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Abstract

This thesis investigates the application and economic evaluation of super-
vised learning methods for short-term energy forecasting and the control of
distributed energy resources. The core objective is addressed by answering
three interconnected research questions, leading to the following contribu-
tions: i) Benchmarking existing supervised learning forecasting methods us-
ing both statistical and a novel application-driven economic metric for peak
load management; ii) Developing an interpretable and data-efficient model-
based deep learning approach for net load forecasting in households with
behind-the-meter photovoltaic systems, battery storage, and energy manage-
ment systems; and iii) Evaluating the economic impact of forecast errors
on the dispatch of a multi-energy microgrid using economic Model Predic-
tive Control under various tariff structures. Key findings indicate that while
tree-based models often exhibit superior average statistical accuracy, neural
networks can be more effective for economic objectives, such as peak shaving.
Moreover, by incorporating physical priors into deep learning models net load
forecasting accuracy, interpretability, and data efficiency are significantly im-
proved. Furthermore, the analysis of a microgrid reveals that while optimized
control offers substantial cost and CO2 savings, forecast uncertainty dimin-
ishes these achievable benefits when compared to a perfect foresight scenario,
especially for systems with greater flexibility or those subject to tariffs like
demand charges. This work emphasizes the need to co-design and evaluate
forecasting methods within their specific application context to unlock their
full potential in future energy systems. Finally recommendations to stake-
holders are offered: grid operators should use application-specific metrics for
tasks like peak shaving; energy retailers need models understanding control
logic of prosumers; and end-users must combine energy assets with advanced
forecasting and control frameworks.
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Kurzfassung

Diese Dissertation untersucht die ökonomische Bewertung und Anwendung
von Supervised Learning Methoden für die kurzfristige Energieprognose und
Steuerung dezentraler Energieressourcen. Die Arbeit adressiert dies durch: i)
ein Benchmarking von Prognosemethoden mittels statistischer und ökonomis-
cher Metriken für Spitzenlastmanagement; ii) die Entwicklung interpretier-
barer Deep-Learning-Modelle für Prosumer-lasten; iii) die Analyse ökonomis-
cher Auswirkungen von Prognosefehlern in einem Microgrid.

Wichtige Ergebnisse sind: Obwohl tree-based Modelle oft statistisch genauer
sind, können neuronale Netze für ökonomische Ziele wie Spitzenlastreduk-
tion, besonders bei längeren Horizonten, vorteilhafter sein. Die Integration
physikalischen Vorwissens in Deep-Learning-Modelle steigert die Genauigkeit,
Interpretierbarkeit und Dateneffizienz von Nettolastprognosen bedeutend.
Im Microgrid ermöglicht optimierte Regelung zwar erhebliche Kosten- und
CO2-Einsparungen, Prognoseunsicherheit reduziert diese Vorteile jedoch deut-
lich, insbesondere bei hoher Systemflexibilität oder komplexen Tarifen wie
Leistungspreisen.

Die Arbeit unterstreicht die Notwendigkeit, Prognosemethoden im spezifis-
chen Anwendungskontext zu entwerfen und zu evaluieren. Empfehlungen für
Stakeholder umfassen: die Nutzung anwendungsspezifischer Metriken durch
Netzbetreiber, die Entwicklung von Modellen mit Verständnis für Prosumer-
Steuerlogik für Energiehändler, sowie die Kombination von Energieanlagen
mit fortschrittlichen Prognose- und Regelungskonzepten durch Endnutzer.
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1. Introduction

1.1. Motivation

The transition to a decarbonized economy is anchored by several pivotal
transformations: the electrification of industry and transport, the deploy-
ment of energy efficiency measures, and the integration of renewable energy
sources. Central to all three of these transformations is the integration of
millions of decentralized energy resources (DERs), such as electric vehicles,
batteries, and rooftop photovoltaic (PV) systems into the grid (Pérez-Arriaga
and Knittle, 2016). This integration presents not only challenges of matching
complex temporal patterns of electricity consumption and intermittent gen-
eration but also offers unprecedented opportunities to create economic value
for stakeholders of the energy system of the near future.

As this transition unfolds, the roles of various stakeholders are changing, as
they adapt to and seek to deal with and leverage the increasing penetration
of DERs. This presents a diverse set of challenges and opportunities.

Grid operators are increasingly applying new strategies to maintain system
stability as electricity demand patterns evolve (Lindberg et al., 2019) and ex-
treme weather events unfold more frequently (Seneviratne et al., 2021). One
of these strategies is the activation of demand-side flexibility (i.e., demand
response) to reduce peak loads or generation. Such programs incentivize
consumers (e.g., households, commerce, and industry) to reduce or time-
shift their electricity demand (and generation), helping balance supply and
demand. The U.S. Department of Energy highlights that demand response
allows consumers to play a significant role in grid operation by cutting or
shifting usage at peak times, and system operators increasingly treat it as
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1. Introduction

a valuable resource for maintaining the fine balance between supply and de-
mand, and thereby lowering costs (Energy, 2025). The National Grid Elec-
tricity System Operator (ESO) in the United Kingdom demonstrated such
a program with their Demand Flexibility Service (DFS), in which over 1.6
million households and businesses participated in supporting the ESO bal-
ance the grid at peak times (The ESO’s Demand Flexibility Service | ESO
2024). Furthermore, as shown by the California Independent System Oper-
ator (CAISO), the Flex Alert Program achieved notable reductions in peak
load during heatwaves and cold snaps (Peplinski and Sanders, 2023). Such
mechanisms can reduce the need for grid expansion investments (Blokhuis
et al., 2011; Asensio et al., 2017), increasing the efficiency of grid operation
and simultaneously enhance grid resilience to extreme weather events.

Energy retailers are also adjusting to the rise of distributed energy re-
sources, as these are profoundly shifting demand profiles for which they need
to procure energy. A prominent example of novel load patterns is the “Cal-
ifornian Duck Curve,” popularized during the roll out of rooftop solar PV
in the state. More precisely, in California, midday electricity demand has
dropped sharply as abundant solar DERs supply consumers locally, then de-
mand ramps steeply upward in the evening when solar fades; the load curve’s
shape resembles a duck (Denholm et al., 2015; Hou et al., 2019). Next to
rooftop PV, behind-the-meter storage combined with home energy manage-
ment systems (HEMS) are also exposing retailers to novel net load profiles.
Thus, the role of retailers is transitioning from energy procurement, which
has historically been based on standard load profiles to actively forecasting
electricity demand informed by exogenous factors (Yang et al., 2017), shaping
tariffs to resemble spot market prices, and beginning to take active control
of behind-the-meter appliances (Kerscher and Arboleya, 2022; Saboori et al.,
2011; Nuytten et al., 2013).

Consumers, through collective DER arrangements like energy communi-
ties, virtual power plants (VPPs), and microgrids are emerging as impor-
tant stakeholders to organize and intelligently operate distributed resources.
Policy frameworks are actively encouraging this trend. In the US, FERC
No. 2222 provides opportunity "for new and potentially increased value,
one that is based on intelligently combining many DERs into a single vir-
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1. Introduction

Figure 1.1.: Californian Duck Curve (EIA, 2025)

tual resource that can reduce costs for the bulk power system." (Zhou et al.,
2021). In Europe, the Clean Energy for All Europeans Package introduced
formal recognition for “Citizen Energy Communities” and “Renewable En-
ergy Communities,” establishing an enabling legislative framework for groups
of consumers/prosumers to jointly invest in and manage energy resources
(European Commission. Joint Research Centre., 2020; Nosratabadi et al.,
2017; Gjorgievski et al., 2021). Similarly, regulatory advancements in Great
Britain, such as Ofgem’s P415 modification to the Balancing and Settlement
Code, granting smaller consumers access to Virtual Lead Parties (VLPs)—
independent aggregators of consumer flexibility—to participate directly in
wholesale electricity markets. This removes barriers for consumers to of-
fer their flexibility and potentially increasing market competition (Ofgem,
2025).

The main enabler of these transitioning roles is advanced information and
communication technology (ICT). Specifically, by harnessing the compu-
tational capabilities of today’s hardware, i.e. Graphical Processing Units
(GPUs) and the increasing ubiquity of energy time series data, machine learn-
ing presents effective tools for actors who want to operate distributed energy
resources (DERs) based on their unique objectives. One of the foremost
applications of machine learning, and especially its sub-category supervised
learning, is energy forecasting, which is central for data-driven control of
DERs and forms the topic of this dissertation.

7



1. Introduction

1.2. Core Objective and Research Questions

The core objective of this thesis is to bridge the gap between supervised
learning-based very short-term energy forecasting and the control of dis-
tributed energy resources. To achieve this objective, the thesis addresses
three interconnected research questions, each explored in a peer-reviewed pa-
per that tackles an application of energy forecasting and control at a specific
level of aggregation and stakeholder in the transitioning electricity system
(see Figure 1.2).
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1. Introduction

Research Question 1

How do existing supervised learning-based forecasting methods perform in
terms of statistical and economic error metrics for the task of peak load fore-
casting?

This research question motivated a large benchmarking study of supervised
learning model architectures for electricity load forecasting, conducted during
a research stay at the Lawrence Berkeley National Laboratory (LBNL).

Paper 1: Nikolaus Houben, Miguel Heleno, Han Li, Tianzhen Hong, Hans
Auer, Amela Ajanovic, Reinhard Haas (2025). “Short-term Electricity Load
Forecasting: Application-Driven Evaluation of Machine Learning Models
Across Spatial and Temporal Scales.” (Houben et al., 2025a); Under revi-
sion in Engineering Applications of Artificial Intelligence.

In this work, the two major classes of supervised learning-based methods,
i.e., tree-based and neural network-based methods, are compared for the
task of load forecasting. Model performance of six architectures is evaluated
on twelve datasets at various levels of spatial aggregation and temporal hori-
zons. With a focus on peak load forecasting, a novel error metric is proposed,
bridging the gap between statistical accuracy and economic implications of
forecasting models. The work concludes with recommendations to grid op-
erators seeking to develop and implement effective data-driven peak load
forecasting models.

Research Question 2

How can net load forecasting be improved for households with behind-the-
meter photovoltaic systems, battery storage, and home energy management
systems, while enhancing interpretability and data efficiency through novel
architectures?

The second research question led to a collaboration with researchers at Utrecht
University, resulting in a paper on day-ahead net load forecasting from the
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1. Introduction

perspective of energy retailers.

Paper 2: Nikolaus Houben, Wilfried van Sark, Lennard Visser, Hans Auer,
Amela Ajanovic, Reinhard Haas (2025). “Interpretable net load forecasting
with model-based deep learning for behind-the-meter generation and stor-
age”(Houben et al., 2025b); Under revision in IEEE Transactions on Smart
Grid.

Forecasting net load for prosumer households with photovoltaics, batteries,
and energy management systems presents a significant challenge due to com-
plex operational strategies. This study addresses this by proposing a model-
based deep learning architecture. By embedding a physical PV model and a
differentiable HEMS optimization layer, the model incorporates operational
priors, leading to higher accuracy, interpretability, and data efficiency over
competitive methods in the literature. The findings, furthermore, provide
practical guidance for retailers implementing forecasting under real-world
data constraints.

Research Question 3

What is the economic impact of load and photovoltaic generation forecast
errors in a multi-energy microgrid, subject to various electricity pricing sys-
tems?

The third research question, rooted in work performed at the Microgrid Lab
in Wieselburg, Austria, is answered in a study comparing the operational
dispatch of flexibilities in an energy community based on model predictive
control and rule-based control.

Paper 3: Nikolaus Houben, Armin Cosic, Michael Zellinger, Michael Stadler,
Hans Auer, Amela Ajanovic, Reinhard Haas (2024). “Optimal Dispatch of
a Multi-Energy System Microgrid Under Uncertainty: A Renewable Energy
Community in Austria.”(Houben et al., 2023) Published in Applied Energy.

In this work, a novel multi-step tree-based forecasting method for electricity
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1. Introduction

load and hot water load, as well as for photovoltaic generation, was developed
and integrated into a microgrid controller. By virtue of a real case study of
an Energy Community in Austria, the economic potential and limitations
of a data-driven control strategy are showcased. The paper concludes with
a sensitivity analysis of battery size to inform investment decisions of end-
users.

1.3. Structure of the Thesis

This thesis is structured around three interconnected research questions (RQs),
each corresponding to a peer-reviewed publication1 (Paper 1, Paper 2, Paper
3) (see Figure 1.2). To maintain clarity, the abbreviations RQ1, RQ2, and
RQ3 are consistently used throughout the main body chapters to link content
directly to the relevant question and publication. While drawing significantly
from these papers for the State-of-the-Art (Chapter 2), Methods (Chapter 3),
and Case Studies and Results (Chapter 4), the thesis integrates these com-
ponents and is intended to be read as a coherent body of work, building a
unified narrative across the research questions. Lastly the commonalities of
the three papers are brought together in the Synthesis chapter.

This thesis is structured as follows:

1. Chapter 2: Review of the State-of-the-Art & Progress Beyond
This chapter reviews the relevant literature on time series forecasting
techniques, energy forecasting applications (including spatial/temporal
scales and net load), model evaluation, interpretability, and the integra-
tion of forecasts into DER control strategies. It also identifies research
gaps in order to position the contributions of this thesis within the
state-of-the-art.

2. Chapter 3: Methods
The chapter introduces the foundational methodologies used through-
out the thesis, namely Supervised Learning for forecasting and Eco-

1At the time of writing, two papers are still under review.
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1. Introduction

nomic Model Predictive Control for evaluation and control. Central
concepts and a common notation is established here. Furthermore, the
specific methods developed or applied for each research question are de-
tailed, including the Net Load Error framework (RQ1), the model-based
deep learning architecture (RQ2), and the hybrid forecasting strategy
coupled with MILP-based eMPC (RQ3).

3. Chapter 4: Case Studies and Results
This part of the thesis presents the practical application and empirical
evaluation of the methods from Chapter 3. For each research question
(RQ1, RQ2, RQ3), it describes the specific case study context, data
sources, and experimental design, followed by a detailed analysis of the
findings and results.

4. Chapter 5: Synthesis
Here, the findings from the individual research questions (Chapter 4)
are synthesized. The chapter draws connections across the methodolo-
gies and case studies, discusses the advancements in forecasting and
control integration, considers implications for stakeholders, and identi-
fies the limitations of this work along with potential directions for future
research. Lastly, I provide a reflection on the research trajectory.

5. Chapter 6: Conclusion and Outlook
This chapter provides a concise summary of the thesis’s main contri-
butions regarding the economic evaluation and application of super-
vised learning for DER forecasting and control. It reiterates the key
conclusions drawn from the research and offers a final outlook on the
significance of these findings for the field.

6. Appendices
Includes supplementary materials, detailed mathematical derivations,
additional data, and potentially expanded results relevant to the re-
search presented.
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2. Review of the State-of-the-Art

The literature on energy forecasting has evolved significantly over recent
years, driven by the need to manage increasingly complex power systems and
distributed energy resources (DERs). This chapter presents the state-of-the-
art of the literature pertaining to this thesis. The strands of literature covered
here include: forecasting methods, their data efficiency and interpretability,
their evaluation, and their integration into control algorithms. The chapter
concludes with a summary of the identified gaps in the literature and the
corresponding contributions of this thesis.

2.1. Time Series Forecasting Approaches

Time series forecasting aims to predict future values of a target variable based
on its observed history (De Gooijer and Hyndman, 2006). Let the target time
series be denoted by {y1, y2, . . . , yT }, where yt is the observation at time step
t. The objective is typically to forecast the next H values, {ŷT +1, . . . , ŷT +H},
where H is the forecast horizon. Typically, this involves using not only the
past values of the target series (up to a look-back window L) but also po-
tentially incorporating past exogenous features {xpast

t−τ }L
τ=0 and known future

exogenous features (e.g. weather forecasts) {xfuture
k }H

k=1 available at the fore-
cast origin T . The forecast for a specific future time step T + k made at
origin T is denoted ŷk|T .

Classical statistical methods have long been used for time series forecasting
(De Gooijer and Hyndman, 2006). Exponential Smoothing (ES) methods,
developed since the 1950s, produce forecasts as weighted averages of past
observations, with weights decaying exponentially into the past (Gardner Jr.,
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2. Review of the State-of-the-Art

1985; De Gooijer and Hyndman, 2006). For instance, Simple Exponential
Smoothing (SES) is suitable for series without trend or seasonality, while
Holt’s method incorporates linear trend, and the Holt-Winters method adds
seasonality (Winters, 1960; Hyndman and Khandakar, 2008).

Another foundational statistical approach is the Autoregressive Integrated
Moving Average (ARIMA) methodology, established by Box and Jenkins
(Box et al., 2015; De Gooijer and Hyndman, 2006). An ARIMA(p, d, q)
model explains the current value of a time series based on its own past values
(autoregressive component, p), past forecast errors (moving average compo-
nent, q), and after applying differencing (d) to achieve stationarity. Sea-
sonal ARIMA (SARIMA) models extend this framework to handle seasonal
patterns with period m, denoted ARIMA(p, d, q)(P, D, Q)m, incorporating
seasonal AR (P ), differencing (D), and MA (Q) terms (Hyndman and Khan-
dakar, 2008).

To address the limitations of traditional methods, particularly in handling
high-dimensional inputs and nonlinear dynamics, machine learning (ML) ap-
proaches have gained prominence (Masini et al., 2023; Lim and Zohren, 2021).
Within the ML paradigm, various techniques are employed. Penalized linear
regressions, such as LASSO (Least Absolute Shrinkage and Selection Opera-
tor) (Tibshirani, 1996), extend linear regression to high-dimensional settings
by adding a penalty term to the loss function. This regularization helps pre-
vent overfitting and can simultaneously perform variable selection, shrinking
coefficients of irrelevant predictors towards zero (Masini et al., 2023). The
Elastic Net (Zou and Hastie, 2005) combines Ridge and LASSO penalties,
often providing a good balance between regularization and variable selection,
especially when predictors are correlated.

Moving beyond linearity, tree-based methods partition the predictor space
recursively to make local predictions. Single regression trees are often un-
stable, but ensemble methods like Bagging (Breiman, 1996) and Random
Forests (Breiman, 2001) improve stability and accuracy by averaging predic-
tions from many trees built on bootstrap samples of the data and random
subsets of features (Masini et al., 2023). Boosting methods, such as Gradi-
ent Boosting Machines (Friedman, 2001) and XGBoost (Chen and Guestrin,

15



2. Review of the State-of-the-Art

2016), build trees sequentially, with each new tree attempting to correct the
errors made by the previous ones, often achieving improved model accuracy
(Masini et al., 2023).

Neural Networks (NNs) are another machine learning modeling framework
for learning complex nonlinear relationships. Shallow NNs, typically with a
single hidden layer of "neurons" using activation functions (like sigmoid or
ReLU), act as universal function approximators (Hornik et al., 1989; Masini
et al., 2023). Deep Learning (DL) extends this by using multiple hidden layers
(deep NNs) to learn hierarchical representations of the data (Goodfellow et
al., 2016; Lim and Zohren, 2021). Specific DL architectures tailored for
sequential data include:

• Convolutional Neural Networks (CNNs): Adapted using 1D or
causal convolutions, CNNs apply shared filters across time to extract
local patterns. Dilated convolutions allow them to capture longer-range
dependencies efficiently (Bai et al., 2018; Lim and Zohren, 2021). Tech-
niques like WaveNet use exponentially increasing dilation rates (Oord
et al., 2016).

• Recurrent Neural Networks (RNNs): Designed explicitly for se-
quences, RNNs maintain a hidden state (memory) that is updated
at each time step. Variants like Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU)
(Chung et al., 2014) use gating mechanisms to control information flow,
enabling them to learn long-term dependencies while mitigating issues
like vanishing gradients (Lim and Zohren, 2021).

• Attention Mechanisms and Transformers: Originating from NLP,
attention mechanisms allow a model to dynamically weigh the impor-
tance of different past inputs when making a prediction at a specific
time step (Bahdanau et al., 2014; Vaswani et al., 2017). Transform-
ers rely heavily on self-attention, processing the entire input sequence
in parallel to capture complex dependencies, which has shown promise
but also sparked debate regarding its effectiveness compared to simpler
models for certain time series tasks (Lim et al., 2021; Zeng et al., 2022).
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2. Review of the State-of-the-Art

2.2. Forecasting Horizon and Multi-step Forecasting
methods

The forecast horizon, H, significantly influences the choice of forecasting
strategy, especially when predicting multiple steps ahead (H > 1). Gener-
ating the sequence of forecasts {ŷk|t}H

k=1 can be approached in several ways,
each with distinct characteristics and trade-offs (Ben Taieb et al., 2012; Lim
and Zohren, 2021). The primary strategies discussed in the literature in-
clude:

• Recursive (Iterative) Strategy: This conceptually simple method
applies a model trained only for one-step-ahead prediction iteratively.
The forecast for step t + 1 is used as input to predict step t + 2, and
so on. Its main advantage is requiring only a single model, making it
computationally efficient to train. However, it is susceptible to error
accumulation, as prediction errors from early steps can propagate and
potentially degrade accuracy at longer lead times (Ben Taieb et al.,
2012). The detailed recursive formulation is given in Eq. (3.3) in Section
3.1.1.2.

• Direct Strategy: This approach trains H separate models, each spe-
cialized to predict a specific lead time k. For example, one model
predicts t + 1, another predicts t + 2, directly from inputs available
at time t. By construction, it avoids the problem of error propaga-
tion faced by the recursive method. However, it requires training and
storing H models, increasing computational burden. Furthermore, it
assumes conditional independence between forecasts at different lead
times, which may not hold true, potentially leading to less coherent
forecast trajectories (Chevillon, 2007; Lim and Zohren, 2021). The
direct prediction formula is shown in Eq. (3.4) in Section 3.1.1.2.

• Multi-Input Multi-Output (MIMO) Strategy: This method uses
a single, often more complex, model (typically a vector-output model
like certain neural networks) to predict all H future values simulta-
neously in one step. It balances computational efficiency (one model)
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2. Review of the State-of-the-Art

with the potential to capture dependencies between the forecast steps.
However, it usually involves a more complex model specification and
training procedure compared to the recursive approach (Taieb and Hyn-
dman, 2012; Lim and Zohren, 2021). The MIMO formulation is pre-
sented in Eq. (3.5) in Section 3.1.1.2.

Next to these main strategies, hybrid approaches that combine elements, such
as the DirRec strategy (combining Direct and Recursive) or using MIMO
models recursively, have also been proposed (Ben Taieb et al., 2012). Com-
parative studies, such as the NN5 competition analysis (Taieb and Hyndman,
2012), have explored the relative performance of these strategies, finding that
the best choice often depends on the specific dataset, forecast horizon, and
the underlying model family used (Masini et al., 2023). Factors like the com-
plexity of temporal dynamics, the length of the required horizon H, computa-
tional resources, and the need to model cross-horizon dependencies influence
the optimal selection (De Gooijer and Hyndman, 2006). For precise mathe-
matical definitions of the Recursive, Direct, and MIMO approaches, refer to
Section 3.1.1.2.

2.3. Energy Forecasting Applications and Challenges

Building upon the general time series forecasting methods discussed in Sec-
tion 2.1, this section delves into the specific domain of energy forecasting,
particularly electricity load forecasting. Energy forecasting plays an im-
portant role in the planning and operation of power systems, supporting
decisions ranging from real-time grid balancing to long-term infrastructure
investments (Hong, 2014). The increasing penetration of variable renewable
energy sources and the electrification of sectors like transport and heating
add significant complexity and volatility to energy systems, making accurate
load forecasts salient (Hong, 2014).
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2.3.1. Temporal Scales

A comprehensive overview by Petropoulos et al., 2022 categorizes load fore-
casting tasks along two dimensions: forecast horizon and the treatment of
uncertainty. The horizon typically distinguishes between:

• Very Short-Term Forecasting (VSTLF): Sub-hourly predictions, often
used for real-time grid operations and frequency control.

• Short-Term Forecasting (STLF): Spanning from one hour up to one
week ahead, relevant for day-ahead market participation, unit commit-
ment, and dispatch scheduling.

• Medium-Term Forecasting (MTLF): Covering weeks to a year ahead,
relevant for maintenance planning, fuel procurement, and resource ad-
equacy assessment.

• Long-Term Forecasting (LTLF): Predicting demand several years into
the future, essential for generation and transmission capacity expansion
planning (Hong, 2014; Petropoulos et al., 2022).

Regarding uncertainty, forecasts can be deterministic (providing a single
point prediction, ŷk|t) or probabilistic (providing prediction intervals or full
predictive densities to quantify uncertainty) (Hong and Fan, 2016; Petropou-
los et al., 2022).
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YYM
Long-Term Forecasting (LTLF)

MM
Medium-Term Forecasting (MTLF)

W

DD
Short-Term Forecasting (STLF)

H

HH
Very-Short-Term Forecasting (VSTLF)

QH

Horizon Resolution

Figure 2.1.: Temporal Scales in Energy Forecasting

This thesis focuses on deterministic Very-Short-Term Forecasting. Further
background on the specific choices and evaluation methods pertinent to en-
ergy demand forecasting can be found in Kazmi et al., 2023.

Energy time series, particularly electricity load, exhibit unique characteristics
that present challenges for forecasting models. Load profiles are influenced by
complex interactions between weather patterns (temperature, humidity, irra-
diance), calendar effects (time of day, day of week, holidays), socio-economic
factors, and increasingly, the behavior of distributed energy resources (DERs)
like rooftop PV, battery storage, and electric vehicles (Hong, 2014; Masini et
al., 2023). This often results in non-stationarity, multiple seasonalities (daily,
weekly, yearly), and nonlinear dependencies, rendering more traditional sta-
tistical methods inadequate, and motivating the use of more complex archi-
tectures like neural networks.

2.3.2. Spatial Scales

Given the breadth of electricity load forecasting, research often focuses on
specific spatial aggregation levels. The following review examines contribu-
tions comparing forecasting algorithms at distinct scales taken from Houben
et al., 2025a:

20



2. Review of the State-of-the-Art

2.3.2.1. Building-Level Load Forecasting

At the most granular level, forecasting the load of individual commercial
or residential buildings is essential for optimizing building energy manage-
ment systems and participating in demand response programs. Yildiz et
al., 2017 reviewed methods for day-ahead and peak load forecasting in com-
mercial buildings, finding that ML models (NNs and tree-based) generally
outperformed multivariate linear regression, although predicting peak load
accurately remained challenging. Similarly, Lusis et al., 2017 compared sev-
eral ML algorithms for residential load forecasting, noting comparable RMSE
scores but differences in error distributions, with tree-based models showing
less bias. The characteristics of the building load data itself also play a role;
Hu et al., 2023 demonstrated that the dispersion level (coefficient of varia-
tion) of a building’s load profile can indicate which model types might be
most suitable.

2.3.2.2. Neighborhood and Low-Voltage Network Forecasting

Moving up in aggregation, forecasting load at the level of neighborhoods or
low-voltage (LV) distribution feeders is important for distribution system op-
erators (DSOs) managing grid constraints and voltage levels, especially with
increasing DER penetration. Haben et al., 2019 evaluated algorithms on nu-
merous LV feeder datasets, highlighting a relative lack of research focus on
this specific scale compared to higher aggregation levels. Addressing this,
Pinheiro et al., 2023 applied ML models (specifically tree-based) to forecast
load for secondary substations across Portugal, significantly outperforming
earlier benchmarks (Hong, 2010). Their work also emphasized the impor-
tance of considering criteria beyond mere statistical accuracy, such as model
applicability, reproducibility, and interpretability, when selecting forecasting
methods for operational use.

21



2. Review of the State-of-the-Art

2.3.2.3. System-Level Load Forecasting

At higher aggregation levels, such as cities, regions, or entire transmission
systems, load forecasting informs system-wide operations, market clearing,
and generation scheduling. Research at this scale often involves benchmark-
ing various advanced ML and DL methods. Elattar et al., 2020 developed and
benchmarked a novel algorithm against different NN types and support vector
regression variants using city-scale data. Wang et al., 2021 compared seven
models, including tree-based (LightGBM) and deep learning approaches, on
transmission system load data from the US (Ruggles et al., 2020), finding that
Glubschi performed best and underscoring the impact of weather variables
at this scale.

2.3.3. Net Load Forecasting

A particular challenge arises with the increasing installation of behind-the-
meter distributed generation, primarily rooftop photovoltaic (PV) systems,
and storage (e.g., batteries). Forecasting the net load, the difference be-
tween the total consumption and local generation exchanged with the grid,
is becoming pivotal for retailers and system operators. Net load profiles are
highly volatile due to the intermittency of PV generation and the complex
behavior introduced by battery storage and associated energy management
systems (HEMS). Based on the review exhibited in Houben et al., 2025b, the
following review included:

Net load forecasting can be performed with direct or indirect methods. Direct
methods predict the net load time series without explicit decomposition, us-
ing a data-driven model that may take as input recent net load data, weather
forecasts, and other features (e.g., datetime information). The approach is
similar to standard short-term load forecasting (Kazmi et al., 2023; Nti et al.,
2020), but often includes additional covariates like solar irradiance, allowing
the model to implicitly learn the latent PV profile (Kaytez, 2020; Alipour
et al., 2020).
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Indirect methods, conversely, explicitly decompose the net load profile. This
typically involves using a physical model for behind-the-meter PV generation
and a separate data-driven model (e.g., gradient boosting regression tree) for
the non-flexible (gross) load component (Wang et al., 2018). The outputs
of these component models can then be combined either additively (simply
subtracting predicted generation from predicted load) or in an integrated
manner, where the predicted PV generation is used as an input feature to
the load forecasting model (Kaur et al., 2016). Neural networks have also
been integrated into indirect methods, for example, to handle varying PV
meter data visibility (M. Sun et al., 2020) or using LSTMs for grid-scale net
load forecasting (Rubasinghe et al., 2023). A challenge for both direct and
indirect methods is capturing the impact of storage and HEMS control logic,
which significantly alters net load shapes based on factors like electricity
tariffs or user preferences.

2.3.4. Model Interpretability & Data Efficiency

While achieving high predictive accuracy is important in time series fore-
casting, the increasing complexity of state-of-the-art models, particularly
Deep Learning (DL) approaches, presents significant challenges regarding
their transparency and interpretability (Karniadakis et al., 2021; Carvalho
et al., 2019; Xu et al., 2019). Many sophisticated models, such as deep neural
networks (DNNs) or large ensembles (e.g. XGBoost), quickly become unin-
terpretable, also referred to as "black boxes ", where their internal logic and
decision-making processes are not explainable (Karniadakis et al., 2021; Car-
valho et al., 2019; Xu et al., 2019). This lack of transparency is a concern,
especially in system-relevant domains like electricity grid operation.

The field of Explainable Artificial Intelligence addresses these challenges by
developing methods that make the behavior and predictions of AI systems
understandable to developers and stakeholders (Carvalho et al., 2019; Xu et
al., 2019; Gilpin et al., 2018). Approaches are categorized as intrinsic or post-
hoc (Carvalho et al., 2019; Dwivedi et al., 2023). On the one hand, intrinsic
methods use models that are interpretable due to their simpler structure
(e.g., linear models, simple decision trees) or by imposing constraints like
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sparsity during training (Carvalho et al., 2019). On the other hand, post-
hoc methods are applied after a model is trained and attempt to explain
the predictions of an existing model. These can be model-specific, using
the internal structure of a particular algorithm class (e.g., gradient-based
methods for DNNs), treating the model as a black box and analyzing input-
output relationships (e.g., LIME, SHAP) (Carvalho et al., 2019; Dwivedi et
al., 2023; Angelov et al., 2021). The goal is to provide explanations that
are not only true to the model’s behavior but also meaningful to its users
(Carvalho et al., 2019; Gilpin et al., 2018).

A promising direction, particularly relevant for physical systems like energy
forecasting, is model-based deep learning and physics-informed learning (Kar-
niadakis et al., 2021; Bishop, 2013). This paradigm increases the trans-
parency, accuracy, and data efficiency by explicitly incorporating domain
knowledge or, in the latter case physical principles, into the learning pro-
cess (Karniadakis et al., 2021). Rather than relying only on correlations in
the data, these methods integrate known physical laws or system models as
inductive biases (Karniadakis et al., 2021). This can be achieved through
various means:

• Physics-Informed Neural Networks (PINNs): Integrating gov-
erning partial differential equations (PDEs) directly into the loss func-
tion as soft constraints during training (Karniadakis et al., 2021; Gokhale
et al., 2022; Drgoňa et al., 2021).

• Hybrid Architectures: Combining data-driven components (like NNs)
with physics-based models. For example, using a physical model for PV
generation alongside an NN for load prediction, as explored in indirect
net load forecasting (Shlezinger et al., 2023; Rubasinghe et al., 2023).

• Architectural Priors: Designing network architectures that inher-
ently respect certain physical laws, such as conservation principles or
symmetries (Karniadakis et al., 2021).

By constraining the learning process with physical knowledge, model-based
approaches thus offer several advantages. Firstly, they can lead to more ac-
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curate predictions, especially when data is scarce, because the model is con-
strained to physically plausible solutions (Karniadakis et al., 2021; Bishop,
2013). Secondly, they often enhance interpretability. For instance, hybrid
models can provide intermediate outputs interpretable as physical quanti-
ties (e.g., room ambient temperature from an RC-Model), offering insights
into the model’s internal workings (Gokhale et al., 2022). Thirdly, incorpo-
rating domain knowledge significantly improves data efficiency, reducing the
amount of labeled data required for training compared to purely data-driven
black-box models (Karniadakis et al., 2021). This is particularly valuable
in energy applications where obtaining large, high-quality datasets can be
difficult due to privacy considerations (Van Aubel and Poll, 2019).

2.4. Evaluation of Forecasting Performance

2.4.1. Conventional Error Metrics and Their Limitations

Forecasting models are typically evaluated using Euclidian metrics that draw
statistics on the per timestep errors between predicted values (ŷt) and ac-
tual ground truth values (yt) over an evaluation dataset. For example, a
commonly used error metric in forecasting is the Root Mean Squared Error
(RMSE), given below:

RMSE =

"##! 1
N

N$
t=1

(yt − ŷt)2 (2.1)

A significant limitation of Euclidean distance-based metrics like the RMSE
(Eq. (2.1)), is the double penalty effect (Keil and Craig, 2009). Specifically,
a forecast that correctly predicts peak magnitude but is slightly mistimed is
penalized both for the early/late prediction and the missed actual peak (see
Figure 2.2). Moreover, when evaluating forecasts with RMSE, a constant
forecast (see Figure 2.2b) may yield a lower error score than a forecast (see
Figure 2.2a) that, despite its imperfections, conveys valuable information
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about the timing and magnitude of peaks. This can lead to suboptimal
model selection for a given purpose, motivating the development of novel
error metrics, such as Dynamic Time Warping (Müller, 2007).

Note that a more detailed description of various evaluation metrics used in
this thesis can be found in Section 3.1.1.5.

Forecast Ground Truth

t
t t+1 t+2 t+H

P
peak timing

t
t t+1 t+2 t+H

P
high RMSE but informative low RMSE but not informative

a b

Figure 2.2.: Double Penalty Effect of Euclidian Error Metrics

2.4.2. Economic Evaluation of Energy Forecasts

It has been stated by Murphy, 1993 that "forecasts possess no intrinsic value,
they acquire value through their ability to influence decisions made by users
of the forecasts". In other words, effective forecasts must be tailored to gen-
erate economic value in context. As the grid digitizes and load forecasting
methods proliferate, studies on the real-world implications of forecast errors,
i.e. their economic impact are becoming increasingly relevant. However, as
noted Haben et al., 2021, "there are very few examples of the impact and role
the forecast’s accuracy has on the outputs of the application."

Partly motivated by this effect, several studies have adopted a application-
driven evaluation. For instance, Ranaweera et al., 1997 assessed the economic
costs of forecast errors via Monte Carlo simulations. More recently, Voss,
2020 evaluated forecasts within a Model Predictive Control framework and
demonstrated that using a more peak-sensitive error metric improved peak
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load reduction. Additionally, Putz et al., 2023 quantified the monetary im-
pact of forecast errors for building load and domestic hot water forecasting,
respectively. Gokhale et al., 2023 further evaluated a transfer learning ap-
proach for household load forecasting using a Temporal Fusion Transformer,
considering both standard error metrics and operational costs.

2.5. Integration of Forecasts into Control Algorithms

The application of very-short-term energy forecasting in many operational
contexts is to inform decision-making, particularly within automated con-
trol systems implemented to optimize the performance of energy assets, like
DERs. While simple rule-based controllers often operate based on instanta-
neous feedback, optimization-based control strategies heavily rely on forecasts
to anticipate future conditions and make proactive decisions (Stadler et al.,
2015; Roslan et al., 2019). These optimization-based control problems are
fundamentally sequential decision problems under uncertainty.

2.5.1. Sequential Decision Making under Uncertainty

Many control problems, especially in energy systems, involve making a se-
quence of decisions over time in the face of uncertainty to achieve some long-
term objective (e.g., minimizing operational cost). This process is known
as sequential decision making under uncertainty. The standard mathemat-
ical framework for modeling such problems is the Markov Decision Process
(MDP), typically formulated to minimize long-term costs.

An MDP is defined by the following components1 (Powell, 2021; Busoniu
et al., 2017; Sutton and Barto, 2020)

• State Space X : A set of possible states x ∈ X ⊆ Rnx . The state vec-
tor xt captures all relevant information about the system at time step

1Note that the notation differs slightly from the cited resouces, to match subsequent
nomenclature in Section 3.1.2

27



2. Review of the State-of-the-Art

t. It must satisfy the Markov property: the future evolution depends
only on the current state xt and action ut, not the entire past history.
Importantly, the state space may include the forecasts of a time series
coming from an arbitrary model (e.g., the ones covered in Section 2.1).

• Action Space U : A set of possible control actions u ∈ U ⊆ Rnu that
the controller can take in a given state.

• State Transition Function f : Describes the system dynamics. The
next state xt+1 depends on the current state xt, the control action ut,
and a random disturbance vector wt+1 representing exogenous uncer-
tainties (like forecast errors or unmodeled dynamics): xt+1 = f(xt, ut, wt+1).
The function f implicitly defines the transition probabilities.

• Stage Cost Function ℓ: Assigns an immediate scalar cost ℓt =
ℓ(xt, ut, wt+1) to the transition occurring at step t. This cost can de-
pend on the state, the action, and the realization of the uncertainty
wt+1. We assume the cost is bounded.

• Discount Factor γ ∈ [0, 1): A factor that discounts future costs rela-
tive to immediate ones.

The controller operates based on a policy h : X → U , which is a mapping
from states to actions, ut = h(xt). The goal in an MDP is typically to find an
optimal policy h∗ that minimizes the expected cumulative discounted cost,
known as the cost-to-go, from any starting state x0 (Powell, 2021; Sutton
and Barto, 2020):

Jh(x0) = E
 ∞$

k=0
γkℓk

&&&&x0

�
= E

 ∞$
k=0

γkℓ(xk, h(xk), wk+1)
&&&&x0

�
(2.2)

where the expectation is taken over the sequence of states generated by fol-
lowing policy h and the stochastic transitions xk+1 = f(xk, h(xk), wk+1).

A central concept in solving MDPs is the value function, representing ex-
pected future costs. The state-value function V h(x) is the expected cost-to-
go starting from state x and following policy h. The action-value function (or
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Q-function) Qh(x, u) is the expected cost-to-go starting from state x, taking
action u first, and following policy h thereafter. These satisfy the Bellman
equations (Busoniu et al., 2017; Sutton and Barto, 2020):

V h(x) = Ew
�
ℓ(x, h(x), w) + γV h(f(x, h(x), w))



(2.3)

Qh(x, u) = Ew
�
ℓ(x, u, w) + γV h(f(x, u, w))



(2.4)

= Ew
�
ℓ(x, u, w) + γQh(f(x, u, w), h(f(x, u, w)))



where the expectation is over the random disturbance vector w for the next
transition.

The optimal value functions, V ∗(x) = minh V h(x) and Q∗(x, u) = minh Qh(x, u),
represent the minimum possible expected cost-to-go. They satisfy the Bell-
man optimality equations:

V ∗(x) = min
u∈U

Ew [ℓ(x, u, w) + γV ∗(f(x, u, w))] (2.5)

Q∗(x, u) = Ew

	
ℓ(x, u, w) + γ min

u′∈U
Q∗(f(x, u, w), u′)

�
(2.6)

An optimal policy h∗ can be derived by acting greedily (minimizing) with
respect to the optimal value functions:

h∗(x) ∈ arg min
u∈U

Q∗(x, u) or h∗(x) ∈ arg min
u∈U

Ew [ℓ(x, u, w) + γV ∗(f(x, u, w))]
(2.7)

Solving an MDP means finding an optimal policy h∗. Dynamic Program-
ming (DP) methods compute the optimal value function using the Bellman
equations, typically requiring a model (f , ℓ, probability distribution of w).
Reinforcement Learning (RL) methods aim to find h∗ or approximations of
V ∗/Q∗ directly from interaction data, often without an explicit model. Con-
trol algorithms like Model Predictive Control, discussed next, provide another
approach to approximating the solution to the sequential decision problem,
using a model of the system and (state) forecasts to handle uncertainty.
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2.5.2. Model Predictive Control

Model Predictive Control (MPC), or more specifically economic Model Pre-
dictive Control (eMPC), has emerged as a dominant paradigm for optimization-
based control in energy systems (Wang et al., 2023; Stadler et al., 2015).
MPC leverages a system model alongside forecasts of disturbances (e.g., en-
ergy demand, renewable generation, market prices, contained in ŷk|t) to solve
an optimization problem over a finite prediction horizon H at each control
step t. This optimization problem (Eq. (3.17) in Section 3.1.2) can be viewed
as a practical method for approximating the solution to the Bellman optimal-
ity equation (e.g., Eq. (2.6)) over a finite horizon, using forecasts (represent-
ing the expected behavior of w) instead of explicit expectations over future
uncertainties. The first part of the optimal control sequence, u∗

0, is applied,
and the process is repeated at the next step with updated measurements and
forecasts (receding horizon) (Morari and H. Lee, 1999). The quality of the
forecasts (e.g., load, PV generation, electricity prices) is therefore important
to the performance of MPC controllers (Wang et al., 2023). Studies have
demonstrated that improving forecast accuracy directly translates to better
control performance, for example, reducing energy imbalances or operational
costs in hybrid renewable energy systems (Bartolucci et al., 2019). MPC
has been successfully applied to various energy systems, including residential
energy hubs under flat tariffs (Negenborn et al., 2009), multi-energy systems
with sector coupling under Time-of-Use tariffs (Gu et al., 2017), microgrids
under demand charge tariffs (Gust et al., 2021), and systems interacting with
variable market prices (Parisio et al., 2014). Advanced forecasting models,
such as hybrid deep learning approaches, are increasingly being integrated
into MPC frameworks to handle the complexities of modern building energy
systems with renewables (Gao et al., 2023).

Despite its strengths, traditional MPC faces challenges, particularly in accu-
rately modeling complex systems and handling uncertainty inherent in fore-
casts (Wang et al., 2023; Arroyo et al., 2022). While stochastic MPC methods
exist to incorporate uncertainty, they often require detailed probabilistic de-
scriptions of forecast errors (w), which can be difficult to obtain (Arroyo
et al., 2022), or can become computationally intractable. Furthermore, it is
evident that many studies evaluating MPC performance either assume per-
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fect forecasts or use simplified representations of forecast errors, lacking a
thorough analysis of how realistic forecast inaccuracies propagate through
the control decisions and impact outcomes like operational cost or constraint
satisfaction (Kanwar et al., 2015; Moser et al., 2020). Another common
limitation identified in the literature is the use of relatively short (e.g., 4-12-
hours) prediction horizons, which prevents the controller from anticipating
variations further into the future, such as differences between weekdays and
weekends. The focus on single tariff structures in many studies also limits the
understanding of how forecast integration interacts with different economic
signals.

2.5.3. Reinforcement Learning

Reinforcement Learning (RL) offers an alternative or complementary ap-
proach to MPC for solving the sequential decision-making problem defined
by the MDP in Section 2.5.1, aiming to minimize long-term costs (Eq. (2.2)),
and has gained traction in energy systems control (Powell, 2021). RL meth-
ods learn optimal policies (like h∗ in Eq. (2.7)) or approximate optimal value
functions (like Q∗ or V ∗ representing minimum expected costs, Eqs. (2.6)
and (2.5)) directly from interaction with the system (or a simulation), often
without requiring an explicit model of the system dynamics f or cost func-
tion ℓ. Instead, they typically learn through trial-and-error, using observed
transitions (xt, ut, ℓt, xt+1) to update their estimates. Value-based RL meth-
ods, like Q-learning, iteratively estimate Q∗ using updates derived from the
Bellman optimality equation. Policy-based RL methods directly search for
the optimal policy parameters. For large or continuous state/action spaces,
RL heavily relies on function approximation (e.g., linear models, neural net-
works) to represent value functions or policies compactly, implicitly capturing
system dynamics and anticipating future states and costs (Kuznetsova et al.,
2013; Wang et al., 2023). However, standard RL may not be able to en-
sure that the system is controlled to remain within its given operational con-
straints and often requires extensive training data and careful tuning (Arroyo
et al., 2022; Wang et al., 2023). Comparisons between MPC and RL highlight
their complementary strengths and weaknesses regarding model dependence,
handling of uncertainty vs. constraints, adaptability, and computational de-
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mands (Wang et al., 2023; Fu et al., 2023).

2.6. Summary of Gaps in the Literature &
Contributions

Building on this review of the literature in energy forecasting and its related
challenges, several gaps are evident, hindering the optimal application of
these methods, particularly in the context deploying them in real systems for
the control of distributed energy resources:

1. Methodological Uncertainty Across Scales and Horizons:
Despite the proliferation of forecasting methods reviewed (Section 2.1),
from classical statistics to diverse ML approaches including ensembles
and various neural network architectures, there is no definitive guidance
on which method performs best universally. Comparative studies (Hong
et al., 2014; Januschowski et al., 2022; Yildiz et al., 2017; Lusis et al.,
2017) often show context-dependent results, leaving practitioners un-
certain about model selection, especially when dealing with the varying
characteristics of energy data across different spatial aggregation lev-
els (Section 2.3) and forecast horizons (Section 2.2). A comprehensive
cross-scale benchmark is missing.

2. Limitations of Conventional Evaluation Metrics:
The standard practice of evaluating forecasts using statistical error met-
rics like RMSE or MAE (Section 2.4) fails to capture the economic or
operational relevance of the forecast quality. The double penalty effect
illustrates how these metrics can misrepresent the utility of a forecast
for tasks like peak management (Keil and Craig, 2009). As highlighted
by the concept of economic value in forecasting (Murphy, 1993) and
recent studies (Ranaweera et al., 1997; Haben et al., 2021; Putz et al.,
2023), there is a clear gap between standard evaluation practices and
assessing the actual impact of forecast errors on specific energy appli-
cations.
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3. Need for Interpretable and Data-Efficient Forecasting Models:
The increasing complexity of modern forecasting models, particularly
DL techniques, often results in "black-box" systems lacking transparency
(Section 2.3.4). This reduces trust and the understanding of forecast
drivers (Carvalho et al., 2019; Dwivedi et al., 2023). Concurrently, the
rise of DERs creates highly volatile net load profiles influenced by PV
generation and HEMS control logic (Section 2.3.3), demanding fore-
casting methods that can capture these dynamics accurately. There is
a distinct need for models that are not only accurate for net load but
also interpretable and data-efficient, especially given that incorporating
domain knowledge or physical priors shows promise for achieving these
goals (Karniadakis et al., 2021; Shlezinger et al., 2023).

4. Lack of Integrated Evaluation of Multi-Step Forecasts within
Operational MPC Frameworks: While various multi-step forecast-
ing strategies exist (Section 2.2), and MPC is a recognized control
paradigm (Section 2.5.2), there is a notable scarcity of studies that
comprehensively integrate practical multi-step forecasting methods into
an operational eMPC framework and then rigorously evaluate the eco-
nomic and operational impact of forecasting uncertainty on real en-
ergy systems. Many evaluations of MPC performance either assume
perfect foresight or use simplified forecast error models, without fully
exploring how different multi-step forecasting characteristics affect the
controller’s performance and the achievable benefits under various real-
world conditions such as diverse tariff structures and longer, multi-day
operational horizons (Kanwar et al., 2015; Moser et al., 2020)

Addressing these challenges is highly relevant for developing forecasting tech-
niques that support the data-driven planning, operation, and control of mod-
ern energy systems featuring high DER penetration.

In light of the gaps identified above, this thesis makes the following contri-
butions, each addressing one or more of these challenges:

1. Multi-Scale Load Forecasting Benchmark: Directly addressing
Gap 1, this thesis presents a comprehensive benchmarking study evalu-
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ating six state-of-the-art machine learning forecasting algorithms across
twelve distinct time series. These series span four different spatial ag-
gregation levels (county, town, neighborhood, building) and multiple
forecast horizons, providing empirical insights into relative model per-
formance across diverse energy forecasting contexts (related to RQ1).

2. Application-Driven Forecast Evaluation Metric (NLE): To over-
come the limitations of purely statistical metrics (Gap 2), this work in-
troduces and utilizes a novel Net Load Error (NLE) metric. The NLE
quantifies the economic impact of forecast errors specifically within a
peak load management application (using BESS and demand charges),
providing a tool to evaluate forecast "value" beyond simple accuracy
(related to RQ1).

3. Model-Based Interpretable & Data-Efficient Net Load Fore-
casting: Tackling Gap 3, this work proposes a novel model-based deep
learning architecture for net load forecasting in households with PV and
BESS. By integrating a physical PV model and a differentiable HEMS
optimization layer within the neural network, the model achieves im-
proved accuracy while simultaneously enhancing interpretability (by
predicting latent physical states like gross load and battery SOC) and
demonstrating superior data efficiency compared to standard black-box
approaches (related to RQ2).

4. Framework for Integrating and Evaluating Multi-Step Fore-
casting in eMPC for Microgrids: Directly addressing Gap 4, this
thesis designs, implements, and evaluates a practical framework that
couples a novel hybrid multi-step forecasting strategy (detailed in Sec-
tion 3.2 for RQ3) with an eMPC controller for microgrid dispatch.
This contribution includes: i) the development of a hybrid forecast-
ing method tailored for eMPC, providing robust predictions over a 48-
hour horizon by balancing recursive and direct forecasting strengths,
ii) The integration of these forecasts into an eMPC designed for a real-
world Renewable Energy Community, capable of optimizing for cost
or CO2 under various tariff structures, and iii) a systematic analysis
of the "cost of uncertainty," quantifying the economic impact of realis-
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tic forecast errors by comparing eMPC performance with real forecasts
against a perfect foresight benchmark, thereby providing insights into
the practical viability of such integrated systems.
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This chapter details the methodologies developed and evaluated in this thesis
and based on the three papers cited in Section 1.2. The focus lies on two in-
terlinked tasks salient for managing distributed energy resources: short-term
forecasting using Supervised Learning (SL) and sequential decision-making
via Economic Model Predictive Control (eMPC). The research explores ad-
vanced SL techniques for prediction and leverages the eMPC framework not
only for control but also for forecast evaluation and model enhancement.

Figure 3.1 illustrates the components of eMPC, where SL models act as the
predictor component, providing necessary foresight regarding parameters in
the techno-economic system model.

Supervised Learning

t
t+1t

E N

N=1...48 h

 Δt = 15 min

Energy System Model

Grid

LoadPV
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BESS BESS
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Decision Tree Neural Network

BESS PVGrid

Grid
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RQ 3
Decision Tree

Neural Network
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Figure 3.1.: Economic Model Predictive Control Framework Overview
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This integration forms the basis for the methods applied across the research
questions (presented in Section 1.2), although the specific role of the eMPC
component varies significantly.

For RQ3, eMPC is applied conventionally, using SL forecasts for optimal
multi-energy microgrid dispatch. In contrast, RQ1 uses the eMPC framework
as a tool to evaluate the economic performance of various SL models, and
as a result assessing their practical value. For RQ2, the concept is inverted:
optimization logic derived from eMPC is incorporated as a component within
the SL model itself to improve its capabilities by encoding system priors.

To keep a clear structure and consistent notation in the description of the
methods, this chapter is structured as follows: In Section 3.1, a general de-
scription of Supervised Learning and Economic Model Predictive Control is
provided, defining their respective problem statements, and laying out the
nomenclature used throughout this thesis. This section provides the founda-
tional building blocks, which are then instantiated and adapted in Section 3.2,
separately delving into the methodology developed to answer each research
question. For each research question, the respective section is structured to
detail the specific:

• Economic Model: Specifying how the general energy system model from
Section 3.1.2 is instantiated.

• Predictive: describing how the predictive model takes shape by instan-
tiating the building blocks outlined in Section 3.1.1.

• Control: Providing details on the implementations or purpose of using
eMPC, including the controlled or evaluated flexible assets and time
series.

In Section 3.2.4 summarizes the common experimental setup, including soft-
ware and hardware used.
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3.1. General Methods & Preliminaries

3.1.1. Supervised Learning for Energy Forecasting

Supervised learning refers to a machine learning paradigm in which a model
learns to map inputs to outputs by training on labeled example pairs (Bishop,
2006). For energy forecasting, supervised models predict future energy-
related variables, such as electricity consumption or photovoltaic (PV) gener-
ation, based on historical measurements and external covariates (e.g., weather
forecasts) (Hong, 2014; Wang et al., 2021). As mentioned in Section 2.5.1,
accurate forecasts are indispensable for operating energy systems effectively,
particularly when integrated into advanced control methods like eMPC (Stadler
et al., 2015).

3.1.1.1. Notation and Problem Formulation

The supervised learning forecasting problem is defined with the following
notation:

Time Indices

• T : Length of time series

• H: Control and Forecast horizon (equal in this thesis).

• L: Look-back window length (number of historical steps used).

• t: timestep index of generating a forecast or controlling an asset, where
t ∈ {0, . . . , T} (also referred to as origin).

• k: Lead time index within the forecast horizon, where k ∈ {1, . . . , H}.

• τ : Step index within the look-back window, where τ ∈ {0, . . . , L}.
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Dataset A training dataset D comprises T examples (Bishop, 1995):

D =
��

X(t), y(t)
��T

t=1
, (3.1)

where each example indexed by t consists of:

• Input features X(t): Features associated with time t, comprising his-
torical features xpast

t−τ ∈ Rnpast (τ = 0, . . . , L) and known future features
xfuture

t+k ∈ Rnfuture for future lead times k = 1, . . . , H relative to t (e.g.,
weather forecast for time t + k).

• Target sequence y(t): The sequence of actual observed values for lead
times k = 1, . . . , H relative to t, i.e., y(t) = {yt+k}H

k=1.

Forecasting Model Given parameters θ and hyperparameters φ, the model
F uses features X(t) available at time t to predict the target sequence y(t) =
{yt+k}H

k=1. We denote the forecast for lead time k made at time t as ŷk|t.
This notation distinguishes the prediction from the ground truth value yt+k

and expresses the forecast origin time t.

The model output is the sequence:

ŷ(t) =
�

ŷk|t
�H

k=1
= F

��
xpast

t−τ

�L

τ=0
,

�
xfuture

k

�H

k=1
; θ, φ

�
(3.2)

3.1.1.2. Multi-step Ahead Forecasting Approaches

Generating the forecast sequence {ŷk|t}H
k=1 for multiple steps ahead (H > 1)

requires specific strategies. As reviewed in Section 2.2, the main approaches
differ in how the forecast for each step k is constructed (Ben Taieb et al.,
2012; Taieb and Hyndman, 2012). With the notation introduced above, the
three main methods are formalized as follows:

• Recursive Method: This strategy utilizes a single one-step-ahead
model F1step iteratively.
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– The first forecast ŷ1|t is generated using available features Zt at
time t:

ŷ1|t = F1step(Zt; θ1step)

– For subsequent steps (k = 2, . . . , H), the model input Ẑt+k−1
must incorporate previously generated forecasts {ŷ1|t, . . . , ŷk−1|t}
in place of unknown actual future values, potentially leading to
error accumulation:

ŷk|t = F1step(Ẑt+k−1; θ1step) (3.3)

Here, Ẑt+k−1 contains known past features, known future covari-
ates up to xfuture

k , and the sequence of prior forecasts (ŷ1|t, . . . , ŷk−1|t).

• Direct Method: This approach trains H separate models, F (1), . . . , F (H).
Each model F (k) is specifically trained to predict the target at lead time
k, using only information available at the forecast origin t:

ŷk|t = F (k)
��

xpast
t−τ

�L

τ=0
, xfuture

k ; θ(k)
�

(3.4)

This formulation inherently avoids using intermediate forecasts as in-
puts, but neglects dependencies between timesteps (e.g., consistent ag-
gregate (daily) energy demand).

• Multi-Input Multi-Output (MIMO): This strategy employs a sin-
gle model FMIMO designed to output the entire forecast vector {ŷk|t}H

k=1
simultaneously. The model takes all relevant past features and all
known future features across the horizon as input:�

ŷk|t
�H

k=1
= FMIMO

��
xpast

t−τ

�L

τ=0
,

�
xfuture

k

�H

k=1
; θMIMO

�
(3.5)

This allows the model to potentially capture dependencies across the
forecast steps k = 1, . . . , H internally during training and inference.

Other strategies, such as combinations or variations of these (e.g., DirRec,
DirMO), also exist (Ben Taieb et al., 2012). The choice of strategy has
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an effect on model complexity, computational cost, and error characteristics
across the forecast horizon.

3.1.1.3. Model Training

Model parameters θ are learned by minimizing a loss function L over the
training dataset D (Hastie et al., 2009):

θ∗ = arg min
θ

1
T

T$
t=1

L
�
{yt+k}H

k=1, {ŷk|t(θ)}H
k=1; φ

�
. (3.6)

Typical loss functions averaged over the dataset and horizon include Mean
Squared Error (MSE) and Mean Absolute Error (MAE):

• Mean Squared Error (MSE):

MSE = 1
TH

T$
t=1

H$
k=1

�
yt+k − ŷk|t

�2
(3.7)

• Mean Absolute Error (MAE):

MAE = 1
TH

T$
t=1

H$
k=1

&&&yt+k − ŷk|t
&&& (3.8)

Optimization of θ is commonly accomplished through gradient-based meth-
ods, such as stochastic gradient descent or Adam (Kingma and Ba, 2017). For
efficiency-related considerations these algorithms operate on batches (subsets
of the training set), instead on the entire training data set.
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3.1.1.4. Model Inference

Once the model has been trained, the optimized parameters θ∗ can be used
to generate predictions on (unseen) input data X(t):

{ŷk|t}H
k=1 = F

�
X(t); θ∗, φ

�
. (3.9)

Inference typically involves the same preprocessing steps applied during train-
ing (Goodfellow et al., 2016).

3.1.1.5. Model Evaluation (Testing)

Once a model has been trained, and predictions for unseen data has been
generated, its predictive performance can be evaluated. Figure 3.2 illustrates
this standard approach, where historical data is divided, and the trained
model (Phase 1) is applied to the independent Testing Data to generate
outputs (predictions) for assessment (Phase 2).

Phase 2

Phase 1

Predictive Model

Predictive ModelPre-Process

Pre-Process

Testing
Data

Output

ArchitectureTraining
Data

Historic
Data

80%

20%

Figure 3.2.: Typical Train Test Split in Supervised Learning Model Development

This evaluation involves using metrics to quantify the discrepancy between
the predicted values (ŷk|t) and actual ground truth values (yt+k) over an
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independent evaluation dataset (e.g., a test set not used during training)
comprising N forecast origins. These metrics must not be the same as the
loss function used during training.

Generally, an evaluation metric D computes an aggregate error score ϵ by
comparing the sequences of predictions ŷ(t) = {ŷk|t}H

k=1 with the correspond-
ing sequences of actual values y(t) = {yt+k}H

k=1 across all N forecast origins
in the evaluation set:

ϵ = D
�
{y(t)}N

t=1, {ŷ(t)}N
t=1

�
(3.10)

To arrive at the aggregate error score (e.g., overall RMSE, MAE) across an
evaluation dataset, the process depicted in Figure 3.3 is followed: forecasts
are generated originating from each timestep t in the evaluation set, the errors
for each forecast sequence are computed, and then these errors are aggregated
(e.g., averaged) according to the specific metric’s formula.

Hmax= 48h

t

H

Errort

t+1 Errort+1
M

ea
n Final

Error

T ErrorT

Figure 3.3.: Evaluation process: Forecasts are generated at each timestep t in the evalua-
tion set for the horizon H. Errors are computed for each sequence (prediction
vs. actual), and then aggregated across all sequences to obtain the final per-
formance metric.

The specific metrics used throughout this thesis are detailed below (Equa-
tions (3.11)-(3.16)):

• Mean Absolute Error (MAE): Measures the average absolute dif-
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ference. Lower values indicate better accuracy.

MAE = 1
NH

N$
t=1

H$
k=1

|yt+k − ŷk|t| (3.11)

• Root Mean Squared Error (RMSE): Calculates the square root of
the average squared differences. It penalizes larger errors more heavily
than MAE.

RMSE =

"##! 1
NH

N$
t=1

H$
k=1

(yt+k − ŷk|t)2 (3.12)

• Mean Absolute Percentage Error (MAPE): Expresses the aver-
age absolute error as a percentage of the actual values. It is scale-
independent but undefined or problematic when actual values (yt+k)
are zero or close to zero.

MAPE = 100%
Nnz

N$
t=1

$
k s.t. yt+k ̸=0

&&&&yt+k − ŷk|t
yt+k

&&&& (3.13)

where Nnz is the total count of non-zero yt+k values in the evaluation
set sums.

• Normalized Root Mean Squared Error (nRMSE): Normalizes
the overall RMSE, typically by the range (ymax −ymin) or the mean (ȳ)
of the ground truth data over a representative period (e.g., the training
set), to allow the comparison across datasets with different scales:

nRMSE = RMSE

ymax − ymin
or nRMSE = RMSE

ȳ
(3.14)

where RMSE is the overall RMSE calculated as per Eq. (3.12).

• Coefficient of Determination (R2): Represents the proportion of
the variance in the dependent variable that is predictable from the
model, calculated over the evaluation set. Values closer to 1 indicate a
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better fit.

R2 = 1 −
%N

t=1
%H

k=1(yt+k − ŷk|t)2%N
t=1

%H
k=1(yt+k − ȳ)2 (3.15)

where ȳ is the mean of all yt+k ground truth values in the evaluation
set.

• Skill Score (SS): Quantifies the relative improvement of the forecast
model (F) compared to a baseline forecast model (e.g., persistence, or
a simple benchmark like Linear Regression). It is calculated based on
an aggregate error metric D (e.g., overall RMSE or MAE) (Yang et al.,
2020):

SS(D) = 1 − DF
Dbaseline

(3.16)

A value of larger than 0 indicates improvement over the baseline, 0 indi-
cates no improvement, and negative values indicate the model performs
worse than the baseline.

3.1.2. Economic Model Predictive Control (eMPC)

Economic Model Predictive Control (eMPC) optimizes a system by explicitly
integrating economic objectives into a finite-horizon optimal control problem
(Rawlings et al., 2012). Unlike classical Model Predictive Control (MPC),
which primarily aims to track reference trajectories (Laurí et al., 2014), eMPC
directly minimizes or maximizes economic criteria (e.g., cost, profit, effi-
ciency), making it particularly applicable for tasks like energy management
systems. This section introduces the general eMPC framework that serves as
a foundational template for the specific applications detailed in Section 3.2.

3.1.2.1. Notation and Problem Formulation

At each control timestep t, the eMPC controller solves an optimization prob-
lem over a prediction horizon H. Mirroring the nomenclature introduced
for SL in Section 3.1.1, the problem uses the following notation, where
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k ∈ {0, . . . , H − 1} denotes the discrete timestep (or lead time) within the
optimization horizon relative to the current time t:

• State vector: xk ∈ Rnx . Represents the predicted state of the system
at time t+k, derived iteratively starting from x0 = xcurrent. The vector
xk comprises all relevant system states (e.g., energy stored, tempera-
tures).

• Control input vector: uk ∈ Rnu . Represents the control actions to
be applied during the interval [t + k, t + k + 1). The vector uk includes
all decision variables which are directly controlled (e.g., power flows,
operating modes).

• Forecast Input Vector for step k: ŷk|t ∈ Rny . This vector consol-
idates the forecasts for ny different external variables required by the
controller at lead time k (corresponding to time t + k), based on in-
formation available at time t. These exogenous variables might include
electrical load, renewable generation, energy prices, ambient tempera-
ture, etc. Each individual forecast component within this vector (e.g.,
the load forecast component ŷload

k|t ) is (in this thesis) obtained from a
supervised learning model F as described in Section 3.1.1.

• State transition function: f : Rnx × Rnu × Rnz × Rny → Rnx .
Describes the system dynamics, predicting the state at step k +1 based
on step k.

• Auxiliary Binary variables: zk ∈ {0, 1}nz

• Stage cost function: ℓ(·) [units of cost, e.g., €]. Represents the
economic cost incurred during interval k.

The eMPC optimization problem solved at time t is:

minu0:H−1z0:H−1

H−1$
k=0

ℓ
�
xk, uk, zk, ŷk|t

�
+ Vf (xH) (3.17a)

subject to xk+1 = f(xk, uk, zk, ŷk|t), k = 0, . . . , H − 1, (3.17b)
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xk ∈ X , k = 0, . . . , H, (3.17c)

uk ∈ U , k = 0, . . . , H − 1, (3.17d)

g(xk, uk, zk, ŷk|t) ≤ 0, k = 0, . . . , H − 1, (3.17e)
zk ∈ {0, 1}nz , k = 0, . . . , H − 1, (3.17f)
x0 = xcurrent (3.17g)

Here, X and U represent feasible state and input sets defined by physical
or operational limits. g(·) represents the constraints (e.g., power balance
equations, comfort bounds). Vf (·) is an optional terminal cost function pe-
nalizing undesirable final states or approximating the long-term cost beyond
the horizon H. xcurrent is the state measured or estimated at the current
time t.

General Economic Cost Structure In this thesis, the stage cost
ℓk = ℓ(xk, uk, zk, ŷk|t) includes components related to energy consumption
or injection and demand charges:

ℓk = ℓenergy
k + ℓDC

k . (3.18)

The energy cost ℓenergy
k depends on the net power exchanged with the grid,

P grid
k (which is a function of xk, uk, ŷk|t), and forecast electricity prices

π̂
buy/sell
k|t (which are specific components within the vector ŷk|t):

ℓenergy
k = π̂buy

k|t · [P grid
k ]+ · Δt − π̂sell

k|t · |[P grid
k ]−| · Δt, (3.19)

where [x]+ = max(x, 0), [x]− = min(x, 0), and Δt is the timestep duration
(e.g., 15 minutes). The demand charge ℓDC

k relates to the peak power drawn
from the grid, often formulated using an auxiliary peak variable ph optimized
over the horizon (or a relevant billing period subset):$

k∈BillingPeriod
ℓDC

k ≈ πDC · ph where ph ≥ [P grid
k ]+, ∀k ∈ BillingPeriod.

(3.20)
The exact formulation, including how ph enters the objective (e.g., directly
in the sum, or as part of Vf ) depends on the specific application and tariff
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structure.

General Constraint Formulation System operation is bound by various con-
straints:

• State dynamics xk+1 = f(xk, uk, zk, ŷk|t) as in Eq. (3.17b).

• State limits xk ∈ X (e.g., Emin ≤ Ek ≤ Emax) as in Eq. (3.17c).

• Input limits uk ∈ U (e.g., P ch,min ≤ P ch
k ≤ P ch,max) as in Eq. (3.17d).

• Constraints (operational & physical) g(xk, uk, zk, ŷk|t) ≤ 0 (e.g., power
balance equations) as in Eq. (3.17e).

• Logical constraints, often requiring binary variables zk ∈ {0, 1}nz as in
Eq. (3.17f). A use of binaries is the prevention of simultaneous charging
(pch

a,k > 0) and discharging (pdis
a,k > 0) of a specific storage asset ’a’:

pch
a,k ≤ P ch,max

a zch
a,k, (3.21a)

pdis
a,k ≤ P dis,max

a zdis
a,k, (3.21b)

zch
a,k + zdis

a,k ≤ 1, (3.21c)
zch

a,k, zdis
a,k ∈ {0, 1}. (3.21d)

(where pch
a,k, pdis

a,k would be components of the control vector uk, and
zch

a,k, zdis
a,k components of zk).

3.1.2.2. General Energy System Model

In this thesis the eMPC framework is applied to operate an energy system.
As shown in Figure 3.4, the general energy system considered in this thesis
comprises several interacting components:

• Energy Demands: These are the loads that the system must satisfy,
primarily the electrical load, but can also include other demands like

48



3. Methods

domestic hot water (DHW) load yDHW
k . These loads are uncontrollable

but are uncertain, forming components of the forecast input vector ŷk|t
(e.g., ŷL

k|t, ŷDHW
k|t ).

• On-site Generation: This refers to variable renewable energy sources,
such as photovoltaic (PV) generation. Similar to loads, on-site genera-
tion is forecasted and included in ŷk|t as ŷP V

k|t .

• Flexible Assets: These are dispatchable components within the sys-
tem, such as Battery Energy Storage Systems (BESS), thermal storage
(e.g., DHS), or controllable loads. Their operation is determined by the
eMPC. Noteworthy components, as shown in Figure 3.4, include:

– State variables (xk): Primarily the stored energy level in each
asset (e.g., EBESS

k , EDHS
k ). These states evolve based on charg-

ing/discharging actions and efficiencies (ηch, ηdis).

– Control input variables (uk): The power flows into or out of these
assets (e.g., charging power pch

a,k, discharging power pdis
a,k for asset

a). These are constrained by maximum power ratings (P ch,max, P dis,max)
and energy capacities (Emin, Emax).

• Grid Interaction: The system can exchange energy with an external
utility grid. The net power exchanged with the grid at timestep k,
P grid

k , is a variable determined by the energy balance of demands, on-
site generation, and the dispatch of flexible assets. A positive P grid

k

typically denotes import (purchase) from the grid, while a negative
value denotes export (sale).

• Economic Parameters (Tariffs): These define the costs and rev-
enues associated with grid interaction and are essential for the economic
objective function ℓk. As shown in Figure 3.4, these include electric-
ity purchase prices (πbuy), sale prices (πsell), and potentially demand
charge rates (πDC). These prices can be static, time-varying (e.g., TOU
rates), or dynamic (e.g., real-time prices). If dynamic and not known
perfectly in advance, their forecasts (π̂buy

k|t , π̂sell
k|t ) become part of the
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forecast input vector ŷk|t.

The specific mathematical formulation of the state dynamics f(·), operational
constraints g(·), and the instantiation of these components vary depending on
the particular case study and research question, as detailed in Section 3.2.

Tariff
[πsell, πbuy, πDC]

PV 
Generation

[PPV]

Net Load / Grid Power
[Pgrid]

Electricity
Load
[PL]

Flexible Assets
[pch, pdis, Pch,max, Edis,max,

Emax, Emin, ηch, ηdis]

Energy System Model

Figure 3.4.: Techno-Economic Energy System Model

3.1.2.3. Implementation via Receding Horizon

As is standard in MPC, the optimization problem (3.17) is solved repeatedly
at each timestep t. Only the first element of the optimal control sequence, u∗

0,
is applied to the actual system (or simulation environment) for the interval
[t, t+Δt). The horizon then recedes: the system state evolves to xt+1 (which
becomes xcurrent for the next iteration), new forecast input vectors ŷ(t+1) =
{ŷk|t+1}H−1

k=0 are obtained, and the optimization is resolved at time t + 1
(Rawlings et al., 2012). The simulation studies within RQ1, and RQ2 use an
simulation-based approach, where the state update for the next optimization
step (xcurrent at t + 1) relies on the system model f(x∗

0, u∗
0, z∗

0, ŷ0|t) used
within the MPC, rather than direct measurements from a physical system.
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3.1.2.4. Stability Considerations

While a rigorous analysis of closed-loop stability is a cornerstone of eMPC
theory (Rawlings et al., 2012), this lies outside of the scope of this thesis.
Still, it is important to acknowledge standard techniques used to promote
stable closed-loop behavior. These typically involve the careful design of:

• Terminal cost functions Vf (xH) that approximate the long-term eco-
nomic performance or penalize deviations from desirable terminal states
(Mayne et al., 2000).

• Terminal constraints that require the state xH to lie within a pre-
defined invariant or stabilizing set.

• Choosing a prediction horizon H that is sufficiently long relative to the
system dynamics.

In economic eMPC, where the control objective is economic optimization
rather than stabilization to a specific equilibrium, notions of dissipativity have
been developed to assess average performance and ensure boundedness of the
closed-loop trajectories—even in the absence of convergence to a fixed point
(Angeli et al., 2012). In the methods employed in this thesis (Section 3.2),
terminal costs or constraints are added for practical reasons (e.g., to enforce
a target final state to compare forecast accuracy fairly), rather than as part
of a formal stability guarantee.

3.2. Methods Per Research Question

Building upon the general frameworks for Supervised Learning (Section 3.1.1)
and Economic Model Predictive Control (Section 3.1.2), this section elabo-
rates on the specific methodologies tailored to each research question. Ta-
ble 3.1 provides a comparative overview of these approaches.
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3.2.1. RQ1: Evaluating Forecasting Errors through the Net Load
Error Framework

Research Question 1: How do existing supervised learning-based
forecasting methods perform in terms of statistical and economic error

metrics for the task of peak load forecasting?

To address RQ1, various state-of-the art model architectures were implement
and benchmarked using conventional error metrics and the Net Load Error
(NLE) framework (Houben et al., 2025a). The NLE quantifies the economic
impact of load forecast errors within a peak load shaving context, specifi-
cally using an eMPC simulation as an evaluation tool for various time series
forecasting algorithms.

3.2.1.1. Economic Model and Control Policy (NLE Framework)

The NLE framework simulates a simplified energy system (Figure 3.5) con-
trolled via eMPC. This simulation isolates the cost impact specifically at-
tributable to forecast errors (ϵk|t = yt+k − ŷk|t) under a daily peak demand
charge tariff (πDC) (Houben et al., 2025a).
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Figure 3.5.: Net Load Error Framework Schematic (Houben et al., 2025a)

Energy System Model (NLE Instantiation) This model instantiates the
general eMPC framework (Section 3.1.2) with the following components:

• Load: The system considers an electrical load yt [kW] (ground truth)
and its forecast ŷk|t [kW]. For the simulation, load values are scaled to
[0, 1]. The forecast ŷk|t serves as the single component of the forecast
input vector ŷk|t for the eMPC.

• BESS: A single Battery Energy Storage System is modelled.

– State vector xk: Represents the energy stored, Ek [kWh], i.e.,
xk = [Ek].

– State limits X : Defined by the capacity Emax, so 0 ≤ Ek ≤ Emax.
X = [0, Emax].

– Control input vector uk: Represents the charging/discharging power,
P BESS

k [kW], i.e., uk = [P BESS
k ]. Negative values denote discharg-

ing, positive values charging.

– Input limits U : Defined by the maximum power rating P max, so
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−P max ≤ P BESS
k ≤ P max. U = [−P max, P max].

– Dynamics f : Instantiates Eq. (3.17b) with a lossless model: Ek+1 =
Ek + P BESS

k · Δt.

– Parameters: For comparability, Emax and P max are set to 1.0 kWh
and 1.0 kW respectively (Houben et al., 2025a).

• Grid Interaction: The net grid power within the optimization at step
k is P grid

k = ŷk|t+P BESS
k . The operational grid power realized at time

t based on the first implemented control action P BESS∗
0 is P grid,opr

t =
yt + P BESS∗

0 .

• Demand Charge Tariff : A daily demand charge tariff with rate
πDC is applied ex-post based on the maximum operational grid power
observed each day: maxt∈day d(P grid,opr

t ). This differs from the general
formulation Eq. (3.20) as the charge is calculated ex-post, not optimized
directly within the horizon using ph.

eMPC Optimization (Internal to NLE) The eMPC formulation Eq. (3.17)
is instantiated to find the optimal control sequence u∗

0:H−1 = {P BESS∗
k }H−1

k=0
and the minimum predicted peak power ph∗. Due to the ex-post calculation
of the demand charge, the stage cost ℓk in Eq. (3.17a) is effectively zero.
Instead, the objective minimizes a proxy for the peak power ph over the
horizon, combined with a terminal cost Vf (EH):

(u∗
0:H−1, ph∗) = arg min

u0:H−1,ph

�
ph + Vf (EH)



(3.22)

where Vf (EH) =wEH
(EH − E0)2

subject to:

• BESS dynamics (instantiating Eq. (3.17b)): Ek+1 = Ek + P BESS
k · Δt.

• State and Input Constraints (instantiating Eq. (3.17c), (3.17d)): Ek ∈
[0, Emax], P BESS

k ∈ [−P max, P max].
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• Initial State (Eq. (3.17g)): E0 = Ecurrent.

• Peak Power Path Constraint (instantiating Eq. (3.17e)): ph ≥ ŷk|t +
P BESS

k , for k = 0, . . . , H − 1. This links the decision variables uk =
[P BESS

k ] and ph to the forecast input ŷk|t.

The terminal cost Vf (EH) penalizes the squared deviation of the final battery
state EH from its initial state E0. The weight wEH

is set to 102, a high
value chosen to strongly discourage significant net changes in the battery’s
state of charge over the control horizon, thereby forcing the solution for all
forecasting time series to be fairly comparable in terms of total costs (Houben
et al., 2025a).

NLE Calculation Logic The NLE score compares the ex-post operational
demand charge costs (Copr = %

d maxt∈day d(P grid,opr
t ) · πDC) from two simu-

lations (Houben et al., 2025a):

1. Actual Scenario: Uses the forecast sequence {ŷk|t}H−1
k=0 as input ŷk|t =

[ŷk|t] to the eMPC at each step t.

2. Ideal Scenario: Uses the ground truth sequence {yt+k}H−1
k=0 as a per-

fect forecast input ŷk|t = [yt+k] to the eMPC at each step t.

The simulation process (Fig 3.5) involves:

• Optimization: At each t, solve Eq. (3.22) using the relevant forecast
(ŷk|t or yt+k) to find u∗

0:H−1.

• Implementation: Apply only the first action u∗
0 = [P BESS∗

0 ]. Calculate
operational net load using the actual load yt: P grid,opr

t = yt + P BESS∗
0 .

If ŷ0|t ̸= yt, P grid,opr
t will differ from the planned peak-minimized value.

• State Update: Update Ecurrent for the next step t + 1 using Et+1 =
Et + P BESS∗

0 Δt.

• NLE Calculation: After simulating the entire test period, calculate
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total costs Copr
actual and Copr

ideal based on daily peaks of P grid,opr
t . The

NLE is the difference:

NLE = Copr
actual − Copr

ideal (3.23)

NLE measures the extra cost incurred due to using the imperfect forecast
ŷk|t compared to perfect knowledge yt+k.

3.2.1.2. Predictor: Machine Learning Model Benchmarking

This work applied the SL framework (Section 3.1.1), using methods detailed
in (Houben et al., 2025a), to train and benchmark various algorithms for
predicting the load yt+k. Mathematical details of all algorithms and archi-
tectures are given in Appendix A.

• Algorithms Benchmarked (Table 3.2): Includes Random Forest
(RF), XGBoost, LightGBM using the Direct strategy (Eq. (3.4)); and
GRU (implemented as BlockRNN), N-BEATS, TFT using the MIMO
strategy (Eq. (3.5)). A Linear Regression model (Direct strategy)
served as a baseline. Specific algorithm details can be found in (Houben
et al., 2025a) Appendix A and the original references (Table 3.2).

• Features (X(t)): Instantiated the general feature sets from Section 3.1.1.
xpast included historical load values (lags up to L = 72 hours). xfuture

k

included time-based features (e.g., trigonometric day/week cycle en-
codings, holiday flags) and forecasts of air temperature (Houben et al.,
2025a). An example trigonometric feature for the hour of day (relative
to time t + k) is:

xhour,sin
k = sin

�2π · hour(t + k)
24

�
, xhour,cos

k = cos
�2π · hour(t + k)

24

�
(3.24)

These xhour,sin
k and xhour,cos

k would be components of the vector xfuture
k .

• Training & Tuning: Models were trained minimizing the MSE loss
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(Eq. (3.7)). Hyperparameters (φ) were optimized using Bayesian Op-
timization Hyperband (Biewald, 2020; Falkner et al., 2018).

• Evaluation Metrics: Performance was assessed using standard statis-
tical metrics (RMSE, MAE, MAPE, R2 - Section 3.1.1.5), Skill Scores
(Eq. (3.16)), error distribution analysis, and the NLE score described
above (Houben et al., 2025a).
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3.2.2. RQ2: Integration of Household Energy Management into
Net Load Forecasting Models

Research Question 2: How can net load forecasting be improved for
households with behind-the-meter PV systems, battery storage, and HEMS,

while enhancing interpretability and data efficiency through novel
architectures?

In order to answer RQ2, this thesis explored improving household net load
forecasting by integrating physical and operational knowledge into a pre-
dictive model. As illustrated in Figure 3.6, a model-based deep learning
approach was developed (Houben et al., 2025b). This approach combines a
physical PV model with a neural network that includes an embedded, differ-
entiable optimization layer of the household’s energy management system.

State of 
Energy

Load HEMS

Net Load

Net Load

Predictions Loss
Backprop

Productionω

Production

Irradiance
Meta Data

Datetime

Nerual Network Model

Transposition Model Household Model

Measurements

Net Load

1 3

4

2

Figure 3.6.: Modeling framework overview for RQ2: Model-based deep learning using phys-
ical PV and HEMS optimization priors (Houben et al., 2025b).

As depicted in Figure 3.61), the transposition model generates a PV power
forecast based on weather forecasts and PV metadata. In standard indirect
modeling approaches, the output of this model would be subtracted from
the net load to create training samples of residual (non-flexible) load, which
can effectively be learned by a data-driven method. For the task at hand,
however, this would not lead to a satisfactory decomposition into a non-
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flexible load, as the resulting profile would still contain the battery power
actions. In the approach developed in this work, the output of the trans-
position model is therefore utilized in two locations: i) as an input to the
forecasting model (Figure 3.62)) and ii) as an input to the household model
(Figure 3.63)). By utilizing the PV power prediction from the transposi-
tion model as an input to the neural network and explicitly employing the
outputs of the neural network in the differentiable household layer, an in-
terpretable and data-efficient multi-step ahead forecasting model of the net
load is learned. It should be noted that although the neural network model
and the household model are presented as two separate components in this
work, they are trained jointly as a single model, with the household model
functioning as the output layer (Houben et al., 2025b).

3.2.2.1. Energy System Model: Household Energy Management System
(HEMS)

This component models the operational behavior of a household equipped
with non-flexible load (yload

t ), photovoltaic generation (yP V
t ), and a battery

energy storage system (BESS). The household operates under a time-of-use
(TOU) purchase tariff (πbuy

k ) and a flat feed-in tariff (πsell
k ) (Houben et al.,

2025b). A more realistic version of this HEMS model (including battery ef-
ficiencies) was used to generate the ground truth net load data ynet

t for the
study, while a simplified, more computationally efficient version (i.e., assum-
ing lossless BESS and no binary variables) is formulated as a differentiable
optimization layer within the neural network forecasting model (Houben et
al., 2025b).

This differentiable layer instantiates the general eMPC framework (Section 3.1.2)
to simulate the HEMS decision-making over a horizon H = 24 hours.

• State vector xk: Represents the BESS energy stored, Ek [kWh], i.e.,
xk = [Ek].

• Control input vector uk: Represents the BESS charge/discharge
power, P BESS

k [kW], i.e., uk = [P BESS
k ].
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• Forecast Input Vector ŷk|t: This includes forecasts needed for the
optimization at step k: the non-flexible load forecast ŷload

k|t , the PV
production forecast ŷPV

k|t , the purchase price πbuy
t+k, and the feed-in tariff

πsell
t+k. Note that ŷload

k|t and the initial state E0 are provided by the main
neural network component (see Section 3.2.2.2), while ŷPV

k|t comes from
the physical PV model, and prices are assumed known.

• Objective Function: Instantiates the general objective Eq. (3.17a)
to minimize the predicted energy cost over the horizon, based on the
energy cost definition Eq. (3.19). A terminal state constraint effectively
acts as the terminal cost Vf . The specific problem is:

min
u0:H−1

H−1$
k=0

ℓenergy
k s.t. terminal constraint on EH (3.25)

where the stage cost ℓenergy
k is calculated using Eq. (3.19) with the

predicted grid power P̂ grid
k :

P̂ grid
k = P BESS

k + ŷload
k|t − ŷPV

k|t (3.26)

and using the known prices πbuy
t+k, πsell

t+k for π̂buy
k|t , π̂sell

k|t .

• Constraints: Instantiate the general constraints:

– Dynamics (Eq. (3.17b)): Ek+1 = Ek + P BESS
k · Δt (lossless model

used in the layer).

– State Limits X (Eq. (3.17c)): 0 ≤ Ek ≤ Ecap.

– Input Limits U (Eq. (3.17d)): −P dis,max ≤ P BESS
k ≤ P ch,max.

– Terminal Constraint (related to Vf ): EH = Etarget
H . The target

Etarget
H is set based on logic considering the time of day or previous

HEMS operation (Houben et al., 2025b).

This embedded optimization layer allows the overall model to learn forecast-
ing targets that are consistent with optimal HEMS operation based on the
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predicted load, PV, and known tariffs.

3.2.2.2. Predictor: Deep Neural Network & Physical PV Model

The forecasting model F is a MIMO model, generating the final net load
forecast ŷnet

k|t integrates three parts: a physical PV model, a deep neural
network, and the differentiable HEMS optimization layer described above.

PV Forecasting Model: Irradiance-Power Transposition A physical model,
specifically PVWatts (Dobos, 2014), is used to predict the PV generation
ŷPV

k|t . This component corresponds to a specific function within the over-
all SL model F . It uses weather forecasts (components of xfuture

k , e.g.,�DNIk|t, �DHIk|t, �GHIk|t) and static PV system metadata (PST C , θT , θA,arr, etc.)
as inputs (Houben et al., 2025b). The steps involve calculating the plane-
of-array irradiance ĜP OA,k|t using the Perez model (Perez et al., 1990) and
then applying the solar power curve:

ĜP OA,k|t = fP erez( �DNIk|t, �DHIk|t, �GHIk|t, sun anglesk, PV angles) (3.27)

ŷPV
k|t =

PST C · ĜP OA,k|t
Gref

�
1 + γ(T̂cell,k|t − Tref)

�
ηinv (3.28)

where T̂cell,k|t is the predicted cell temperature at step k. The output ŷPV
k|t is

used both as input to the main DNN and the HEMS layer.

Deep Neural Network The core data-driven component is a neural net-
work based on a modified Time-series Dense Encoder (TiDE) architecture
(Das et al., 2024), as illustrated in Figure 3.7. TiDE is specifically designed
for multi-step ahead forecasting and effectively processes covariates by dis-
tinguishing between past and future features (Houben et al., 2025b). This
network, as part of the overall model F , predicts the inputs required by the
HEMS optimization layer: the non-flexible load sequence {ŷload

k|t }H
k=1 (denoted

P̂ load
t:t+H in Figure 3.7) and the initial BESS state Êt (denoted êt in Figure 3.7,

corresponding to x0,HEMS).
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The model takes as input features derived from X(t) (defined in Section 3.1.1):

• The historical features {xpast
t−τ }L

τ=0 (e.g., pP V
t−L:t, pnet

t−L:t in Figure 3.7) are
first processed by nr Residual Blocks (Eq. (3.34)) on a per-timestep ba-
sis. This yields the processed past feature sequence Xt−L:t ∈ RL×dfeat ,
as depicted in Figure 3.7.

• Similarly, the known future features {xfuture
k }H

k=1 (e.g., P̂ P V
t:t+H , δday

t:t+H , δqh
t:t+H

in Figure 3.7) are processed by nr Residual Blocks per timestep, yielding
the processed future feature sequence Xt:t+H ∈ RH×dfeat , also shown
in Figure 3.7.

The learnable weights of these initial Residual Blocks are part of the model
parameters θ. These blocks, further detailed in (He et al., 2016; Houben
et al., 2025b), facilitate gradient flow and learn complex non-linear depen-
dencies.

The concatenated sequence of these processed features, Xt−L:t and Xt:t+H ,
forms the input to the subsequent Decoder module:

Xdec_in = concat(Xt−L:t, Xt:t+H) where Xdec_in ∈ R(L+H)×dfeat (3.29)

The Decoder module incorporates a Self-Attention mechanism, an important
component of the Transformer architecture (Vaswani et al., 2017), to weigh
the importance of different parts of the input sequence Xdec_in (Houben
et al., 2025b). From Xdec_in, the Query (Q), Key (K), and Value (V)
matrices are computed as linear projections using learnable weight matrices
WQ, WK , WV (which are components of θ):

Q = Xdec_inWQ (3.30)
K = Xdec_inWK (3.31)
V = Xdec_inWV (3.32)

where WQ ∈ Rdfeat×dq , WK ∈ Rdfeat×dk , and WV ∈ Rdfeat×dv . Typically,
dq = dk. The attention output matrix Gatt (denoted g(t) in Figure 3.7) is
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Decoder

Household Model

concat

Projection
(per timestep)

stack

stack

flatten

flatten

flatten

Future Covariates Past Covariates

δday δqhpprod
t:t+H

pprod
t-L:t t:t+H t:t+H

stack

pnet
t-L:t

g(t)

t:t+Hx

t:t+Hd

t-L:tx

Res Block

Res Block

Res Block

Res Block

e pload
t:t+Ht

nr

nr

nr

nr

Figure 3.7.: Deep Neural Network Architecture based on a modified TiDE model (Houben
et al., 2025b). The terms Xt−L:t and Xt:t+H represent processed past and
future feature sequences, respectively, which form the input to the Decoder
after concatenation. The Decoder output g(t) (below denoted Gatt) is then
transformed into predictions P̂ load

t:t+H and êt.

then calculated using scaled dot-product attention:

Gatt = Attention(Q, K, V) = softmax
�

QKT

√
dk


V (3.33)

where Gatt ∈ R(L+H)×dv . This output matrix Gatt is then further processed
by subsequent layers within the Decoder (often including more Residual
Blocks and feed-forward networks, as generally depicted by the path to P̂ load

t:t+H

and êt in Figure 3.7) to generate the intermediary predictions of non-flexible
load and the initial BESS state.

The formulation of a Residual Block is given by:

h(l+1) = h(l) + ReLU(W(l)h(l) + B(l)) (3.34)

65



3. Methods

where h(l) is the input to the l-th block, and W(l), B(l) are its learnable
parameters (part of θ).

The entire model (PV model → DNN → HEMS layer) is trained end-to-end
by minimizing a loss function (i.e., MSE, Eq. (3.7)) calculated between the
final predicted net load ŷnet

k|t (output by the HEMS layer) and the actual net
load ynet

t+k.

3.2.3. RQ3: Optimal Operational Dispatch of a Multi-Energy
Microgrid under Uncertainty

Research Question 3: What is the economic impact of load and
photovoltaic generation forecast errors in a multi-energy microgrid, subject

to various electricity pricing systems?

For RQ3, an eMPC framework was developed to optimally dispatch a multi-
energy Renewable Energy Community (REC) testbed, specifically analyzing
its performance under forecast uncertainty across various electricity pricing
schemes (Houben et al., 2023).
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Utility Grid

PV

BESS

PtH DHS

Domestic 
Hot Water 

Load (REC)

Electrical 
Load (REC)

Energy Sources Flexibilites Load (REC)

Figure 3.8.: Energy System Model for RQ3

3.2.3.1. Economic Model: Multi-Energy REC System and MILP
Formulation

As shown in Figure 3.8, the energy system model represents the REC, in-
cluding electrical loads (yload

t ), thermal loads (yDHW
t ), PV generation (yP V

t ),
a Battery Energy Storage System (BESS), a Power-to-Heat unit (PtH), a
Domestic Heat Storage (DHS), and grid connection (Houben et al., 2023).
The system is formulated as a Mixed-Integer Linear Program (MILP) that
instantiates the general eMPC framework (Section 3.1.2).

REC System State and Control To align with the general framework (Eq. (3.17)),
we define the core vectors for the optimization at step k:

• State vector xk ∈ R2: Contains the energy stored in the BESS and
DHS. xk = [EBESS

k , EDHS
k ]T . (nx = 2).

• Control input vector uk ∈ R4: Includes the primary power decisions
for the storage assets. uk = [P BESS,ch

k , P BESS,dis
k , P DHS,ch

k , P DHS,dis
k ]T .

(nu = 4). These represent the power flow into or out of the storage
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units.

• Binary decision variables zk ∈ {0, 1}4: Includes variables to enforce
unidirectional power flow for storage: zk = [zBESS,ch

k , zBESS,dis
k ,

zDHS,ch
k , zDHS,dis

k ]T . (nz = 4).

• Forecast Input Vector ŷk|t ∈ Rny : Contains forecasts for uncontrol-
lable variables: ŷk|t = [ŷload

k|t , ŷPV
k|t , ŷDHW

k|t , ĉCO2
k|t ]T . (ny = 4).

Other variables, such as grid power (P grid
k ), PtH input power (P P tH,in

k ), PV
self-consumption (P P V,onsite

k ), etc., are treated as dependent variables deter-
mined by the energy balance constraints.

MILP Optimization Problem The MILP is solved at each decision step t

over horizon H.

• Objective: Instantiates Eq. (3.17a). The stage cost ℓk = ℓ(xk, uk, zk, ŷk|t)
minimizes either Cost or CO2.

– Cost: ℓk = ℓenergy
k + ℓDC

k . ℓenergy
k (Eq. (3.19)) uses prices π̂

buy/sell
k|t

and the grid power P grid
k . ℓDC

k handled via peak variable ph con-
strained by dependent[P grid

k ]+.

– CO2: ℓk = [P grid
k ]+ · ĉCO2

k|t · Δt.

• Constraints: Instantiate the general constraints (Eqs. (3.17b)-(3.17f)).

– Asset Dynamics (Eq. (3.17b)): State transitions for EBESS
k+1 and

EDHS
k+1 are defined by Eq. (3.2.3.1), using components of xk and

uk.

Ea
k+1 = Ea

k ·(1−Θa
ESΔt)+

�
ηa,chP a,ch

k − 1
ηa,dis

P a,dis
k

�
Δt for a ∈ {BESS, DHS}

– State and Input Limits (Eqs. (3.17c), (3.17d)): Define feasible
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ranges X for xk (e.g., 0 ≤ Ea
k ≤ Capa) and U for uk (e.g., 0 ≤

P a,ch
k ≤ P a,ch,max, 0 ≤ P a,dis

k ≤ P a,dis,max).

– Constraints (Eq. (3.17e)): The energy balance equations that link
control inputs uk, forecasts ŷk|t, and dependent power flows:

∗ Electrical Balance: Determines net grid power P grid
k = P grid,buy

k −
P grid,sell

k . It ensures supply meets demand: P grid
k + ŷP V

k|t +
P BESS,dis

k = ŷload
k|t + P BESS,ch

k + P P tH,in
k .

∗ Thermal Balance: Determines the required electrical input to
the PtH, P P tH,in

k : ηP tHP P tH,in
k Δt+P DHS,dis

k Δt = ŷDHW
k|t Δt+

P DHS,ch
k Δt.

∗ PtH Capacity: 0 ≤ P P tH,in
k ≤ P P tH,max. This constrains the

value determined by the thermal balance.

– Binary Logic (Eq. (3.17f)): Uses Eq. (3.21) applied to BESS and
DHS, linking power variables in uk to binary variables in zk.

The controller operates in a receding horizon, open-loop manner as described
in Section 3.1.2.

3.2.3.2. Predictor: Hybrid Multi-Step Forecasting Method

Forecasts for electrical load ({ŷload
k|t }H

k=1) and PV generation ({ŷPV
k|t }H

k=1) are
generated using a hybrid strategy combining two models based on the lead
time k (Houben et al., 2023).
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yj=0y-1y-2y-n  ŷ1    ŷ2    ŷ3    ŷ4    ŷ5    ŷh-6    ŷh-5    ŷh-4    ŷh-3    ŷh-2    ŷh-1    ŷh   

very short-term: Model 1
Method

– recursive Regression

Covariates Covariates
– autoregressive lags (a_lags)

‘a_lags’

– seasonal lags (s_lags) 

short-term: Model 2
Method

– one-shot Regression

– exogenous covariates: holidays, irradiance (GHI, DNI, DHI)
  – endogenous covariates: trigonometric encoding of weekday & month
    seasonal lags (s_lags) 

forecast
submission
     (now)

‘switching
point’

Figure 3.9.: Hybrid Forecasting Method: Combining recursive and MIMO outputs

• Hybrid Strategy: For lead times k = 1, . . . , s, a short-term model
(Model 1) using the Recursive strategy (Section 3.1.1.2, Eq. (3.3)) is em-
ployed. This model uses recent historical measurements (autoregressive
features xpast). For longer lead times k = s+1, . . . , H, a separate model
(Model 2) is used, which relies only on exogenous features (xfuture

k ) such
as time-based features and weather forecasts, avoiding the use of po-
tentially error-prone recursive inputs. This study implemented Model
2 using a Direct-like strategy, training the model to predict each step
k > s based on exogenous inputs available at time t. The final forecast
sequence is obtained by concatenating the outputs: {ŷ1|t, ..., ŷs|t} from
Model 1 and {ŷs+1|t, ..., ŷH|t} from Model 2.

• Switching Point (s): The optimal lead time s to switch from the
recursive model to the exogenous-feature-based model is determined
via cross-validation. It is typically chosen where the forecast error (e.g.,
nRMSE Eq. (3.14)) of the recursive model starts to exceed that of the
non-recursive model (Houben et al., 2023).

• Algorithm (F): XGBoost was selected as the underlying algorithm
for both Model 1 and Model 2 based on cross-validation performance
(Houben et al., 2023).

• Features (x): Model 1 uses recent lags of the target variable (xpast).
Model 2 uses time features (e.g., hour, day of week) and weather fore-
casts (e.g., irradiance, temperature) as future features xfuture

k (Houben
et al., 2023).
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3.2.4. Experimental Setup

The methodologies described were implemented primarily using Python.
For SL model development (RQ1, RQ2, RQ3 predictor): used Darts (Herzen
et al., 2022), scikit-learn (Pedregosa et al., 2011), xgboost (Chen and Guestrin,
2016), PyTorch (Paszke et al., 2019), and Skforecast (Amatsk). Exper-
iment tracking via Weights & Biases (Biewald, 2020) (RQ1, RQ2). For
Optimization and Simulation: RQ1 NLE used Pyomo with CPLEX. RQ2
used cvxpylayers (Agrawal et al., 2021). RQ3 used GAMS with CPLEX
(GAMS). Simulations were used for (RQ1, RQ2). Hardware included Nvidia
GPUs (RQ1, RQ2), cloud resources (RQ3 model selection), and servers (RQ3
eMPC) (Houben et al., 2025a; Houben et al., 2025b; Houben et al., 2023).

In summary, this section has detailed the specific methodological implementa-
tions undertaken for each of the three core research questions. Building upon
the general principles of Supervised Learning for forecasting (Section 3.1.1)
and Economic Model Predictive Control (Section 3.1.2), this chapter elabo-
rated on the distinct energy system models, the tailored predictive algorithms
and strategies, and the specific control or evaluation policies employed in
RQ1, RQ2, and RQ3. This included the NLE framework for economic fore-
cast evaluation, the model-based deep learning approach for interpretable
net load forecasting, and the MILP-based eMPC for optimal multi-energy
microgrid dispatch. The following section will synthesize these approaches,
discussing their commonalities, differences, and overall contribution.
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Having detailed the underlying methodologies rooted in Supervised Learn-
ing (SL) and Economic Model Predictive Control (eMPC) in Chapter 3, this
chapter now transitions to their practical application and evaluation. The
specific methods developed and benchmarked are applied to distinct case
studies designed to address the three core research questions (RQs) of this
thesis. For each research question, the corresponding case study is first de-
scribed, outlining the system context, data sources, and experimental de-
sign. Subsequently, the empirical results obtained from applying the respec-
tive methodologies are presented and analyzed. Figure 4.1 provides a visual
overview, summarizing the case study context, indicating its level of spatial
aggregation, and presenting the principal findings for each research question
investigated in this work.

R
Q

1

C
S2

C
S1Grid operator perspective evaluating 

forecast models on 12 diverse public 
load datasets for peak load shaving

Tree-based statistically superior; NNs 
competitive for peaks / longer horizons. 
NLE adds economic insight beyond statistics.

R
Q

2 Model-based DL improves net load forecast 
accuracy (~10% RMSE) & interpretability 
(predicts hidden states like load/SoE).

R
Q

3 MPC yields cost/CO2 savings vs rule-based
 (~6-7% realistic), but forecast errors reduce 
savings achievable with perfect foresight.

Retailer perspective forecasting 
net load (PV, BESS, HEMS) 
of simulated data from 20 Dutch homes.

Consumer perspective optimizing 
multi-energy dispatch (PV, BESS, Heat) 
via MPC under various tariffs & CO2 goals.

C
S3

Lo

Key ResultsCase Studies

Figure 4.1.: Overview of case studies and results; linking the research questions to specific
spatial scales.
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4.1. RQ1: Benchmarking SL Models and Evaluating
Economic Impact

This section details the case study setup and presents the results corre-
sponding to Research Question 1, which focused on benchmarking supervised
learning forecasting models across various spatial scales and evaluating their
economic impact using the Net Load Error (NLE) framework developed in
Section 3.2.1.1.

4.1.1. Case Study Description

The evaluation for RQ1 was performed on a diverse set of real-world elec-
tricity load time series to ensure the robustness and generalizability of the
findings across different contexts (Houben et al., 2025a)(Sec 3).

This study drew on three open-source datasets, each including multiple load
time series covering a broad range of geographies and consumer types. Specif-
ically, the levels of spatial aggregation (referred to as spatial scales) between
the datasets vary widely; with data collected at what will henceforth be re-
ferred to as county, town, neighborhood, and building levels. For instance, the
county-level load time series, taken from the EIA Cleaned Hourly Electricity
Demand dataset presented in (Ruggles et al., 2020), encompasses millions of
end-users comprised of households, industries, transport, and public lighting,
whereas the neighborhood-level dataset from the USA (Miller et al., 2020)
consists primarily of commercial building loads. The diversity of datasets,
summarized in Table 4.1, represents electricity demand across various scales
and consumer types, forming a robust foundation for the subsequent evalua-
tions.

From each dataset, three independent time series were selected, resulting in
a total of 12 distinct load profiles for evaluation. A requirement for inclusion
was at least two years of historical data to allow for one year of training
data and separate summer/winter months for testing and validation, fol-
lowing the data splitting procedure depicted in Figure 4.2 (Houben et al.,

73



4. Case Studies and Results

Table 4.1.: Overview of the datasets used for benchmarking forecasting models in RQ1
(taken from (Houben et al., 2025a)(Table 4).

Spatial Scale Power Range Res. Country Meter
Label

Source

County 1–50 GW 60 min USA LDWP,
BANC,
NYIS

(Ruggles
et al.,
2020)

Town 5–50 MW 15 min Portugal MT_196,
MT_279,
MT_208

(Trindade,
2015)

Neighborhood 5–2000 kW 60 min USA Bull,
Hog,
Bobcat

(Miller
et al.,
2020)

Building 0–2 kW 60 min USA Be_Sandy,
Be_Millie,
Co_Joel

(Miller
et al.,
2020)

2025a)(Sec 3). Although sourced with varying native resolutions (Table 4.1),
all data was resampled to a consistent hourly resolution (Δt = 1 hour) for
this study. The preprocessing steps including outlier handling and missing
value treatment, were applied uniformly. Additionally, hourly ambient tem-
perature data, sourced via the Open-Meteo API ( Free Open-Source Weather
API | Open-Meteo.com 2023), was used as an exogenous predictor variable
(xfuture) for the forecasting models, given its known influence on electricity
consumption (Pardo et al., 2002; Behm et al., 2020).

Y Y

M

1 Week

M

TestingTraining Hyperparameter Tuning

SummerWinter

Figure 4.2.: Train and Test, Hyperparameter Tuning Data Splits (Houben et al., 2025a)
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4.1.2. Results

The performance of the six benchmarked forecasting algorithms (detailed
in Section 3.2.1.2) was evaluated on the 12 datasets across forecast hori-
zons H ∈ {1, 8, 24, 48} hours. This subsection summarizes the key findings
regarding overall performance, the impact of seasonality, and the insights
gained from the Net Load Error (NLE) analysis (Houben et al., 2025a)(Sec
4). The interpretation and discussion of these results are further elaborated
in Chapter 5.

4.1.2.1. Overall Forecasting Performance

A qualitative comparison provides initial insights into model behavior. Fig-
ure 4.3 contrasts 24-hour ahead forecasts from tree-based models (left panel)
and neural networks (right panel) against the ground truth for representative
datasets from each spatial scale during days with extreme temperatures. As
expected, load volatility increases significantly at lower levels of spatial aggre-
gation (e.g., building vs. county). Both model types generally perform better
on smoother, aggregated data. Qualitatively, tree-based models appear adept
at capturing recurring patterns but sometimes under-predict extreme peaks,
while neural networks show potential in reaching peak magnitudes but occa-
sionally overestimate load during low-consumption periods and exhibit less
smooth forecast trajectories (Houben et al., 2025a)(Sec 4.1).
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Figure 4.3.: Qualitative Comparison of Algorithm Types (Trees vs. NNs) across Spa-
tial Scales for 24-Hour Ahead Forecasts (RQ1, taken from (Houben et al.,
2025a)(Fig 5).
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Quantitatively, model performance was compared by averaging error scores
across datasets within each spatial scale and forecast horizon, grouping al-
gorithms into Tree-based, Neural Network (NN), and the Linear Regression
Benchmark categories (Figure 4.4). Generally, both tree-based and NN mod-
els outperform the simpler linear regression benchmark, especially for hori-
zons H ≥ 8 hours. The benchmark remains competitive only at very short
horizons (1-4h) for the highly aggregated county-level data. Across most
scales and metrics (MAE, MAPE, RMSE, R2), tree-based algorithms demon-
strated, on average, slightly better statistical performance than NNs. How-
ever, exceptions exist, notably at the county scale where NNs performed com-
petitively on RMSE/MAE/R2 and at the building scale for MAPE (though
MAPE is less reliable here due to near-zero loads) (Houben et al., 2025a)(Sec
4.1.1).

county

town

neighborhood

building

S
p

a
ti

a
l 
S

c
a
le

MAPE RMSE

1 4 8 24 48

Forecast Horizon (Hours)

county

town

neighborhood

building

S
p

a
ti

a
l 
S

c
a
le

MAE

1 4 8 24 48

Forecast Horizon (Hours)

R2 Score

Model Class

Neural Network Benchmark Tree-based

Figure 4.4.: Best Performing Model Type (Tree-based, NN, Benchmark) per Spatial Scale
and Forecast Horizon based on Average Statistical Metrics (RQ1, taken from
(Houben et al., 2025a)(Fig 6).
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The relative performance is further illustrated using RMSE Skill Scores (Eq. (3.16))
against the linear regression benchmark (Figure 4.5, shown for county scale).
While sophisticated models significantly outperform the benchmark at longer
horizons (H ≥ 24h), their skill scores can be negative at very short horizons
(1-4h), particularly for NNs on aggregated data. Notably, NNs tend to match
or exceed the performance of tree-based models around the 24-hour horizon
mark for these county-level datasets (Houben et al., 2025a)(Sec 4.1.1).
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Figure 4.5.: RMSE Skill Score (Relative to Linear Regression Benchmark) for Tree-based
vs. NN Model Classes on County Scale Datasets (RQ1, taken from (Houben
et al., 2025a)(Fig 7).

4.1.2.2. Impact of Seasonality and Error Analysis

Performance variations between seasons (summer vs. winter test periods)
were significant. Figure 4.6 shows RMSE skill scores for individual models
on county-level data, separated by season. Most models exhibited lower skill
scores (poorer performance relative to the benchmark) during summer com-
pared to winter. This seasonal difference was consistent across most spatial
scales, except for the building level (Houben et al., 2025a)(Sec 4.2). Examples
of XGBoost forecasts for the LDWP dataset (Figures 4.7 and 4.8) illustrate
this, showing accurate peak prediction in winter but underestimation in sum-
mer across various horizons.
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Figure 4.6.: RMSE Skill Scores for Individual Models on County Scale Datasets, Differen-
tiated by Season (RQ1, taken from (Houben et al., 2025a)(Fig 8)).
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Figure 4.7.: Example XGBoost Forecasts (1h to 48h ahead) vs. Ground Truth
on LDWP Dataset in Winter (RQ1, taken from (Houben et al.,
2025a)(Fig 9)).
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Figure 4.8.: Example XGBoost Forecasts (1h to 48h ahead) vs. Ground Truth on LDWP
Dataset in Summer (RQ1, taken from (Houben et al., 2025a)(Fig 10)).

Analysis of error distributions (ϵt = yt − ŷt) confirmed these seasonal differ-
ences. Figure 4.9 shows error histograms for all models on the LDWP dataset
(48h horizon). Summer errors tend to be right-skewed (positive tail, indi-
cating under-prediction bias), while winter errors are generally less skewed.
Table 4.2 summarizes skewness and kurtosis across scales. Summer forecasts
consistently show higher positive skewness and higher kurtosis (heavier tails,
more extreme errors) compared to winter for most scales and model types.
Tree-based models generally exhibited less skew than NNs (Houben et al.,
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2025a)(Sec 4.2).
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Figure 4.9.: Error Distributions (ϵ = y − ŷ) for All Models on LDWP Dataset (H=48h),
Comparing Summer vs. Winter Performance (RQ1, taken from (Houben et al.,
2025a)(Fig 11)).

Table 4.2.: Comparison of Skewness and Kurtosis of Forecast Errors (ϵ = y− ŷ) for Summer
and Winter Test Periods, Averaged by Model Type and Spatial Scale (RQ1,
taken from (Houben et al., 2025a)(Table 5).

Scale Type Skewness Kurtosis
Summer Winter Summer Winter

County Neural Network 0.83 -0.06 9.36 7.07
Tree-based 0.12 0.04 -9.67 9.85

Town Neural Network 0.45 -0.43 3.87 2.66
Tree-based 0.36 0.16 -7.31 8.70

Neighborhood Neural Network 1.48 -0.07 16.74 5.55
Tree-based 0.56 -0.38 -9.82 4.13

Building Neural Network -0.01 -0.09 1.35 4.25
Tree-based 0.17 -0.22 1.71 3.22

Overall, the statistical analysis suggests tree-based models often provide lower
average errors and more symmetric error distributions, while performance for
all models degrades in summer compared to winter, likely due to different
underlying load patterns.
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4.1.2.3. Net Load Error (NLE) Results

Evaluating forecasts using the NLE score, which quantifies the economic im-
pact of errors on peak load shaving performance (Section 3.2.1.1), provides
a different perspective compared to purely statistical metrics (Houben et al.,
2025a)(Sec 4.3). Figure 4.10 illustrates the process, showing how forecast
errors (panel a) lead to different BESS dispatch (panel b) and ultimately re-
sult in higher operational peaks (P grid,opr) compared to the ideal case using
perfect forecasts (panel c). Under-predictions coinciding with actual peaks
are particularly costly.
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Figure 4.10.: Illustration of NLE Calculation Variables for TFT Model (H=48h) on LDWP
Dataset: (a) Forecast vs. Ground Truth Load, (b) Resulting BESS Energy
Trajectories, (c) Resulting Operational Net Grid Power (RQ1, taken from
(Houben et al., 2025a)(Fig 12).

Comparing model classes based on the average NLE score (Figure 4.11) re-
veals the differences from the statistical evaluation:

• NNs vs. Trees: Neural Network models consistently achieved lower
(better) NLE scores than both the benchmark and tree-based mod-
els on the county and often on the town scale datasets, particularly
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for horizons H ≥ 8 hours. This contrasts with the statistical results
where trees often performed better. It suggests NNs, despite potentially
higher average errors, may capture peak characteristics more effectively
for demand charge reduction purposes.

• Horizon Trend: Unlike statistical errors which typically increase with
horizon H, the NLE scores generally decrease (improve) as the forecast
horizon increases. This indicates that having a longer foresight allows
the eMPC controller within the NLE simulation to plan BESS opera-
tions more effectively for daily peak reduction, partially mitigating the
negative impact of higher absolute forecast errors at longer lead times.

These findings highlight the importance of using application-driven metrics
like NLE, as they can lead to different conclusions about model suitability
compared to standard statistical measures alone, especially when the appli-
cation focuses on specific events like peak load management (Houben et al.,
2025a)(Sec 4.3).
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Figure 4.11.: Average Net Load Error (NLE) Scores for Model Classes (Tree-based, NN,
Benchmark) on County and Town Level Datasets across Forecast Horizons
(RQ1, taken from (Houben et al., 2025a)(Fig 13). Lower NLE is better.

4.2. RQ2: Interpretable Net Load Forecasting

This section addresses Research Question 2, focusing on improving household
net load forecasting accuracy and interpretability by incorporating physical
and operational knowledge into a deep learning model. It details the case
study used for development and validation, followed by the numerical results
demonstrating the effectiveness of the proposed model-based deep learning
approach described in Section 3.2.2.
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4.2.1. Case Study Description

The evaluation for RQ2 adopts the perspective of an energy retailer aiming
to accurately forecast the 24-hour ahead net load (H = 24h, Δt = 15min)
for its residential customers equipped with behind-the-meter energy systems
(Houben et al., 2025b)(Sec IV-A].

4.2.1.1. System Context and Data Generation

The case study focuses on a cohort of 20 single-family households located
in Utrecht, The Netherlands. Each household is assumed to be equipped
with a rooftop Photovoltaic (PV) system, a Battery Energy Storage System
(BESS), and a Home Energy Management System (HEMS). The households
operate under a specified time-of-use (TOU) electricity purchase tariff (πbuy

t )
and a flat feed-in tariff (πsell

t ) for exports (details specified in (Houben et al.,
2025b)(Appendix A).

To provide a controlled environment for evaluating model interpretability,
the ground truth net load time series (ynet

t ) for these households were simu-
lated rather than directly measured (Houben et al., 2025b)(Sec IV-B). This
involved:

1. Using real-world, open-source data for the non-flexible appliance load
(yload

t ) (Schlemminger et al., 2022) and PV generation (yprod
t ) (Visser

et al., 2022) for the years 2014 & 2015. PV metadata (location, orien-
tation, capacity) was also available from the source.

2. Simulating the optimal BESS operation for each household over the
entire period using a HEMS optimization model. This model aimed
to minimize energy costs under the given tariffs, similar to the one
described in Section 3.2.2.1, but included BESS round-trip efficiencies
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(η = 0.86) for realism during simulation, using the state update:

Et+1 = Et +

P BESS
t · η · Δt if P BESS

t ≥ 0 (charging)
P BESS

t · 1
η · Δt if P BESS

t < 0 (discharging)
(4.1)

3. Calculating the resulting net load ynet
t = yload

t − yprod
t + P BESS

t .

This simulation process provided the ground truth ynet
t time series used for

training and testing the forecasting models, while also yielding the underlying
"hidden" states (non-flexible load yload

t and optimal BESS state Et) necessary
for evaluating the interpretability of the proposed forecasting model (see Sec-
tion 4.2.2.2). Figure 4.12 illustrates the components of the simulated data
for a representative household.

4.2.1.2. Data Availability Scenarios

Recognizing that a retailer may not have perfect information about customer
assets, the study evaluated the forecasting model under different data avail-
ability scenarios regarding the PV system specifications and the exact HEMS
strategy employed by the household (Table 4.4) (Houben et al., 2025b)(Sec
IV-C). The ’Unknown PV Specs’ scenario involved inferring parameters like
capacity, tilt, and azimuth via grid search. The ’Unknown Strategy’ scenario
involved training models assuming both a simple self-consumption HEMS
and a TOU-aware HEMS, then selecting the better-performing one based on
validation loss.
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4.2.1.3. Experimental Setup

The simulated net load data (2 years) was split chronologically into training
(2014), validation (first half of 2015), and testing (second half of 2015) sets.
Weather data for the PV model was sourced from the Open-Meteo API ( Free
Open-Source Weather API | Open-Meteo.com 2023). Model implementation
used Python with the Darts library (Herzen et al., 2022), cvxpylayers,
and PyTorch. Experiments were tracked using Weights & Biases (Biewald,
2020) and run on NVIDIA RTX 8000 GPUs (Houben et al., 2025b)(Sec IV-
D).

4.2.2. Results

The performance of the proposed model-based deep learning forecaster (Sec-
tion 3.2.2.2) was evaluated against several baseline methods across the differ-
ent data availability scenarios, focusing on forecast accuracy, interpretability,
and data efficiency (Houben et al., 2025b)(Sec V).

4.2.2.1. Forecasting Performance Evaluation

Comparison with Baseline Models The proposed model was compared
against four baselines: Naive (persistence from previous day), DM1 (Direct
TiDE model), DM2 (Direct XGBoost model), and IM1 (Indirect XGBoost
predicting load and subtracting physical PV prediction). Table 4.3 sum-
marizes the 24-hour ahead performance metrics (MAE, RMSE, RMSE Skill
Score relative to Naive) averaged across all 20 households for the summer
and winter test periods under the ideal data availability scenario.

The proposed model consistently achieved the lowest MAE and RMSE in
both seasons, demonstrating superior accuracy. It yielded an RMSE im-
provement of approximately 37-41% over the naive baseline and a notable
9-10% improvement over the best performing standard deep learning base-
line (DM1, which uses the same underlying TiDE architecture but without
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the model-based components) (Houben et al., 2025b)(Sec V-A.1).

Impact of Data Availability Figure 4.13 shows the forecasting performance
(RMSE and MAE) under the different data availability scenarios described
in Section 4.2.1.2. The performance of the proposed model degrades slightly
when the HEMS strategy is unknown but remains significantly better than
the DM1 baseline (which uses no HEMS/PV/BESS priors). However, perfor-
mance worsens considerably (RMSE increases by 40%) when PV specifica-
tions (particularly capacity) are also unknown, highlighting the importance
of incorporating this physical information. The model’s accuracy remained
relatively robust even with imperfect knowledge, showcasing the benefit of
the model-based structure (Houben et al., 2025b)(Sec V-A.2).
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Figure 4.13.: Impact of data availability scenarios (Table 4.4) on forecasting performance
(RMSE, MAE) compared to the DM1 baseline (RQ2, adapted from (Houben
et al., 2025b)(Fig 4).
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4.2.2.2. Model Interpretability and Data Efficiency

An advantage of the proposed model-based deep learning approach is its
potential for enhanced interpretability and data efficiency compared to purely
black-box methods.

Interpretability The model’s architecture allows for the examination of in-
termediate, physically meaningful predictions (Houben et al., 2025b)(Sec V-
B). As detailed in Section 3.2.2.2, the neural network component explicitly
predicts the non-flexible load (ŷload

t+k|t) and the initial BESS state (Êt) which
serve as inputs to the final HEMS optimization layer. Figure 4.15 (left panel)
compares these internal predictions against the ground truth values derived
from the simulation dataset for a sample household. The model demonstrates
a reasonable ability to learn the latent non-flexible load profile and track the
BESS state of energy, providing valuable insights into the model’s internal
reasoning and the underlying system dynamics. Some discrepancies, partic-
ularly in the SoE prediction towards the end of the horizon, might relate to
the formulation of the terminal state constraint and warrant further investi-
gation.

Data Efficiency The study also investigated the model’s performance when
trained with limited data (Houben et al., 2025b)(Sec V-C). Figure 4.15 (right
panel) plots the RMSE Skill Score (relative to the naive baseline) as a func-
tion of the percentage of training data utilized. The proposed model-based
approach achieves positive skill scores (outperforming the baseline) even with
very small data fractions (e.g., 10-20%). In contrast, the standard direct fore-
casting models (DM1 - TiDE, DM2 - XGBoost) require substantially more
training data (e.g., 40-50% or more) to show similar improvements over the
naive predictor. This superior data efficiency suggests that embedding physi-
cal and operational priors can reduce the reliance on large historical datasets,
a significant advantage in practical applications where data may be scarce. It
is noted, however, that effective training still requires the limited data sam-
ples to adequately represent seasonal variations present in the full dataset.
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4.3. RQ3: Optimal Dispatch of a Multi-Energy
Microgrid under Uncertainty

This section addresses Research Question 3, which investigates the optimal
dispatch of a multi-energy Renewable Energy Community (REC) using the
eMPC framework developed in Section 3.2.3. It details the specific REC
testbed used as a case study, the different operational scenarios evaluated,
and presents the results regarding cost and CO2 emission savings, particu-
larly focusing on the impact of forecast uncertainty generated by the hybrid
predictor (Section 3.2.3.2).

4.3.1. Case Study Description

The case study centers on a microgrid-enabled REC testbed located in a
village in Carinthia, Austria, involving nine community participants and ex-
isting energy assets. This setup was previously presented in (Cosic et al.,
2021) and provides a realistic context for evaluating the eMPC controller
developed in this research (Houben et al., 2023), Sec 3].

4.3.1.1. Overview of the Energy Community

The REC testbed aims to optimally utilize locally generated renewable energy
and manage flexible assets across both electrical and thermal sectors in near
real-time (Houben et al., 2023), Sec 3.1]. The primary goal is to operate the
available flexibilities according to the objective function defined in the eMPC
(either cost or CO2 minimization).

The components of the REC system are:

• Generation: An existing Photovoltaic (PV) system with a peak power
of 17.68 kWp.
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• Loads: Aggregated electrical demand and Domestic Hot Water (DHW)
demand from the nine participants, treated as a single node.

• Flexibilities:

– Battery Energy Storage System (BESS): 14 kWh capacity.

– Power-to-Heat (PtH) system: 4 kW capacity.

– Domestic Heat Storage (DHS): 27.5 kWh thermal capacity, cou-
pled with the PtH.

• Grid Connection: Allows energy exchange with the main utility grid.

Based on forecasts for load (yload) and PV generation (yP V ), and subject
to tariff constraints, the eMPC controller determines the optimal dispatch
for the BESS and the PtH/DHS system. The energy flows are illustrated in
Section 3.2.3.1 in Figure 3.8. Detailed input parameters and time series data
are provided in Appendix B.

4.3.1.2. Consideration of Tariff Scenarios

Five distinct electricity tariff scenarios were modelled to assess the eMPC
controller’s adaptability and performance under different economic condi-
tions (Houben et al., 2023), Sec 3.2]. These scenarios directly influence the
cost parameters (πbuy

t+k, πsell
t+k, πDC) in the cost minimization objective function

(Section 3.2.3.1):

• Flat Tariff (FT): Constant purchase rate (29.84 €ct/kWh) and feed-
in tariff (4 €ct/kWh), based on the local utility (KELAG) standard
tariff (KELAGtariff).

• Flat Tariff + Demand Charge (FT-DC): FT scenario plus a monthly
demand charge (16.78 €/kW) on the peak grid import.

• Time-of-Use (TOU): Variable purchase rates based on time of day
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(On-peak: 35.8, Mid-peak: 29.84, Off-peak: 23.87 €ct/kWh), constant
feed-in tariff.

• Time-of-Use + Demand Charge (TOU-DC): TOU scenario com-
bined with the monthly demand charge.

• Real-Time Pricing (RTP): Flat purchase rate, but feed-in compen-
sation based on hourly Austrian spot market prices (SpotPrice).

These scenarios are summarized in Table 4.5.
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4.3.1.3. Optimization Cases and Comparison Strategy

The performance of the eMPC controller (referred to as the Smart and Mi-
crogrid Controller, SMG, in Paper 3) was evaluated by simulating several
Optimization Cases (OCs) over a one-month test period (May 2021) (Houben
et al., 2023), Sec 3.3]. Each OC corresponds to running the eMPC with a
specific objective function and awareness of one of the tariff structures (Ta-
ble 4.6).

The results from these OCs (using realistic forecasts) were benchmarked
against two references:

1. Reference Case (RC): Represents a standard rule-based "surplus
charging" strategy, aiming for self-consumption maximization without
considering tariff details or future conditions. It prioritizes using PV for
load, then charging storage, then exporting surplus; grid import is used
as a last resort. (Approximated in the study by a single optimization
run with perfect foresight and a flat tariff).

2. Perfect Foresight (PF): Represents the theoretical optimum achiev-
able by the eMPC if forecasts were perfect (ŷ = y). This was simulated
by running the OCs using measured historical data instead of forecasts.

The comparison allows quantification of savings from the eMPC relative to
basic control, and isolation of the performance loss due to forecast uncertainty
(Houben et al., 2023), Sec 3.3, 3.5.1].

4.3.1.4. Operational Cost and CO2 Calculation

It is important to note that the operational costs and CO2 emissions are
calculated ex-post based on the simulated grid interactions, considering the
impact of forecast errors (Houben et al., 2023), Sec 3.4]. The actual utility
exchange P grid,opr

t [kW] at each step t depends on the first step of the eMPC
dispatch plan (P grid,plan

t = P grid,buy
k=0,t − P grid,sell

k=0,t ) and the net forecast error
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enet
t for that interval:

P grid,opr
t = P grid,plan

t + enet
t (4.2)

where the net forecast error combines load and PV errors (assuming PV
curtailment is not modelled, and PV generation first serves local load):

enet
t = eload

t − eP V
t (4.3)

eload
t = yload

t − ŷload
t|t−1 (4.4)

eP V
t = yP V

t − ŷP V
t|t−1 (4.5)

This actual exchange P grid,opr
t is then used to calculate the realized costs

based on the applicable tariff scenario rates (πbuy/sell
t , πDC) according to the

general structure in Section 3.1.2.1:

Crates
t = πbuy

t [P grid,opr
t ]+Δt − πsell

t |[P grid,opr
t ]−|Δt (4.6)

CDC = πDC · max
t∈billing period

{[P grid,opr
t ]+} (4.7)

Ctotal =
$

t∈test period
Crates

t + CDC (4.8)

A similar calculation yields total CO2 emissions using marginal emission fac-
tors instead of prices (see Appendix B).

4.3.1.5. Additional Analyses: Uncertainty Impact and Sensitivity

To further probe the system behavior, two additional analyses were conducted
(Houben et al., 2023), Sec 3.5]:

1. Foregone Savings due to Forecast Errors: Calculated as the dif-
ference in operational savings (relative to RC) between the Perfect
Foresight simulations and the simulations using real forecasts. This
quantifies the economic penalty of imperfect predictions.

2. Sensitivity to BESS Capacity: The simulations (realistic forecast
and perfect foresight) were repeated for larger BESS capacities (28, 42,
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84 kWh, compared to the base 14 kWh) to understand the interplay
between storage size, forecast accuracy, and achievable savings.

Figure 4.16 summarizes the comparison framework.
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Optimization Case
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Real Forecast: Operational Savings

Foregone Operational Savings

Perfect Foresight: Operational Savings

Figure 4.16.: Calculation Overview: Illustrates how operational savings (vs. RC) and fore-
gone savings due to forecast errors are determined by comparing simulation
results under different forecast assumptions (RQ3, adapted from (Houben et
al., 2023), Fig 7]).

4.3.2. Results

This section presents the results from applying the eMPC framework and the
hybrid forecasting method to the REC case study. It covers the performance
of the forecasting method itself, the optimal dispatch behavior under different
scenarios, the resulting economic and environmental savings, and the impact
of forecast uncertainty and BESS sizing (Houben et al., 2023), Sec 4].

4.3.2.1. Forecasting Method Performance

The performance of the hybrid forecasting method (Section 3.2.3.2) was eval-
uated during the model development phase using cross-validation on data
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prior to the main test period (Houben et al., 2023), Sec 4.1].

Figure 4.17 visually compares the proposed method’s 48-hour electrical load
forecast against measurements and benchmarks. Panel (a) shows the full hori-
zon, while panel (b) zooms in on the first 12 hours, comparing the proposed
hybrid method against pure ’recursive’ and ’MIMO’ strategies using the same
underlying XGBoost algorithm. The proposed method closely tracks mea-
surements initially (leveraging Model 1’s recursive approach with lags) and
maintains better stability over longer horizons compared to the pure recur-
sive method (benefitting from Model 2’s one-shot approach with exogenous
features). The MIMO method, while stable, struggles to capture the initial
dynamics as effectively.
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sive (12h)

Figure 4.17.: XGBoost Electrical Load Forecast Comparison (21.03.2021, dev set): (a)
Proposed hybrid method over 48 hours. (b) Close-up comparing Proposed,
MIMO, and Recursive strategies over 12 hours (RQ3, adapted from (Houben
et al., 2023), Fig 8]).

Table 4.7 quantitatively compares the cross-validated error scores (nRMSE,
MAPE) and computation times. The proposed hybrid method achieves the
best accuracy (lowest nRMSE and MAPE) with significantly lower training
time than the MIMO method, although execution time is slightly higher than
the pure recursive method due to the two-model structure.
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Table 4.7.: Comparison of cross-validated error scores and computational performance for
different multi-step forecasting strategies using XGBoost for electrical load
(H=48h) (RQ3, adapted from (Houben et al., 2023), Table B.1]).

Method nRMSE MAPE [%] Training Time [s] Execution Time [ms]
Recursive 2.30 × 10−2 18.2 22.1 10.9
MIMO 1.95 × 10−2 15.2 4531.0 40.8
Proposed Hybrid 1.87 × 10−2 13.8 24.3 20.3

The determination of the optimal switching point s between Model 1 (recur-
sive) and Model 2 (one-shot) is crucial. Figure 4.18 shows the error scores
versus lead time for different configurations of Model 1 (varying number of
autoregressive lags, ‘lookback-window L‘). The switching point is where the
error of Model 2 (flat green line for load) intersects with the rising error of
Model 1. Table 4.8 details the impact of ‘lookback-window L‘ on performance
and the resulting switching points. Using 128 lags for Model 1 was chosen
as the optimal configuration, providing the best error score with acceptable
computation time (Houben et al., 2023), Sec 4.1].

Table 4.8.: Comparison of Error Score, Computational Performance, and Resulting Switch-
ing Point for Different Numbers of Autoregressive Lags (‘lookback-window L‘)
in Model 1 for Electrical Load Forecasting (RQ3, adapted from (Houben et al.,
2023), Table 4]). Bold indicates selected configuration.

L Error Score Computation Time Switching Point (s)
nRMSE MAPE [%] Train [s] Exec [ms] nRMSE MAPE

16 1.89 × 10−2 14.1 0.1 10.9 6 7
32 1.88 × 10−2 14.0 8.7 10.9 6 8
64 1.87 × 10−2 13.9 12.6 14.1 8 12

128 1.87 × 10−2 13.8 24.3 20.3 12 26
192 1.87 × 10−2 13.8 36.4 21.9 13 27
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Figure 4.18.: Lead-time vs. Error Score Plots: Intersection of Error Scores of Model 1
(varying lookback-window L) & Model 2 (flat green line) over the Forecast
Horizon for Electrical Load, used to determine the switching point s (RQ3,
adapted from (Houben et al., 2023), Fig 9]).

4.3.2.2. Optimal Operational Dispatch and Economic Analysis

The eMPC controller was simulated using the hybrid forecasts for the dif-
ferent tariff scenarios (OCs) and compared to the rule-based Reference Case
(RC) and Perfect Foresight (PF) (Houben et al., 2023), Sec 4.2].

Figures 4.19 and 4.20 show example dispatch trajectories (storage SOC and
grid exchange) for the OC-FT-DC and OC-CO2 cases, respectively, compar-
ing the eMPC results (realistic forecast in yellow, perfect foresight in blue)
with the RC (green). Under the demand charge scenario (Fig 4.19), the
eMPC controller actively uses the BESS to shave peaks in grid import, at-
tempting to keep imports below a threshold (visible as flat tops in the blue PF
curve). Forecast errors (difference between yellow and blue grid exchange)
disrupt this perfect shaving, leading to unintended peaks and higher costs.
Under the CO2 minimization scenario (Fig 4.20), the controller charges stor-
age during low-emission periods (white/green background) and discharges
during high-emission periods (grey background) to minimize the carbon foot-
print of grid imports.
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Figure 4.19.: Optimal Operational Dispatch for the Flat Tariff + Demand Charge Scenario
(OC-FT-DC): Storage SOC (top) and Grid Exchange (bottom) comparing
eMPC with realistic forecasts (yellow), perfect foresight (blue), and Reference
Case (green) for May 5-8, 2021 (RQ3, adapted from (Houben et al., 2023),
Fig 10]).
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Figure 4.20.: Optimal Operational Dispatch for the CO2 Minimization Scenario (OC-CO2):
Storage SOC (top) and Grid Exchange (bottom) comparing eMPC with re-
alistic forecasts (yellow), perfect foresight (blue), and Reference Case (green)
for May 5-8, 2021. Background colors indicate marginal grid CO2 intensity
(RQ3, adapted from (Houben et al., 2023), Fig 11]).

Table 4.9 summarizes the total operational costs over the one-month test
period for the eMPC controller (using realistic forecasts) compared to the
RC across all tariff scenarios (for the 14 kWh BESS). The eMPC achieves
the largest relative cost savings (6.3%) under the TOU scenario, where timing
energy use is crucial. Savings are also positive under RTP (5.3
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4. Case Studies and Results

4.3.2.3. Impact of Uncertainty and BESS Capacity

The performance gap between realistic forecasts and perfect foresight high-
lights the significant economic impact of uncertainty (Houben et al., 2023),
Sec 4.2.1]. Table 4.10 shows the relative operational savings achieved by the
eMPC (compared to RC) under both realistic forecasts and perfect foresight,
also exploring sensitivity to BESS capacity (14 kWh to 84 kWh).

Figure 4.21 visually contrasts the savings achievable with realistic forecasts
(blue bars) versus perfect foresight (orange bars) across BESS sizes. Key
observations include:

• Potential vs. Reality: With perfect forecasts, significant savings
(e.g., 25% for FT-DC/TOU-DC with 14kWh BESS, increasing further
with size) are possible. However, realistic forecast errors drastically
reduce these savings (Panel a).

• Foregone Savings: The difference between perfect foresight savings
and realistic savings represents the cost of uncertainty ("Foregone Sav-
ings"). Panel (b) shows this gap generally increases with larger BESS
capacity, particularly for demand charge scenarios (FT-DC, TOU-DC).
This implies that while larger batteries offer more flexibility potential,
realizing that potential becomes increasingly dependent on high fore-
cast accuracy.

• Sub-linear Scaling: Savings increase sub-linearly with BESS capac-
ity, even under perfect foresight, consistent with optimal planning find-
ings (Cosic et al., 2021).

These results underscore that forecast accuracy is an important determinant
of the economic viability of MPC microgrids, especially if they have flexibility
and are exposed to complex tariffs, like demand charges (Houben et al., 2023),
Sec 4.2.1].
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(b) Foregone savings due to forecast errors

Figure 4.21.: Sensitivity Analysis of Operational Savings relative to Reference Case (RC):
(a) Compares percentage savings achieved with realistic vs. perfect forecasts
across BESS sizes. (b) Shows the foregone savings (difference between perfect
and realistic) due to forecast errors. Relative savings for OC-CO2 refer to %
kg-CO2 reduction. Others are % €-cost reduction. Adapted from (Houben
et al., 2023), Fig 12).
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5. Synthesis

This thesis covers the development and economic evaluation of supervised
learning methods for short-term forecasting and the control of distributed
energy resources (DERs). Through three interconnected research questions
(RQs), explored in dedicated publications (Houben et al., 2025a; Houben et
al., 2025b; Houben et al., 2023), this work navigates the terrain of forecast-
ing electricity load across various scales, develops interpretable models for
prosumer households with storage, and analyzes the real-world performance
of advanced microgrid control under forecast uncertainty. Chapter 3 estab-
lishes the methodological groundwork, detailing the common frameworks of
Supervised Learning (SL) and Economic Model Predictive Control (eMPC),
while Chapter 4 presents the specific case studies and empirical findings for
each research question.

This chapter synthesizes these individual parts by examining the evolution
of the aforementioned forecasting techniques, the beautiful interplay between
prediction accuracy and control performance, and the relevance of these find-
ings for different stakeholders operating within the energy transition. Fur-
ther, by integrating the insights obtained from benchmarking diverse algo-
rithms (RQ1), developing model-based deep learning approaches (RQ2), and
evaluating optimal dispatch under uncertainty (RQ3), this synthesis provides
a comprehensive view on the challenges and opportunities in leveraging data-
driven forecasting methods for the control of energy systems. Finally, this
chapter places the specific contributions of the thesis into a larger context,
drawing conclusions that span across the individual studies and offering con-
solidated recommendations.
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5. Synthesis

5.1. Advancements in Forecasting: From
Benchmarking to Application-Specific Models

A central theme connecting all three research questions is the role of super-
vised learning-based forecasting methods for energy applications. This thesis
explores this from multiple angles: establishing a baseline performance land-
scape and the limits of traditional evaluation (RQ1), pioneering interpretable
and data-efficient architectures for complex prosumer systems (RQ2), and im-
plementing practical hybrid strategies for operational control systems (RQ3),
together underscoring a progression towards more application-centric fore-
casting.

Establishing Baselines and Unveiling the Limits of Statistical Metrics
(RQ1) RQ1 provided a starting point by systematically comparing stan-
dard tree-based ensembles (RF, XGBoost, LightGBM) and neural networks
(GRU, N-BEATS, TFT) across diverse spatial scales (Houben et al., 2025a)
(Section 4.1). The findings, based on traditional statistical metrics like RMSE
and MAE, indicated that tree-based models often demonstrate superior av-
erage statistical accuracy and robustness, potentially due to inherent regu-
larization and simpler structures compared to the benchmarked deep NNs,
which occasionally showed signs of overfitting (see Table 4.2). This study also
underscored the challenge of seasonality, particularly during summer months
with non-normal load distributions, suggesting the limitations of standard
global preprocessing and pointing towards the need for season-specific mod-
eling approaches (see Section 4.1).

However, the pivotal contribution of RQ1 was its clear demonstration of the
inadequacy of relying solely on statistical metrics. The introduction of the
Net Load Error (NLE) metric, tailored for a peak-shaving application under
demand charges, painted a different picture, in that Neural networks, de-
spite sometimes higher average statistical errors, consistently outperformed
tree-based models in NLE terms. This was the case, especially for longer
horizons (H ≥ 8 hours) on more aggregated datasets. Furthermore, this di-
vergence suggests NNs may better capture the magnitude and timing of peak

108



5. Synthesis

events salient for specific economic objectives like demand charge reduction
during extreme weather. This insight directly translates into the thesis’s
central argument: forecasting models must be evaluated through the lens of
their intended application. The NLE serves as a compelling proof-of-concept
for such application-driven evaluation, moving beyond the "double penalty"
problem of metrics like RMSE (see Figure 2.2 and emphasizing that prac-
titioners must select or develop error metrics congruent with their specific
operational goals. This necessity for application-aware evaluation naturally
led to exploring models designed with specific applications in mind.

Enhancing Interpretability and Data Efficiency with Model-Based Deep
Learning (RQ2) Building on RQ1’s call for application-centric approaches,
the contribution to answer RQ2 went beyond benchmarking existing ’black-
box’ models to developing an application-tailored method for net load fore-
casting. The model architecture prioritizing interpretability and data ef-
ficiency for prosumer systems with PV, BESS, and HEMS logic (see Sec-
tion 4.2). The core challenge identified was that standard net load forecast-
ing often overlooks the BESS/HEMS internal operational strategy, treating
its impact as mere noise.

The proposed solution in RQ2 is a model-based deep learning approach inte-
grating physical priors (a PVWatts model) and operational logic (a simplified,
differentiable HEMS optimization layer) into a modified TiDE neural network
3.2.2. This hybrid architecture yielded significant benefits: improved accu-
racy (around 10% RMSE reduction over baselines), enhanced interpretability
via prediction of hidden operational states (like non-flexible load and BESS
State of Energy), superior data efficiency, and reasonable robustness to miss-
ing system information (though sensitive to certain parameters like PV ca-
pacity). RQ2 thus showcased a pathway from evaluating models via their
application (RQ1) to designing models for their application, demonstrat-
ing how customized architectures incorporating domain knowledge can bring
about more accurate, trustworthy, and data-efficient forecasts for complex
systems like the examined households. This work also addresses the need
for explainable AI in energy systems (Section 2.3.4), with differentiable opti-
mization layers (Agrawal et al., 2021) emerging as an effective technique.
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5. Synthesis

Integrating and Evaluating Forecasting within an Operational eMPC Frame-
work (RQ3) While RQ2 focused on embedding application logic within the
forecast model for aimed to be used by energy retailers, RQ3 focused on
integrating forecasts within an eMPC system for a multi-energy Renewable
Energy Community. The primary aim was not merely to achieve the lowest
statistical forecast error in isolation, but to provide reliable multi-step pre-
dictions effective for real-time eMPC. Furthermore, the goal was to evaluate
the economic and operational impact of inherent forecast uncertainty in such
an integrated system (see 4.3). This work responds to a gap where many
studies evaluate MPC assuming perfect foresight or using overly simplified
error models (Kanwar et al., 2015; Moser et al., 2020).

The novel hybrid forecasting method developed in RQ3 balanced accuracy
over a 48-hour horizon with computational feasibility for the eMPC (Ta-
ble 4.7). However, the more profound contribution was the subsequent anal-
ysis of this integrated forecasting-control system. The results starkly quanti-
fied the "cost of uncertainty": while the eMPC significantly outperformed a
rule-based approach even with imperfect forecasts (e.g., up to 6.3% cost sav-
ings under TOU tariffs), these savings were substantially eroded compared to
a perfect foresight scenario (e.g., potential 24.7% TOU-DC savings diminish-
ing to 3.3% with realistic forecasts) (see Table 4.10). This gap, representing
foregone savings due to forecast errors, increased with larger BESS capacities.
This highlights another insight: while more flexibility offers greater theoret-
ical benefits, its effective utilization is increasingly hostage to high forecast
accuracy (see Figure 4.21b). This empirical assessment provides relevant ev-
idence of the practical limitations faced by advanced control systems due to
real-world forecast inaccuracies.

Evolving Perspectives on Energy Forecasting Across the RQs, this thesis
shows a clear progression in its approach to energy forecasting. It begins
by setting the scene and stating the fundamental need for application-aware
evaluation (RQ1), then transitions to embedding domain-specific knowledge
to create more proficient and transparent models for complex systems (RQ2).
And finally it culminates in integrating a computationally efficient data-
driven forecasting model into an eMPC to control a real system, in which
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the economic consequences of forecast imperfections were rigorously mea-
sured (RQ3). The collective work underscores that selecting or developing a
forecasting method is not a one-size-fits-all solution; it demands considera-
tion of the application’s specific goals, system complexity, data availability,
and computational limits. The major takeaway is the transition from evalu-
ating forecasts in isolation based on statistical metrics towards a paradigm
of co-designing and co-evaluating forecasting methods within the context of
the decision-making or control task, which they are intended to support.

5.2. Integrating Forecasting and Control:
Performance, Uncertainty, and Value

The preceding discussion on forecasting advancements naturally leads to the
central tenet of this thesis: energy forecasting is rarely an end in itself but
derives its primary value from enabling more effective decision-making and
control. The three research questions explore different sides of this tight
relationship between the SL predictor and the control logic, providing insights
into how forecast quality shapes operational performance.

The Indispensable Link: Forecasts as Direct Inputs to Optimization All
three research questions explicitly show the role of forecasting outputs as
direct inputs to optimization frameworks, albeit through varied integration
mechanisms. In RQ1, forecasts from diverse SL models were essential inputs
for the eMPC simulation within the NLE framework, which served as an
application-based evaluation tool (see Section 3.2.1.1). RQ3 applied hybrid
SL forecasts directly feeding a rolling horizon MILP-based eMPC controller
for the REC (see Section 3.2.3.1). RQ2 demonstrated the tightest integration,
embedding the HEMS optimization logic as a differentiable layer within the
forecasting model itself (see Section 3.2.2.1). These integrations highlight
the diverse ways that forecasting can inform automated decision-making in
modern energy systems.
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Quantifying the Economic Impact of Forecast Uncertainty: The "Cost of
Uncertainty" An important finding of this thesis, predominantly emerging
from RQ3, is the substantial disparity between the theoretical potential of
optimized control (assuming perfect foresight) and the actual performance
achievable under realistic forecast uncertainty. While the eMPC controller in
RQ3 delivered significant improvements over rule-based strategies even with
imperfect forecasts (e.g., up to 6.3% cost and 7.3% CO2 savings), these
gains were considerably lower than the 25% cost savings (for demand charge
scenarios with a 14 kWh BESS, rising to over 35% with larger batteries)
achievable with perfect knowledge (see Table 4.9, and Table 4.10).

This cost of uncertainty, quantified by the foregone savings (Figure 4.21b),
illustrates that forecast errors are a noteworthy impediment to realizing the
full added-value of flexible DERs under advanced control. This impact is
highly sensitive to the tariff structure (demand charges being particularly
vulnerable) and the degree of system flexibility (larger BESS magnifying
both potential gains and the detrimental effects of uncertainty). This finding
underscores a trade-off: investments in greater flexibility (e.g., larger stor-
age) must be paralleled by advancements in forecasting and control systems
capable of effectively harnessing that flexibility.

Towards a Holistic View of Forecasting and Control Integration The col-
lective findings from this thesis paint a picture of a complex, symbiotic re-
lationship between forecasting and control. Advanced control strategies like
eMPC hold immense promise for optimizing DER management, but the re-
alization of this potential is inextricably tied to the quality and, importantly,
the relevant characteristics of the input forecasts. Standard statistical met-
rics prove insufficient for assessing a forecast’s suitability for a given control
task; application-driven metrics (like the NLE) or direct evaluation within the
intended control framework (as in RQ3’s eMPC analysis) are indispensable
(see Section 4.1, and 4.3).

Forecast errors inevitably degrade control performance, with the severity
of this degradation being highly contingent on the specific economic objec-
tive (e.g., sensitivity to demand charges) and the available system flexibility.
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While advanced forecasting techniques, whether model-based (RQ2) or tai-
lored hybrid strategies (RQ3), can enhance prediction quality, a degree of
residual uncertainty is an inescapable reality. This points towards the need
for future research, as discussed in Section 5.4, to focus on developing con-
trol strategies inherently robust to forecast errors (e.g., stochastic or robust
MPC) and, in parallel, forecasting methods that are explicitly optimized for
specific economic outcomes or control objectives rather than solely for statis-
tical accuracy. Ultimately, the integration of forecasting and control cannot
be approached as two unrelated problems; their co-design and co-evaluation
are vital for unlocking the full potential of DERs.

5.3. Implications for Stakeholders

The research across the three RQs offers valuable insights not only for the
academic community but also for practitioners.

Grid Operators For grid operators, the findings underscore the need to move
beyond conventional statistical metrics when evaluating forecasting tools for
specific operational tasks like peak shaving. As shown in RQ1, metrics like
the NLE can reveal superior performance from models that might seem less
accurate by traditional standards (see Section 4.5). Operators should invest
in developing or adopting such application-specific evaluation frameworks.
Furthermore, careful attention to seasonal variations in forecast accuracy
and potential model biases (RQ1) is pivotal for reliable operations. Especially
when planning to leverage flexibility from DERs, operators should account for
the significant impact of forecast uncertainty on achievable benefits (RQ3).
This might involve developing or adopting control strategies that are more
robust to prediction errors.

Energy Retailers Energy retailers dealing with prosumers—households with
PV, BESS, and HEMS—require sophisticated forecasting models that under-
stand the underlying operational logic, as highlighted by the motivation for
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RQ2. Model-based deep learning (RQ2) presents a promising avenue, offer-
ing not only improved accuracy but also enhanced interpretability, which
can aid in understanding and segmenting customer behavior and predicting
their net demand more effectively (see Section ). However, the performance
of such models depends significantly on access to customer asset data (e.g.,
PV capacity), emphasizing the need for data-sharing mechanisms or robust
parameter inference techniques. Furthermore, as retailers manage portfolios
under increasingly dynamic tariffs, the challenge presented by forecast un-
certainty (RQ1, RQ3) become paramount for risk management and service
innovation.

End-Users, RECs, and Aggregators For end-users, including those par-
ticipating in Renewable Energy Communities or aggregation schemes, opti-
mized control offers cost and CO2 savings (RQ3). However as mentioned
above, these benefits are highly sensitive to forecast accuracy, leading to a
gap between theoretical potential and real-world outcomes. This highlights
a trade-off: investing in greater flexibility (e.g., larger BESS) only yields
maximal returns if coupled with high-quality forecasting and control systems
capable of effectively utilizing that flexibility (RQ3)(see Figure( 4.21). For
many end-users, participating in Energy Communities that provide profes-
sional forecast and control management might be essential for maximizing
the value derived from their DERs.

Broader Energy Transition Context This research reinforces the pivotal
role of advanced forecasting and control as pivotal enablers for the large-
scale integration of DERs. It calls for a paradigm shift in evaluation of
forecasts, moving beyond statistical accuracy towards application-aware and
economically meaningful assessment of forecasting tools. Successfully man-
aging the inherent uncertainty of future energy systems calls for sophisticated
tools that effectively integrate data-driven approaches with domain knowl-
edge. Ultimately, fostering a tighter synergy between forecasting methodolo-
gies and control applications is crucial for unlocking the full economic and
environmental value of DER flexibility, thereby empowering new actors like
Virtual Power Plants or Energy Communities to contribute effectively to a
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more decentralized, resilient, and sustainable energy system.

5.4. Limitations and Future Research Directions

While this thesis provides valuable insights into the evaluation, development,
and application of supervised learning for forecasting and controlling DERs,
it also features some major limitations, which are now highlighted. Given
these limitations, new avenues for future research arise.

5.4.1. Limitations of the Presented Research

• Scope of Case Studies and Data: The geographic scope of the
studies (USA, Netherlands, Austria) is specific, and the number of
sites/households in RQ2 and RQ3, while providing valuable depth, re-
stricts the statistical power for drawing universally generalizable conclu-
sions. Further validation across more diverse datasets and geographic
regions is warranted to confirm the broader applicability of the findings
(Houben et al., 2025a; Houben et al., 2025b; Houben et al., 2023).

• Forecast Input Assumptions: The use of measured weather data
as a proxy for perfect weather forecasts (RQ1, RQ3), and the assump-
tion of perfect foresight for electricity prices and CO2 intensity factors
(RQ3), represent simplifications of real-world operational conditions.
This likely leads to an overestimation of the achievable performance
of forecasting and control systems when faced with true multi-faceted
operational uncertainty (Houben et al., 2025a) (Section 5.3), (Houben
et al., 2023) (Section 1.2, 4.2.1).

• Model and Parameter Assumptions: The accuracy of model-based
approaches (like in RQ2) inherently relies on the fidelity of the underly-
ing physical models (e.g., PV model) and the simplified representations
of complex components like HEMS/BESS. Parameter identification, es-
pecially for nuanced BESS characteristics (e.g., degradation, precise
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efficiencies under varying conditions), remains a significant challenge
and was largely assumed to be known or handled simplistically in RQ2
(Houben et al., 2025b) (Section VI).

• NLE Metric Specificity: The NLE metric, while a valuable proof-
of-concept for application-driven evaluation, is specifically tailored to a
peak-shaving application with demand charges. Its direct applicability
to other grid services (e.g., frequency response, imbalance reduction)
is limited due to its design (asymmetry, decoupling from broader net-
work/market dynamics) (Houben et al., 2025a) (Section 5.2.1).

• Computational and Tuning Constraints: The performance of some
machine learning algorithms, particularly deep neural networks in RQ1,
might have been constrained by fixed hyperparameter tuning budgets.
More extensive tuning could potentially unlock further performance
gains (Houben et al., 2025a) (Section 5.1, 5.3). Similarly, model sim-
plifications, such as the lossless BESS in the differentiable HEMS layer
in RQ2, were sometimes necessary for computational tractability or to
ensure differentiability (Houben et al., 2025b).

• Simulation Environment fidelity: The primary use of open-loop
simulations for eMPC evaluation (RQ1 for NLE) neglects real-world
complexities such as latencies, actuator imprecision, and unmodelled
system dynamics, which could further degrade performance in live de-
ployments.

5.4.2. Future Research Directions

Building upon the limitations and findings of this thesis, a few avenues for
future research are worth noting:

• Advancing Application-Driven Evaluation and Economically-
Motivated Forecasting: Develop and validate a broader suite of so-
phisticated application-driven forecasting metrics beyond NLE. These
should be tailored to grid operations (e.g., imbalance cost minimization,
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congestion management) and should ideally incorporate more detailed
market and network contextual information (Houben et al., 2025a)
(Section 5.2.1, Section 6). A parallel and relevant direction is the devel-
opment of forecasting models whose loss functions are directly derived
from the economic objectives of the target application, thus inherently
learning to prioritize forecast characteristics that maximize operational
value.

• Improving Forecast Robustness: Enhance model resilience to chal-
lenges like seasonality, non-stationarity, and diverse system configura-
tions. Techniques such as transfer learning and, also, comprehensive
probabilistic forecasting is a promising avenue. This is because quanti-
fying forecast uncertainty reliably is a prerequisite for advanced stochas-
tic control methods and for providing operators with risk-aware decision
frameworks (Houben et al., 2025a) (Section 6).

• Enhancing Model-Based and Interpretable Forecasting for Com-
plex Systems: Extend the model-based deep learning approach demon-
strated in RQ2 to a wider array of complex energy systems, including
those with electric vehicles, heat pumps, and multi-vector energy inter-
actions. A significant sub-challenge here is advancing online parameter
identification techniques (e.g., for BESS degradation, thermal building
parameters) to ensure that embedded physical models remain accu-
rate over time and across different installations. Validating these richer
models on larger, more diverse datasets could be be essential (Houben
et al., 2025b) (Section VI).

• Deepening the Integration of Forecasting and Control under
Uncertainty: Bridge the gap highlighted by the "cost of uncertainty"
by developing advanced uncertainty-aware control strategies. This in-
cludes practical implementations of stochastic MPC, robust MPC, and
reinforcement learning approaches that can explicitly account for prob-
abilistic forecasts or forecast error bounds. Furthermore, exploring hi-
erarchical or distributed control architectures could offer ways to ame-
liorate the impact of forecast errors (Houben et al., 2023) (Section 5).
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• Expanding System Scope and Real-World Validation: Broaden
the geographic and systemic scope of case studies to enhance general-
izability. Future work should explicitly forecast and integrate uncer-
tainties from other inputs like dynamic electricity prices, CO2 intensity
factors, and weather forecasts (rather than using perfect foresight or
measured data). Analyzing system performance within specific emerg-
ing market frameworks (e.g., peer-to-peer trading, local flexibility mar-
kets, Virtual Power Plants) and, most importantly, validating findings
through real-world pilots and closed-loop experiments will be important
for demonstrating real impact (Houben et al., 2023) (Section 5).

Addressing these research directions will be central for developing the next
generation of energy forecasting and control systems. Such systems are indis-
pensable for managing the increasingly complex power grids of the future.
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6. Conclusions and Outlook

This thesis investigated the economic evaluation and application of super-
vised learning methods for short-term forecasting and the control of dis-
tributed energy resources (DERs). By addressing the three interrelated re-
search questions focused on benchmarking forecasting methods (RQ1), de-
veloping interpretable models for prosumer net load (RQ2), and evaluating
advanced microgrid control under uncertainty (RQ3), this work provides a
multi-faceted perspective on leveraging data-driven techniques in the energy
transition.

The research consistently highlights the necessity of moving beyond develop-
ing and evaluating forecasts in isolation based purely on statistical metrics.
RQ1 demonstrated, through the novel Net Load Error (NLE) metric, that
standard accuracy measures fail to capture the economic value of forecasts for
specific applications like peak shaving, where neural networks could outper-
form statistically superior tree-based models. RQ2 underscored the benefits
of incorporating domain knowledge, showing that a model-based deep learn-
ing approach integrating physical PV and operational HEMS priors improves
net load forecast accuracy, interpretability, and data efficiency for complex
prosumer systems. Finally, RQ3 quantified the substantial impact of fore-
cast uncertainty on the performance of economic Model Predictive Control
(eMPC) for a multi-energy microgrid. While eMPC significantly outperforms
basic control strategies, the gap between achievable savings under realistic
forecasts and the theoretical potential under perfect foresight is large, partic-
ularly when managing significant flexibility under complex tariffs like demand
charges. This "cost of uncertainty" emphasizes that forecast quality is a lim-
iting factor in realizing the full benefits of DERs and advanced control.

The main contributions of this thesis include the comprehensive multi-scale
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benchmarking study, the introduction of the NLE metric for application-
driven forecast evaluation, the development of the interpretable model-based
deep learning architecture for net load, and the integrated analysis quanti-
fying the interplay between forecasting accuracy and eMPC performance in
a real-world REC context. Limitations of this work include the geographic
scope of the case studies, simplifying assumptions regarding forecast inputs
(weather, prices), underlying system model parameters, the specificity of the
NLE metric, and the use of open-loop simulations.

Future research should focus on developing more sophisticated application-
driven evaluation metrics for diverse grid services, enhancing forecast ro-
bustness to seasonality and non-stationarity (e.g., via probabilistic methods
or online adaptation), extending model-based approaches to include more
DER types (like EVs) and better parameter identification, and developing
uncertainty-aware control strategies (e.g., stochastic/robust MPC) and fore-
casting methods optimized directly for economic outcomes rather than sta-
tistical accuracy. Expanding the system scope to include market interactions
and broader geographic contexts is also vital.

Ultimately, this research underscores that forecasting and control are inextri-
cably linked. Their co-design and evaluation within the specific application
context are paramount for effectively integrating DERs, managing flexibil-
ity, and enabling a successful transition towards a more decentralized and
sustainable energy future.
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Appendix A.

Mathematical Details of Machine
Learning Algorithms

A.1. Linear Regression

Linear Regression is a classical statistical method for modeling linear rela-
tionships between variables, and it has been in use for well over a century.
While it is neither a decision tree-based method nor a neural network, this
work includes its prediction as a benchmark. The rudimentary mathematical
expression is given by Eq. (A.1):

ŷpred = β0 + β1x1 + β2x2 + · · · + βM xM (A.1)

where,

• ŷpred: Predicted target value (scalar, e.g., one step ŷ1|t)

• xm: Input feature m (a component of X(t) for a given forecast origin t)

• βm: Model coefficients (learnable parameters, components of θ)

• M : Number of features
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The training process consists of finding the optimal combination of param-
eters β (part of θ) to linearly transform the feature vectors into the target
vector. This can be achieved by solving a system of M equations, or as
performed in sklearn’s implementation, through gradient descent Pedregosa
et al., 2011.

A.2. Random Forest

Random Forest Breiman, 2001 is a decision tree ensemble algorithm, which
for the context of forecasting means that predictions are obtained by the
averaging of Mtrees functions (Classification and Regression Trees) as shown
in Eq. (A.2). For a given input X(i) from the dataset:

ŷ(i) = 1
Mtrees

Mtrees$
mtree=1

pmtree(X(i)) ; pmtree ∈ P (A.2)

where,

• pmtree : A classification and regression tree (CART)

• P : The space of regression trees

• X(i): Input feature vector for sample i

• ŷ(i): Predicted output sequence (or value) for sample i

• Mtrees: Number of trees in the forest

For each regression tree pmtree the covariate space is recursively partitioned
based on discrete or Boolean values into subsets to minimize a cost criterion.
Figure A.1 exemplifies this, where the top-most node - the parent node - splits
the data into two more groups, the child nodes. This process is repeated until
the splits are found that optimally separate the data based on the cost crite-
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rion and other hyperparameters, such as maximum tree depth. The order of
the features and the numerical value by which the data are split are system-
atically chosen to minimize the gap between the forecasts and the observed
values. If a split for a particular branch does not reduce the cost criterion (by
a significant margin), the process is stopped. In this way, terminal nodes, or
leaf nodes are created, which can later be used for forecasting.

Node 1 (parent)
Electric Powerj-1 > 4 kW:

Node -1 (leaf)
ŷj  = 4 kW 

Node -2 (leaf)
ŷj  = 6 kW 

Node -3 (leaf)
ŷj  = 7 kW 

False True

False True

Node 2 (child)
is_Monday:

Figure A.1.: Regression Tree pmtree for time series forecasting: a simple example of how a
regression tree would split features for electrical load forecasting.

The random forest algorithm is trained through bagging - short for bootstrap
aggregation - which involves creating subsets of the original dataset by ran-
domly selecting samples with replacement. Each subset is used to train an
individual tree Breiman, 1996. The objective of this method is to introduce
diversity among the trees and improve the model’s ability to generalize.

A.3. XGBoost & LightGBM

Like Random Forest, Extreme Gradient Boost (XGBoost) algorithm Chen
and Guestrin, 2016 and the Light Gradient Boosting Machine (LightGBM)
Ke et al., 2017 are tree-based algorithms. However unlike Random Forest,
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which builds trees independently, these two algorithms build trees sequen-
tially, where each new tree is built to correct the errors of the preceding en-
semble. Furthermore, XGBoost and LightGBM leverage a technique called
gradient tree-boosting. In the XGBoost algorithm, the cost criterion used to
learn the tree set P is a regularized cost function given by Eq. (A.3).

Lobj(θ) =
Ntrain$

i=1
l(y(i), ŷ(i)) +

Mtrees$
mtree=1

Ω(pmtree) (A.3)

Here l is a differentiable loss function (e.g., mean squared error, part of L in
Eq. (3.6)) that measures the distance between the forecast ŷ(i) (prediction
for sample i from the current ensemble of Mtrees trees) and the target y(i).
Furthermore, the regularization term Ω(p) is given by Eq. (A.4), and penal-
izes the complexity of the model. This is achieved by considering the number
of leaf nodes Nleaf and the dimensionality of their respective weights w.

Ω(p) = γNleaf + 1
2λ||w||2 (A.4)

where,

• γ: Pruning hyperparameter

• λ: Smoothing hyperparameter (L2 regularization term)

• Nleaf : Number of leaf nodes in a tree p

• w: Vector of leaf weights (scores) in tree p

Gradient Tree Boosting: In XGBoost, Eq. (A.3) is optimized in an iterative
manner. Formally, let ŷ(i,z) be the forecast of the i-th training example at the
z-th iteration (i.e., with z trees). Implied by boosting, the algorithm greedily
adds a tree pz(X(i)) to minimize the objective given by Eq. (A.5).
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L(z)
obj =

Ntrain$
i=1

l(y(i), ŷ(i,z−1) + pz(X(i))) + Ω(pz) (A.5)

In practice, Eq. (A.5) is approximated by using a second-order Taylor ex-
pansion of the loss function:

L(z)
obj ≃

Ntrain$
i=1

�
l(y(i), ŷ(i,z−1)) + gipz(X(i)) + 1

2hip
2
z(X(i))

�
+ Ω(pz) (A.6)

where,

• gi: First-order gradient: ∂ŷ(i,z−1) l(y(i), ŷ(i,z−1))

• hi: Second-order gradient: ∂2
ŷ(i,z−1) l(y(i), ŷ(i,z−1))

Omitting the constant terms l(y(i), ŷ(i,z−1)) and defining Ie = {i|q(X(i)) = e}
as the set of all data samples assigned to leaf node e of tree pz (where q(X(i))
maps an instance to a leaf index), and pz(X(i)) = wq(X(i)), Eq. (A.6) is
rewritten as (focusing on terms related to pz):

L̃(z)(pz) ≃
Nleaf$
e=1

$
i∈Ie

gi

 we + 1
2

$
i∈Ie

hi + λ

 w2
e

 + γNleaf (A.7)

To find the optimal weight w∗
e of a leaf e, for a fixed tree structure pz:

w∗
e = −

%
i∈Ie

gi%
i∈Ie

hi + λ
(A.8)

Substituting w∗
e in Eq. (A.7), the quality score of a fixed tree structure pz

can be calculated according to Eq. (A.9).

L̃(z)(pz) = −1
2

Nleaf$
e=1

�%
i∈Ie

gi
�2%

i∈Ie
hi + λ

+ γNleaf (A.9)
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Incremental Algorithm: As it is intractable to enumerate all possible trees, a
greedy algorithm that starts from a single parent node and iteratively adds
branches is used instead. Let IL and IR be the training sample sets of left and
right nodes after a split. With I = IL ∪ IR, the incremental loss reduction,
or the gain G, from this split can be calculated by Eq. (A.10)

G = 1
2


�%

i∈IL
gi

�2

%
i∈IL

hi + λ
+

�%
i∈IR

gi

�2

%
i∈IR

hi + λ
− (%i∈I gi)2%

i∈I hi + λ

 − γ (A.10)

The term γ represents the penalty for adding a new leaf (or rather, the
difference in tree complexity before and after the split, which results in a
penalty for adding a split if the gain from the sum of squared scores does not
offset it).

While LightGBM follows similar principles as XGBoost, the major differ-
ence between the two algorithms is the tree growth strategy. Specifically,
LightGBM chooses the leaf node that has the maximum reduction in the loss
function (or impurity) at each step (leaf-wise growth). The algorithm selects
the best split based on the feature that contributes the most to reducing
the loss, leading to a more aggressive search for informative features. This
approach can lead to deeper trees with fewer leaf nodes. For further reading
regarding the mathematical difference compared to XGBoost, the original
manuscript by Ke et al. Ke et al., 2017 is recommended.

A.4. Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a Deep Neural Network, specifically a recur-
rent neural network (RNN). These were developed to model sequential, time-
dependent data. Since RNNs’ inception in the late 1980s (see Elman, 1990),
the Long Short Term Memory (LSTM) model by Hochreiter and Schmidhu-
ber Hochreiter and Schmidhuber, 1997 has been a popular recurrent architec-
ture. With the introduction of gates, LSTM addressed the issue of vanishing
gradients and thus improved the gradient-flow during backpropagation. The
Gated Recurrent Unit (GRU) Chung et al., 2014 is a simpler variant of the
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LSTM, omitting the memory gate.

Figure A.2.: Architecture of a Gated Recurrent Unit taken from Wu et al., 2021. In this
diagram, Xt corresponds to an input xs at sequence step s, ht−1 to Ss−1, and
ht to Ss.

As shown in Figure A.2, for an input sequence (e.g., derived from {xpast
t−τ }L

τ=0),
each GRU cell at sequence step s takes as input the hidden state Ss−1 from
the previous cell and the current input xs. It computes the hidden state Ss

based on a combination of gating mechanisms: the reset gate Rs and the
update gate Zs. These gates determine how the information flows through
the cell and which information is stored or forgotten.

Rs = σ(Wr[Ss−1, xs] + br) (A.11)
Zs = σ(Wz[Ss−1, xs] + bz) (A.12)
S̃s = tanh(Wh[Rs ⊙ Ss−1, xs] + bh) (A.13)
Ss = (1 − Zs) ⊙ Ss−1 + Zs ⊙ S̃s (A.14)

where,

• Rs: Reset gate vector at sequence step s

• Zs: Update gate vector at sequence step s
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• Ss: Hidden state vector at sequence step s

• S̃s: Candidate hidden state vector at sequence step s

• xs: Input vector at sequence step s (e.g., xt−(L−s))

• Wr, Wz, Wh: Weight matrices (part of θ)

• br, bz, bh: Bias vectors (part of θ)

• σ: Sigmoid activation function

• tanh: Hyperbolic tangent activation function

• ⊙: Element-wise multiplication

• [·, ·]: Concatenation operator

This architecture allows GRUs to learn long-term dependencies while being
more efficient than LSTMs due to the reduced number of gates. The gating
mechanisms, specifically the reset and update gates, allow the GRU to cap-
ture various time-scale patterns in the data, making them suitable for tasks
like time-series prediction.

Note that in most Recurrent Neural Network (RNN) implementations for
time series forecasting, the model is designed to predict one step into the fu-
ture and then relies on its own predictions to forecast further. This method
is known as the recursive multi-step ahead forecasting (see Section 3.1.1.2,
or original Section 2.2). However, in the work presented here, a different
approach for the GRU is applied, termed the "BlockRNN", which represents
a MIMO formulation of the forecasting task (see Section 3.1.1.2). The Block-
RNN does not recursively unroll into the future up to the desired forecast
horizon H. Instead, at forecast origin t, the final hidden layer St (after pro-
cessing the input sequence X(t)) is directly mapped to the forecast sequence
ŷ(t) using a final linear layer, as shown in Eq. (A.15).
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ŷ(t) = Wf St + bf (A.15)

where,

• ŷ(t): Forecast sequence {ŷk|t}H
k=1 of H elements, made at origin t

• St: Final hidden state from GRU processing inputs related to origin t

• Wf : Final weight matrix (e.g., of size (output_features×H, hidden_size))

• bf : Final bias vector (e.g., of size output_features × H)

(Dimensions of Wf , bf depend on whether output is univariate or multivari-
ate per step).

A.5. N-BEATS

N-BEATS is a deep neural network architecture that was specifically devel-
oped for time series forecasting, presented in the context of beating common
benchmarks on the M3, M4 and TOURISM datasets Oreshkin et al., 2019.
It has also been effectively used in energy forecasting (e.g., Putz et al., 2021;
Oreshkin et al., 2021). Although it is not a recurrent architecture, it achieves
remarkable depth through stacking multiple blocks of fully-connected neural
networks, each predicting the future outputs (forecast) and their contribution
to the decomposition of the input (backcast). As shown in Figure A.3, each
block consists of a sequence of fully connected layers, each using the historic
residual of the previous block as input. As the authors write in Oreshkin
et al., 2021: "the architecture runs a residual recursion over the entire input
window and sums block outputs to make its final forecast".
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Figure A.3.: Architecture of N-BEATS with exogenous feature support taken from Olivares
et al., 2023.

Formally, assume there are R residual blocks with NL hidden layers each,
and l and r denote the superscripts of a particular layer in a block. The
input to the first block, x(0), is derived from the model’s input features X(t)

(typically the look-back portion {xpast
t−τ }L

τ=0). The fully connected layer with
weights Wr,l and bias term br,l can be expressed by Eq. (A.16).

FCr,l(hr,l−1) = ReLU(Wr,lhr,l−1 + br,l) (A.16)

Then the recursive operation of N-BEATS is given by Eq. (A.17).

x(r) = ReLU[x(r−1) − x̂
(r−1)
backcast], (input to block r) (A.17)

hr,1 = FCr,1(x(r)),
...

hr,NL = FCr,NL(hr,NL−1),

x̂
(r)
backcast = Br

backcasth
r,NL ,

ŷ
(r)
forecast = Br

forecasth
r,NL (A.18)

The final model forecast is ŷ(t) = %R
r=1 ŷ

(r)
forecast. Note that even though the

algorithm performs a recursive step between blocks, it strictly belongs to
the MIMO type as discussed in Section 3.1.1.2, as each block’s forecast part
directly contributes to the final multi-step output without feeding predictions
back as inputs in a time-recursive manner.
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A.6. Temporal Fusion Transformer (TFT)

Temporal Fusion Transformer (TFT) by Lim et al. Lim et al., 2021 is a
variant of the original transformer neural network (as presented in Vaswani
et al., 2017). It combines recurrent neural network layers (e.g., GRU Chung
et al., 2014 or LSTM) and self-attention mechanisms.

yt+1 yτ......

3

1

2

Figure A.4.: Architecture of the Deterministic Temporal Fusion Transformer, adapted from
Lim et al., 2021.

The architecture, shown in Figure A.4, consists of the following differentiable
building blocks:

1. Gated Residual Network (GRN): Multi-layer perceptron (see Hornik et
al., 1989) with two layers and a residual connection (see He et al., 2016).
The residual connection allows the network to skip over any unused
components of the architecture. As shown in Figure A.4, the GRN
component is used throughout the architecture, i.e. in the Variable
Selection Network and before and after the self-attention layer.

2. Variable selection networks (VSN): This component combines multiple
instances of the GRN. Particularly, for each input variable ξv (which
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can be a static variable, a past time-varying input from {xpast
t−τ }L

τ=0, or
a future known input from {xfuture

k }H
k=1), its representation is flattened

across its specific time dimension (if applicable) to Ξv. This is then
used to produce variable-specific weights wξv , shown in Eq. (A.19).

wξv = softmax(GRNwξ
(Ξv)) (A.19)

As the decoder rolls out over time, each feature vector ξ
(s)
v (variable v at

its own sequence step s) is input into its own GRN and weighted with
wξv . Note that past inputs {xpast

t−τ } and future known inputs {xfuture
k }

have their own VSNs, with shared weights across all time steps t of
forecast origin. As static features are not used in this work, the context
vector c can be ignored in Figure A.4.

3. Temporal Fusion Decoder : This component combines LSTM encoder
layers (see Hochreiter and Schmidhuber, 1997) with a modified self-
attention layer (see Vaswani et al., 2017). The idea of the authors in
Lim et al., 2021 is that the self-attention layer, which is effective in
modeling long-term dependencies in a sequence, can benefit from the
localized enhancement of the LSTM. The authors use the scaled dot-
product attention, as given by Eq. (A.20).

Attention(Q, K, V) = softmax
�

QKT

√
dattn


V (A.20)

where,

• Q, K, V: Linear projections of the transformed feature vectors ξ

called queries, keys and values.

• dattn: Width dimension of the key tensor, which is a model choice.

As proposed in the original transformer paper, the attention mecha-
nism is framed in a multi-head setup (see Vaswani et al., 2017), how-
ever, here with the additive aggregation of attention heads to improve
interpretability, see Eq. (A.21). (Note: The original TFT aggregates
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heads before a final linear transformation).

MultiHead(Q, K, V) =

 1
MH

MH$
h=1

Attention(QWh
Q, KWh

K , VWh
V )

 WO

(A.21)
where,

• Wh
Q, Wh

K , Wh
V : Weight matrices to project queries, keys, and val-

ues for head h.

• WO: Output weight matrix for combining heads.

• MH : Number of attention heads.

Note that while the original implementation of the TFT is designed for prob-
abilistic forecasting, this work uses the deterministic version.
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Optimization Input Data, System
Parameters, and Net Load Error
Details

B.1. Optimization Input Data from Case Study (RQ3)

The responsible Distribution System Operator (DSO) in this region is the
KNG-Kärnten Netz GmbH, who provided - together with meo Energy GmbH
- the electrical load profile measurement data of the entire community. In
this process, the collected historical load data starting from June 2020 until
beginning of May 2021 are used for training the forecasting model, which
enables the multi-step forecasting given in subsection 2.2.1 of RQ3 using the
queried real-time data collected during the controller testing period. The
test period started at the beginning of May 2021 and lasted one month. The
15 minute based historical and real-time electrical load data gathered during
the open-loop-test period are shown in Figure B.1.
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Figure B.1.: The electrical demand profile in a 15 minute timestep of the entire REC: the
dashed vertical line indicates the end of the historical data set used for the
forecast model training and the begin of the considered test period.

In addition, meo Energy GmbH provided the PV production measurement
data for the existing PV plant at the site. The historical measurement data
used for training the forecasting model is from the end of February 2021 to
the beginning of May 2021. The data from the PV system is recorded in a
2-minute interval and resampled to a 15 minute interval by calculating the
mean value for each measurement over 15 minute time intervals. The 15
minute based historical and real-time PV production data gathered during
the open-loop-test period are shown in Figure B.2.
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Figure B.2.: The solar PV production data in a 15 minute timestep of the considered PV
system at the site: the dashed vertical line indicates the end of the historical
data set used for the forecast model training and the begin of the considered
test period.

Besides the PV production measurement data, the global horizontal irradi-
ance, direct normal irradiance, and diffuse horizontal irradiance are also used
as an exogenous covariate for the PV forecasting model (Model 2 in RQ3),
as described in subsection 2.2.1 of RQ3. For this purpose, both historical
and real-time global horizontal irradiance data provided by solcast at the
REC test site on a half-hourly basis are used. The 30-min based historical
and real-time global horizontal irradiance data are shown in Figure B.3.
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Figure B.3.: The GHI data in a 30-minute timestep at the site. The dashed vertical line
indicates the end of the historical data set used for the forecast model training
and the begin of the considered test period.

In order to assess the operational CO2 emissions of the energy community cor-
rectly, the CO2 content of the purchased electricity from the utility also needs
to be considered. The marginal CO2 emissions rate of the purchased electric-
ity is considered in kgCO2eq/kWh in this study and is given by CO2data on
hourly basis. The marginal CO2 emissions rate indicates the carbon footprint
of the electricity being consumed in a given location zone based on the Aus-
trian electricity mix and import mix of electricity sources. The hourly-based
real-time marginal CO2 emissions of the utility electricity for the considered
open-loop-test period in Austria are shown in Figure B.4. The hourly EXAA
spot market prices for the same period are shown in Figure B.5.
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Figure B.4.: The hourly marginal CO2 emissions of the utility electricity for the considered
open-loop-test period in Austria CO2data.
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Figure B.5.: The hourly EXAA spot market prices for the considered open-loop-test period
in Austria SpotPrice.
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B.1.1. Domestic-Hot-Water Profile Generation (SAX Method)

As described in RQ3, domestic hot water (DHW) load is not forecast, but
randomly generated based on historic data. In short, at runtime the DHW
profile is generated by selecting a pre-processed profile of a random day from
the time period before the ’test period’. The elaboration of this method
and the 15 minute DHW demand profile of a household in the REC. Note
that in this work, the DHW load yDHW

kh
(demand at optimization step kh) is

not forecast, but rather generated by an analysis with Symbolic Aggregate
approXimation (SAX) Lin2003, as implemented by the python library pyts
Faouzi2020. In this method, a normalized time series is discretized by
dividing each entry into an equivalent range, usually denoted by a letter (from
a-z). Formally, bins B = {β1, ..., βa} are constructed from a N(0, 1) Gaussian
probability density function. Each bin has an equal area (probability), given
by 1/a. Then each bin is labeled with a letter, starting with a = β1, b = β2, ...

. Next, the normalized observations of a time series are mapped to each bin,
and assigned the respective letter. This effectively transforms the time series
into a string of letters. To reconstruct the DHW profile at run time, a string
of letters of a random day is drawn from samples obtained from historic
data, and each letter is replaced by its respective bin mean. Note that in
the original version by Lin2003, binning is preceded by a dimensionality
reduction of the time series via piece-wise aggregate approximation (PAA).
For this research, however, this step was skipped, as the data was resampled
to the desired interval prior entering SAX. Figure B.6 shows an example
DHW demand profile.
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Figure B.6.: The DHW demand profile in a 15 minute timestep of a household in the REC
for the considered open-loop-test period at the site.

B.1.2. Techno-Economical Parameters for REC Case Study (RQ3)

The technical parameters for the battery energy storage system (BESS) and
the domestic heat storage (DHS) include i.a. the charging and discharging
efficiencies (ηch, ηdis), the maximum charge and discharge rates (related to
U), the minimum SOC (part of X ) and the heat loss rate of the storages.
These parameters are given in Table B.1 (Tesla2020; SelfDischarge2018)
and in Table B.2.
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Parameter Value
Charging Efficiency of BESS [%] 95
Discharging Efficiency of BESS [%] 95
Maximum Charge Rate [% per hour] 34
Maximum Discharge Rate [% per hour] 34
Minimum SOC of BESS [%] 5
Self-Discharge Rate of BESS [% per hour] 0.2

Table B.1.: The technical parameters of the Li-ion based BESS (Tesla2020;
SelfDischarge2018).

The technical parameters for the power-to-heat system and the domestic heat
storage include the efficiency of the PtH element, the charging and discharg-
ing efficiencies, the maximum charge and discharge rates, the minimum SOC
and the heat loss rate of a typical domestic heat storage (hot water boiler).
These parameters are given in Table B.2 and are based on assumptions de-
rived from analysis of measured power-to-heat and domestic heat storage
system data.

Parameter Value
Efficiency of PtH element [%] 100
Charging Efficiency of DHS [%] 100
Discharging Efficiency of DHS [%] 95
Maximum Charge Rate [% per hour] 14.5
Maximum Discharge Rate [% per hour] 100
Minimum SOC of DHS [%] 60
Heat Loss Rate of DHS [% per hour] 1

Table B.2.: The technical parameters of the domestic heat storage.

B.2. Hardware and Tariff Information of Households
(RQ2)

For the study in RQ2, 20 households were drawn from the PV dataset of
Visser et al., 2022 matched with corresponding load data from Schlemminger
et al., 2022. The specific (PV ID, SFH ID) pairs are: (ID003, SFH3), (ID089,
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SFH4), (ID002, SFH5), (ID095, SFH9), (ID096, SFH10), (ID113, SFH12),
(ID109, SFH16), (ID139, SFH18), (ID052, SFH19), (ID028, SFH21), (ID042,
SFH22), (ID070, SFH23), (ID101, SFH27), (ID021, SFH28), (ID103, SFH29),
(ID061, SFH30), (ID012, SFH31), (ID142, SFH32), (ID108, SFH36), (ID165,
SFH38). The tilt angles range from 14° to 50°, and the average DC power
capacity is approximately 2.4 kWp. All households have a uniform battery
configuration, consisting of a 5 kWh energy capacity (Emax), 2.5 kW (dis-
)charging limit (P ch,max, P dis,max), and 0.86 roundtrip efficiency. They are
subject to a time-of-use tariff (including taxes and grid charges, defining πbuy

k|t )
of 0.06 €/kWh from 00:00–06:00, 0.12 €/kWh from 06:00–08:00, 0.06 €/kWh
from 08:00–18:00, and 0.20 €/kWh from 18:00–24:00. A flat feed-in tariff
(πsell

k|t ) of 0.08 €/kWh applies for exported electricity.

B.2.1. NLE Data Assumptions

The NLE metric depends as much on the the forecast errors as on the as-
sumptions regarding the stylized energy system. The goal in devising the
system setup, was to provide a transparent and simple energy system that
is transferable to real grid operations. To make results comparable across
datasets, the pricing scheme and BESS specifications are parameterized by
the scaled load time series (see Eq. (B.1)).

yscaled
s = ys − min(yhist)

max(yhist) − min(yhist)
(B.1)

where ys is a value from the time series and yhist is a representative historical
segment of the target variable. Based on this scaled load time series the price
signals and storage are parameterized as a daily demand charge price πDC = 1
(relative unit), a BESS C-Rate and Capacity of 1 (relative units). The linear
optimization problem was solved with the CPLEX solver, leading to a total
calculation time of the net load error of 2 minutes for a month of forecasts
in hourly temporal resolution.
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B.3. Hyperparameters

B.3.1. Neural Network Dropout Values (RQ1)

The following table shows dropout values for the best performing neural
network models from RQ1.

Table B.3.: Dropout values for the best performing neural network models (RQ1)
Scale Location GRU N-BEATS TFT
County Los_Angeles 0.0 0.0 0.2

New_York 0.2 0.1 0.2
Sacramento 0.2 0.0 0.0

Town town_0 0.2 0.1 0.2
town_1 0.0 0.0 0.0
town_2 0.1 0.0 0.2

Neighborhood neighborhood_0 0.1 0.2 0.2
neighborhood_1 0.1 0.2 0.1
neighborhood_2 0.0 0.0 0.1

Building building_1 0.0 0.2 0.1
building_2 0.2 0.1 0.2
building_3 0.1 0.1 0.2

B.3.2. Darts and XGBoost Hyperparameters (RQ2)

Following the Darts argument naming convention, all implemented models
in RQ2 were trained with: ‘inputchunklength‘ = 192(correspondstolook −
backwindowL ≈ 192), ‘outputchunklength‘ = 96(correspondstoforecasthorizonH=96), ‘hiddensize‘ =
32, ‘dropout‘ = 0.1, ‘batchsize‘ = 32, ‘nepochs‘ = 100, ‘randomstate‘ = None, andanAdamoptimizer(‘learningrate‘ =
1e−3).Additionallyduetotheimplementationoftheattentiondecoder, thefinalproposedmodelinRQ2hasthefollowinghyperparameters :
‘nheads‘ = 4, ‘dmodel‘ = 64, ‘dimf eedforward‘ = 512.

Furthermore the baseline models based on the XGBoost model in RQ2,
was trained with ‘lags‘=192, ‘outputchunklength‘ = 96, ‘nestimators‘ =
100, ‘maxdepth‘ = 6, ‘booster‘ =′ gbtree′, and‘objective‘ =′ reg : squarederror′.
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B.4. Weights & Biases Repository Supplementary
(RQ1)

The complete hyperparameters tuning runs, training runs and results of the
study in RQ1 are available in the various Weights & Biases repositories. In
these repository, different acronyms mapping to the dataset names were opted
for as follows: ’LDWP’ to ’Los_Angeles’, ’BANC’ to ’Sacramento’, ’NYIS’ to
’New_York’, ’MT_196’ to ’town_0’, ’MT_279’ to ’town_1’, ’MT_208’ to
’town_2’, ’Bull’ to ’neighborhood_0’, ’Hog’ to ’neighborhood_1’, ’Bobcat’ to
’neighborhood_2’, ’Be_Sandy’ to ’building_0’, ’Be_Millie’ to ’building_1’,
and ’Co_Joel’ to ’building_2’.
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C.1. Supplementary Forecasting Results (RQ3)

Table C.1 compares the cross-validated error scores (nRMSE, MAPE as de-
fined in Section 3.1.1.5) over the forecast horizon and computation time of
different algorithms with the best hyperparameter combination for the elec-
trical load data of the test-bed from RQ3. For comparison, all covariates were
kept identical in all runs. The error score is the timestep-weighted average of
Model 1 and Model 2 from RQ3. That is, the number of timesteps in which
Model 1 was executed (up to the switching point) represents the weighting
of its performance metrics, and the same is true for Model 2. Combinations
where Model 1 uses a different algorithm than Model 2 (also known as regime
switching) have not been tested, but may be explored in future work.

Error Score Computational Time [s]
nRMSE MAPE [%] Training Time Execution Time

Linear Regression 2.01 × 10−2 16.2 0.1 0.4
Random Forest Regression 1.93 × 10−2 14.4 209.4 2.4
XGBoost Regression 1.87 × 10−2 13.9 14.2 0.3
Support Vector Regression 2.47 × 10−2 18.1 35.6 0.4

Table C.1.: Comparison of Algorithms for Electrical Load based on Error Scores and Com-
putational Performance (RQ3).

Based on these results from RQ3, the XGBoost Regression algorithm was
selected for electrical load forecasts. In further implementations that might
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require even less computational time, the forecasting method presented in
subsection 2.2.1 of RQ3 allows seamless use of other algorithms with faster
computations, such as is Linear Regression. The switching point calculation
for the forecasts of PV generation were performed according to Table C.2.

Error Score Computational Time Switching Point
L nRMSE Training Time [s] Execution Time [ms] nRMSE
2 0.0575 3.2 0.1 2
4 0.0575 3.5 0.1 3
6 0.0574 3.8 0.3 2
8 0.0574 3.8 0.3 2
10 0.0574 4.0 0.3 2

Table C.2.: Comparison of Error Score and Computational Performance of Model 1 Con-
figurations for Photovoltaic Generation (RQ3). Here L refers to the number of
lags (look-back window length) for Model 1.
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Figure C.1.: PV Forecasts (RQ3): nRMSE-Trajectory of PV Forecasts for one day (rolling)
and 48-hours ahead forecasts of photovoltaic power generation on a "dev" data
set (before the case-study).

C.2. Detailed Optimization and Economic Analysis
Results (RQ3)

The remaining 4 optimization cases from RQ3, which were not shown in the
results section of that paper, are exhibited here:
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Figure C.2.: Optimal operational dispatch for the OC-FT case vs. reference case (RC) from
05.05.2021 until 08.05.2021 (RQ3).
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Figure C.3.: Optimal operational dispatch for the OC-TOU case vs. reference case (RC)
from 05.05.2021 until 08.05.2021 (RQ3). The background colors correspond
to: gray: "on" (35.8 €ct/kWh) , white: "mid" (29.84 €ct/kWh, green: "off"
(23.87 €ct/kWh).
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Figure C.4.: Optimal operational dispatch for the OC-TOU-DC case vs. reference case
(RC) from 05.05.2021 until 08.05.2021 (RQ3). The background colors corre-
spond to: gray: "on" (35.8 €ct/kWh) , white: "mid" (29.84 €ct/kWh, green:
"off" (23.87 €ct/kWh).
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Figure C.5.: Optimal operational dispatch for the OC-RTP case vs. reference case (RC)
from 05.05.2021 until 08.05.2021 (RQ3).

170



Declarations

C.3. Declaration of Authorship and Originality

I hereby declare that this thesis was composed independently by myself, and
that no source other than those referenced has been used. All quotations
or ideas from other works have been clearly cited. Where co-authors have
contributed to the presented work, their contributions are explicitly acknowl-
edged within the corresponding chapters or publications. Any citation errors
or omissions found within this thesis are entirely unintentional and will be
rectified promptly upon notification.

C.4. Use of Artificial Intelligence

Aritificial Intelligence (AI) assistance was employed strictly for language re-
finement (e.g., re-wording or embellishment), proofreading, and formatting
(i.e., table and figure arrangement); all content, results, research insights,
original contributions, and conceptual frameworks were developed exclusively
by the author and co-authors listed in the respective paper citation.

171


	Abstract
	Introduction
	Motivation
	Core Objective and Research Questions
	Structure of the Thesis

	Review of the State-of-the-Art
	Time Series Forecasting Approaches
	Forecasting Horizon and Multi-step Forecasting methods
	Energy Forecasting Applications and Challenges
	Temporal Scales
	Spatial Scales
	Net Load Forecasting
	Model Interpretability & Data Efficiency

	Evaluation of Forecasting Performance
	Conventional Error Metrics and Their Limitations
	Economic Evaluation of Energy Forecasts

	Integration of Forecasts into Control Algorithms
	Sequential Decision Making under Uncertainty
	Model Predictive Control
	Reinforcement Learning

	Summary of Gaps in the Literature & Contributions

	Methods
	General Methods & Preliminaries
	Supervised Learning for Energy Forecasting
	Economic Model Predictive Control (eMPC)

	Methods Per Research Question
	RQ1: Evaluating Forecasting Errors through the Net Load Error Framework
	RQ2: Integration of Household Energy Management into Net Load Forecasting Models
	RQ3: Optimal Operational Dispatch of a Multi-Energy Microgrid under Uncertainty
	Experimental Setup


	Case Studies and Results
	RQ1: Benchmarking SL Models and Evaluating Economic Impact
	Case Study Description
	Results

	RQ2: Interpretable Net Load Forecasting
	Case Study Description
	Results

	RQ3: Optimal Dispatch of a Multi-Energy Microgrid under Uncertainty
	Case Study Description
	Results


	Synthesis
	Advancements in Forecasting: From Benchmarking to Application-Specific Models
	Integrating Forecasting and Control: Performance, Uncertainty, and Value
	Implications for Stakeholders
	Limitations and Future Research Directions
	Limitations of the Presented Research
	Future Research Directions


	Conclusions and Outlook
	References
	Books
	Journal Articles
	Conference Papers
	Other sources

	Appendices
	Mathematical Details of Machine Learning Algorithms
	Linear Regression
	Random Forest
	XGBoost & LightGBM
	Gated Recurrent Unit (GRU)
	N-BEATS
	Temporal Fusion Transformer (TFT)

	Optimization Input Data, System Parameters, and Net Load Error Details
	Optimization Input Data from Case Study (RQ3)
	Domestic-Hot-Water Profile Generation (SAX Method)
	Techno-Economical Parameters for REC Case Study (RQ3)

	Hardware and Tariff Information of Households (RQ2)
	NLE Data Assumptions

	Hyperparameters
	Neural Network Dropout Values (RQ1)
	Darts and XGBoost Hyperparameters (RQ2)

	Weights & Biases Repository Supplementary (RQ1)

	Supplementary Results
	Supplementary Forecasting Results (RQ3)
	Detailed Optimization and Economic Analysis Results (RQ3)
	Declaration of Authorship and Originality
	Use of Artificial Intelligence


