instance 0001-ValvesLocationProblem-166-0.asp,
idlv version 1.1.6.

8Tested with the same example as idlv was tested, and gringo version 5.6.2.
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According to the ASP-Core-2 standard there are no rules that start with a #. In contrast to this,
clingo takes extensive use of such constructs for defining (for example) #show statements [70].
However, the actual problem is that successive grounding operations produce lexer errors in
gringo9.

Fortunately, both gringo and idlv support the SMODELS format. As a result, we decided
to use SMODELS as our intermediate format for communication between SOTA grounders and
newground3. But, as SOTA grounders do not provide an interface for integrating callbacks
into their semi-naive grounding procedure, and as we observed that SOTA grounders spend a
considerable amount of time on large ground programs, we decided to use SOTA grounders
solely for domain inference. Therefore, we re-ground in Line (12) in Algorithm 5.4 on the whole
program, and we stress that a direct integration of BDG (with the above described heuristics)
into a SOTA grounder would yield an even better performance.

Novel BDG Instantiator

Our completely re-implemented BDG instantiator uses a combination of Cython, Python and C.
While the previous versions relied on a clingo transformer, the current version uses internal
data-structures to produce the BDG-rewritten program.

Domain Inference

As discussed above, we use the SMODELS format as our intermediate format for communication
between SOTA grounders and newground3. Using SMODELS with its block-style format has
the benefit for efficient inference of the domain. This comes, as all atoms occur in the second
block of the format.

5.4 Experiments

In the following, we demonstrate the practical usefulness of our automated hybrid grounding
approach. We benchmark our system on solving- and grounding-heavy benchmarks, with the
aim of achieving SOTA results on solving-heavy benchmarks, and beating SOTA results on
grounding-heavy benchmarks.

5.4.1 Benchmark System

We compared gringo (Version 5.7.1), idlv (1.1.6), ProASP (Git branch master, short commit
hash 2b42af8), ALPHA (Version 0.7.0), and our heuristics hybrid grounding system newground3.
We benchmarked our system together with both gringo, and idlv. Further, we investigated
the impact of using it in conjunction with Lpopt (Version 2.2).

We chose clingo (Version 5.7.1) with clasp (3.3.10) as our solver of use. However, we want
to note that in principle one could also use dlv with wasp, or use heuristics to decide on the
solver to use, as e.g., suggested in [21].

9Re-grounding the problem instance from above we get the error error: lexer error, unexpected #delayed.
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For newground3 we use Python version 3.12.1. Our system has 225 GB of RAM, and an
AMD Opteron 6272 CPU, with 16 cores. The operating system is a Debian 10 with kernel
4.19.0-16-amd64.

5.4.2 Benchmark Setup

For all experiments and systems we measure total time, which includes grounding and solving
time for ground- and solve-systems, or execution time for ALPHA and ProASP. Further, we
measure RAM usage for all systems and experiments. For the ground- and solve-systems we
measured grounding performance (grounding-time, -size, and RAM usage) in a separate run.

Every experiment has a timeout of 1800s and a RAM (and grounding-size) limit of 10 GB. For
integrated grounders and solvers (ALPHA and ProASP) this RAM limit applies to their execution.
For ground- and-solve-systems this applies to grounding, the grounded program and solving.

For the ground- and-solve approaches, we used clingo as our solver. We consider instances as
a TIMEOUT whenever they take longer than 1800s, and a MEMOUT when their RAM usage
exceeds 10 GB. We set seeds for clingo (11904657), and for Lpopt (11904657). Further, for all
generated graph instances for the grounding-heavy experiments we generated random seeds that
we saved inside the random instance as a predicate.

5.4.3 Experiment Scenarios and Instances

We distinguish between solving- and grounding-heavy benchmarks. For the solving-heavy
benchmarks we compare idlv (idlv), gringo (gringo), newground3 with gringo
(NG-G), newground3 with gringo and Lpopt (NG-G-TW), newground3 with idlv
(NG-I), ALPHA (Alpha), and ProASP (ProASP) (ground-all). We executed newground3 in
the relevance mode. If activated we use BDG only on those scenarios, where the number of
variables for a rule grounded with BDG is strictly greater than the number of variables for any
rule grounded by SOTA grounders.

For the grounding-heavy we compare idlv (idlv), gringo (gringo), newground3 with
gringo (NG-G), newground3 with idlv (NG-I), ALPHA (Alpha), ProASP (ProASP)
(ground-all), and ProASP (ProASP-CS) (compile constraints). For all grounding-heavy bench-
marks Lpopt (NG-G-TW) is never activated (and therefore, not explicitly measured). We
executed newground3 without the relevance mode.

Solving-Heavy Benchmarks

The solving-heavy benchmarks are taken from the 2014 ASP-Competition [25], as they provide a
large instance set with readily available efficient encodings. The 2014 ASP-Competition has 25
competition scenarios, where each (with the exception of Strategic-Companies) has an old and a
new encoding, resulting in 49 competition scenarios. Each scenario has a different number of
instances (see Tables 1, and 2). We benchmarked all instances, over all scenarios. Further, we
preprocessed the encodings s.t. no predicates occur, which have the same predicate name, but
differing arity.
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We show the encoding problem 23O-MaximalCliqueProblem-New10 as an example:

1 clique(X) :- node(X), not nonClique(X).
2 nonClique(X) :- node(X), not clique(X).
3 :- clique(X), clique(Y), X < Y, not edge(X,Y), not edge(Y,X).
4 :~ nonClique(X). [1,X]

Intuitively the encoding guesses nodes that are part of the maximal clique (Lines (1)–(2)). If no
edge between any two nodes in the clique can be found, then it is no clique (Line (3)). Finally,
we want to maximize the number of cliques, or equivalently minimize the number of non-clique
nodes (Line (4)). An instance defines nodes and edges:

1 node(1). node(2). ...
2 edge(1,2). edge(1,3). ...

Grounding-Heavy Benchmarks

We take grounding-heavy benchmarks from [12] and from [10]. These scenarios take as an input a
graph, where we generate random graphs ranging from instance size 100 to 2000 with a step-size
of 100, on graph density levels ranging from 0.2 to 1.0 (number of edges divided by the number
of edges of a complete graph).

Further, we adapt the benchmarks from [12] by adding two variations of the clique example. The
variations resemble different difficulties for BDG and SOTA grounders. The first listing shows
the original formulation (31-Cliqu.(!=)) from [12], and the second one, the adaptation which
makes it easier for SOTA grounders (30-Cliqu.) by changing “!=” to “<”.

1 {f(X,Y)} :- edge(X,Y).
2 :- f(A,B), f(A,C), f(B,C), A != B, B != C, A != C.

1 {f(X,Y)} :- edge(X,Y).
2 :- f(A,B), f(A,C), f(B,C), A < B, B < C, A < C.

The adapted11 scenarios from [12] are called as follows: 00-directed-clique (30-Cliqu.), 01-
directed-clique-not-equal (31-Cliqu.(!=)), 02-directed-paths (32-Path.), 03-directed-coloring
(33-Col.), 04-directed-4-clique (34-4Cliqu.), 05-nprc (35-NPRC.). The examples 36-S3T4, 37-
S4T4, 38-NPRC, and 39-SM-AGG, are from [10], and examples 40-SM-NEW and 40-SM-OLD
are stable matching encodings with denser instances.

10The whole competition suite can be found in: https://www.mat.unical.it/aspcomp2014/
FrontPage

11As ProASP’s syntax does currently not support choice rules, we adapted the subgraph encoding for ProASP
with a negative cycle encoding (f(X,Y) :- edge(X,Y), not nf(X,Y). nf(X,Y) :- edge(X,Y), not f(X,Y).). We also used this
adaptation for ALPHA.
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5. AUTOMATED HYBRID GROUNDING

5.4.4 Experimental Hypotheses

H1 The Data-Structural-Heuristics (Algorithm 5.3) implemented in our prototype newground3
leads to approximately equal results on solving-heavy benchmarks, in comparison to other
SOTA ground-and-solve systems.

H2 The Data-Structural-Heuristics (Algorithm 5.3) implemented in our prototype newground3
yields an improvement in performance (solved instances) on some grounding-heavy bench-
marks, in comparison to other SOTA ground-and-solve systems.

5.4.5 Experimental Results

We show our detailed results in 4 tables (each for grounding- and solving-heavy instances):
Table 1 shows the number of solved instances, Table 4 shows the overall total-time and RAM
usage, Table 2 shows the number of grounded instances, and Table 3 shows the grounding-time
and -size. Figure 5.4 shows the solving performance on solving- and grounding-heavy scenarios
for ground- and solve-systems, Figure 5.5 extends it to ALPHA, Figure 5.6 to ProASP, and
Figure 5.7 shows the grounding performance of ground- and solve-systems on grounding- and
solving-heavy scenarios. In the following, we argue first that H1 can be confirmed and then that
H2 holds.

H1

We focus our attention on the results of the solving-heavy experiments. These are displayed in
Figure 5.4, in the solving-heavy part of Table 1 (solving table), and in the solving-heavy part of
Table 2 (grounding table). Figure 5.4 shows that newground3’s performance is approximately
the same compared to the other ground-and-solver approaches. Table 1 shows that the overall
number of solved instances for gringo is 5449, for idlv 5469, for NG-G 5418, and for NG-I
5434. The difference between gringo and NG-G are 31 instances, and for idlv and NG-I are
35 instances. On in total 8509 solving-heavy instances this resembles an approximate relative
difference of 0.36% for gringo vs. NG-G and 0.41% for idlv vs. NG-I. Also observe that for
gringo vs. NG-G there are cases where gringo beats NG-G and cases where NG-G beats
gringo. Take for example 16-Incr., where gringo has 77 solved instances and NG-G has 75,
out of 500 instances, and example 02-Valv.-New, where gringo has 74 solved instances and
NG-G has 76, out of 318 instances. The same holds for idlv vs. NG-I. As these differences are
minor, we argue that H1 is confirmed by our experiments.

H2

We compare the results for the grounding-heavy benchmark in Tables 1, and 2, and Figures 5.4,
and 5.8. Note in Figure 5.4 the difference between gringo and idlv, to NG-G and NG-I. This
manifests itself also in Table 1, where gringo solves 221, and idlv 293, compared to 584 of
NG-G and 642 of NG-I, from a total of 1000 instances.

Further, observe Figure 5.8, which shows the detailed solving profile for scenario 31-Cliqu.(!=).
Whereas gringo (Figure 5.8a) and idlv (Figure 5.8c) were able to solve most instances when

74



5.4. Experiments

the instance density is low, they failed to solve instances with higher instance densities (80 and
100). In contrast to this NG-G (Figure 5.8b), and NG-I (Figure 5.8d) were able to solve about 4
times as many instances on high instance densities. Observe the solving time jump at instance
size ≈ 1200, which we argue is due to a change in used heuristics in clingo (solver-side).
Finally, the other solving profiles shown in the Appendix are in line with the solving profile in
Figure 5.8.

As newground3’s ability to automatically determine when to use BDG led to an approximate
doubling in the number of solved grounding-heavy instances, we can confirm H2.

Discussion of Hybrid Approaches

For both solving- and grounding-heavy benchmarks NG-G and NG-I outperformed ALPHA sig-
nificantly. ProASP has a comparable performance on solving-heavy benchmarks. On grounding-
heavy benchmarks, ProASP shows promising results, however only when we use ProASP in the
compile constraints mode. However, ALPHA and ProASP are only usable for a small fragment
of scenarios.

newground3 with Lpopt

Our experimental setup of NG-G-TW combines BDG with Lpopt. NG-G-TW grounds more
solving-heavy instances than NG-G (8019 vs. 7925), however,less than gringo (8019 vs. 8037).
In solving NG-G-TW solves less than NG-G (5409 vs. 5418), and less than gringo (5409 vs.
5449). Although these numbers do neither show significant improvements, nor losses, the truly
interesting number occur when viewing individual scenarios. Take for example (01-Perm.-New),
where NG-G-TW improves upon gringo (195 vs. 171). However, it also has losses in other
instances, like (15-Stabl.), where NG-G-TW solves less than gringo (32 vs. 48). Therefore, we
conclude that reducing the grounding size with Lpopt does not necessarily lead to better solving
results.
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Figure 5.4: newground3 manages to obtain the same results on solving-heavy benchmarks
as do gringo and idlv obtain (Figure 5.4a, and Figure 5.4c). newground3 solves more
benchmarks on grounding-heavy benchmarks than gringo and idlv (Figure 5.4b, and Fig-
ure 5.4d). Measured idlv (idlv), gringo (gringo), newground3 with gringo (NG-G),
newground3 with gringo and Lpopt (NG-G-TW), and newground3 with idlv (NG-I).
Timeout: 1800s; Memout: 10GB.
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Figure 5.5: ALPHA performs worse than ground-and-solve systems on both solving-,
and grounding-heavy benchmarks. newground3 manages to obtain the same results on
solving-heavy benchmarks as do gringo and idlv obtain (Figure 5.5a, and Figure 5.5c).
newground3 solves more benchmarks on grounding-heavy benchmarks than gringo
and idlv (Figure 5.5b, and Figure 5.5d). Measured idlv (idlv), gringo (gringo),
newground3 with gringo (NG-G), newground3 with gringo and Lpopt (NG-G-TW),
newground3 with idlv (NG-I), and ALPHA (Alpha). Timeout: 1800s; Memout: 10GB.
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Figure 5.6: ProASP (ProASP), and ProASP with CS (ProASP-CS) show potential on both
solving- and grounding-heavy benchmarks, however it is limited in input syntax. ALPHA per-
forms worse than ground-and-solve systems on both solving, and grounding-heavy benchmarks.
newground3 manages to obtain the same results on solving-heavy benchmarks as do gringo
and idlv obtain (Figure 5.6a, and Figure 5.6c). newground3 solves more benchmarks on
grounding-heavy benchmarks than gringo and idlv (Figure 5.6b, and Figure 5.6d). Measured
idlv (idlv), gringo (gringo), newground3 with gringo (NG-G), newground3 with
gringo and Lpopt (NG-G-TW), newground3 with idlv (NG-I), and ALPHA (Alpha).
Timeout: 1800s; Memout: 10GB.
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Figure 5.7: Solving and Grounding-heavy instances, grounding specific benchmarks for ground-
and-solve approaches. Cactus plots measuring grounding times of solving-heavy (Figure 5.7a),
and grounding-heavy (Figure 5.7b), grounding sizes of solving-heavy (Figure 5.7c), and
grounding-heavy (Figure 5.7d), and (total) RAM usages of solving-heavy (Figure 5.7e), and
grounding-heavy (Figure 5.7f). Timeout: 1800s; Memout: 10GB.
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(b) Solving profile for NG-G.
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(c) Solving profile for idlv.
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(d) Solving profile for NG-I.

00 400 800 1200 1600 2000
Instance Size00

20

40

60

80

100

In
st

an
ce

 D
en

sit
y

1 MB 3.3 MB 10 MB 33 MB 100 MB 330 MB 1 GB 3.3 GB 10 GB
RAM Usage [MB] (top half)

0 s 200 s 400 s 600 s 800 s 1 ks 1.2 ks 1.5 ks 1.8 ks
Combined Time [s] (bottom half)

(e) Solving profile for ProASP.
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(f) Solving profile for ProASPCS.

Figure 5.8: Solving profiles for all benchmarked systems for the 31-Cliqu.(!=) example. Contrast-
ing the traditional Ground-and-Solve techniques, to the hybrid systems it is evident that the hybrid
systems perform better. Compare Figure 5.8a to 5.8b, 5.8c to 5.8d, and 5.8e to 5.8f. Measured
idlv (idlv), gringo (gringo), newground3 with gringo (NG-G), newground3 with
gringo and Lpopt (NG-G-TW), newground3 with idlv (NG-I), ProASP (ProASP) and,
ProASP where constraints are lazily grounded (ProASPCS). Timeout: 1800s; Memout: 10GB.
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CHAPTER 6
FastFound: Using Saturation for

Foundedness

FastFound improves the hybrid grounding [10] reduction, by using saturation [43]. Recall that
the grounding size of body-decoupled grounding [11] is dependent on the maximum arity a of a
program Π. It is inO (|Π| · | dom(Π)|a) for constraints and inO

(︁
|Π| · | dom(Π)|2·a

)︁
for normal

rules. The increase from a to 2 · a prevents the practical usage of BDG for normal rules.

With FastFound we reduce the grounding size for normal rules to O
(︁
|Π| · | dom(Π)|a+1)︁

. While
in the original formulation, the foundedness check encoded each guess explicitly, we use saturation
to implicitly perform the for-all check.

The FastFound reduction is introduced in Section 6.1, which is followed by an extension to HCF
programs (Section 6.2), a demonstration on Examples (Section 6.3), and experiments showcasing
its practical usefulness (Section 6.4).

6.1 The FastFound Reduction

Our FastFound reduction shown in Figure 6.1 consists of three parts: Guessing of the heads
(Rules (6.1)–(6.3)), ensuring satisfiability (Rules (6.4)–(6.9)), and ensuring
foundedness (Rules (6.10)–(6.19)). The head guess and the satisfiability parts are the same as in
hybrid grounding, whereas the foundedness part differs. Our FastFound reduction enables the
free (manual) partition of a normal program Π into a part Π1 grounded by the reduction and a
part Π2 grounded by traditional techniques.

The intuition behind the new-foundedness part is to use saturation to guess every possible variable
assignment for a non-ground head literal. This corresponds to the grounding and as in standard-
grounding, only a subset of the thereby grounded head literals holds for an arbitrary interpretation
I. This has one important implication: We only need to verify foundedness of a head literal, if it
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Glue Π2 to Π1 and Ground Π2
h′(D) ∨ h′(D)← for every r ∈ Π1,

h(X) ∈ hpred(Π1), D ∈ dom(X) (6.1)

h(D)← h′(D) for every r ∈ Π1,
h(X) ∈ hpred(Π1), D ∈ dom(X) (6.2)

r for every r∈G(Π2) (6.3)
Satisfiability of Π1⋁︂
d∈dom(x)

satx(d)← for every r ∈ Π1, x ∈ var(r),
where Π1 = {r1, . . . , rn} (6.4)

sat← satr1 , . . . , satrn for every r ∈ Π1, x ∈ var(r),
where Π1 = {r1, . . . , rn} (6.5)

satr ← satx1 (D⟨x1⟩), . . . , satxt (D⟨xt⟩),¬p(D) for every r ∈ Π1, p(X) ∈ B+
r ,

D ∈ dom(X), X = ⟨x1, . . . , xt⟩ (6.6)

satr ← satx1 (D⟨x1⟩), . . . , satxt (D⟨xt⟩), p(D) for every r ∈ Π1, p(X) ∈ B−
r ∪Hr,

D ∈ dom(X), X=⟨x1, . . . , xt⟩ (6.7)

satx(d)← sat for every r ∈ Π1, x ∈ var(r),
d ∈ dom(x) (6.8)

← ¬sat (6.9)

Foundedness of Π1⋁︂
d∈dom(x)

justx(d)← for every r ∈ Π1, X = var(Hr), x ∈ X (6.10)

1{justhy(d1, D), . . . , justhy(dk, D)}1← h′(D) for every r ∈ Π1, X = var(Hr), D ∈ dom(X),
y ∈ (var(r) \X) , {d1, ..., dk} = dom(y) (6.11)

justy(d)← justhy(d, D), justx1 (d1), . . . , justxt
(dt) for every r ∈ Π1, ⟨x1, . . . , xt⟩ = X = var(Hr),

⟨d1, . . . , dt⟩ = D ∈ dom(X),
y ∈ (var(r) \ var(Hr)) , d ∈ dom(y) (6.12)

just← justr1 , . . . , justrn
let Π1 = {r1, . . . , rn} (6.13)

justr ← litp2 , . . . , litpm , litpm+1 , . . . , litpn for every r ∈ Π1, where B+
r = {p2, . . . , pm}

where B−
r = {pm+1, . . . , pn} (6.14)

litp ← justx1 (D⟨x1⟩), . . . , justxt
(D⟨xt⟩), p(D) for every r ∈ Π1, p(X) ∈ B+

r ,
D ∈ dom(X), X = ⟨x1, . . . , xt⟩ (6.15)

litp ← justx1 (D⟨x1⟩), . . . , justxt
(D⟨xt⟩),¬p(D) for every r ∈ Π1, p(X) ∈ B−

r ,

D ∈ dom(X), X=⟨x1, . . . , xt⟩ (6.16)

justr ← justx1 (D⟨x1⟩), . . . , justxt
(D⟨xt⟩),¬h′(D) for every r ∈ Π1, h(X) ∈ Hr,

D ∈ dom(X), X=⟨x1, . . . , xt⟩ (6.17)

justx(d)← just for every r ∈ Π1, x ∈ var(Hr),
d ∈ dom(x) (6.18)

← ¬just (6.19)

Figure 6.1: Alternative foundedness check (HGF ) for hybrid grounding that uses saturation for
checking foundedness for normal (tight) ASP. Grounding size is in O

(︁
|Π| · |dom(Π)|a+1)︁

.

is part of the interpretation p ∈ I. Conversely, if p ̸∈ I we can skip this literal (Rule (6.17)). If
we are required to verify it, we need to find at least one body variable assignment s.t. the body
holds (Rules (6.11)–(6.12)). This is the case when all positive body predicates p ∈ B+

r hold
(Rules (6.14) and (6.15)), and not a single negative body predicate p ∈ B−r holds (Rules (6.14),
and (6.16)). The Rules (6.10) and (6.18) are technically necessary for encoding saturation and
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ensure that all head instantiations are checked for foundedness. Finally, Rule (6.13) encodes that
all rule heads must be justified, and Rule (6.19) prevents unfounded answer sets.

The grounding size ofHGF is in O
(︁
|Π| · |dom(Π)|a+1)︁

. Rules (6.11)–(6.12) have in the worst
case a + 1 variables, whereas all other rules have in the worst case only a variables. In more
detail, let r be a rule, ah(r) be rule’s maximum head arity and aB(r) be the rule’s maximum
body arity. Then let amax = maxr∈Π max{ah(r) + 1, aB(r)}, which means that the grounding
size ofHGF 1. is in O (|Π| · |dom(Π)|amax).

6.1.1 Theorems and Proofs

Theorem 6.1. Given a partition of any non-ground tight normal program Π into a program Π1
and a program Π2, then answer sets ofHGF (Π1, Π2) restricted to at(G(Π)) bijectively match
the answer sets of G(Π).

Proof (detailed-idea). We proceed by proving two directions, (i) whenever given a program Π,
every answer set of G(Π) is an answer set of HGF (Π1, Π2), and the contrary (ii) (w.r.t. to the
restriction of at(G(Π))). First (i) and then (ii) is shown.

(i): G(Π)→ HGF (Π1, Π2)
Let I ∈ AS(G(Π)) be an answer set of Π. We need to check, whether there exists an IHGF ∈
AS(HGF (Π1, Π2)), where IHGF ∩ at(G(Π)) = I . We construct IHGF in a way s.t. I ⊆ IHGF ,
and IHGF = I ∪ Iaux ∪ Isat ∪ Ifound, where Iaux are those atoms from Rule (6.1), Isat from
Rules (6.4)–(6.9), and Ifound from Rules (6.10)–(6.19).

For all rules r ∈ G(Π2), we know that r is satisfied (B+
r \ I ̸= ∅, or (Hr ∪ B−r ) ∩ I ̸= ∅)

by construction. Further, G(Π2) justify a subset of IΠ2 ⊆ I. IΠ2 are all those h(D) s.t.
h(D) ∈ heads(G(Π2)), h(D) ∈ I, and ∃r ∈ G(Π2), s.t. B+

r ⊆ I and B−r ∩ I = ∅ (founded).
Let IΠ1 be those atoms that need to be justified withHGF (IΠ1 = I \ IΠ2).

We now proceed by showing that we can satisfy all Rules (6.1)–(6.19), and justify all IΠ1 , by
constructing a IHGF . Observe that by the results of [10], [12] it is known that Rules (6.1)–(6.9)
are satisfied by IHGF , and also justify all respective satisfiability (Isat), and auxiliary-head (Iaux)
atoms in IHGF . We construct IHGF such that for each hr(D) ∈ H(G(Π1)), there is at least
one compatible h′r(D) ∈ IHGF . Although this justifies all atoms IΠ1 , we are left to show that
Rules (6.10)–(6.19) indeed are satisfied and atoms Ifound are justified.

In order that IHGF is indeed an answer set, it must hold that just ∈ Ifound. First (a) we check that
“just” being part of Ifound, leads in our construction to IHGF being an answer set. Later (b), we
show by contradiction that provided I is an answer set, “just” must be part of Ifound.

(a): Due to just ∈ Ifound, also for every rule r ∈ Π1, xh ∈ var(Hr), and d ∈ dom(x), it must
hold that justxh

(d) ∈ Ifound, due to Rule (6.18). Furthermore, for all r ∈ Π1, justr ∈ Ifound, due
to Rule (6.13). Now let’s take an arbitrary rule r ∈ Π1. As shown we know justr ∈ Ifound. We

1Note that HG has a worst-case grounding size that is in O
(︁
|Π| · |dom(Π)|maxr∈Π ah(r)+aB(r))︁.
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take a case distinction, on the two possibilities, which is either either (1) by Rule (6.14), or (2) by
Rule (6.17).

If (1) justr is justified by Rule (6.14), then it is necessary that {litp1 , . . . , litpn , litpn+1 , . . . , litpm} ⊂
Ifound hold and therefore Rules (6.15)–(6.16) need to justify them. As shown above, Rule (6.18)
justifies all head-variables justxh

(d). However, in order that Rules (6.15)–(6.16) can justify
their heads, their respective body-variable atoms (justx(d) s.t. x ∈ B+

r ) need to hold as well, in
addition to the body literals (which are by construction in I). The body-variable atoms are derived
by Rule (6.12), which necessitates that Rule (6.11) holds, which requires h′(D) to hold. Observe
how Rule (6.17) is satisfied by h′(D) ∈ Iaux. However, that h′(D) holds cannot be required in
general, where we go to the other case. (2) By Rule (6.17) it holds that whenever h′(D) ̸∈ Iaux,
and by all head variable atoms being true, then we derive justr by Rule (6.17). Rules (6.15)–(6.16)
are satisfied, as by construction either litpi ̸∈ Ifound, one body variable justx(d) ̸∈ Ifound, or one
body literal does not hold. This also ensures that litpi are justified. As h′(D) ̸∈ Iaux, Rule (6.11)
is satisfied, and no body-variable justhy(di, D) needs to be justified. Therefore, Rule (6.12) is
satisfied and no body variable literal justx(d) needs to be justified.

The two possibilities comprise all cases, therefore we follow that “just” being part of Ifound, leads
in our construction to IHGF being an answer set.

(b): Towards a contradiction, assume that just ̸∈ Ifound. By Rule (6.13) we know that there exists
a rule r, s.t. justr ̸∈ Ifound, and therefore by Rules (6.12), and (6.17), their respective bodies
cannot hold. Furthermore, due to Rules (6.10)–(6.12), and (6.18), we obtain in this case a single
variable assignment in the variable literals justx.

It needs to hold for this case that h’(D) ∈ Ifound (Rule (6.17)), and there is one body literal
that falsifies the body (Rules (6.15)–(6.16)). Now there are two cases: (1) h’(D) was derived
by Rule (6.1), however, another rule justifies h(D). But then we can remove h’(D) from IHGF .
(2) h’(D) was derived by Rule (6.1), and no other rule justifies h(D). By construction of IHGF

(for each h(D) at least one compatible h’(D)), and by the Rules (6.15)–(6.17), this can only be
the case when the respective ground rule r ∈ G(Π1) (and no other rule) cannot justify h(D).
Therefore I is not an answer set, which contradicts our assumption.

We showed that all Rules (6.1)–(6.19) are satisfied, and we constructed a set of literals IHGF that
is justified byHGF (Π1, Π2). Therefore, IHGF is an answer set.

(ii): HGF (Π1, Π2)→ G(Π)
We need to show that every answer set IHGF ofHGF (Π1, Π2), is an answer set of G(Π), provided
the atoms are restricted to at(G(Π)), so I = IHGF ∩ at(G(Π)).

Observe that byHGF , all rules of Π2 are grounded via SOTA-grounders, i.e., G(Π2). Therefore,
by the assumption that IHGF is an answer set, all rules r ∈ G(Π2) are satisfied. Further,
r ∈ G(Π2) justify JΠ2 ⊆ I many atoms.

We still need to show that all rules of G(Π1) are satisfied, and we still need to justify the atoms of
I \ JΠ2 . However, by [10], [12] we know that the rules in G(Π1) are satisfied. So we are left
with showing justification of the remaining atoms. By construction all atoms I \JΠ2 are justified
byHGF (Π1, Π2), but this does not automatically imply justification by G(Π1).
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Towards a contradiction we assume that a h(D) is justified by HGF (Π1, Π2) (and therefore
by a h’(D)), but not by G(Π1). Knowing h’(D) we know the respective non-ground rule rng.
Therfore, we know that rng cannot justify h(D). To show that this is a contradiction, we show
that we cannot derive “just”.

Observe that Rule (6.17) cannot fire, as by assumption h’(D) holds. Therefore, the only possible
way to derive justr is by Rule (6.14), and consequently by Rules (6.15)–(6.16). As an intermediate
step, we take an arbitrary variable assignment of the body variables of rng, i.e., var(r) \ var(Hr).
This correponds to an assignment of the variables in Rules (6.11)–(6.12). By definition this
means that either B+

r ̸⊆ I, or B−r ∩ I ̸= ∅. Observe that any of these variable-assignments lead
to a failure of the Rules (6.15)–(6.16). Therefore, by the subset-minimality of disjunctive ASP,
w.r.t. to the head-variable assignments (Rule (6.10)), obtain a single head variable assignment,
and we fail in obtaining “just”. As “just” does not hold, IHGF is not an answer set, which
is a contradiction to our initial assumption. Therefore, every atom h(D) that is justified by
HGF (Π1, Π2) (and therefore by a h’(D)), is also justified by G(Π).

As we showed that all rules r ∈ G(Π) are satisfied, and all atoms I = IHGF ∩ at(G(Π)) are
justified, we obtain that I is indeed an answer set.

Lemma 3. Assuming grounding with HGF (Π, ∅), grounding size is in O
(︁
|Π| · |dom(Π)|a+1)︁

,
where a = maxr∈Π{maxp(X)∈r{|X|}}.

Proof. First observe that we assume that Rules (6.1)–(6.19) are worst-case instantiated, in
the sense that for any variable vector X , they are instantiated with their respective domains
D ∈ dom(X). This leads to an exponential grounding size in the number of variables of the
rewritten procedure (O

(︂
|Π| · | dom(X)||X|

)︂
). However, with our rewriting procedure, we are

able to bound |X| to the maximum arity of the respective rule (and therefore also of the entire
program).

Rules (6.1)–(6.9) have already been proven in [10], to have a grounding size of
O (|Π| · |dom(Π)|a). We are left with showing the result for the Rules (6.10)–(6.19). Observe
that for Rules (6.13)–(6.14 6.19) |X| = 0, for Rules (6.10, 6.18) |X| = 1, for Rules (6.14)–
(6.17) |X| = a, and for Rules (6.11)–(6.12) |X| = a + 1. The dominating factor is therefore
|X| = a + 1. For an arbitrary rule the grounding size is therefore O(| dom(var(r))||a+1|), and
for the entire program it is in O

(︁
|Π| · |dom(Π)|a+1)︁

.

6.2 Extending FastFound to HCF Programs

We extend the FastFound reduction to HCF programs by proposing two encodings. The first
encoding directly incorporates disjunctive rules into its guessing, which might be intuitive, but
comes with a penalty in grounding size. The second approach uses shifting [74], which was
proven to coincide with ASP semantics for HCF programs [34].
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6.2.1 Disjunctive Heads

From a complexity perspective, the answer set existence problem for HCF programs is ΣP
2

complete, which is the same as for normal programs, Therefore, it was stated in [10] that BDG
works in principle for HCF programs. However, previous results did not put an emphasis on this
distinction. Therefore, in Figure 6.2 we present the details for using HCF programs. Notice that
the auxiliary predicate h′ intuitively decouples the disjunctive head from the body and results in
the same BDG reduction as for normal (tight) programs.

Glue Π2 to Π1 and Ground G(Π2)
Then replace Rules (6.1)–(6.2) with the following:
h′(D) ∨ h′(D)← for every r ∈ Π1, X = var(Hr), D ∈ dom(X) (6.20)⋁︂
hi∈Hr

hi(D⟨hi⟩)← h′(D) for every r ∈ Π1, X = var(Hr), D ∈ dom(X) (6.21)

Satisfiability of Π1:Same as in Figure 6.1
Foundedness of Π1:Same as in Figure 6.1

(6.22)

Figure 6.2: Detailed rewriting for HCF programs, forHGF . The auxiliary head h’decouples the
body from the disjunctive head. Therefore, the normal BDG-check suffices, while still enabling
the subset-minimality of disjunctive (HCF) heads. Grounding size is in O

(︂
|Π| · |dom(Π)|β

)︂
,

where β = maxr∈Π{| var(Hr)|, 1 + maxp(X)∈r{|X|}}

Lemma 4. Given a partition of any non-ground HCF program Π into a program Π1 and a
program Π2, then answer sets ofHGF (Π1, Π2) (disjunctive heads) bijectively match the answer
sets of G(Π), restricted to at(G(Π)).

Proof (high-level-idea). Proving correctness boils down to proving that every answer set I ∈
AS (G(Π)) is an answer set of AS (HGF (Π1, Π2)), and the other way around. As this was
already proven for normal programs in Theorem 6.1, we are left with proving the result for
HCF programs. There, it is only necessary to focus on disjunctive rules in Π1, as the results of
Theorem 6.1 carry over to normal rules, and rules in Π2 are grounded by SOTA techniques.

G(Π)→ HGF (Π1, Π2)
Proving that every answer set I ∈ AS (G(Π)) is an answer set ofAS (HGF (Π1, Π2)), effectively
means constructing a set of atoms IHGF , and then proving that IHGF is indeed an answer set
ofHGF (Π1, Π2). The construction of IHGF works similar as for normal rules. For an arbitrary
disjunctive rule r ∈ Π1, one has to argue that Rule (6.21) indeed is subset minimal. This
corresponds to the additional disjunctive foundedness condition I ∩ (Hr \ {h}) = ∅, so a rule
with a disjunctive head can only justify a single head atom. The intuitive idea is to prove that h’is
true iff the body of the rule r is true, as then the disjunctive part has exacly the same semantics as
the SOTA grounded program.

G(Π)← HGF (Π1, Π2)
The other direction, i.e., IHGF ∈ AS (HGF (Π1, Π2)), is an answer set of AS (G(Π)) (restricted
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to at(G(Π))), boils down to checking that whenever there is a disjunctive rule that justifies a head
atom h(D) inHGF , the corresponding rule in G(Π) must justify it as well.

Lemma 5. Grounding with the novel BDG (HCF disjunctive heads) approachHGF (Π, ∅), results
in a grounding size ofO

(︂
|Π| · |dom(Π)|β

)︂
, where β = maxr∈Π{| var(Hr)|, 1+maxp(X)∈r{|X|}}

Proof (idea). For normal rules we obtain a grounding size of O
(︁
|Π| · |dom(Π)|a+1)︁

, where a is
the maximum arity, i.e., a = maxr∈Π{maxp(X)∈r{|X|}}, as shown in Lemma 3.

Observe that for an arbitrary HCF rule r ∈ Π1, Rules (6.20)–(6.21) have |X| = | var(Hr)|.
This is the number of variables occurring in the (disjunctive) head of r. As this is potentially
larger than the maximum arity, we derive β = maxr∈Π{| var(Hr)|, 1 + maxp(X)∈r{|X|}}, and

a grounding size of O
(︂
|Π| · |dom(Π)|β

)︂
.

6.2.2 Shifting

The idea of the shifting encoding is to transform the disjunctive (HCF) rules into normal rules [74].
In more detail, given a disjunctive (HCF) rule

h1(X1) ∨ . . . ∨ hl(X l)← pl+1(X l+1), . . . , pn(Xn),¬pn+1(Xn+1), . . . ,¬pm(Xm)

the rewriting generates l-many rules of the form:

hi(Xi)←pl+1(X l+1), . . . , pn(Xn),¬pn+1(Xn+1), . . . ,¬pm(Xm),
¬h1(X1), . . . ,¬hi−1(Xi−1),¬hi+1(Xi+1), . . . ,¬hl(X l)

For l-many head predicates, one generates l-many normal rules. Therefore, one possibility to use
BDG for HCF programs is to use the shifting technique in a pre-processing step and callHGF
(Figure 6.1) in a second-step. However, this has the drawback of duplicated effort in terms of
grounding. Therefore, a direct integration into the reduction is preferable. This shifting-integrated
reduction is shown in Figure 6.3.

The crucial changes in the reduction are performed in the Rules (6.27), and (6.29). Notably,
Rule (6.27) includes head literals (lith1,hi

), whereas Rule (6.29) includes Hr \ hi. Furthermore,
all foundedness-predicates of all rules are (explicitly) indexed by hi.

Lemma 6. Given a partition of any non-ground HCF program Π into a program Π1 and a
program Π2, then answer sets of HGF (Π1, Π2) (shifting) bijectively match the answer sets of
G(Π), restricted to at(G(Π)).

Proof (high-level-idea). It is necessary to prove that each answer set of G(Π) is an answer set of
HGF (Π1, Π2), and vice versa.

G(Π)→ HGF (Π1, Π2)
We take an arbitrary answer set I of G(Π) and extended to IRED

HGF
, in order to construct an answer
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Head guess rules as in Rules (6.1)–(6.3)
Satisfiability of Π1: Same as Rules (6.4)–(6.9) in Figure 6.1
Foundedness of Π1⋁︂
d∈dom(x)

justh,x(d)← for every r ∈ Π1, h(X) ∈ Hr, x ∈ X (6.23)

1{justhh,y(d1, D), . . . , justhh,y(dk, D)}1← h′(D) for every r ∈ Π1, h(X) ∈ Hr, D ∈ dom(X),
y ∈ (var(r) \X) , {d1, ..., dk} = dom(y) (6.24)

justh,y(d)← justhh,y(d, D), justh,x1 (d1), . . . , justh,xt
(dt) for every r ∈ Π1, h(X) ∈ Hr, ⟨x1, . . . , xt⟩ = X,

⟨d1, . . . , dt⟩ = D ∈ dom(X),
y ∈ (var(r) \ var(Hr)) , d ∈ dom(y) (6.25)

just← justh1,r1 , . . . , justhl,r1 , justh1,rn
, . . . , justhl,rn

let Π1 = {r1, . . . , rn}, {h1(X1), . . . , hl(Xl)} = Hr

(6.26)

justhi,r ← lithi,pl+1 , . . . , lithi,pm , lithi,pm+1 , . . . , lithi,pm for every r ∈ Π1, hi ∈ Hr, Hr = {h1, . . . , hl},
lithi,h1 , . . . , lithi,hi−1 , lithi,hi+1 , lithi,hl

B+
r = {pl+1, . . . , pm}, B−

r = {pm+1, . . . , pn}, (6.27)

lith,p ← justh,x1 (D⟨x1⟩), . . . , justh,xt
(D⟨xt⟩), p(D) for every r ∈ Π1, h ∈ Hr, p(X) ∈ B+

r ,

D ∈ dom(X), X = ⟨x1, . . . , xt⟩ (6.28)
lith,p ← justh,x1 (D⟨x1⟩), . . . , justh,xt

(D⟨xt⟩),¬p(D) for every r ∈ Π1, h ∈ Hr, p(X) ∈ (B−
r ∪Hr \ h),

D ∈ dom(X), X=⟨x1, . . . , xt⟩ (6.29)

justh,r ← justh,x1 (D⟨x1⟩), . . . , justh,xt
(D⟨xt⟩),¬h′(D) for every r ∈ Π1, h(X) ∈ Hr, D ∈ dom(X),

X=⟨x1, . . . , xt⟩ (6.30)

justh,x(d)← just for every r ∈ Π1, h(X) ∈ Hr, x ∈ X, d ∈ dom(x) (6.31)

← ¬just (6.32)

Figure 6.3: Alternative foundedness check (HGF ) for HCF programs using the shifting technique.
Grounding size is in O

(︁
|Π| · |dom(Π)|a+1)︁

.

set IHGF ofHGF (Π1, Π2) (IHGF = I ∪IRED
HGF

). The crucial part is to prove that IHGF is indeed
an answer set. However, this endeavor is simplified due to the results of Theorem 6.1. In more
detail, this means one can safely ignore normal rules, only needs to check satisfiability of the
Rules (6.23)–(6.32), and verify that those atoms in IHGF , which are required for Rules (6.23)–
(6.32), are actually supported.

(i): G(Π)← HGF (Π1, Π2)
We take an arbitrary answer set IHGF ofHGF (Π1, Π2), and check whether I = IHGF∩at(G(Π))
is an answer set of G(Π). The (only) critical part in the proof is the check of disjunctive (HCF)
rules. On a high level this holds, as by Rules (6.27), and (6.29) only at most one atom is supported
per grounded rule (which equals HCF semantics).

After showing both directions one can conclude that the answer sets bijectively match.

Lemma 7. Grounding with the novel BDG (HCF shifting) approach HGF (Π, ∅), results in a
grounding size of O

(︁
h · |Π| · |dom(Π)|a+1)︁

, where h = maxr∈Π{|Hr|}
and a = maxr∈Π{maxp(X)∈r{|X|}}.

Proof (idea). We obtain the same arities as for HGF . This is a = maxr∈Π{maxp(X)∈r{|X|}},
as shown in Lemma 3. However, Rules (6.23)–(6.31) (can) occur h = maxr∈Π{|Hr|} many
times. As h is not a fixed constant (input-dependent) we have to add this constant.
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6.3 Examples

Example 6.1 (Saturation Foundedness Example). In the following, we use the HGF and HG
rewritings in order to show the differences between those two methods. The example program
has 65536 answer sets. Note that for this example SOTA techniques, andHG are cubic, whereas
HGF is quadratic in grounding size. The following is our input program Π:

1 e(1..4,1..4).
2 {f(X,Y)} :- e(X,Y).
3 g(X) :- f(X,Y), f(X,Z), f(Y,Z).

We rewrite the rule in Line (3) for both HGF and HG. The following listing shows the non-
rewritten rules and the satisfiability encoding. Note that the satisfiability encoding is the same
betweenHGF andHG, and therefore shown once. Further note, that due to space limitations we
show the non-ground rewriting.

With respect to Figure 6.1, Line (2) shows Rule (6.3), Lines (4)–(5) show Rule (6.4), Lines (6)–(8)
show Rule (6.8), Lines (9)–(10) show Rules (6.6)–(6.7), and Line (11) shows Rules (6.5), and
(6.9).

1 %%%%%%%%%%%% ORIGINAL-PROGRAM %%%%%%%%%%%%
2 e(1..4,1..4). {f(X,Y)}:-e(X,Y).
3 %%%%%%%%%%%% SAT-ENCODING %%%%%%%%%%%%%%%%%%%%%
4 sat_X(4)|sat_X(2)|sat_X(3)|sat_X(1). sat_Y(4)|sat_Y(2)|sat_Y(3)|sat_Y(1).
5 sat_Z(4)|sat_Z(2)|sat_Z(3)|sat_Z(1).
6 sat_X(1):-sat.sat_X(2):-sat.sat_X(3):-sat.sat_X(4):-sat.
7 sat_Y(4):-sat.sat_Y(2):-sat.sat_Y(3):-sat.sat_Y(1):-sat.
8 sat_Z(4):-sat.sat_Z(2):-sat.sat_Z(3):-sat.sat_Z(1):-sat.
9 sat_r:-sat_X(X1),g(X1). sat_r:-sat_X(X1),sat_Y(X2),not f(X1,X2).

10 sat_r:-sat_X(X1),sat_Z(X2),not f(X1,X2). sat_r:-sat_Y(X1),sat_Z(X2),not f(X1,X2).
11 :- not sat. sat:-sat_r.

The following listing depicts the rewriting withHG. Observe Line (8), where the corresponding
rule has 3 variables. Therefore, the grounding size is cubic ofHG. Line (2) shows the Rules (4.1)–
(4.2), Lines (4)–(5) show the Rule (4.11), Lines (6)–(8) show the Rules (4.12)–(4.13), and Line (9)
shows the Rule (4.14).

1 %%%%%%%%%%%% HEAD-GUESS %%%%%%%%%%%%%%%%%%%%%
2 {g’(4);g’(2);g’(3);g’(1)}. g(X1):-g’(X1).
3 %%%%%%%%%%%% UFOUND %%%%%%%%%%%%%%%%%%%%%%%%%
4 1{ujust_Y(4,X);ujust_Y(2,X);ujust_Y(3,X);ujust_Y(1,X)}1:-g’(X).
5 1{ujust_Z(4,X);ujust_Z(2,X);ujust_Z(3,X);ujust_Z(1,X)}1:-g’(X).
6 ujust_X(X1):-ujust_Y(X2,X1),not f(X1,X2).
7 ujust_X(X1):-ujust_Z(X2,X1),not f(X1,X2).
8 ujust_X(X1):-ujust_Y(X2,X1),ujust_Z(X3,X1),not f(X2,X3).
9 :-0 < #count{1:ujust_X(X1)},g’(X1).

The HGF rewriting is displayed in the listing below. Note that all rules have at maximum
two variables that need to be grounded. Line (2) shows Rules (6.1)–(6.2), Line (4) shows the
Rule (6.10), Line (5) shows the Rule (6.18), Lines (8)–(9) show the Rule (6.11), Line (10) shows the
Rule (6.12), Lines (12)–(13) show the Rules (6.15)–(6.17), and Line (14) shows the Rules (6.13),
(6.14), and (6.19).
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1 %%%%%%%%%%%% HEAD-GUESS %%%%%%%%%%%%%%%%%%%%%
2 {g’(2);g’(1);g’(4);g’(3)}. g(X1):-g’(X1).
3 %%%%%%%%%%%% FOUND-START %%%%%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%% HEAD-VARIABLES %%%%%%%%%%%%%%%%%
5 just_X(2)|just_X(1)|just_X(4)|just_X(3).
6 just_X(2):-just.just_X(1):-just.just_X(4):-just.just_X(3):-just.
7 %%%%%%%%%%%% NON-HEAD-VARIABLES %%%%%%%%%%%%%
8 1{just_h_Y(2,X1);just_h_Y(1,X1);just_h_Y(4,X1);just_h_Y(3,X1)}1 :- g’(X1).
9 1{just_h_Z(2,X1);just_h_Z(1,X1);just_h_Z(4,X1);just_h_Z(3,X1)}1 :- g’(X1).

10 just_Y(Y):-just_h_Y(Y,X1),just_X(X1). just_Z(Y):-just_h_Z(Y,X1),just_X(X1).
11 %%%%%%%%%%% JUST-LITERALS %%%%%%%%%%%%%%%%%%%
12 just_r:-just_X(X1),not g’(X1). just_1:-just_X(X1),just_Y(X2),f(X1,X2).
13 just_2:-just_X(X1),just_Z(X2),f(X1,X2). just_3:-just_Y(X1),just_Z(X2),f(X1,X2).
14 just:-just_r. just_r:-just_1,just_2,just_3. :- not just.

Example 6.2 (HCF Example). The following listing shows our example input program Π. We
demonstrate the rewritings forHG andHGF (both disjunctive-head and shift encoding). Line (2)
contain the rules that shall be grounded by SOTA techniques, while in Line (4) are the rules that
shall be rewritten. The encoding is for the sole purpose to show, how to encode HCF programs.
SOTA techniques are linear in their grounding size for Π. The program has 16 answer sets. Also
note the two disjunctive rules, with the shared head predicate g(X).

1 %%%%%%%% ORIGINAL-ENCODING %%%%%%%%%%%
2 e(1). e(2). {h(X)} :- e(X). g(X) | k(X) :- e(X).
3 %%%% REWRITE THE FOLLOWING RULE: %%%%
4 f(X) | g(X) :- h(X).

The next listing shows the shared parts of all reductions. Line (2) stems from Rule (4.3), which is
the SOTA grounded part. The remaining lines show the satisfiability encoded part. In more detail,
Line (4) resembles Rules (4.4), and (4.9), Line (5) shows Rules (4.6)–(4.8), and Line (6) shows
Rules (4.5), and (4.10).

1 %%%%%%%%%% SHARED-ENCODING %%%%%%%%%%
2 %%%%%%%% SOTA-GROUNDED-PART %%%%%%%%%
3 e(1).e(2). {h(X)}:-e(X). g(X) | k(X) :- e(X).
4 %%%%%%%%%%%%% SAT-CHECK %%%%%%%%%%%%%
5 sat_X(1):-sat. sat_X(2):-sat. sat_X(1)|sat_X(2).
6 sat_r:-sat_X(X1),f(X1). sat_r:-sat_X(X1),g(X1). sat_r:-sat_X(X1),not h(X1).
7 sat:-sat_r. :- not sat.

Our first rewriting is the guess rewriting (Figure 4.2). Line (2) shows Rules (4.1), and (4.2),
Lines (4) and (6) show Rules (4.12)–(4.13), whereas Lines (5) and (7) show Rules (4.14). Note
that Rule (4.11) is not needed, as all variables in the body occur also in the head of the original
rule. Further, observe that Lines (4)–(5) encode a guessed f ′, whereas Lines (6)–(7) encode a
guessed g′.

1 %%%%%%%%%% GUESS-ENCODING %%%%%%%%%%%%
2 %%%%%%%%%%%%% Head Guess %%%%%%%%%%%%%
3 {f’(1);f’(2)}. {g’(1);g’(2)}. f(X1):-f’(X1). g(X1):-g’(X1).
4 %%%%%%%%%%%%% UFOUND CHECK %%%%%%%%%%%%%
5 ujust_0_0_X(X1):-f’(X1),not h(X1). ujust_0_0_X(X1):-f’(X1),g(X1).
6 :-0 < #count{1:ujust_0_0_X(X1)},f’(X1).
7 ujust_0_1_X(X1):-g’(X1),not h(X1). ujust_0_1_X(X1):-g’(X1),f(X1).
8 :-0 < #count{1:ujust_0_1_X(X1)},g’(X1).

The next discussed rewriting is the saturation disjunctive head encoding (Figure 6.2). Line (3)
resembles Rules (6.20) and (6.21), which contain the eponymous disjunctive head. Line (5) are
Rules (6.10) and (6.18). Lines (6)–(7) are Rules (6.15)–(6.17). Finally Line (9) was generated by
Rules (6.13), (6.14), and (6.19).
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1 %%%%%%%% DISJ.-HEAD-ENCODING %%%%%%%%%%
2 %%%%%%%%%%%%% Head Guess %%%%%%%%%%%%%%
3 {head’(1);head’(2)}. f(X) | g(X) :- head’(X).
4 %%%%%%%%%%%%% FOUND CHECK %%%%%%%%%%%%%
5 just_X(1)|just_X(2). just_X(1):-just. just_X(2):-just.
6 just_0:-just_X(X1),not head’(X1).
7 just_0_1:-just_X(X1),h(X1).
8 %%%%%%%%%%%%% OVERALL %%%%%%%%%%%%%%%%%
9 just:-just_0. :- not just. just_0:-just_0_1.

The last discussed rewriting is the shift encoding (Figure 6.3). Line (3) was generated by
Rules (6.1)–(6.2), Lines (6) and (10) were generated by Rule (6.23), Lines (7)–(8), and (11)–(12)
were generated by Rules (6.28)–(6.30), and Lines (14)–(15) were generated by Rules (6.26),
(6.27), and (6.32).

1 %%%%%%%%%% SHIFT-ENCODING %%%%%%%%%%%
2 %%%%%%%%%%%%% HEAD-GUESS %%%%%%%%%%%%
3 {f’(1);f’(2)}.{g’(1);g’(2)}. f(X1):-f’(X1). g(X1):-g’(X1).
4 %%%%%%%%%%%%% FOUND-CHECK %%%%%%%%%%%
5 %%%%%% For f(x):
6 just_0_X(1)|just_0_X(2). just_0_X(1):-just. just_0_X(2):-just.
7 just_0:-just_0_X(X1),not f’(X1).
8 just_0_1:-just_0_X(X1),h(X1). just_0_2:-just_0_X(X1),not g(X1).
9 %%%%%% For g(X):

10 just_1_X(1)|just_1_X(2). just_1_X(1):-just. just_1_X(2):-just.
11 just_1:-just_1_X(X1),not g’(X1).
12 just_1_1:-just_1_X(X1),h(X1). just_1_2:-just_1_X(X1),not f(X1).
13 %%%%%%%%%%%%% OVERALL %%%%%%%%%%%%%%%
14 just_0:-just_0_1, just_0_2. just_1:-just_1_1, just_1_2.
15 just:-just_0, just_1. :- not just.

6.4 Experiments

To demonstrate the usefulness of HGF we conduct a series of experiments. Note that the
benchmark system and overall setup is the same as in Section 5.4. We integratedHGF into our
newground3 prototype. Regarding the experimental setup, we compared SOTA ground-and-
solve systems toHGF andHG. For the other details, we refer to Section 5.4.

6.4.1 Benchmark Scenarios

We restrict our experiment setup to demonstrating the viability of HGF , in comparison to HG
and other SOTA techniques. Further, we want to emphasize that the heuristic splitting algorithms
from Chapter 5 can be adapted to suitHGF , which leads to an efficient integration ofHGF into
SOTA techniques.

The setting of our benchmarks is in graph space, to be more specific in sub-graph space. We
ask whether there exists a sub-graph of a graph, with one of three different properties (therefore,
three scenarios). We generated complete graphs of sizes ranging from 10 to 400 (40 instances per
scenario, step size of 10).

Our first benchmark scenario Four-Clique consists of limiting the number of vertices that occur in
a four-clique to at-most N , where we set N = 20 for our benchmarks. We show in the following
listing our example encoding for scenario Four-Clique. Observe that while this encoding is
≈ |dom|4 for SOTA methods, it is ≈ |dom|3 forHG, and ≈ |dom|2 forHGF :

91



6. FASTFOUND: USING SATURATION FOR FOUNDEDNESS

0 20 40 60 80 100 120
Instances

0

300

600

900

1200

1500

1800
Ti

m
e 

[s
]

FastFound
GuessFound
IDLV
GRINGO

(a) Grounding Time [s] cactus plot.
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(b) Grounding and Solving Time [s] cactus plot.
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(c) Grounding Size [GB] cactus plot.
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Figure 6.4: Cactus plots demonstrating viability of FastFound. Compared gringo, idlv,HG
(GuessFound), and HGF (FastFound). HGF grounds and solves many more instances, than
gringo, idlv orHG. Left side (Figures 6.4a and 6.4c) was measured during grounding, right
side (Figures 6.4b and 6.4d) was measured during grounding and solving. Timeout: 1800s;
Memout: 10GB.

1 {f(X,Y)} :- edge(X,Y).
2 :- #count{X:c(X)}>20.
3 % The following rule is grounded with the novel foundedness approach:
4 c(X):-f(X,X1),f(X,X2),f(X,X3),f(X1,X2),f(X1,X3),f(X2,X3).

The second and third scenarios consist of finding a k clique in a hypergraph, where k is six
for the second (Hyper-Six-Clique) and k is seven for the third (Hyper-Seven-Clique) scenario.
Additionally, we infer every two first vertices occurring in the first hyper-edge. Observe that this
encoding is ≈ |dom|6 for SOTA methods, ≈ |dom|5 forHG, and ≈ |dom|3 forHGF :

1 {f(X,Y,Z)} :- edge(X,Y), edge(Y,Z).
2 d(X,Y) :- f(X,Y,Z).
3 % The following rule is grounded with the novel foundedness approach:
4 c(X1,X2) :- f(X1,X2,X3), f(X4,X5,X6), f(X1,X4,X5), f(X2,X4,X5), f(X3,X6,X5),
5 f(X6,X1,X2), f(X3,X4,X5), d(X1,X2).
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The third scenario (Hyper-Seven-Clique) is shown in the listing below. Observe that this encoding
is ≈ |dom|7 for SOTA methods, ≈ |dom|5 forHG, and ≈ |dom|3 forHGF :

1 {f(X,Y,Z)} :- edge(X,Y), edge(Y,Z).
2 d(X,Y) :- f(X,Y,Z).
3 % The following rule is grounded with the novel foundedness approach:
4 c(X1,X2) :- f(X1,X2,X3), f(X4,X5,X6), f(X1,X4,X5), f(X2,X4,X5), f(X3,X6,X5),
5 f(X6,X1,X2), f(X3,X4,X5), f(X7,X1,X6), f(X7,X2,X3), f(X7,X4,X5), d(X1,X2)

.

6.4.2 Hypotheses

We study the following hypotheses:

(H1) HGF can reduce the overall grounding and solving time,
compared to SOTA methods, andHG.

(H2) HGF can reduce the maximum memory usage of both the grounder and the solver,
compared to SOTA methods, andHG.

6.4.3 Experimental Results

We show cactus plots of our results in Figure 6.4. Observe the reduced grounding time (Fig-
ure 6.4a) and size (Figure 6.4c) of the Saturation (HGF ) technique. Further, observe the reduced
overall grounding and solving time (Figure 6.4b), and the reduced maximum memory usage of
both the grounder and solver (Figure 6.4d). Therefore, hypothesis H2 can be confirmed. Finally,
in Table 6.1 we show the number of grounded and solved instances, where theHGF (Saturation)
manages to solve most instances. We therefore can confirm H1 as well.

These results lead us to state that the theoretically reduced grounding size byHGF , can have an
effect on the number of solved instances.
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Scen. #Insts. Total #Solved

gringo idlv HG HGF
#S M T #S M T #S M T #S M T

Total-SUM 120 8 25 87 8 8 104 22 81 17 55 50 15
Four-Clique 40 6 5 29 6 5 29 18 15 7 40 0 0
Hyper-Six-Clique 40 1 11 28 1 2 37 2 35 3 8 26 6
Hyper-Seven-Clique 40 1 9 30 1 1 38 2 31 7 7 24 9

Table 6.1: FastFound (HGF ) can yield a performance improvement for grounding-heavy bench-
marks for both grounding and solving. We report number of solved instances on three synthetic
datasets. Benchmarked systems include gringo, idlv, BDG with guess-foundedness (HG),
and BDG with saturation-foundedness (HGF ). Measured number of solved instances (#S), mem-
outs (M), timeouts (T). Timeout of 1800s, Memout of 10GB.

Scen. #Insts. Total #Grounded

gringo idlv HG HGF
#G M T #G M T #G M T #G M T

Total-SUM 120 13 25 82 13 7 100 32 77 11 65 39 16
Four-Clique 40 10 5 25 10 5 25 28 9 3 40 0 0
Hyper-Six-Clique 40 2 10 28 2 1 37 2 35 3 13 18 9
Hyper-Seven-Clique 40 1 10 29 1 1 38 2 33 5 12 21 7

Table 6.2: FastFound (HGF ) can yield a performance improvement for grounding-heavy bench-
marks for grounding. We report number of solved instances on three synthetic datasets. Bench-
marked systems include gringo, idlv, BDG with guess-foundedness (HG), and BDG with
saturation-foundedness (HGF ). Measured number of grounded instances (#G), memouts (M),
timeouts (T). Timeout of 1800s, Memout of 10GB.
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CHAPTER 7
Lazy-BDG: Using Propagators for

Cyclic Programs

Lazy-BDG demonstrates the efficient integration of body-decoupled grounding with lazy-grounding
for cyclic rules. So far the current SOTA technique for handling cycles in BDG is the level map-
pings [12] technique, which was later extended to hybrid grounding [10]. Intuitively, level
mappings create an order on the derivation sequence of atoms. However, as level mappings are
written as non-ground rules and they have to cope with transitive relations, their grounding size is
cubic in the maximum arity of any predicate of the program. This prevents its usage for practical
problems. It is well known that cycles are a challenge for BDG, as discussed in [127], where they
introduced the ordered derivations method. But still, in their experiments both level mappings
and ordered derivations performed worse than gringo.

Therefore, the question arises what else can be done to tackle the cycle challenge for BDG.
This chapter offers a solution with Lazy-BDG, by combining body-decoupled grounding, lazy-
grounding, and the state-of-the-art solver technique unfound-set method [63] (see Section 2.5.2).
However, this unfound-set method cannot be used directly, as it requires the original (grounded)
structure of the program. This information is lost when using BDG. Therefore, we propose a
2-step approach, where we use special rewritings together with an adapted unfound-set algorithm.
The adapted unfound-set algorithm is implemented as a propagator [58] in our prototypical
implementation and injects appropriate nogoods in the CDNL algorithm (see also Section 2.5).
Our experiments demonstrate that this approach is promising, as we were able to beat the
level-mappings technique, gringo, and idlv on grounding-heavy synthetic scenarios.

We start by discussing why cycles are a problem for BDG (Section 7.1), continue to present the
state-of-the-art level mappings method with hybrid grounding (Section 7.2), and by reviving cycles
for hybrid grounding (Section 7.3). Then we present our lazy-approach to the dependency graph
repair in Section 7.4. We close the chapter by showing our experimental results in Section 7.5.
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7. LAZY-BDG: USING PROPAGATORS FOR CYCLIC PROGRAMS

Note: For the remainder of this chapter we will, except if explicitly stated otherwise, not
distinguish betweenHGF (Figure 6.1) andHG (Figure 4.2), as cyclic information is lost in both
methods in the same way. Examples will mostly be given by theHG approach.

7.1 How BDG dismantles Cycles

We demonstrate by an example, how BDG dismantles cycles.

Example 7.1. In the following we will observe how different the dependency graphs for programs
grounded by SOTA methods and programs grounded by BDG techniques look like. Let us consider
the cyclic program Π in the listing below. We show in Figure 7.1a its dependency graph. Ground-
ing and solving it yields two answer sets: {{e(1, 2)}; {e(1, 2); f(1, 2); f(2, 1); q(1, 2); q(2, 1)}}.

1 e(1,2). {f(X,Y)} :- e(X,Y).
2 q(X,Y) :- f(X,Y). f(X,Y) :- q(Y,X).

The grounding of the program is shown in the next listing and its dependency graph in Figure 7.1c.
Observe the difference between the non-ground and the ground dependency graph. While
the length of the cycle of the non-ground dependency graph was 2, the length of the ground
dependency graph is 4. Further, the fact e(1, 2) was removed from the dependency graph, which
is expected as the bottom-up SOTA grounder can evaluate stratified programs (as detailed in
Chapter 5.1.1).

1 e(1,2). {f(1,2)}.
2 q(1,2):-f(1,2). f(2,1):-q(1,2).
3 q(2,1):-f(2,1). f(1,2):-q(2,1).

Now let us use the BDG reduction, as shown in Figure 4.2. Let Π1 = {q(X, Y )← f(X, Y );
f(X, Y )← q(Y, X)} and Π2 = {e(1, 2); {f(X, y)} ← e(X, Y )}, withHG(Π1, Π2).

In the next listing we show HG(Π1, Π2) without grounding where we restrict it to at(G(Π)) ∪
{h′|h ∈ H(Π1)} (i.e., without auxiliary atoms, which is shown in the Appendix). We show the
dependency graph in Figure 7.1b. Observe that there is no connection between f and q.

1 e(1,2). {f(X,Y)}:-e(X,Y).
2 {f’(1,1);f’(2,1);f’(1,2);f’(2,2)}.
3 {q’(1,1);q’(2,1);q’(1,2);q’(2,2)}.
4 q(X1,X2):-q’(X1,X2). f(X1,X2):-f’(X1,X2).

In the next listing we show the grounded version ofHG(Π1, Π2), and in Figure 7.1d its dependency
graph. Observe that as in the grounding G(Π), there is no e(1, 2) present, as this was handled in
the SOTA grounding of Π2. Further, observe that there are no connections between any f or q
atoms, and that the grounding encompasses the full grounding.

Solving this program (incorrectly) yields 8 answer sets (projected to at(G(Π))). The reason for
this is that the dependency graph ofHG is non-cyclic, although the dependency graph of G(Π)
is cyclic. Therefore, SOTA solvers cannot infer cyclic information, which leads to the failure in
solving.

1 e(1,2). {f(1,2)}.
2 {q’(1,1);q’(2,1);q’(1,2);q’(2,2)}.
3 q(1,1):-q’(1,1). q(2,1):-q’(2,1).
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(a) Dependency graph of Π.
(b) Dependency graph of (non-ground)
HG(Π1, Π2)

(c) Dependency graph of G(Π). (d) Dependency graph of (ground)HG(Π1, Π2)

Figure 7.1: Dependency graphs of Example 7.1. Grounding a non-ground program Π yields
different cycle lengths (Figures 7.1a, and 7.1c). UsingHG dismantles the cyclicity (Figures 7.1a,
and 7.1b). This also holds for the ground case (Figure 7.1d). Therefore, usingHG for grounding,
and solving without taking additional steps (like using level mappings, or lazy-bdg) leads to
incorrect answer sets.

4 q(1,2):-q’(1,2). q(2,2):-q’(2,2).
5 {f’(1,1);f’(2,1);f’(1,2);f’(2,2)}.
6 f(1,1):-f’(1,1). f(2,1):-f’(2,1).
7 f(1,2):-f’(1,2). f(2,2):-f’(2,2).

Summing up the above groundings and dependency graphs, we observe that BDG dismantles
the cycles and thereby loses the cyclic information. Therefore, SOTA solvers cannot infer cyclic
parts, which leads to a failure in solving. The major conclusion we derive is that cycles have
to be treated differently in BDG. Possible ideas range from level mappings, over non-ground
re-creation of the dependency graph, to lazily inferring them in the solving phase.

7.2 Preventing Cyclic Derivations via Level Mappings

Level mappings treat the problem of the dismantled cycles by going back to the definition of
foundedness. It is the current state-of-the-art BDG method how to tackle the cycle challenge.
Intuitively, level mappings do not revive the cycles, but define a derivation order, which stems
from the foundedness definition (see Definition 2.9 for details): In addition to a rule that is
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7. LAZY-BDG: USING PROPAGATORS FOR CYCLIC PROGRAMS

Replacing Rules (4.3) for (Shared) SCCs by:

G({r′}) for every r′ ∈Π2, with ∀h ∈ Hr′ :
S = SCC(Π, h), rules(S) ∩Π1 = ∅ (7.1)

a← al+1, . . . , am,¬am+1, . . . ,¬an, for every r′ ∈Π2, with ∃h ∈ Hr′ : S = SCC(Π, h)
(al+1≺a), . . . , (am≺a) rules(S) ∩Π1 ̸= ∅, r∈G({r′}), Hr={a},

B+
r ={al+1, . . . , am}, B−

r ={am+1, . . . , an} (7.2)

← al+1, . . . , am,¬am+1, . . . ,¬an,¬a for every r′ ∈Π2, with ∃h ∈ Hr′ : S = SCC(Π, h)
rules(S) ∩Π1 ̸= ∅, r∈G({r′}), Hr = {a},
B+

r ={al+1, . . . , am}, B−
r ={am+1, . . . , an} (7.3)

Add. Rules for Found. of SCCs:
[p1(D1) ≺ p2(D2)]∨ for every SCC S ∈ SCC(Π) with rules(S) ∩Π1 ̸= ∅,

[p2(D2) ≺ p1(D1)]← p1(X1), p2(X2) ∈ S, D1 ∈ dom(X1),
D2 ∈ dom(X2), p1(D1) ̸= p2(D2) (7.4)

← [p1(D1) ≺ p2(D2)], for every SCC S ∈ SCC(Π) with rules(S) ∩Π1 ̸= ∅,
[p2(D2) ≺ p3(D3)], p1(X1), p2(X2), p3(X3) ∈ S, D1 ∈ dom(X1),
[p3(D3) ≺ p1(D1)] D2 ∈ dom(X2), D3 ∈ dom(X3), p1(D1) ̸= p2(D2),

p2(D2) ̸= p3(D3), p1(D1) ̸= p3(D3) (7.5)

ufr(DX)← for every SCC S ∈ SCC(Π) with r ∈ rules(S) ∩Π1,

ufy1(D⟨X,y1⟩),. . ., ufyℓ(D⟨X,yℓ⟩), {h(X)} = Hr, p(Y)∈B+
r , D∈ dom(⟨X,Y⟩),

¬[p(DY ) ≺ hr(DX)] Y=⟨y1,. . ., yℓ⟩, p(DY) ̸∈ F (7.6)

ufrr(DX)←¬[hr(DY ) ≺ h(DX)] for every SCC S ∈ SCC(Π) with r ∈ rules(S) ∩Π1,

{h(X)} = Hr, p(Y)∈B+
r , D∈ dom(⟨X,Y⟩),

Y=⟨y1,. . ., yℓ⟩, p(DY) ̸∈ F (7.7)

Replace Rules (4.14) with:
← ufr(D), hr(D) for every h(X) ∈ hpred(Π1), D ∈ dom(X),

{r1, . . . , rm}={r | r∈Π1, {h(X)} = Hr} (7.8)

← ufrr (D), hr(D) for every h(X) ∈ hpred(Π1), D ∈ dom(X),
{r1, . . . , rm}={r | r∈Π1, {h(X)} = Hr} (7.9)

Figure 7.2: Erroneous cyclic derivations are prevented by an explicit guess of a derivation
order. Let Π be a non-ground non-tight normal program, and Π1, Π2 be a partition thereof.
Hlv(Π1, Π2) is the Hybrid Grounding procedure with level mappings. This is an extension of
the Hybrid Grounding procedure for tight (HCF) programs (Figure 4.2). Let S ∈ SCC(Π), then
rules(S) = {r | r ∈ Π, Hr ∩ S ̸= ∅, B+

r ∩ S ̸= ∅}.

suitable for justifying an atom, there must exist a function ϕ, s.t. ϕ : I → {0, ..., |I| − 1}, and for
all p ∈ B+

r it must be the case that ϕ(p) < ϕ(h). Intuitively this means that the (positive) body of
r is derived before the head. This section was adapted from the supplementary material of [10].

Level mappings create such an order, by comparing two elements at a time. One can view level
mappings as a strict total order ≺: I2 → {0, 1}, s.t. for all x, y, z ∈ I it holds (1) 0 = x ≺ x, (2)
if 1 = x ≺ y then 0 = y ≺ x, (3) if 1 = x ≺ y and 1 = y ≺ z, then also 1 = x ≺ z, and (4) if
x ̸= y then 1 = x ≺ y or 1 = y ≺ x.

So intuitively, while ϕ explicitly assigns numbers to identify a suitable derivation order, level
mappings define a precedence “≺” operator over atoms.

For practical purposes in ASP, the main drawbacks of this approach are twofold: First, we have
to guess an ordering for every pair of atoms (thereby slowing down the solver). And second,
we have to check the transitivity relation. As transitivity relates 3 atoms, this leads to a massive
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grounding problem.

We show the hybrid grounding reduction Hlv for non-ground non-tight normal programs in
Figure 7.2. Rules that are grounded by traditional procedures and are not part of a shared cycle
are grounded without any additional rewritings (Equation (7.1)). If there is a shared cycle,
we prevent cyclic derivations (Equation (7.2)) and ensure satisfiability (Equation (7.3)). We
guess an explicit derivation order via level mappings (Equation (7.4)) and prevent non-transitive
derivation orders in Equation (7.5). Rules part of Π1 are adapted to prevent cyclic derivations
(Equation (7.6)) and prevent cyclic derivations of the auxiliary rules (Equation (7.7)). The
constraints in Equations (7.8)–(7.9) ensure that no rule, or auxiliary rule is unfounded.

Notice Rule (7.5) which has a grounding size ofO
(︁
|Π| · | dom(Π)|3·a

)︁
, where a is the maximum

arity of the program. Due to this, the usage of level mappings is not practical for most applications.

7.3 Reviving Cycles: Dependency Graph Repair

The reviving cycles approach is intuitively simple: Whenever BDG grounds parts of a non-trivial
SCC, we prevent erroneous cyclic derivations by reviving the cycle, s.t. the solver-inherent cycle
handling mechanisms can detect and prevent cyclic derivations. We do this by adding those
body predicates to the head guess that are in the same SCC as the head. When comparing it to
level mappings, its main difference can be seen in the dependency graphs. While in Figure 7.1b
there is no cycle, in Figure 7.3 there is one. We depict the reduction in Figure 7.4, which takes a
non-ground non-tight normal program as in input.

In more detail, Rule (7.10) is used for trivial SCCs. Rule (7.11) is used for the non-trivial SCCs.
For each such rule, we gather the set of positive body predicates that are in the same SCC as the
head predicate Hr = {h}: P :={p(Y )|p(Y ) ∈ B+

r , SCC(Π, h) = SCC(Π, p)}. These are then
added to the body of the head guess.

Example 7.2 (Ctd. of Example 7.1). Using the adapted hybrid grounding procedure of Figure 7.4
yields the following head guess:

1 e(1,2). {f(X,Y)}:-e(X,Y).
2 {q’(X,Y)} :- f(X,Y). {f’(X,Y)} :- q(Y,X)}.
3 q(X1,X2):-q’(X1,X2). f(X1,X2):-f’(X1,X2).

Observe that grounding the non-ground head
guess from above yields exactly those dependen-
cies in the ground dependency graph that are
necessary for the solver to handle cycles. In
Figure 7.3 we show the dependency graph of
the non-ground head guess. Observe the cycle
including the predicate heads {f, f ′, q, q′}. Figure 7.3: Dependency graph of Π rewritten

by theHG procedure of Figure 7.4.

Although the method presented in Figure 7.4 is conceptually simple, its worst case grounding
size is the same as for bottom-up grounding. So let V = maxr∈Π | var(r)|, then its grounding
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7. LAZY-BDG: USING PROPAGATORS FOR CYCLIC PROGRAMS

Replacing Rules (4.1) by:
h′(D) ∨ h′(D)← for every r∈Π1, with {h(X)} = Hr,

| SCC(Π, h)| = 1, D ∈ dom(X) (7.10)

h′(D⟨X⟩) ∨ h′(D⟨X⟩)← pi(D⟨Y i⟩), . . . , pj(D⟨Y j ⟩) for every r∈Π1, with {h(X)} = Hr,

P :={p(Y )|p(Y ) ∈ B+
r , SCC(Π, h) = SCC(Π, p)} =

{pi(Y i), . . . , pj(Y j)}, | SCC(Π, h)| > 1,

D ∈ dom(⟨X, Y i, . . . , Y j⟩) (7.11)

Figure 7.4: Hybrid Grounding cycle revive procedureHG(Π1, Π2) for handling non-tight normal
programs. This enables the solver to handle non-trivial SCCs without any additional techniques.

size is in O
(︂
|Π| · | dom(Π)|V

)︂
. However, in the special case when the variables of the cyclic

body predicates coincide with the variables of the head, we obtain the desired grounding size of
body-decoupled grounding (a being the maximum arity of the program): O (|Π| · | dom(Π)|a).
Therefore, for practical problems where the variables of the head and the cyclic B+

r atoms overlap,
the method of Figure 7.4 is expected to yield good results.

7.4 Lazy-BDG: Novel Lazy Dependency Graph repair

Lazy-BDG revives cycles lazily. While in Section 7.3 we revived cycles before the grounding
step, Lazy-BDG does it during solving. The conceptual idea is to change the standard unfound-set
approach (Algorithm 2.4) for ground ASP, to an adapted form which can handle non-ground
ASP. To enable this, we propose a two-step solution, where the first step rewrites the non-ground
program and the second step is the adapted (non-ground) unfound set algorithm.

The main challenge the adapted unfound-set algorithm has to tackle is that the grounded SCCs of
G(Π) andHG(Π1, Π2) do not coincide (see also Section 7.1). Therefore, in addition to the ground
information we have to include non-ground dependency graph information in the solving step.
However, this is not sufficient, as the bodies of Π were split-up, and therefore the external body
literals EB of G(Π) andHG(Π1, Π2) do not match. To circumvent this problem, we introduce a
rewriting (Algorithm 7.1) that lets us distinguish between two types of head literals: a and ar,
where the later one is unique on a per non-ground rule basis. This lets us use ar as external body
literals EBr for a, and in addition use them as the external body nogoods.

The adapted unfound-set algorithm (Algorithm 7.2) takes this into account. Intuitively, the
algorithm tries to find external support for a set of true atoms U . It does this by following the path
of the non-ground dependency graph, while keeping track of external body literals ar. If it finds
external support, so whenever for an atom a ∈ AT it finds an ar s.t. SCC(Π, a) ̸= SCC(Π, ar),
then it continues with with another atom that is true in the current assignment. If it finds an
unfound set U , it lazily injects relevant nogoods to the CDNL procedure. We first detail the
rewriting step, which is followed by the adapted unfound-set algorithm.
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Algorithm 7.1: RewritingAlgorithm
Data: Set Π1 (BDG), set Π2 (SOTA), set of SCCs
Result: Set Π′1, set Π′2

1 Π′1 ← ∅; Π′2 ← ∅ ;
2 for SCC ∈ SCCs do
3 if |SCC| > 1 and ∃r ∈ rules(SCC) s.t. r ∈ Π1 then

; /* Handle non-trivial SCC with BDG rule */
4 for r ∈ rules(SCC) do
5 r′ ← {hr ← Br} ;
6 r′′ ← {h← hr} ;
7 if r ∈ Π2 then
8 Π′2 ← Π′2 ∪ {r′} ;
9 else

10 Π′1 ← Π′1 ∪ {r′} ;
11 end
12 Π′2 ← Π′2 ∪ {r′′};
13 end
14 else

; /* All other rules */
15 for r ∈ rules(SCC) do
16 if r ∈ Π2 then
17 Π′2 ← Π′2 ∪ {r} ;
18 else
19 Π′1 ← Π′1 ∪ {r} ;
20 end
21 end
22 end
23 end
24 return Π′1, Π′2 ;

7.4.1 Rewriting

To determine cyclic support we rewrite the program Π = Π1 ∪ Π2 to distinguish between two
types of head literals: a and ar. The rewriting algorithm is depicted in Algorithm 7.1. We assume
as an input a program Π1, which is a set of rules that shall be grounded with BDG, and a set Π2
which shall be grounded by traditional means1. The output are the sets Π′1, and Π′2, which contain
the rewritten rules that shall be grounded with BDG, and by traditional means, respectively.

We consider SCCs based on the positive dependency graph DP (Π) of the non-ground program.
Therefore, SCC ∈ SCC(Π) is a set of predicate names. Let rules(SCC) be rules(SCC) = {r |
r ∈ Π, Hr ∩ SCC ̸= ∅, B+

r ∩ SCC ̸= ∅}.

1Note that one can use Algorithm 5.3 to determine Π1 and Π2
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7. LAZY-BDG: USING PROPAGATORS FOR CYCLIC PROGRAMS

(a) Pre-Rewriting (pos) dependency graph. (b) Post-Rewriting (pos) dependency graph.

Figure 7.5: Dependency graphs before and after the rewriting by Algorithm 7.1 for Example 7.3.

In more detail, we loop over every SCC in the non-ground program (Line (2)). Line (3) ensures
that the rewriting is only used, if at least one rule in the current SCC shall be grounded by BDG
means, and the SCC is non-trivial. Then Lines (5)–(6) rewrite the rule into two rules: Rule r′ and
r′′, where r′ captures the original rule with a unique head atom name and r′′, which infers the
original head atom from the newly introduced one. Lines (7)–(11) mark r′ to be grounded by
BDG, or by SOTA techniques, as r′ contains the original body. In Line (12) rule r′′ is marked
to be handled with SOTA techniques. Lines (15)–(21) then handle those SCCs that shall not be
rewritten.

Example 7.3. We consider Π, shown in the following listing:

1 c(1). c(2). d(X) :- c(X), not nd(X). nd(X) :- c(X), not d(X).
2 a(X) :- d(X). a(X) :- b(X). b(X) :- a(X).

We obtain the following SCCs: SCC(Π) = {{c}, {d}, {nd}, {a, b}}. Let Π1 be Π1 = {a(X)←
b(X)}, Π2 = Π \ Π1. Note that {a, b} is the only non-trivial SCC, where also a rule shall be
grounded with BDG.

Therefore, we obtain for rules({a, b}) the set rules({a, b}) = {a(X) ← b(X); a(X) ←
d(X); b(X)← a(X)}. This leads to the following rewritten program Π′:

1 c(1). c(2). d(X) :- c(X), not nd(X). nd(X) :- c(X), not d(X).
2 a_1(X) :- d(X). a_2(X) :- b(X). b_1(X) :- a(X).
3 a(X) :- a_1(X). a(X) :- a_2(X). b(X) :- b_1(X).
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Algorithm 7.2: Non-Ground UnfoundSet
Data: A (rewritten) ground program Π, assignment A, and rewriting information.
Result: An unfounded set U , and its external bodies EBr, of Π w.r.t. A.

1 S={p | p∈at(Π), |SCC(Π, p)|>1,∃q∈SCC(Π, p) :q.name∈names(BDG),p∈AT };
2 safeUr ← ∅; Ur ← ∅;
3 while S ̸= ∅ do
4 U ← {p} s.t. p ∈ S;
5 while U ̸= ∅ do
6 EBr ← getPredecessors(U, Ur);
7 foundFlag← false;
8 if |EBr ∩ AT | > 0 then
9 for hr ∈

(︂
EBr ∩ AT

)︂
do

10 if (SCC(Π, hr) ̸= SCC(Π, p)) ∨
(︁
hr ∈ safeUr

)︁
then

11 U ← U \ {h}; S ← S \ {h};
12 safeUr ← safeUr ∪ {hr};
13 safetmp ← inferSafeSuccessors(h);
14 safeUr ← safeUr ∪ safetmp; Ur ← Ur \ safetmp;
15 foundFlag← true;
16 break;
17 else
18 B ← findPositiveBodies(hr);
19 for β ∈ B do
20 U ← U ∪

(︁
β+ ∩ (SCC(Π, p) ∩ S)

)︁
;

21 foundFlag← true;
22 end
23 Ur ← Ur ∪ {hr};
24 break;
25 end
26 end
27 end
28 if foundFlag = false then
29 return U, EBr ;
30 end
31 end
32 end
33 return ∅, ∅ ;
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With the sets Π′1 = {a2(X) ← b(X)}, Π′2 = Π′ \ Π′1. We show in Figure 7.5a the positive
dependency graph before the rewriting, and in Figure 7.5b the positive dependency graph after
the rewriting.

7.4.2 Non-ground Unfound-Set

In detail the algorithm works as follows: The algorithm first gathers all to be checked atoms in
the set S (Line (1)). S contains all those true atoms, that are part of a non-trivial SCC, where
at least one atom is grounded by BDG. Then the algorithm checks for each such atom, whether
there exists support for it (Line (4)). This is done by successively extending a set of unfounded
atoms U , until either support is found (success, Line (33)), or U cannot be extended anymore
(failure, Line (29)). In the failure case, nogoods representing the unfounded set and its respective
external body atoms are added to the current state.

As long as there are still atoms in U left to check (Line (5)), it calls the getPredecessors(U, Ur)
procedure. getPredecessors(U, Ur) gets all external bodies EBr of U that are not part of Ur. Note
that EBr are in our case the heads hr of the rewritten rules of Algorithm 7.1. More formally:

getPredecessors(U, Ur) = {hr | h ∈ U, r ∈ G(Π), r = {h← hr}, r ̸∈ Ur}

If there are still true external bodies left (Line (8)), then we continue trying to find support
(Lines (9)–(26)). Otherwise, we immediately fail (Line (29)).

We try to find support by going through each external body hr one by one (Line (9)). If hr

is either from a different SCC, or is already marked as safe, as hr was previously marked as
externally supported (Line (10)), then we update its dependencies (Lines (11)–(14)) and restart
(Lines (15)–(16)) the loop (Line (5)). In detail, we change the dependencies by removing h (the
non-rewritten literal) from U and S (Line (11)). Next we add hr to the safeUr set, which only has
an impact in the SCC(Π, hr) ̸= SCC(Π, h) case (Line (12)).

Then we call the inferSafeSuccessors(h) function (Line (13)). This function infers those external
bodies safetmp, which can be inferred by knowing that h is safe. In more detail:

inferSafeSuccessors(h) := {ar | r ∈ G(Π), h ∈ B+
r , B+

r ∩ S = ∅, ar ∈ Hr}

We still are required to add the supported external bodies to safeUr and remove them from Ur, to
enable each ar to be considered as a possible support for a in a subsequent step (Line (14)).

The other case is when hr cannot support h (Line (18)). Then we call the findPositiveBodies(hr)
function in Line (18). findPositiveBodies(hr) tries to infer positive bodies for hr. Due to our
rewriting, there is one unique non-ground body for hr, which must be instantiated for this check.
findPositiveBodies(hr) implements a join operation on the literals of the body, w.r.t. the grounded
head hr, non-ground rule r ∈ Π, and the assignment A. So more formally:

findPositiveBodies(hr) = {Br′ | r′ ∈ G(r), B+
r′ ⊆ AT , B−r′ ⊆ AF , hr ∈ Hr′}

If we find bodies (Lines (20)-(21)), we extend the unfound-set U with those body atoms that
are in the same SCC as the head. Further, we also flag the external body hr in Ur, to not be
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considered as an external body in a subsequent step (Line (23)). Lastly, Line (24) restarts the loop
in Line (5). We note that Lines (18)–(23) can be implemented lazily, by getting one instantiated
body at a time, to prevent (unnecessary) combinatorial explosions.

Example 7.4 (Ctd. Example 7.3). We show how Algorithm 7.2 works for the rewritten program
in Example 7.3. The example program has 4 answer sets: AS = {{c(1); c(2); nd(1); nd(2)};
{c(1); c(2); d(1); nd(2);a(1); b(1)}; {c(1); c(2); nd(1); d(2);a(2); b(2)};
{c(1); c(2); d(1); d(2);a(1); a(2); b(1); b(2)}}.

We showcase the workings for {d(1); d(2)} ⊂ I (I being the answer set). As Algorithm 7.2
is called in the check-phase of the CDNL-procedure, the current assignment A already fulfills
satisfiability of every rule, and every a ∈ I has a rule that justifies it. Our assignment is
therefore at(Π′)∩AT = {c(1); c(2); d(1); d(2); a(1); b(1); a(2); b(2) a1(1); a2(1), a1(2); a2(2);
b1(1); b1(2)}. It remains to show foundedness by Algorithm 7.2. We display the example execution
in Table 7.1 that derives that no additional nogoods are needed.

Example 7.5 (Ctd. Example 7.3). We show how Algorithm 7.2 can derive nogoods for the rewrit-
ten program in Example 7.3. We change Example 7.4 by considering the case {nd(1); nd(2)} ⊂ I,
with the assignment at(Π′)∩AT = {c(1); c(2); nd(1); nd(2); a(1); b(1); a(2); b(2) a2(1), a2(2);
b1(1); b1(2)}.

This assignment is a forbidden cyclic derivation, where we continue to show how Algorithm 7.2
prevents it. We display the example execution in Table 7.2 that derives U = {b(1); a(1)} and
EBr = {a1(1)}. From this we follow the nogoods:

λ(b(1), U) = {T b(1), F a1(1)}
λ(a(1), U) = {T a(1), F a1(1)}
ΛΠ(U) = {{T b(1), F a1(1)}, {T a(1), F a1(1)}}

By adding these nogoods to the solver we prevent the cyclic derivation.

7.5 Experiments

To demonstrate the feasibility of Lazy-BDG we implemented Algorithm 7.2 in newground3 as
a clingo-propagator. Lazy-BDG not only achieves much better results than the previous state-
of-the-art BDG approach (level mappings), but also beats gringo and idlv on our synthetic
scenarios. Note that our prototypical implementation is in python. Therefore, we expect to obtain
even better results for future non-prototypical implementations in a combined grounder and solver.
Note that the benchmark system and overall setup is the same as in Section 5.4.

7.5.1 Propagator

A propagator is part of the CDNL procedure that can track progress and add nogoods. The
clingo propagator interface [84] in python consists of four methods: init(init): that is called
once before solving, to initialize data structures. propagate(control,changes): during solving

105
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#It. Line Event #It. Line Event

0 1 S = {a(1); b(1); a(2); b(2)} 3 6 EBr = {a1(1)}

2 safeUr = ∅; Ur = ∅ 9 hr = a1(1)

4 U = {b(1)}; p = b(1) (arbitrarily
chosen)

10 SCC(Π, hr) ̸= SCC(Π, p)

1 6 EBr = {b1(1)} 11
U = {b(1)};
S = {b(1); a(2); b(2)}

9 hr = b1(1) 12 safeUr = {a1(1)}

10
SCC(Π, hr) = SCC(Π, p)∧
hr ̸∈ safeUr

13 safetmp = {b1(1)}

19 β = {a(1)} 14
safeUr = {a1(1); b1(1)};
Ur = {a2(1)}

20 U = {b(1); a(1)} 4 6 EBr = {b1(1)}

23 Ur = {b1(1)} 9 hr = b1(1)

2 6 EBr = {a1(1); a2(1)} 10 hr ∈ safeUr

9 hr = a2(1) 11 U = ∅; S = {a(2); b(2)}

10
SCC(Π, hr) = SCC(Π, p)∧
hr ̸∈ safeUr

12 safeUr = {a1(1); b1(1)}

19 β = {b(1)} 13 safetmp = {a1(1); a2(1)}

20 U = {b(1); a(1)} 14
safeUr = {a1(1); b1(1); a2(1)};
Ur = ∅

23 Ur = {b1(1); a2(1)} 5 4 U = {b(2)}; p = b(2) (equivalent
to #It. 1–4; not shown)

Table 7.1: Execution of Algorithm 7.2 for Example 7.4. Iterations ≥ 5 are not shown.

it is called with a PropagateControl (control) and a list of tracked changes. PropagateControl:
can be used to add nogoods, add literals, trigger propagation, and get the current assignment.
undo(thread_id, assignment, changes): is the opposite of propagate. check(control); is called
on total assignments, otherwise similar to propagate. We implemented our Algorithm 7.2 in the
check function. Therefore, we operate on total assignments in our algorithm. Note that one could
implement the algorithm also partly in propagate.

In Figure 7.6 we show the schematics of the implementation and workings of Lazy-BDG. Given
a program Π Algorithm 7.1 rewrites the program to prevent an information-loss. Subsequently
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#It. Line Event #It. Line Event

0 1 S = {a(1); b(1); a(2); b(2)} 2 6 EBr = {a2(1); a1(1)}

2 safeUr = ∅; Ur = ∅ 9 hr = a2(1)

4 U = {b(1)}; p = b(1) (arbitrarily
chosen)

10
SCC(Π, hr) = SCC(Π, p)∧
hr ̸∈ safeUr

1 6 EBr = {b1(1)} 19 β = {b(1)}

9 hr = b1(1) 20 U = {b(1); a(1)}

10
SCC(Π, hr) = SCC(Π, p)∧
hr ̸∈ safeUr

23 Ur = {b1(1); a2(1)}

19 β = {a(1)} 3 6 EBr = {a1(1)}

20 U = {b(1); a(1)} 8 EBr ∩ AT = ∅

23 Ur = {b1(1)} 28 foundFlag = false

29
return U = {b(1); a(1)},
EBr = {a1(1)}

Table 7.2: Execution of Algorithm 7.2 for Example 7.5. The algorithm derives that additional
nogoods are needed.

hybrid grounding grounds the program. Whenever clingo derives a full assignment A we
need to check it for cyclic derivations. This is performed by our adapted unfound set algorithm
(Algorithm 7.2), which was implemented as a clingo-propagator.

7.5.2 Benchmark Scenarios

We adapted our scenarios from Chapter 6 to cyclic programs. Further, we reduced our instance
sizes to a suitable fragment. Therefore, for scenario C-Four-Clique we generated 80 complete
graphs from size 1 to 80. For the other scenarios we used the 20 first instances (size 1 to 20).

The scenarios are shown in the listings below. Our first scenario is the adapted four-clique
(C-Four-Clique), where we combine neighboring cliques (Line (3)). Note that the level mappings
technique has an approximate grounding size of ≈ |dom|6, whereas SOTA techniques have a
grounding size of ≈ |dom|4. The grounding size of Lazy-BDG is ≈ |dom|2 (we usedHGF for
the benchmarks). However, this is internally processed and therefore, we consider Lazy-BDG as
a combined grounder and solver.

1 {ff(X,Y)} :- edge(X,Y).
2 f(X,Y) :- ff(X,Y).
3 f(X,Y) :- c(X), c(Y), not f(X,Y).
4 % The following rule is grounded with the novel foundedness approach:
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Rewrite
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BDG

SOTA
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Figure 7.6: Schematics of the prototypical implementation and workings of Lazy-BDG. Given a
program Π, the rewriting algorithm (Algorithm 7.1) prevents information-loss. GroundingH(Π)
is performed by hybrid grounding, which results (when using FastFound) in an (intermediate)
grounding size of O(|Π| · |dom(Π)|a+1). The CDNL algorithm produces full assignments A,
where we know that all rules are satisfied, and whenever a ∈ AT , then there is a rule r that is
suitable for justifying a. It remains to prevent cyclic derivations, which is done with the adapted
unfound set algorithm (Algorithm 7.2). Either additional nogoods (ΛΠ(U)) are derived, which
prevent cyclic derivations, or an answer set (A ∈ AS) is found. Objects colored in blue mark the
contributions of Lazy-BDG.

5 c(X):-f(X,X1),f(X,X2),f(X,X3),f(X1,X2),f(X1,X3),f(X2,X3).

The second scenario C-Hyper-Six-Clique features a cyclic {d, c} component. level mappings2

have a grounding size of ≈ |dom|9, and SOTA techniques have one of ≈ |dom|6, whereas
Lazy-BDG has an internal grounding size of ≈ |dom|3.

1 {f(X,Y,Z)} :- edge(X,Y), edge(Y,Z).
2 d(X,Y) :- f(X,Y,Z).
3 % The following rule is grounded with the novel foundedness approach:
4 c(X1,X2) :- f(X1,X2,X3), f(X4,X5,X6), f(X1,X4,X5), f(X2,X4,X5), f(X3,X6,X5),
5 f(X6,X1,X2), f(X3,X4,X5), d(X1,X2).
6 d(X1,X2) :- c(X2,X1).

The third scenario C-Hyper-Seven-Clique extends scenario C-Hyper-Six-Clique to a seven clique.
level mappings have a grounding size of ≈ |dom|9, and SOTA techniques have one of ≈ |dom|7,
whereas Lazy-BDG has an internal grounding size of ≈ |dom|3.

1 {f(X,Y,Z)} :- edge(X,Y), edge(Y,Z).
2 d(X,Y) :- f(X,Y,Z).
3 % The following rule is grounded with the novel foundedness approach:
4 c(X1,X2):-f(X1,X2,X3), f(X4,X5,X6), f(X1,X4,X5), f(X2,X4,X5), f(X3,X6,X5),
5 f(X6,X1,X2), f(X3,X4,X5), f(X7,X1,X6), f(X7,X2,X3), f(X7,X4,X5), d(X1,X2)

.
6 d(X1,X2) :- c(X2,X1).

2An improved level mappings approach, which focuses on atoms occurring in the same SCC, results in an
approximate grounding size of ≈ |dom|6.

108



7.5. Experiments

0 20 40 60 80 100 120
Instances

0

300

600

900

1200

1500

1800

Ti
m

e 
[s

]

Lazy-BDG
GRINGO
IDLV
BDG-LVL-MAP

(a) Grounding and Solving Time [s] cactus plot.

0 20 40 60 80 100 120
Instances

10 3

10 2

10 1

100

101

Si
ze

 [G
B]

Lazy-BDG
GRINGO
IDLV
BDG-LVL-MAP

(b) Max RAM usage [GB] cactus plot.

Figure 7.7: Cactus plots of benchmarks for demonstrating viability of Lazy-BDG. Measured
gringo, idlv, HG (BDG-LVL-MAP), and HGF (Lazy-BDG). We were able to solve more
instances with our unfound-set implementation than idlv, or gringo. Further, UNFOUND-
SET uses just a fraction of the RAM that the other methods use. Timeout: 1800s; Memout:
10GB.

7.5.3 Hypotheses

We consider the following hypotheses:

(H1) Lazy-BDG (UNFOUND-SET) has a smaller RAM usage than SOTA techniques or level
mappings, on grounding-heavy benchmarks.

(H2) Lazy-BDG (UNFOUND-SET) is able to yield an improvement in number of solved
instances on grounding-heavy scenarios.

7.5.4 Experimental Results

We show our results in Figure 7.7 and Table 7.3. Observe the substantial differences in RAM
usage (Figure 7.7b), where Lazy-BDG’s RAM usage increase is relatively mild, in comparison
to gringo’s, idlv’s, and level mapping’s. From this observation we confirm hypothesis H1.
Further, Lazy-BDG was able to solve more instances than LVL.-MAP and slightly more instances
than gringo or idlv (Table 7.3). Our implementation is prototypical, still we were able
to ground-and-solve more instances than gringo and idlv on our synthetic datasets, which
enables us to confirm H2.
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Scen. #Insts. Total #Solved

gringo idlv LVL.-MAP. Lazy-BDG

#S M T #S M T #S M T #S M T

Total-SUM 120 96 0 24 96 0 24 38 0 82 106 0 14
C-Hyper-Six-Clique 20 17 0 3 17 0 3 10 0 10 15 0 5
C-Hyper-Seven-Clique 20 12 0 8 12 0 8 9 0 11 14 0 6
C-Four-Clique 80 67 0 13 67 0 13 19 0 61 77 0 3

Table 7.3: Lazy-BDG can yield a performance improvement for grounding-heavy benchmarks.
We report number of solved instances on three synthetic (cyclic) scenarios. Benchmarked systems
include gringo, idlv, BDG with level-mappings (LVL.-MAP.), and our Lazy-BDG technique.
Measured number of solved instances (#S), memouts (M), timeouts (T). Timeout of 1800s,
Memout of 10GB.
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CHAPTER 8
Summary and Conclusion

We conclude the thesis with a brief discussion of the main results, and future work. This thesis’s
main contributions can be pinpointed to the advancement of the Body-decoupled Grounding
(BDG) method. Although BDG is historically a complexity theoretic method, it shines for practi-
cal purposes in decreasing the impact of the grounding bottleneck in Answer Set Programming
(ASP). This stems from its ability to decrease the grounding size from being exponential in the
number of the variables per rule (state-of-the-art ground-and-solve approaches), to being (only)
exponential in the maximum arity of a predicate.

Essentially, this thesis enables the interoperability of BDG with state-of-the-art systems and
pushes the BDG method to be competitive for normal and non-tight (cyclic) rules. The details
of these findings correspond to the main chapters of the thesis: (i) hybrid grounding [10] in
Chapter 4, (ii) automated hybrid grounding in Chapter 5, (iii) FastFound in Chapter 6, and (iv)
Lazy-BDG in Chapter 7.

We think that especially (i) and (ii) will be of practical importance and should greatly ease the
integration of BDG into state-of-the-art grounders. This comes, as these contributions provide
the theoretical underpinnings for interoperability (i) and show how it can be practically used (ii).

On the other hand, (iii) and (iv) are primarily of theoretical significance, demonstrating the
potential for future development of the BDG approach. One of the key achievements of FastFound
was the reduction of the grounding size1 for non-ground normal rules from O(|Π| · |dom(Π)|2·a)
to O(|Π| · |dom(Π)|a+1). With Lazy-BDG, the (intermediate) grounding size was reduced from
O(|Π| · |dom(Π)|3·a) to O(|Π| · |dom(Π)|a+1). Further, with both (iii) and (iv), we were able to
beat the state-of-the-art on synthetic grounding-heavy benchmarks, which, in combination with
the interoperability gained by (i) and (ii), makes them promising future directions of research.

1Let Π be a non-ground normal (HCF) program, |Π| be the program size, | dom(Π)| be the program’s domain
size, and a be the maximum arity of any predicate in Π.
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Future Work: Although we think that BDG and this thesis are of great importance towards
solving the grounding bottleneck, there are still many questions left open, and problems to be
solved. With respect to BDG, we identified its shortcomings and open questions in Section 3.3,
where we identified seven different areas of future work, of which this thesis addresses three in
detail and three other shortcomings partially2.

Conversely, one problem remains fully open: The Arity Problem (Section 3.3.5). In essence, it
asks whether it is possible to split literals in ASP into literals with smaller arity, while preserving
semantics.

However, for major performance gains besides the arity problem, we think that future work
should address two problems that we partly covered in this thesis: Domain Dependent Grounding
(Section 3.3.6) and Shifting effort from the Grounder to the Solver (Section 3.3.7). Essentially,
domain dependent grounding asks whether we can incorporate more instance, or domain informa-
tion into the BDG approach. We partly covered this by taking a step back to a meta level and
introduced heuristics that analyzes the instance. However, it is preferable to include this instance
knowledge directly into the BDG reduction by adapting it. The objection behind shifting effort
from the grounder to the solver can be summarized as what we gain in grounding, we lose in
solving, where we intentionally stated it as broad as possible. We include multiple different future
vectors of research in this line. Among them is an extended Lazy-BDG approach that tackles
foundedness or satisfiability, or the study of the impact of BDG on problems that need multiple
answer sets, like brave- or cautious-reasoning, counting, or optimization.

Further, we deem the investigation of interoperability with other non-standard grounding methods,
like compilation based techniques, as promising. This stems from the recent successes of
combining bottom-up methods with compilation based techniques in the ProASP solver [38].
This raises the question of whether it is feasible to combine BDG with compilation based
techniques. We see BDG and compilation based techniques as orthogonal to each other in the
sense that BDG can be used as a rewriting technique for ProASP. However, at the current state of
development, both the theory and the practical implementation of compilation based techniques
support the normal (tight) fragment of ASP programs. As BDG produces ground disjunctive
(cyclic) ASP programs, BDG is, at the time of writing, not applicable to compilation based
techniques, which might change in the future.

Finally, we strive towards an integration of the BDG approach into state-of-the-art grounders
like gringo or idlv. This thesis establishes a solid foundation for exploring this integration,
leading to more efficient problem-solving across various applications.

2In more detail, this thesis addressed primarily Limited Interoperability (Section 3.3.1), When should BDG be
used? (Section 3.3.3), and Bad Performance for Normal and Cyclic Programs (Section 3.3.4). Further, this thesis
partly addressed Limited accepted Syntax (Section 3.3.2), Domain Dependent Grounding (Section 3.3.6), and Shifting
effort from the Grounder to the Solver (Section 3.3.7).
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Overview of Generative AI Tools Used

Generative AI-tools were used to generate Figure 14 in the Appendix (all figures shown in
Figure 1). Besides that no AI-tools, besides spell-checkers (Grammarly, and ChatGPT 4o), were
used. For spell-checking with ChatGPT 4o we used prompts similar to the one shown in the
following listing (this particular prompt was used with ChatGPT 4o on 30th of December 2024):

1 Dear ChatGPT, please take a look at the pdf I attached. It is part of my
current MSC thesis, and I want you to look over it regarding spelling
mistakes.

2 I am a non-native speaker, and therefore, this is important for me.
3 If you find a spelling mistake, please (i) provide me with the sentence where

it occurs (mark the error in bold), (ii) the corrected sentence, (iii)
the page number in the pdf, where it occurs.

Regarding the generation of Figure 14, we used ChatGPT 4o (via the web-interface) on the 23rd

of December 2024. The original prompt is shown in the listing below and generated Figure 1a.

1 Hi ChatGPT, draw me a "fortune teller-ball observatory high up in the alps".
2 This observatory is part of an institute doing latest research on artificial

intelligence.
3 Draw the master piece in a comic style.

In the next listing we show the prompt for generating Figure 14a (Figure 1b), where we passed
Figure 1a as an additional input.

(a) The original gener-
ated figure for the fortune-
teller-ball observatory.

(b) Ivory Tower (c) Fortune teller-ball-
observatory

(d) Tower of Wisdom

Figure 1: Figures produced with ChatGPT 4o on 23rd of December 2024.
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1 The attached master piece shows a "fortune teller-ball observatory high up in
the alps" that is part of a larger research institute doing cutting-edge
research on artificial intelligence.

2 I want you to draw me the "ivory tower" of this institute.

The next listing depicts our prompt for Figure 14b (Figure 1c), where we passed Figure 14a
(Figure 1b) as an additional input:

1 The attached master piece shows an "ivory tower high up in the alps" that is
part of a larger research institute doing cutting-edge research on
artificial intelligence.

2 I want you to draw me the "fortune-teller-ball observatory" of this institute
.

Finally, the next listing depicts how we generate Figure 14c (Figures 1d) by additionally including
Figure 14a (Figure 1b), and Figure 14b (Figure 1c) as inputs.

1 The attached master pieces show a "fortune-teller-ball observatory" and an "
ivory tower," both "high up in the snowy alps."

2 They are part of a larger research institute doing cutting-edge research on
artificial intelligence.

3 I want you to draw me "tower of wisdom" of this institute.
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Artificial Intelligence and Applications, vol. 372, 2023, pp. 557–564. DOI: 10.3233/
FAIA230316.

[40] T. Eiter, W. Faber, M. Fink, and S. Woltran, “Complexity results for answer set program-
ming with bounded predicate arities and implications”, Ann. Math. Artif. Intell., vol. 51,
no. 2, pp. 123–165, 2007, ISSN: 15737470. DOI: 10.1007/s10472-008-9086-5.

[41] T. Eiter, M. Fink, G. Ianni, T. Krennwallner, C. Redl, and P. Schüller, “A model building
framework for answer set programming with external computations”, TPLP, vol. 16,
no. 4, pp. 418–464, 2016. DOI: 10.1017/S1471068415000113.

[42] T. Eiter, T. Geibinger, N. Higuera, and J. Oetsch, “A logic-based approach to contrastive
explainability for neurosymbolic visual question answering”, in IJCAI23, 2023, pp. 3668–
3676. DOI: 10.24963/ijcai.2023/408.

[43] T. Eiter and G. Gottlob, “On the computational cost of disjunctive logic programming:
Propositional case”, Ann. Math. Artif. Intell., vol. 15, no. 3, pp. 289–323, 1995, ISSN:
15737470. DOI: 10.1007/BF01536399.

[44] T. Eiter, G. Ianni, and T. Krennwallner, “Answer set programming: A primer”, in Rea-
soning Web. Semantic Technologies for Information Systems, S. Tessaris, E. Franconi,
T. Eiter, C. Gutierrez, S. Handschuh, M.-C. Rousset, and R. A. Schmidt, Eds., ser. Lecture
Notes in Computer Science, vol. 5689, 2009, pp. 40–110. DOI: 10.1007/978-3-
642-03754-2_2.

[45] T. Eiter and A. Polleres, “Towards automated integration of guess and check programs in
answer set programming: A meta-interpreter and applications”, in LPNMR04, ser. Lecture
Notes in Computer Science, vol. 2923, 2004, pp. 100–113. DOI: 10.1007/978-3-
540-24609-1_11.

[46] E. Erdem, V. Patoglu, and Z. G. Saribatur, “Integrating hybrid diagnostic reasoning in plan
execution monitoring for cognitive factories with multiple robots”, in ICRA15, Seattle,
WA, USA: IEEE, 2015, pp. 2007–2013. DOI: 10.1109/ICRA.2015.7139461.

118

https://doi.org/10.1007/978-3-642-04238-6_75
https://doi.org/10.1007/978-3-642-04238-6_75
https://doi.org/10.1017/S1471068418000583
https://doi.org/10.1017/S1471068418000583
https://doi.org/10.24963/kr.2024/30
https://doi.org/10.3233/FAIA230316
https://doi.org/10.3233/FAIA230316
https://doi.org/10.1007/s10472-008-9086-5
https://doi.org/10.1017/S1471068415000113
https://doi.org/10.24963/ijcai.2023/408
https://doi.org/10.1007/BF01536399
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-540-24609-1_11
https://doi.org/10.1007/978-3-540-24609-1_11
https://doi.org/10.1109/ICRA.2015.7139461


[47] W. Faber, N. Leone, and S. Perri, “The intelligent grounder of DLV”, Correct Reasoning,
Lecture Notes in Computer Science, vol. 7265, E. Erdem, J. Lee, Y. Lierler, and D. Pearce,
Eds., pp. 247–264, 2012. DOI: 10.1007/978-3-642-30743-0_17.

[48] W. Faber and S. Woltran, “Manifold answer-set programs for meta-reasoning”, in LP-
NMR09, E. Erdem, F. Lin, and T. Schaub, Eds., ser. Lecture Notes in Computer Science,
vol. 5753, 2009, pp. 115–128. DOI: 10.1007/978-3-642-04238-6_12.

[49] A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, and E. C. Teppan, “Industrial applica-
tions of answer set programming”, Künstl. Intell., vol. 32, no. 2, pp. 165–176, 2018. DOI:
10.1007/s13218-018-0548-6.

[50] E. M. Fenoaltea, I. B. Baybusinov, J. Zhao, L. Zhou, and Y.-C. Zhang, “The stable
marriage problem: An interdisciplinary review from the physicist’s perspective”, Physics
Reports, vol. 917, pp. 1–79, 2021, ISSN: 03701573. DOI: 10.1016/j.physrep.
2021.03.001.

[51] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application of theorem prov-
ing to problem solving”, Artif. Intell., vol. 2, no. 3, pp. 189–208, 1971, ISSN: 00043702.
DOI: 10.1016/0004-3702(71)90010-5.

[52] D. Gale and L. S. Shapley, “College admissions and the stability of marriage”, Am. Math.
Mon., vol. 69, no. 1, pp. 9–15, 1962, ISSN: 19300972. DOI: 10.1080/00029890.
1962.11989827.

[53] A. d. Garcez and L. C. Lamb, “Neurosymbolic AI: The 3rd wave”, Artif Intell Rev, vol. 56,
no. 11, pp. 12 387–12 406, 2023, ISSN: 15737462. DOI: 10.1007/s10462-023-
10448-w.

[54] H. Garcia-Molina, J. Ullman, and J. Widom, Database systems: the complete book.
Pearson; 2nd edition, 2008, 1203 pp., pp. 797–798, ISBN: 0131873253.

[55] M. Garnelo and M. Shanahan, “Reconciling deep learning with symbolic artificial intelli-
gence: Representing objects and relations”, Curr. Opin. Behav. Sci., vol. 29, pp. 17–23,
2019, ISSN: 23521546. DOI: 10.1016/j.cobeha.2018.12.010.

[56] M. Gebser, A. Harrison, R. Kaminski, V. Lifschitz, and T. Schaub, “Abstract gringo”,
TPLP, vol. 15, no. 4, pp. 449–463, 2015. DOI: 10.1017/S1471068415000150.

[57] M. Gebser, T. Janhunen, M. Ostrowski, T. Schaub, and S. Thiele, “A versatile intermediate
language for answer set programming”, NMR08, pp. 150–159, 2008.

[58] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko, “Theory
solving made easy with clingo 5”, ICLP16, OASIcs, vol. 52, pp. 1–15, 2016, ISSN:
21906807. DOI: 10.4230/OASICS.ICLP.2016.2.

[59] M. Gebser, R. Kaminski, B. Kaufmann, J. Romero, and T. Schaub, “Progress in clasp
series 3”, in LPNMR15, F. Calimeri, G. Ianni, and M. Truszczynski, Eds., ser. Lecture
Notes in Computer Science, vol. 9345, 2015, pp. 368–383. DOI: 10.1007/978-3-
319-23264-5_31.

[60] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Multi-shot ASP solving with
clingo”, TPLP, vol. 19, no. 1, pp. 27–82, 2019. DOI: 10.1017/S1471068418000054.

119

https://doi.org/10.1007/978-3-642-30743-0_17
https://doi.org/10.1007/978-3-642-04238-6_12
https://doi.org/10.1007/s13218-018-0548-6
https://doi.org/10.1016/j.physrep.2021.03.001
https://doi.org/10.1016/j.physrep.2021.03.001
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1016/j.cobeha.2018.12.010
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.4230/OASICS.ICLP.2016.2
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1017/S1471068418000054


[61] M. Gebser, R. Kaminski, and T. Schaub, “Grounding recursive aggregates: Preliminary
report”, GTTV15, M. Denecker and T. Janhunen, Eds., 2015. DOI: 10.48550/arXiv.
1603.03884.

[62] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven answer set
solving”, in IJCAI07, M. M. Veloso, Ed., 2007, pp. 386–392.

[63] M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven answer set solving: From
theory to practice”, Artif. Intell., vol. 187, pp. 52–89, 2012, ISSN: 00043702. DOI: 10.
1016/j.artint.2012.04.001.

[64] M. Gebser, N. Leone, M. Maratea, S. Perri, F. Ricca, and T. Schaub, “Evaluation tech-
niques and systems for answer set programming: A survey”, in IJCAI18, 2018, pp. 5450–
5456. DOI: 10.24963/ijcai.2018/769.

[65] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and M. Truszczyński, “The
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Appendix

Additional Implementation Details

Our prototype is available under: https://github.com/alexl4123/newground.

Example 8.1. The following example demonstrates the usage of the clingo transformer. It
showcases a minimum example, by printing the used rules, and saving all variables in the
program. The transformer is called with the program:

1 a(1).a(2).b(X) :- a(X),a(Y).

Note that the following code is PYTHON code. It produces the following output:

1 > python transformer_example.py
2 a(1).
3 a(2).
4 b(X) :- a(X); a(Y).
5 All variables in program: {’X’: True, ’Y’: True}

1 from clingo.ast import Transformer
2
3 class MyTransformer(Transformer):
4
5 def __init__(self):
6 self.my_variables = {}
7
8 def visit_Rule(self, node):
9 self.visit_children(node)

10 print(str(node))
11 return node
12
13 def visit_Variable(self, node):
14 self.visit_children(node)
15 if str(node) not in self.my_variables:
16 self.my_variables[str(node)] = True
17 return node

Listing 8.1: Transformer Class Example I. Showcasing the usage of a transformer - implementing
the transformer.

127

https://github.com/alexl4123/newground


1 from clingo.ast import parse_string
2
3 if __name__ == "__main__":
4 my_program = "a(1).a(2).b(X) :- a(X),a(Y)."
5 my_transformer = MyTransformer()
6 parse_string(my_program, lambda stm: my_transformer(stm))
7 print(f"All variables in program: {my_transformer.my_variables}")

Listing 8.2: Transformer Class Example Part II. Showcasing the usage of a transformer - calling
the transformer.

How BDG dismantles Cycles: Full Grounding

In Section 7.1 we showed for a program Π its non-ground, and groundedHG(Π1, Π2) versions,
restricted to at(G(Π)) ∪ {h′|h ∈ H(Π1)}. The listing below shows the necessary non-ground
auxiliary atoms.

1 %%%%% q(X,Y) :- f(X,Y). %%%%%%
2 sat_0:-sat_0_X(X1),sat_0_Y(X2),f(X1,X2).
3 sat_0:-sat_0_Y(X1),sat_0_X(X2),not q(X1,X2).
4 sat_0_Y(1):-sat. sat_0_Y(2):-sat. sat_0_Y(1)|sat_0_Y(2).
5 sat_0_X(1):-sat. sat_0_X(2):-sat. sat_0_X(1)|sat_0_X(2).
6 ujust_0_X_Y(X1,X2):-f’(X1,X2),not q(X2,X1).
7 :-0 < #count{1:ujust_0_X_Y(X1,X2)},f’(X1,X2).
8 %%%%%% f(X,Y) :- q(Y,X). %%%%%%%
9 %% HEAD GUESSES %%

10 %% SAT PART %%
11 sat_1:-sat_1_X(X1),sat_1_Y(X2),q(X1,X2).
12 sat_1:-sat_1_X(X1),sat_1_Y(X2),not f(X1,X2).
13 sat_1_X(1):-sat. sat_1_X(2):-sat. sat_1_X(1)|sat_1_X(2).
14 sat_1_Y(1):-sat. sat_1_Y(2):-sat. sat_1_Y(1)|sat_1_Y(2).
15 ujust_1_X_Y(X1,X2):-q’(X1,X2),not f(X1,X2).
16 :-0 < #count{1:ujust_1_X_Y(X1,X2)},q’(X1,X2).
17 :- not sat.
18 sat:-sat_0,sat_1.

And this listing shows the necessary ground auxiliary atoms.
1 sat_1_Y(1);sat_1_Y(2).
2 sat_1_X(1);sat_1_X(2).
3 sat_0_Y(1);sat_0_Y(2).
4 sat_0_X(1);sat_0_X(2).
5 sat_0:-sat_0_X(2),sat_0_Y(1),not q(1,2).
6 sat_0:-sat_0_X(2),sat_0_Y(2),not q(2,2).
7 sat_0:-sat_0_X(1),sat_0_Y(1),not q(1,1).
8 sat_0:-sat_0_X(1),sat_0_Y(2),not q(2,1).
9 sat_0:-f(1,2),sat_0_Y(2),sat_0_X(1).

10 sat_0:-f(2,2),sat_0_Y(2),sat_0_X(2).
11 sat_0:-f(1,1),sat_0_Y(1),sat_0_X(1).
12 sat_0:-f(2,1),sat_0_Y(1),sat_0_X(2).
13 sat_1:-sat_1_Y(2),sat_1_X(1),not f(1,2).
14 sat_1:-sat_1_Y(2),sat_1_X(2),not f(2,2).
15 sat_1:-sat_1_Y(1),sat_1_X(1),not f(1,1).
16 sat_1:-sat_1_Y(1),sat_1_X(2),not f(2,1).
17 sat_1:-q(1,2),sat_1_Y(2),sat_1_X(1).
18 sat_1:-q(2,2),sat_1_Y(2),sat_1_X(2).
19 sat_1:-q(1,1),sat_1_Y(1),sat_1_X(1).
20 sat_1:-q(2,1),sat_1_Y(1),sat_1_X(2).
21 sat:-sat_1,sat_0.
22 sat_0_X(2):-sat.
23 sat_0_X(1):-sat.
24 sat_0_Y(2):-sat.
25 sat_0_Y(1):-sat.
26 sat_1_X(2):-sat.
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27 sat_1_X(1):-sat.
28 sat_1_Y(2):-sat.
29 sat_1_Y(1):-sat.
30 :-not sat.
31 ujust_1_X_Y(1,1):-q’(1,1),not f(1,1).
32 ujust_1_X_Y(2,1):-q’(2,1),not f(2,1).
33 ujust_1_X_Y(1,2):-q’(1,2),not f(1,2).
34 ujust_1_X_Y(2,2):-q’(2,2),not f(2,2).
35 :-q’(1,1),0<#count{1:ujust_1_X_Y(1,1)}.
36 :-q’(2,1),0<#count{1:ujust_1_X_Y(2,1)}.
37 :-q’(1,2),0<#count{1:ujust_1_X_Y(1,2)}.
38 :-q’(2,2),0<#count{1:ujust_1_X_Y(2,2)}.
39 ujust_0_X_Y(1,1):-f’(1,1),not q(1,1).
40 ujust_0_X_Y(2,1):-f’(2,1),not q(1,2).
41 ujust_0_X_Y(1,2):-f’(1,2),not q(2,1).
42 ujust_0_X_Y(2,2):-f’(2,2),not q(2,2).
43 :-f’(1,1),0<#count{1:ujust_0_X_Y(1,1)}.
44 :-f’(2,1),0<#count{1:ujust_0_X_Y(2,1)}.
45 :-f’(1,2),0<#count{1:ujust_0_X_Y(1,2)}.
46 :-f’(2,2),0<#count{1:ujust_0_X_Y(2,2)}.

Additional Experimental Details

We show additional experimental details for the automated hybrid grounding experiments from
Chapter 5. In Figures 2–7 we show additional solving profiles. In Figures 8–13 we show
additional grounding profiles. In Table 3 we show overall time and memory usage for solving,
while in Table 4 we show overall time ane memory usage for grounding. Tables 5 and 6 show
detailed results of FastFound (Section 6.4). Table 7 shows the detailed results for Lazy-BDG
(Section 7.5). Note that we think that the solving behavior of gringo for (12-Strat.) is an
anomaly, as it was not able to solve any instance, whereas NG-G and NG-G-TW solve 12 -
however neither Lpopt nor BDG was used by the heuristic.

Statistics for H1 of Section 5.4.4

We performed a Mann-Whitney U test (for gringo and NG-G) to put additional weight to our
claim that H1 holds (or cannot be rejected), with an H10 of both distributions being equal. We
use it to test whether there is a difference between the two populations (gringo and NG-G;
α = 0.01). As each scenario has a different number of instances, we account for this by adjusting
each scenarios number of instances to 20 instances. 20 was arbitrarily chosen and different
values do not have an effect. We obtain the same results for e.g., 100. Performing the two-sided
Mann-Whitney U test we obtain a p-value of 0.89, and 0.89 > 0.01. As we cannot reject H10, we
also cannot reject H1. Therefore, our hypothesis that newground3 with our Algorithm 5.3 does
neither perform worse, nor better than ground-and-solve systems on solving-heavy benchmarks
can not be rejected, which is exactly what we wanted to show.

Solving-Heavy scenarios: Usage of BDG and Lpopt

Lpopt was used for: (01-Perm), (01-Perm.-New), (04-Conn.), (06-Bottl.), (07-Nomi.), (07-
Nomi.-New), (09-Rico.), (09-Rico.-New), (10-Cross.), (10-Cross.-New), (14-Weigh.), (14-
Weigh.-New), (15-Stabl.), (15-Stabl.-New), (16-Incr.), (16-Incr.-New), (19-Abst.), (19-Abst.-
New), (24-Lab.), (24-Lab.-New), (25-Min.), (25-Min.-New), (26-Hanoi.), and (28-Part.).
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BDG was marked (structurally) for: (22-Knight.), (28-Part.).

BDG was used for: (28-Part.).

Grounding-Heavy scenarios: Usage of BDG and Lpopt

For the grounding-heavy scenarios we did not benchmark NG-G-TW separately, as for most
scenarios the variable graph of the rule responsible for the grounding bottleneck is a clique. BDG
was used for scenarios: (30-Cliq.), (31-Cliqu.(!=)), (32-Path.), (33-Col.), (34-4Cliqu.), (36-S3T4),
(37-S4T4), (38-NPRC), (39-SM-Agg).

BDG was not used for: (35-NPRC).

Additional Plots and Tables

The following list shows full names for a problem from the 2014 ASP competition with its used
abbrevation:
01N-PermutationPatternMatching-N01-New (01-Perm.-New), 02N-ValvesLocationProblem-N02
(02-Valv.), 04N-ConnectedMaximumDensityStillLife-N04 (04-Conn.),
04N-ConnectedMaximumDensityStillLife-N04-New (04-Conn.-New),
05N-GracefulGraphs-N05 (05-Grac.), 05N-GracefulGraphs-N05-New (05-Grac.-New), 06N-
BottleFillingProblem-N06 (06-Bottl.), 06N-BottleFillingProblem-N06-New (06-Bottl.-New),
07N-Nomistery-N07 (07-Nomi.), 07N-Nomistery-N07-New (07-Nomi.-New), 08N-Sokoban-
N08 (08-Sok.), 08N-Sokoban-N08-New (08-Sok.-New), 09N-RicochetRobots-N09 (09-Rico.),
09N-RicochetRobots-N09-New (09-Rico.-New), 10O-CrossingMinimization-O10 (10-Cross.),
10O-CrossingMinimization-O10-New (10-Cross.-New), 12N-StrategicCompanies-N12 (12-Strat.),
13O-Solitaire-O13 (13-Sol.), 13O-Solitaire-O13-New (13-Sol.-New),
14O-WeightedSequenceProblem-O14 (14-Weigh.), 14O-WeightedSequenceProblem-O14-New
(14-Weigh.-New), 15O-StableMarriage-O15 (15-Stabl.), 16O-IncrementalScheduling-O16 (16-
Incr.), 17N-QualitativeSpatialReasoning-N17-New (17-Qual.-New),
19N-AbstractDialecticalFrameworksWell-N19 (19-Abst.),
19N-AbstractDialecticalFrameworksWell-N19-New (19-Abst.-New), 20N-VisitAll-N20 (20-
Visit.), 20N-VisitAll-N20-New (20-Visit.-New), 21N-ComplexOptimizationOfAnswerSets-N21
(21-Compl.), 22N-KnightTourWithHoles-N22-New (22-Knight.-New),
23O-MaximalCliqueProblem-O23-New (23-Max.-New), 24O-Labyrinth-O24 (24-Lab.), 24O-
Labyrinth-O24-New (24-Lab.-New), 25O-MinimalDiagnosis-O25 (25-Min.),
25O-MinimalDiagnosis-O25-New (25-Min.-New), 26O-HanoiTower-O26 (26-Hanoi.), 26O-
HanoiTower-O26-New (26-Hanoi.-New), 27O-GraphColoring-O27 (27-Graph.),
27O-GraphColoring-O27-New (27-Graph.-New), 28-PartnerUnits-28 (28-Part.), 28-PartnerUnits-
28-New (28-Part.-New),
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(a) Solving profile for gringo.
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(b) Solving profile for NG-G.
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(c) Solving profile for idlv.
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(d) Solving profile for NG-I.
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(e) Solving profile for ProASP
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(f) Solving profile for ProASP-CS.

Figure 2: Solving profiles for all systems for the 30-Cliqu. example. Compare the traditional
ground-and-solve systems (Figure 2a, and Figure 2c), to the newground3 approaches (Figure 2b,
and Figure 2d), to the ProASP approaches ( (Figure 2e, and Figure 2f), Measured idlv (idlv),
gringo (gringo), newground3 with gringo (NG-G), newground3 with idlv (NG-I),
ProASP (ProASP), and ProASP with CS (ProASP-CS). Timeout: 1800s; Memout: 10GB.
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(a) Solving profile for gringo.
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(b) Solving profile for NG-G.
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(c) Solving profile for idlv.
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(d) Solving profile for NG-I.
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(e) Solving profile for ProASP
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(f) Solving profile for ProASP-CS.

Figure 3: Solving profiles for all systems for the 32-Path. example. Compare the traditional
ground-and-solve systems (Figure 3a, and Figure 3c), to the newground3 approaches (Figure 3b,
and Figure 3d), to the ProASP approaches ( (Figure 3e, and Figure 3f), Measured idlv (idlv),
gringo (gringo), newground3 with gringo (NG-G), newground3 with idlv (NG-I),
ProASP (ProASP), and ProASP with CS (ProASP-CS). Timeout: 1800s; Memout: 10GB.
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(a) Solving profile for gringo.
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(b) Solving profile for NG-G.
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(c) Solving profile for idlv.
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(d) Solving profile for NG-I.
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(e) Solving profile for ProASP
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(f) Solving profile for ProASP-CS.

Figure 4: Solving profiles for all systems for the 33-Col. example. Compare the traditional ground-
and-solve systems (Figure 4a, and Figure 4c), to the newground3 approaches (Figure 4b, and
Figure 4d), to the ProASP approaches ( (Figure 4e, and Figure 4f), Measured idlv (idlv),
gringo (gringo), newground3 with gringo (NG-G), newground3 with idlv (NG-I),
ProASP (ProASP), and ProASP with CS (ProASP-CS). Timeout: 1800s; Memout: 10GB.
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(a) Solving profile for gringo.
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(b) Solving profile for NG-G.
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(c) Solving profile for idlv.
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(d) Solving profile for NG-I.
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(e) Solving profile for ProASP
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(f) Solving profile for ProASP-CS.

Figure 5: Solving profiles for all systems for the 34-Cliqu4. example. Compare the traditional
ground-and-solve systems (Figure 5a, and Figure 5c), to the newground3 approaches (Figure 5b,
and Figure 5d), to the ProASP approaches ( (Figure 5e, and Figure 5f), Measured idlv (idlv),
gringo (gringo), newground3 with gringo (NG-G), newground3 with idlv (NG-I),
ProASP (ProASP), and ProASP with CS (ProASP-CS). Timeout: 1800s; Memout: 10GB.
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(a) Solving profile for gringo.
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(b) Solving profile for NG-G.
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(c) Solving profile for idlv.
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(d) Solving profile for NG-I.
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(e) Solving profile for ProASP
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(f) Solving profile for ProASP-CS.

Figure 6: Solving profiles for all systems for the 35-NPRC. example. Compare the traditional
ground-and-solve systems (Figure 6a, and Figure 6c), to the newground3 approaches (Figure 6b,
and Figure 6d), to the ProASP approaches ( (Figure 6e, and Figure 6f), Measured idlv (idlv),
gringo (gringo), newground3 with gringo (NG-G), newground3 with idlv (NG-I),
ProASP (ProASP), and ProASP with CS (ProASP-CS). Timeout: 1800s; Memout: 10GB.
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(a) 30-Cliqu. solving profile for ALPHA.
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(b) 31-Cliqu.(!=) solving profile for ALPHA.
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(c) 32-Path. solving profile for ALPHA.
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(d) 33-Col. solving profile for ALPHA.
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(e) 34-Cliqu4. solving profile for ALPHA.
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(f) 35-NPRC. solving profile for ALPHA.

Figure 7: Solving profiles for the ALPHA system. Scenario 30-Cliqu. in Figure 7a, scenario
31-Cliqu(!=). in Figure 7b, scenario 32-Path. in Figure 7c, scenario 33-Col. in Figure 7d,
scenario 34-Cliqu4 in Figure 7e, and scenario 35-NPRC in Figure 7f. Timeout: 1800s; Memout:
10GB.
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(a) Grounding profile for gringo.
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(b) Grounding profile for NG-G.
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(c) Grounding profile for idlv.
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(d) Grounding profile for NG-I.

Figure 8: Grounding profiles for all ground-and-solve systems for the 30-Cliqu. exam-
ple. Compare the traditional ground-and-solve systems ( Figure 8a, and Figure 8c), to the
newground3 approaches ( Figure 8b, and Figure 8d). Measured idlv (idlv), gringo
(gringo), newground3 with gringo (NG-G), and newground3 with idlv (NG-I). Time-
out: 1800s; Memout: 10GB.
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(a) Grounding profile for gringo.
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(b) Grounding profile for NG-G.
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(c) Grounding profile for idlv.
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(d) Grounding profile for NG-I.

Figure 9: Grounding profiles for all ground-and-solve systems for the 31-Cliqu.(!=) exam-
ple. Compare the traditional ground-and-solve systems ( Figure 9a, and Figure 9c), to the
newground3 approaches ( Figure 9b, and Figure 9d). Measured idlv (idlv), gringo
(gringo), newground3 with gringo (NG-G), and newground3 with idlv (NG-I). Time-
out: 1800s; Memout: 10GB.
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(a) Grounding profile for gringo.
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(b) Grounding profile for NG-G.
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(c) Grounding profile for idlv.
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(d) Grounding profile for NG-I.

Figure 10: Grounding profiles for all ground-and-solve systems for the 32-Path. example. Com-
pare the traditional ground-and-solve systems ( Figure 10a, and Figure 10c), to the newground3
approaches ( Figure 10b, and Figure 10d). Measured idlv (idlv), gringo (gringo),
newground3 with gringo (NG-G), and newground3 with idlv (NG-I). Timeout: 1800s;
Memout: 10GB.
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(a) Grounding profile for gringo.
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(b) Grounding profile for NG-G.
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(c) Grounding profile for idlv.
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(d) Grounding profile for NG-I.

Figure 11: Grounding profiles for all ground-and-solve systems for the 33-Col. example. Compare
the traditional ground-and-solve systems ( Figure 11a, and Figure 11c), to the newground3
approaches ( Figure 11b, and Figure 11d). Measured idlv (idlv), gringo (gringo),
newground3 with gringo (NG-G), and newground3 with idlv (NG-I). Timeout: 1800s;
Memout: 10GB.

140



00 400 800 1200 1600 2000
Instance Size00

20

40

60

80

100

In
st

an
ce

 D
en

sit
y

1 MB 3.3 MB 10 MB 33 MB 100 MB 330 MB 1 GB 3.3 GB 10 GB
RAM Usage [MB] (top half)

0 s 200 s 400 s 600 s 800 s 1 ks 1.2 ks 1.5 ks 1.8 ks
Combined Time [s] (bottom half)

(a) Grounding profile for gringo.

00 400 800 1200 1600 2000
Instance Size00

20

40

60

80

100

In
st

an
ce

 D
en

sit
y

1 MB 3.3 MB 10 MB 33 MB 100 MB 330 MB 1 GB 3.3 GB 10 GB
RAM Usage [MB] (top half)

0 s 200 s 400 s 600 s 800 s 1 ks 1.2 ks 1.5 ks 1.8 ks
Combined Time [s] (bottom half)

(b) Grounding profile for NG-G.
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(c) Grounding profile for idlv.
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(d) Grounding profile for NG-I.

Figure 12: Grounding profiles for all ground-and-solve systems for the 34-4Cliqu. exam-
ple. Compare the traditional ground-and-solve systems ( Figure 12a, and Figure 12c), to the
newground3 approaches ( Figure 12b, and Figure 12d). Measured idlv (idlv), gringo
(gringo), newground3 with gringo (NG-G), and newground3 with idlv (NG-I). Time-
out: 1800s; Memout: 10GB.
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(a) Grounding profile for gringo.
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(b) Grounding profile for NG-G.
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(c) Grounding profile for idlv.
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(d) Grounding profile for NG-I.

Figure 13: Grounding profiles for all ground-and-solve systems for the 35-NPRC. example. Com-
pare the traditional ground-and-solve systems ( Figure 13a, and Figure 13c), to the newground3
approaches, although, the heuristic decided against the usage of BDG ( Figure 13b, and Fig-
ure 13d). Measured idlv (idlv), gringo (gringo), newground3 with gringo (NG-G),
and newground3 with idlv (NG-I). Timeout: 1800s; Memout: 10GB.
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Scen. #Insts. Total Time (T[h]), Total Mem-Usage (M[TB])

gringo idlv HG HGF
T M T M T M T M

Total-SUM 120 56.08 1.11 56.07 1.11 48.89 1.01 33.34 0.72
Four-Clique 40 17.07 0.34 17.06 0.34 10.82 0.26 0.55 0.04
Hyper-Six-Clique 40 19.50 0.38 19.50 0.38 19.03 0.37 16.15 0.34
Hyper-Seven-Clique 40 19.51 0.38 19.51 0.38 19.04 0.38 16.64 0.34

Table 5: Comparing total (grounding + solving) time and total memory usage (while grounding
and solving) for FastFound (HGF ), GuessFound (HG), gringo and idlv. This table displays
the detailed (solving) results for the experiments of Section 6.4. T total time in hours [h], M total
memory usage in terabytes [TB]. Timeout of 1800s, Memout of 10GB.

Scen. #Insts. Grounding Time (T[h]), Grounding Size (M[TB])

gringo idlv HG HGF
T M T M T M T M

Total-SUM 120 53.26 1.05 53.13 1.05 42.88 0.85 27.35 0.54
Four-Clique 40 14.70 0.30 14.56 0.30 5.28 0.11 0.10 0.00
Hyper-Six-Clique 40 19.06 0.37 19.06 0.37 18.59 0.36 13.38 0.26
Hyper-Seven-Clique 40 19.50 0.38 19.50 0.38 19.02 0.37 13.87 0.27

Table 6: Comparing grounding time and size for FastFound (HGF ), GuessFound (HG), gringo
and idlv. This table displays the detailed (grounding) results for the experiments of Section 6.4.
T total time in hours [h], M total memory usage in terabytes [TB]. Timeout of 1800s, Memout of
10GB.

Scen. #Insts. Total Time (T[h]), Total Mem-Usage (M[TB])

gringo idlv LVL.-MAP. Lazy-BDG

T M T M T M T M

Total-SUM 120 15.53 0.42 15.18 0.42 42.00 0.81 17.37 0.12
C-Hyper-Six-Clique 20 1.67 0.05 1.67 0.05 5.00 0.09 3.90 0.04
C-Hyper-Seven-Clique 20 4.12 0.09 4.11 0.09 5.86 0.12 4.19 0.05
C-Four-Clique 80 9.75 0.27 9.41 0.27 31.13 0.60 9.28 0.03

Table 7: Comparing total (grounding + solving) time and total memory usage (while grounding
and solving) for Hybrid Grounding with level-mappings (LVL.-MAP.), Lazy-BDG, gringo and
idlv. This table displays the detailed (solving) results for the experiments of Section 7.5. T total
time in hours [h], M total memory usage in terabytes [TB]. Timeout of 1800s, Memout of 10GB.
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(a) Ivory Tower (b) Fortune teller-ball-observatory (c) Tower of Wisdom

Figure 14: Illustrations of the stable-matching example problem. Figure 14a depicts the ivory
tower of the logicians, Figure 14b shows the fortune-teller-ball observatory of the differentialists,
and Figure 14c depicts the future tower of wisdom, which shall house both logicians and
differentialists. All were created with ChatGPT-4o’s web-interface on 23.12.2024.

Fictitious Stable Matching Problem (Details)

We pose the stable matching problem in the following fictitious setting:
A large research institute high up in the Alps wants to gain a head-start in the next AI hype-cycle
by developing a broad AI [78] agent. They know that this is only possible by combining the
reasoning and abstraction capabilities of the symbolic approaches developed by the logicians,
with the pattern matching and learning power of the machine learning techniques, developed by
the machine learning scientists (henceforth called differentialists). Management of the institute
comes up with a plan, which brings the two research communities together. The institute is quite
large and comprises of many faculty buildings, such as an ivory tower for the logicians, and a
fortune teller observatory for differentialists. However, they lack space for bringing together
logicians with differentialists. Therefore, they plan to build the tower of wisdom, which shall
house both.

Unfortunately for management, logicians and differentialists are picky people regarding with
whom they want to work with. Therefore, management proposes that each logician should create
a list, which ranks the differentialists they want to work with, and vice versa for the differentialists.
Based on this list, the management creates a matching. This matching should adhere to the strong
stability condition, and the resulting problem should be a stable matching problem, as introduced
in Chapter 1. We assume that there are as many logicians as there are differentialists.

The illustrations in Figure 14 depict the buildings for different disciplines, from the introductory
example on the stable matching problem: the ivory tower of the logicians, the fortune-teller-ball
observatory of the differentialists
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