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A B S T R A C T

With the aim to identify the mechanisms governing nonlinear basic creep of concrete under uniaxial
compression, a micromechanics model is presented. Extending the affinity concept for nonlinear creep, it
describes that every microcrack incrementally increases the damage of concrete, leading to a step-wise increase
of its compliance. Experimental data are taken from the literature. Strain and acoustic emission measurements
from a multi-stage creep test are used to develop the model. This includes identification of microcrack evolution
laws for both short-term load application and sustained loading. Strain measurements from four single-stage
creep tests are used for model validation. It is concluded that nonlinear creep of concrete is governed by two
mechanisms: (i) stress-induced stick–slip transition of viscous interfaces at the nanostructure of cement paste,
which is phenomenologically accounted for by the affinity concept, and (ii) microcracking-induced damage,
which is of major importance once the stress exceeds some 70% of the strength.
1. Introduction

The prediction of the long-term performance of infrastructure de-
mands material models that accurately describe time-dependent stress–
strain relations, including the increase of deformation under constant
stress (‘‘creep’’), and the inverse process, i.e. the decrease of stress
under constant deformation (‘‘relaxation’’). Relaxation of concrete ben-
eficially reduces stresses in tunnel linings, both on the short term,
e.g. in young shotcrete tunnel shells [1,2], and on the long term, e.g.
in precast reinforced concrete segments called tubbings [3]. Creep of
concrete results in ever increasing deflections of bridges, putting their
serviceability at stake [4,5], and it reduces prestress in prestressed
concrete structures, e.g. in nuclear containment buildings, resulting
in an increased risk of leakage [6–8]. Concrete creeps linearly at low
degrees of utilization, i.e. stress-to-strength ratios, 𝜎∕𝜎𝑢𝑙 𝑡, smaller than
some 40%, implying that the delayed strains scale linearly with the
imposed stress. Concrete creeps nonlinearly in the regime 𝜎∕𝜎𝑢𝑙 𝑡 ⪆ 40%,
implying that the delayed strains scale overlinearly with the imposed
stress [9,10].

As regards modeling of nonlinear creep, several models exist. The
microprestress-solidification theory [11,12] has been used for modeling
aging nonlinear creep of concrete subjected to uniaxial compression
at different stress-to-strength ratios [13], as well as to simulate the
coupling between drying, microcracking, and creep [14]. These cou-
plings have also been investigated using a poromechanical formulation,
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under the additional consideration of stress and strain multiaxiality and
temperature variations [15]. Such advanced models typically require
the optimization of several parameters in order to accurately reproduce
specific experimental data. The affinity concept represents a simple,
yet effective way of accounting for nonlinear creep [10]. It is based
on the observation that creep strain histories resulting from constant
stresses remain qualitatively similar even in the nonlinear range, such
that nonlinear creep is ‘‘affine’’ to linear creep. In mathematical terms,
this reads as [10]

𝜀(𝑡, 𝜎∕𝜎𝑢𝑙 𝑡) = 𝜀0(𝜎∕𝜎𝑢𝑙 𝑡) + 𝜑𝑙 𝑖𝑛(𝑡) 𝜂(𝜎∕𝜎𝑢𝑙 𝑡) 𝜀0(𝜎∕𝜎𝑢𝑙 𝑡), (1)

where 𝜀0(𝜎∕𝜎𝑢𝑙 𝑡) refers to the strain resulting from quasi-instantaneous
load application, 𝜑𝑙 𝑖𝑛(𝑡) denotes a time-dependent coefficient describing
linear creep, and 𝜂 is an amplification factor for nonlinear creep. It was
introduced as [10]

𝜂 = 1 + 2
[

𝜎
𝜎𝑢𝑙 𝑡

]4
. (2)

Notably, potential damage of concrete resulting from quasi-
instantaneous load application is implicitly accounted for in 𝜀0(𝜎∕𝜎𝑢𝑙 𝑡).
Thus, the affinity concept takes into account both (i) potential mi-
crocracking under quasi-instantaneous load application, see the first
appearance of 𝜀0(𝜎∕𝜎𝑢𝑙 𝑡) in Eq. (1), and (ii) the resulting amplification
of creep of concrete, see 𝜀0(𝜎∕𝜎𝑢𝑙 𝑡) multiplied by 𝜑𝑙 𝑖𝑛(𝑡) in Eq. (1). The
vailable online 16 February 2025
008-8846/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.cemconres.2025.107809
Received 13 August 2024; Received in revised form 20 December 2024; Accepted 2
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

6 January 2025

https://www.elsevier.com/locate/cemconres
https://www.elsevier.com/locate/cemconres
https://orcid.org/0000-0002-1153-9875
https://orcid.org/0000-0003-0153-4859
https://orcid.org/0000-0002-6468-1840
mailto:bernhard.pichler@tuwien.ac.at
https://doi.org/10.1016/j.cemconres.2025.107809
https://doi.org/10.1016/j.cemconres.2025.107809
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cemconres.2025.107809&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Cement and Concrete Research 191 (2025) 107809R. Díaz Flores et al.

l
t
n

c
s
t
i

c

n
w
a
o

s
l

t
a
i
i
v

i

t

f
p

t
c

o

c
i
a
a
d

1

r

s
c

f

f
t

𝜉

affinity concept has been shown to be applicable for secondary creep,
in the regime 𝜎∕𝜎𝑢𝑙 𝑡 ⪅ 70% [10].

The mechanisms representing the microstructural origin of non-
inear creep of concrete are still to be clarified. It is often agreed
hat damage induced by microcracking plays an important role in
onlinear creep [13,16,17], as indicated through correlations between

delayed strains and acoustic emissions [18,19]. This role was further
orroborated through quantification of microcracking at failure under
ustained loading, which has evidenced a state of much larger damage
han the one observed at failure under quasi-static monotonous load
ncrease [20,21]. Damage induced by cracking is considered to be

responsible for tertiary creep of concrete, which leads to failure under
sustained loading which is smaller than the strength of the mate-
rial [22–24]. However, other researchers have found that nonlinear
reep does not yield a significant degradation of concrete [25–28].

These contributions point toward nonlinear viscoelastic phenomena
which are independent of microcracking [29].

In this study, an analytical model for nonlinear creep of con-
crete under uniaxial compression will be developed. It is focused on
onaging basic creep of concrete exposed to isothermal conditions,
here the influences of aging [30,31], drying [11,32–34], and temper-
ture changes [35,36] are negligible. The model includes consideration
f two mechanisms: (i) nonlinear viscoelastic phenomena and (ii)

microcracking-induced damage of concrete during quasi-
instantaneous load application and sustained loading. As for contribu-
tion (i), the affinity parameter 𝜂 for nonlinear creep will be interpreted
by means of micromechanics models [37–40] explaining that macro-
copic creep results from viscous gliding of nanoscopic interfaces
ubricated by confined water. As for contribution (ii), experimental

results from a multi-stage nonlinear creep test [18], monitored with
he acoustic emissions technique, will be used for the development of
 damage model describing that every microcrack, no matter whether
t is created during short-term load application or sustained loading,
ncreases the damage of concrete by always the same incremental
alue, leading to a proportional increase of the compliance (= the

inverse of the stiffness) of concrete. Evolution laws for the creation of
microcracks during quasi-instantaneous and sustained loading will be
dentified, finally allowing for the simulation of creep tests in which

acoustic emissions have not been measured.
The paper is structured as follows. Section 2 refers to the experimen-

al results of the multi-stage nonlinear creep test of Rossi et al. [18].
Section 3 is focused on the proposed micromechanics-informed model
or nonlinear creep of concrete, including the micromechanical inter-
retation of the affinity parameter 𝜂. Section 4 deals with the evolution

laws for the creation of microcracks. Section 5 presents model predic-
tions and simulations of other nonlinear creep tests. Section 6 contains
he discussion of the obtained results. Section 7 closes the paper with
onclusions drawn from the results of the presented study.

2. Rossi et al.’s [18] multilevel uniaxial compression creep testing
f concrete at stress-to-strength ratios larger than 50%

2.1. Experimental data

The first three load stages of the multilevel test by Rossi et al. [18]
an be analyzed in detail, as the data provided in [18] allow for
dentifying the evolution of both the strains and the acoustic events
s functions of time. As regards the fourth and the fifth load stage, the
coustic events are only available as a function of the strains. These
ata will be used in Section 4.

Rossi et al. [18,41] produced concrete cylinders with diameters of
6 cm and heights of 100 cm from ordinary Portland cement (OPC),

water, and limestone aggregates, see Table 1 for composition details.
The specimens were protected against drying both before and during
testing [18,41].
2

t

Fig. 1. History of uniaxial compressive stress imposed by Rossi et al. [18] on concrete
cylinders during the first three stages of the multilevel creep test, see also Table 2.

Fig. 2. History of normal compressive strains measured by Rossi et al. [18] on concrete
cylinders subjected to the history of uniaxial compressive stresses illustrated in Fig. 1.

The multilevel creep experiment of [18] was started 266 days after
material production and lasted for 125 days, see Fig. 1 and Table 2 for
the first three load stages. During creep testing, the axial normal strain
was measured, see Fig. 2. These strains are by more than three orders of
magnitude larger than the autogenous shrinkage strains [18]. Accord-
ingly, the uniaxial compression tests delivered basic creep properties,
as aging and drying effects were comparatively negligible. In addition,
the evolution of acoustic events occurring inside the specimen were
ecorded, see Fig. 3.

The stress-to-strength ratios reported in [18] are equal to the
tresses imposed on the 266 days old concrete cylinders, divided by the
ube compressive strength determined 28 days after production:

𝜎𝑢𝑙 𝑡,𝑐 𝑢𝑏𝑒,28𝑑 = 46 MPa . (3)

Herein, actual stress-to-strength ratios will be used. The strength at
the start of the multilevel creep test, i.e. at the age of 266 days, is
estimated based on Eq. (3), the strength evolution of a nominally
identical concrete [41], as well as Table 5.1-3 and Eq. (5.1-50) of the
ib Model Code of [42], see Appendix B.1. This yields three different

values: 𝜎𝑢𝑙 𝑡,1 = 43.0 MPa, 𝜎𝑢𝑙 𝑡,2 = 44.5 MPa, and 𝜎𝑢𝑙 𝑡,3 = 46.0 MPa. This
moderate uncertainty regarding the strength propagates through the
ollowing analysis. Uncertainty propagation is as made visible through
he use of index 𝑘 = 1, 2, 3, see e.g. Table 3.

The hydration degrees associated with the three strength values
are identified by means of the validated multiscale strength model
described in [43]. The three identified values of the hydration degree,
≈ {84% ; 86% ; 88%}, see also Table 3, together with the specific

initial composition of the analyzed concrete, see Table 1, allow for
predicting the elastic modulus and the creep modulus by means of
he validated multiscale creep model described in [44]. The moduli
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Table 1
Initial composition of the concrete cylinders, with volume 𝑉 = 0.020106 m3, tested by Rossi et al. [18,41]: the listed data imply an initial
water-to-cement mass ratio 𝑤∕𝑐 = 0.54, a volume fraction of cement paste 𝑓𝑐 𝑝 = 0.292, and a volume fraction of aggregates, 𝑓𝑎𝑔 𝑔 = 0.708.

Component [18] Dosage [18] Mass Density Volume fraction

Cement: CEM I 52.5 N 340.00 kg/m3 3150 kg/m3 0.108
Water 184.22 kg/m3 1000 kg/m3 0.184
Dried sand-lime aggregate 0/4 739.45 kg/m3 2560 kg/m3 0.289
Dried sand-lime aggregate 6.3/20 1072.14 kg/m3 2560 kg/m3 0.419

Sum: 2335.81 kg/m3 1.000
Table 2
Stresses imposed during the first three stages of multilevel creep testing, after [18], see also Fig. 1.

Stage ‘‘Stress-to-strength ratio’’ [41] Duration of stage [41] Stress Time of application

𝑖 = 1 𝜎∕𝜎𝑢𝑙 𝑡,𝑐 𝑢𝑏𝑒,28𝑑 = 54% 87 days 𝜎1 = 24.9 MPa 𝑡1 = 266.00days
𝑖 = 2 𝜎∕𝜎𝑢𝑙 𝑡,𝑐 𝑢𝑏𝑒,28𝑑 = 59% 31 days 𝜎2 = 27.3 MPa 𝑡2 = 353.00days
𝑖 = 3 𝜎∕𝜎𝑢𝑙 𝑡,𝑐 𝑢𝑏𝑒,28𝑑 = 73% 7 days 𝜎3 = 33.6 MPa 𝑡3 = 384.00days
Table 3
Mechanical properties of the 266 day old OPC concrete tested by Rossi et al. [18]; the initial water-to-cement mass ratio 𝑤∕𝑐 = 0.54, the
reference time 𝜏𝑟𝑒𝑓 = 1 day, the creep exponent 𝛽 = 0.25, and the internal relative humidity 𝑅𝐻 = 0.95 apply to all three estimates of the
266 day strength; 𝑘 = 1, 2, 3 refers to the uncertainty regarding the strength of the tested concrete, see also Appendix B.1.

estimate of 266 day index hydration degree elastic modulus creep modulus
strength 𝜎𝑢𝑙 𝑡,𝑘 [MPa] 𝑘 [–] 𝜉𝑘 [–] 𝐸𝑘 [GPa] 𝐸𝑐 ,𝑘 [GPa]

lower estimate = 43.0 1 0.84 30.9 190.2
medium estimate = 44.5 2 0.86 31.2 195.4
higher estimate = 46.0 3 0.88 31.6 200.7
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Fig. 3. Number of acoustic events measured by Rossi et al. [18] during the first three
load stages of the multilevel creep test.

range from 30.9 GPa to 31.6 GPa and from 190.2 GPa to 200.7 GPa,
respectively, see Table 3. The internal relative humidity is estimated
from experimental data provided by humidity-sensitive capacitive sen-
ors cast into epoxy resin-sealed samples with 𝑤∕𝑐 = 0.54, which were

cured at 20 ◦C for 300 days [45], proposing 𝑅𝐻 = 0.95 . This value is
confirmed by samples stored in cylindrical test tubes throughout one
year [46].

2.2. Interpretation of the acoustic measurements by Rossi et al. [18]

Rossi et al. [18] mounted two pairs of acoustic sensors to their
00 cm-long concrete cylinders: at distances of 8 cm and 18 cm, re-
pectively, from each of the two loaded surfaces, see [18, Fig. 1].

This arrangement allowed for detecting and excluding signals coming
from the load application system. Signals coming from the sample
were amplified and filtered. They were recorded provided that the
peak amplitude exceeded 250 mV. The frequency spectrum curve of
very acoustic event was integrated over the low frequency (LF) band
 0 ; 125 ] Hz, the medium frequency (MF) band [ 125 ; 250 ] Hz, and the
igh frequency (HF) band [ 250 ; 375 ] Hz. Corresponding energy frac-
ions were calculated by dividing each of the three integrals by the total
3

t

area under the frequency spectrum curve. These energy fractions are
referred to as 𝜑𝐿𝐹 , 𝜑𝑀 𝐹 , and 𝜑𝐻 𝐹 . Every acoustic event was classified
according to the low-to-medium energy fraction ratio: Group 1: 0 ≤
𝜑𝐿𝐹 ∕𝜑𝑀 𝐹 < 0.2, Group 2: 0.2 ≤ 𝜑𝐿𝐹 ∕𝜑𝑀 𝐹 < 0.5, Group 3: 0.5 ≤
𝜑𝐿𝐹 ∕𝜑𝑀 𝐹 ≤ 1.0. During the first load application step, some 10% of
the acoustic events fell into Group 1, some 20% fell into Group 2,
and some 70% fell into Group 3, see [18, Fig. 9]. This distribution
(‘‘signature’’) of the acoustic events remained the same throughout
he remainder of the test, including phases of sustained loading and
hases of further load increase [18]. Finding characteristic frequency
istributions of the acoustic signals, which remain the same throughout
esting, and which are very similar when testing different concretes has
ed to the conclusion that the acoustic events recorded during basic
reep testing under uniaxial compression are related to the creation of
icrocracks [47].

Classification of oscillating waveforms of acoustic events is nowa-
days typically based on the ‘‘average frequency’’ and the ‘‘RA value’’
[48]. Each time the signal amplitude of one event crosses the threshold
level, it is counted as a ringdown, and the ‘‘average frequency’’ of the
vent is equal to the total number of ringdown counts divided by the
ime span from the first to the last ringdown. The ‘‘RA value’’ is equal
o the maximum amplitude of the signal divided by the rise time which
s the time span from the first ringdown to the global maximum of the
ignal. Tensile cracks create acoustic signals which have significantly
arger average frequencies and significantly smaller RA values than the
coustic signals created by shear cracks [48, Fig. 2].1 Applying the
escribed approach of waveform analysis to acoustic signals recorded in

uniaxial compressive strength tests on concrete cylinders with height-
to-diameter ratio of 2:1 allowed for demonstrating that tensile mode I
cracking dominates both in the pre-peak regime and around the peak
load [49, Figs. 11 and 12a]. As regards the spatial origins of microcrack-
ing, X-ray Computed Tomography monitoring of uniaxial compression
tests on concrete cylinders [50] revealed that mode I microcracking ini-
ially occurs disorderly throughout the specimen, which is also referred
o as diffuse microcracking [51]. Near the peak load, mode I micro-

cracking localizes into a banded region inclined to the loading axis,
with microcracks continuing to run mainly in the axial direction [50].

1 The described type of waveform analysis is out of reach herein, because
he signals recorded by Rossi et al. [18] were not published.
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2.3. Implications for the continuum damage modeling approach and its
underlying assumptions

Although every single acoustic event is unique, Rossi et al. [18]
ound that the population of all recorded acoustic events had a char-

acteristic ‘‘signature’’ which remained on average almost the same
throughout the entire test, even though the population of acoustic
signals grew progressively. Herein, it is assumed that this invariant
statistical ‘‘signature’’ is a feature of diffuse microcrack nucleation,
s observed by Desrues et al. [50]. In addition it is envisioned that

microcrack nucleation at a microstructural position where the local
stress reaches the local strength relaxes the former local stress peak.
Therefore, it is unlikely that the nucleated microcrack continues to
propagate or that an additional microcrack nucleates in the immediate
vicinity. Instead, the microcracks are assumed to nucleate disorderly,
such that the tested specimen may be treated as one representative
volume element (RVE). The progressive deterioration of the RVE is
described by means of a continuum damage formulation in which every
recorded acoustic event is taken as an occasion to increase the damage
ariable by always the same amount. The corresponding constant crack
ize 𝑎, which will be introduced in the model, is to be interpreted as

an average crack size which is representative of the actual microcrack
population.

3. Micromechanics-inspired approach to nonlinear creep of con-
rete

3.1. Hereditary mechanics: the linear theory of viscoelasticity

In the linear theory of viscoelasticity, stress and strain histories are
elated to each other by means of a convolution integral formulation,
eferred to as Boltzmann’s superposition principle [52,53]:

𝜺(𝑡) =
𝑡

∫
−∞

J(𝑡 − 𝜏) ∶ d𝝈
d𝜏

d𝜏 , (4)

where 𝜺 denotes the linearized strain tensor, J denotes the creep
compliance tensor, 𝝈 denotes the Cauchy stress tensor, 𝑡 denotes the
recording time during the creep test, 𝜏 denotes (past) time instants of
loading events triggering delayed effects, and ‘‘∶’’ denotes the double-
contracting tensor product. Eq. (4) is linear in the sense that, if any
specific stress history 𝝈(𝜏) produces a corresponding strain history 𝜺(𝑡),
then a qualitatively identical but amplified stress history, 𝛼×𝝈(𝜏), with
calar magnification factor 𝛼 > 1, yields a qualitatively identical strain
istory which is amplified by the same magnification factor: 𝛼 × 𝜺(𝑡).

As for the analysis of creep tests on concrete cylinders subjected
o compression in their axial direction, a cylindrical 𝑟, 𝜑, 𝑧-coordinate
ystem is introduced. The uniaxial compressive stress state history can
e expressed as:

𝝈(𝜏) = 𝜎(𝜏) 𝐞𝑧 ⊗ 𝐞𝑧 , (5)

where 𝜎 ≥ 0 is the compressive axial normal stress component pre-
scribed during the experiment, 𝐞𝑧 denotes the unit base vector in axial
irection, and ⊗ stands for the dyadic vector product.2 Since concrete

is isotropic, the resulting strain history reads as

𝜺(𝑡) = 𝜀(𝑡) 𝐞𝑧 ⊗ 𝐞𝑧 + 𝜀𝑙 𝑎𝑡(𝑡)
[

𝐞𝑟 ⊗ 𝐞𝑟 + 𝐞𝜑 ⊗ 𝐞𝜑
]

, (6)

where 𝜀 ≥ 0 denotes the axial normal strain component describing a
hortening of the tested specimen in the direction of loading, 𝜀𝑙 𝑎𝑡 ≤ 0
enotes the lateral normal strain component describing a widening of
he tested specimen in directions orthogonal to the axis of loading. 𝐞𝑟
nd 𝐞𝜑 denote the unit base vectors in the radial direction and the

2 A positive mathematical sign is used for compression and contraction,
hile a negative sign refers to tension and expansion.
4

s

circumferential direction, respectively. Herein, the focus rests on the
axial normal strain. The lateral normal strain is beyond the scope of
the present contribution.

The scalar relation between axial stress and strain is extracted from
q. (4) specialized for Eqs. (5) and (6):

𝜀𝑚𝑜𝑑 (𝑡) =
𝑡

∫
−∞

𝐽 (𝑡 − 𝜏) d𝜎
d𝜏

d𝜏 , (7)

where 𝐽 is the uniaxial creep compliance function, with 𝐽 (𝑡 < 𝜏) = 0.
he stepwise loading history 𝜎(𝜏) prescribed by Rossi et al. [18] reads

as:

𝜎(𝜏) =
𝑛
∑

𝑖=1

[

𝜎𝑖 − 𝜎𝑖−1
]

𝐻(𝜏 − 𝑡𝑖) , (8)

where 𝑛 denotes the number of stress steps, 𝜎𝑖 is the stress imposed
at time instant 𝑡𝑖, with 𝜎0 = 0, and 𝐻(𝑡 − 𝑡𝑖) denotes the Heaviside
tep function which is equal to 0 for 𝑡 < 𝑡𝑖 and equal to 1 for 𝑡 > 𝑡𝑖.
nserting Eq. (8) into Eq. (7), noting that the derivative of the Heaviside

step function is the Dirac function 𝛿(𝑡) which is infinite at 𝑡 = 0 and
zero elsewhere, while the integral over the singularity yields again the
Heaviside function, eventually yields

𝜀𝑚𝑜𝑑 (𝑡) =
𝑛
∑

𝑖=1
𝐽 (𝑡 − 𝑡𝑖)

[

𝜎𝑖 − 𝜎𝑖−1
]

𝐻(𝑡 − 𝑡𝑖) . (9)

The remainder of this section is aimed at deriving a simple yet realistic
mathematical format of the creep compliance function 𝐽 (𝑡 − 𝑡𝑖). For
this purpose, the microstructural sources of instantaneous elastic versus
delayed creep deformations are well distinguished.

3.2. Crack micromechanics-informed linear viscoelasticity

For the viscoelastic response of linear creeping concrete, we con-
sider the microstress fields around microcracks evolving in a matrix
of undamaged concrete, as depicted in the leftmost RVE of Fig. 4(a).

hese fields can be modeled in the framework of continuum mi-
ro(poro)mechanics [54,55], in association with a two-phase composite

consisting of an undamaged concrete matrix with linear viscoelastic
compliance tensor J(𝑡 − 𝜏), hosting interacting (yet not intersecting)
enny-shaped microcracks [56]. Homogenizing the stiffness of the

described composite by means of (i) transforming the time-dependent
problem into the Laplace-Carson space, (ii) using the Mori–Tanaka
scheme [57,58] for a series of quasi-elastic stiffness upscaling problems,
and (iii) back-transformation into the time domain, yields [59,60]

J𝑑 𝑎𝑚(𝑡 − 𝜏) =
[

I + 4𝜋
3

𝜔T
]

∶ J(𝑡 − 𝜏) , (10)

where J𝑑 𝑎𝑚(𝑡 − 𝜏) denotes the linear viscoelastic compliance tensor
of damaged concrete, I denotes the symmetric fourth-order identity
tensor, and 𝜔 ≥ 0 is Budiansky and O’Connell’s scalar and dimensionless
microcrack density parameter [61]. As for penny-shaped microcracks
characterized by a radius 𝑎, the microcrack density parameter reads
as:

𝜔 = 𝑁 𝑎3
𝑉

, (11)

where 𝑁 is the number of microcracks inside a representative volume
of damaged concrete. T in Eq. (10) stands for a tensor which accounts

for orientational properties of the microcrack network. Being a function
f Poisson’s ratio 𝜈 of undamaged concrete, analytical expressions for

are available in the literature [56,59]. Eq. (10) underscores that
he effective viscoelastic compliance of damaged concrete increases
inearly with increasing damage variable 𝜔. As 𝜔 approaches infinity,
he viscoelastic compliance approaches infinity, i.e. the viscoelastic
tiffness approaches zero.
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Fig. 4. Continuum micromechanics organogram showing qualitative properties of the hierarchically organized structure of concrete; two-dimensional sketches refer to three-
dimensional representative volume elements of (a) damaged concrete, (b) undamaged concrete, (c) cement paste, and (d) hydrate foam.
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A one-dimensional isotropic version of Eq. (10) can be given in
terms of the scalar linear viscoelastic compliance functions of damaged
and undamaged concrete, 𝐽𝑑 𝑎𝑚(𝑡 − 𝜏) and 𝐽 (𝑡 − 𝜏), respectively [56,62]

𝐽𝑑 𝑎𝑚(𝑡 − 𝜏) =
[

1 + 𝑁
𝑉

𝑎3𝑓 (𝜈)
]

𝐽 (𝑡 − 𝜏) . (12)

The function 𝑓 (𝜈) depends on orientational properties of the microcrack
network. It is analytically known only for isotropically oriented and
for parallel microcracks [56,62]. However, microcracks developing
n concrete under uniaxial compression will neither be isotropically
riented nor parallel. Therefore, 𝑓 (𝜈) is unknown in the present case.

The characteristic size of the microcracks, 𝑎, is also unknown. This
provides the motivation to introduce a damage factor 𝛾 as

𝛾3 = 𝑎3 𝑓 (𝜈) . (13)

If this model approach is realistic, then one constant value of 𝛾 would
be able to represent the entirety of the multilevel creep test of Rossi
et al. [18], as depicted in Figs. 1 and 2.

3.3. Damage-dependent nonlinear creep evolving in viscous interfaces per-
vading the C-S-H gel

The nonlinear viscoelastic response of damaged concrete is de-
scribed by a creep function reading as

𝐽𝑑 𝑎𝑚(𝑡 − 𝑡𝑖) =
[

1 + 𝛾3 𝑁(𝑡)
𝑉

]

{

1
𝐸

+
𝜂𝑖 𝑅𝐻
𝐸𝑐

[

𝑡 − 𝑡𝑖
𝑡𝑟𝑒𝑓

]𝛽
}

. (14)

The first term inside the braces of Eq. (14) relates to the instantaneous
elastic portion, while the following term relates to the delayed material
esponse. The latter is quantified through (i) the creep modulus 𝐸𝑐

and the power-law exponent3 𝛽 quantified from the micromechanics
model of [44,63], depicted by the three RVEs of Figs. 4(b-d), with the
input values taken from Table 3; through (ii) the relative humidity 𝑅𝐻
being larger than 40%) functioning as a reduction factor [33,64–68],

see Fig. 5; and through (iii) the so-called affinity parameter 𝜂𝑖 [10] con-
sidering microstructural changes deep inside the undamaged concrete
matrix, namely in the C-S-H gel phase of the RVE of Fig. 4(d). The
dimensionless affinity parameter is a fourth-order power-law function
of the (macroscopic) stress-to-strength ratio [10]:

𝜂𝑖 = 1 + 2
[

𝜎𝑖
𝜎𝑢𝑙 𝑡

]4
, (15)

whereby the imposed stress 𝜎𝑖 refers to the time interval from 𝑡𝑖 to 𝑡𝑖+1.
The affinity parameter introduced in Eq. (15) results in a nonlinearity
that goes beyond the limit of applicability of the linear theory of
viscoelasticity and the associated superposition principle named after
Boltzmann, see Eqs. (4), (7), and (9). Still, the creep function works

ell for single-stage creep tests such as described by setting 𝑛 in

3 It can be shown that the consideration of a logarithmic creep law after a
transition time of 32 days does not significantly improve the model prediction
accuracy.
5

Fig. 5. Creep reduction factor as a function of the internal relative humidity of
concrete; experimental data were taken from [33,64,65,67,68].

Eq. (9) equal to 1. As for multilevel nonlinear creep tests, Tasevski
et al. [24] proposed an extension of the superposition approach toward
he affinity concept. Complementing this approach by the considera-
ion of partial saturation as well as of microcracking-induced damage
ventually yields

𝜀𝑚𝑜𝑑 (𝑡) =
[

1 + 𝛾3
𝑁(𝑡)
𝑉

] {
𝜎(𝑡)
𝐸

+
𝑛
∑

𝑖=1

[

𝜎𝑖 𝜂𝑖 − 𝜎𝑖−1 𝜂𝑖−1
]𝑅𝐻
𝐸𝑐

[

𝑡−𝑡𝑖
𝑡𝑟𝑒𝑓

]𝛽
𝐻(𝑡 − 𝑡𝑖)

}

. (16)

A micromechanical interpretation of this approach will be provided
after checking whether Eq. (16) can describe the creep behavior illus-
trated in Fig. 2, while accounting for the development of microcracks
as illustrated in Fig. 3.

3.4. Simulation of the multistage basic creep test of Rossi et al. [18] -
identification of the damage factor 𝛾

The damage factor 𝛾 is unknown. It will be identified such that
trains modeled according to Eq. (16) best reproduce the measured

strains of Fig. 2. One value of 𝛾 will be identified for each one of the
ets of material properties listed in Table 3. The identification task is
ormulated as an optimization problem:


(

𝛾𝑘
)

=

√

√

√

√

1
𝑚

𝑚
∑

𝑗=1

[

𝜀𝑚𝑜𝑑
(

𝛾𝑘; 𝑡𝑗
)

− 𝜀𝑒𝑥𝑝(𝑡𝑗 )
]2

→ min ∀𝑘 = 1, 2, 3 , (17)

where 𝑚 = 86 refers to the 86 measured creep strain values illustrated
n Fig. 2. The first 78 of these values refer to the time instants at which

a new acoustic event was recorded during the first two load plateaus,
see Figs. A.14(a)–A.14(b), and the final values points refer to the third
load plateau, see Fig. A.14(c).

Other than 𝛾, all input quantities required for evaluation of 𝜀𝑚𝑜𝑑 (𝑡)
according to Eq. (16) are known. The evolution of the number of
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Table 4
Values of the damage factor 𝛾 identified for three different sets of the 266 day
mechanical properties of the concrete tested by Rossi et al. [18], see also Table 3;
= 1, 2, 3 refers to the uncertainty regarding the strength of the tested concrete, see

lso Appendix B.1.
index damage factor root mean squared
𝑘 [–] 𝛾𝑘 [mm] error (𝛾𝑘) [10−6]

1 11.7 70.7
2 12.7 59.4
3 13.6 51.8

Fig. 6. Comparison of compressive strains computed according to Eq. (16) with the
easured strains of Fig. 2; 𝑘 = 1, 2, 3 refers to the uncertainty regarding the strength

of the tested concrete.

microcracks, 𝑁(𝑡), is taken from Fig. 3. The volume of the specimen,
𝑉 , is given in Table 1. The stress history 𝜎(𝑡) is given in Eq. (8). The
tress values 𝜎𝑖 and 𝜎𝑖−1 with 𝑖 = 1, 2, 3 and corresponding time instants

of stress application, 𝑡𝑖, are given in Table 2. The corresponding values
of the affinity parameter, 𝜂𝑖 and 𝜂𝑖−1 follow from inserting the values
of 𝜎𝑖 from Table 2 together with strength values 𝜎𝑢𝑙 𝑡 from Table 3 into
q. (2). Note that 𝜎0 = 0 MPa and 𝜂0 = 0. The elastic modulus 𝐸, the

internal relative humidity 𝑅𝐻 , the creep modulus 𝐸𝑐 , the reference
ime 𝑡𝑟𝑒𝑓 , and the creep exponent 𝛽 are listed in Table 3.

Minimizing the root mean squared error between modeled and
easured strains three times, i.e. under consideration of three different

ets of the 266 day mechanical properties of the tested concrete, see
Table 3, allows for identification of three values of the damage factor,
ee Table 4.

In all three cases, the attainable minimum of the root mean squared
errors according to Eq. (17) are quite similar: they range from
51.8× 10−6 to 70.7× 10−6, see Table 4. Thus, the strains modeled based
n the maturity-dependent input values of Tables 3 and 4 reproduce
he measured strains very well, see Fig. 6.

Fig. 6 underscores that Eq. (16) can indeed describe the creep
ehavior illustrated in Fig. 2 based a stress-independent value of the

damage factor 𝛾, while accounting for the development of microcracks
as illustrated in Fig. 3. The following micromechanical interpretation
of the affinity parameter 𝜂 is organized in two steps. In step 1, a
heological model consisting of Kelvin–Voigt units is discussed. Step 2
efers to the transition to matrix-interface composites.

3.5. Nonlinear creep superposition of Eq. (16): Kelvin–Voigt units with
tress-dependent spring stiffness and dashpot viscosity

Any creep function can be approximated by means of a Prony series:

𝐽 (𝑡 − 𝜏) ≈ 1
𝐸𝑠

+
𝑚
∑

𝑘=1

1
𝐸𝑘

[

1 − exp
(

−
𝐸𝑘

[

𝑡 − 𝜏
]

𝜇𝑘

)]

. (18)

The corresponding rheological model consists of one elastic spring
ith stiffness 𝐸 = 𝐸∕

(

1 + 𝛾3 𝑁(𝑡)∕𝑉
)

being serially arranged with
6

𝑠

𝑚 Kelvin–Voigt units, i.e. with parallel arrangements of one spring
nd one dashpot each, see Fig. 7. As for the 𝑘t h Kelvin–Voigt unit,

the stiffness of the spring is denoted as 𝐸𝑘 and the viscosity of the
dashpot as 𝜇𝑘. Because of the serial arrangement, all Kelvin–Voigt
units experience the same stress. Therefore, we may focus on the 𝑘t h
Kelvin–Voigt unit. Its creep function reads as:

𝐽 (𝑡 − 𝜏) = 1
𝐸𝑘

[

1 − exp
(

−
𝐸𝑘

[

𝑡 − 𝜏
]

𝜇𝑘

)]

. (19)

The stress experienced by the Kelvin–Voigt unit, 𝜎(𝑡), is the sum of
the stress prevailing in the spring, 𝜎𝑠𝑝𝑟𝑖𝑛𝑔(𝑡) = 𝐸𝑘 𝜀(𝑡), and the one
revailing in the dashpot, 𝜎𝑑 𝑎𝑠ℎ𝑝𝑜𝑡(𝑡) = 𝜇𝑘 𝜀̇(𝑡), where 𝜀̇ stands for the
ime-derivative of 𝜀. Thus, the stress–strain behavior described by the
t h Kelvin–Voigt unit can be expressed as [39]

̇ (𝑡) + 𝜀(𝑡)
𝐸𝑘
𝜇𝑘

=
𝜎(𝑡)
𝜇𝑘

. (20)

This differential equation is solved by the creep function of Eq. (19).
he corresponding mathematical proof can be given through the fol-

lowing three steps:

1. The strain history follows from insertion of Eq. (19) into Eq. (7)
as

𝜀(𝑡) =
𝑡

∫
−∞

1
𝐸𝑘

[

1 − exp
(

−
𝐸𝑘

[

𝑡 − 𝜏
]

𝜇𝑘

)]

d𝜎
d𝜏

d𝜏 . (21)

2. The strain rate follows from time-derivation of Eq. (21) as

𝜀̇(𝑡) =
𝑡

∫
−∞

1
𝜇𝑘

exp
(

−
𝐸𝑘

[

𝑡 − 𝜏
]

𝜇𝑘

)

d𝜎
d𝜏

d𝜏 . (22)

3. Insertion of Eqs. (21) and (22) into the left-hand side of Eq. (20)
delivers an expression which is identical to the right-hand side of
Eq. (20), irrespective of the actual stress history, also including
a stepwise stress history according to Eq. (9).

As for the sought micromechanical interpretation of the affinity
parameter, let us imagine that the spring stiffnesses and dashpot vis-
osities of all Kelvin–Voigt elements are stress-dependent such that
orresponding compliances are to be amplified by 𝜂, which is, according

to Eq. (2), a function of 𝜎(𝑡):
1
𝐸𝑘

→ 𝜂 (𝜎(𝑡)) × 1
𝐸𝑘

, (23)

1
𝜇𝑘

→ 𝜂 (𝜎(𝑡)) × 1
𝜇𝑘

. (24)

Inserting these modifications into the constitutive equation Eq. (20)
yields

̇ (𝑡) + 𝜀(𝑡)
𝐸𝑘
𝜇𝑘

=
𝜎(𝑡) × 𝜂(𝜎(𝑡))

𝜇𝑘
, (25)

Eq. (25) suggests that multiplying both the spring stiffness and the
ashpot viscosity with 𝜂 results in a constitutive behavior of the Kelvin–
oigt unit which is equivalent to keeping the original values of the
pring stiffness and of the dashpot viscosity, but multiplying the stress

history with 𝜂.
Returning from the analysis of a single Kelvin–Voigt unit to the

entire Prony series of many Kelvin–Voigt units, and applying the 𝜂-
scaling to all of these Kelvin–Voigt units, but not to the serially arranged
additional elastic spring, see the term 1∕𝐸𝑠 in Eq. (18), necessitates the
ubdivision of the total creep function into an elastic and a viscous
art, 𝐽 = 𝐽𝑒 + 𝐽𝑣. The described 𝜂-scaling of the stress applies only
or the term multiplied with 𝐽𝑣, and not for the term multiplied with
𝑒. Thus, the strain solution for a stepwise stress history according to

Eq. (9) takes the form

𝜀(𝑡) = 𝜎(𝑡) 𝐽𝑒(𝑡 − 𝑡𝑖) +
𝑛
∑

𝐽𝑣(𝑡 − 𝑡𝑖)
[

𝜎𝑖𝜂𝑖 − 𝜎𝑖−1𝜂𝑖−1
]

𝐻(𝑡 − 𝑡𝑖) , (26)

𝑖=1
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Fig. 7. Kelvin–Voigt chain used to approximate creep functions as a Prony series.
whereby 𝐽𝑒 = 1
𝐸𝑠

and 𝐽𝑣 =
∑𝑚

𝑘=1
1
𝐸𝑘

[

1 − exp
(

−𝐸𝑘[𝑡−𝜏]
𝜇𝑘

)]

. This is
formally consistent with Eq. (16). It is concluded that the nonlinear
superposition principle developed by Tasevski et al. [24] can be under-
stood as an approach where the creep function is approximated by a
Prony series and where the spring stiffnesses and dashpot viscosities of
all Kelvin–Voigt units are subjected to the 𝜂-scaling of Eqs. (23) and
(24). We are left with showing why the affinity concept changes the
spring stiffnesses and dashpot viscosities in all Kelvin–Voigt units in
the same way.

3.6. Kelvin–Voigt units with stress-dependent spring stiffness and dash-
pot viscosity: Stress-level-induced stick–slip-transition of nanoscopic viscous
interfaces

A matrix-interface composite consisting of an isotropic matrix and
parallel interfaces of identical size was analyzed by Shahidi et al. [37],
see Fig. 8(a). Envisioning the nanoscopic interfaces to be lubricated by
adsorbed water, the shear traction acting on the interfaces was set equal
to their shear dislocation rate multiplied with an interface viscosity 𝜇𝑖𝑛𝑡.
Shahidi et al. [37] showed that this interface behavior manifests itself
in a macroscopic (shear) stress–strain behavior of the composite which
is reminiscent of the creep function given in Eq. (19).

In [39,40], the same authors extended their approach to a matrix-
interface composite consisting of an isotropic matrix and 𝑘 families of
parallel interfaces, see Fig. 8(b). The 𝑘t h family comprises interfaces
with radius 𝑎𝑘 and viscosity 𝜇𝑖𝑛𝑡,𝑘. The interface density parameter 𝑑𝑘
quantifies the number of interfaces of the 𝑘t h family per unit volume
of the studied composite. Shahidi et al. showed that the homogenized
behavior of the composite can be approximated by a Prony series with
one elastic spring and 𝑘 Kelvin–Voigt units in a serial arrangement, and
that the spring stiffness and the dashpot viscosity of the 𝑘t h Kelvin–
Voigt unit are functions of the interface size, viscosity, and density of
the 𝑘t h interface family, with the following proportionalities:
1
𝐸𝑘

∝ 𝑑𝑘 (27)

1
𝜇𝑘

∝
𝑑𝑘

𝑎𝑘 𝜇𝑖𝑛𝑡
. (28)

The extension to matrix-interface composites hosting isotropically
oriented interfaces is documented in [38], see also Fig. 8(c). Such
composite exhibit isotropic viscoelastic properties. Their volumetric
and deviatoric creep functions are again reminiscent of a Prony series,
and the proportionalities of Eq. (27) and (28) are maintained [38].
The model with isotropically oriented interfaces is well suited to study
a microstructure consisting of densely packed C-S-H building blocks
exhibiting isotropic orientations. Adding gel pores, capillary pores,
cement grains, sand grains, and aggregates, so as to upscale the vis-
coelastic behavior all the way up to the material scale of concrete, does
not change the kinetics of the creep behavior, because adding the five
types of scale-separated pores/grains in a step-by-step fashion yields
a creep behavior where stress redistributions from creeping to purely
elastic constituents is very ineffective [36].

Application of the 𝜂-scaling of Eqs. (23) and (24) in Eqs. (27) and
(28) shows that the affinity concept refers to a scaling of the interface
density 𝑑𝑘, while not affecting their size 𝑎𝑘 and viscosity 𝜇𝑖𝑛𝑡:

1
𝐸𝑘

→ 𝜂 (𝜎(𝑡)) × 1
𝐸𝑘

1 1

}

⇔ 𝑑𝑘 → 𝜂 (𝜎(𝑡)) × 𝑑𝑘 . (29)
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𝜇𝑘
→ 𝜂 (𝜎(𝑡)) × 𝜇𝑘
Table 5
Number of microcracks detected by means of acoustic emissions during quasi-static
monotonous load increase [18].

stress reached stress 𝜎𝑖 number of microcracks created accumulated number
step [MPa] [18] during stress step [Fig. 3] of microcracks

𝑖 = 1 24.84 396 𝑁𝜎 ,𝑒𝑥𝑝(𝜎1) = 396
𝑖 = 2 27.14 53 𝑁𝜎 ,𝑒𝑥𝑝(𝜎2) = 449
𝑖 = 3 33.58 546 𝑁𝜎 ,𝑒𝑥𝑝(𝜎3) = 995
𝑖 = 4 34.50 26 𝑁𝜎 ,𝑒𝑥𝑝(𝜎4) = 1021
𝑖 = 5 36.80 262 𝑁𝜎 ,𝑒𝑥𝑝(𝜎5) = 1283

In conclusion, the idea that a higher macroscopic stress level activates
a larger number of nanoscopic viscously gliding interfaces is consistent
with the affinity concept for nonlinear creep [10] and the corre-
sponding superposition principle [24]. We are left with showing that
microcracking during sustained loading is (i) rather moderate within
the range of applicability of the affinity concept, and (ii) significant
once the limit of applicability of the affinity concept is surpassed.

4. Relations describing the creation of microcracks during a creep
test

The history of acoustic emissions measured by Rossi et al. [41]
entered the analysis in Section 3 as an essential input. However, such
data are available in very rare cases only. This provides the motivation
to derive evolution laws describing the creation of microcracks, such
that the above-presented modeling approach becomes applicable also
in the absence of acoustic emission measurements.

Figs. 1 and 3 underscore that microcracking progressed both during
short-term loading from one stress level to the next higher one and
during sustained loading. This is reminiscent of the historical obser-
vation that the number of microcracks at failure under quasi-static
monotonous loading is significantly smaller than the number of cracks
at failure under sustained loading [20,21]. Both observations suggest
two classes of microcracks. The first one refers to microcracks primarily
induced by the stress-to-strength ratio. Their number is denoted as 𝑁𝜎 .
The second class refers to microcracks primarily induced by accumu-
lated creep deformation. Their number is denoted as 𝑁𝜀. Thus, the total
number of microcracks can be written, at any time 𝑡, as

𝑁 = 𝑁𝜎 +𝑁𝜀 . (30)

In the following, evolution laws for both classes of microcracks are
derived.

4.1. Creation of microcracks during quasi-static monotonous load increase

The data presented in Fig. 3 of [18] allows for quantifying the
number of microcracks detected during the all five quasi-instantaneous
stress steps. The accumulated number of these microcracks is listed in
Table 5.

The relation between the accumulated number of microcracks and
the stress-to-strength ratio is described by means of a power law,

𝑁𝜎 (𝜎𝑖) = 𝜋𝑎

[

𝜎𝑖
𝜎𝑢𝑙 𝑡

]𝜋𝑏
. (31)

The two dimensionless constants 𝜋𝑎 and 𝜋𝑏 are identified, for each of
the three sets of realistic 266 day mechanical properties of the tested
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Fig. 8. Matrix-interface composite including (a) one family, and (b) 𝑁 families of 2D flat spherical interfaces, oriented (a, b) parallel to each other, and (c) in an isotropic manner.
Table 6
Values of 𝜋𝑎 and 𝜋𝑏 according to Eq. (31) identified from the data listed in Table 5,
under consideration of three different sets of the 266 day mechanical properties of
the concrete tested by Rossi et al. [18], see the three values of 𝜎𝑢𝑙 𝑡 in Table 3;
𝑘 = 1, 2, 3 refers to the uncertainty regarding the strength of the tested concrete, see
also Appendix B.1.

index 𝜋𝑎,𝑘 𝜋𝑏,𝑘 root mean squared
𝑘 [–] [–] [–] error (𝜋𝑎,𝑘 , 𝜋𝑏,𝑘) [10−6]

1 2021 3 36.7
2 2240 3 36.7
3 2474 3 36.7

concrete, see the three values of 𝜎𝑢𝑙 𝑡 in Table 3, by minimizing the root
mean squared difference between modeled and experimentally mea-
sured number of microcracks, i.e. the difference between 𝑁𝜎 according
to Eq. (31) and 𝑁𝜎 ,𝑒𝑥𝑝(𝑡) listed in Table 5, respectively:

(𝜋𝑎, 𝜋𝑏) =
√

√

√

√
1
5

5
∑

𝑖=1

[

𝑁𝜎 (𝜋𝑎, 𝜋𝑏; 𝜎𝑖) −𝑁𝜎 ,𝑒𝑥𝑝(𝜎𝑖)
]2

→ min . (32)

The three identified values of 𝜋𝑎 and 𝜋𝑏 are listed in Table 6. In all
three cases, the corresponding value of  amounted to very satisfactory
36.7× 10−6. This underlines the high reproduction quality, see also
Fig. 9.

4.2. Creation of microcracks during creep under sustained loading

The number of microcracks increased virtually linearly with in-
creasing creep strain during each one of the five load plateaus of the
multilevel test of Rossi et al. [18]. Therein, the following mathematical
relation was used:

𝑁(𝑡) −𝑁(𝑡+𝑖 ) = 𝛼𝑖
( 𝜎𝑖 )

×
[

𝜀(𝑡) − 𝜀(𝑡+𝑖 )
]

, 𝑡+𝑖 ≤ 𝑡 ≤ 𝑡−𝑖+1 , (33)
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𝜎𝑢𝑙 𝑡
Fig. 9. Accumulated number of microcracks detected during quasi-instantaneous stress
increase, see the circles and Table 5; the solid lines refer to Eqs. (31), and Table 6;
𝑘 = 1, 2, 3 refers to the uncertainty regarding the strength of the tested concrete.

where 𝑡+𝑖 = lim𝜖→0(𝑡𝑖 + 𝜖) and 𝑡−𝑖+1 = lim𝜖→0(𝑡𝑖+1 − 𝜖) such that 𝑁(𝑡+𝑖 ) and
𝜀(𝑡+𝑖 ) refer to the number of microcracks and the strain, respectively, at
the start of the load plateau during which the imposed stress is equal
to 𝜎𝑖, see also Figs. A.14(a)–(e). The values of the slopes 𝛼𝑖 increase
with increasing stress-to-strength ratio, see Table 7. These data serve as
the basis for developing a continuous mathematical function describing
the stress-dependent creation of microcracks with increasing strain on
a load plateau, as explained next.

The affinity concept for nonlinear creep, which does not account
explicitly for microcracks created during load plateaus, is very useful
for stress-to-strength ratios up to some 70% [10]. Therefore, we envi-
sion that microcracking accompanying creep during sustained loading
contributes significantly to the overall deformation at stress-to-strength
ratios larger than 70%, while microcracking is of significantly smaller
importance at smaller stress-to-strength ratios. In line with this expec-
tation, and with the aim to keep the involved mathematical description
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Table 7
Proportionality factor between the increase of the number of microcracks and the
increase of the strain, see Eq. (33), as identified from experimental data referring to
five different load plateaus, see [41] and Fig. A.14.

load stress 𝜎𝑖 slope 𝛼𝑖
plateau [MPa] [m∕μm]

𝑖 = 1 24.84 0.097
𝑖 = 2 27.14 0.267
𝑖 = 3 33.58 2.66
𝑖 = 4 34.50 6.24
𝑖 = 5 36.80 10.7

Table 8
Intervals of 𝜎∕𝜎𝑢𝑙 𝑡 and corresponding values of the dimensionless coefficients 𝜋𝑐 and
𝜋𝑑 of Eq. (34).

interval of stress-to-strength ratio constants of Eq. (34)
𝜎
𝜎𝑢𝑙 𝑡 ≤ (𝜎∕𝜎𝑢𝑙 𝑡)𝐼 ∶ 𝜋𝑐 = 0 , 𝜋𝑑 = 0 ,

(𝜎∕𝜎𝑢𝑙 𝑡)𝐼 ≤ 𝜎
𝜎𝑢𝑙 𝑡 ≤ (𝜎∕𝜎𝑢𝑙 𝑡)𝐼𝐼 ∶ 𝜋𝑐 = 𝜋𝑐 ,𝑙 𝑜𝑤 , 𝜋𝑑 = 𝜋𝑑 ,𝑙 𝑜𝑤 ,

(𝜎∕𝜎𝑢𝑙 𝑡)𝐼𝐼 ≤ 𝜎
𝜎𝑢𝑙 𝑡 ∶ 𝜋𝑐 = 𝜋𝑐 ,ℎ𝑖𝑔 ℎ , 𝜋𝑑 = 𝜋𝑑 ,ℎ𝑖𝑔 ℎ .

Table 9
Values of 𝜋𝑐 and 𝜋𝑑 according to Eq. (34) identified from the data listed in Table 7,
nder consideration of three different sets of the 266 day mechanical properties of the

concrete tested by Rossi et al. [18], see the three values of 𝜎𝑢𝑙 𝑡 in Table 3; and limits
of applicability of the identified values of 𝜋𝑐 and 𝜋𝑑 , see also Table 8; 𝑘 = 1, 2, 3 refers
to the uncertainty regarding the strength of the tested concrete, see also Appendix B.1

index (𝜎∕𝜎𝑢𝑙 𝑡)𝐼 ,𝑘 𝜋𝑐 ,𝑙 𝑜𝑤,𝑘 𝜋𝑑 ,𝑙 𝑜𝑤,𝑘 (𝜎∕𝜎𝑢𝑙 𝑡)𝐼𝐼 ,𝑘 𝜋𝑐 ,ℎ𝑖𝑔 ℎ,𝑘 𝜋𝑑 ,ℎ𝑖𝑔 ℎ,𝑘
𝑘 [–] [106] [106] [–] [106] [106]

1 0.55 3.178 −1.739 0.76 102.8 −77.01
2 0.53 3.289 −1.739 0.73 106.3 −77.01
3 0.51 3.400 −1.739 0.71 109.9 −77.01

reasonably simple, the relation between the slope 𝛼 and the stress-to-
strength ratio 𝜎∕𝜎𝑢𝑙 𝑡 is modeled as a piecewise linear function. Every
iece is expressed as:

𝛼 = 𝜋𝑐

[

𝜎
𝜎𝑢𝑙 𝑡

]

+ 𝜋𝑑 , (34)

see also Table 8.
The first linear relation is established for stress-to-strength ratios

within the range of applicability of the affinity concept. To this end, the
dimensionless coefficients 𝜋𝑐 and 𝜋𝑑 are identified such that Eq. (34)
elivers a function running through the two pairs of values 𝛼𝑖 and
𝑖∕𝜎𝑢𝑙 𝑡, referring to the first and the second load plateau of Rossi
t al.’s multistage test (𝑖 = 1, 2), see Table 7. The identification is

performed three times, noting that there are three sets of realistic
266 day mechanical properties of the tested concrete, see the three
alues of 𝜎𝑢𝑙 𝑡 in Table 3. This yields the values of 𝜋𝑐 ,𝑙 𝑜𝑤 and 𝜋𝑑 ,𝑙 𝑜𝑤

listed in Table 9, see also the linear graphs with the smaller inclination
n Fig. 10. These graphs intersect the abscissa at 𝜎∕𝜎𝑢𝑙 𝑡 = (𝜎∕𝜎𝑢𝑙 𝑡)𝐼 ≈
1% − 55%.

The second linear relation is established for stress-to-strength ratios
beyond the limit of applicability of the affinity concept. To this end, the
imensionless coefficients 𝜋𝑐 and 𝜋𝑑 are identified such that Eq. (34)
elivers the best regression function for the three pairs of values 𝛼𝑖 and
𝑖∕𝜎𝑢𝑙 𝑡, referring to the third, the fourth, and the fifth load plateau of
ossi et al.’s multistage test (𝑖 = 3, 4, 5), see Table 7. The identification

is performed three times, noting that there are three sets of realistic
266 day mechanical properties of the tested concrete, see the three
values of 𝜎𝑢𝑙 𝑡 in Table 3. This yields the values of 𝜋𝑐 ,ℎ𝑖𝑔 ℎ and 𝜋𝑑 ,ℎ𝑖𝑔 ℎ
listed in Table 9, see also the linear graphs with the larger inclination
n Fig. 10. These steeper graphs intersect the less steeper ones of the

first linear relation at 𝜎∕𝜎𝑢𝑙 𝑡 = (𝜎∕𝜎𝑢𝑙 𝑡)𝐼𝐼 ≈ 71% − 76%.
The identified values (𝜎∕𝜎𝑢𝑙 𝑡)𝐼 and (𝜎∕𝜎𝑢𝑙 𝑡)𝐼𝐼 imply three conclu-

sions: (i) Virtually no microcracking occurs at stress-to-strength ratios
9

Fig. 10. Relation between slope of the linear relations between the total time-
dependent strain and the stress-to-strength ratio; 𝑘 = 1, 2, 3 refers to the uncertainty
regarding the strength of the tested concrete.

up to (𝜎∕𝜎𝑢𝑙 𝑡)𝐼 ≈ 51% − 55%, as expressed by 𝜋𝑐 = 𝜋𝑑 = 0 m∕μm; (ii) creep
under sustained loading will be accompanied by moderate microcrack-
ing in the interval of stress-to-strength ratios from (𝜎∕𝜎𝑢𝑙 𝑡)𝐼 ≈ 51% − 55%
to (𝜎∕𝜎𝑢𝑙 𝑡)𝐼𝐼 ≈ 71% − 76%; (iii) significant microcracking occurs beyond
the limit of applicability of the affinity concept, i.e. in the range of
stress-to-strength ratios larger than (𝜎∕𝜎𝑢𝑙 𝑡)𝐼𝐼 ≈ 71% − 76%, see also
Table 8.

4.3. Prediction of creation of microcracks during sustained loading

As for modeling the creation of microcracks during the 𝑖t h load
plateau, 𝜀(𝑡) from Eq. (16) is inserted into Eq. (33). This yields:

𝑁(𝑡) −𝑁(𝑡+𝑖 ) = 𝛼𝑖

{ [
1 + 𝛾3

𝑁(𝑡)
𝑉

] [
𝜎(𝑡)
𝐸

+
𝑖

∑

𝑗=1

[

𝜎𝑗 𝜂𝑗 − 𝜎𝑗−1 𝜂𝑗−1
]𝑅𝐻
𝐸𝑐

[ 𝑡 − 𝑡𝑗
𝑡𝑟𝑒𝑓

]𝛽
𝐻(𝑡 − 𝑡𝑗 )

]

−

[

1 + 𝛾3
𝑁(𝑡+𝑖 )
𝑉

]

[ 𝜎(𝑡+𝑖 )
𝐸

+
𝑖

∑

𝑗=1

[

𝜎𝑗 𝜂𝑗 − 𝜎𝑗−1 𝜂𝑗−1
]𝑅𝐻
𝐸𝑐

[

𝑡+𝑖 − 𝑡𝑗
𝑡𝑟𝑒𝑓

]𝛽

𝐻(𝑡𝑖 − 𝑡𝑗 )
]}

,

𝑡+𝑖 ≤ 𝑡 ≤ 𝑡−𝑖+1 ,

(35)

which is an implicit expression for 𝑁(𝑡). Under consideration of the
abbreviation

𝜀(𝑡, 𝛾= 0) = 𝜎(𝑡)
𝐸

+
𝑖

∑

𝑗=1

[

𝜎𝑗 𝜂𝑗 − 𝜎𝑗−1 𝜂𝑗−1
]𝑅𝐻
𝐸𝑐

[ 𝑡−𝑡𝑗
𝑡𝑟𝑒𝑓

]𝛽
𝐻(𝑡 − 𝑡𝑗 ) (36)

and of
[

1 + 𝛾3 𝑁(𝑡𝑖)
𝑉

]

𝜀(𝑡+𝑖 , 𝛾 = 0) = 𝜀(𝑡+𝑖 ), where 𝜀(𝑡+𝑖 ) refers to Eq. (16)
evaluated for 𝑡 = 𝑡+𝑖 , Eq. (35) is solved for the number of microcracks
𝑁(𝑡):

𝑁(𝑡) = 𝑁(𝑡+𝑖 ) + 𝛼𝑖
[

𝜀(𝑡, 𝛾= 0) − 𝜀(𝑡+𝑖 )
]

1 − 𝛼𝑖 𝛾3

𝑉 𝜀(𝑡, 𝛾= 0)
, 𝑡+𝑖 ≤ 𝑡 ≤ 𝑡−𝑖+1 . (37)

The increment of microcracks created in the time interval from 𝑡+𝑖 to 𝑡
s denoted as 𝛥𝑁𝑖(𝑡). It is equal to 𝑁(𝑡) −𝑁(𝑡+𝑖 ) and follows as:

𝛥𝑁𝑖(𝑡) =
𝑁(𝑡+𝑖 ) + 𝛼𝑖

[

𝜀(𝑡, 𝛾= 0) − 𝜀(𝑡+𝑖 )
]

1 − 𝛼𝑖 𝛾3

𝑉 𝜀(𝑡, 𝛾= 0)
−𝑁(𝑡+𝑖 ) , 𝑡+𝑖 ≤ 𝑡 ≤ 𝑡−𝑖+1 (38)

Re-arranging terms in Eq. (38) yields

𝛥𝑁𝑖(𝑡) =
𝛼𝑖
{

[

1 + 𝛾3 𝑁(𝑡+𝑖 )
𝑉

]

𝜀(𝑡, 𝛾= 0) − 𝜀(𝑡+𝑖 )
}

1 − 𝛼𝑖 𝛾3 𝜀(𝑡, 𝛾= 0)
, 𝑡+𝑖 ≤ 𝑡 ≤ 𝑡−𝑖+1 (39)
𝑉
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The number of microcracks accumulating during (i) the load plateau
of a single-stage creep test and (ii) the 1st load plateau of a multi-stage
creep test follows from inserting 𝑖 = 1 into Eq. (39) as:

𝑁𝜀(𝑡) =
𝛼1

{

[

1 + 𝛾3 𝑁(𝑡+1 )
𝑉

]

𝜀(𝑡, 𝛾= 0) − 𝜀(𝑡+1 )
}

1 − 𝛼1 𝛾3

𝑉 𝜀(𝑡, 𝛾= 0)
, 𝑡+1 ≤ 𝑡 ≤ 𝑡−2 . (40)

The number of microcracks accumulating from the start of the 𝑖t h load
lateau at time 𝑡+𝑖 to the end of this load plateau at time 𝑡−𝑖+1 follows
rom inserting 𝑡 = 𝑡−𝑖+1 in Eq. (39) and reads as:

𝛥𝑁𝑖(𝑡−𝑖+1) =
𝛼𝑖
{

[

1 + 𝛾3 𝑁(𝑡+𝑖 )
𝑉

]

𝜀(𝑡−𝑖+1, 𝛾= 0) − 𝜀(𝑡+𝑖 )
}

1 − 𝛼𝑖 𝛾3

𝑉 𝜀(𝑡−𝑖+1, 𝛾= 0)
, 𝑡+𝑖 ≤ 𝑡 ≤ 𝑡−𝑖+1

(41)

The number of microcracks accumulating in a multistage creep test,
uring all the load plateaus until time 𝑡 during the 𝑖t h load plateau
𝑖 > 1) can be expressed as

𝑁𝜀(𝑡) = 𝛥𝑁𝑖(𝑡) +
𝑖−1
∑

𝑗=1
𝛥𝑁𝑗 (𝑡−𝑗+1) , 𝑡+𝑖 ≤ 𝑡 ≤ 𝑡−𝑖+1 , 𝑖 > 1 . (42)

Inserting Eqs. (39) and (41) into Eq. (42) finally yields

𝑁𝜀(𝑡) =
𝛼𝑖
{

[

1 + 𝛾3 𝑁(𝑡+𝑖 )
𝑉

]

𝜀(𝑡, 𝛾= 0) − 𝜀(𝑡+𝑖 )
}

1 − 𝛼𝑖 𝛾3

𝑉 𝜀(𝑡, 𝛾= 0)

+
𝑖−1
∑

𝑗=1

𝛼𝑗
{

[

1 + 𝛾3 𝑁(𝑡+𝑗 )

𝑉

]

𝜀(𝑡−𝑗+1, 𝛾= 0) − 𝜀(𝑡+𝑗 )
}

1 − 𝛼𝑗 𝛾3

𝑉 𝜀(𝑡−𝑗+1, 𝛾= 0)
,

𝑡+𝑖 ≤ 𝑡 ≤ 𝑡−𝑖+1 , 𝑖 > 1 . (43)

4.4. Creation of microcracks during single-stage and multi-stage creep tests

The number of microcracks, created up to time 𝑡 during the 1st

stress level 𝜎1, follows from inserting 𝑁𝜎 according to Eq. (31) and 𝑁𝜀
according to Eq. (40) into Eq. (30) as

𝑁(𝑡) = 𝜋𝑎

[

𝜎1
𝜎𝑢𝑙 𝑡

]𝜋𝑏
+
𝛼1

{

[

1 + 𝛾3 𝑁(𝑡+1 )
𝑉

]

𝜀(𝑡, 𝛾= 0) − 𝜀(𝑡+1 )
}

1 − 𝛼1 𝛾3

𝑉 𝜀(𝑡, 𝛾= 0)
, 𝑡+1 ≤ 𝑡 ≤ 𝑡−2

(44)

The number of microcracks, created up to time 𝑡 during the 𝑖t h stress
level 𝜎𝑖, with 𝑖 > 1, follows from inserting 𝑁𝜎 according to Eq. (31) and

𝜀 according to Eq. (43) into Eq. (30) as

𝑁(𝑡) = 𝜋𝑎

[

𝜎𝑖
𝜎𝑢𝑙 𝑡

]𝜋𝑏
+

𝛼𝑖
{

[

1 + 𝛾3 𝑁(𝑡+𝑖 )
𝑉

]

𝜀(𝑡, 𝛾= 0) − 𝜀(𝑡+𝑖 )
}

1 − 𝛼𝑖 𝛾3

𝑉 𝜀(𝑡, 𝛾= 0)

+
𝑖−1
∑

𝑗=1

𝛼𝑗
{

[

1 + 𝛾3 𝑁(𝑡+𝑗 )

𝑉

]

𝜀(𝑡−𝑗+1, 𝛾= 0) − 𝜀(𝑡+𝑗 )
}

1 − 𝛼𝑗 𝛾3

𝑉 𝜀(𝑡−𝑗+1, 𝛾= 0)
,

𝑡+𝑖 ≤ 𝑡 ≤ 𝑡−𝑖+1 , 𝑖 > 1 . (45)

Eqs. (44) and (45) allow for computing the number of microcracks
created in concrete volumes 𝑉 subjected either to single-stage or multi-
stage creep tests. This enables the analysis of creep tests without
accompanying acoustic emission experiments.

The predictive capability of Eqs. (44) and (45) will be checked
n the following section. Thereby, 𝜋𝑎 and 𝜋𝑏 according to Table 6,
𝛼 according to Eq. (34), 𝜋𝑐 and 𝜋𝑑 according to Tables 8 and 9,
will be taken as constants. The damage factor 𝛾, in turn, cannot be
assumed to be the same for all concretes, given that it accounts for
10
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the orientational properties of the microcrack network and for the size
of the microcracks, see Eq. (13). The size of microcracks is likely the
larger, the larger the maximum aggregate size.

5. Model validation

5.1. Prediction of strain histories measured by Rossi et al. [41] in two
ingle-step creep tests

The developed nonlinear creep model of Eq. (16) together with the
microcrack evolution law according to Eq. (44) is used to predict the
train histories of two single-step compressive creep tests presented

in [41]. The tested concrete is nominally the same as the one sub-
ected to the already analyzed multi-stage creep test of [18]. Still, the
specimens of the two different studies [18,41] were produced in two
ifferent batches.

The first single-step creep test of [41] was started at a material age
of 28 days. The strength at that time amounted to 39.9 MPa. The stress
mposed during creep testing amounted to 13.6 MPa, see Table 10.

Because the stress-to-strength ratio was equal to 34%, this test is useful
to check whether or not the linear creep properties of the material are
accurately predicted.

The second single-step creep test of [41] was started at a material
age of 145 days. The strength at that time amounted to 47.2 MPa, see
Appendix B.2. The stress imposed during creep testing amounted to
33 MPa, see Table 10. Because the stress-to-strength ratio was equal
o 70%, this test is useful to check whether or not the nonlinear
reep properties of the material are accurately predicted, including the

combination of nonlinear viscoelastic phenomena and microcracking.
The material properties required for evaluation of Eq. (16) are listed

in Table 10. They were obtained as follows. The hydration degrees 𝜉
were identified by means of the validated multiscale model of [43] from
he strength values reported above, the initial water-to-cement mass
atio 𝑤∕𝑐, and the initial aggregate-to-cement mass ratio 𝑎∕𝑐. Values of
he elastic modulus and the creep modulus of concrete were quantified
y means of the multiscale model of [44,63], using the given values of

𝑤∕𝑐, 𝑎∕𝑐, and 𝜉 together with the elastic modulus of the aggregates
of 𝐸𝑎𝑔 𝑔 = 45 GPa. The internal relative humidity was estimated by
interpolation between measurements documented in [45].

The damage factor 𝛾 refers to the microcracks developing during a
niaxial creep tests. It is expectable that the size of these microcracks
s the larger, the larger the maximum aggregate size. Given that the
oncrete of the two single-step creep tests was nominally the same as

the one of the multi-stage creep test, including the same aggregate type
and size distribution, it is concluded that 𝛾-values identified from the
multi-stage creep test apply also to the single-step creep tests.

Three predictions (𝑘 = 1, 2, 3) are computed for each one of the two
single-step creep tests. They refer to the three values of 𝛾, 𝜋𝑎, 𝜋𝑏, 𝜋𝑐 , and
𝜋𝑑 as listed in Tables 4, 6, and 9. These sets of three values reflect the
uncertainty of the maturity of the concrete subjected to the multi-stage
creep test. The a priori knowledge of all input quantities required for
evaluation of Eqs. (16) and (44) allows for predicting the experimental
results, i.e. there is no need to identify/optimizing any input values. A
very accurate prediction was achieved both in the linear and nonlinear
reep domain, see the bottom circles and the top circles, respectively,

Fig. 11. Remarkably, the blue and green graphs, referring to 𝑘 = 2 and
= 3 in Tables 4, 6, and 9, run very close to the measured data. This

shows that the nonlinear creep model performs well both in the linear
and nonlinear creep regimes, and that the damage factor 𝛾 may be
ssumed as constant, at least as long as the properties of the aggregates
re the same.
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Table 10
Input properties for the simulation of strain histories in different basic creep tests; 𝑘 = 1, 2, 3 refers to the uncertainty regarding the strength of the tested concrete, see also

ppendices B.1 and B.2.
Property Rossi (2012) [18] Rossi (2013) [41] Kammouna [27]

Cement type CEM I 52.5 N CEM I 52.5 N CEM I B 52.5
initial water-to-cement mass ratio 𝑤∕𝑐 [–] 0.54 0.54 0.50
initial aggregate-to-cement mass ratio 𝑎∕𝑐 [–] 5.33 5.33 5.22
Elastic modulus of aggregates 𝐸𝑎𝑔 𝑔 [GPa] 45 45 45
Maximum aggregate size max 𝑑𝑎𝑔 𝑔 [mm] 20 20 8
Volume of specimens 𝑉 [m3] 0.0201 0.0201 0.0005

Material age at start 𝑡0 [days] 266 28 |

|

|

145 90

Internal relative humidity 𝑅𝐻 [–] 95% 98% |

|

|

95% 96%

Stress applied 𝜎 [MPa] 24.9 . . . 36.8 13.6 |

|

|

33.0 26.4 |

|

|

42.2

Strength 𝜎𝑢𝑙 𝑡,1 43 39.9 |

|

|

47.2 49.7

Hydration degree 𝜉1 [–] 0.84 0.81 |

|

|

0.89 0.85

𝑘 = 1 Elastic modulus 𝐸1 [GPa] 30.9 30.1 |

|

|

31.8 32.7

Creep modulus 𝐸𝑐 ,1 [GPa] 190.2 178.6 |

|

|

204.5 223.4

𝛾1 [mm] 11.7 11.7 1.9

Strength 𝜎𝑢𝑙 𝑡,2 44.5 39.9 |

|

|

47.2 52.7

Hydration degree 𝜉2 [–] 0.86 0.81 |

|

|

0.89 0.88

𝑘 = 2 Elastic modulus 𝐸2 [GPa] 31.2 30.1 |

|

|
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Creep modulus 𝐸𝑐 ,2 [GPa] 195.4 178.6 |

|

|

204.5 233.5

𝛾2 [mm] 12.7 12.7 4.5

Strength 𝜎𝑢𝑙 𝑡,3 46 39.9 |

|

|

47.2 55.7

Hydration degree 𝜉3 [–] 0.88 0.81 |

|

|

0.89 0.91

𝑘 = 3 Elastic modulus 𝐸3 [GPa] 31.5 30.1 |

|

|

31.8 33.7

Creep modulus 𝐸𝑐 ,3 [GPa] 200.7 178.6 |

|

|

204.5 242.7
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Fig. 11. Prediction of the compressive strain evolution in the single-step basic creep
ests by Rossi et al. [41] based on Eqs. (16) and (44), evaluated for material properties

taken from Table 10: the red, green, and blue graphs refer to 𝑘 = 1, 2, 3 in Tables 4,
6, and 9; and independently measured strains, see the circles; 𝑘 = 1, 2, 3 refers to the
ncertainty regarding the strength of the tested concrete, see also Appendix B.2. (For

interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

5.2. Model application to strain histories measured by Kammouna et al.
27] in two single-step creep tests

The developed nonlinear creep model of Eq. (16) together with
he microcrack evolution law according to Eq. (44) is used for the

analysis of two basic creep tests performed by Kammouna et al. [27].
Both single-step creep tests were started at a material age of 90 days.
Corresponding cylinder compressive strength values were determined
from crushing control specimens. The average strength amounted to
𝜎 = 52.7MPa. The scatter in the measured strength values provides
11

𝑢𝑙 𝑡
the motivation to investigate three scenarios, namely the mean strength
plus/minus 𝛥𝜎𝑢𝑙 𝑡 = 3MPa, that is 𝜎𝑢𝑙 𝑡,1 = 49.7MPa, 𝜎𝑢𝑙 𝑡,2 = 52.7MPa,
nd 𝜎𝑢𝑙 𝑡,3 = 55.7MPa, see Table 10.

The stress imposed during the two creep test amounted to 26.4 MPa
and to 42.2 MPa, respectively, see Table 10. Thus, the stress-to-strength
ratio was equal to some 50% and to some 80%, respectively. These tests
re useful to check whether or not the nonlinear creep properties of the
aterial are accurately predicted in the regimes of moderate and of

significant microcracking during sustained loading.
Values of the hydration degree, the elastic modulus, the creep

modulus, and the internal relative humidity are listed in Table 10. They
ere determined as follows. Values of 𝜎𝑢𝑙 𝑡,𝑘, 𝑤∕𝑐, and 𝑎∕𝑐 are translated
y means of [43] into values of 𝜉𝑘. Values of 𝜉𝑘, 𝑤∕𝑐, 𝑎∕𝑐, and 𝐸𝑎𝑔 𝑔 are

translated by means of [44,63] into values of 𝐸𝑘 and 𝐸𝑐 ,𝑘. The internal
relative humidity of the concrete at the time of testing is estimated
based on [45].

Each one of the two tests is analyzed three times, motivated by
he three different strength values given above (𝑘 = 1, 2, 3). The latter
re combined with the corresponding microcrack evolution laws for
i) short term loading, see Eq. (31), Table 6, and Fig. 9, as well as

(ii) sustained loading, see Eqs. (33) and (34), Tables 8 and 9, and
Fig. 10. Thus, there is only one unknown left: the damage factor 𝛾. It
s optimized following the approach used in Section 3.4. The resulting

values 𝛾𝑘 with 𝑘 = 1, 2, 3 are listed in Table 10. The developed model,
ogether with the newly identified values of the damage factor 𝛾,

reproduces both tests very accurately, see Fig. 12.

6. Discussion

6.1. Significance of microcracking during sustained loading at stress-to-
strength ratios beyond the limit of applicability of the affinity concept

The developed model explicitly accounts for microcracking dur-
ing both quasi-instantaneous load application and sustained loading.
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Fig. 12. Simulation of the compressive strain evolution in the single-step basic creep
tests by Kammouna et al. [27] based on Eqs. (16) and (44), evaluated for material
roperties taken from Table 10: the red, green, and blue graphs refer to 𝑘 = 1, 2, 3

in Tables 6 and 9; and independently measured strains, see the circles; 𝑘 = 1, 2, 3
refers to the uncertainty regarding the strength of the concrete tested in [18], see also

ppendix B.1. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

The affinity model of Ruiz et al. [10], in turn, implicitly accounts
for microcracking during quasi-instantaneous load application, while

icrocracking during sustained loading is disregarded, see Eq. (1). In
order to demonstrate the significance of microcrack creation during
ustained loading at stress-to-strength ratios beyond the limit of ap-
licability of the affinity concept, the developed model is once again
mployed for the simulation of the basic creep tests from [18], [41],

and [27], but this time 𝑁𝜀 is set equal to zero, i.e. the new simulations
ccount for microcracking during quasi-instantaneous load application
ut disregard microcracking during sustained loading, see Fig. 13.

These additional simulations significantly underestimate the strains
easured during (i) the third load level of the multi-stage creep test

f [18], see Fig. 13(a), (ii) the single-step creep test of [41], performed
under 𝜎 = 33 MPa, see Fig. 13(b), and (iii) the single-step creep test
of [27], performed under 𝜎 = 42.2 MPa, see Fig. 13(c).

6.2. Micromechanical interpretation of the newly introduced damage fac-
or 𝛾

The damage factor 𝛾 accounts for orientational properties of the
microcrack network and for the size of the microcracks, see Eq. (13).
The values of 𝛾 are expected to decrease with decreasing values of
max 𝑑𝑎𝑔 𝑔 . Therefore, 𝛾 is to be identified for every specific concrete
of interest. And indeed, the 𝛾-values of the concrete tested by Rossi
et al. [18,41], with max 𝑑𝑎𝑔 𝑔 = 20 mm, are larger than the 𝛾-values of
he concrete tested by Kammouna et al. [27], with max 𝑑𝑎𝑔 𝑔 = 8 mm,
ee Table 10.

The strength of the concretes tested by Rossi et al. [18] and by
ammuna et al. [27] is uncertain. Three reasonable strength values
er creep tests study have been the basis for the presented analyses.
ncertainty propagation has led to related sets of reasonable values of

he degree of hydration, of the elastic modulus, of the creep modulus,
nd, finally of the damage factor. The labels 𝑘 = 1, 2, 3 used in Figs. 6

and 9 to 13 as well as in Tables 3, 4, 6, 9, and 10 refer to this uncer-
tainty propagation. Even tough this uncertainty exists, solid conclusions
can be drawn on mechanisms governing the nonlinear compressive
creep behavior of concrete. Before presenting these conclusions, the
limitations of the present study are discussed.

6.3. Limitations

The proposed continuum damage approach is reasonable as long
as microcracking occurs disorderly throughout the specimen, while
12
microcrack localization is beyond the limit of applicability. Notably,
localization of microcracking occurs either (i) close to the peak load in
a uniaxial compressive strength test [50], or (ii) in the tertiary regime
of a high-stress creep test, in which the macroscopic strain rate increases
with increasing time, leading to failure under sustained loading. In all
cases of time-invariant loading analyzed herein, however, the macro-
scopic strain rate decreases with increasing time. This is outside the
tertiary creep regime, and the assumption of diffuse microcracking is
reasonable, such that the presented model was operated within its limit
of applicability.

Given that localization of microcracking is beyond the limit of appli-
ability of the presented model, its adaptation to tension-dominated ex-
osure conditions appears to be out of reach, because tension promotes
icrocrack localization, see e.g. bending experiments on unnotched or
otched prisms [69]. In bending creep tests ending with failure under

sustained load, tensile microcracking (i) is detected in the primary
creep regime, shortly after the load application, (ii) vanishes during
the subsequent secondary creep regime, where measured deformation
increases virtually linearly with increasing time, and (iii) starts again
in the tertiary phase of creep, where microcracking clearly corresponds
to the growth of damage prior to failure [70]. When subjecting un-
otched and notched concrete beams to three point bending tests with

monotonous load increase up to failure, smaller microcracks with higher
requencies are dominantly generated up to the vicinity of the peak
oad, while larger fractures with lower frequency are observed near the
eak load and in the post-peak [71]. These observations imply that the

characteristic energetic ‘‘signature’’ of the population of acoustic events
changes during testing, and this change is likely related to the transition
from well distributed microcrack nucleation further away from the peak
oad, to propagation of already formed microcracks resulting in crack
oalescence close to the peak load. Modeling of localization phenom-
na calls for more advanced simulation techniques, such as nonlocal
r discrete lattice models [72,73]. The latter provide motivation for

introducing an internal length in continuum damage formulations [74],
i.e. a correlation length owing to spatial redistributions and interactions
during the failure process. This length varies with system size and
increases with increasing damage [73].

Additional limitations of the presented study refer to its scope. It
was focused on creep of mature concrete made from ordinary Port-
and cement, under constant moisture, maturity, and temperature. The
xtension to other cement chemistries, early-age creep, drying and/or
etting, aging, and variable temperatures are topics for future research.

7. Conclusions

The developed model for nonlinear creep of concrete is an ex-
ension of the affinity concept toward consideration of microcracking
uring sustained loading. From the results of the presented study, it is
oncluded that:

• there are two mechanisms governing nonlinear compressive creep
of concrete:

1. stress-induced activation (stick–slip transition) of gliding
viscous interfaces, at the nanostructure of cement paste;

2. microcracking during sustained loading, at a rate which
is virtually proportional to the strain rate, with a propor-
tionality factor that increases bilinearly with increasing
stress-to-strength ratio;

• mechanism 1, which leads to nonlinear viscoelastic behavior, was
identified herein by means of micromechanics relations between
Kelvin–Voigt-type rheological models for creep of concrete and
viscous shear-sliding of nanoscopic interfaces lubricated by con-
fined water; it is phenomenologically accounted for by the affinity
concept for nonlinear creep, see Eqs. (1) and (2);
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icrocracking during quasi-instantaneous load application but without accounting for microcracking during sustained loading; 𝑘 = 1, 2, 3 refers to the uncertainty regarding the

trength of concrete. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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• mechanism 2, which leads to damage of concrete, was identi-
fied herein by means of micromechanical relations between the
damage-induced increase of the compliance of concrete and the
creation of distributed microcracks during sustained loading; it is
of minor importance in the regime of stress-to-strength smaller
than some 50%, of moderate importance in the regime of stress-
to-strength between some 50% and some 70%, and of major
importance beyond;

• the number of microcracks created during both short-term load
application and sustained loading is directly proportional to dam-
age of concrete, provided that a micromechanics-inspired damage
model is formulated, in which (i) the number of microcracks is
directly proportional to the damage variable, and (ii) the damage
variable linearly increases the compliance (= the inverse of the
stiffness) of the material;

• the demonstrated model performance underlines that the newly
introduced damage factor 𝛾 is the larger, the larger the maximum
aggregate size. Still, the value of 𝛾 is independent of the applied
stress level, i.e. independent of the stress-to-strength ratio, and
the same value of 𝛾 can be used for microcracks generated during
both short-term load application and during sustained loading.
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Fig. A.14. Number of acoustic events as a function of the time-dependent strain for the stress-to-strength ratios of (a) 54%, (b) 59%, (c) 73%, (d) 75%, and (e) 80%.
Appendix A. Number of acoustic events during load plateaus, 𝑵𝜺,
as a function of the time-dependent strain

Figs. A.14(a)–A.14(e) show the number of acoustic events as a
unction of the total time-dependent strain, as experimentally obtained
n Figs. 4–8 of [18].

Appendix B. Estimation of the compressive strength at the age of
loading for each test

B.1. Multi-step test by Rossi et al. [18]

The strength of concrete at the age of 266 days, 𝜎𝑢𝑙 𝑡,266𝑑 , is estimated
based on the 28 day cube compressive strength [18], see Eq. (3), and
14
cylinder strength values of nominally identical concrete, determined at
material ages amounting to 7, 14, 28, 64, 90, and 180 days [41], see
Fig. B.15.

As for the first estimate, Table 5.1-3 of the fib Model Code [42]
is used to convert the 28 day cube compressive strength into the mean
value of the 28 day compressive strength. The obtained result, 𝜎𝑢𝑙 𝑡,28𝑑 =
37.4MPa, is extrapolated to 266 day s based on Eq. (5.1-50) of [42]:

𝜎𝑢𝑙 𝑡(𝑡) = 𝜎𝑢𝑙 𝑡,28𝑑 exp
[

𝑠

(

1 −
√

28 day s
𝑡

)]

. (B.1)

Evaluation of Eq. (B.1) for 𝑠 = 0.20, which is recommended for the used
strength class of cement [42], and for 𝑡 = 266 day s yields:
𝜎𝑢𝑙 𝑡 = 43.0 MPa . (B.2)
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Fig. B.15. Evolution of strength as a function of time for the concrete tested by Rossi
t al. [41]. The blue curve refers to the use of Eq. (B.1) with the optimized value of
= 0.30. (For interpretation of the references to color in this figure legend, the reader

s referred to the web version of this article.)

As for the second estimate, the 𝑠-value in Eq. (B.1) is optimized such
as to best reproduce the strength evolution of the nominally identical
concrete. This is inspired by Ausweger et al. [75], who showed that
most realistic 𝑠-values might deviate from the recommendations of the
fib Model Code. And indeed, the measured strength evolution is best
reproduced when using 𝑠 = 0.30, see Fig. B.15. Inserting this value
together with 𝑡 = 266 day s into (B.1) yields:

𝜎𝑢𝑙 𝑡 = 46.0 MPa . (B.3)

The third estimate is simply the average of the first two estimates,
see Eqs. (B.2) and (B.3):

𝜎𝑢𝑙 𝑡 = 44.5 MPa . (B.4)

B.2. Single-step tests by Rossi et al. [41]

The compressive strength of the tested concrete was obtained using
cylindrical samples at material ages of 7 days, 14 days, 28 days,
64 days, 90 days, and 180 days. As regards the creep test performed
at an age of 28 days, the strength measured at that same age was used:
𝜎𝑢𝑙 𝑡,28𝑑 = 39.9MPa. As regards the creep test performed at an age of
145 days, Eq. (B.1) and Fig. B.15 were used to interpolate between
measured data, yielding a value of 𝜎𝑢𝑙 𝑡,145𝑑 = 47.2MPa.

Data availability

No data was used for the research described in the article.
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