
Dissertation

vorgelegt von

Matthias Wess

Estimation, Profiling and Modeling of DNNs
for Embedded Systems

Zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften (Dr.techn.)

Wien, Austria, März 2025

Betreuer: Univ.-Prof. Dr. Axel Jantsch

Technische Universität Wien

Gutachter: Univ.Prof. Dr.-Ing. Dipl.-Ing. Daniel Müller-Gritschneder

Technische Universität Wien

Gutachter: Prof. Mario Casu

Politecnico di Torino

Contribution to Original Knowledge

• ANNETTE Framework and Layer-Specific Optimization: A novel Deep Neural Network (DNN) latency esti-

mation framework, ANNETTE, is introduced, which separates the optimization phase from per-layer estimation.

This separation enables more accurate latency estimation and facilitates efficient and targeted improvements to

DNN architectures [Paper I] [1].

• Refined Roofline Model and Mixed Statistical Modeling: A refined roofline model is proposed for latency

estimation, combined with mixed modeling techniques to enhance the selection of datapoints for statistical mod-

eling. This method improves the accuracy of latency estimation by strategically choosing relevant datapoints

while drastically reducing the number of required latency measurements [Paper I] [1].

• Conformal Prediction for Latency Estimation: Latency estimation inherently involves approximations, often

yielding rough estimates of median or mean latency values rather than predictions for specific execution times due

to sparse measurements or high variability in the data. To address these limitations, conformal prediction methods

are applied to latency estimation, introducing confidencemeasures that quantify uncertainties and provide reliable

ranges for the latency estimation. This approach enhances the robustness and trustworthiness of the latency

estimation process [Paper II] [2].

• Quantization withWeighted Quantization-Regularization (WQR) and Layer-Specific Precision Scaling:

The work adapts regularization-based methods for quantization (WQR), tailoring them to specific quantization

functions. It demonstrates how combining these methods with per-layer precision scaling of the numeric format

achieves higher compression quality reducing the requiredmemory for executionwithout compromising accuracy

of the DNN algorithm [Paper III] [3].

• Power Profiling Methodology: A new power profiling methodology is presented, highlighting that not all

hardware platforms operate with equal efficiency across different layers. This showcases the variability in energy

consumption and helps guide more informed hardware and layer-specific optimizations [Paper IV] [4].

List of Original Publications

This dissertation is based on the following original publications, which are referred to in the text by their Roman nu-

merals:

Paper I Matthias Wess, Matvey Ivanov, Christoph Unger, Anvesh Nookala, Alexander Wendt, and Axel

Jantsch. Annette: Accurate neural network execution time estimation with stacked models. IEEE Ac-

cess, 9:3545–3556, 2021.

Paper II Matthias Wess, Daniel Schnöll, Dominik Dallinger, Matthias Bittner, and Axel Jantsch. Conformal

prediction based confidence for latency estimation of DNN accelerators: A black-box approach. IEEE

Access, 12:109847–109860, 2024

Paper III Matthias Wess, Sai Manoj Pudukotai Dinakarrao, and Axel Jantsch. Weighted quantization-

regularization in DNNs for weight memory minimization toward HW implementation. IEEE Transac-

tions on Computer Aided Design & Integrated Circuits and Systems, 37(11):2929–2939, 2018.

Paper IV Matthias Wess, Dominik Dallinger, Daniel Schnöll, Matthias Bittner, Maximilian Götzinger, and

Axel Jantsch. Energy profiling of DNN accelerators. 26th Euromicro Conference on Digital System

Design (DSD), pages 53–60, 2023.

The following peer-reviewed papers and book chapter (Paper VIII) were already accepted or published in the course of

the author’s doctoral studies but are not included in this thesis:

Paper V Matthias Wess, Sai Manoj Pudukotai Dinakarrao and Axel Jantsch. Neural network based ECG

anomaly detection on FPGA and trade-off analysis. IEEE International Symposium on Circuits and

Systems, pages 1–4, 2017.

Author’s Contribution: Training, quantization and FPGA implementation of machine learning algorithm

Relevance to this Thesis: Detailed trade-off analysis on the relationship between bit-width, speed-up, and accuracy

for scaling weights and features in a practical FPGA implementation

Paper VI Bernhard Haas, Matthias Wess, Alexander Wendt and Axel Jantsch. Neural Network Compression

Through Shunt Connections and Knowledge Distillation for Semantic Segmentation Problems. IEEE

International Symposium on Circuits and Systems, pages 349–361, 2021.

Author’s Contribution: Collaboration and discussions on combining Shunt Connection algorithm in with Knowledge

Distillation, model execution time analysis

Relevance to this Thesis: Model compression techniques tailored for embedded platforms

Paper VII Daniel Schnöll, Matthias Wess, Matthias Bittner, Maximilian Götzinger, and Axel Jantsch, Fast,

quantization-aware DNN training for efficient HW implementation. Euromicro Conference on Digital

System Design, pages 700–707, 2023.

Author’s Contribution: Primarily contributed to writing and conceptual formulation, collaborative discussions on

Batch Normalization for Quantization-Aware Training

Relevance to this Thesis: Explores hardware-efficient quantization methods for deep learning models

Paper VIII Alexander Wendt, Horst Possegger, Matthias Bittner, Daniel Schnöll, Matthias Wess, Dušan Malić,

Horst Bischof and Axel Jantsch, A Pedestrian Detection Case Study for a Traffic Light Controller.

Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing, pages 75–96, 2023.

Author’s Contribution: Collaborative discussions related to implementation challenges, provided expertise in infer-

ence frameworks and model conversion

Relevance to this Thesis: Real-world use case emphasizing the challenges of testing models on diverse platforms.

Paper IX Daniel Schnöll, Dominik Dallinger, Matthias Wess, Matthias Bittner, Axel Jantsch, Towards Optimal

Implementations of Neural Networks on Micro-Controller, presented at Workshop on IoT, Edge, and

Mobile for Embedded Machine Learning at ECML-PKDD, 2024.

Author’s Contribution: Collaborative discussions related to performance modeling

Relevance to this Thesis: Microcontrollers present a different target and other restrictions. Model Compression and

Quantization remain relevant topic

Paper X Matthias Bittner, Daniel Hauer, Matthias Wess, Dominik Dallinger, Daniel Schnöll, Konrad Diwold

and Axel Jantsch, Interpretable Load Forecasting with Structured State Space Neural Networks, pre-

sented at Workshop on Machine Learning for Sustainable Power Systems at ECML-PKDD, 2024.

Author’s Contribution: Research on related work and collaborative discussions

Relevance to this Thesis: Demonstrates the importance of model interpretability, efficient neural networks for fore-

casting

Paper XI Matthias Bittner, Daniel Hauer, Matthias Wess, Daniel Schnöll, Konrad Diwold and Axel Jantsch,

Forecasting Load Profiles and Critical Overloads with Uncertainty Quantification for Low Voltage

Smart Grids, presented at International Conference on System Reliability and Safety, 2024.

Author’s Contribution: Research on related work and collaborative discussions regarding uncertainty quantification

Relevance to this Thesis: Demonstrates a real-world use case with various uncertainty quantification methods

Paper XII Axel Jantsch, Song Han, Lin Meng, Oliver Bringmann, Haotian Tang, Shang Yang, Hengyi Li,

Matthias Wess and Martin Lechner, Special Session: Estimation and Optimization of DNNs for Em-

bedded Platforms, International Conference on Hardware/Software Codesign and System Synthesis,

pages 21–30, 2024.

Author’s Contribution: Provided latency estimation results

Relevance to this Thesis: Estimation and optimization of deep learning models for embedded platforms

Contents

1 Introduction 2

1.1 Design and Implementation Flow for Deep Neural Networks . 3

1.1.1 Training . 8

1.1.2 Hardware-Specific Optimization . 8

1.1.3 Inference . 8

1.2 Relevance of Publications . 8

2 Latency Prediction 9

2.1 Latency Estimation Methods . 9

2.2 Challenges Addressed in this Work . 11

2.3 Impact on the State of the Art . 12

3 Quantization 13

3.1 DNN Quantization-Specific Considerations . 14

3.1.1 Over-Parameterization . 14

3.1.2 Evaluating Quantization Quality . 14

3.1.3 Quantization Granularity . 14

3.1.4 Quantization and Training . 14

3.1.5 Quantization Schemes . 15

3.2 Challenges Addressed in this Work . 15

3.3 Impact on the State of the Art . 16

4 Hardware Profiling 17

4.1 Different Goals of Profiling . 17

4.2 Metrics to Profile . 18

4.3 Profiling Granularity . 18

4.4 Challenges in Profiling DNNs . 18

4.5 Challenges Addressed in this Work . 19

5 Conclusions and Outlook 20

1

Chapter 1

Introduction

In the past decade, Deep Neural Networks (DNNs) have become crucial for solving complex tasks across various domains

such as computer vision [5], time-series analysis [6], and natural language processing [7]. These algorithms typically

involve two main phases: a computationally intensive training phase, where models learn from large datasets, and an

inference phase, where trained models are deployed to make real-time predictions. This development has resulted in a

significant increase in the availability of hardware optimized for both phases, not only in cloud environments but also

in energy-constrained edge and embedded systems [8]. This dissertation focuses on inference and aims to improve the

design flow from the original model to its real-world hardware implementation.

When tackling specific problems using DNNs, considering the final hardware solution from the beginning is often not

feasible. When tackling specific problems using DNNs, considering the final hardware solution from the start is often

impractical. Even if feasible, factors such as cost, scalability, and the continuous evolution of Artificial Intelligence (AI)

models must be considered to ensure a viable implementation.

For many applications, the main challenge lies in developing a functional machine learning model that achieves satisfac-

tory accuracy. In other cases, constraints such as latency, power consumption and cost necessitate the use of embedded

platforms. Deploying trained algorithms on these platforms can be challenging due to limitations in memory and com-

puting power.

In straightforward cases that fall into well-defined categories, such as object detection or image classification, developers

can utilize existing tools, code repositories, and vendor-providedworkflows to speed up the development process.

However, several real-world use cases do not fit neatly into these predefined tasks. Each problem presents unique

intricacies that machine learning engineers must address before optimizing the system’s performance on embedded

platforms. Consequently, the path from training a DNN to its final hardware implementation is marked by several

critical design decisions that ultimately determine the success of the project.

Fortunately, the rise in AI popularity has led to an abundance of tools that simplify downstream implementation and

provide access to pre-trained DNNs. Resources such as Hugging Face [9], pre-trained models in TorchVision [10],

Ultralytics’ YOLO implementations [11], benchmarks such as MLPerf, exchange standards like Open Neural Network

Exchange Format (ONNX) [12], and inference frameworks like TensorRT [13] and OpenVINO [14] have significantly

2

accelerated developments across all areas. The increased accessibility of these tools enables researchers and developers

to focus on addressing the unique challenges of their specific applications.

Despite the availability of these tools, many numerous challenges remain. With each new DNN model and hardware

platform, the design space continually expands, making it increasingly difficult to navigate. As a result, benchmarks that

were published just a few years ago quickly become outdated, and tedious experiments must be conducted for each new

DNN architecture and hardware platform. To accelerate the design and implementation process of DNNs, this thesis

aims to address key obstacles in the design flow, streamlining the search for the optimal implementation with the best

combination of hardware and DNN architecture.

Section 1.1 provides an overview of the design and implementation flow of DNNs on embedded hardware. The Chap-

ters 2, 3, and 4 offer more detailed insights. The chapters of this work align with the publications on DNN latency pre-

diction ([Paper I] [1], [Paper II] [2]), quantization ([Paper III] [3]), and hardware profiling ([Paper II] [2],[Paper IV] [4]),

addressing their respective challenges.

1.1 Design and Implementation Flow for Deep Neural Networks

Figure 1.1 provides a rough and incomplete overview of the design space. Within each of the indicated points are

numerous subcategories,leading to an exponentially growing number of possible implementations to a specific prob-

lem.

Task Definition and Approach

Classification Detection Regression

Inference

mGPU CPU NPU MCU

Generative

Domain

Vision Time Series NLP

Training

Backbone Architecture

NAS Pruning Distillation

Design Goals

Accuracy

Cost

Latency

Power Consumption

Energy Consumption

Throughput

Hardware Settings

Prediction

Quantization

Inference Framework

Figure 1.1: Overview of the design space for DNN design and hardware inference.

The domain of a machine learning task is usually determined by the application. However, there are cases where a

problem can be approached from different perspectives, leading to a shift to another domain. This transformation is a

critical design decision that can greatly impact the accuracy and performance of the solution. It often allows for the

utilization of better-suited algorithms for the task. For example, converting raw audio data to spectrograms enables the

3

use of image-focused DNNs to address tasks such as keyword spotting [15].

Next, the framing of the problem plays a crucial role in the design process. While some tasks, such as classification or

object-detection, are well-defined, with established methods available to solve them, many real-world problems pose

greater challenges. For instance, a problem that involves identifying objects could be framed either as a classification

task (recognizing object types) or a detection task (locating objects). Selecting the right task and approach is critical, as

it shapes the subsequent steps in machine learning model design and hardware selection [16].

Pretrained backbones can serve as a starting point, requiring only minor adaptations to address a specific machine

learning task. However, since these backbones are trained on generic datasets, they are often not the optimal choice

for specialized applications. To meet design goals, methods like Neural Architecture Search (NAS) can help automate

the process of exploring and identifying the best architecture for the task [17]. Techniques such as pruning [18], and

knowledge distillation [19] are commonly applied to optimize the model for accuracy and efficiency, particularly when

targeting specific resource-constrained hardware platforms [20]. Similarly, quantization offers the opportunity to opti-

mize DNNs for hardware friendly inference [3].

Finally, selecting the appropriate hardware for model inference is critical, as it must meet performance, resource and cost

constraints. Each hardware platform supports specific inference frameworks, such as TensorRT [13] or OpenVINO [14]

which offer different deployment options, compatibility with training frameworks, and vary in how efficiently they

optimize model inference performance [21]. Additionally, different hardware platforms support various data types,

which affects precision, speed, and compatibility [4], and are often optimized for specific application domains. Beyond

these technical factors, considerations like product life-cycle, scalability, and future updates are important to ensure the

solution remains adaptable and sustainable in the long term. While hardware and development costs are not technical

constraints, they are crucial for economic viability. They impact production, scalability, and market success, making a

technically feasible solution impractical if costs exceed budget limits. Thus, cost is key in product development but does

not determine technical feasibility.

Resulting from all these considerations the different implementations can be compared with respect to accuracy, latency,

throughput, power and energy consumption, cost and other metrics. For each of those design goals in isolation it is

usually quite easy to define the optimal outcome:

1. Accuracy should be as high as possible (↑),

2. Latency should be as low as possible (↓),

3. Power and energy consumption should be as low as possible (↓),

4. Cost should be as low as possible (↓),

However, these goals are often interconnected, and additional factors such as available dataset size or hardware limita-

tions also come into play. As a result, it becomes difficult to pinpoint a single target for the final solution. Given this

complexity, it is essential to establish constraints for each design goal and parameter to guide the development process

effectively and ensure a balanced solution [22].

Meeting design goals—such as optimizing accuracy, latency, and power consumption—requires careful balancing of

trade-offs. In real-time applications, achieving low latency is crucial, as quick model responses are essential. Latency

4

estimation can play a key role in early-stage design decisions by helping to rapidly narrow the design space and identify

feasible solutions.

For example, consider a real-world scenario where a baseline solution addresses the problem with sufficient accuracy.

From there, the next step is to define key constraints such as latency, throughput, power consumption, and energy

consumption. Once these parameters are established, we attempt to run the model on the available hardware. If the

model meets the performance requirements and the hardware is cost-effective, the process is complete. However, if the

solution does not satisfy the constraints, we can either adapt the machine learning model, apply further optimizations,

or select different hardware and adjust the hardware settings.

Model & Hardware Selection

Profile on Hardware

DNN
Design

&
Hardware
Profiling

Loop

DNN
Design
Loop

Hardware
Profiling

Loop

Design Space

H
W

 1 DNN 1 DNN 2 DNN3

H
W

 2
H

W
3

Buy Hardware

Setup Hardware

Convert Model

Latency Estimation

Profile on Hardware

Buy Hardware

Setup Hardware

Convert Model

Constraints met? Constraints met?

(if not available)
Days - Weeks

(if not setup)
Minutes - Hours

Minutes

Minutes

Seconds~

Model & Hardware Selection

Design Space

H
W

 1 DNN 1

~
DNN 2 DNN 3 DNN 4

~

H
W

 2

~ ~

H
W

 4

 H
W

 3
~

~~

~

~ ~

Solution satisfies Constraints

Solution fails Constraints

Latency Constraints met
according to Estimation?

~ ~
(if not available)
Days - Weeks

(if not setup)
Minutes - Hours

Minutes

Minutes

Latency Estimate satisfies Latency Constraints

Latency Estimate fails Latency Constraints

~

~

Figure 1.2: Simplified DNN design flow comparing the traditional approach (left) and the optimized approach with
latency estimation (right). Latency estimation speeds up the process, enabling broader exploration of viable solutions
and informed decisions before hardware acquisition and testing.

This iterative process of testing various models with different hardware platforms and configurations, shown on the left

side of Figure 1.2, can become cumbersome, especially when the necessary hardware is not readily available. While it

is difficult to predict the accuracy of different algorithms, inference latency can be reliably estimated [2]. By applying

latency estimation, the design space of feasible solutions can be rapidly narrowed, eliminating the need for a brute-

5

force approach and streamlining the development process. Figure 1.2 visualizes how latency estimation reduces the

need for profiling by splitting the DNN design and hardware profiling loop. As applying latency estimation is only a

matter of seconds, a broader and more complete design space can be explored before making informed decisions about

which hardware to acquire, setup and test. This approach filters out solutions that fail to meet the defined constraints

and supports the design of DNNs for hardware that may not yet be available. As a result, developers can focus on

optimizing algorithms rather than repeatedly profiling them on hardware.

Going forward, Figure 1.3 sketches a more detailed design flow for DNN hardware implementation. For this work

we view pruning similarly to knowledge distillation as a method to reach an optimal DNN architecture by adjusting

the trade-off between accuracy and compute intensity [21]. The resulting design flow can be split into three phases:

Training, Hardware-specific Optimization, and Inference.

6

Tr
ai

ni
ng

Architecture and Hardware
Selection Loop

H
ar

dw
ar

e-
sp

ec
ifi

c
op

tim
iz

at
io

n
In

fe
re

nc
e

far off

Latency Estimation

~10 e.g. Resnet, Mobilenet,
DenseNet, Yolo

Training

Resolution, Number of
Layers

no Accuracy okay?

no

Need more data?Collect more Data

Select/change DNN
Architecture and

Settings

yes

no

Requires different
data type?

Compile for Hardware

Execute and Measure
Latency

Post-Training-Quant.

no

yes

Accuracy okay?

Start

Accuracy
Requirements

Hardware
Requirements

Latency
Requirements

Dataset

DNN Architecture

Architecture
Settings

Hardware
Settings

yes

Quantization-Aware
Training

no

Accuracy okay?

Latency okay?

Power okay?

End

Execute and Measure
Power

no

yes

Latency okay?

no

Select Hardware

Adjust Hardware
Settings

yes

no but close

Papers I and II

Paper III

Paper IV

Figure 1.3: DNN design flow for hardware implementation

7

1.1.1 Training

The process begins with defining the task and gathering the relevant dataset. A network architecture, or a set of ar-

chitectures, is then selected. Latency estimation is performed to provide an early indication of model suitability for

deployment on specific hardware platforms. This step helps eliminate models that are computationally expensive or

slow. Once promising models are identified, training proceeds with floating-point precision. After training, the model’s

accuracy is evaluated. If the required accuracy is achieved, themodel proceeds to hardware-specific optimization.

1.1.2 Hardware-Specific Optimization

During this phase, the hardware’s requirements are assessed, particularly regarding supported data types (e.g., FP32 vs.

INT8). Firstly, Post-Training Quantization (PTQ) is applied, as it is a simpler and more efficient and low effort method

that does not require retraining. However, if PTQ leads to a significant accuracy drop, Quantization-Aware Training

(QAT) can be employed to recover the lost accuracy. Once the model reaches acceptable accuracy levels, it is compiled

for the target hardware. If any hardware-specific adjustments, such as different architectures or datatypes, are necessary,

the process loops back to the training phase.

1.1.3 Inference

The final phase involves compiling the model for the hardware and deploying it. Latency is measured to ensure predic-

tions made prior to training the model are met. If the latency is acceptable, power profiling is carried out to confirm

the model’s energy efficiency. If latency exceeds the estimations, the model or hardware selection may require further

adjustment.

1.2 Relevance of Publications

The publications presented in this thesis address critical challenges of the DNN design and implementation flow. In

the Training phase, the research on latency estimation (ANNETTE [Paper I] [1]) and the application of Conformal

Prediction [Paper II] [2] introduce methodologies to achieve accurate latency estimation and confidence intervals for

performance predictions, improving the selection of network architectures. In the Hardware-specific Optimization

phase, studies on quantization and memory minimization [Paper III] [3] help maintain model accuracy while optimizing

for hardware limitations. Finally, in the Inference phase, the research on black-box benchmarking and energy profil-

ing [Paper IV] [4] enables the evaluation of latency and power/energy consumption, ensuring that the DNN is optimized

for both performance and energy efficiency on the target hardware platforms. These contributions collectively offer a

comprehensive framework for optimizing DNNs across the entire design flow.

8

Chapter 2

Latency Prediction

In comparison to the vast amount of research available in the training and software areas of AI, the field of latency

estimation for DNNs remains relatively small. Several factors contribute to this disparity:

Firstly, while AI algorithms themselves have seen groundbreaking advancements, the development and analysis of

hardware for executing these algorithms has traditionally lagged behind. This gap is partly why Graphic Processing

Units (GPUs) became central to AI development, despite being originally designed for graphics processing. The flexibility

of GPUs allowed them to be quickly adapted for neural network training and inference, but the specialized development

of hardware for DNNs has taken more time to mature [23].

Secondly, the initial surge in AI focused on applying algorithms to various datasets, offering abundant opportunities for

researchers without necessitating immediate concern for hardware performance on embedded devices. Deploying these

algorithms in real-time scenarios introduces additional complexity, requiring sophisticated optimization tools, including

accurate latency estimation models [Paper I] [1]. The heterogeneity of hardware platforms further complicates this

issue. DNNs are deployed on a wide range of hardware (e.g., GPUs, Field Programmable Gate Arrays (FPGAs), Neural

Processing Units (NPUs)), each with unique characteristics [24]. This diversity makes it difficult to create generalized

performance models.

Moreover, much of AI’s early deployment occurred in cloud-based or offline environments where latency and real-

time performance were not primary concerns. Only with the increasing demand for real-time applications such as

autonomous driving, has the need for accurate performance estimation tools become critical [25]. Yet, many developers

still rely on benchmarks or prior knowledge when selecting hardware platforms, instead of using dedicated tools for

precise latency prediction.

2.1 Latency Estimation Methods

When comparing DNN architectures, metrics such as Floating Point Operation (FLOP) and parameter counts are com-

monly used, as they offer a straightforward way to quantify aspects like computational complexity and memory require-

ments. However, while these proxy metrics are useful for initial comparisons, they do not capture how the algorithms

are actually mapped onto hardware [Paper I] [1]. The computational efficiency of different hardware platforms for

9

the same network architecture can vary significantly depending on factors such as the utilized set of operations, the

sequence in which these operations are executed, and the interconnections between them [23].

Analytical approaches attempt to improve upon this by estimating performance based on theoretical hardware capabil-

ities [26]. For example, dividing the total number of operations by the hardware’s theoretical peak number of Floating

Point Operations per second (FLOPs/s) provides a rather optimistic latency estimate, as hardware vendors typically re-

port peak performance numbers that assume perfect utilization of all compute resources, which is rarely achievable in

practice. Additionally, factors like memory access patterns and parallelism overhead are not captured in such simplistic

calculations.

The roofline model [26] offers an improvement by incorporating memory bandwidth alongside computational perfor-

mance. It provides a visualization of performance bounds based on both computation and memory access, making it

useful for understanding how well a DNN architecture utilizes available hardware.

While the roofline model itself is simple the challenge lies in properly applying it to DNNs for accurate latency estima-

tion. For inference, the DNN is partitioned across the available hardware resources. As the roofline model fails to cover

such aspects it can result in largely inaccurate predictions. Nonetheless, for compute-heavy layers such as convolu-

tional layers, where these design challenges have a smaller impact, the roofline model can still yield reasonably accurate

performance estimates [Paper I] [1].

Building upon the roofline model, several approaches have been developed to better account for hardware-specific de-

tails. Improvements in modeling the memory hierarchy and extending the roofline model to accommodate more realistic

predictions by focusing on different aspects. For instance, the models introduced by ANNETTE [1] and Blackthorn [27]

refine performance models by focusing on compute parallelism overhead. Other models [Paper IX] [28], [29] provide

deeper insights by diving down to the level of basic operations and instructions, which is especially relevant for Micro-

controller Units (MCUs) and other low-power devices.

Moreover, simulators like SCALE-Sim [30] and SimPyler[31] offer detailed simulation-based approaches to predict la-

tency more accurately for specific hardware architectures. These simulators offer precise insights by modeling low-level

hardware interactions. However, they can be time-consuming to use and often require extensive hardware knowledge,

which may limit their practicality for rapid prototyping or when evaluating a vast design space.

Machine learning-based approaches have emerged as a promising alternative for latency prediction. In these methods,

the target device is extensively benchmarked to collect execution time data for various network layers and configura-

tions. This data is then used to train machine learning models that predict execution time based on network charac-

teristics and hardware parameters. The core methodology across these approaches remains similar, with differences in

feature engineering, applied machine learning algorithms, and data collection strategies [Paper I] [1], [Paper II] [2],

[32].

Optimization Challenge

One of the core challenges in performance estimation lies in correctly capturing and modeling the mapping of layers

of a neural network to the specific hardware resources. The per-layer approach remains a valid technique, where the

performance of each individual layer is estimated separately. However, this method struggles to account for inter-layer

optimizations, such as operation fusions and shared memory usage between layers. Tools like ANNETTE [Paper I] [1]

10

address this by using decision trees to detect possible fusions between layers. Similarly, nn-Meter [33] includes spe-

cific kernels for different combinations of layers and benchmarks them to find the best configuration. The methodology

begins by identifying available kernels and optimizations, then benchmarks those combinations to achieve accurate per-

formance estimates. For example, care must be taken when measuring multiple layers simultaneously. To avoid skewed

results ANNETTE and nn-Meter utilize Random Forests for per-kernel predictions after performing a layer fusion rule

detection. PerfSAGE [34], DIPPM [35], SLAPP [36] rely on Graph Neural Networks (GNNs) to capture cross-layer op-

timizations. In more complex cases, such as those involving graph neural networks [32], data collection can be more

comprehensive or restricted to a smaller design space, capturing information for possible layer configurations.

Required Data for Accurate Modeling

A second key challenge is balancing the need for accurate performance predictions while minimizing the amount of data

required to train the models. Since the design space is vast, collecting exhaustive data for all possible configurations is

impractical. Therefore, it becomes essential to identify the most representative data points. Hybrid approaches, com-

bining empirical measurements with analytical models, are often employed to achieve this balance [Paper I] [1] [37].

ANNETTE, for instance, performs parameter sweeps and selects specific points to measure, focusing on scenarios where

the compute architecture is optimally utilized. By combining the machine learning models, trained on this data, with an-

alytical models, ANNETTE is able to deliver robust predictions with fewer data points. Performance representatives [37]

further improved this concept by using integer division to reduce machine model complexity. Blackthorn [27] uses a

model-in-the-loop approach to dynamically adjust the required measurement points during runtime. This approach

significantly reduces the number of required data points but may not capture the exact behavior in all scenarios due to

the underlying model assumptions.

Hardware Heterogenity

Handling heterogeneous hardware platforms, such as NVIDIA devices where different parts of the network can be

assigned to different cores (e.g., GPU vs. Deep Learning Accelerator cores) or mobile SoCs, remains a significant chal-

lenge [38]. Often, this mapping is done manually, with developers specifying which network components should be

assigned to specialized compute resources. While statistical estimation models can benchmark layers on specific de-

vices and automate parts of this process, there is no universally applicable solution to handling hardware heterogeneity.

The problem is particularly challenging in scenarios where layers need to be dynamically mapped to different cores

based on real-time performance considerations.

2.2 Challenges Addressed in this Work

The primary contribution of this research lies in the development of systematic approaches, most notablyANNETTE [Pa-

per I] [1] and its underlying models. ANNETTE has significantly advanced the establishment of a structured methodol-

ogy for benchmarking, particularly on hardware with varying computational efficiencies. By combining analytical and

statistical models, ANNETTE strikes an effective balance between minimizing the number of measurements required

and maintaining high accuracy. Additionally, the integration of layer-level optimizations, such as layer-fusion [39], has

improved prediction accuracy at the network level. As a result, the system achieved prediction errors within a range of

approximately 5-15% [Paper I] [1].

Building on this, we introduced a confidence framework as an extension to ANNETTE, leveraging conformal predic-

11

tion [Paper II] [2]. This framework serves two key purposes: first, it provides a mechanism to evaluate whether the

prediction model sufficiently covers the entire design space. If the model cannot confidently predict performance for

certain regions, developers are notified, allowing them to either refine the model or avoid architectures that are unlikely

to meet the required specifications. This enhances the ability to interpret results and make more informed decisions

when selecting hardware or DNN architectures, particularly in edge cases where the model might be less reliable. Addi-

tionally, the framework aids in the assessment and refinement of the generated models. In parallel with the development

of this framework, a smart benchmarking approach was introduced [Paper II] [2], enabling the generation of ANNETTE

models without requiring per-layer benchmarks, further streamlining the design process.

2.3 Impact on the State of the Art

The ANNETTE framework laid the foundation for structured performance modeling of DNNs. The ACADL-based au-

tomated performance modeling framework [29] builds upon ANNETTE’s stacked modeling approach by introducing a

formalized architecture description language for hardware accelerators, thereby extending on the architectural descrip-

tion of the refined roofline model. The Performance Representatives method [37] refines ANNETTE’s benchmarking

strategy, reducing the number of required training samples while maintaining estimation accuracy. The SLAPP frame-

work [36] extends ANNETTE’s operator-level and layer-wise estimations by leveraging graph-based learning techniques

to model execution times at a subgraph level. Together, these works demonstrate the lasting impact of ANNETTE on

scalable, efficient, and hardware-aware DNN performance estimation.

12

Chapter 3

Quantization

Quantization is a crucial technique in optimizing DNNs for efficient deployment across a wide range of devices [40].

Unlike other optimization methods which primarily focus on reducing the size or complexity of neural network architec-

tures, quantization aims to reduce the data type size of weights and feature maps within the already defined architecture.

As a result quantization is commonly applied in addition to architecture optimization techniques such as pruning [41].

The transition to smaller data types not only reduces the amount of data that needs to be moved between memory and

compute units, which is a critical bottleneck in many DNN applications, but also simplifies operations [40]. Integer op-

erations, for instance, are less complex and consume less power compared to floating-point operations, but this comes

with a trade-off in precision [42]. Quantization, therefore, must be carefully managed to minimize the loss of accuracy,

particularly as lower precision formats are adopted [43].

In today’s landscape, many embedded and specialized devices designed to run DNNs are equipped with compute units

that are optimized for specific data types. For example, Nvidia GPUs are tailored for FP32 and FP16 but also support

INT8 operations to enhance performance [44]. Similarly, Central Processing Units (CPUs) commonly support several

datatypes but also integrate Single Instruction, Multiple Data (SIMD) engines and instructions optimized for FP16 and

INT8 [45]. NPUs, on the other hand, are often focused on executing INT8 computations due to the balance they strike

between precision and efficiency [46]. Furthermore, newer hardware architectures are introducing support for even

more specialized data types such as BrainFloat16 or even INT4 and INT2, pushing the boundaries of efficiency in DNN

inference [47, 44].

Applying quantization is especially valuable in scenarios where resource constraints are a significant consideration,

such as in mobile devices, autonomous systems, and real-time edge computing applications [48, 49, 50]. By reducing the

bit-width of weights and activations, quantization helps decrease the computational and memory demands of neural

networks, resulting in improved speed, energy efficiency, and memory usage [51]. As the demand for deploying DNNs

in real-world, resource-limited environments grows, quantization remains an essential tool for achieving both high

performance and energy efficiency [23].

13

3.1 DNN Quantization-Specific Considerations

In general, quantization describes the well-established concept to map most often continuous input values to a set of

output values by applying a quantization function f , typically achieved with rounding and truncation [51]. Interestingly,

DNNs bring some new opportunities and challenges to the problem of quantization [51].

3.1.1 Over-Parameterization

Firstly, DNNs are essentially large constructs composed primarily of matrix multiplications and non-linear activation

functions. Therefore, both training and inference are computationally intensive tasks that can be challenging to handle.

Consequently, optimizing data types and operations can lead to significant gains in energy-efficiency and through-

put [23, 39]. However, despite enormous efforts of researchers to develop slim and efficient DNN architectures, these

networks remain heavily over-parameterized, especially when models optimized for standard datasets like ImageNet

are applied to real-world use cases with a limited set of classes [52, 53]. This over-parameterization enables techniques

such as pruning and quantization to achieve high compression rates at minimal to no accuracy loss [18, 54].

3.1.2 Evaluating Quantization Quality

Secondly, DNNs do not necessarily solvewell-posed orwell-conditioned problems, but are usually trained byminimizing

the result of a loss function which approximates the prediction error of the DNN on a training dataset. Due to the over-

parameterized nature of DNNs there are multiple different models that optimize the prediction accuracy sufficiently [55].

As a result, it is possible to have a high quantization error between the original and the quantized model with still

very good prediction and generalization performance [56, 41]. In some cases, minimizing quantization error might be

important, for instance to maintain the exact behaviour of the original DNN. However, in general, DNNs can be treated

as black-boxes where only the resulting accuracy matters. This contrasts with traditional quantization methods, which

focus on preserving the original signal as closely as possible [57].

3.1.3 Quantization Granularity

Besides these two aspects, which provide additional degrees of freedom compared to standard quantization, other im-

portant considerations make the quantization of DNNs even more complex. The layered structure of neural networks

allows for the application of varying quantization schemes and compression rates at different granularity levels, such

as per-model, per-layer [Paper III] [3] or even per-channel quantization [51]. However, to fully exploit the benefits of

these approaches, the hardware must be capable of supporting variable precision operations across layers and channels.

Consequently, no single solution has emerged as universally optimal.

3.1.4 Quantization and Training

The final key consideration is how quantization interacts with the training process. As floating-point precision is essen-

tial for gradient-based optimization methods, which rely on small, incremental updates to weights, specifically extreme

quantization poses a problem. To avoid this, PTQ [58, 59] separates the training from the quantization step, by apply-

ing the quantization after the model has been fully trained. Usually PTQ is fast and resource-efficient as it requires

no additional training, but it can result in significant accuracy reduction since the model has not been exposed to the

quantization effects during training. Thus, as an alternative, QAT [56, 42] integrates the quantization process. By simu-

14

lating the effects of quantization during training (fake-quantization), the model can adapt its weight representations to

be more robust to lower precision, reducing accuracy loss when the final quantized model is deployed.

A major challenge in QAT is the non-differentiability of quantization functions, such as rounding, which interrupts the

gradient flow needed for backpropagation. Several strategies have been proposed to address this issue [51, 42, 3, 60, 61,

62]. Straight-Through Estimation (STE) is a common approach that bypasses the rounding operation by approximating

the gradient of the quantization function as the identity function [51].

Further quantization techniques involve the introduction of randomness into the rounding process, rather than deter-

ministically rounding values to the nearest quantization level (stochastic quantization) [42] or encouraging weights to

settle into values that are easier to quantize, by applying regularization during training (weight regularization) [3]. Al-

ternatively, making quantization parameters dynamic and learnable during training, as in PACT and LSQ, which allow

quantization ranges and step sizes to adapt during training, results in more flexible and precise quantization, improving

the final model’s performance [60, 61, 62].

3.1.5 Quantization Schemes

When applying quantization, several schemes must be considered. We can distinguish between symmetric and asym-

metric, and uniform and non-uniform quantization schemes. It must be considered, that not all presented methods

fit all of the quantization schemes [Paper III] [3]. Therefore the target quantization schemes have to be taken into

consideration when choosing the quantization methodology. For INT8 quantization, for example simple PTQ can be

sufficient [63], depending on the task, DNN architecture and target accuracy.

3.2 Challenges Addressed in this Work

We addressed the challenge of balancing memory compression and accuracy retention in neural networks, particularly

for deployment on devices with limited memory and computational resources [Paper III] [3]. Based on the previous

discussions, the work makes use of different quantization bit-widths at the layer granularity while enforcing quantiza-

tion through an additional regularization term. Furthermore, the method is evaluated using two quantization schemes:

Dynamic Fixed Point (DFP) and Power-of-Two (Po2).

The main contribution of this work is the introduction of WQR, a technique that enhances quantization by adding a

regularization term to the loss function during training. This term forces the weights to gravitate toward quantization

levels, thereby reducing quantization error and improving accuracy after quantization. The results show that adapting

the regularization term, to the applied quantization function can increase the achievable accuracy. Additionally, Layer-

wise Precision Scaling using a greedy algorithm is deployed to ensure that more critical layers retain higher precision,

while less sensitive layers are quantized more aggressively.

The results of the method are compared for two quantization schemes: DFP and Po2. The findings show that DFP

performs well at higher bit-widths, while Po2, which simplifies operations into bit-shifts, is preferred for lower bit-

widths. It is demonstrated that WQR achieves significant compression ratios (up to 9.33x for the SVHN dataset) with

minimal accuracy degradation, making it a highly efficient technique for hardware implementations [Paper III] [3].

15

At the time this method was introduced, it represented a step forward in quantizing DNNs for resource-constrained

environments. As deep learning has progressed and workloads have grown more complex, the exact method may not

be entirely sufficient on its own. Nonetheless, the core principles remain sound, and WQR can be effectively combined

with other quantization or optimization methods. The results achieved in this work address several recurring challenges

as DNN models continue to grow:

• Datatypes: Current trends favor smaller integer and low-bitwidth floating-point types [64]. Since Po2 based

schemes lack flexibility and their effectiveness depends on the weight distribution, they are unlikely to gain

broader adoption.

• Granularity: Adjusting precision at the layer or block level is currently the most efficient approach to optimize

DNNs [65]. For instance, Nvidia’s platforms allow for the use of different datatypes in different parts of the

network, illustrating the growing importance of fine-grained control.

• QATApproach: At 8-bit precision, STE is usually sufficient formaintaining accuracy. However, for lower precision

levels, it will be interesting to see which quantization technique becomes dominant. A combination of techniques,

including STE, stochastic rounding, and quantization regularization, is theoretically viable. For fine-tuning, the

regularization-based approach may better preserve the original behaviour of the DNN.

3.3 Impact on the State of the Art

The WQR approach presented in this work has influenced research in QAT and hardware-efficient deep learning models.

Singhal et al. [66] extend WQR by incorporating non-uniform quantization with learnable bit multipliers, improving

flexibility and fault tolerance in low-bit neural networks. [67] builds upon WQR’s structured regularization principles to

optimize weight representations, reducing hardware complexity through efficient sub-expression sharing. QFALT [68]

directly applies Quantization Regularization to enhance fault tolerance in quantized models, ensuring weight robustness

in unreliable hardware environments.

16

Chapter 4

Hardware Profiling

After successful implementation and optimization, the final step in the general DNN implementation workflow is pro-

filing the execution on the target platform [Paper IV] [4]. For this we assume that the resulting accuracy is already

evaluated and meets the requirements. In contrast to accuracy evaluation, inference profiling is mostly used to verify

the fulfillment of latency and throughput requirements. However, there are plenty of other reasons why a developer

might want to assess performance metrics of an application and record a detailed profile. Consequently, the approach

taken heavily depends on the deployment requirements of the DNN application and the expected insights. This section

outlines the different goals of profiling, the specific metrics of interest, and the granularity at which profiling can be

applied. It also explores some of the unique challenges associated with profiling DNNs.

4.1 Different Goals of Profiling

The specific objective of profiling a DNN determines the profiling strategy and the types of insights sought. We can

identify several distinct goals for profiling, each with a particular focus [23]:

• General Profiling and Bottleneck Identification: Profiling can be used to gain an overall understanding of the

entire application, identify specific bottlenecks that limit performance, and detect inefficient layers within the

network [69]. This involves analyzing the entire pipeline to identify stages or layers that are costly in terms of

computation, memory, or data transfer. The gathered knowledge can be used for further optimization efforts such

as quantization, pruning, or hardware-specific tuning.

• Hardware Configuration Optimization: Profiling helps identify the best hardware settings for optimal perfor-

mance or other design goals, which may include adjusting clock speeds or determining the ideal number of active

and used hardware resources, such as processor cores [70].

• Software and Compiler Configuration Optimization: Use profiling to identify optimal software configurations

and compiler settings for optimizing performance. This includes adjusting compiler optimization flags, selecting

efficient libraries or frameworks, and fine-tuning application-specific parameters [28]. Examples are optimizing

for throughput or latency, improving memory usage, and determining the ideal number of threads for parallel

execution.

17

• Data Collection for Modeling: Profiling can also be used to gather data about resource usage, performance, and

hardware behavior to model the behavior of DNNs executed on hardware. This data can be used to generate

estimation models that help optimize deployment for future tasks [34].

4.2 Metrics to Profile

When profiling a DNN, several inference metrics are commonly analyzed to gain insights into the performance of the

actual execution on hardware. The most crucial metrics for real-time applications are latency, which measures the time

taken to execute the DNN from input to output, and throughput, which quantifies the number of inferences the system

can process over a given period [23]. For battery-powered or energy-constrained devices, understanding the power

and energy consumption of the hardware during the execution of the DNN becomes essential [Paper IV] [4]. Finally,

hardware resource utilization is key to understanding how well the DNN architecture leverages the underlying

hardware [34].

4.3 Profiling Granularity

Finally, the profiling can occur at different levels, starting with the processing pipeline level, where the entire applica-

tion process, including stages like input, pre-processing, core DNN computation, and decision-making, is analyzed to

provide an overview of latency and resource utilization across all components. At a more focused level, profiling can

target specific parts of the network, such as the backbone or task-specific heads, to understand how each section con-

tributes to the computational load and identify areas for optimization. Finally, profiling can be performed on individual

kernels, offering insights into specific operations that could benefit from optimization or more efficient implementa-

tion [Paper IV] [4].

4.4 Challenges in Profiling DNNs

Although, most hardware vendors provide tools to enable hardware profiling, several open challenges remain. The gran-

ularity at which profiling is conducted significantly influences the complexity of acquiring the desired metrics. While

in-depth profiling, such as per-kernel latency analysis, is available through tools like Nvidia’s Nsight Systems [71] for

their Jetson mobile Graphic Processing Unit (mGPU) platform, these tools often introduce overhead, which can skew

the results. Nevertheless, relative measurements are still valuable for understanding trends and identifying inefficien-

cies. On other platforms, such as the NXP i.MX93 development board (i.MX93) [72], extracting similar metrics proves

much more difficult, making it challenging to develop tools that work uniformly across different hardware architec-

tures.

Furthermore, obtaining accurate power consumption and hardware resource usage data presents an even greater chal-

lenge. Although systems generally have built-in sensors to monitor power usage for system protection, their sampling

rates are frequently limited [Paper IV] [4]. Similarly, vendors are often reluctant to disclose detailed hardware utilization

information to avoid exposing their internal architectures to reverse engineering.

Lastly, when profiling DNNs, it is essential to consider adjustable settings that can fine-tune both hardware and software.

Hardware settings, such as clock speeds, the number of active cores, and power modes, significantly impact key metrics

18

like latency, throughput, and energy consumption [Paper IV] [4] [70]. A thorough understanding and adjusting these

settings enables optimal tuning of the hardware to meet performance requirements. On the software side, execution

strategies, including, parallelism, scheduling, and the specific optimization goal (e.g. maximizing throughput, reducing

latency, or minimizing power consumption) are equally important. As a result, even for one specific hardware and DNN

combination the design space remains vast.

4.5 Challenges Addressed in this Work

To tackle these challenges we presented two main approaches: Our first approach involved using power side-channel

analysis to study the power implications of different operations in the DNN. This method involved monitoring the

power consumption of the device while running different layers of a neural network and extracting insights from the

power profiles. By correlating the power traces with the known network structure, we were able to understand which

layers and operations were the most power-intensive. This approach is especially useful in scenarios where direct

access to profiling tools is unavailable or restricted, since it also allowed for extracting per-kernel latency numbers. The

method was applied on different neural network accelerators, such as the Intel Neural Compute Stick 2 (NCS2) [73],

the Coral Edge Tensor Processing Unit (Edge TPU) [74], and the NXP i.MX8M+ development board (i.MX8M+) [75],

revealing the energy efficiency of specific layers under various hardware and software settings like clock frequency or

parallel execution threads. The results showed that for the three DNN accelerators, the relationship between power

consumption and energy per image can be optimized by adjusting either the number of parallel inference requests or

the clock frequency. In both scenarios, power consumption rises when shifting to higher throughput modes, but still

leads to a reduction in energy consumed per image overall [Paper IV] [4]. While energy consumption strongly correlates

with latency, variations in dynamic power consumption can be attributed to additional factors such as memory access

patterns and data movement overheads [76]. Furthermore, the analysis and comparison of different layer types revealed

that depth-wise separable convolution layers exhibit lower compute efficiency than standard convolution layers. The

systematic benchmarking approaches applied in [Paper I] [1] and [Paper II] [2] provide a solid foundation for conducting

a more in-depth analysis, enabling further investigation into underlying performance bottlenecks and improvements in

energy consumption modeling.

While the power measurements were useful, a more robust technique was required for gathering single layer bench-

mark data in cases where per-layer latency figures were unavailable. To address this, we introduce a smart padding

method [Paper II] [2], which involves using padded versions of specific layers to isolate their performance and measure

their impact accurately. The padding involves adding dummy input and output operations, which helps to minimize

the overhead from data transfer and makes it easier to isolate the computation of a particular layer. The smart padding

approach enables the creation of per-layer abstraction models even when profiling insights are limited. It compensates

for data transfer and pipeline inefficiencies, enabling more accurate latency prediction while also significantly reducing

the complexity of layer-specific benchmarks. We demonstrated the effectiveness of this approach on the NVIDIA Jetson

Xavier AGX (Jetson Xavier) [77], i.MX93 [72], and i.MX8M+ [75] platforms. The empirical results showed that smart

padding reduced prediction errors to below 10% for the tested devices [Paper II] [2].

19

Chapter 5

Conclusions and Outlook

This thesis has made contributions toward building a structured design and implementation flow for DNN, address-

ing key challenges in estimation, quantization, and profiling. Through the development of new methodologies and

frameworks such as ANNETTE, this work has introduced solutions that enhance the efficiency of DNN deployment on

a range of hardware platforms, also highlighting the areas that require further development to achieve the overall goal

of a generalizable design and implementation flow.

In the area of estimation, this thesis successfully implemented latency estimation [Paper I] [1] to create a more holistic

understanding of DNN behavior on embedded hardware. The combination of analytical and stochastic models proved

to be crucial in this field. The introduction of a confidence framework [Paper II] [2] further improves the usability of

the prediction results, allowing for more informed performance tuning across a wide range of architectures.

The next logical step is to connect latency estimation with resource utilization and power consumption models, bringing

them together into a unified framework. Such a model would not only offer more comprehensive performance predic-

tions but also make use of benchmarking across diverse hardware settings. This could also enable accurate predictions

for upcoming hardware generations, leveraging architectural insights. Moreover, refining the confidence methods to

include optimizations that occur during graph compilation, will further increase the trustworthiness of the predictions.

An additional focus will need to be on an automated analysis and estimation whether a network can be inferred on a

target device. This way developers can ensure that the selected or designed network contains only supported layers and

fits within the memory constraints of the target hardware.

Quantization plays a crucial role in optimizing DNNs for deployment on resource-constrained devices. The development

of WQR provides a method for dynamically adjusting layer precision based on its criticality. However, quantization

remains a challenging and evolving area. There is no single method that is perfect for all networks and hardware

platforms, and given the rapid pace at which DNN architectures evolve, this is unlikely to change. The field is moving

toward smaller integer datatypes, such as INT4 and INT2 [78], but striking the right balance between compression and

accuracy will continue to be a key focus.

As the landscape of DNN architectures shifts, future research should aim to improve the flexibility of quantization

techniques, ensuring that they can adapt to the demands of new architectures. Although post-training quantization

20

will likely remain the standard due to its simplicity, methods for QAT will be essential in cases where precision must

be maintained despite aggressive quantization. Standards and support for different quantization types will also need to

evolve, providing developers with more tools to handle the increasing complexity of DNNs.

Profiling is another area where this thesis has made progress. The use of power side-channel analysis provided valuable

insights into the power and latency performance of DNNs at a granular level [Paper IV] [4]. This allows for a detailed

understanding of how individual operations impact overall performance, particularly when deployed on embedded

platforms. However, despite these advancements, the complexity of the post-processing required for power side-channel

analysis prevented the full automation of these measurements. This presents a challenge for scaling the methodology

to broader use cases. Additionally, the introduction of the smart padding technique enabled accurate layer isolation for

latency profiling, even in the absence of detailed hardware transparency [Paper II] [2].

Future efforts should aim to combine both approaches to enable power consumption and resource estimation. The

smart padding could potentially increase the reliability of the power measurements. Automation will also be key to

making profiling more scalable, enabling real-time assessments across different hardware platforms, and streamlining

the benchmarking process. As hardware architectures continue to diversify, automated profiling tools will be crucial

for ensuring that performance predictions remain accurate and consistent across platforms.

As the focus of AI development increasingly shifts toward Large Language Models (LLMs) like GPT [79] and BERT [80],

the methodologies developed in this thesis take on new relevance. While this work primarily Convolutional Neural

Networks (CNNs), the growing prominence of LLMs presents a set of unique challenges that must be addressed in future

research. LLMs are typically much larger than traditional CNNs for vision applications, and their resource requirements,

particularly in terms of memory and power consumption, are substantially higher. The resource and power estimation

techniques developed here provide a strong foundation, but they will need to be adapted to the specific needs of LLMs.

The primary difficulty lies in the fact that many LLM implementations are still highly customized, relying on hand-

optimized code to achieve maximum performance [81, 82]. Unlike CNNs, where inference frameworks have become

widely adopted, LLMs lack such standardization, making their optimization more complex.

Looking ahead, it will be essential to develop more sophisticated resource and power estimation models that fit specif-

ically to LLMs. Hardware support for LLMs is also still evolving, and future research should explore how to optimize

these models for next-generation hardware platforms, ensuring that both efficiency and performance are maximized.

Standards for LLM optimization will need to mature, and tools that can automate the benchmarking and profiling of

these large-scale models will be crucial for their successful deployment.

As AI models and hardware continue to evolve, the need for adaptable, flexible, and efficient design methodologies

will only grow. The contributions made in this thesis provide a strong foundation for this evolution, offering valuable

insights and tools that will help drive further advancements in DNN optimization. By continuing to refine these methods

and adapting them to new technologies, the field will move closer to realizing a fully automated, generalizable DNN

design and implementation flow.

21

In general, there are several major areas to address in extending this research, although their priority will depend on

developments in both the community and industry. The following items provide a high-level overview, focusing on

situations where resources are limited:

• Latency Prediction:

– ANNETTE has recently been adapted to work with ONNX, enabling experiments on a variety of state of the

art DNNs. Moving beyond CNNs to include transformer-based and other architectures will likely unveil new

challenges, and resolving them should further improve latency estimation accuracy.

– In addition to latency, predicting the usage of memory and other resources is crucial. These factors can

determine whether a DNN is actually deployable on a given platform. This is especially important for the

TinyML domain.

– With the rise of LLMs, time-series models are also gaining traction. Compared to most computer vision

workloads, the temporal dependency in frames or samples introduces distinct inference optimization and

scheduling strategies, which latency estimation tools should account for, including the different execution

scenarios

– Cross-platform prediction that leverages knowledge of prior hardware generations and different architec-

tures is essential. Learning how efficiently one operator performs relative to another across architectures

can streamline early design decisions.

• Quantization:

– Develop hardware-aware, mixed-precision strategies with a focus on automated and general methods. This

involves detecting layers that are highly sensitive to quantization and recommending suitable precision

assignments and hardware mappings based on that sensitivity.

– Investigate lightweight approaches to QAT (e.g., partial QAT), balancing compute overhead with accuracy

requirements, and ensuring these methods align with supported execution standards on common hardware.

– Extend quantization efforts to newer or emerging architectures such as State Space Models (SSMs), which

may have different sensitivity patterns and numerical properties than CNNs or transformer-based net-

works. [83]

• Hardware Profiling:

– Expand the smart padding (black-box) approach to capture inter-layer interactions and events, improving

granularity in performance analysis, but also providing additional insights for estimation.

– Combine vendor-specific insights (e.g., profiling tools, architecture documentation) with black-box measure-

ment approaches to build a more holistic profiling framework.

– Apply the smart padding approach to power profiling, aiming to provide more accurate energy measure-

ments with minimal post-processing overhead.

22

Acknowledgments

This dissertation would not have been possible without the support of many people. I would like to express my sincere

gratitude to:

... my supervisor Axel Jantsch for his excellent guidance, professional advice, and the many inspiring discussions

that have significantly shaped this work.

... Herbert Taucher, Hannes Muhr, and Martin Matschnig, who made this work possible by initiating the cooperation

with TU Wien helped me align my research with practical relevance.

... my colleagues at the CD Laboratory, whose company made even the hardest problems — and the occasional bite

into granite — surprisingly enjoyable.

... all the people at ICT, ISAS, and Siemens for the opportunities to learn far beyond my own field — and for ensuring

that there was never a shortage of good conversations, creative ideas, or freshly brewed coffee.

... my brothers and friends, for being fellow travelers — not always in the same direction, but always with enough

drive to race across the seven seas, or at least up the next summit.

... my parents, Maria and Wolfgang, for their constant support — and for helping me grow into someone who doesn’t

always pick the mittlere, but often chooses the scenic route instead.

... my partner Miriam, whose support and energy got me through every crux this journey had to offer.

This work was supported in part by the Austrian Federal Ministry for Digital and Economic Affairs, in part by the

National Foundation for Research, Technology and Development, and in part by the Christian Doppler Research Asso-

ciation.

23

Bibliography

[1] M. Wess, M. Ivanov, C. Unger, A. Nookala, A. Wendt, and A. Jantsch, “ANNETTE: accurate neural network execu-

tion time estimation with stacked models,” IEEE Access, vol. 9, pp. 3545–3556, 2021.

[2] M. Wess, D. Schnöll, D. Dallinger, M. Bittner, and A. Jantsch, “Conformal prediction based confidence for latency

estimation of DNN accelerators: A black-box approach,” IEEE Access, vol. 12, pp. 109847–109860, 2024.

[3] M. Wess, S. M. P. Dinakarrao, and A. Jantsch, “Weighted quantization-regularization in dnns for weight memory

minimization toward HW implementation,” IEEE TCAD, vol. 37, no. 11, pp. 2929–2939, 2018.

[4] M. Wess, D. Dallinger, D. Schnöll, M. Bittner, M. Götzinger, and A. Jantsch, “Energy profiling of DNN accelerators,”

in DSD, pp. 53–60, IEEE, 2023.

[5] S. V.Mahadevkar, B. Khemani, S. Patil, K. Kotecha, D. R. Vora, A. Abraham, and L. A. Gabralla, “A review onmachine

learning styles in computer vision—techniques and future directions,” IEEE Access, vol. 10, pp. 107293–107329, 2022.

[6] N. Mohammadi Foumani, L. Miller, C. W. Tan, G. I. Webb, G. Forestier, and M. Salehi, “Deep learning for time series

classification and extrinsic regression: A current survey,” ACM Computing Surveys, vol. 56, pp. 1–45, Apr. 2024.

[7] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for natural language processing,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 32, pp. 604–624, Feb. 2021.

[8] P. Dhilleswararao, S. Boppu, M. S. Manikandan, and L. R. Cenkeramaddi, “Efficient hardware architectures for

accelerating deep neural networks: Survey,” IEEE Access, vol. 10, pp. 131788–131828, 2022.

[9] Hugging Face, “Hugging face: The ai community building the future.”https://huggingface.co. Accessed:

2024-12-08.

[10] TorchVision Contributors, “Torchvision: Datasets, transforms, and models for computer vision.” https://

pytorch.org/vision/, 2024. Accessed: 2024-12-08.

[11] Ultralytics, “Ultralytics yolo: State-of-the-art object detection models.” https://github.com/

ultralytics/yolov5, 2024. Accessed: 2024-12-08.

[12] O. Community, “Onnx: Open neural network exchange.” https://onnx.ai, 2024. Accessed: 2024-12-08.

[13] N. Corporation, “Nvidia tensorrt: High-performance deep learning inference.” https://

developer.nvidia.com/tensorrt, 2024. Accessed: 2024-12-08.

24

[14] I. Corporation, “Openvino toolkit: Optimize and deploy ai inference.”https://www.intel.com/content/

www/us/en/developer/tools/openvino-toolkit.html, 2024. Accessed: 2024-12-08.

[15] V. Franzoni, “Cross-domain synergy: Leveraging image processing techniques for enhanced sound classification

through spectrogram analysis using cnns,” Journal of Autonomous Intelligence, vol. 6, Aug. 2023.

[16] J. Xu, L. Zhao, S. Zhang, C. Gong, and J. Yang, “Multi-task learning for object keypoints detection and classification,”

Pattern Recognition Letters, vol. 130, pp. 182–188, 2020. Image/Video Understanding and Analysis (IUVA).

[17] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,” in JMLR, 2018.

[18] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with pruning, trained

quantization and huffman coding,” in ICLR, 2016.

[19] B. Haas, A. Wendt, A. Jantsch, and M. Wess, “Neural network compression through shunt connections and knowl-

edge distillation for semantic segmentation problems,” in AIAI, vol. 627 of IFIP Advances in Information and Com-

munication Technology, pp. 349–361, Springer, 2021.

[20] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional neural networks using energy-aware

pruning,” CVPR, July 2017.

[21] O. Bekhelifi and N.-E. Berrached, “On optimizing deep neural networks inference on cpus for brain-computer

interfaces using inference engines,” in 2024 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5,

IEEE, May 2024.

[22] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture search on target task and hardware,” in ICLR

Poster, 2019.

[23] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural networks: A tutorial and survey,”

Proceedings of the IEEE, vol. 105, pp. 2295–2329, Dec. 2017.

[24] L. Mei, H. Liu, T. Wu, H. E. Sumbul, M. Verhelst, and E. Beigne, “A uniform latency model for dnn accelerators with

diverse architectures and dataflows,” in DATE, IEEE, Mar. 2022.

[25] S. Miraliev, S. Abdigapporov, V. Kakani, and H. Kim, “Real-time memory efficient multitask learning model for

autonomous driving,” IEEE Trans. Intell. Veh., vol. 9, no. 1, pp. 247–258, 2024.

[26] S. Williams, A. Waterman, and D. A. Patterson, “Roofline: an insightful visual performance model for multicore

architectures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[27] M. Lechner and A. Jantsch, “Blackthorn: Latency estimation framework for cnns on embedded nvidia platforms,”

IEEE Access, vol. 9, pp. 110074–110084, 2021.

[28] D. Schnöll, D. Dallinger, M. Wess, M. Bittner, and A. Jantsch, “Towards optimal implementations of neural networks

on micro-controller,” in Presented at Workshop on IoT, Edge, and Mobile for Embedded Machine Learning at ECML-

PKDD, 2024.

25

[29] K. Lübeck, A. L. Jung, F.Wedlich, M.M. Müller, F. N. Peccia, F. Thömmes, J. Steinmetz, V. Biermaier, A. Frischknecht,

P. P. Bernardo, and O. Bringmann, “Automatic generation of fast and accurate performance models for deep neural

network accelerators,” CoRR, vol. abs/2409.08595, 2024.

[30] A. Samajdar, J. M. Joseph, Y. Zhu, P. N. Whatmough, M. Mattina, and T. Krishna, “A systematic methodology for

characterizing scalability of DNN accelerators using scale-sim,” in ISPASS, pp. 58–68, IEEE, 2020.

[31] Y. Braatz, D. S. Rieber, T. Soliman, and O. Bringmann, “Simpyler: A compiler-based simulation framework for

machine learning accelerators,” in ASAP, pp. 213–220, IEEE, 2023.

[32] K. G. Mills, F. X. Han, J. Zhang, F. Chudak, A. S. Mamaghani, M. Salameh, W. Lu, S. Jui, and D. Niu, “GENNAPE:

towards generalized neural architecture performance estimators,” in AAAI, pp. 9190–9199, AAAI Press, 2023.

[33] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and Y. Liu, “nn-meter: towards accurate latency prediction

of deep-learning model inference on diverse edge devices,” in MobiSys, MobiSys ’21, pp. 81–93, ACM, June 2021.

[34] Y. Chai, D. Tripathy, C. Zhou, D. Gope, I. Fedorov, R. Matas, D. Brooks, G.-Y. Wei, and P. Whatmough, “Perf-

sage: Generalized inference performance predictor for arbitrary deep learning models on edge devices,” CoRR,

vol. abs/2301.10999, 2023.

[35] K. Panner Selvam and M. Brorsson, “DIPPM: A deep learning inference performance predictive model using graph

neural networks,” in Lecture Notes in Computer Science (J. Cano, M. D. Dikaiakos, G. A. Papadopoulos, M. Pericàs,

and R. Sakellariou, eds.), vol. 14100 of Lecture Notes in Computer Science, pp. 3–16, Springer Nature Switzerland,

2023.

[36] Z. Wang, P. Yang, L. Hu, B. Zhang, C. Lin, W. Lv, and Q. Wang, “Slapp: Subgraph-level attention-based performance

prediction for deep learning models,” Neural Networks, vol. 170, pp. 285–297, Feb. 2024.

[37] A. L. Jung, J. Steinmetz, J. Gietz, K. Lübeck, and O. Bringmann, “It’s all about PR - smart benchmarking AI acceler-

ators using performance representatives,” CoRR, vol. abs/2406.08330, 2024.

[38] S. Liu, W. Zhou, Z. Zhou, B. Guo, M. Wang, C. Fang, Z. Lin, and Z. Yu, “Deep learning inference on heterogeneous

mobile processors: Potentials and pitfalls,” in Workshop on Adaptive AIoT Systems at MobiSys, pp. 1–6, ACM, 2024.

[39] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and

A. Krishnamurthy, “TVM: an automated end-to-end optimizing compiler for deep learning,” in OSDI (A. C. Arpaci-

Dusseau and G. Voelker, eds.), pp. 578–594, USENIX Association, 2018.

[40] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and D. Kalenichenko, “Quantization and

training of neural networks for efficient integer-arithmetic-only inference,” in CVPR, pp. 2704–2713, Computer

Vision Foundation / IEEE Computer Society, 2018.

[41] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient neural networks,” in

NIPS, pp. 1135–1143, 2015.

[42] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural networks with binary weights

during propagations,” in NIPS, pp. 3123–3131, 2015.

26

[43] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: hardware-aware automated quantization with mixed precision,”

in CVPR, pp. 8612–8620, Computer Vision Foundation / IEEE, 2019.

[44] H.Wu, P. Judd, X. Zhang, M. Isaev, and P.Micikevicius, “Integer quantization for deep learning inference: Principles

and empirical evaluation,” CoRR, vol. abs/2004.09602, 2020.

[45] V. Vanhoucke, A. W. Senior, and M. Z. Mao, “Improving the speed of neural networks on cpus,” in Workshop on

deep learning and unsupervised feature learning at NIPS, 2011.

[46] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,” in ISCA, pp. 1–12, ACM, 2017.

[47] D. D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha, D. T. Vooturi, N. Jammalamadaka,

J. Huang, H. Yuen, J. Yang, J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu, M. Smelyanskiy, B. Kaul,

and P. Dubey, “A study of BFLOAT16 for deep learning training,” CoRR, vol. abs/1905.12322, 2019.

[48] M. Cococcioni, F. Rossi, E. Ruffaldi, S. Saponara, and B. D. de Dinechin, “Novel arithmetics in deep neural networks

signal processing for autonomous driving: Challenges and opportunities,” IEEE Signal Process. Mag., vol. 38, no. 1,

pp. 97–110, 2021.

[49] W. Chen, H. Qiu, J. Zhuang, C. Zhang, Y. Hu, Q. Lu, T. Wang, Y. Shi, M. Huang, and X. Xu, “Quantization of deep

neural networks for accurate edge computing,” JTEC, vol. 17, no. 4, pp. 54:1–54:11, 2021.

[50] T. Zebin, P. J. Scully, N. Peek, A. J. Casson, and K. B. Ozanyan, “Design and implementation of a convolutional neural

network on an edge computing smartphone for human activity recognition,” IEEE Access, vol. 7, pp. 133509–133520,

2019.

[51] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A survey of quantization methods for

efficient neural network inference,” CoRR, vol. abs/2103.13630, 2021.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, pp. 770–778, IEEE,

June 2016.

[53] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets:

Efficient convolutional neural networks for mobile vision applications,” ICLR, 2017.

[54] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and acceleration for deep neural networks: The

principles, progress, and challenges,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 126–136, 2018.

[55] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still) requires rethinking

generalization,” Commun. ACM, vol. 64, no. 3, pp. 107–115, 2021.

[56] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural networks: Training neural

networks with low precision weights and activations,” JMLR, vol. 18, no. 1, pp. 6869–6898, 2017.

[57] R. Gray and D. Neuhoff, “Quantization,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2325–2383,

1998.

27

[58] M. Nagel, R. A. Amjad, M. van Baalen, C. Louizos, and T. Blankevoort, “Up or Down? Adaptive Rounding for

Post-Training Quantization,” in ICML, vol. 119 of Proceedings of Machine Learning Research, pp. 7197–7206, PMLR,

2020.

[59] Z. Liu, Y. Wang, K. Han, W. Zhang, S. Ma, and W. Gao, “Post-training quantization for vision transformer,” in NIPS

(M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, eds.), pp. 28092–28103, 2021.

[60] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha, “Learned step size quantization,” in ICLR,

OpenReview.net, 2020.

[61] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srinivasan, and K. Gopalakrishnan, “PACT: parameterized

clipping activation for quantized neural networks,” CoRR, vol. abs/1805.06085, 2018.

[62] D. Schnöll, M. Wess, M. Bittner, M. Götzinger, and A. Jantsch, “Fast, quantization aware DNN training for efficient

HW implementation,” in DSD, pp. 700–707, IEEE, 2023.

[63] S. Kim, G. Park, and Y. Yi, “Performance evaluation of INT8 quantized inference on mobile gpus,” IEEE Access, vol. 9,

pp. 164245–164255, 2021.

[64] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan, “Differentiable soft quantization: Bridging full-precision

and low-bit neural networks,” in ICCV, pp. 4851–4860, IEEE, 2019.

[65] W. Chen, P. Wang, and J. Cheng, “Towards mixed-precision quantization of neural networks via constrained opti-

mization,” in ICCV, pp. 5330–5339, IEEE, 2021.

[66] R. Singhal, A. Biswas, S. Elangovan, and S. Sabnis, “Learning bit multipliers for non-uniform quantization,” 2024.

[67] E. Kavvousanos, I. Kouretas, V. Paliouras, and T. Stouraitis, “A regularization approach to maximize common sub-

expressions in neural network weights,” in 30th IEEE International Conference on Electronics, Circuits and Systems,

ICECS 2023, Istanbul, Turkey, December 4-7, 2023, pp. 1–4, IEEE, 2023.

[68] A. Biswas and U. Ganguly, “QFALT: quantization and fault aware loss for training enables performance recovery

with unreliable weights,” in International Joint Conference on Neural Networks, IJCNN 2024, Yokohama, Japan, June

30 - July 5, 2024, pp. 1–6, IEEE, 2024.

[69] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: on-demand accelerating deep neural network inference via edge

computing,” IEEE Trans. Wirel. Commun., vol. 19, no. 1, pp. 447–457, 2020.

[70] S. Wu, H. Yang, X. You, R. Gong, Y. Liu, Z. Luan, and D. Qian, “Proof: A comprehensive hierarchical profiling

framework for deep neural networks with roofline analysis,” in ICPP, vol. 4 of ICPP ’24, pp. 822–832, ACM, Aug.

2024.

[71] K. Iyer and J. Kiel, “GPU Debugging and Profiling with NVIDIA Parallel Nsight,” 2016.

[72] NXP Semiconductors, “i.MX 93 Family of Applications Processors.” https://www.nxp.com/products/

processors-and-microcontrollers/arm-processors/i-mx-applications-

processors/i-mx-9-processors/i-mx-93-applications-processor-family-arm-

cortex-a55-ml-acceleration-power-efficient-mpu:i.MX93, 2022. Accessed: 2024-12-20.

28

[73] Intel Corporation, “Intel Neural Compute Stick 2.” https://www.intel.com/content/www/us/en/

developer/tools/neural-compute-stick/overview.html. Accessed: 2024-12-20.

[74] Google, “Coral Edge TPU.” https://coral.ai/products/accelerator/. Accessed: 2024-12-20.

[75] NXP Semiconductors, “i.MX 8 Series Applications Processors.” https://www.nxp.com/products/

processors-and-microcontrollers/arm-processors/i.mx-applications-

processors/i.mx-8-processors:IMX8-SERIES. Accessed: 2024-12-20.

[76] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient reconfigurable accelerator for deep

convolutional neural networks,” JSSC, vol. 52, pp. 127–138, Jan. 2017.

[77] NVIDIA Corporation, “NVIDIA Jetson AGX Xavier.” https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-agx-xavier/. Accessed: 2024-12-20.

[78] Y. Chai, J. Gkountouras, G. G. Ko, D. Brooks, and G. Wei, “INT2.1: towards fine-tunable quantized large language

models with error correction through low-rank adaptation,” CoRR, vol. abs/2306.08162, 2023.

[79] T. B. Brown et al., “Language models are few-shot learners,” in Advances in Neural Information Processing Systems

33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual

(H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), 2020.

[80] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for lan-

guage understanding,” in NAACL-HLT (J. Burstein, C. Doran, and T. Solorio, eds.), pp. 4171–4186, Association for

Computational Linguistics, 2019.

[81] Ollama Developer Community, “Ollama.” https://github.com/jmorganca/ollama, 2023. Accessed:

2024-12-21.

[82] ggerganov and Contributors, “llama.cpp.” https://github.com/ggerganov/llama.cpp, 2023. Ac-

cessed: 2024-12-21.

[83] Z. Xu, Y. Yue, X. Hu, Z. Yuan, Z. Jiang, Z. Chen, J. Yu, C. Xu, S. Zhou, and D. Yang, “Mambaquant: Quantizing the

mamba family with variance aligned rotation methods,” 2025.

29

Erklärung zur Verfassung der Arbeit

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct – Regeln zur Sicherung guter wis-

senschaftlicher Praxis (in der aktuellen Fassung des jeweiligen Mitteilungsblattes der TU Wien), insbesondere ohne

unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus an-

deren Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In– noch im Ausland in gleicher oder in ähnlicher Form in anderen Prüfungsverfahren

vorgelegt.

Vienna, Austria, 19.03.2025

Matthias Wess

Received December 11, 2020, accepted December 19, 2020, date of publication December 24, 2020,
date of current version January 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3047259

ANNETTE: Accurate Neural Network Execution
Time Estimation With Stacked Models
MATTHIAS WESS 1,2, MATVEY IVANOV1,2, CHRISTOPH UNGER1, ANVESH NOOKALA1,
ALEXANDER WENDT1,2, (Member, IEEE), AND AXEL JANTSCH 1,2, (Senior Member, IEEE)
1Institute of Computer Technology, TU Wien, 1040 Vienna, Austria
2Christian Doppler Laboratory for Embedded Machine Learning, Institute of Computer Technology, TU Wien, 1040 Vienna, Austria

Corresponding author: Matthias Wess (matthias.wess@tuwien.ac.at)

This work was supported in part by the Austrian Federal Ministry for Digital and Economic Affairs, in part by the National Foundation for
Research, Technology and Development, and in part by the Christian Doppler Research Association.

ABSTRACT With new accelerator hardware for Deep Neural Networks (DNNs), the computing power for
Artificial Intelligence (AI) applications has increased rapidly. However, as DNN algorithms become more
complex and optimized for specific applications, latency requirements remain challenging, and it is critical
to find the optimal points in the design space. To decouple the architectural search from the target hardware,
we propose a time estimation framework that allows formodeling the inference latency of DNNs on hardware
accelerators based on mapping and layer-wise estimation models. The proposed methodology extracts a set
of models from micro-kernel and multi-layer benchmarks and generates a stacked model for mapping and
network execution time estimation. We compare estimation accuracy and fidelity of the generated mixed
models, statistical models with the roofline model, and a refined roofline model for evaluation. We test the
mixed models on the ZCU102 SoC board with Xilinx Deep Neural Network Development Kit (DNNDK)
and Intel Neural Compute Stick 2 (NCS2) on a set of 12 state-of-the-art neural networks. It shows an average
estimation error of 3.47% for the DNNDK and 7.44% for the NCS2, outperforming the statistical and
analytical layer models for almost all selected networks. For a randomly selected subset of 34 networks of the
NASBench dataset, the mixed model reaches fidelity of 0.988 in Spearman’s ρ rank correlation coefficient
metric.

INDEX TERMS Analytical models, estimation, neural network hardware.

I. INTRODUCTION
Deep Neural Networks have become key components in
many AI applications, including autonomous driving [1],
medical diagnosis [2], [3] and machine translation [4]. The
computational intensity of some AI applications based on
DNNs prevents their use on embedded system platforms,
as these algorithms often have to meet latency and perfor-
mance requirements to fulfill their purpose.

Attempting to close the gap between the computational
intensity of DNNs and the available computing power, a wide
variety of hardware accelerators for DNNs and other AI
workloads have emerged in recent years. A considerable
amount of research has improved the efficiency of DNNs
and reduced their memory consumption by applying meth-
ods such as pruning [5], [6], quantization [7]–[9], and fac-
torization [10], [11]. Alternatively, a network architecture

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masini .

that is expected to work efficiently on the target device can
be designed and trained directly. Networks like MobileNet
[12] and ShuffleNet [13] are specifically designed to reduce
the number of Multiply-Accumulate operations (MACs),
but they contain specific layer types that are not necessar-
ily optimal for all hardware types. In addition, computa-
tional efficiency depends largely on the specific architectural
parameters of each layer and the hardware platform used [14].

Finally, also the mapping toolchain optimizing the orig-
inal network graph for the selected hardware platform has
to be considered since many hardware accelerators allow
specific combinations of layers to be fused together to
reduce inter-layer data transfer and/or to optimize data flow.
Therefore, when optimizing the network architecture towards
‘‘direct metrics’’ such as latency or energy consumption,
‘‘indirect metrics’’ such as Floating Point Operation (FLOP)
or memory footprint can serve as a starting point but do
not take into account the platform-specific non-linearities.
As a result, networks optimized towards ‘‘direct metrics’’

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 3545

M. Wess et al.: ANNETTE With Stacked Models

considerably outperform ‘‘indirect’’ optimized architectures
in terms of the selected metrics [14], [15]. On the one hand,
the enormous design space for neural network architectures
makes it difficult to design a network that runs at high
efficiency on all hardware architectures. On the other hand,
not all networks work with the same efficiency on a given
platform. For example, Fig. 1 shows the effective compute
performance when running 12 networks used for evaluation
in this paper on a ZCU102 Xilinx MPSoC evaluation board.
Furthermore, the computational roofline shows themaximum
reachable, effective compute performance.

FIGURE 1. Effective compute performance when inferring the DNNs from
Table 2 on the Xilinx ZCU102 evaluation board.

We can see the high variance of the effective compute
performance for a variety of different network architectures
when executed on the same hardware. Due to the large differ-
ences in effective compute performance, we can conclude that
it is not sufficient to divide the number of operations of a net-
work by the peak compute performance of the target device
to achieve a satisfying estimation of the network execution
time. So when aiming for field deployment, it is difficult to
choose a specific hardware platform before deciding on the
network architecture. As a result, there have been some recent
attempts to predict network latency and performance on dif-
ferent hardware platforms. However, most of the work targets
either Graphic Processing Units (GPUs) [16], [17] server or
the embedded Central Processing Units (CPUs) [18], [19],
leaving out a wide range of hardware accelerators such as
Field Programmable Gate Arrays (FPGAs) and hardware
specifically designed for AI tasks e.g. Xilinx ZCU102 and
Intel NCS2. In this work we aim to model performance of
such DNN hardware accelerators. Also, the existing work
does not take into account the graph optimizations undertaken
by the compiler, which leads to changes in the accuracy of the
prediction.

Therefore, we propose a framework for the generation of
stacked, mapping models and layer models to estimate the
network execution time. To our knowledge, this is also the
first work in which the different approaches to modeling
layer execution time and mapping models are systemati-
cally investigated and evaluated on a broad range of network
architectures.

This paper makes the following key contributions:
• We introduce Accurate Neural Network Exectution

Time Estimation (ANNETTE), a time estimation
framework that allows predicting the execution time of

Deep Neural Networks on hardware accelerators based
on a stacked modeling approach of mapping models and
layer-wise estimation models

• We propose mixed models for layer execution model-
ing to decrease the necessary model complexity of the
statistical models to cover also computational utilization
inefficiencies

• We propose a methodology to extract mapping mod-
els and layer execution models from micro-kernel and
multi-layer benchmarks. Our evaluation of the generated
mapping models and layer models on a set of 12 state-
of-the-art models show amean absolute percentage error
of 3.41% for the ZCU102

• We compare mixed layer models with statistical layer
models, the roofline model, and a refined roofline model
in terms of accuracy and fidelity

II. RELATED WORK
Several studies have been performed to measure how well
certain DNNs perform on different hardware. Their purpose
is to explore the design space and to get the highest efficiency
out of the hardware. In EmBench [20], common DNNs like
ResNet, ShuffleNet, and MobileNet were tested on a wide
range of hardware, ranging from power consuming server
hardware like the NVIDIA GeForce RTX 2080 Ti GPU
to mobile devices like the Intel NCS2. A key finding in
EmBench was the Pareto curve of accuracy and latency of
different networks on the hardware devices. Often, it depends
on the type of layers used in the respective networks. While
they tested all different combinations of networks and hard-
ware, our work takes another approach. For each hardware,
we provide a method that measures latency for each layer
type and then estimates the latency of a whole composed
network. Together with known accuracies of the architectures
in NASBench [21], we can then explore the Pareto curve of a
specific hardware platform without further measurements.

MLPerf [22] is an attempt by over 30 organizations to
create an industry-wide standard benchmark to assess the vast
number of machine learning software and hardware combina-
tions, while DAWNBench [23] is led by academia. MLPerf
limits the problem space by defining a set of scenarios,
datasets, libraries, frameworks, and metrics. Additionally,
it specifies prohibited operations to enhance comparability
under equal terms. For our statistical model, MLPerf could
provide additional measurements to align it for new hardware
and enhance our measurements. However, the available data
does not suffice to construct accurate mapping models and
layer models.

Besides characterizing accelerator hardware, hardware
optimized neural architecture search (NAS) is becom-
ing increasingly popular and powerful. While handcrafted
cells of ResNet and Inception lie close to the Pareto
optimum at GPUs [21], the design space for mobile
devices is very large [24]. It offers potential for automated
architecture search, especially when the demand for cus-
tomized networks rises. FBnetV3 [25], SqueezeNAS [26] and

3546 VOLUME 9, 2021

M. Wess et al.: ANNETTE With Stacked Models

Proxyless NAS [15] focus on low-latency network archi-
tecture search for mobile devices. They were developed to
replace costly redesign DNNs for certain tasks on certain
platforms. While SqueezeNAS focus on semantic segmen-
tation, FBNetV3 and Proxyless NAS focus on classification
tasks. Both tools show superior latency-accuracy tradeoffs
compared to MobileNet. SqueezeNAS, as well as Proxyless
NAS, first generate a super network, in which each cell is
selected from a search space. They approximate latencies
by building look-up tables for the selected blocks within
the design space to save time. All three works could profit
from a uniform estimation framework that accurately pre-
dicts performance for multiple platforms. In NetAdapt [14],
empirical measurements on a Google Pixel 1 CPU are used
to construct layer-wise look-up tables to shrink a pre-trained
MobileNetV1 until the resource constraints are met to opti-
mize DNNs for inference on mobile devices. FBNetV3 uses
multi-use predictors to power their neural architecture search
algorithm by predicting architecture statistics such as accu-
racy and the proxymetrics FLOPS and number of parameters.

NeuralPower [17] is an attempt to estimate execution
latency, power, and as a result, overall energy consump-
tion based on layer-wise sparse polynomial regression for
GPU platforms. In terms of execution time estimation, Neu-
ralPower achieves an average accuracy of 88.24% on the net-
works VGG-16, AlexNet, NIN, Overfeat, CIFAR10-6conv.
In addition to the layer-wise time estimation, the same
modeling method is also applied to estimate power and
finally energy consumption with even higher accuracy. Fast-
DeepIoT [18] uses execution time models based on linear
model trees to predict the layer execution time on the devices
Nexus 5 and Galaxy Nexus to finally compress VGGNet
for both devices and reduce the neural network execution
time by 48% to 78% and energy consumption by 37% to
69% compared with the state-of-the-art compression algo-
rithms. In PreVIous [19], the execution timemodels are based
on linear regression, and for the devices, Raspberry 3 and
Odroid-XU4 reaches about 96% average accuracy for the
layer-wise estimation. These results lead us to believe that the
task of estimating layer execution times for task optimized
computing architectures is significantly more challenging
than for CPUs. Therefore, we propose a methodology for
generating stacked mapping and layer execution time models
for hardware accelerators and systematically compare the
prediction accuracy of different modeling approaches. Other
than that, MLPAT [27] and DNN-Chip Predictor [28] propose
white box approaches to estimate timing, power and energy.
MLPAT reports only 10% error when predicting the power
of the TPU-v1. DNN-Chip Predictor’s predicted performance
differs from those of measurements of FPGA/ASIC imple-
mentation by no more than 17.6% when evaluated for two
DNNs on three accelerator architectures.

III. ARCHITECTURE
Fig. 2 shows an overview of the proposed framework, allow-
ing us to generate abstraction models for the hardware

FIGURE 2. Overview of the Annette architecture: In the benchmark phase
(1), first the platform benchmarks are performed and then the platform
models are generated. In the estimation phase (2), the Estimation Tool
reads a network description graph, and provides an estimated network
execution time, a detailed layer-wise execution time prediction table, and
a predicted execution graph.

platform and the mapping toolchain. The Benchmark Tool
generates networks, which are then optimized by the pro-
vided mapping toolchain for the selected platform. During
the benchmark phase, we execute the generated models on
the target device and extract detailed layer execution times.
We rely on the provided platform tools for mapping, infer-
ence, and profiling. With the collected profiling informa-
tion, theModel Generator can create abstraction models of
the graph optimizations and the different layer types. These
abstraction models are used in ourEstimation Tool to predict
the performance of a network without compiling and execut-
ing the model. Furthermore, detailed insights are gained to
produce efficient networks for themodeled hardware devices.

IV. BENCHMARK TOOL
For platform characterization, we make use of two kinds
of benchmarks: micro-kernel benchmarks and multi-layer
benchmarks. We aim to characterize the computational effi-
ciency of a hardware platform when executing only a specific
layer with the micro-kernel benchmarks. On the other hand,
multi-layer benchmarks give us a deeper understanding of
which kind of layers are executed separately and which layers
can be fused, reducing the off-chip data movement. Fig. 3
depicts the workflow of the Benchmark Tool.

We define a benchmark as one parametric network graph
profiled several times on the hardware with different input
resolutions or kernel-sizes. Each generated network architec-
ture stays the same for each benchmark, while only the layer
parameter settings (e.g. number of channels and kernel size)
are changed according to the configuration file. The input for
each benchmark is a configuration and a graph description
file. The configuration file defines the parameter settings of
each measurement. The graph description file defines the
architecture of the benchmarked dummy network. The Graph
Generator module builds the network models based on the
description and configuration information and feeds it to
the hardware-specific modules. In each hardware module,
the network graph is initially optimized and compiled by

VOLUME 9, 2021 3547

M. Wess et al.: ANNETTE With Stacked Models

FIGURE 3. The Benchmark Tool profiles the provided set of benchmark
models with different configuration settings on the hardware platforms
and generates layer data files.

the platform mapping toolchain. The optimized graph is then
inferred on the target device in a platform specific benchmark
application. Then, a report is generated with the help of
the platform profiling tool. Finally, the report is parsed into
a standard format, and the Graph Matcher compares the
collected layer data with the original input network.

Running each benchmark separately is a time-consuming
task of about three to five days per benchmark, as each model
must go through the entire compilation toolchain before
the desired measurements can be made. Therefore, we have
developed some network models that allow us to measure
several kernels within a benchmark run. In this case, the mod-
els must be constructed in a particular manner so that the
compiler cannot fuse layers or that the computational effort
for an operation is not increased. It would result in measuring
more than just the desired micro-kernel. Those linear network
graphs still count as micro-kernel benchmarks since we still
measure the execution time of each layer individually. It must
be taken into account that when using graphs with more
than one layer for micro-kernel benchmarking, the maximum
allowable layer size may be smaller than when measuring
a single layer. The choice of configuration parameters has
an additional influence on the benchmark wall time. It also
influences the insights that can be gained from the collected
data and on the understanding of how tomodel the accelerator
This topic is discussed in Section V.

We use the same mechanism for the multi-layer bench-
marks, with the difference that they have more configuration
parameters. The goal of these benchmarks is primarily to
model the mapping toolchain and understand which opti-
mizations the graph optimization toolchain can perform, but
also to be able to benchmark multiple layers at the same time.

The Graph Generator builds the network models, which
are benchmarked on the target platform, based on the graph
description and the configurations table. It iterates through
the configurations table generating one network model per
parameter setting. We apply micro-kernel benchmarks for
2D convolution, 2D depth-wise separable convolution, max

pooling, average pooling, and fully connected layers, with
values in the range from 8 to 2048 for height (h), width (w),
number of input channels (c), number of filters (f), input and
output neurons, kernel sizes (kh, kw) 1, 3, 5, and 7, and pooling
sizes from 2 to 10, resulting in a total of about 35k measure-
ments per layer. Figure 4 illustrates the network architectures
used for the multi-layer benchmarks. All convolution layers
are followed by batch normalization and ReLU layers.

FIGURE 4. The multi-layer benchmark networks (a) ANNETTE ConvNet for
characterizing convolution and pooling layers; (b) ANNETTE FCNet for
benchmarking global average pooling and fully connected layers.

The Hardware Modules are simple scripts that automat-
ically call the platform optimization (Graph Optimizer) and
compilation toolchain to prepare the benchmark models for
inference. In the case of DNNDK, as a developing framework
for the hardware module Deep Neural Network Processing
Unit (DPU) on the ZCU102 MPSoC board, optimization
and compilation functionality are provided through the Deep
Compression Tool (DECENT) and the Deep Neural Net-
work Compiler (DNNC) respectively [29]. In the case of
NCS2 the graph is optimized and compiled by the Open-
VINO Toolkit [30]. Similarly, we rely on provided execu-
tion and the platform specific profiler applications (Profiler
App) to extract the layer execution times for the compiled
networks. To avoid measurement errors, we average the
results of 20 iterations. Finally, a Report Parser extracts the
layer-specific information and maps it back to the original
graph, comparing the executed layers with the original layers
by their names. Therefore, the Profiler App must provide
execution times and layer names. The execution information
is stored in a standardized format so that the Graph Matcher
can process the provided data in the same way for each
platform. These encapsulated hardware modules make it easy
to add future hardware to the benchmarking tool.

In addition to the Report Parser, theGraphMatcher extracts
information about the differences between the original input
graph and the final net graph executed on the target device.
While the parser merely ensures that there are no changes
to the original naming scheme and provides a standardized
output, the Graph Matcher extracts additional information
about the optimization behavior of the mapping toolchain.
The Graph Matcher creates a layer result file for each exe-
cuted layer and an optimization mapping file for the entire
benchmark. The layer result files contain information about
the layer parameters, e.g., height, width, number of input
channels, and the resulting execution times. To track the
behavior of the mapping toolchain, we also store ternary
variables that successive layers have been fused with the

3548 VOLUME 9, 2021

M. Wess et al.: ANNETTE With Stacked Models

measured layer. This merging variable can store the following
states: not-fused, fused, and possibly-fused. Possibly-fused is
used because, it is not possible to detect where the layer has
been merged or not for layers with multiple inputs.

FIGURE 5. Graph optimization.

Fig. 5 shows an example of how a graph could be optimized
by the mapping toolchain. In the specific example we set the
fused flags for BiasAdd, Activation operation in the Convolu-
tion layer of block 1 and 2 to fused. In block 2, the fused flag
for the Pooling operation is set to fused as well. Here, it is
important to note that since the pooling layer also has a set of
parameters, i.e., pooling height, poolingwidth, pooling stride,
and pooling type that define its execution policy, we also
need to add those parameters to the already existent stored
parameters for the convolution layer. It enables the graph
optimizer modeler to extract rules that define in the case of
which parameter combinations the layers can be fused. Since
the element-wise addition layer may have been matched to
either block 1 or block 2, the fused flag for the Add operation
is set to possibly-fused in both blocks.

The generated layer data consists of a table for each layer
type that for each measurement contains the parameter set-
tings of the layer e.g. height, width, channels, kernel size as
well as the measured execution time. This data is then fed to
theModel Generator to extract optimization and layer models
for the final estimation step.

V. MODEL GENERATOR
This section explains how we model the graph optimizations
of the mapping toolchain and the computational efficiency
of the hardware platforms to achieve better overall latency
estimation accuracy. As depicted in Fig. 1, not all networks
are computed with the same efficiency when compared to
the number of operations in the convolution layers. There are
two leading causes of the non-linear nature of the relationship
between the number of operations and execution time. First,
the non-convolutional layers cannot be neglected. They are
not considered in the commonly claimed number of opera-
tions, such as element-wise addition, concatenation, activa-
tion, or pooling. It is crucial for the execution time of these
layers, whether they are executed in isolation or connection
with a convolution layer [31]. The second factor is that the
utilization of computational resources for the same layer can

FIGURE 6. The model generator, extracts a stacked model consisting of
mapping models and layer models.

depend on the parameter settings on a specific layer (e.g.,
height, width). It means that two compute-bound layers with
the same number of operations but with differently shaped
input and weight tensors are not necessarily computed with
the same efficiency [18].

To cover all these aspects, we propose a stacked model
approach to model the overall network execution time accu-
rately. Fig. 6 shows how the different models are fused for
the generation of the platform model. Tab. 1 describes the
parameters for the models extracted from the benchmarks.
The first performed benchmarks are input parameter sweeps
to determine the unrolling parameters �s and �α. These parame-
ters describe the amount of parallel performedmultiplications
in per dimension of the compute architecture and the paral-
lelization efficiency. With the help of these two parameter
vectors, we can construct a model that describes the utiliza-
tion efficiency of several compute architectures (e.g. systolic
arrays). Additionally, preliminary values of Ppeak and Bpeak
are determined, which describe the peak performance and the
peak off-chip bandwidth.

TABLE 1. Model parameters.

VOLUME 9, 2021 3549

M. Wess et al.: ANNETTE With Stacked Models

These parameters are determined automatically based on
measurements or knowledge of the computing architecture.
Once determined, the parameters are fed back to the Bench-
mark Tool to adjust the parameter settings for the succeeding
benchmarks. The rest of the micro-kernel benchmark results
are used to generate the Roofline Model by deducing the
final values of Ppeak and Bpeak , which together with the previ-
ously determined unrolling parameters, construct theRefined
Roofline Model. We combine the Statistical Model and
the Refined Roofline Model in the Mixed Model. For the
final Platform Model, we add the Mapping Model, which
covers optimizations performed on the graph before the actual
execution.

A. LAYER EXECUTION TIME MODELS
For the construction of layer-level execution time models,
we rely on the measurements performed in the benchmarks.
We construct parametric analytical models for the convo-
lution, the depth-wise separable convolution, the fully con-
nected, and pooling layer. The selection of these layers is
motivated, similarly as in the works [16], [17], by the fact
that these are the most computational intense layers and,
therefore, most critical. However, we will also show that it is
also crucial for more complex network architectures to model
different layers to achieve accurate results with high fidelity.
While the simple roofline model describes most layers with
satisfying accuracy, we refine the roofline model for the
convolution layer to increase the estimation accuracy.

1) ANALYTICAL MODELS
For the estimation framework to always work with at least
the most simple model, we implement the roofline model
[32] for all layer types as a fallback solution. In the roofline
model for each layer n, smallest achievable execution time is
either limited by the peak computational performance Ppeak
or the maximal bandwidth Bpeak . In layer n, with the data to
be transferred Dn and the number of operations fn give us the
estimated execution time T̂roofn with the effective computa-
tion performance Peff equal to Ppeak

T̂roofn (fn,Dn) = max(
fn

Ppeak
,

Dn

Bpeak
). (1)

Keeping in mind that for fused layers the term ofDn has to be
corrected (see Section V-B), this formulation of the roofline
model can be applied to the four named layer types and will
be denoted in the experimental section as roofline model.

However, as mentioned earlier, computational efficiency
also depends on how the shapes of the input-, weight- and
output tensors are mapped on the computing architecture.
When incorporating the reduced utilization efficiency ueff in
equation (1) we obtain

T̂refn (fn,Dn) = max(
fn

Ppeakueffn
,

Dn

Bpeak
) (2)

Next we aim to describe the utilization efficiency of a
general compute architecture with an array of Processing

Elements (PEs). The number of spatial dimensions A and the
number of PEs alongside each dimension �s ∈ NA define
the compute architecture. For example an array could be
described with A = 2 and �s = �

16 12
�
, which amounts to a

total of 192 PEs.When computing a layer, the operations have
to be mapped onto the array either spatially or temporally.
With the parameter settings of the layer as the feature vector
�x we can approximate the utilization efficiency with

ueff (�x) =
A�
i=1

xi/si
�xi/si� . (3)

Hereby the size of the vector �x does not have to match the size
of the vector �s as the operations can also be mapped in the
temporal dimension. For example, when mapping a 2D 1× 1
convolution layer with a 12 × 6 × 128 input feature map and
256 output channels, the feature vector describing the layer
could be any permutation of

�
12 6 128 256 1 1

�
depending

on the mapping of the layer onto the array. With equation
(3), for the presented example case and the input feature
map height andwidthmapped spatially onto the 16x 12 array,
we would get ueff = 0.375.

It has to be mentioned that equation (3) neglects the over-
head of control units and warming up as well as possible
input parameter augmentation for xi < si. For example,
since the first layer in most DNNs has three input channels
(xi = 3), channel augmentation can often improve perfor-
mance in the first layer of the neural network. To allow for
further adjustment of the model to different efficiencies for
each element of �s we add the unrolling efficiency vector �α
to get the final utilization efficiency of the refined roofline
model

ueff (�x) =
A�
i=1

(αi + �xi/si�
xi/si

(1 − αi))−1 (4)

where �α ∈ RA | 0 ≤ αi ≤ 1. The coefficients αi adjust the
impact of the spatial unrolling. According to the terminology
used in [33], αi allows us to adjust the impact of spatial and
temporal fragmentation on the overall utilization efficiency.
So far, we have identified no other method to derive the values
of �α from the system architecture than by measurement.

This refined version of the roofline model allows us to
model not only the reduced utilization efficiency of n-D con-
volutions due to the mapping restrictions of existing compute
architectures. It can also be used to model jumps in utilization
efficiency caused by higher-level features such as the number
of input parameters, weights, or outputs.

We apply the simple roofline model with separately mea-
sured data throughput rate and peak performance to the
pooling, depth-wise separable, and fully connected layers,
respectively, under the presumption that accuracy does not
have to be as high as for the convolutional layers. However,
it is still important to also capture the execution time of those
layers. Furthermore, for fused layers, we define the first term
of equation (2) as the sum of the execution time of the con-
volution layer and the following fused layer. For the second

3550 VOLUME 9, 2021

M. Wess et al.: ANNETTE With Stacked Models

term, we adjust the number of transferred data to the overall
amount of the fused layer. For example, a convolution layer
with a succeeding pooling layer with a stride greater than one
has a reduced number of output parameters.

Within the modeling framework, we determine model
parameters Ppeak , Bpeak , �s and �α for all layers automatically
based on the measurements of the Benchmark Tool. At first,
we perform sweep benchmarks to measure the layer execu-
tion time while sweeping each of the parameters describing
the layer. For example, in one sweep for a 2D convolution
layer, we measure the execution time, incrementing the num-
ber of input channels in each measurement. These sweeps
are performed for each parameter at multiple points, while
the other layer parameters are set to the same value for the
entire sweep. Based on these measurements, we can extract
the preliminary values of Ppeak and Bpeak by finding the
maximum performance and data throughput values. Next we
determinate the values of si and αi, by fitting equation (3)
to the collected data using mean square minimization, with
the conditions �α ∈ RA | 0 ≤ αi ≤ 1 and �s ∈ NA. Lastly
with the determined values of �s and �α we perform the rest
of the benchmarks using preferably layer settings with (3) to
determine the final values of Ppeak and Bpeak .

2) STATISTICAL MODELS
Apart from the analytical estimation model, we also generate
statistical regression models to estimate the performance for
all benchmarked layer types. In general, we found that the
statistical models produce more precise results when pre-
dicting utilization efficiency rather than the resulting exe-
cution time. We estimate the utilization efficiency ustat =
f (�x) where ustat ∈ R | 0 < ustat ≤ 1 for each
layer separately based on a feature vector �x describing the
layer’s parameter settings. Similar to [17], [18] we include
higher-level features such as the number of input param-
eters and the number of operations. For example, for the
2D convolutional layer we select the feature vector �x =
(h,w, c, f , kh, kw, stride, #ops, #in, #out, #weights).

We applied random forest regression for the statistical
models of the network layers, which worked best for the data
collected in the benchmarks. Although tree-based regression
methods generally do not extrapolate well, they have the use-
ful property that the output values do not explode but remain
constant when the input values are outside the training data
range. In the case of the ustat estimate, this behavior does not
degrade the quality of the estimate. For the final prediction
of the layer execution time, we then apply the roofline model
with statistically computed utilization efficiency:

T̂mixn (fn,Dn) = max(
fn

Ppeakustatn
,

Dn

Bpeakn
) (5)

Due to the large number of architectural parameters for
the convolution layer, we have to carefully select for which
configuration parameter settings to perform the measure-
ments. This is important since the points of measurement
influence the quality of the resulting statistical models. To

find the best points of measurement for our statistical model,
we generate three datasets. For the first dataset, we aim to
model the surface of points with the best utilization efficiency.
Therefore, we reduce the space of measurements to points
with utilization efficiency equal to 1. For the generation of
the second dataset, we add Gaussian noise to the parameters
with si > 1 to also cover cases with utilization efficiency< 1.
The third dataset is the union of datasets 1 and 2.

The experimental results show that, depending on the
selected statistical model, too large amounts of measurement
points would be required tomodel the entire surface of dataset
3 correctly. Therefore, we use dataset 1 for the generation of
the statistical models and follow a third approach. We com-
bine the generated statistical models with the refined roofline
model from Section V-A1 to achieve higher accuracy for the
points with utilization efficiency < 1.

3) MIXED MODELS
To combine the advantages of the statistical and analytical
models, we also implement a mixed modeling approach by
stacking the statistical model and the refined roofline model.
The execution time of the mixed model T̂mix for the layer n
can be expressed as

T̂mixn (fn,Dn) = max(
fn

Ppeakueffnustatn
,

Dn

Bpeak
) (6)

Decoupling the modeling of ueff and ustat has the advan-
tage that the necessarymodel complexity for the estimation of
ustat is reduced, as the model only needs to correctly estimate
the points with ueffn = 1. Fig. 7 shows how combining the
statistical model and the refined roofline model results in the
mixed model.

FIGURE 7. An example of predicted execution time surfaces for the
refined roofline model (top left), statistical model (top right) and mixed
model (bottom). The plane of the mixed model is an overlay of the
refined roofline model and the statistical model.

VOLUME 9, 2021 3551

M. Wess et al.: ANNETTE With Stacked Models

The analytical part of the model, namely the refined
roofline model, covers the step-wise linear shape of the tar-
get surface. Based on the refined roofline model, we can
determine at which points we want to perform measurements
for the statistical model. As mentioned in section V-A2,
we only select points with ueff = 1 for computing the
regression model for ustat . Therefore, the refined roofline
model improves the statistical model twofold: by refining the
area with ueff �= 1 and regarding the selection of points for
the measurements.

Due to the better choice of data points, the statistical model
will produce a better result with a lower risk of overfit-
ting. This also explains why the regression model based on
dataset 1 is outperforming the models with additional data
points. However, thanks to the analytical part of the mixed
model, we can still model the local shape of the surface.
We can say that while the analytical part is responsible for
modeling inefficiencies of the computational architecture,
the statistical model covers the memory architecture.

B. MAPPING MODELS
The last estimation module we present is the mapping model.
Themain objective is to predict whether two successive layers
have been fused or not. This is important for cases where
Ttotal �= T1 + T2, where Ttotal is the total execution time of
layers 1 and 2; T1 and T2 are the execution times of the two
layers when executed separately. As mentioned above, this
difference is mainly due to reduced off-chip data transfer and
pipelining effects. For the generation of the mapping models,
we use the input feature vectors �x previously defined for the
statistical model and aim to predict the values of the fused
flags extracted by the Graph Matcher in Section IV). We rely
on Decision Tree Classifiers to determine the rules for the
mapping prediction. For example, Fig. 8 shows a simplified
version of the decision tree for the fusion of a convolution
layer followed by a max-pooling layer. We can see that in
the example shown, the decision if the two layers are merged
or not depends mainly on whether a certain number of chan-
nels and filters in the convolution layer is exceeded or not.
We apply the same concept to all fused layer combinations
we were able to find in our evaluation networks in Tab. 2.

FIGURE 8. Sample decision tree for fusing pooling and convolution on
NCS2.

VI. ESTIMATION
For the network level estimation, we apply the stacked model
presented in Section III on a network description graph.
At first, we apply the mappingmodels to reconstruct the map-
ping of the platform mapping toolchain. For this, we iterate

through all directly connected layers and check whether they
should be fused or not. Afterwards, we apply the layer level
models on each remaining layer of the optimized graph. The
network execution time estimation T̂total is the sum of all
estimated layers T̂n.

Because of the different models available for each layer,
we implement the estimation framework in a way that we can
select the preferred model type but always use the roofline
model as a fallback solution so that the highest possible
number of layers execution times is always estimated.

VII. RESULTS AND PERFORMANCE ANALYSIS
To quantify the accuracy of the latency estimation methods
presented in Section III, we compare the estimated results to
measured times for 12 state-of-the-art DNNs listed in Tab. 2
from Xilinx Model Zoo [34] and a randomly selected subset
of 34 networks from the models generated in NASBench [21]
on target devices.

TABLE 2. Networks used to evaluate estimation accuracy.

A. EXPERIMENTAL SETUP
All experiments were performed with batch size 1 to achieve
the lowest possible latency, but by adding the batch-size
as an additional input parameter for the benchmark dataset
and by adding the batch size to the input feature vec-
tor of the estimation models, it would also be possible to
extend the method to larger batch sizes. For Xilinx DPU,
we used a ZCU102 evaluation board with a DPU config-
uration of 4096 MAC units. Measurements on the NCS2
were performedwith an Intel i5-4590 3.3 GHz host processor
equipped with 16 GB of RAM in synchronous mode. For
both platforms, we used the provided tools for mapping and
compilation. To assess the estimator performance, we use two
test sets.Test set 1 contains the 12DNNs listed in Table 2, and
we use it to evaluate in detail the performance for commonly
used networks.WithTest set 2, we aim to understand whether
ANNETTE could be used for a hardware-oriented neural
architecture search. Therefore, we randomly select 34 models
of the NASBench [35] neural architecture search dataset,
which contains a large variety of different architectures with
similar sizes, and evaluate the accuracy and fidelity of our
estimator.

3552 VOLUME 9, 2021

M. Wess et al.: ANNETTE With Stacked Models

FIGURE 9. The experimental setup for prediction accuracy evaluation.

Figure 9 shows the experimental setup. In the first phase,
the benchmarks from Section IV are executed on the target
platforms. The execution times of the layers are extracted
using the provided profiling tools and stored together with
the configuration files of the benchmarks. With the Model
Generator (Section V), the mapping and hardware abstraction
models are derived and made available to the Estimation Tool
(Section VI). In the second phase, the network graphs are
fed into the estimator. For evaluation, the resulting estimated
times are compared with the execution times measured on
the target device. The detailed information provided by the
profiling tools allows us to compare not only the total execu-
tion times of the networks but also the execution time of each
layer.

B. LAYER EXECUTION TIME MODELS
First, we evaluate the accuracy of the previously presented
layer execution time models. Tab. 3 reports the Mean-
Absolute-Error (MAE), the Mean-Absolute-Percentage-
Error (MAPE) and the Root-Mean-Square-Percentage-Error
(RMSPE) of the different layer models for all convolution
layers of the networks in Table 2. The results were estimated
andmeasured for both the NCS2 and the ZCU102 SoC-board.
Additionally, we also report the accuracy of other state-of-
the-art execution time prediction methods [16], [17].

TABLE 3. Layer execution time model evaluation for all convolution
layers of the networks in Table 2.

The mixed model outperforms the other model types for
both platforms in terms of MAE, MAPE and RMSPE. It is
noticeable that for the ZCU102, the refined roofline model

has a lower MAE than the statistical model. Since the MAE
is a non-weighted error metric, we conclude that for the
ZCU102, the refined roofline model predicts larger layers
more accurately than the statistical model.

For fair comparison to other state-of-the-art works, it has
to be mentioned that the reported numbers were measured
on a different set of networks1 and for a different set of
target devices. While the Paleo [16] and NeuralPower [17]
target server GPUs (Titan X), our work targets prediction
for specific accelerators for neural networks. However, even
in this case, the statistical prediction method outperforms
the analytical model. Nevertheless, analytical models are
easier to understand and can be easily adapted to similar
architectures, whereas a statistical model can only be based
on measurements. Additionally, we applied the NeuralPower
estimation method with our collected data for the NCS2 and
ZCU102, but we were not able to produce any useful results
with a MAPE lower than 1000%, so we don’t list the results
of this approach in Tab. 3. To our mind, these results are a
consequence of the bad extrapolation behavior of polynomial
functions, which are used for estimation in NeuralPower.

C. MAPPING MODELS
We evaluate the performance of the mapping models on the
dataset consisting of the layers from the example networks
generated by the Benchmark Tool. For the training data set,
we consider only the layer pairs that contain the target layer,
e.g., for training the decision tree that predicts whether a
pooling layer is fused or not, we include only layer pairs in
the data set, at least one of which is a pooling layer. Then we
select 80% of the samples for training and 20% for validation.
Tab. 4 shows the F1 score and the Matthews Correlation
Coefficient (MCC) for the fusing of element-wise addition
and pooling layers.

TABLE 4. Mapping model evaluation for fusing pooling and element-wise
addition with a preceding convolution layer.

Since the F1 score ignores true negatives, the MCC, which
depends on all four confusion matrix categories, should be
preferred for the evaluation of the binary classification [36].
It can be seen that the mapping prediction works quite well
for both platforms. However, the prediction for the DNNDK
(ZCU102) for both layer types achieves a higher F1 score
and MCC than the prediction for the NCS2. We assume that
the reasons for this are that the DNNDK is generally more
capable of merging several layers and that the optimization
behavior of the OpenVINO toolkit depends more on the

1Paleo and Neuralpower on VGG-16, AlexNet, NIN, Overfeat,
CIFAR10-6conv

VOLUME 9, 2021 3553

M. Wess et al.: ANNETTE With Stacked Models

architecture of the whole network than only on the parameter
settings of the individual layers.

D. EVALUATION FOR TEST SET 1
For evaluation of the generated platform models of the NCS2
and DNNDK, we perform the mapping and layer-wise esti-
mation for the models listed in Table 2. Then, we compare
the predicted network execution time with the measured time.
Table 5 shows the MAE and MAPE of all presented models
for the executed networks for the ZCU102 and NCS2.

Fig. 10 and Fig. 11 show the estimation accuracy of the
platform models. Due to moderate parallelization effects
on the NCS2, the roofline model and the refined roofline
model have similar performance. However, in some cases,
the refined roofline model provides slightly better predic-
tions. Also for the NCS2, the statistical and the mixed model
achieve almost almost similar performance with a MAPE
of 7.92% and 7.44%, respectively. Overall, the mixed model
consistently performs the best for the NCS2. Similarly, for the
ZCU102, the mixedmodel provides the most accurate predic-
tions with a MAPE of only 3.47%. Interestingly, in the case
of the ZCU102, for some of the networks, the refined roofline
model estimates the network execution time more accurately
than the statistical model. Since the refined roofline model
mainly covers reduced utilization efficiency due to the com-
putational architecture, we can conclude that for those cases,
the main inefficiency lies in the low utilization efficiency
of computational resources due to a parameter not align-
ing with the number of available multiplier resources (see
Seciton V-A1). The comparison to other state-of-the-art exe-
cution time estimators, which are also denoted in Tab. 2,

FIGURE 10. Accuracy of the estimated latency for the selected of Table 2
networks on NCS2.

FIGURE 11. Accuracy of the estimated latency for the selected Table 2 on
DNNDK.

TABLE 5. Network execution time estimation evaluation for all the
networks in Tab. 2. The mixed model outperforms the other models for
both platforms in MAE and MAPE.

is difficult since the necessary complexity of the model and
the resulting accuracy highly depends on the target device.
In addition, the evaluation performed in this work includes
more complex and larger networks with several different
layer types than in other works.

E. EVALUATION FOR TEST SET 2
To evaluate the accuracy of the estimations for design
space exploration, we perform the estimation for a randomly
selected subset of 34 network architectures generated for the
NASBench dataset. We select this dataset since it contains
several networks with similar sizes that were constructed for
the same task. Therefore it is more appropriate to evaluate
the fidelity of the estimation tool on Test Set 2. We assess
the performance on Test Set 2 for the NCS2, which was
performing worse on Test Set 1. Table 6 provides the MAE,
MAPE and Spearman’s rank correlation coefficient ρ as
fidelity metric. A perfect Spearman correlation of +1 occurs
when the variables are a perfect monotonically increasing
function of each other. This property makes ρ a valid measure
for fidelity [37].

TABLE 6. Fidelity and accuracy metrics for Test Set 2.

Fig. 12 shows the resulting estimated and measured time in
milliseconds for the NCS2. Due to the selected resolutions,
there is no difference between the results of the roofline
and the refined roofline model. Hence, also the statistical

FIGURE 12. NCS2 estimation performance for Test Set 2.

3554 VOLUME 9, 2021

M. Wess et al.: ANNETTE With Stacked Models

and mixed models achieve the same results. For Test Set 2,
the mixed/statistical modeling approach reaches almost a
Spearman’s rank correlation coefficient of +1 and outper-
forms the analytic models by more than 20 percentage points
in MAPE.

VIII. CONCLUSION
We propose a framework for execution time estimation for
neural network hardware accelerators. It is based on stacked
models, consisting of mapping models and mixed layer mod-
els. We generate the models based on micro-kernel and
multi-layer benchmark results and evaluate the performance
on two sets of networks for two selected hardware accel-
erators. Overall, the mixed models perform best. For a set
of 12 state-of-the-art DNNs, the estimation with mapping
models and mixed models reach a MAPE of only 3.47% on
the Xilinx ZCU102 SoC and 7.44% on the Intel NCS2 when
estimating total network execution times. For the use case
of design space exploration, we evaluate the fidelity of the
generated models by applying the estimation method on a
randomly selected subset of 34 models of the NASBench
dataset. The estimation with mapping models and mixed
layer models reaches fidelity of 0.988 in Spearman’s ρ rank
correlation coefficient metric. The evaluation demonstrates
the advantages of applying mixed models for the selected
hardware platforms. In the future, we aim to extend the eval-
uation to additional embedded hardware, such as the Nvidia
Jetson platform, to gain additional insights for a different
class of accelerators.

Due to the large parameter space of DNNs, one crucial
point for the development of the estimation framework is
to make assumptions about the computing architecture to
exclude as many non-meaningful measurement points as pos-
sible. An essential clue is the step-wise linear nature of archi-
tecture resources, such as an array of multipliers or caches.
They follow a linear performance trend until the cache or
the multiplier array is fully allocated. Besides, for a precise
estimation, it is important to consider not only the individual
layers in isolation but also how they are executed in the overall
context.

We are confident that accurate estimation methods can
significantly facilitate informed making of decisions. Nev-
ertheless, it is in the area of neural architecture search
where estimation can make a critical contribution to a
hardware-specific search or the right choice of networks and
hardware in advance of the development of applications.

REFERENCES
[1] C. Fruhwirth-Reisinger, G. Krispel, H. Possegger, and H. Bischof,

‘‘Towards data-driven multi-target tracking for autonomous driving,’’ in
Proc. 25th Comput. Vis. Winter Workshop (CVWW). Slovenia, Balkans,
2020, pp. 27–36.

[2] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng,
‘‘Cardiologist-level arrhythmia detection with convolutional neural net-
works,’’ CoRR, vol. abs/1707.01836, pp. 1–9, Jul. 2017.

[3] M. Wess, P. D. Sai Manoj, and A. Jantsch, ‘‘Neural network based ECG
anomaly detection on FPGA and trade-off analysis,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[4] J. Zhang and C. Zong, ‘‘Deep neural networks in machine translation: An
overview,’’ IEEE Intell. Syst., vol. 30, no. 5, pp. 16–25, Sep. 2015.

[5] F. Tung and G. Mori, ‘‘CLIP-Q: Deep network compression learning by
in-parallel pruning-quantization,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7873–7882.

[6] S. Srinivas and R. V. Babu, ‘‘Data-free parameter pruning for deep neural
networks,’’ CoRR, vol. abs/1507.06149, pp. 1–12, Jul. 2015.

[7] M. Wess, S. M. P. Dinakarrao, and A. Jantsch, ‘‘Weighted quantization-
regularization in DNNs for weight memory minimization toward HW
implementation,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 11, pp. 2929–2939, Nov. 2018.

[8] S. Shin, K. Hwang, and W. Sung, ‘‘Fixed-point performance analysis of
recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2016, pp. 976–980.

[9] D.Miyashita, E. H. Lee, and B.Murmann, ‘‘Convolutional neural networks
using logarithmic data representation,’’ 2016, arXiv:1603.01025. [Online].
Available: http://arxiv.org/abs/1603.01025

[10] M. Jaderberg, A. Vedaldi, and A. Zisserman, ‘‘Speeding up convolutional
neural networks with low rank expansions,’’ inProc. Brit. Mach. Vis. Conf.,
2014, pp. 1–12.

[11] C. Tai, T. Xiao, and X. Wang, ‘‘Convolutional Neural Networks with Low-
Rank Regularization,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2016,
pp. 1–11.

[12] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[13] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6848–6856.

[14] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,
and H. Adam, ‘‘NetAdapt: Platform-aware neural network adaptation for
mobile applications,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 285–300.

[15] H. Cai, L. Zhu, and S. Han, ‘‘ProxylessNAS: Direct neural architecture
search on target task and hardware,’’ in Proc. Int. Conf. Learn. Represent.
(ICLR), 2019, pp. 1–13.

[16] H. Qi, E. R. Sparks, and A. Talwalkar, ‘‘Paleo: A performance model for
deep neural networks,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2017,
pp. 1–10.

[17] E. Cai, D. Juan, D. Stamoulis, and D. Marculescu, ‘‘NeuralPower: Pre-
dict and deploy energy-efficient convolutional neural networks,’’ CoRR,
vol. abs/1710.05420, pp. 1–16, Oct. 2017.

[18] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher,
‘‘FastDeepIoT,’’ in SenSys. New York, NY, USA: ACM Press, 2018.

[19] D. Velasco-Montero, J. Fernandez-Berni, R. Carmona-Galan, and
A. Rodriguez-Vazquez, ‘‘PreVIous: A methodology for prediction of
visual inference performance on IoT devices,’’ IEEE Internet Things
J., vol. 7, no. 10, pp. 9227–9240, Oct. 2020.

[20] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D. Lane,
‘‘EmBench,’’ in Proc. 3rd Int. Workshop Deep Learn. Mobile Syst. Appl.,
2019, pp. 7–13.

[21] C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter,
‘‘NAS-bench-101: Towards reproducible neural architecture search,’’ in
Proc. Int. Conf. Mach. Learn. (ICML), vol. 97, Jun. 2019, pp. 7105–7114.

[22] V. J. Reddi, C. Cheng, D. Kanter, and P. Mattson, ‘‘Mlperf inference
benchmark,’’ CoRR, vol. abs/1911.02549, pp. 1–5, Dec. 2019.

[23] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis,
K. Olukotun, C. Ré, and M. Zaharia, ‘‘Dawnbench: An end-to-end deep
learning benchmark and competition,’’ Training, vol. 100, no. 101, p. 102,
2017.

[24] B. Wu, K. Keutzer, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,
P. Vajda, and Y. Jia, ‘‘FBNet: hardware-aware efficient ConvNet design
via differentiable neural architecture search,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, p. 10.

[25] X. Dai, A. Wan, P. Zhang, B. Wu, Z. He, Z. Wei, K. Chen, Y. Tian, M. Yu,
P. Vajda, and J. E. Gonzalez, ‘‘FBNetV3: Joint architecture-recipe search
using neural acquisition function,’’ 2020, arXiv:2006.02049. [Online].
Available: http://arxiv.org/abs/2006.02049

[26] A. Shaw, D. Hunter, F. Landola, and S. Sidhu, ‘‘SqueezeNAS: Fast neural
architecture search for faster semantic segmentation,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis. Workshop (ICCVW), Seoul, South Korea, 2019,
pp. 2014–2024.

VOLUME 9, 2021 3555

M. Wess et al.: ANNETTE With Stacked Models

[27] T. Tang and Y. Xie, ‘‘Mlpat: A power area timing modeling framework for
machine learning accelerators,’’ in Proc. DOSSAWorkshop, 2018, pp. 1–3.

[28] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, ‘‘DNN-chip
predictor: An analytical performance predictor for DNN accelerators with
various dataflows and hardware architectures,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Barcelona, Spain, May 2020,
pp. 1593–1597, doi: 10.1109/ICASSP40776.2020.9053977.

[29] Xilinx. (2020). Xilinx Deep Neural Network Development Kit.
Accessed: Apr. 17, 2020. [Online]. Available: https://www.xilinx.
com/products/design-tools/ai-inference/edge-ai-platf%orm.html#dnndk

[30] Intel. (2018). OpenVINO Toolkit. Accessed: Dec. 12, 2018. [Online].
Available: https://software.intel.com/en-us/openvino-toolkit

[31] M. Alwani, H. Chen, M. Ferdman, and P. Milder, ‘‘Fused-layer CNN
accelerators,’’ inProc. 49th Annu. IEEE/ACM Int. Symp.Microarchitecture
(MICRO), Oct. 2016, pp. 1–12.

[32] S. Williams, A. Waterman, and D. Patterson, ‘‘Roofline: An insightful
visual performance model for multicore architectures,’’ Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[33] Y. Chen, T. Yang, J. S. Emer, andV. Sze, ‘‘Eyeriss v2: Aflexible accelerator
for emerging deep neural networks on mobile devices,’’ IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308, Jun. 2019, doi:
10.1109/JETCAS.2019.2910232.

[34] Xilinx. (2020). Xilinx AI-Model-Zoo. Accessed: Apr. 17, 2020-04-17.
[Online]. Available: https://github.com/Xilinx/AI-Model-Zoo

[35] C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hut-
ter, ‘‘Nas-bench-101: Towards reproducible neural architecture search,’’
CoRR, vol. abs/1902.09635, pp. 1–15, May 2019.

[36] D. Chicco and G. Jurman, ‘‘The advantages of the matthews correlation
coefficient (MCC) over f1 score and accuracy in binary classification
evaluation,’’ BMC Genomics, vol. 21, no. 1, Jan. 2020.

[37] H. Javaid, A. Ignjatovic, and S. Parameswaran, ‘‘Fidelity metrics for
estimation models,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2010, pp. 1–8.

MATTHIAS WESS received the B.Sc. and M.Sc.
degrees from the Department of Electrical Engi-
neering, TU Wien, Vienna, Austria, in 2013 and
2017, respectively, where he is currently pursuing
the Ph.D. degree with the Institute for Computer
Technology. He is part of the Christian Doppler
Laboratory for Embedded Machine Learning at
TU Wien, Austria. His current research interests
include hardware acceleration of deep neural net-
works and energy-efficient machine learning

MATVEY IVANOV is currently pursuing the bach-
elor’s degree with the Faculty of Electrical Engi-
neering and Information Technology, TU Wien,
Austria. Since 2019, he has been part of the Chris-
tian Doppler Laboratory for Embedded Machine
Learning at TU Wien.

CHRISTOPH UNGER received the B.Sc. degree
in computer engineering and the M.Sc. degree in
automation and control from TU Wien, Vienna,
Austria, in 2015 and 2020, respectively, where he
is currently pursuing the Ph.D. degree with the
Automation and Control Institute (ACIN). He is
currently a Researcher with ACIN, TU Wien. His
work is focused on the topics of machine intelli-
gent control as well as skill transfer learning in
the area of robotics. His research interests include

robotics, generative deep learning, and intelligent and optimal-based control.

ANVESH NOOKALA received the Bachelor of
Science degree in electrical engineering from TU
Wien, in 2019, where he is currently pursuing the
master’s degree in embedded systems, with a focus
on a range of topics such asmechatronics, machine
vision, computer systems, and electronics design.
Parallel to his studies, he is part of the Siemens
Electronics Research Group, Vienna, where his
work is focused on hardware for artificial intelli-
gence and related topics.

ALEXANDER WENDT (Member, IEEE) received
the degree in technical physics, in 2007, and
the Ph.D. degree in decision making in artificial
intelligence, in 2016. He is currently a Research
Coordinator with the Christian Doppler Labora-
tory for Embedded Machine Learning, TU Wien,
Austria. After successfully completing his degree,
he worked as a Safety Engineer with Frequentis
AG. Until 2020, he focused on software architec-
tures for smart grids and cognitive architectures as

control systems in buildings. Since 2020, his research focus is on the char-
acterization and optimization of neural networks for embedded hardware.
He has published more than 30 articles, acted as the session chair in sessions
about machine learning and cognitive architectures.

AXEL JANTSCH (Senior Member, IEEE) received
the Dipl.Ing. degree and the Ph.D. degree in com-
puter science from TU Wien, Vienna, Austria,
in 1987 and 1992, respectively.

From 1997 to 2002, he was an Associate Pro-
fessor with KTH Royal Institute of Technology,
Stockholm. From 2002 to 2014, he was a Full
Professor in electronic systems design at KTH.
Since 2014, he has been a Professor of systems on
chips with the Institute of Computer Technology,

TUWien. His current research interests include systems on chips, self-aware
cyber-physical systems, and embedded machine learning. He has published
five books as an editor and one as an author and over 300 peer-reviewed
contributions in journals, books, and conference proceedings. He has given
over 100 invited presentations at conferences, universities, and companies.

3556 VOLUME 9, 2021

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Conformal Prediction based Confidence for
Latency Estimation of DNN Accelerators: A
Black-box Approach
MATTHIAS WESS1,2, DANIEL SCHNÖLL1,2,DOMINIK DALLINGER1,2,MATTHIAS BITTNER1,2 and
AXEL JANTSCH1,2
1Institute of Computer Technology, TU Wien, 1040 Vienna, Austria
2Christian Doppler Laboratory for Embedded Machine Learning, Institute of Computer Technology, TU Wien, 1040 Vienna, Austria

Corresponding author: Matthias Wess (e-mail: matthias.wess@tuwien.ac.at).

This work was supported in part by the Austrian Federal Ministry for Digital and Economic Affairs, in part by the National Foundation for
Research, Technology and Development, and in part by the Christian Doppler Research Association.

ABSTRACT Today, there exists a large number of different embedded hardware platforms for accelerating
the inference of Deep Neural Networks (DNNs). To enable rapid application development, a number of
prediction frameworks have been proposed to estimate the DNN inference latency on a wide range of
hardware platforms. This work presents a novel smart padding benchmarking method, which allows the
profiling of hardware platforms without requiring detailed per-layer reports. To mitigate the measurement
inaccuracies inherent in the black-box approach, a confidence framework comprising three metrics has been
developed. These metrics not only enhance the interpretation of prediction results but also significantly
contribute to the refinement of the estimation framework itself. Empirical results demonstrate the method’s
robustness, with average prediction errors minimized to below 10% for smart padding benchmarking-based
ANNETTE predictions for the Jetson Xavier, NXP i.MX93 and NXP i.MX8M+.

INDEX TERMS Estimation, Latency, Confidence, Neural Network Hardware, Conformal Prediction

I. INTRODUCTION

THE vast design space of optimization, pruning, quan-
tization and mapping DNNs on embedded hardware

platforms makes it almost impossible to quickly find the
best fitting solution for an application. Neural Architecture
Search (NAS) [1], [2] provides a means to achieve a DNN
optimized with regards to certain requirements. Specifically
in hardware-aware NAS the inference latency is often used
as the target constraint and therefore needs to be computed
or measured for each selected DNN architecture. To avoid
the need to deploy each DNN on the requested platforms,
various approaches have been proposed to predict the infer-
ence latency. Solutions to this problem range from the use of
simple proxy metrics (such as the number of floating point
operations) [3] and analytical models [4], [5] to Graph Con-
volutional Networks (GCNs) [6], [7]. Some solutions focus
on specific design spaces to enable hardware-aware NAS and
therefore provide limited generalization capabilities. Other
methods (e.g. ANNETTE [5], nn-Meter [8]) aim to provide
accurate predictions for a wide range of applications and
cover the aspects of graph optimizations in a separate step

to correctly model all steps in the deployment flow.

Our goal is to address two challenges related to benchmark-
ing and predicting the inference time of neural networks on
constrained devices. First, benchmarking hardware platforms
for specific DNNs is challenging due to layer fusion, de-
pendencies on layer sequences, data loading effects, interfer-
ence of profiling techniques with execution time, and other
complications. Additionally, it is important to gain insights
not only for entire networks but also at the per-layer level.
Currently, achieving this level of detail necessitates the use of
per-layer profiling results to accurately model execution time.
However, there are situations where implementing per-layer
profiling is not feasible or requires additional implementation
effort. We tackle this challenge by developing an intelligent
benchmarking strategy that allows for the generation of per-
layer abstraction models without relying on detailed insights.

Second, a latency estimate is only useful to designers if
they know to which extent it can be trusted. How can we en-
sure the comparability of models and how can we trust models
trained on limited data points? To address this concern, we
propose three novel confidence metrics. These metrics pro-

VOLUME 11, 2023 1

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

vide quantitative measures of the reliability of our latency
prediction models, enabling informed decision-making when
comparing hardware platforms using prediction algorithms.

Specifically, this paper makes the following contributions:

• We propose a method for profiling the latency of DNN
inference on hardware with padded models;

• We propose a conformal prediction framework for DNN
latency prediction to quantify the confidence of the pre-
dicted values.

II. RELATED WORK
a: Latency prediction
The goal of latency prediction is to estimate the total ex-
ecution time of a network composed of a sequence of N
layers L = {l1, l2, ..., lN}. Each layer in the DNN has spe-
cific attributes and parameters that define its configuration,
computation needs, and connections to other layers. These
connections determine the data flow through the entire net-
work. Current approaches for DNN latency prediction range
from simple analytical models based on the roofline model [5]
to elaborate Machine Learning (ML) based latency estima-
tors [9]. These ML based prediction algorithms are trained on
collected datasets Z = {(x⃗1, y1), (x⃗2, y2), ...}, where x⃗i are
the feature vectors, describing layer i, and yi are the values
to be predicted. In the case of latency estimation, the target
values can represent for example time or compute efficiency.
As a result, ML based prediction algorithms are not limited to
a specific hardware platform. They show good accuracy [10]–
[12] but are mostly limited to the selected design space and
are usually not designed for general network prediction.

Analytical prediction methods such as those presented in
[13] and [14] provide high prediction accuracy for the target
hardware platforms. However, they require in-depth hardware
knowledge and are therefore not suitable when in-depth ar-
chitecture details cannot be obtained due to confidentiality or
when the required effort is excessive.

The latency prediction framework Blackthorn [4] encom-
passes analytical models constructed based on several mea-
surement points. The focus of Blackthorn is on finding op-
timal measurement points to reduce the required amount of
overall measurements to profile NVIDIA Graphic Processing
Units (GPUs).

The framework ANNETTE [5] provides analytical models
based on a refinement of the roofline model which, in addition
to the compute and memory boundary, also takes into account
the underlying compute architecture. In addition, ANNETTE
relies on random forest regression models predicting the per-
operator compute efficiency and also deploys decision trees
to predict operator fusion rules.

Other similar approaches with iterative improvements and
slightly different focus with regard to the profiled hard-
ware [15], [16] have been proposed. nn-Meter [8] focuses
on the prediction of mobile devices and deploys similar
principles as ANNETTE relying on a larger training dataset.
MAPLE-X [17] incorporates explicit prior knowledge of

hardware devices to improve the prediction accuracy for
newly benchmarked devices.

Finally, Graph Neural Networks (GNNs) offer the option
to operate directly on the graph structure of the DNN to be
predicted. Sectum [18] deploys a GNN to detect memory
over-commitment in addition to an ANNETTE-like structure.
While frameworks like DNNPerf [9] and GENNAPE [19]
focus on the prediction of other DNN performance param-
eters (such as accuracy, training time, etc.), PerfSAGE [7]
and DIPPM [20] rely on GNNs to predict latency, energy, and
memory consumption and promise high prediction accuracy
for different classes of network architectures. In both cases,
the GraphSAGE architecture is deployed in different variants.
Lastly, SLAPP [6] applies GNNs at sub-graph level to pre-
serve the advantage of gained insights through per-operator
prediction but still relying on a large number of data points.

The black-box approach using smart padding, presented in
this work, can be a valuable method for most of the ML based
latency estimation frameworks. Even though the technique
does not replace detailed per-layer profiles, it enables in-
model latency measurement of single layers or blocks of
layers while decreasing the required effort for implementing
overhead-free per-layer profiling tools.

b: Conformal prediction
The conformal prediction framework, introduced by Vovk,
Grammerman and Shafer [21], [22] provides a general
method for quantifying the uncertainty of predictions for
arbitrary prediction algorithms and provides guarantees on
the prediction error. Traditionally, confidence intervals are
estimated using quantile regression [23], [24] or Bayesian
methods [25]. In the context of this work, which leverages
random forest regression [26], conformal prediction is par-
ticularly beneficial for uncertainty quantification, as it not
only demonstrates good efficiency [27] but also ensures broad
applicability across different machine learning algorithms.
Furthermore, conformal prediction offers many additional ad-
vantages, such as its straightforward interpretability, model-
agnostic nature, and adaptability.

For uncertainty quantification, conformal prediction relies
on the computation of a nonconformity score α for each
instance in a calibration set distinct from the initial training
set. In regression, α is typically computed as the absolute
errorαj = |ŷj−yj| [27], where ŷ is the predicted value. For the
prediction of confidence intervals with significance δ, these
calculated nonconformity scores are used to formulate the
prediction region for each instance j as Ŷj

δ
= ŷj ± α(δ) [27].

This means the predicted region Ŷ will cover the true value
of y with probability p = 1 − δ. In the standard case, this
results in confidence intervals of uniform width across all
input feature vectors x⃗.

Thus, to minimize the average interval width, it is possi-
ble to implement normalized nonconformity functions [28].
Here, the nonconformity scores are scaled by σ, an estimate of
the model’s accuracy for the predicted instance. The resulting

2 VOLUME 11, 2023

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

prediction regions are then computed as Ŷj
δ
= ŷj ± α(δ) · σj.

This quality estimate can be obtained by various methods,
such as predicting the errors with additional trained models
or using the errors of the k nearest neighbors. Conformal
prediction has been successfully applied in various domains,
including medical diagnosis [29], face recognition [30], and
financial risk prediction [31]. However, to our knowledge,
this work presents the first approach to leverage conformal
prediction for confidence estimation in latency estimation of
DNNs.

III. METHODOLOGY
Currently, for latency estimation of DNN hardware accelera-
tors, we encounter two primary challenges:

1. Across the broad spectrum of available DNN accelera-
tors the availability of knowledge, insight, and profiling
tools varies widely. This diversity necessitates tailored
benchmarking and modeling approaches for each type.

2. The accuracy of latency prediction models varies
widely due to variations in benchmarking methodolo-
gies, dataset size (e.g. limited due to the compilation
time), and hardware architectures. These issues com-
promise the reliability of latency estimates and affect
the coverage of the DNN design space.

The following sections address the identified challenges in
estimating latency for DNN hardware. Section III-A provides
an overview of the model generation process, highlighting
the additions to the latency estimation framework. To tackle
issue (1), Section III-B presents a flexible methodology that
allows us to profile hardware platforms based on a minimal
requirement on the available hardware insights and profiling
possibilities. Lastly, to address the diverse latency prediction
model quality (2), in Section III-C we propose the application
of conformal prediction methods as measures for the confi-
dence of the per-layer and per-network estimation.

A. OVERVIEW
Figure 1 depicts the usual stages to compile a trained Neural
Network (NN) for hardware inference:

• The trained DNN model is exported from a training
framework such as Tensorflow or Pytorch to an inter-
mediate exchange format (e.g. ONNX, TFlite).

• Backend independent optimizations are applied to
optimize the graph for inference. These can include
removing layers from the graph that are only required
for training (e.g. Dropout), or fusing layers while still
maintaining mathematical equivalency (e.g. Batch Nor-
malization). While most inference frameworks apply
this step automatically, it is still recommended to make
use of tools such as NVIDIA’s ONNX-GraphSurgeon 1

or ONNX-simplifier 2 in a separate step. Hence, this step
can similarly be applied in the latency estimation flow.

1https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon
2https://github.com/daquexian/onnx-simplifier

Backend Dependent Optimizations
(e.g. Opterator Fusion, specific Quantization, ...)

Backend 1
TensorRT

Jetson Xavier

DNN Model
(e.g. ONNX, TFlite, ...)

Backend Independet Optimizations
(e.g. Batch Norm Fusion, Pruning, ...)

Backend 2
TFlite Runtime
NXP i.MX93

Backend 3
TFlite Runtime

NXP i.MX8

Hardware Specific Flow

Hardware Independent Flow

FIGURE 1. Overview of the compilation flow for inference on embedded
hardware platforms.

• Backend dependent optimizations represent the
changes applied to the DNN model, that are either
required or beneficial with regard to latency and/or
efficiency, and which are not executable on all hard-
ware platforms. Since each hardware platform provides
a different set of operations and possibly allows for
multiple operations in a pipelined manner (composite
layers) to reduce data transfer these optimizations need
to be considered in the estimation framework [5], [8].

• Lastly, the model is compiled and executed on the
hardware platform using the hardware-specific inference
backend. Some compilers provide different optimiza-
tion targets (e.g. latency, memory) or optimize the work-
load for a specific hardware setting. It has to be con-
sidered that, with the current methods, each prediction
model can only provide the predictions for one specific
combination of compiler and hardware settings.

From the inference workflow, there are different levels
of insights that can be gathered and used for the latency
estimation framework:

• DNN graph before and after backend-dependent opti-
mization

• Per layer latencies
• Overall network latency
Ideally, these insights not only include the hardware map-

ping of the computational graph but also precise timing for
each layer. This would allow for the development of accurate
latency estimation models and the identification of further
optimizations, such as combining individual layers into com-
posite layers. In this context, Composite layers refer to the
fusion of multiple neural network operations (e.g., Conv2D
+ ReLU + MaxPool) into a single operation executed as one
unit, enhancing processing efficiency and reducing latency.

However, the level of detail available in profiling data can
vary significantly across different hardware platforms. Some
allow for more detailed analysis than others. Additionally,
the generation of per-layer reports can also lead to addi-

VOLUME 11, 2023 3

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

NPU

Clock and
power

module

Central
control

Output unit

Weight
decoder

MAC unit

Shared
buffer

DMA
controller

AXI
AXI

APB
IRQ

Clock Q-Channel
Power Q-Channel

FIGURE 2. Blockdiagram of the ARM Ethos NPU [32].

tional overhead resulting in inaccurate latency measurements.
In cases where direct profiling at this level is not feasible,
alternative methods, like employing GNNs for overall net-
work latency estimation or block-wise estimation [11], have
been explored. However, these approaches do not provide
insights at the layer-level and are limited in their coverage
of the design space, as they cannot account for all possible
blocks and network configurations in the training dataset.
The experiments conducted in this study demonstrate that
simply benchmarking each layer type through single-layer
measurements (profiling NNs consisting of only one layer)
does not yield the required level of measurement accuracy.
This is due to the overhead associated with data transfer at
the start and end of the execution.

Taking a closer look at the block diagram of an ARM Ethos
Neural Processing Unit (NPU) (see Figure 2), we can gain
insight into the underlying cause of this overhead. During
the computation of the NN the intermediate feature maps
are stored in a shared buffer, which is tightly coupled to
the compute units. This setup enables fast data transfer and
optimal compute efficiency. However, at the start and end of
the NN inference, data must be transferred via the AXI-bus
into or from this shared buffer. Additionally, potential data
reordering or similar steps can further impede the speed of
this process.

Considering the benchmarked hardware as a black-box,
without in-depth knowledge of the specific relationships be-
tween the amount of transferred or processed data and the
resulting latency, the developed methodology therefore needs
to be able to account for this overhead. Furthermore, the
implemented confidence metrics should reflect the added es-
timation uncertainty stemming from the black-box approach.

For this work, we build on Accurate Neural Network Ex-
ectution Time Estimation (ANNETTE) [5], an open-source

Estimation Tool

Conformal Prediction

Model Generator

Conformal Prediction

Benchmark Tool

DNN
Model

Single Layer Models

Smart Padding Models

Fusion Rule Models

Latency Prediction Quality Estimation

Latency Prediction

Summation

Bootstrapping
Quality Estimation

FIGURE 3. Overview of the Components in ANNETTE. The color-shaded
components are added in this work.

framework for NN latency estimation on embedded hardware
platforms. Figure 3 provides an overview of the modules of
ANNETTE and the components that are added for this work.

The ANNETTE workflow comprises two phases: the char-
acterization phase and the estimation phase. Initially, in the
characterization phase, Benchmark Tool (Fig. 3) executes
the benchmarks on the hardware, by autonomously measuring
the latencies for a set of parametric dummy network models
and stores the results in a data frame. Subsequently, theModel
Generator utilizes this data to generate prediction models for
the assessed layer types and fusion rules. Predominantly, the
end user interacts with the Estimation Tool, which loads a
DNN model description in ONNX format and predicts the
latency using the previously generated models. This work
relies on the random forest-based estimation models of AN-
NETTE. However, it is possible to apply the same methodol-
ogy to other latency estimation frameworks, such as nn-Meter
or PerfSAGE since they are compatible with the conformal
prediction approach [33].

To facilitate the proposed black-box benchmarking ap-
proach, the set of benchmarks is expanded with smart padding
models (described in Section III-B). To enable uncertainty
quantification for latency prediction, we apply conformal pre-
diction methods to the random forest regression models (see
Section III-C). This requires modifications to both the Model
Generator and theEstimation Tool to support the conformal
prediction framework. Specifically, the Model Generator is
extended to include support for training the quality estimators
and calculating non-conformity scores. Updates to the Esti-

4 VOLUME 11, 2023

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Definitions of Time-Related Symbols

Symbol Definition
t Latency
T Latency Interval

tdata_in / tdata_out Data transfer latency
tcomp Computation latency
LUM Layer Under Measurement
t̂ Predicted Latency
T̂ Predicted Latency Interval
T Measured Latency

mation Tool enable the inference of conformal prediction,
including the quality estimators, and the use of bootstrapping
to compute the per-network confidence metrics.

B. BLACK-BOX BENCHMARKING
This section describes the techniques used to achieve per-
layer prediction models for hardware with limited profiling
capabilities. The notation used in this section is outlined in
Table 1.

As mentioned in Section III-A, when measuring individual
layers, there is additional overhead due to data transfer times,
complicating the accurate assessment of execution times.
The measured execution time T of a NN on hardware that
executes layer by layer is determined by the computation time
tcomp,i per layer, as well as the additional data transfer times
tdata_in and tdata_out.

T = tdata_in + tdata_out +

layers�
i=1

tcomp,i (1)

As a result, when benchmarking single-layer models based
on the measured latency of the entire model, the estimator will
overestimate the execution time of multi-layer models (see
Section IV). Figure 4 illustrates a model with three layers.
The effects of pipelining result in the overlaps of the compute
and actual data read and data write times (t ′data_in and t ′data_out)
since the compute unit can start computation without having
all the data available. While in most cases t ′data_in and t ′data_out
are proportional to the amount of data to be transferred, due to
the irregular pipelining effects, estimating tdata_in and tdata_out

is more complicated and requires a different approach.
At this point, the main challenge lies in disentangling the

data read/write times from the computation latency of the
Layer Under Measurement (LUM) tLUM. At first glance,
this task may seem straightforward; however, the intricate
relationship between layer configuration and the dimensions
of the resulting input and output feature maps requires a smart
approach. To address this issue, we propose a smart padding
strategy to measure the computation latency of the LUM
within a multi-layer model. Figure 5 depicts the models for
the smart padding strategy (Figure 5b,c), alongside a simple
single-layer model (Figure 5a). Our strategy is based on two
key concepts: firstly, to reduce data transfer times (tdata_in and
tdata_out) to a bare minimum, thereby mitigating their impact
on the latency measurements. Secondly, we independently
measure the execution latency of a padding-only model. This

Layer 1

Data In

Layer 3

Layer 2

Data Out

tdata_in

tcomp,1

tcomp,2

tcomp,3

tdata_out

t'data_in

t'data_out

FIGURE 4. Relationship between measured, compute and data transfer
times for a DNN with three layers.

enables the calculation of T LUM by subtracting the times of
the padding-only models (Figure 5b) from the padded layer
model (Figure 5c).

According to Equation 1, the measured latency T a for the
single layer model includes the data transfer times (tdata_in,
tdata_out) and the actual computation time tLUM. The padded
model consists of the LUM padded by an input and output
padding 1×1 2D convolution layer with cin=1 input channels,
for the input padding layer and cout=1 output channels for the
output padding layer. However, to calculate tLUM accurately,
those padding layers also need to be benchmarked separately.
To minimize the error when calculating the latency of the
LUM, we construct those padding-only models by pairing
input and output padding convolution layers with matching
dimensions. Therefore, each measured padding-only model
consists of two convolution layers with the same number
of operations and equal data input and output dimensions.
Equations 2 and 3 describe T b,n and T c.

T b,n = tpadding_in,n + tpadding_out,n (2)

T c = tpadding_in,1 + tLUM + tpadding_out,2 (3)

Padding the LUM with convolutional layers at the input
and output offers two major advantages: Firstly, it reduces
the amount of input data transfer to a minimum since cin

and cout can be set to 1. Consequently, we only need to
determine the latency of the padding layers including the data
transfer times. Secondly, using padding layers allows us to
profile layers with different input and output dimensions (e.g.
convolution layers with stride) compared to other solutions
such as repeating the same layer multiple times.

The algorithm for computing all TLUM is summarized in
Algorithm 1. Firstly, we measure the latency of the padding-
only models with configuration sets characterized by the
height (h), width (w), and channel dimensions (cin and cout).
These measurements allow the creation of an exhaustive look-
up table that accounts for any combination of input and output
padding dimensions required for the padded layer models.

VOLUME 11, 2023 5

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Conv In Pad

Data In Pad

Data Out Pad

Conv In Pad

Data In Pad

Data Out Pad
Layer under Measurement

Layer under Measurement

Data In

Data Out

Conv Out Pad

Conv Out Pad

b) Padding-only Model

cin

cout

cpad = 1

cin

cpad = 1

cpad = 1

cpad = 1

cin

cout

a) Single Layer Model c) Padded Layer Model

Conv In Pad

Data In Pad

Data Out Pad

Conv Out Pad

cout

cpad = 1

cpad = 1

t L
U

M

t p
ad

di
ng

_i
n,

1
t p

ad
di

ng
_o

ut
,1

t p
ad

di
ng

_i
n,

2
t p

ad
di

ng
_o

ut
,2

t p
ad

di
ng

_i
n,

1
t p

ad
di

ng
_o

ut
,2

t L
U

M

Smart Padding

FIGURE 5. The three models used for benchmarking the different platforms. The Single Layer Model (a) is the simplest way but does not provide accurate
measurements of tLUM. The black-box benchmarking method makes use of padding-only (b) and padded layer models (c) to solve this problem.

Algorithm 1 Smart Padding for Latency Benchmarking
Initialize look-up table for padding-only models
for each required combination of padding-only model do

Construct the padding-only models as in Fig. 5b
Measure total latency Tb,1

Measure total latency Tb,2

Store Tb,1 and Tb,2 in the look-up table
end for
for each LUM to be measured do

Construct a padded layer model as in Fig. 5c
Measure total latency Tc

Load correct Tb,1 and Tb,2 from look-up table
Compute TLUM using the Equation 4

end for

Secondly, the latencies for the padded layer models are mea-
sured. However, by using Equations 2 and 3 it is neither
possible to determine tLUM nor the distribution between the
input and output padding layers (tpadding_in,1 and tpadding_out,2).

For layers where the dimensions of the input padding
layer and the output padding layer are not identical, without
per-layer profiling, the exact numbers for tpadding_in,1 and
tpadding_out,2 are not obtainable. However, it is possible to
compute the upper and lower bound of the latency interval
of the LUM with:

tLUM_upper := T c − min
n∈{1,2}

(T b,n)

tLUM_lower := T c − max
n∈{1,2}

(T b,n)

TLUM := [tLUM_lower, tLUM_upper] (4)

Compared to alternative methods, smart padding drasti-
cally reduces the interval width of TLUM. This is due to the
small number of additional operations and minimized data
transfer of the padding layers. For example, when measuring
the single layer model of a 2D convolution layer with a stride
of 1, the time required for data transfer is proportional to
w ·h ·(cin+cout). Here, w and h represent the width and height
of the layer, while cin and cout refer to the number of input and
output channels, respectively. The computation time scales
withw·h·cin ·cout ·kheight ·kwidth, where kh and kw are the kernel
height and width. In contrast, when considering the padded
layer model, the data transfer time remains the same for the
input and output padding. However, the computation time
for the entire model is now determined by the computation
time of the LUM and an additional term that accounts for the
computation time padding layers.

tcomp_padded ∝ w · h · cin · cout · kh · kw

+win · hin · cin + wout · hout · cout
(5)

This means that the resulting width of the possible latency
interval is the difference between T b,1 and T b,2. As a result,
there are three major possible outcomes:

1) cin = cout, win = wout, hin = hout:
tLUM_upper = tLUM_lower as a result of T b,1 = T b,2

6 VOLUME 11, 2023

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

50 100 150 200 250

cout

0

1

2

3

4

5

ti
m

e
 (
m
s
)

a (single layer)

c (padded layer)

b, 1 (padding in)

b, 2 (padding out)

TLUM

med(TLUM)

FIGURE 6. Computed and measured times for the three models of a 2D
convolution layer with cin = 64, cout ∈ [1, 256], h = 64, w = 64 for the
i.MX93

50 100 150 200 250

cout

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ti
m

e
 (
m
s
)

a (single layer)

c (padded layer)

b, 1 (padding in)

b, 2 (padding out)

TLUM

med(TLUM)

FIGURE 7. Computed and measured times for the three models of a 2D
convolution layer with cin = 64, cout ∈ [1, 256], h = 64, w = 64 for the
Jetson Xavier

2) cin ̸= cout, win = wout, hin = hout:
The error margin is dominated by the difference in
computation time of the input and output padding layers

3) cin ̸= cout, win ̸= wout, hin ̸= hout:
The error margin is composed of the difference in
computation time and data transfer time of the input and
output padding layers

As an example, Figures 6 and 7 depict the computed T LUM

for the case 2 (cin ̸= cout, win = wout, hin = hout). We
note that the computed median and error interval of tLUM are
magnitudes smaller than the measured T a for the single layer
model on the NXP i.MX93 development board (i.MX93) and
the NVIDIA Jetson Xavier AGX (Jetson Xavier).

For the final dataset generation, T LUM is computed for
each individual padded model measurement alongside the
calculated interval. Using this method, we can utilize the
smart padding benchmarks for the layer model generation
as described in [4], [5], [8]. In general, the decision to use
2D convolution layers (including a non-linearity) as padding
layers is motivated by two main factors.

Firstly, unlike when padding with slicing or concatenation
operations, it ensures that there is no possibility for the com-
piler to further simplify the computation graph. Secondly, the

same procedure can be applied to 1D and 3D convolutions
while still achieving a similar reduction in operations and data
transfer. Lastly, based on our understanding, the presented
method of smart padding could be applied to other operators
that meet those specific requirements.

C. LATENCY ESTIMATION WITH CONFIDENCE
The primary target of latency estimation frameworks is to
accurately predict the application of optimization strategies
layer execution time of DNNs. However, incorporating con-
fidence metrics into latency prediction frameworks signifi-
cantly improves their interpretability and practical usefulness.
This enhancement not only provides insights into the preci-
sion of the predictions but also informs downstream decision-
making processes by flagging areas of low certainty. The
implementation of confidence metrics should improve the
usability of the predictors for two primary applications:

• Hardware PlatformSelection: Since the modeling pro-
cess does not work with the same accuracy for each
hardware platform, providing a confidence level helps
in selecting the most appropriate hardware platform.

• Network Architecture Comparison: When comparing
DNNs with different layer types and configurations, it
is important to understand which layers are outside the
distribution of the training datasets and therefore not
correctly predicted by the estimator.

Based on these two major use-cases, the confidence metrics
should demonstrate several key properties at both the layer
and accelerator levels. The confidence metric should:

1) Take into account the method of data acquisition, pro-
viding insights into the reliability of the data, especially
in cases where the black-box measurement method
from Section III-B is deployed.

2) Enable comparison of confidence in estimation at the
levels of per-layer compute efficiency and per-layer
latency.

3) Assess the coverage of the benchmark dataset and
identify configurations of layers that are outside of the
benchmarked design space.

To implement such confidence metrics, we rely on the
conformal prediction framework which offers various options
to generate statistically valid prediction regions for any un-
derlying point predictor [21], [22]. As a result, we implement
three confidence metrics that enable the comparison of DNNs
prediction results and the underlying prediction models, on
layer and network level:

• Confidence Metric Throughput Variance (CMTV)
• Confidence Metric Latency Variance (CMLV)
• Confidence Metric Outliers (CMO)

In this work, the primary emphasis is on the prediction con-
fidence of layer time predictors.

Although the prediction of model optimizations performed
by the optimization toolchain is also crucial in accurately
estimating total network execution times, it is not the central
focus of this study. The motivation behind this decision is

VOLUME 11, 2023 7

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Conformal Prediction

Layer 3
Layer 2

Layer 1

s/Operation Regressor
(Random Forest)

Confidence Metric (LV)

Confidence Metric (Outlier)

Confidence Metric (TV)
- Variance Estimator
- Throughput calibrated

- Variance Estimator
- Latency calibrated

- kNN Difficulty Estimator
- Latency calibrated

Bootstrapping

per Layer

per Layer

per Network

L = {l1, l2, l3}

E(t1)
E(t2)
E(t3)

FIGURE 8. Overview of the confidence prediction methodology.

that the correct prediction of fusion rules represents a simpler
challenge than the per-layer latency prediction, due to the
limited amount of possible and useful combinations of layers,
in comparison to the myriad configurations of each layer
type. Nevertheless, the presented concepts have the potential
to be applied to the model optimization predictors in future
work. Furthermore, the following methodology requires that
all occurring layer types within the investigated networks
are benchmarked and modeled with the statistical method of
ANNETTE.

a: Inference
Figure 8 depicts an overview of the confidence estimation
extension for ANNETTE. The network topology is described
by a set of N layers where each layer is described by a feature
vector x⃗ which is composed of the configuration parameters
describing the layer. Furthermore, x⃗ also includes additional
high-level features such as the number of parameters, number
of input features, etc.:

L = {l1, l2, l3...lN} where li = x⃗i (6)

Based on the measured times for each layer type an individual
random forest regressor is trained. For this work, the target
value is the time per operation top instead of the number
of operations per second. This adaption is required to avoid
potential zero division for broad confidence intervals since
the final computation time of a layer tcomp is now computed
with tcomp = top · numops. Based on the predictions of the
regressors the expected value for the computation time of
the entire network is computed as the sum of the predicted
computation times of all layers:

t̂net =
N�
i

numops,i · t̂op,i (7)

Consequently, from a probabilistic perspective if PCM(̂ti)
with i ∈ {1, 2, ...,N} are the probability distributions for all
layers of the network computed by the three different con-
formal interval predictors, the probability distribution for the
total computation time for each interval predictor is computed
by the convolution of the probability distributions. With ∗
as the notation of the convolution operator this results in the
Equation:

PCM(̂tnet) = PCM(̂t1) ∗ PCM(̂t2) ∗ ... ∗ PCM(̂tN) (8)

To ensure that PCM(̂tnet) is computed correctly in all cases,
we apply bootstrapping. This helps overcome limitations in
the case that only a few data points are used in the calibration
step for the uncertainty quantification.

b: Training
For the training of the conformal regressors this work relies
on the techniques implemented in CREPES [34] a Python
package for generating conformal regressors and predictive
systems. For each trained regressor CREPES provides a mul-
titude of methods for the generation of confidence intervals.
Firstly, to avoid splitting the training data into calibration
and proper training dataset, we apply out-of-bag calibration.
In contrast to standard non-normalized conformal regressors,
which predict constant confidence intervals for all instances,
normalized conformal regressors produce instance-specific
confidence intervals based on difficulty estimates.

As mentioned in Section II there are several ways to per-
form the difficulty estimate. For CMTV and CMLV, variance-
based difficulty estimation is applied. For CMO, k-NN-based
difficulty estimation is used. Additionally, while the difficulty
estimation in CMLV is calibrated based on the absolute pre-
diction error of the layer latency, for CMTV it is calibrated
based on the absolute prediction error of the layer efficiency
(s/operation). The difficulty estimation for CMO is solely
based on the feature vectors x⃗ of the calibration data.

The effects of applying the three different normalization
methods are depicted in Figure 9, which shows the 95%
confidence intervals around the predicted value for the mea-
surements performed on the Jetson Xavier from Section III-B
Figure 7.

8 VOLUME 11, 2023

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0 100 200

Cout

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T
im

e
 (
m
s
)

95% Confidence Interval

Prediction

0 100 200

Cout

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T
im

e
 (
m
s
)

95% Confidence Interval

Prediction

0 100 200

Cout

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

T
im

e
 (
m
s
)

95% Confidence Interval

Prediction

CMTV

(a)(a) (b) (c)

CMLV CMO

FIGURE 9. Overview of predicted Confidence Intervals for 2D convolution layer with cin = 64, cout ∈ [1, 256], h = 64, w = 64 on the Jetson Xavier: (a)
Confidence s/Operations Normalized, (b) Confidence Normalized with respect to time, (c) Confidence with k-NN difficulty estimation

The confidence interval for CMTV is depicted in Figure 9a.
Since the confidence interval estimation is calibrated via
the absolute error of the time per operation, the resulting
confidence intervals increase with the number of operations.
Hence, this CMTV is more useful when comparing the predic-
tion quality of the compute efficiency rather than the overall
layer execution time.

To address this limitation, we introduce CMLV. For this
measure, the confidence intervals are computed based on
the residuals of the computed layer execution time (see Fig-
ure 9b). It is worth noting that the confidence intervals for this
measure closely align with the error interval extracted earlier,
as shown in Figure 7. As a result, this CMLV is most useful
for comparing the confidence intervals of the overall layer
execution times.

For CMO (Fig. 9c), it can be observed that the width of the
confidence intervals increase towards the boundary values of
cout within the example dataset. This is because the distance to
the k-Nearest Neighbor data points increases for predictions
in those regions. This indicates a sparse local coverage by
the benchmark data, which may compromise the prediction
accuracy. Thus, CMO serves as a tool to pinpoint predictions
for layers with feature vectors that are not well covered by the
training dataset. For feature vectors far beyond the dataset’s
scope, the resulting confidence intervals might extend to
negative values. However, as it is unrealistic for a layer to be
computed in negative time, such wide confidence intervals
should rather be viewed as indicators of underrepresented
areas in the dataset than as precise latency ranges.

IV. RESULTS
For the evaluation of the methodology presented in Sec-
tion III we conduct a series of experiments. First, we compare
the smart padding (see Section III-B) benchmarking method
with padded models to simple single-layer benchmarking

in terms of overall prediction quality. Secondly, to evaluate
the confidence prediction method, we perform a series of
experiments to determine if the desired properties listed in
Section III-C are met. The experiments include the results
for three different hardware platforms: the NVIDIA Jetson
Xavier AGX, NXP i.MX 93, and NXP i.MX8M+ develop-
ment board (i.MX8M+). The Jetson Xavier was operated at
maximum power setting with TensorRT as the inference run-
time, using integer 8-bit precision and offering 22 TOPs, not
considering the Deep Learning Accelerator (DLA) cores. The
i.MX93 utilized TensorFlow Lite with 8-bit quantization and
the TensorFlow Lite inference runtime delegate, providing
up to 1 TOPS using the ARM Ethos U65 microNPU. The
i.MX8M+ employed the VeriSilicon VIP9000 NPU, deliver-
ing up to 2.3 TOPS also using the TensorFlow Lite inference
runtime.

A. BLACK-BOX BENCHMARKING
The goal of the following experiments is to compare the qual-
ity of the collected smart padding benchmark data with the
single-layer benchmark data and assess how well they serve
as ground-truth data for prediction models. For the presented
results, we generate ANNETTE prediction models using both
the single-layer and smart padding methods. These generated
prediction models are then compared in terms of total network
latency against the measured network latencies. Additionally,
we compare the results to the predictions provided by the
ARM Vela compiler 3 for the Ethos U65 NPU on the i.MX93.

Table 2 shows the prediction accuracy for a set of state-of-
the-art DNNs for the i.MX93. In the case of the i.MX93, the
smart padding-based ANNETTE prediction demonstrates su-
perior performance compared to the single-layer ANNETTE
prediction and the Vela estimates, achieving higher predic-

3https://pypi.org/project/ethos-u-vela

VOLUME 11, 2023 9

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Network Measured Vela Single Smart
[ms] Compiler Layer Padding

YOLOv5s 103.6 +30.5% +292.5% -9.5%
YOLOv5m 213.0 +21.1% +260.8% -3.6%
YOLOv5l 383.1 +22.2% +233.2% -0.8%
YOLOv8n 67.6 +104.1% +210.6% -3.9%
YOLOv8s 138.9 +83.0% +192.4% -5.1%
YOLOv8m 294.8 +64.6% +172.5% -1.3%
YOLOv8l 486.0 +77.4% +200.6% +5.8%
YOLOv8x 763.8 +56.1% +173.6% +0.5%
MobilenetV1 4.97 +78.8% +759.6% +24.6%
InceptionV4 66.4 +40.5% +492.4% -1.5%
Avg. error 57.8% 298.8% 5.7%

TABLE 2. Percentage prediction errors for the ANNETTE models for the
i.MX93 in comparison to the Vela compiler estimates

Network Measured Single Smart
[ms] Layer Padding

YOLOv5s 4.6 +55.3% -2.1%
YOLOv5m 9.4 +65.9% -4.8%
YOLOv5l 14.2 +79.1% -7.4%
YOLOv8n 5.5 +17.9% -18.3%
YOLOv8s 7.29 +53.1% -3.1%
YOLOv8m 13.5 +64.3% -6.5%
YOLOv8l 19 +80.5% +4.2%
YOLOv8x 28.9 +53.9% -9.7%
MobilenetV1 0.45 +59.3% -6.1%
InceptionV4 4.82 +116.2% +6.0%
Avg. abs. error 64.6% 6.9%

TABLE 3. Percentage prediction errors for the ANNETTE models for the
Jetson Xavier

tion accuracy across all networks. The average prediction
errors for the smart padding-based ANNETTE prediction,
single layer-based ANNETTE prediction, and Vela estimates
are 5.7%, 298.8%, and 57.8% respectively. Further in-depth
analysis revealed that benchmarking individual layers on
the i.MX93 results in additional time overhead due to an
extra quantization step. This leads to a more substantial
improvement than expected, thanks to the smart padding
method. Likewise, for the smart padding-based and single
layer-based ANNETTE prediction, the average percentage
errors are 6.9% and 64.6% for the Jetson Xavier, and 9.2%
and 89.6% for the i.MX8M+. The detailed results for the
Jetson Xavier and i.MX8M+ are shown in Tables 3 and 4,
respectively. Notably, only in 3 instances, the smart padding-
based ANNETTE estimation errors are larger than 10%.
These errors can be explained by the limited dataset used for
this work which does not cover, a stride different than 1 and
asymmetric convolution kernels. These limitations result in
not optimal prediction results for InceptionV4, MobilenetV1,
and YOLOv8n but also allow us to evaluate the confidence
metrics.

B. CONFIDENCE METRICS
For the evaluation of the confidence metrics, we display the
results on model, network, and layer levels. Firstly, since
CMTV is throughput calibrated, it mostly serves to compare
the normalized per-layer confidence interval size for different

Network Measured Single Smart
[ms] Layer Padding

YOLOv5s 87.3 +96.7% -6.6%
YOLOv5m 165.3 +88.4% -5.7%
YOLOv5l 260.1 +84.8% -3.2%
YOLOv8n 54.4 +56.2% -2.5%
YOLOv8s 100.9 +43.7% -2.5%
YOLOv8m 186.4 +37.1% -6.2%
YOLOv8l 286.1 +36.3% -4.7%
YOLOv8x 363.0 +36.6% -7.3%
MobilenetV1 3.69 +305.2% +2.4%
InceptionV4 63.2 +110.8% -51.7%
Avg. abs. error 89.6% 9.3%

TABLE 4. Percentage prediction errors for the ANNETTE models for the
i.MX8M+

i.M
X8

i.M
X93

Xavier

Hardware

0.0

0.2

0.4

0.6

0.8

1.0

A
v
g
.
N

o
rm

.
9
0
%

 C
I
W

id
th

W.o. Smart Padding Intervals

With Smart Padding Intervals

FIGURE 10. Average normalized 90% confidence intervals for CMTV on the
all tested networks

models. This can for example be used to compare the overall
confidence of the previously computed models.

a: Model-Level Comparison
Figure 10 displays the average normalized 90% confidence
interval size for the generated models. To evaluate the in-
fluence of the smart padding method on the generated la-
tency prediction models, we also generate models based on
the mean value without including the previously computed
intervals (see Section III-B).

As expected including the smart padding intervals in the
calibration of the confidence metrics, leads to larger con-
fidence intervals. Notably, the increase of the confidence
interval widths differs for the different hardware platforms.
We conclude that CMTV can be used to determine which
hardware platforms would profit the most from implementing
per-layer profiling and for which hardware platforms, the
smart padding method is sufficient.

b: Network-Level Comparison
For the network-level comparison, the 90% confidence in-
tervals of CMLV and CMO are displayed for all networks in
Figure 11 and 12 respectively. As mentioned in Section IV-A,
these confidence metrics provide a deeper understanding of
the predictions performed for each individual network. It
is noticeable that the confidence intervals for MobilenetV1
and InceptionV4 are particularly large, which aligns with the
occurrence of inaccurate predictions in certain cases. A large

10 VOLUME 11, 2023

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Y
O

L
O

v
5

s

Y
O

L
O

v
5

m

Y
O

L
O

v
5

l

Y
O

L
O

v
8

n

Y
O

L
O

v
8

s

Y
O

L
O

v
8

m

Y
O

L
O

v
8

l

Y
O

L
O

v
8

x

M
o
b
il
e
N

e
tV

1

In
c
e
p
ti

o
n
V

4

Network

1

0

1

2

3

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Hardware

i.MX93

i.MX8

Xavier

FIGURE 11. CMLV for the tested networks.

Y
O

L
O

v
5

s

Y
O

L
O

v
5

m

Y
O

L
O

v
5

l

Y
O

L
O

v
8

n

Y
O

L
O

v
8

s

Y
O

L
O

v
8

m

Y
O

L
O

v
8

l

Y
O

L
O

v
8

x

M
o
b
il
e
N

e
tV

1

In
c
e
p
ti

o
n
V

4

Network

4

2

0

2

4

6

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Hardware

i.MX93

i.MX8

Xavier

FIGURE 12. CMO for the tested networks.

confidence interval for CMLV indicates sub-optimal predic-
tion accuracy due to high variances in the dataset within the
prediction region. Conversely, a large confidence interval for
CMO suggests inadequate coverage of one or more layers in
the collected dataset, potentially leading to inaccurate pre-
diction results. In this case, we can go one step further and
analyze the prediction results on a layer level.

c: Layer-Level Comparison
CMLV and CMO provide insights into the root causes of
potentially inaccurate prediction on a layer level. Figure 13
displays the confidence interval widths for the latency predic-
tions of YOLOv8n on the Jetson Xavier. The layers with large
confidence interval widths almost exclusively have a stride of
2 which is not covered well in the example benchmark dataset.
Additionally, the CMLV interval widths hint at some layers in
prediction regions with high variance of measured latencies.

0.0 0.2 0.4 0.6 0.8

CMO 90% Confidence Interval width

L
a
y
e
rs

0.05 0.10 0.15 0.20 0.25

CMLV 90% Confidence Interval width

FIGURE 13. YOLOv8n per-layer interval widths of CMLV and CMO

V. CONCLUSION

This study introduces a novel approach for benchmarking
DNN accelerators that eliminates the need for per-layer pro-
filing. The experiments underscore the method’s effective-
ness across three distinct hardware platforms (Jetson Xavier,
i.MX8M+ and i.MX93), improving the latency prediction
accuracy by a large margin in comparison to single-layer
benchmarking and outperforming the latency prediction of
the ARM Vela compiler. Furthermore, this study integrates
three confidence metrics to improve the usability and inter-
pretability of latency prediction frameworks.

From the perspective of developers, the introduction of
smart padding not only decreases the implementation effort
when benchmarking new hardware platforms but also allows
benchmarking without profiling overhead. Furthermore, the
adoption of our confidence framework has already yielded
significant insights into the prediction models for certain
hardware platforms. With the guidance of the confidence
metrics, we were able to precisely identify and correct inac-
curacies in layer-specific predictions.

For end-users, the introduced confidence metrics offer a
more informed basis for selecting hardware and network
models for DNN deployment.

VOLUME 11, 2023 11

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

REFERENCES
[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural

architecture search on target task and hardware. In ICRL, 2019.
[2] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,

Andrew Howard, and Quoc V. Le. Mnasnet: Platform-aware neural archi-
tecture search for mobile. In CVPR, pages 2820–2828, 2019.

[3] Andrew Anderson, Jing Su, Rozenn Dahyot, and David Gregg.
Performance-oriented neural architecture search. In HPCS, pages
177–184. IEEE, 2019.

[4] Martin Lechner and A. Jantsch. Blackthorn: Latency estimation framework
for cnns on embedded nvidia platforms. IEEE Access, 9:110074–110084,
2021.

[5] M. Wess, Matvey Ivanov, C. Unger, A. Nookala, A. Wendt, and A. Jantsch.
Annette: Accurate neural network execution time estimation with stacked
models. IEEE Access, 9:3545–3556, 2021.

[6] Zhenyi Wang, Pengfei Yang, Linwei Hu, Bowen Zhang, Chengmin Lin,
Wenkai Lv, and Quan Wang. Slapp: Subgraph-level attention-based per-
formance prediction for deep learning models. Neural Networks, 170:285–
297, February 2024.

[7] Yuji Chai, Devashree Tripathy, Chu Zhou, Dibakar Gope, Igor Fedorov,
Ramon Matas, D. Brooks, Gu-Yeon Wei, and P. Whatmough. Perfsage:
Generalized inference performance predictor for arbitrary deep learning
models on edge devices. CoRR, 2023.

[8] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing
Yang, and Yunxin Liu. nn-meter: towards accurate latency prediction
of deep-learning model inference on diverse edge devices. In MobiSys,
MobiSys ’21. ACM, June 2021.

[9] Yanjie Gao, Xi Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. Run-
time performance prediction for deep learning models with graph neural
network. ICSE-SEIP, May 2023.

[10] Thomas C. P. Chau, L. Dudziak, M. Abdelfattah, Royson Lee, Hyeji Kim,
and N. Lane. Brp-nas: Prediction-based nas using gcns. CoRR, July 2020.

[11] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-
for-all: Train one network and specialize it for efficient deployment. In
ICLR. OpenReview.net, 2020.

[12] Hayeon Lee, Sewoong Lee, S. Chong, and S. Hwang. Help: Hardware-
adaptive efficient latency predictor for nas via meta-learning. 2021.

[13] Konstantin Lübeck, Alexander Louis-Ferdinand Jung, Felix Wedlich, and
Oliver Bringmann. Work-in-progress: Ultra-fast yet accurate performance
prediction for deep neural network accelerators. In CASES, pages 27–28.
IEEE, 2022.

[14] Linyan Mei, Huichu Liu, Tony Wu, H. Ekin Sumbul, Marian Verhelst, and
Edith Beigne. A uniform latency model for dnn accelerators with diverse
architectures and dataflows. In DATE. IEEE, March 2022.

[15] Jinyang Li, Runyu Ma, Vikram Sharma Mailthody, Colin Samplawski,
Benjamin Marlin, Songqing Chen, Shuochao Yao, and Tarek Abdelzaher.
Towards an accurate latency model for convolutional neural network layers
on gpus. In MILCOM. IEEE, 2021.

[16] Saeejith Nair, Saad Abbasi, Alexander Wong, and Mohammad Javad
Shafiee. Maple-edge: A runtime latency predictor for edge devices, 2022.

[17] Saad Abbasi, Alexander Wong, and M. Shafiee. Maple-x: Latency predic-
tion with explicit microprocessor prior knowledge. CoRR, 2022.

[18] Yan Li, Junming Ma, Donggang Cao, and Hong Mei. Sectum: Accurate
latency prediction for tee-hosted deep learning inference. In ICDCS. IEEE,
2022.

[19] Keith G. Mills, Fred X. Han, Jialin Zhang, Fabian Chudak, Ali Safari
Mamaghani, Mohammad Salameh, Wei Lu, Shangling Jui, and Di Niu.
Gennape: towards generalized neural architecture performance estimators.
In AAAI, AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023.

[20] Karthick Panner Selvam and Mats Brorsson. DIPPM: A Deep Learning
Inference Performance Predictive Model Using Graph Neural Networks,
pages 3–16. Springer Nature Switzerland, 2023.

[21] Alexander Gammerman, Volodya Vovk, and Vladimir Vapnik. Learning
by transduction. In Gregory F. Cooper and Serafín Moral, editors, UAI,
pages 148–155. Morgan Kaufmann, 1998.

[22] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic
learning in a random world, volume 29. Springer, 2005.

[23] Nicolai Meinshausen. Quantile regression forests. J. Mach. Learn. Res.,
7:983–999, 2006.

[24] Tilmann Gneiting. Quantiles as optimal point forecasts. International
Journal of Forecasting, 27(2):197–207, April 2011.

[25] Luiz Hespanhol, Caio Sain Vallio, Lucíola Menezes Costa, and Bruno T
Saragiotto. Understanding and interpreting confidence and credible in-

tervals around effect estimates. Brazilian Journal of Physical Therapy,
23(4):290–301, July 2019.

[26] Leo Breiman. Random forests. Machine Lea, 45(1):5–32, 2001.
[27] Ulf Johansson, Henrik Boström, Tuve Löfström, and Henrik Linusson.

Regression conformal prediction with random forests. Mach. Learn., 97(1-
2):155–176, 2014.

[28] Henrik Boström, Henrik Linusson, Tuve Löfström, and Ulf Johansson.
Accelerating difficulty estimation for conformal regression forests. Ann.
Math. Artif. Intel., 81(1–2):125–144, March 2017.

[29] Charles Lu, Andréanne Lemay, Ken Chang, Katharina Höbel, and
Jayashree Kalpathy-Cramer. Fair conformal predictors for applications in
medical imaging. In AAAI, pages 12008–12016. AAAI Press, 2022.

[30] Charalambos Eliades and Harris Papadopoulos. Conformal prediction for
automatic face recognition. In Alex Gammerman, Vladimir Vovk, Zhiyuan
Luo, and Harris Papadopoulos, editors, COPA, volume 60 of Proceedings
of Machine Learning Research, pages 62–81. PMLR, 2017.

[31] Wojciech Wisniewski, David Lindsay, and Siân Lindsay. Application of
conformal prediction interval estimations to market makers’ net positions.
In Alexander Gammerman, Vladimir Vovk, Zhiyuan Luo, Evgueni N.
Smirnov, Giovanni Cherubin, and Marco Christini, editors, COPA, vol-
ume 128 of Proceedings of Machine Learning Research, pages 285–301.
PMLR, 2020.

[32] ARM. Arm Ethos NPU Technical Reference Manual.
https://developer.arm.com/documentation/102420/0200/Functional-
description/Functional-blocks-, 2024. Accessed: 2024-03-01.

[33] Soroush H. Zargarbashi, Simone Antonelli, and Aleksandar Bojchevski.
Conformal prediction sets for graph neural networks. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, ICML, volume 202 of Proceedings of Machine
Learning Research, pages 12292–12318. PMLR, 2023.

[34] Henrik Boström. crepes: a python package for generating conformal
regressors and predictive systems. In Ulf Johansson, Henrik Boström,
Khuong An Nguyen, Zhiyuan Luo, and Lars Carlsson, editors, Confor-
mal and Probabilistic Prediction with Applications, 24-26 August 2022,
Brighton, UK, volume 179 of Proceedings of Machine Learning Research,
pages 24–41. PMLR, 2022.

MATTIAS WESS received the B.Sc. and M.Sc.
degrees from the Department of Electrical Engi-
neering, TU Wien, Vienna, Austria, in 2013 and
2017, respectively, where he is currently pursuing
the Ph.D. degree with the Institute for Computer
Technology. As a member of the Christian Doppler
Laboratory for Embedded Machine Learning, his
research is primarily focused on the latency esti-
mation of deep neural networks and enhancing the
energy efficiency of machine learning algorithms.

DANIEL SCHNÖLL received the M.Sc. degree in
embedded systems at TU Wien, Vienna, Austria, in
2021. He is part of the Christian Doppler Labora-
tory for Embedded Machine Learning at TU Wien,
Austria, where he is currently pursuing a Ph.D.
degree with the Institute for Computer Technology.
His current research interests include TinyML and
optimization of deep neural networks for embed-
ded inference.

12 VOLUME 11, 2023

Wess et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

DOMINIK DALLINGER received the Bachelor
of Science degree in electrical engineering from
TU Wien, Viennam, Austria, in 2021. He is now
pursuing a Master’s degree in Embedded Systems
at TU Wien, with a broad focus on mechatronics,
machine vision, computer systems, and electron-
ics design. He is also engaged with the Chris-
tian Doppler Laboratory for Embedded Machine
Learning, focusing his research on TinyML.

MATTHIAS BITTNER received the M.Sc. de-
grees in automation and control at TU Wien, Vi-
enna, Austria, and artificial intelligence at Jo-
hannes Kepler University, Linz, Austria in 2021
and 2024, respectively. He is affiliated with the
Christian Doppler Laboratory for Embedded Ma-
chine Learning at TU Wien, where he is pursuing a
Ph.D. degree at the Institute for Computer Technol-
ogy. His research interests include energy-efficient
machine learning for time-series applications and

leveraging artificial intelligence for sustainability.

AXEL JANTSCH (Senior Member, IEEE) received
the Dipl.Ing. degree and the Ph.D. degree in com-
puter science from TU Wien, Vienna, Austria, in
1987 and 1992, respectively. From 1997 to 2002,
he was an Associate Professor with KTH Royal
Institute of Technology, Stockholm. From 2002 to
2014, he was a Full Professor in electronic systems
design at KTH. Since 2014, he has been a Professor
of systems on chips with the Institute of Com-
puter Technology, TU Wien. His current research

interests include systems on chips, self-aware cyber-physical systems, and
embedded machine learning. He has published five books as an editor and
one as an author and over 300 peer-reviewed contributions in journals, books,
and conference proceedings. He has given over 100 invited presentations at
conferences, universities, and companies.

VOLUME 11, 2023 13

Energy Profiling of DNN Accelerators
Matthias Wess, Dominik Dallinger, Daniel Schnöll, Matthias Bittner,

Maximilian Götzinger and Axel Jantsch
Christian Doppler Laboratory for Embedded Machine Learning, Institute of Computer Technology

TU Wien, 1040 Vienna, Austria
{firstname}.{lastname}@tuwien.ac.at

Abstract—This paper introduces a novel methodology for
assessing the energy efficiency of neural network accelerators
at both layer and network granularity. The approach involves
extracting per-layer timing reports from recorded power profiles.
The power and energy consumption of three prominent neural
network accelerators, namely the Intel Neural Compute Stick 2,
the Coral Edge TPU, and the NXP i.MX8M Plus is evaluated for
three different Deep Neural Networks (DNNs) using this method.

The study investigates the relationship between decreasing
sampling frequencies and the average error, as well as the detailed
energy consumption of individual DNN layers and layer types.
The findings reveal that latency outperforms the number of
operations per layer as a predictor for both overall and dynamic
energy, with errors of 10% and 100% respectively.

The main conclusions are: a sampling frequency of 200 kHz
is necessary to achieve an average error of 5%; the number of
operations is an inadequate predictor of energy consumption;
and specific hardware settings significantly influence power and
energy consumption, emphasizing the need for their consideration
in estimation.

Index Terms—Power analysis, Deep Neural Networks, Hard-
ware accelerators

I. INTRODUCTION

Along with the increasing usage of Machine Learning (ML)
for solving complex tasks such as computer vision, there has
been plenty of research on hardware architectures to execute
such algorithms at reduced power and energy budgets. These
hardware accelerators reduce the overall power consumption
and allow integration of the data processing into the edge
devices. Specifically, the inference of ML algorithms on em-
bedded devices has proven efficient in terms of performance
and energy. Among several one-board solutions, hardware
vendors also provide external USB and PCI-based inference
accelerators to support the processing system for ML work-
loads [1]–[3].

Assessing the power and energy requirements of the var-
ious embedded devices is crucial for understanding their
performance and optimizing their use in various applications.
Obtaining precise measurements that reveal the energy con-
sumption of individual DNN layers is challenging, primarily
due to their short execution time. This task becomes even more
difficult in the presence of other power consumers in connected
electronics, which can obscure the relevant figures.

This work was supported in part by the Austrian Federal Ministry for
Digital and Economic Affairs, in part by the National Foundation for Research,
Technology and Development, and in part by the Christian Doppler Research
Association.

Our interest is the power consumption of specific DNNs as
well as their specific layers to analyze the energy efficiency of
different layer types. Moreover, we attempt to understand the
accuracy of proxy metrics for estimating power and energy
consumption.

This paper makes the following key contributions:

• We perform experiments on the required measurement
frequency to achieve accurate single-layer measurements.

• We propose a method to extract layer times from the
measured power profiles by iteratively removing the last
layer of the DNN.

• We profile DNNs on Neural Compute Stick 2 (NCS2) and
Coral Edge TPU (edge TPU) at single-layer granularity,
gaining insights about the execution efficiency of different
layer types on different devices.

Our primary focus is to investigate the energy efficiency
of three distinct DNN accelerator architectures. We achieve
this by monitoring power consumption at a high sampling
frequency. Furthermore, we develop a methodology that en-
ables us to automatically capture the power behavior during
the inference phase of DNNs on these accelerators. This
methodology also allows us to extract valuable information
concerning the power consumption of individual layers within
the Neural Network (NN). We accomplish this by correlating
detailed latency reports from the accelerators with the recorded
power profiles. In cases where detailed latency reports are un-
available, we employ an iterative approach where we remove
the last executed layer of the network. To extract layer-specific
power consumption data, we then compare the resulting power
profiles. Lastly, we conduct an extensive analysis on the
inference options available on the NCS2, edge TPU, and NXP
i.MX8M Plus Development Kit (i.MX8M+).

II. RELATED WORK

In response to the growing need to execute machine learning
algorithms on embedded hardware platforms, numerous efforts
have been made to compare the performance of different hard-
ware platforms. Cantero et al. [4] compare the performance
of the edge TPU Coral Dev Board and the Variscite i.MX8M
PLUS Board across five distinct model architectures in various
resolution settings. The results revealed that the Coral Dev
Board, with 4 Tera Operations per Second (TOPS), achieved
faster computation than the i.MX8M Board, which reaches
up to 2.3. However, the i.MX8M demonstrates more efficient

53

2023 26th Euromicro Conference on Digital System Design (DSD)

2771-2508/23/$31.00 ©2023 IEEE
DOI 10.1109/DSD60849.2023.00018

20
23

 2
6t

h
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e

on
 D

ig
ita

l S
ys

te
m

 D
es

ig
n

(D
SD

) |
 9

79
-8

-3
50

3-
44

19
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DS
D6

08
49

.2
02

3.
00

01
8

A uthorized licensed use lim ited to : TU W ien B ib lio thek. D ow nloaded on A pril 12 ,2024 a t 13 :59 :30 U TC from IE E E X p lo re . R estric tions app ly .

resource utilization and closely approaches the performance
level of the Coral Dev Board.

Several benchmarks have been developed to enable a
fair and extensive comparison of compute capabilities [5],
[6]. These benchmarks rely on a diverse set of workloads.
Notably, the MLCommons consortium1 offers the MLPerf
benchmarks [7] for inference and training across diverse
domains such as object detection, medical imaging, speech-to-
text, and natural language processing. These benchmarks are
categorized into data center, edge, mobile, and tiny platforms,
representing the broad spectrum of hardware used in machine
learning.

Highlighting the importance of comparing power consump-
tion for specific hardware platforms on certain benchmark
applications is the fact that the MLCommons consortium
released the MLPerf Tiny benchmark [6], which also focuses
on power consumption. MLPerf Tiny [6] includes several
benchmark tasks: Keyword Spotting, Visual Wake Words,
Image Classification, and Anomaly Detection. By providing
standardized evaluation criteria, researchers can compare and
analyze the energy efficiency of different DNN accelerators
and architectures. However, one limitation is that the bench-
mark results are presented in a summarized form, which
provides a broad overview but may lack detailed insights. To
conduct these evaluations, the EnergyRunner2 framework is
employed.

Furthermore, leveraging the MLPerf benchmark set, Libutti
et al. [8] have measured the power consumption and perfor-
mance of the edge TPU (adopted from [9]) and Intel NCS2 [1].
They explored various inference modes and settings, yet their
findings were limited to reporting overall energy consumption
per network without providing detailed insights at a more
granular level.

Blott et al. [10] measure the latency and power consumption
of many devices, including FPGA, GPU, edge TPU, and
VLIW processors for inference of diverse DNNs they focus
on gaining a better understanding of the design space with
regards to pruning and quantization.

Finally, there have been efforts to estimate the energy
consumption of hardware platforms execution NNs. Reif et al.
present Precious [11], an approach for estimating the energy
consumption of ML models based on linear and random
forest regressors. In particular, their implementation estimates
execution times as well as the power draw of Convolutional
Neural Networks (CNNs) on embedded accelerator hardware
for NNs (i.e., Google Coral edge TPU [2]). However, it
is restricted to a few layertypes and limited layer settings.
Other more accurate approaches [12], [13] require in-depth
knowledge of the accelerator design and target the hardware
design space exploration domain.

In contrast to other works which report the lump latency,
power, and energy for inference, we aim to gain a deeper
understanding of the energy efficiency of single layers to

1https://mlcommons.org, accessed: 2023-05-25
2https://github.com/eembc/energyrunner, accessed: 2023-05-25

 Host +
 Power Supply

0.1Ω

 DAQ
 Card

Embedded
Device

CH1

CH2

Ushunt

Ishunt
Iload

V+out

GND

DATA

V+in

GND

DATA

USB Connection

Fig. 1: Power Measurement Circuit. The shunt resistance
Rshunt = 0.1Ω. Ushunt and Ishunt are voltage drop and current
at the shunt, respectively.

provide the basis for energy-efficient neural architecture search
and layer energy estimation. We, therefore, analyze the power
consumption at much finer granularity to obtain latency, power,
and energy measurements for individual layers. To do so, we
develop a methodology to extract layer times based on the
gathered power profiles. This granularity resolution allows us
to relate latency and energy of specific layer types and draw
conclusions about their efficiency of execution on the given
architecture.

III. EXPERIMENTAL SETUP

The measurements are performed on a host computer with
an Intel-i7-8565U at 1.80 GHz with 16 GB of RAM and an
NCS2 as well as an edge TPU, both connected as ML co-
processors connected via USB3.0. For the i.MX8M+, which
is also powered via USB 3.0, we measure the power of
the entire system. For the measurement setup, we select a
USB-1608GX Data Acquisition (DAQ) card due to the good
programmability, high sampling rate and flexible measurement
ranges. To gather the voltage drop across a shunt resistor was
placed on the power line of the Device Under Test (DUT) (see
Fig. 1) with a maximum sampling frequency of 500 kHz.

We then compute the power consumption of the DUT as

Ptotal = (Usupply − Ushunt) · (Ushunt/Rshunt), (1)

where Rshunt is the shunt resistance, and Ushunt is the voltage
drop at the shunt. Due to the high input resistance, we can
neglect the current through the DAQ card and assume Ishunt =
Iload. Important to note is that the power supply lines of the
USB cable from the host to the DUT have been cut, and the
DUT is powered exclusively by the dedicated power supply.

A. Intel NCS2

The NCS2 USB 3.0 ML accelerator implements a MYRIAD
X Visual Processing Unit (VPU) with 16 Streaming Hybrid
Architecture Vector Engine (SHAVE) processors operating at
700 MHz. For the computation of a DNN, the NCS2 provides
a maximum nominal performance of 1 TOPS in Floating-Point
16 (FP16) format. Inference on the accelerator is performed
via the OpenVino toolkit, supporting up to 4 parallel inference
requests (see section V-E).

54

A uthorized licensed use lim ited to : TU W ien B ib lio thek. D ow nloaded on A pril 12 ,2024 a t 13 :59 :30 U TC from IE E E X p lo re . R estric tions app ly .

B. Coral Edge TPU

The Google Coral machine-learning accelerator co-
processor is a USB device embedding the Google Edge
edge TPU ASIC. The Coral accelerator performs inference
operations on TensorFlow Lite3 models with a peak current
of 900 mA at 5 V. The accelerator maintains a computational
throughput of 4 TOPS at a computational efficiency of 2 TOPS
per Watt [2]. The edge TPU supports two operational modes:
the standard mode and the maximum frequency, which are
discussed in section V-E.

C. I.MX8M Plus

The i.MX8M+ processor is a heterogeneous multi-core
processor developed by NXP. The processor incorporates an
embedded Vivante VIP8000 Neural Processing Unit (NPU)
that provides 2.3 TOPS of computing power. To optimize
the data exchange between the computing units, the NPU
shares the high-speed internal memory bus with the Central
Processing Units (CPUs). Similar to the edge TPU, the Vivante
VIP8000 performs 8-bit Integer (INT8) operations, accelerat-
ing the TensorFlow Lite execution.

D. Software

For the measurements of the NCS2, we make use of
the OpenVino toolkit [14], which offers many convenient
tools for converting, optimizing, benchmarking, and analyzing
neural networks. The model optimization and conversion tools
support networks generated in popular deep learning frame-
works/formats such as PyTorch4, TensorFlow5, and ONNX6

as source workloads. Performance metrics such as latency and
throughput of individual layers can be extracted with the help
of the API benchmark application.
For the measurements of the edge TPU and the i.MX8M+, the
models are converted into TensorFlow Lite format and post-
training quantized to INT8 format. The inference on the edge
TPU and the i.MX8M+ is driven through the TensorFlow Lite
inference engine, offloading the workload to the accelerators
via the delegate functionality. Both, the edge TPU and the
i.MX8M+ only support fully-quantized 8-bit TensorFlow Lite
models. For the edge TPU the models need to be specifi-
cally compiled (using the edge TPU Compiler) [15]. For the
i.MX8M+ no compilation is necessary prior to the execution.
To access the DAQ card, we use the MCC Universal Library7.

E. The workload

As workload for the measurements, we selected three differ-
ent DNNs for image classification and object detection, namely
MobileNetV2 [16], YOLOv3, and YOLOv3-tiny [17].

3https://www.tensorflow.org/lite, accessed: 2023-05-25
4https://pytorch.org, accessed: 2023-05-25
5https://www.tensorflow.org, accessed: 2023-05-25
6https://onnx.ai/, accessed: 2023-05-25
7https://github.com/mccdaq/uldaq, accessed: 2023-05-25

Execution Isolation

Alignment and Selection

Filtering

Deconvolution

Alignment

Longest Common Subsequence

Mean

Preprocessing

Layer Time Extraction

Power Profile
rem

ove last layer

Fig. 2: The signal processing pipeline used for the power
profile extraction and layer time extraction

IV. METHODOLOGY

This section describes the proposed methodology and signal
processing pipeline designed to facilitate precise benchmark-
ing and profiling. We provide a detailed description of the
pipeline, which enables the semi-automatic annotation of
power and energy consumption for each executed DNN on
the hardware platform.

When per-layer timing reports are available on the hardware
platforms, the times can be annotated into the power profile.
In that case, the major challenge is to identify the start of
the first layer. Alternatively, we can retrieve the per-layer
timing information by iteratively removing the network layers
one by one and comparing the recorded power profiles of
the modified and the original network. This approach ensures
synchronization between the layer latency annotations and the
power profile. Also, some devices operate less efficiently when
in profiling mode, which we can avoid. Our method, can
generate layer-wise execution time reports for potentially any
hardware with a characteristic per-layer power profile.

Fig. 2 depicts the implemented signal processing pipeline.
The pipeline consists of two sub-pipelines: pre-processing and
layer-profile extraction. For the benchmarking, we also record
the power profile of the initialization, the warm-up phase, and
multiple iterations of the DNN executed on the target device.

The pre-processing is critical to isolate a single execution
power profile from the recorded data. To reach this target,
we first detect the single executions by applying a sliding
window with the width according to the execution time of
the DNN. To ensure the correct cutout of the actual execution

55

A uthorized licensed use lim ited to : TU W ien B ib lio thek. D ow nloaded on A pril 12 ,2024 a t 13 :59 :30 U TC from IE E E X p lo re . R estric tions app ly .

Fig. 3: The recorded power profile for the i.MX8M+ exhibits
smoothing effects in comparison to the deconvolved power
profile

profiles, we compute the maxima and minima of the filtered
signal and select the detected peaks with similar inter-peak
distances as center points for the cutouts. Additional adaptive
thresholds and edge detection ensure clean cutouts of the
execution profiles. Next, the cutouts are pairwise iteratively
aligned by minimizing the Euclidean distance between the
cutout signals. We use the isolation forest algorithm [18] to
filter out anomalies in the cutouts. In an optional next step, we
compute the means of the remaining cutouts to reduce noise
on the measured signal. To obtain accurate power profiles of
the DNN executed on a target device, we need to address
the effect of the capacitors within the power supply circuit.
Capacitors act as short-term energy storage devices, smoothing
the signal but distorting the actual power consumption in the
time domain. to the device during the execution of the DNN.
These distortions can introduce measurement inaccuracies,
potentially leading to the misattribution of energy consumed
by a previous layer to the next layer. To solve this problem,
we perform a deconvolution with the impulse response of
the normalized capacitor discharge curve. The value of τ of
the discharge curve is empirically determined as part of the
pre-processing step, and the deconvolution is applied to each
recorded power profile. The effect of this deconvolution step
is shown in Fig. 3.

For our semi-automated layer time extraction, we iteratively
remove the last layer of the network and record the profile of
the resulting network. The resulting profile usually exhibits
a shorter execution time and possibly visible artifacts in the
power profile after the output layer (which can be denoted
to reading the output data). To neglect these artifacts, we
determine the longest common sub-sequence between the
aligned power profiles of the current sub-network and the
previously measured networks. Computing the differences
between the identified longest common sub-sequences we
retrieve the execution times of each layer.

Fig. 4 shows the layer times extracted with our pipeline
compared to the reports generated by OpenVino for the NCS2.
Based on this method, we achieve an average error of 42µs
for the execution of MobileNetV2 on the NCS2. At an average
layer time of 311µs, this means that we have to consider that
for short layers, the error of the extracted layer times is rather
large. However, since we are mainly interested in the efficiency

0 0.5 1 1.5 2 2.5
0

1

2

extracted [ms]

re
al

[m
s]

Fig. 4: Comparison of the extracted layer times vs. measured
layer times for MobileNetV2 on NCS2

Fig. 5: The power profile of MobileNetV2 executed on NCS2
with annotated layer transitions

of the large layers which make up for most of the energy
consumption, we proceed with this approach.

To verify the method, we first visualize the recorded mea-
surements to analyze the power profile at 500 kHz sampling
frequency. We can now visualize the timestamps of the tran-
sitions between the layers. Fig. 5 shows excerpts of such
measurements of MobileNetV2 executed with batch size one
on the NCS2 in synchronous mode.

Based on our observations, we find that both the NCS2 with
Pbase ∼ 1.4W and the edge TPU with Pbase ∼ 1.1W exhibit
a relatively high base power consumption after the network
is loaded in comparison to the dynamic power Pdyn which is
consumed additionally during the execution of the DNNs. The
i.MX8M+ has an even higher idle power consumption with a
Pbase ∼ 2.9W. As in this case we are not only measuring the
NPU but also the CPU and memory components

Therefore, we denote the total power consumption as

Ptotal = Pbase + Pdyn (2)

for the further experiments. We approximate the energy con-
sumption of the entire network and the single layers with

E ≈ t · P , (3)

where t is the reported execution time and P is the mean
power consumption of the executed layers and the entire
network. With (2) and (3), we can compute the energies
consumed due to base power Pbase and dynamic power Pdyn.

V. RESULTS

This section summarizes the results of applying the power
profiling methodology presented in section IV.

56

A uthorized licensed use lim ited to : TU W ien B ib lio thek. D ow nloaded on A pril 12 ,2024 a t 13 :59 :30 U TC from IE E E X p lo re . R estric tions app ly .

(a) NCS2

(b) edge TPU

Fig. 6: The error of measured energy and percentage of
dropped layers in % for MobileNetV2 on the NCS2 and edge
TPU with respect to 500 kHz sampling frequency

A. Sampling frequency

We first study the influence of the sampling frequency on the
resulting errors with regards to the number of profiled layers,
the energy consumption per layer, and the energy consumption
for the entire network to gain an understanding for the required
measurements frequencies for future devices.

Fig. 6a shows the error at a given sampling frequency
compared to the results obtained with a sampling frequency
of 500 kHz for the NCS2. The error of the total energy
Etotal is below 5% at sampling rates above 100Hz because
the base power is a relatively major component. The error
for the dynamic energy Edyn grows faster with decreasing
sampling frequency. The results show that a fine-grained
understanding of the per-layer energy consumption requires
a 10 kHz sampling frequency or higher for the NCS2. The
denoted error per layer considers only the layers actually
recorded during measurement. Notably, with decreasing sam-
pling frequency, the number of dropped layers (layers with
execution time shorter than the sampling window) quickly
grows and amounts to 15% at 10 kHz sampling frequency.The
results for repeating the same measurements on the edge TPU
are depicted in Fig. 6b. Compared with the NCS2, the edge
TPU executes MobileNetV2 7 × faster, which leads to higher
relative errors at the same sampling frequency. As expected the
average network and per-layer error scales with the compute
performance of the device and the latency of the network
layers.

(a) NCS2

(b) edge TPU

Fig. 7: Total energy vs. number of operations for MobileNetV2
on the NCS2 and edge TPU

B. Energy versus the number of operations

Comparing the measured energy consumption of the layers
with the number of operations, we note that for both accelera-
tors, not all layers are computed with equal energy efficiency.

Fig. 7 shows the energy consumed for specific numbers of
operations of different layers in MobileNetV2. Naturally, more
operations lead to higher energy consumption, but the slope
differs quite for different layer types. Depth-wise convolution
layers (DepthwiseConv) have fewer operations but consume 4-
6 times more energy per operation than ordinary convolutions.
This behavior is explainable by the lower computational ef-
ficiency and the longer layer execution times of the NCS2
as well as the edge TPU computing depth-wise separable
convolution layers. Moreover, within a layer type, there are
significant differences. The energy efficiency difference be-
tween different convolution layers is up to 3× for the edge
TPU and 4× for the NCS2. Thus, the number of operations
is a poor proxy for estimating energy consumption for both
accelerators.

C. Energy versus the number of activations

Considering the number of activations (Fig. 8), we see
similar patterns for the NCS2 and the edge TPU, as the
depth-wise convolution layers are computed with lower energy
efficiency. Again, not only between different layer types but
also within a layer type, there are significant differences in
terms of energy efficiency per activation.

D. Energy versus latency

Fig. 9a and 9c depict the total energy and the dynamic
vs. the runtime for the layers in MobileNetV2 on the NCS2.
The total energy consumption correlates well with the runtime

57

A uthorized licensed use lim ited to : TU W ien B ib lio thek. D ow nloaded on A pril 12 ,2024 a t 13 :59 :30 U TC from IE E E X p lo re . R estric tions app ly .

(a) NCS2

(b) edge TPU

Fig. 8: Total energy vs. number of activations (output feature
map size) for MobileNetV2 on the NCS2 and edge TPU

per layer (see Fig. 9a and 9b). One of the main reasons for
this is the relatively high base power consumption of the
NCS2 and the edge TPU compared to the dynamic power.
When increasing the number of parallel inference requests for
the NCS2 up to 4, the relation between dynamic and base
energy shifts more towards dynamic energy. Thus, we also
investigate the correlation between the dynamic energy per
layer and the runtime. We find that the correlation is still
fairly good; a layer that needs more time also needs more
dynamic energy. However, the data points in Fig. 9c and 9d
are not lined up on a straight line with a constant slope, which
means the correlation is imperfect. Some layers consume up
to 2 times more dynamic energy per time unit (more dynamic
power) than others. Interestingly, on the NCS2, depth-wise
separable convolution layers tend to consume less power than
convolution layers.

Combining this observation with what we see in Fig. 7,
depth-wise separable convolution layers are less efficiently
executed by the hardware than convolution layers: they have
fewer operations and require relatively more time but less
power. It seems that they cannot keep the hardware as busy
as ordinary convolution layers. One possible explanation is
that depth-wise convolution layers are limited by the memory
hierarchy rather than the computational capabilities of the
NCS2 and the edge TPU. We found that the remaining
layer types used in MobileNetV2 generally consume a higher
amount of energy per operation than convolutional layers but
are only responsible for an almost negligible portion of the
total energy consumed per network.

E. Hardware settings
The NCS2 can be operated in two different modes,

synchronous and asynchronous. In summary, synchronous
means purely sequential execution while asynchronous allows
pipelined execution. The nireq factor in Table I gives the
number of requested parallel inferences. The inference la-
tency slightly increases when pipelining inference requests.
In contrast, the throughput, measured in frames per second,
improves fairly significantly: between 33% and 77% when
moving from sync to async-2 mode and between 5% and 25%
when moving from async-2 to async-3. No improvement is
found for the async-4 mode because the maximal amount of
nireq has already been reached at async-3.

A better hardware utilization in the async-2 and async-
3 modes, compared to sync-1, is reflected in the increased
average power consumption, increasing by 17% to 43%.

While the async modes increase the hardware utilization
and power consumption, the total energy per inference is
reduced, which reflects an overall better usage of hardware and
energy resources. Comparing the energy values for the base
and dynamic energy for the different execution modes, we can
see that the total energy reduction per inference comes mostly
from amortizing the high base energy over several inferences.
For example, the dynamic energy per inference for executing
YOLOv3 with 4 inference requests is almost twice as high as
the base energy.

In contrast to the NCS2, the edge TPU does not allow
multiple parallel inference requests but can be operated at two
different clock frequency settings. Table I lists the frequency
settings standard (std) and maximum (max).

The three test networks gain a speedup of between 10% and
50% when switching from std to max frequency mode. Due
to the lower execution time with maximum frequency the base
energy decreases while the dynamic energy increases for all
three networks. On the other hand, with maximum frequency,
the total energy decreases for all three networks while the
mean power consumption increases by up to 15%.

Depending on the selected hardware settings and the net-
work architecture, the edge TPU is 2-10 times more efficient
regarding total energy consumed per parameter and operation
than the NCS2. This difference can be explained by the
difference in data types the two operators are operating on
(INT8 and FP16).

Lastly, the i.MX8M+ NPU also only supports INT8 ex-
ecution. For comparison we also provide the numbers for
execution on the CPU. As the measurements for the i.MX8M+
also include the power consumption of the CPU and other
components, the base power consumption is significantly
higher for the i.MX8M+ than for the edge TPU and the NCS2.
Interestingly, for YOLOv3 and YOLOv3-tiny the i.MX8M+
outperforms the edge TPU in terms of latency. However, even
though the execution time is smaller Etotal and Edyn are still
higher than for the edge TPU. Additionally, we can see that
for MobileNetV2 the edge TPU outperforms the i.MX8M+.
We assume that this is due to the fact that the edge TPU is a
better fit for depthwise convolution.

58

A uthorized licensed use lim ited to : TU W ien B ib lio thek. D ow nloaded on A pril 12 ,2024 a t 13 :59 :30 U TC from IE E E X p lo re . R estric tions app ly .

(a) Etotal per layer on NCS2 (b) Etotal per layer on edge TPU

(c) Edyn per layer on NCS2 (d) Edyn per layer on edge TPU

Fig. 9: Total and dynamic energy for the layers of MobileNetV2; the blue line denotes the base energy consumed by the edge
TPU during the layer runtime

VI. CONCLUSION

We presented a methodology on how to perform power
measurements an how to extract additional information of the
power profiles. The method allows to gain additional insights
with reduced additional development effort per platform. How-
ever, the method has some limitations regarding accuracy of
the extracted data. It has to be considered, that the shorter the
execution time of a NN the less accurate this method works.
Therefore, we expect difficulties of applying this method for
too powerful platforms or for small networks.

From our experiments with three networks and the acceler-
ator platforms, we draw the following main conclusions, some
expected and others less conspicuous.

• To obtain an average power measurement error lower
than 15%, a sampling frequency of 10 kHz or higher is
required. For an error below 5%, a sampling frequency of
200 kHz is recommended for the two USB accelerators.

• The number of operations is a poor predictor of energy
consumption. Latency is a much better predictor with,
in our experiments, an expected error margin of around
10%. However, the correlation between latency and en-
ergy usage for individual layers can vary by up to 2× for
dynamic energy, which means dynamic energy estimation
based only on latency may be off by up to 100%. Which
means that for correctly predicting dynamic energy, ad-
ditional factors would have to be considered.

• Settings of the hardware can significantly influence la-
tency, throughput, and energy consumption. Specifically,
the async-3 mode on NCS2 improves throughput by up
to 100% and energy per inference by up to 35%, at a
cost of increasing latency by up to 48%.

• On the NCS2, increasing the number of parallel inference
requests shifts the relation between base power and dy-
namic power towards the latter. As a further consequence,
this aggravates the task of estimating the total energy due
to the non-linear nature of the relationship between layer
runtime and dynamic energy.

• For both USB accelerators, we can adjust the relation-
ship between power consumption and energy per image
through either the number of parallel inference requests
or the clock frequency. In both cases, the power consump-
tion increases when switching to the higher throughput
modes, but with the overall result of a lower energy per
image.

With our study, we wanted to obtain a better understanding
of power and energy usage in specific state-of-the-art networks
with diverse layer combinations on a given hardware platform.
We conclude that latency can be used as a first-order estimate
for power and energy consumption for a network and indi-
vidual layers. However, if a more detailed understanding of a
network and its layers is required for system energy budgeting
or network optimizations, more detailed and precise measure-
ments are required because the dependencies and influences
are often non-linear and non-intuitive. In addition to providing
insight into what can be derived from accurate power profiles
of DNN accelerators, the understanding gained in this study
can also be applied to power consumption estimation and
energy-aware neural architecture search.

REFERENCES

[1] Intel. Neural compute stick documentation. https://www.intel.com/cont
ent/www/us/en/developer/articles/guide/get-started-with-neural-compu
te-stick.html, 2019. Accessed: 2023-05-25. 1, 2

59

A uthorized licensed use lim ited to : TU W ien B ib lio thek. D ow nloaded on A pril 12 ,2024 a t 13 :59 :30 U TC from IE E E X p lo re . R estric tions app ly .

TABLE I: Speedup comparison of different Networks. nireq denotes the number of parallel inference requests. Freq denotes
the frequency setting for the edge TPU.

HW Network nireq Fthr(fps) Tlat(ms) P (mW) Etotal(mJ) Ebase(mJ) Edyn(mJ) E/Gop(mJ) E/Mpar(mJ)

NCS2
w.o. Host

FP16

YOLOv3-tiny 1 21.2 41 2165 101.93 65.91 36.02 18.32 11.52
2 35.3 52 2670 75.55 39.61 35.94 13.58 8.54

5.6 Gop 3 43.1 46 2995 69.42 32.45 36.97 12.47 7.85
8.8 Mpar 4 43.1 44 2954 68.54 32.48 36.06 12.32 7.75

YOLOv3 1 2.6 363 2505 960.92 537.04 423.88 14.69 15.61
2 4.4 400 3413 769.61 315.69 453.92 11.76 12.50

65.8 Gop 3 4.7 425 3615 764.89 296.22 468.67 11.69 12.42
61.6 Mpar 4 4.9 390 3604 742.50 288.43 454.07 11.35 12.06

MobileNetV2 1 49.3 21 1806 36.60 28.37 8.23 60.84 10.55
2 87.2 23 2118 24.29 16.06 8.23 40.38 7.00

0.6 Gop 3 90.4 31 2164 23.95 15.49 8.46 39.81 6.90
3.4 Mpar 4 92.4 53 2162 23.39 15.15 8.24 38.88 6.74

HW Network Freq Fthr(fps) Tlat(ms) P (mW) Etotal(mJ) Ebase(mJ) Edyn(mJ) E/Gop(mJ) E/Mpar(mJ)

Edge TPU
w.o. Host

INT8

YOLOv3-tiny std 46.3 22.3 1407 30.40 22.28 8.12 5.46 3.44
max 51.0 19.6 1528 29.95 20.21 9.73 5.38 3.39

YOLOv3 std 6.3 158.3 1519 240.50 163.27 77.23 3.68 3.91
max 7.0 142.0 1657 235.36 147.29 88.06 3.60 3.82

MobileNetV2 std 331.3 3.0 1422 4.29 3.11 1.18 7.13 1.24
max 512.3 1.9 1658 3.23 2.02 1.21 5.37 0.93

HW Network Freq Fthr(fps) Tlat(ms) P (mW) Etotal(mJ) Ebase(mJ) Edyn(mJ) E/Gop(mJ) E/Mpar(mJ)

i.MX8M+
INT8

YOLOv3-tiny npu 102.8 9.7 4398 42.78 26.32 16.47 7.64 4.84
cpu 1.3 758.5 3917 2971.33 2421.60 549.73 534.41 335.93

YOLOv3 npu 9.5 105.0 4788 502.51 289.93 212.58 7.64 8.16
cpu 0.1 7706.6 3434 26462.35 20632.56 5829.79 402.16 429.58

MobileNetV2 npu 97.1 10.3 3807 39.21 28.11 11.11 65.35 11.53
cpu 8.4 119.7 3375 403.97 327.90 76.07 673.28 118.81

[2] Coral. Usb accelerator datasheet. https://coral.ai/docs/accelerator/data
sheet/, 2021. Accessed: 2023-05-25. 1, 2, 3

[3] NXP. i.mx 8m plus documentation. https://www.nxp.com/products/p
rocessors-and-microcontrollers/arm-processors/i-mx-applications-pro
cessors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53
-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS,
2023. Accessed: 2023-05-25. 1

[4] David Cantero, Iker Esnaola-Gonzalez, José Miguel-Alonso, and Ekaitz
Jauregi. Benchmarking object detection deep learning models in em-
bedded devices. Sensors, 22(11), 2022. 1

[5] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian
Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Christopher Ré, and
Matei Zaharia. Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark. ACM SIGOPS Oper. Syst. Rev., 53(1),
2019. 2

[6] Colby R. Banbury et al. Mlperf tiny benchmark. In Joaquin Vanschoren
and Sai-Kit Yeung, editors, Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks, 2021. 2

[7] V. J. Reddi et al. Mlperf inference benchmark. In ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
2020. 2

[8] Leandro Libutti, F. Igual, L. Piñuel, Laura C. De Giusti, and M. Naiouf.
Benchmarking performance and power of USB accelerators for inference
with MLPerf. In 1st Workshop on Accelerated Machine Learning
(AccML), 2020. 2

[9] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor pro-
cessing unit. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), 2017. 2

[10] Michaela Blott et al. Evaluation of optimized cnns on heterogeneous
accelerators using a novel benchmarking approach. IEEE Trans. Com-
puters, 70(10), 2021. 2

[11] Stefan Reif, Benedict Herzog, Judith Hemp, Timo Hönig, and Wolfgang
Schröder-Preikschat. Precious: Resource-demand estimation for embed-
ded neural network accelerators. In First International Workshop on
Benchmarking Machine Learning Workloads on Emerging Hardware,
2020. 2

[12] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. Accelergy:
An architecture-level energy estimation methodology for accelerator

designs. In Proceedings of the International Conference on Computer-
Aided Design, ICCAD, 2019. 2

[13] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David M.
Brooks. Aladdin: A pre-rtl, power-performance accelerator simulator
enabling large design space exploration of customized architectures. In
ACM/IEEE 41st International Symposium on Computer Architecture,
ISCA, 2014. 2

[14] Intel. OpenVINO Toolkit. https://software.intel.com/en-us/openvino-t
oolkit, 2021. 3

[15] Coral. Tensorflow models on the edge tpu. https://coral.ai/docs/edgetp
u/models-intro/, 2021. 3

[16] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2018. 3

[17] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
CoRR, abs/1804.02767, 2018. 3

[18] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
Proceedings of the 8th IEEE International Conference on Data Mining
(ICDM), 2008. 4

60

A uthorized licensed use lim ited to : TU W ien B ib lio thek. D ow nloaded on A pril 12 ,2024 a t 13 :59 :30 U TC from IE E E X p lo re . R estric tions app ly .

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Weighted Quantization-Regularization in DNNs for
Weight Memory Minimization towards HW

Implementation
Matthias Wess, Sai Manoj Pudukotai Dinakarrao, Member, IEEE, and Axel Jantsch, Member, IEEE

Abstract—Deployment of Deep Neural Networks (DNNs) on
hardware platforms is often constrained by limited on-chip mem-
ory and computational power. The proposed weight quantization
offers the possibility of optimizing weight memory alongside
transforming the weights to hardware friendly data-types. We
apply Dynamic Fixed Point and Power-of-two quantization in
conjunction with Layer-wise Precision Scaling to minimize the
weight memory. To alleviate accuracy degradation due to pre-
cision scaling, we employ quantization-aware fine-tuning. For
fine-tuning, quantization-regularization and weighted quantization-
regularization are introduced to force the trained quantization
by adding the distance of the weights to the desired quantization
levels as a regularization term to the loss-function. While Dy-
namic Fixed Point quantization performs better when allowing
different bit-widths for each layer, Power-of-two quantization
in combination with retraining allows higher compression rates
for equal bit-width quantization. The techniques are verified on
an All-Convolutional Network. With accuracy degradation of
0.10 percentage points, for Dynamic Fixed Point with Layer-
wise Precision Scaling we achieve compression ratios of 7.34 for
CIFAR-10, 4.7 for CIFAR-100 and 9.33 for SVHN dataset.

Index Terms—Convolutional Neural Networks, Quantization,
Regularization, Memory minimization

I. INTRODUCTION

STARTING with AlexNet [1] Deep Convolutional Neural
Networks (DCNN) have been gaining attention by deliver-

ing impressive results on challenging problems, such as object
recognition on ImageNet dataset [2] or facial recognition [3].
The adaptation of such DCNNs and deep neural networks
(DNNs) in various applications including autonomous driving,
medical diagnosis [4], [5] and machine translation [6] led to
an ever increasing amounts of data to process under high
performance requirements.

Most of these applications can be described as supervised
learning tasks, split into training phase and inference. In the
training phase, the algorithm is optimized to solve a certain
task for the training data. The architecture of a DCNN or
DNN is defined by the number of layers and their func-
tionality (e.g. Convolutional, Fully Connected, Pool, Batch-
Normalization) and the layer-specific parameters which define

Matthias Wess is with ICT, TU Wien, Vienna, Austria, and Siemens AG,
Vienna, Austria (e-mail: matthias.wess@student.tuwien.ac.at).

Sai Manoj P.D. is with George Mason University, Fairfax, VA, United States
(e-mail: saimanoj.p.2013@ieee.org).

Axel Jantsch is with ICT, TU Wien, Vienna, Austria (e-mail:
axel.jantsch@tuwien.ac.at)

This article was presented in the International Conference on Hard-
ware/Software Codesign and System Synthesis 2018 and appears as part of
the ESWEEK-TCAD special issue

the dimensions and behavior of the layer in forward and
backward-propagation. To train the defined architecture on
a given training data, the labeled data is fed through the
network and in back-propagation, the layer-specific weights
are adjusted to decrease the error between the output and
original label. For inference, DNN employs the model derived
during training phase on the test or unknown data. The ability
to correctly process the new data based on training data is
called generalization ability.

Despite the state-of-the-art DNNs taking one or several
high-end GPUs and up to several days to train, inference
can be performed on a broad spectrum of platforms including
CPUs, GPUs, FPGAs, and ASICs. With the increasing size
of DNNs (e.g. ResNet [7] up to 152 layers), even the com-
plexity of inference is also exacerbating due to more critical
requirements and constraints such as limited power consump-
tion, high throughput or hard real-time processing. There
are several challenges that hinder the efficient deployment
and inference of the State-of-the-art Deep Neural Networks
(DNN) on embedded resource constrained platforms. The
two biggest challenges are the large size of the networks
and the total number of necessary operations in feed-forward
computation, since a hardware accelerator design can be bound
either by the limit of parallel operations, or by the memory
interface transmission rate [8], [9]. As a consequence, model
compression and increasing the efficiency of computations, are
two legitimate ways to reach hardware requirements.

Recent works [10], [11] have proven the robustness of
DNNs to compression of weights and simplification of ac-
tivation functions with high number of parameters and the
resulting redundancy [5], [10], [12], [13], [14]. This enables
several techniques including weight sharing [10], [15], pruning
[16] and Huffman Encoding [10] to reduce external memory
access. Pruning not only reduces the memory footprint of
a DNN model, but also allows skipping of multiplications
with 0, thus reducing the amount of total multiplications [17],
[18]. To reduce also power consumption within operations,
the model parameters have to be quantized in specific formats
a dedicated hardware can make use of. Dynamic fixed point
[14], [19] and power of two quantization [11] are two hardware
friendly formats that enable performing multiplications either
as low-precision multiplications or simple shift operations.

There are several approaches on how to best prepare a
DNN for inference with low precision data types. On one side
when employing the state-of-the-art DNNs it is desirable to
directly make use of pre-trained models without architectural

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

adjustments. [13] and [20] propose methods for layer-wise bit-
width optimization without retraining but not for bit-width
optimization followed by retraining. Furthermore, to fully
leverage optimized hardware accelerators for efficient infer-
ence (e.g. [21]) it can be desirable to force certain quantization
[11], compression or pruning schemes [17] in an additional
fine-tuning step. [11] proposes incremental weight quantiza-
tion while incorporating a Power-of-two datatype and achieve
almost lossless quantization for several DNNs. Other works
such as [22], [23] employ stochastic quantization methods to
during training. In stochastic training the algorithm stores a
floating point value and the quantized value at the same time
and for each feed forward computation the quantized weights
are newly computed on a stochastic basis.

This paper makes the following contributions:
• We propose weighted quantization-regularization (WQR),

a method for trained low precision quantization of
weights in Neural Networks to any given quantization
scheme.

• We combine Layer-wise Precision Scaling [20] with
weighted quantization-regularization to reduce the loss in
classification performance while increasing the compres-
sion rate.

• We analyze the benefits of Power-of-2 (Po2) and Dy-
namic Fixed Point (DFP) based quantization in our
setting and in combination with weighted quantization-
regularization and layer-wise bit-width optimization.

Aiming at highly efficient implementation in FPGAs, we
perform evaluation for quantization-regularization for dynamic
fixed point [23] and power of two quantization [11] schemes
on CNNs. We apply the proposed algorithm on SVHN CIFAR-
10 and CIFAR-100 dataset for two different quantization
schemes and show that weighted quantization-regularization
decreases loss in classification performance in comparison to
direct weight quantization for All-Convolutional Network on
CIFAR-10 from 1.5% to 0%. The results suggest that the
proposed algorithm reduces accuracy loss due to quantization.

II. MOTIVATIONAL CASE STUDY

Figure 1 explains with a simple example the two main parts
of the paper. Assuming a two-layer neural network with two
layers with 600 and 900 weights respectively, we want to
achieve model compression by reducing the number of bits
stored per weight and specific quantization of the weights to
enhance the computational energy efficiency.

First note, that layer 2 has a stronger impact on the size of
the weight memory, as it contains more weights. Thus, it is
beneficial in terms of memory footprint to reduce the bit-width
of its weights more than those of layer 1. However, quantiza-
tion also negatively affects the accuracy of the algorithm, due
to weight quantization errors. Therefore we apply Layer-wise
Precision Scaling (Fig. 1a) to find the best trade-off between
compression due to quantization and accuracy degradation.
While for the example in figure 1 uniform 3-bit quantization
leads to 4.5kbit weight memory, with Layer-wise Precision
Scaling applied according to figure 1a only 3.6kbit weights

Layer 1
3-bit DFP

Layer 2
2-bit DFP

Weight Value

W
ei

gh
t C

ou
nt

Weight Value

W
ei

gh
t C

ou
nt

(a)

(b)

Layer 1
Full Resolution

600 Weights

Layer 2
Full Resolution

900 Weights

Fig. 1. An example Network with two layers demonstrating (a) Layer-wise
Precision Scaling (b) Retraining with Quantization-regularization. Starting
with two layer network at first (a) the bit-widths of both layers are adjusted
by defining a lower precision format with the quantization levels marked as
dotted lines in the histogram charts. To reduce the quantization error, (b)
retraining with additional regularization, decreasing the average distance of
the weights to the quantization levels, is performed.

need to be stored, allowing us to increase compression ratio
by a factor 1.25.

To alleviate the accuracy degradation, performing trained
quantization by applying additional regularization with the
goal of reducing the weight quantization error results in an
increase the accuracy. For state-of-the-art DNNs Layer-wise
Precision Scaling shows even higher efficiency due to the
higher variation of numbers of weights per layer (table III).

III. PROPOSED METHOD

Figure 2 illustrates the entire quantization flow for learned
model compression which can be separated into three steps:

1) Quantization Scheme Evaluation: We define and an-
alyze two quantization strategies in terms of their ef-
fectiveness for hardware-friendly execution their ad-
vantages and disadvantages during fine-tuning and the
resulting performance.

2) Layer-wise Precision Scaling: To increase the model
compression ratio we apply layer-wise precision scaling,
meaning that for each layer different bit-widths are
used for weights. Thereby we study the influence of
selecting different bit-widths per layer on the resulting
classification accuracy.

3) Retraining with WQR and QR: The last task fo-
cuses on reducing accuracy degradation occurring due
to quantization. As loss of accuracy is induced due to
the change of weight magnitudes when approximating
them by rounding to the nearest quantization level,
we aim to force weights to reduce their distance to
such quantization levels in retraining, thus increasing
classification accuracy of the quantized network.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Layer-wise Precision Scaling

Quantization Scheme Evaluation

Direct Quantization

Trained Quantization
Retraining with WQR and QR

Power-of-two Dynamic Fixed Point

Accuracy and Modelsize for each Layer Bitwidth-1

Bitwidth-1 for Layer with best ratio Acc/Modelsize

Original Network

Quantized Network

Bitwidths

Fig. 2. Learned Weight Quantization step by step

While the first two steps serve for finding the best quan-
tization method and bit-width for each layer when applying
quantization without retraining, in the third step we perform
retraining aiming to reduce the accuracy loss caused by
quantization. In our flow, the weights are not first quantized
and then retrained, but we always start from the high accuracy
model, fine-tune weights with modified loss-functions and then
perform quantization. This approach has the advantage that
the network parameters are trained in full precision but with
the additional regularization terms which cause the weights to
reduce their distance to the desired quantization levels before
performing the actual quantization step. To better distinguish
we use the term direct quantization for quantization without
any fine-tuning. Trained quantization on the other hand con-
sists of fine-tuning, followed by the actual quantization step.
Input for the quantization process is a Deep Neural Network
(DNN) with N convolutional and/or fully connected layers
and weight-tensors Wn, 0 < n < N of arbitrary resolution.
Details on the network used for evaluation can be found in
table III. Table I lists the variables used in this work.

A. Direct Quantization

In direct quantization, the original network M is expressed
as Mq where the weights Wn of each layer are represented as
Wqn . The values of Wqn are determined by rounding each
element of Wn to the quantization level with the smallest
absolute distance of a defined quantization scheme Q.

1) Quantization Scheme Evaluation: Here, we present
Power-of-two [11] and Dynamic Fixed Point [23], [19], two
different quantization schemes and compare their properties
for direct and trained quantization.

TABLE I
VARIABLES USED IN THIS WORK

Variable Comment

M Original network model
Mq Quantized network model
N Number of layers
Wn Original Weights
Wqn Quantized weights
bn Bit-widths for layers n = 0...N
Qn Quantization schemes for layers n = 0...N
Qp2 Power-of-2 quantization scheme
n1 Maximum exponent for Power-of-2 quantization
n2 Minimum exponent for Power-of-2 quantization
s Maximum absolute weight within the selected layer

Qdfp Dynamic Fixed Point quantization scheme
B Unscaled Dynamic Fixed Point quantization scheme

accM Classification accuracy of the original network
accMq Classification accuracy of the quantized network
Δacc Accuracy degradation due to quantization
Wmem Weight memory bits

λ1 Quantization-Regularization scale factor
QR Quantization-Regularization Term
λ2 Weighted Quantization-Regularization scale factor

WQR Weighted Quantization-Regularization term

a) Power-of-two quantization: We implement Power-of-
two (Po2) quantization similar as in [11]. Qp2 is given as

Qp2 = {±2n1 , ...,±2n2 , 0}. (1)

n1 and n2 are integers with

n1 = ⌊log2 4s
3
⌋ (2)

s = max(abs(W)). (3)

For a given bit-width b and n2 are defined by

n2 = n1 − (2b−1 − 1). (4)

Thus, the quantization levels depend on the distribution of
weights, especially on the weight with the highest absolute
value. By adding ‘0’ as a quantization level, we enable power-
of-two quantization to also serve as a pruning mechanism
when applied to weight matrices, as small weights are rounded
to zero. In experiment symmetrical quantization schemes lead
to higher classification accuracies for the quantized networks,
therefore we only use 2b−1 of 2b possible quantization levels.

b) Dynamic Fixed Point: Dynamic fixed point (DFP)
data type is successfully used in several works for either direct
quantization or retrained model compression [23], [19]. For
DFP quantization, we first define a set of 2b − 1 equidistant
quantization levels:

B = {±2b−1 − 1,±2b−1 − 2, ..., 0}. (5)

Similar to Po2 quantization, we prefer a symmetric quantiza-
tion scheme. Next B is normalized and scaled, depending on
the distribution of weights:

Qdfp =
B

2b−1
∗ 2n1 . (6)

Figure 3 depicts the distribution of weights for an example
layer of a CNN, before and after quantization. While figure
3(a) shows the distribution for Po2 quantization, figure 3(b)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

illustrates the distribution for DFP quantization. As can be seen
that po2 has much irregular quantization values compared to
DFP, and also considers the values close to ‘0’ which might
help to retain the information with lower weights and aid in
improving the accuracy.

W
ei
gh

t
W
ei
gh

t

Fig. 3. Distributions before and after direct weight quantization for (a)
Dynamic Fixed Point and (b) Power-of-two quantization

As accuracy degradation of the quantized model Mq in com-
parison to the original model M is a result of the quantization
error, it is necessary to understand the relation between bit-
width and quantization error for both datatypes.

With DFP quantization, the mean square error (MSE) can
be reduced with increasing bit-width, since every additional
bit divides the intervals in half (see fig. 3a). Meanwhile when
increasing bit-width in Po2 quantization, the new quantization
levels are always added close to ‘0’ (see fig. 3b). As a
consequence with Po2 quantization, the quantization error
can only be reduced to a certain extent. Figure 4 shows
the resulting mean square errors for one weight-tensor of an
example layer when applying different bit-widths.

In addition, we consider the amount of pruned weights as
an important factor for model compression. In comparison to
DFP, Po2 quantization decreases sparsity within the weight
matrices as a result of quantization, due to the higher density
of levels close to ‘0’. Therefore to fully benefit from the
advantages of sparsity, an additional pruning step before
retraining is recommended. In figure 5 the number of pruned
weights depending on the selected bit-width is shown for Po2
and DPF quantization.

Figures 4 and 5 suggest that for direct Po2 quantization bit-
widths higher than 4-bit do not further decrease the Δacc but
4-bits in comparison to 5-bits slightly increase sparsity. On the
other hand, by scaling the bit-width of DFP the resulting MSE
can be reduced exponentially (Fig. 4) meaning that even bit-
widths higher than 8 bit deliver more accurate results. In terms
of sparsity, DFP prunes more weights than Po2 for bit-widths
of four and higher.

2 3 4 5 6 7 8

Bit-width

10 6

10 5

10 4

10 3

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Dynamic Fixed Point

Power-of-two

Fig. 4. Mean square error for an example layer when applying Power-of-two
and Dynamic Fixed Point quantization with different bit-widths. While DFP
quantization decreases the quantization error exponentially with increasing
bit-width, with Po2 quantization the quantization error reaches the minimum
already at bit-width 4.

2 3 4 5 6 7 8

Bit-width

40

60

80

100

S
p
a
rs

it
y
 i
n
 %

Dynamic Fixed Point

Power-of-two

Fig. 5. With increasing bit-widths the sparsity due to quantization decreases
for Dynamic Fixed Point and Power-of-two quantization. Sparsity denotes the
amount of weights that are 0 relative to the total amount of Weights

Based on these observations we expect that for direct DFP
quantization Δacc can be reduced to almost 0, based on Layer-
wise Precision Scaling. For direct Po2 quantization we expect
a higher Δacc and no significant increase of accuracy for bit-
widths higher than five. It can be seen in figures 6 and 10 that
these expectations are confirmed.

2) Layer-wise Precision Scaling: Secondly, to further re-
duce the model-size, we apply different quantization schemes
per layer by optimizing bit-widths. In comparison to choosing
equal bit-width for each layer, due to the varying amount
of parameters and varying distribution of weights between
layers, selecting fitting quantization schemes for each layer
can enable lower bit-widths per layer without reducing the
resulting accuracy. For the experiments we assume either DFP
or Po2 quantization. For an arbitrary network M with accuracy
accM applying weight quantization with the set of bit-widths
bn leads to accuracy accMq and weight memory bits

Wmem =
N�
n

card(Wn) ∗ bn (7)

where card(A) denotes the cardinality of set A. For each bn
we compute the resulting accuracy degradation

Δacc = accM − accMq (8)

and iteratively decrease the bit-width of the layer where a
lower bit-width leads to the smallest product of Δacc∗Wmem

(see algorithm 1).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Algorithm 1 Layer-wise Precision Scaling

procedure LAYER-WISE PRECISION SCALING(M)
initialize bn
while Δacc < ϵ do

for all n in layers do
bitwidth of layern - 1
Compute AccMq

, Δacc and Wmem

bitwidth of layern + 1
end for
Decrease bitwidth of layer with min(Δacc∗Wmem)

end while
end procedure

4 bit

5 bit

i

ii

Fig. 6. Layer-wise Precision Scaling compared with equal bit-width quanti-
zation for DFP and Po2 quantization. Compression ratio is the ratio between
32bit weight memory and the weight memory for the quantized network. Point
i indicates DFP with bn = [7 7 7 4 4 3 3 7 7] , point ii indicates Po2 with
bn = [4 4 4 4 3 3 4 4 4].

Figure 6 shows the results for Layer-wise Precision Scaling
performed by algorithm 1 on All-Convolutional Network [24]
for CIFAR-10. We can deduce that while DFP quantization
also allows direct quantization, whereas for power-of-two
quantization almost always an additional fine-tuning step is
necessary to achieve high accuracy results.

B. Trained Quantization

The used datasets (CIFAR-10, CIFAR-100 and SVHN) are
already divided into test data and training data. While with
Layer-wise Precision Scaling as described in section III-A2
focuses on decreasing Δacc∗Wmem without retraining, we can
additionally reduce Δacc by retraining the original network
on the training data with the goal of increasing accuracy
of the classifier on test data. As a consequence we use the
performance metrics in table II.

1) Quantization-Regularization: To decrease Δacc for a
selected set of bit-widths bn, we need to find the best set of
Wn so that approximation with Wqn achieves a maximum of
accMq . As shown in [13], [25] the degradation of classification
accuracy of a DNN due to quantization is directly related to

1For the computation of Quantized Test Accuracy, the weights of the
network are directly quantized after each epoch.

TABLE II
PERFORMANCE METRICS USED FOR FINE-TUNING

Variable Metrics Comment

acctr Training Accuracy Accuracy of the network
on the training data

accM Test Accuracy Accuracy of the network
on the test data

accMq Quantized Accuracy of the network
Test Accuracy1 with quantized weights

on the test data
accinit Init. Quantized Accuracy of the network

Test Accuracy with direct quantized initial
weights on the test data

CR Compression Ratio Ratio WMem of original model
to WMem of quantized model

the signal to quantization-noise ratio (SQNR) and the amount
of weights per layer, as both influence the SQNR of the
intermediate layer outputs and as a consequence the result-
ing network outputs. Therefore retraining network weights
to achieve lower SQNR without reducing accM , leads to
an increased accuracy of the quantized network. To enforce
weight quantization during the training phase we define the
quantization-regularization (QR) term as

QR =
N�
n

card(Wn)�
i

| Wni −Wqni |
max(Qn) ∗ card(Wn)

(9)

which expresses the mean of the absolute weight distances of
each weight to the corresponding quantized value.

By adding the QR-term to the loss function (eq. 10) weights
are forced closer to the quantization levels during retraining.

Modified Loss = Loss + λ1 ∗QR (10)

During fine-tuning with the parameter λ1 the trade-off between
min(Loss) and min(QR) and, as a consequence, between
min(Δaccuracy) and max(accM) can be adjusted. For the
experiments we applied fixed λ1 and linearly increasing λ1

(e.g. λ1 = 10∗epoch). Figure 7 depicts the trained quantization
process. With each epoch the weights are pulled closer to the
quantization levels, thus decreasing QR and Δacc.

While choosing a high (> 1000) λ1 leads to fast quantiza-
tion with strong accuracy degradation, a low λ1 value (< 1)
does not enforce quantization. Either way, much like weight
decay low λ1 values can help avoiding overfitting during
training.

2) Weighted Quantization-Regularization: While in normal
QR each weight within one layer is considered equally impor-
tant for reaching high classification accuracy, the efficiency
of pruning [16], [17], [15] shows that especially weights
with small magnitudes can be changed without reducing the
accuracy of the network. Similarly to [8], the weights can
be divided into two disjoint subsets, where QR is applied
on one of the subsets while the other weights are being
retrained without QR. Going one step further we can multiply
the QR value of each weight with the absolute magnitude
of the weight2. This strategy forces quantization stronger on

2Previously the sum of weights is normalized to 1 for each layer

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Fig. 7. Illustration of Quantization-Regularization. The first column shows the
floating point values of the weights on which the actual training is performed.
The second column shows the quantized weights, and the third column the
element-wise absolute difference of floating point and quantized weights.
Changes of quantized weights are marked in the second column. Weight
update for Wf is performed based on backpropagation of the modified loss
function (eq. 10). Successfully quantized weights are marked in the third
column. After Epoch 1 (a) the weights are hardly regularized and QR is
relatively large. Epoch 2 (b) shows that due to regularization, weights are
pulled closer to the quantization levels Qn = {0,±0.25,±0.5,±0.75}
and QR gets smaller. For three of the weights the resulting quantization level
changed, and weights decrease their distance to the next quantization level.
Epoch 3 (c) shows further reduction of the QR term.

weights with higher magnitudes which can be especially useful
for Po2 quantization, where density of quantization levels
decreases with increasing weight values. Therefore we define
the Weighted Quantization-Regularization (WQR) term as

WQR =
N�
n

card(Wn)�
i

(
| Wni −Wqni || Wni |
max(Qn)2 ∗ card(Wn)

(11)

and similarly to equation 10 we can weight the trade-off
between accuracy and weight regularization with λ1 and λ2

(eq. 12)

Modified Loss = Loss + λ1 ∗QR+ λ2 ∗WQR (12)

Again during training the parameters λ1 and λ2 have to be
adjusted carefully to reach the desired improvement of AccMq ,
without at the same time decreasing AccM . In our experiments
we found a linear increasing λ2 to work best (e.g. λ2 = 10 ∗
epoch). For fine-tuning, we use algorithm 2.

Figure 8 illustrates the fine-tuning process for 4-bit equal
bit-width Po2 quantized All-Convolutional Net for CIFAR-10.
At the beginning of the fine-tuning process the term λ2∗WQR
increases due to the increasing λ2 value, while the WQR-
Term decreases exponentially. At Epoch 200 learning rate is
decreased from 1e−4 to 1e−5 leading to the drop of λ2∗WQR.
This can be explained by fact that a larger learning rate leads
to larger weight changes. If the weights are already close to
the quantization levels a lower learning rate can lead to better
approximation of the weights to the quantization levels.

Algorithm 2 Fine-tuning with Quantization-Regularization
and Weighted Quantization Regularization

procedure TRAINED QUANTIZATION(M , bn, λ1, λ2)
for epochs do

for all Mini Batches do ▷ Train on Training Data
for n >= N do ▷ Quantize all Layers

Wqn = Quantize(Wn,Qn)
end for
Loss+λ1∗QR(Wn,Wqn)+λ∗WQR(Wn,Wqn)
Backpropagation(Loss,QR,WQR,λ1,λ2)

end for
Compute AccM ▷ Test Accuracy
Compute AccMq

▷ Quantized Test Accuracy
end for
return Mq ▷ Return Quantized Model

end procedure

0 50 100 150 200 250 300

Epoch

75

80

85

90

95

100
A

c
c
u
ra

c
y
 i
n
 %

Training Accuracy

Test Accuracy

Quantized Test Accuracy

0

20

40

60

80

100

120

140

L
o
s
s
/W

Q
R

Loss

2*WQR

Fig. 8. Fine-tuning of All-Convolutional Net for CIFAR-10 with linear
increasing λλλ2 for 4-bit equal bit-width Po2 quantization. ΔΔΔAcc is decreased
from 14.09% to 0.14% resulting in Quantized Test Accuracy of 90.18%
in comparison to initial Floating Point Test Accuracy 90.83%.

C. Summary and Analysis

In combination, the discussed techniques for quantization
(sec. III-A), Layer-wise Precision Scaling (sec. III-A2) and
fine-tuning with QR (sec. III-B1) and WQR (sec. III-B2)
facilitate DNN weight compression.

The above discussed two quantization schemes behave dif-
ferently during the quantization process and require different
quantization strategies. For bit-widths higher than 7 bit DFP
can be applied without any retraining and still achieves almost
floating point accuracy. For equal bit-width DFP quantization
with 7 bit and less, Δacc increases and fine-tuning is necessary
to reach the accuracy of the original network. On the other
hand Po2 quantization always requires retraining, as even the
use of bit-widths higher than five reduce the quantization error
only to a certain extent.

To increase the compression ratio when applying DFP quan-
tization, layer-wise precision scaling is an effective method,
since not all layers require the same the bit-width for high
accuracy. For instance, in modern convolution-only networks,
layers with fewer parameters require larger bit-widths [13].
As a result, when applying layer-wise precision scaling the
weights of the output and input layers are kept at high

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

Fig. 9. Distribution of weights in layer 5 of AllConvNet (CIFAR-10) during
fine-tuning with WQR and QR to (a) 4-bit Dynamic Fixed Point and (b)
4-bit Po2. DFP (a) is trained with λ2 = epoch ∗ 10. Region i shows the
faster quantization of weights with high magnitudes and slower quantization
of weights close to 0. At epoch 150 QR is applied with λ1 = 100 to
quantize also weights with smaller values (ii). Po2 (b) is trained with
λ2 = epoch ∗ 10. Region iii also shows slower quantization for small
magnitude weights. Due to the distribution of quantization levels, weights
around 0 are already close to the next quantization level (iv).

precision, as they usually have the fewest parameters. In
comparison to DFP, for Po2 quantization, layer-wise precision
scaling does not proof to be as effective, as almost the same
bit-width is recommended throughout the network to achieve
best accuracy.

For fine-tuning of Po2 and DFP quantized networks, QR and
WQR can be added to the loss function as regularization terms
to force quantization during retraining. While the QR term

forces all weights equally to reduce the distance to the next
quantization level, the WQR term is reduced for weights with
small magnitudes. Therefore, WQR operates less restrictive
than QR, as the QR value is multiplied with a factor from 0
to 1 (normalized weight magnitude). As a consequence it is an
effective strategy to apply WQR followed by QR fine-tuning.

Figure 9 shows the distribution of weights in layer 5 during
(a) 4-bit DFP and (b) 4-bit Po2 quantization of the All-
Convolutional Network for the CIFAR-10 dataset. For fine-
tuning to 4-bit DFP quantization (Fig.9a) λ2 is increased
linearly by a factor of 10 with each epoch. As QR scale
factor λ1 we use 0 before and 100 starting at epoch 150.
Region i in figure 9a shows the decelerated quantization
of small magnitude weights. Starting with epoch 150, also
weights close to 0 are quantized, due to the application of
QR (Fig. 9a,ii). For 4-bit Po2 quantization only WQR is
necessary (λ2 = epoch ∗ 10) to achieve quantization. Due
to the the non-equidistant distribution of quantization levels
in Po2 quantization, the weights with high magnitudes take
longer than in DFP quantization to reach the quantization
levels (Fig. 9b,iii). Additional QR is not necessary since, due
to the high density of quantization levels close to 0, the weights
with smaller magnitudes induce a very small quantization error
(Fig. 9b,iv).

QR and WQR enable trained quantization to improve per-
formance in comparison to direct quantization. Regularization-
based quantization is very simple to implement and applicable
for any quantization scheme. As a consequence QR and WQR
could be employed alongside other effective quantization tech-
niques such as stochastic quantization. Besides the simplicity
of the approach, it also allows a deeper analysis of quantization
schemes by recording the weight distribution during training.

While enabling compression for more efficient inference,
during training QR and WQR add overhead due to the manda-
tory quantization step after each mini-batch and the necessary
computations for calculation of QR and WQR. The fact that
all weights have to be stored as floating point values and
quantized values, increases the weight memory during training
by a factor of 2.

IV. EXPERIMENTAL RESULTS

The following section describes the experimental results for
direct and trained quantization of All-CNNs on three datasets.

A. Experimental Setup

For experimental evaluation, we apply the proposed meth-
ods on All-Convolutional Networks for the Datasets CIFAR-10
[26], CIFAR-100 and SVHN [27]. We use All-Convolution
Network model All-CNN-C from [24] for evaluation. The
CNN Architecture summed up in table III consists of nine
convolution layers and a global average pooling layer. Due
to the similar filter-width and height the number of weights
in the convolution layers mainly depends on the filter-depths.
The number of operations also depends on the layer-output
dimensions. However, it needs to be noted that the proposed
technique is neither architecture nor dataset bound.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

TABLE III
ALL-CNN-C ARCHITECTURE AND THE NUMBER OF WEIGHTS AND

MAC-OPERATIONS FOR ONE FORWARD COMPUTATION WITH BATCH-SIZE
ONE.

Layer (WxH) Output Dim. (WxHxD) #Weights #MACs

Input 32x32x3 - -
Conv. 3x3 32x32x96 2K 2.3M
Conv. 3x3 32x32x96 83K 74.6M
Conv. 3x3 32x32x96 83K 74.6M

Pooling 2x2 16x16x96 - -
Conv. 3x3 16x16x192 165K 32.5M
Conv. 3x3 16x16x192 332K 65M
Conv. 3x3 16x16x192 332K 65M

Pooling 2x2 8x8x192 - -
Conv. 3x3 8x8x192 332K 11.9M
Conv. 1x1 8x8x192 37K 2.4M
Conv. 1x1 8x8x10 2K 0.1M

Pooling 8x8 10 - -

Total - 1386K 329.7M

For the three datasets, we use the predefined training and
test sets. For the floating point baselines we trained the CNN
for 350 epochs with initial learning rate 10−3 multiplied by
a fixed multiplier after epochs 200 and 300. To avoid over-
fitting, we use dropout with dropout rate 0.5 after layers. In
contrast to the original All-CNN paper [24], the models are
not regularized by weight decay to avoid interfering with the
studied regularization methods. In terms of data augmentation
we only apply horizontal flipping and random shifting by a
maximum of 3 pixels.

B. Performance Analysis

We evaluate the performance of the proposed method com-
paring the test accuracy of the original network with the
resulting accuracies after direct and trained quantization. For
the tables V, IV and VI, we make use of the abbreviations in
table II. We aim to achieve high compression rates in terms
of weight memory while maintaining high test accuracy. In
addition to bit-width reduction we also consider the resulting
sparsity as an important factor for possible further compres-
sion. Assuming skipping of multiplications with 0 weights,
sparsity also reduces the amount of required MAC-operations
for forward computation3. For all experiments except the two
marked, bit-width for activations is 32-bit Fixed Point.

1) CIFAR-100: CIFAR-100 is an image classification
dataset consisting of a training set of 50000 and a test set
of 10000 32×32 color images representing 100 different cate-
gories such as airplanes, automobiles, birds, cats, deers,dogs,
frogs, horses, ships and trucks [26]. The training batches
contain exactly 5000 images from each class. Table V shows
the resulting accuracies after fine-tuning with 200 epochs
of WQR with λ2 = epoch × 10. In addition λ1 is set to
100 starting at epoch 150. This setup is not optimal for all
configurations, as in some cases training with only QR would
be sufficient, but it allows using the same parameterization
for each iteration increasing comparability. Compared to a full

3The number of skipped MACs due to a pruned weight depends on the
layer-input dimensions. Therefore sparsity in weights is unequal to sparsity
in MACs.

implementation (32-bit), the proposed layer-wise quantization
(DFP-lw) saves ∼4-8× in terms of weight memory and has an
accuracy loss by ∼0.1-4.5%. Compared to the reduced equal
bit-width quantization, the proposed layer-wise quantization
has higher sparsity and smaller weight memory.

In addition, figure 10 depicts the results of trained quan-
tization in comparison to direct quantization. We can see
that retraining with QR and WQR in all cases increases
classification accuracy in comparison to direct quantization.

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Compression Ratio

52.5

55.0

57.5

60.0

62.5

65.0

A
c
c
u
ra

c
y
 i
n
 %

Baseline

Layer-wise DFP

Equal DFP

Equal Po2

Lw. DFP Retrained

Eq. DFP Retrained

Eq. Po2 Retrained

Fig. 10. Results for direct and trained DFP and Po2 quantization with equal
bit-widths on ALL-CNN for CIFAR-100. For DFP also Layer-wise Precision
Scaling with direct and trained quantization is illustrated.

Comparing equal bit-width quantization with Layer-wise
Precision Scaling for DFP datatype, we can see that for
similar compression ratios, equal bit-width (DFP-eq) never
reaches the accuracy of Layer-wise Precision Scaling (DFP-
lw), even when retraining with WQR/QR is applied. For Po2
quantization we found equal 4 bit quantization (Po2-eq) the
most effective method as higher bit-widths did not increase
accuracy and Layer-wise Precision Scaling for lower than 4
bit leads to drastic accuracy drop.

2) CIFAR-10: CIFAR-10 is a benchmark image classifica-
tion dataset equal to CIFAR-100 in terms of image and dataset
sizes, which instead of 100 classes divides the images into
10 classes. We use the same training method as for CIFAR-
100. The results for trained quantization of All-CNN for
CIFAR-10 are shown in table V. To allow comparing to other
works for the two marked configurations, we also quantized
the activations to 8-bit DFP. In contrast to ALL-CNN for
CIFAR-100, for this dataset higher compression rates can be
achieved. For Compression Ratio ∼ 8, DFP with Layer-wise
Precision Scaling (DFP-lw) gives lowest accuracy degradation
of 0.51 percentage points. For equal bit-with quantization Po2
outperforms DFP by 1.55 percentage points. For Compression
Ratio 7.38 classification accuracy of DFP with Layer-wise
Precision Scaling is only 0.01 percentage points below the
floating point baseline.

3) SVHN: The SVHN image classification dataset consists
of 694K 32×32 color images for training and 26K images for
testing. The images represent digits form 0 to 9. Similarly to
CIFAR-100 and CIFAR-10 we perform Layer-wise Precision
Scaling and retraining with WQR and QR for model compres-
sion. The results are shown in table VI and figure 11. For the
SVHN dataset at Compression Ratio ∼ 8, Po2 quantization

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TABLE IV
RESULTS IN COMPARISON TO FLOATING POINT BASELINE OF ALL-CNN FOR CIFAR-100 (CR=COMPRESSION RATIO)

bn Type Wmem[Bit] CR Sparsity[%] non-0 MACs MAC Sparsity[%] acctr[%] accinit[%] accMq [%]

32 bit float 44344K 1 0 329.7M 0 83.24 63.03 63.03
8 bit DFP-eq 11086K 4 5.8 304.8M 7.6 83.5 62.43 62.99
7 bit DFP-eq 9700K 4.6 11.5 280.3M 15 82.65 61.86 62.38
6 bit DFP-eq 8314K 5.3 21.9 234.1M 29 81.02 58 61.19
5 bit DFP-eq 6928K 6.4 38.9 161M 51.2 76.99 43.72 59.54

[9 9 9 9 6 5 7 9 9] DFP-lw 9485K 4.7 14.6 289.5M 12.2 83.44 62.90 62.93
[9 9 9 9 5 5 5 9 9] DFP-lw 8490K 5.2 23.2 279.2M 15.3 82.45 62.45 62.64
[9 9 9 5 4 4 5 9 9] DFP-lw 7163K 6.2 36.4 243.4M 26.2 80.76 61.70 62.29
[9 6 5 5 3 3 4 7 9] DFP-lw 5513K 8.0 60.4 133.6M 59.5 73.76 55.69 58.58

4 bit Po2-eq 5543K 8 18.3 255.2M 22.6 79.47 51.27 60.94

TABLE V
RESULTS IN COMPARISON TO FLOATING POINT BASELINE OF ALL-CNN FOR CIFAR-10

bn Type Wmem[Bit] CR Sparsity[%] non-0 MACs MAC Sparsity[%] acctr[%] accinit[%] accMq [%]

32 bit float 43791K 1 0 329.7M 0 96.69 90.83 90.83
8 bit DFP-eq4 10947K 4 4.2 303.5M 7.6 96.64 90.65 90.85
4 bit DFP-eq 5474K 8 42.3 140.7M 57.2 94.4 44.47 88.63

[8 8 8 5 4 4 3 8 8] DFP-lw4 5929K 7.38 36.8 243M 26 96.49 90.14 90.81
[7 7 7 4 4 3 3 7 7] DFP-lw 5432K 8.1 46.1 203.9M 37.9 96.01 90.07 90.32

4 bit Po2-eq 5474K 8 13.2 255.9M 22.1 96.13 76.73 90.18

TABLE VI
RESULTS IN COMPARISON TO FLOATING POINT BASELINE OF ALL-CNN FOR SVHN

bn Type Wmem[Bit] CR Sparsity[%] non-0 MACs MAC Sparsity[%] acctr[%] accinit[%] accMq [%]

32 bit float 43791K 1 0 329.7M 0 97.70 95.84 95.84
4 bit DFP-eq 5474K 8 43.5 166.8M 49.2 96.27 86.17 95.37

[6 4 4 3 3 3 4 5 6] DFP-lw 4690K 9.3 62.7 126.6M 63.2 96.43 95.03 95.89
[5 4 4 3 3 3 3 3 3] DFP-lw 4276K 10.23 70.5 116.7M 64.4 95.52 89.86 95.36

4 bit Po2-eq 5474K 8 17.0 272.8M 16.9 97.02 91.93 96.02

4 5 6 7 8 9 10 11

Compression Ratio

92

93

94

95

96

A
c
c
u
ra

c
y
 i
n
 %

Baseline

Layer-wise DFP

Equal DFP

Equal Po2

Lw. DFP Retrained

Eq. DFP Retrained

Eq. Po2 Retrained

Fig. 11. Results for direct and trained DFP and Po2 quantization with
equal bit-widths on ALL-CNN for SVHN. For DFP also Layer-wise Precision
Scaling with direct and trained quantization is illustrated.

and DFP with Layer-wise Precision Scaling both outperform
the original baseline model.

Comparing the results for the datasets CIFAR-100, CIFAR-
10 and SVHN, we can conclude that the attainable Compres-
sion Ratio for lossless trained quantization with QR/WQR
not only depends on the selected datatype and bit-widths,
but also on the selected datasets. While for CIFAR-10 and
SVHN, lossless trained quantization achieves Compression
Ratio 8.0 and 9.4 respectively, for CIFAR-100 the maximum
Compression Ratio is 4.7 for lossless compression. In the case

of CIFAR-100 further increasing Compression Ratio up to 8.0
reduces accuracy by 2.09 percentage points. In contrast to
this trade-off, stronger compression for CIFAR-10 and SVHN
immediately leads to drastic accuracy reduction. We suspect
that this difference can be explained by the relation between
complexity of the dataset and the selected network. To better
understand this relation, in future the techniques have to be
applied for further datasets and network topologies.

While with DFP lossless compression can always be
achieved, Po2 can sometimes lead to slight performance
degradation. Layer-wise Precision Scaling turns out to be more
effective for DFP than for Po2. Po2 still reaches maximum
accuracy at uniform 4-bit bit-width while achieving higher
accuracy than uniform 4-bit and even 5-bit DFP.

V. COMPARISON WITH RELATED WORK

The proposed method of Weighted Quantization-
Regularization presents a novel technique for trained
quantization of DNNs. However in some works performing
weight-binarization similar regularization methods are used to
achieve weights with values ‘+1’ or ‘−1’ [28]. Today trained
quantization is mostly performed by stochastic rounding
during training [14], [29], [22], [30]. Gupta et al. [30]
apply stochastic training for CIFAR-10 dataset to achieve
Fixed Point quantization to 16-bit and 12-bit. Their accuracy

48-bit DFP for activations

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

is reduced by 0.8 and 4.2 percentage points respectively
compared to the floating point baseline. In comparison to that
with our method we reach 8-bit DFP quantization without
any performance drop.

Courbariaux et al. [14] perform quantization based on
stochastic round for 10-bit Dynamic Fixed Point weights
and activations. Their accuracy drops in comparison to the
baseline networks 3.14 percentage points for CIFAR-10 and
2.58 percentage points for SVHN since in contrast to us,
they also perform weight-update with 12-bit DFP which de-
creases comparability. For our CIFAR-10 and SVHN network
we experimentally also applied 8-bit DFP for weights and
activations, and found that accuracy even increased after
QR/WQR retraining. Gysel et al. [22] use their CAFFE-
based tool Ristretto for Layer-wise Precision Scaling and fine-
tuning with stochastic rounding. On CIFAR-10 their accuracy
lies 0.3% below the floating point baseline accuracy, when
quantizing not only weights but also activations to 8 bit DFP.
By applying Layer-wise Precision Scaling we are able to
increase compression ratio from 4 to 7.38 and after QR/WQR-
retraining achieve equal to baseline accuracy while inducing
higher sparsity due to the stronger compression. Other than
fine-tuning with stochastic rounding, Zhou et al. [11] presented
an incremental retraining method to perform Power-of-two
weight quantization. They achieve lossless 5-bit/4-bit quan-
tization for several DNNs for the ImageNet dataset. Even for
lower bit-rates incremental quantization achieves state-of-the-
art results. Even though this method seems highly promising,
in contrast to our work, it is only verified to work for power-
of-two quantization.

VI. CONCLUSION

We propose Quantization-Regularization (QR) and
Weighted QR (WQR) as techniques for improving accuracy
after bit-width reductions inflicted by a quantization scheme.
WQR/QR allow fine-tuning for weights in any quantization
scheme and also works for non-uniform bit-widths (Layer-
wise Precision Scaling). For ALL-CNN with the CIFAR-10
benchmark WQR reaches lossless compression up to a ratio of
7.38x with DFP and Layer-wise Precision Scaling. Compared
to the 32bit floating point baseline in the All-CNN network,
WQR with DFP obtains a weight memory compaction of
8.0×-10.23× and a MAC sparsity of 37.9%-64.4% in the
benchmark tasks. For these cases with maximal compaction
we observe between 0.48-4.45 percentage points reduction of
classification accuracy. A high MAC sparsity benefits HW
implementations because it potentially reduces the number of
multiply-accumulate operations.

Note, that WQR/QR is not a stand-alone tool, but can be
combined with other techniques and is typically complemen-
tary to those. We have observed, that it has some limitations
when applied to very low bit-widths; hence, its combination
with stochastic rounding methods is considered as future work.

Furthermore, we have studied two quantization schemes,
Dynamic Fixed Point (DFP) and Power-of-two (Po2), and we
find that DFP is usually preferable to Po2 because it is as good
as or better than Po2 in most cases, it can reach floating point

accuracy when increasing bit-width, and it does not necessarily
require retraining (retraining improves accuracy but for Po2
it is absolutely necessary). However, in a few special cases
with low bit-width Po2 is slightly better and it might be
preferred for HW implementations because it requires only
shift operations instead of multiplications. Thus, when an
optimized HW implementation is developed, Po2 could be
considered as a useful option.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–
255.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
Gap to Human-Level Performance in Face Verification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 1701–1708.

[4] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y.
Ng, “Cardiologist-level Arrhythmia Detection with Convolutional Neural
Networks,” arXiv preprint arXiv:1707.01836, 2017.

[5] M. Wess, P. D. S. Manoj, and A. Jantsch, “Neural network based ECG
anomaly detection on FPGA and trade-off analysis,” in Proceedings of
the IEEE International Symposium on Circuits and Systems, 2017, pp.
1–4.

[6] J. Zhang and C. Zong, “Deep Neural Networks in Machine Translation:
An Overview,” IEEE Intelligent Systems, vol. 30, no. 5, pp. 16–25, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[8] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2015, pp.
161–170.

[9] P. D. S. Manoj, J. Lin, S. Zhu, Y. Yin, X. Liu, X. Huang, C. Song,
W. Zhang, M. Yan, Z. Yu, and H. Yu, “A scalable network-on-chip mi-
croprocessor with 2.5D integrated memory and accelerator,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 64, no. 6, pp.
1432–1443, June 2017, https://ieeexplore.ieee.org/document/7819521/.

[10] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” in International Conference on Learning Representations,
2016.

[11] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental Network
Quantization: Towards Lossless CNNs with Low-Precision Weights,”
International Conference on Learning Representations, 2017.

[12] X. Chen, X. Hu, H. Zhou, and N. Xu, “FxpNet: Training a Deep Convo-
lutional Neural Network in Fixed-Point Representation,” in International
Joint Conference on Neural Networks. IEEE, 2017, pp. 2494–2501.

[13] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed Point Quanti-
zation of Deep Convolutional Networks,” in Proceedings of the Inter-
national Conference on Machine Learning, 2016, pp. 2849–2858.

[14] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neu-
ral networks with low precision multiplications,” arXiv preprint
arXiv:1412.7024, 2014.

[15] X. Dong, S. Chen, and S. Pan, “Learning to Prune Deep Neural
Networks via Layer-wise Optimal Brain Surgeon,” in Advances in
Neural Information Processing Systems, 2017, pp. 4860–4874.

[16] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights and
Connections for Efficient Neural Networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 1135–1143.

[17] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient Con-
volutional Neural Networks using Energy-Aware Pruning,” Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[18] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing DNN Pruning to the Underlying Hardware Par-
allelism,” in Proceedings of the Annual International Symposium on
Computer Architecture. ACM, 2017, pp. 548–560.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

[19] P. Gysel, “Ristretto: Hardware-Oriented Approximation of Convolutional
Neural Networks,” Master’s thesis, University of California Davis, 2016.

[20] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive Quantization for Deep Neural Network,” AAAI Conference
on Artificial Intelligence, 2018.

[21] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient Inference Engine on Compressed Deep Neu-
ral Network,” in International Symposium on Computer Architecture.
IEEE, 2016, pp. 243–254.

[22] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented Ap-
proximation of Convolutional Neural Networks,” arXiv preprint
arXiv:1604.03168, 2016.

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low Pre-
cision Weights and Activations,” Journal of Machine Learning Research,
2018.

[24] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for Simplicity: The All Convolutional Net,” in International Conference
on Learning Representations, 2015.

[25] S. Shin, Y. Boo, and W. Sung, “Fixed-point Optimization of Deep Neural
Networks with Adaptive Step Size Retraining,” IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2017.

[26] A. Krizhevsky, V. Nair, and G. Hinton. (2009,
mar) Cifar-10 and Cifar-100 Datasets. [Online]. Available:
https://www.cs.toronto.edu/ kriz/cifar.html

[27] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading Digits in Natural Images with Unsupervised Feature Learn-
ing,” in NIPS workshop on Deep Learning and Unsupervised Feature
Learning, vol. 2011, no. 2, 2011, p. 5.

[28] W. Tang, G. Hua, and L. Wang, “How to Train a Compact Binary
Neural Network with High Accuracy?” in AAAI Conference on Artificial
Intelligence, 2017, pp. 2625–2631.

[29] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
Deep Neural Networks with Binary Weights during Propagations,” in
Advances in Neural Information Processing Systems, 2015, pp. 3123–
3131.

[30] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
Learning with Limited Numerical Precision,” in International Confer-
ence on Machine Learning, 2015.

Matthias Wess recieved the BSc and MSc de-
grees from Department of Electrical Engineering,
TU Wien, Vienna, Austria in 2013 and 2017, re-
spectively, where he is currently pursuing the PhD
degree with the Institute for Computer Technology.

His current research interests include hardware
acceleration of deep neural network inference.

Sai Manoj P. D. is a Research Assistant Professor
at George Mason University (GMU), Fairfax, VA,
United States. Prior to joining GMU, Dr. Manoj
worked as a post-doctoral research fellow at TU
Wien, Austria. He received his PhD in Electrical
and Electronic Engineering from Nanyang Techno-
logical University, Singapore, in 2015. His research
interests include Adversarial learning, digital design
for machine learning, cyber-security for embedded
processors, self-aware SoC design, machine learning
for on-chip data processing, and security in IoT

networks. He is a recipient of ‘A. Richard Newton Research Young Research
Fellow Award’ in DAC 2013. He is a Member of the IEEE.

Axel Jantsch Axel Jantsch is Professor of Systems
on Chip at the Institute of Computer Technology
at TU Wien, Austria. His research interests include
embedded machine learning and self-awareness in
SoCs and embedded systems. Jantsch has a PhD in
computer science from TU Wien. He is a Member
of the IEEE.

