
ar
X

iv
:2

50
5.

24
61

8v
1 

 [
cs

.D
C

] 
 3

0 
M

ay
 2

02
5

DISTRIBUTED INTELLIGENCE IN THE COMPUTING CONTINUUM
WITH ACTIVE INFERENCE

Victor Casamayor Pujol
Universitat Pompeu Fabra

Barcelona, Spain
victor.casamayor@upf.edu

Boris Sedlak
TU Wien, Distributed Systems Group

Vienna, Austria

Tommaso Salvatori
VERSES AI

Los Angeles, USA

Karl Friston
University College London

London, UK

Schahram Dustdar
TU Wien, Distributed Systems Group Vienna, Austria

Universitat Pompeu Fabra Barcelona, Spain

ABSTRACT

The Computing Continuum (CC) is an emerging Internet-based computing paradigm that spans from
local Internet of Things (IoT) sensors and constrained edge devices to large-scale cloud data centers.
Its goal is to orchestrate a vast array of diverse and distributed computing resources to support
the next generation of Internet-based applications. However, the distributed, heterogeneous, and
dynamic nature of CC platforms demands distributed intelligence for adaptive and resilient service
management. This article introduces a distributed stream processing pipeline as a CC use case,
where each service is managed by an Active Inference (AIF) agent. These agents collaborate to
fulfill service needs specified by SLOiDs, a term we introduce to denote Service Level Objectives
that are aware of its deployed devices, meaning that non-functional requirements must consider
the characteristics of the hosting device. We demonstrate how AIF agents can be modeled and
deployed alongside distributed services to manage them autonomously. Our experiments show that
AIF agents achieve over 90% SLOiD fulfillment when using tested transition models, and around
80% when learning the models during deployment. We compare their performance to a multi-
agent reinforcement learning (MARL) algorithm, finding that while both approaches yield similar
results, MARL requires extensive training, whereas AIF agents can operate effectively from the start.
Additionally, we evaluate the behavior of AIF agents in offloading scenarios, observing a strong
capacity for adaptation. Finally, we outline key research directions to advance AIF integration in
CC platforms.

Keywords Compute continuum, Active Inference, Service Level Objective, Multi-agent

1 Introduction

The next generation of Internet-based applications is poised to change how we live as a society: Au-
tonomous driving will revolutionize urban transportation, demanding ultra-low latency to enable real-time decision-
making [Lin et al.(2018)]. E-Health applications will allow for remote and detailed patient care, but will also re-
quire local data processing to protect patient privacy [Makina et al.(2024)]. Fleets of robots will autonomously
clean and maintain city streets, ensuring efficient urban management [Zahidi et al.(2024)]. Resource usage, such
as electricity and water [Shahra et al.(2024)], will be optimized through advanced distribution systems, and AR/VR
technologies will reshape how we interact with people and objects, necessitating rapid processing of large data
streams [Sukhmani et al.(2019)]. All these applications share the need for near-real-time computations while pro-
cessing large amounts of data, which the Cloud alone cannot provide due to transmission latency [Hu et al.(2020)].

The Computing Continuum (CC) is considered by the community as the emerging platform with the potential ca-
pabilities to bring the required performance to these new applications [Beckman et al.(2020), Dustdar et al.(2023),

https://arxiv.org/abs/2505.24618v1


Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

Nardelli et al.(2024)]. Integral to this continuum are its inherent heterogeneity and dynamism, fundamental aspects
that must be addressed when developing effective management methods [Casamayor Pujol et al.(2023)]. These char-
acteristics impact multiple facets of the system. For instance, heterogeneity is present in the types of computing and
networking units, data modalities, system providers, and the variety of services within applications. Device hetero-
geneity, for example, hinders centralized auto-scalers because adaptations must be tailored to each device’s capac-
ity and characteristics [Zhang et al.(2019)]. Similarly, managing multiple system providers requires agreements and
methodologies that go beyond current Cloud solutions, which typically rely on a single provider handling the entire in-
frastructure [Casamayor Pujol et al.(2024)]. Dynamism, on the other hand, affects devices, networking capacities, user
demands, and system costs [Baek et al.(2020)]. Devices may have fluctuating capacities, making fast re-deployment
or computation offloading necessary [Hu et al.(2023)]. Furthermore, dynamic costs and the involvement of multiple
stakeholders require transparent rules to ensure fair and efficient application deployment and execution.

As a unified computing fabric that integrates all current computational tiers (i.e., IoT, Edge, Fog, and Cloud),
the CC paradigm holds great potential to meet application requirements by harnessing the strengths of each
tier [Beckman et al.(2020)]. The CC achieves this by placing the services’ elasticity strategies directly where they
are most needed, i.e., where services execute. Elasticity strategies refer to the ability of software services to adjust
their configuration in response to changing conditions to maintain performance [Fürst et al.(2018)]. In Cloud environ-
ments, a common elasticity strategy is scaling the number of service replicas. In the Computing Continuum, however,
strategies like offloading services to other devices or adapting the quality of data for processing are more common
and effective [Manaouil and Lebre(2020)]. Local adaptation of services becomes essential to ensure the necessary
performance for these applications, given the inherent heterogeneity and dynamism of the CC. This shift presents an
exciting opportunity to move beyond the current Cloud-inspired model, paving context sensitivity for more advanced
adaptation techniques.

Local adaptation implies that services must be able to monitor their status —what we refer to as Service Level Objec-
tives in Device (SLOiD)— as well as their surrounding environment, which includes other related services, the hosting
device, and even user behavior patterns. They need to analyze this information and then ask themselves: Is an elastic-
ity strategy necessary to improve current SLOiD fulfillment? If so, which one? Based on this analysis, services must
then adapt in real-time to meet current needs. This process requires services to continuously collect and interpret data
to infer both the system’s and the environment’s state. These real-time decisions are crucial for maintaining perfor-
mance but pose a complex planning challenge, as they must consider multiple factors and adjust actions on-the-fly. To
address this challenge, we leverage Active Inference (AIF) [Friston et al.(2016)], a probabilistic agent-based approach
that enables processing services to continuously adapt to a dynamic environment. From a technical perspective, AIF
is particularly apt for the multiple and federated constraint problem furnished by SLOiDs; AIF inherits from the free
energy principle, under which self-organisation is specified in terms of minimising surprisal or self-information. In
AIF, this surprise is specified in terms of the negative log probability of occupying a preferred or characteristic state.
Crucially, this means the objective function in AIF are functionals of probability distributions over outcomes — as
opposed to simple functions of outcomes per se, such as reward, utility or cost-to-go. This means that the specification
of constraints is naturally accommodated in terms of a probability distribution over all states or outcomes a system
can experience. Furthermore, because free energy is an extensive quantity, if all the agents in a distributed architecture
minimise their (expected) free energy, then the joint free energy of the ensemble is also minimised. This licences local
(planning as) inference. In what follows, we leverage these two fundaments of AIF in the context of CC.

This article presents an AIF multi-agent system for managing a pipeline of distributed services. Each service agent
is modeled as a partially observable Markov decision process (POMDP), which continuously evaluates its state and
selects self-adaptive actions in real-time to optimize performance. To the best of our knowledge, this is the first attempt
to use AIF and POMDPs in distributed processing pipelines of the CC. Hence, we present a detailed description on how
we leverage AIF to encourage others researchers to test this novel approach. In addition, we discuss a methodology
for integrating these agents into CC applications and provide a research roadmap outlining the requisite developments
to make this technology fully actionable for real-world environments.

The rest of this article is organized as follows. We present the background in Section 2 needed to follow the article,
specifically we discuss SLOiDs, POMDPs and AIF. Then, in Section 3 we introduce the overall vision for application
management in the CC based on the key idea of distributing intelligence throughout the platform. Section 4 presents
the methodology used to leverage AIF agents for a CC use case. The results of the experiments are presented in
Section 5, which are used in Section 6 as a starting point to describe future developments that need to be addressed to
use AIF in the CC. Afterwards, in Section 7 we present related work and summarize our findings in Section 8.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

2 Background

In this section, we discuss the three concepts that are fundamental to the contributions made in this paper. First,
we present SLOiDs as prevalent mechanisms for ensuring high-level service requirements. To ensure SLOiDs, we
highlight how AIF, an emerging framework from neuroscience, can support the necessary resilient decision-making.
In more detail, we introduce how these AIF-driven decision-making processes are modeled and optimized during
runtime using POMDPs.

2.1 Service Level Objectives in Devices – SLOiDs

In Cloud computing, the promised service quality between infrastructure provider and application developer is spec-
ified within a Service Level Agreement (SLA). There, both entities agree on specific service-related measurements
(Service Level Indicators - SLIs) that must behave in a specified manner (Service Level Objectives - SLOs), e.g., the
CPU utilization of a computing node must stay under 80% [Beltran(2016)]. Then, the number of good events, e.g.,
number of measurements where the CPU stayed under 80%, is divided by the number of valid events, e.g., num-
ber of measurements considered, for a determined period of time [Beyer et al.(2016)]. For a Cloud business model,
this value provides a notion of reliability of the service, which is used to define penalties (e.g., monetary compensa-
tions) for the infrastructure provider in case SLOs are violated. Indeed, the infrastructure provider will use elasticity
strategies, e.g., scaling system resources up, when the SLO is not being fulfilled to reestablish the system’s desired
behavior [Dustdar et al.(2011)].

SLO Fulfillment: A probabilistic estimate of the system’s performance which we aim to optimize. It is defined as the
fraction of good events divided by the valid events, computed over a given period of time.

Applications distributed over the CC pose a variety of requirements (e.g., latency and/or quality) that define how each
device and component should operate. However, contrarily to traditional Cloud computing, enforcing SLOs in the CC
requires orchestration over numerous heterogeneous devices [Nardelli et al.(2024)]. To capture the complexity this
adds, we extend the SLO definition and call them Service Level Objectives in Devices. In that regard, the key aspects
that characterize SLOiDs, also in relation to regular SLOs, are as follows:

• Hardware heterogeneity directly dictates SLOiDs feasibility. Unlike the abstracted and relatively homoge-
neous resources in traditional Cloud environments, the CC is characterized by hardware diversity. SLOiDs
cannot be practically defined without considering the specific capabilities and limitations (e.g., CPU power,
memory availability, energy constraints, network bandwidth) of the target deployment devices. For instance,
a latency SLO (e.g., response time below 50ms) achievable on a powerful Edge server is impracticable on
a resource-constrained IoT sensor. Therefore, SLOiDs must be tailored to specific device classes. Ignoring
this leads to perpetually unachievable objectives on lower-end devices or over-provisioning on higher-end
devices.

• Scarce resources necessitate decentralized SLOiDs evaluation. The limited processing power, memory, and
network bandwidth of CC devices make centralized, real-time monitoring, and evaluation of SLOiDs across
the entire CC impractical or impossible. Constantly streaming detailed metrics from numerous constrained
devices would overwhelm both the devices themselves (consuming scarce resources) and the network (caus-
ing congestion and increasing latency). Consequently, SLOiDs evaluation must be performed locally on the
device or at a nearby edge node. This hardware-imposed limitation forces SLOiDs definitions to rely on
metrics that can be efficiently computed and evaluated locally, potentially sacrificing global consistency or
fine-grained observability for the sake of feasibility.

• Constrained hardware necessitates incorporating SLOiDs elasticity trade-offs. On many CC devices, particu-
larly at the Edge and IoT layers, traditional cloud elasticity mechanisms like rapid scaling up/down or scaling
out instances are often not viable due to strict hardware resource limits, power constraints, or physical de-
ployment realities. To ensure service objectives, elasticity must involve adjustments in quality (e.g., reducing
data fidelity, frame rate) or performance (e.g., accepting higher latency). Therefore, SLOiDs and elasticity
strategies for services deployed on such hardware must be defined to anticipate and manage these trade-offs.
This could involve allowing graceful degradation under certain conditions, explicitly acknowledging that the
limitations of the hosting device may prevent consistently meeting a single, rigid target.

In summary, the heterogeneity and resource constraints of CC hardware are not just complicating factors; they are
fundamental characteristics that dictate:

1. What types of SLOiDs are best suited for each part of the continuum.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

2. How SLOiDs must be monitored and evaluated.

3. How SLOiDs must be defined to incorporate necessary trade-offs.

In the context of this work, fulfilling SLOiDs maintains the system in homeostasis, or equilib-
rium [Sedlak et al.(2024a)], as we called it in previous works. This is a preferred steady state that spans across
numerous devices and applications; in particular, SLOiDs can create hierarchies where the fulfillment is dependent on
multiple lower-level SLOiDs or processes [Casamayor Pujol et al.(2024)].

System Equilibrium: A computing system is in equilibrium if and only if all its SLOiDs are fulfilled.

Otherwise, if any SLOiD is violated, the system has lost its equilibrium; through controlled usage of elasticity strate-
gies, it is possible to return the system to its equilibrium state. For instance, imagine a service under high load that
violates its latency SLOiD, an elasticity strategy might throttle incoming requests or deploy an additional instance to
reduce load, thereby returning the service to its equilibrium state. Failing to intervene risks that the service breaks be-
yond any possibility to returning to an equilibrium state. Furthermore, the concept of equilibrium can be complex. A
system might possess multiple stable equilibrium states, each with different performance or efficiency characteristics.
Elasticity strategies could potentially be used not just for recovery, but also to explore and transition between these
states to optimize system operation.

2.2 Partially Observable Markov Decision Processes – POMDPs

A Markov-decision-process (MDP) is a time-discrete control process in which actions lead to partially random out-
comes due to the stochastic nature of the system. In general, it models the transition probability of a new state given
the current state of the system and the action of the agent. POMDPs generalize this to systems where the agent cannot
observe all states of the system directly, but only the generated outcomes, or observations. As a simple example, con-
sider an action that reduces the number of CPU cores available to a process; while this will affect the performance of
the process, the extent of the impact is uncertain, as it may depend on other variables that are not directly observable.
To address this kind of uncertainty, in our AIF agents for CC systems we will always specify the POMDP governing
the service.

MDPs are time-discrete control processes in which actions lead to partially random outcomes due to the stochastic
nature of the system.

In general, MDPs model the transition probability to a new state given the system’s current state and an agent’s action;
hence, MDPs satisfy the Markov property, as counts for POMDPs.

In the context of AIF, a POMDP is defined by a 7-tuple (S, U, B, O, A, C, D), where:

• S is the set of states for the agent

• U is a discrete set of actions

• B are the state transition model

• O is the set of observations

• A are the conditional observation probabilities

• C is the set of preferred outcomes

• D is the belief over the initial agent’s state.

For many challenging problems, representing the state S as a single, atomic label is inadequate. Real-world situations
often involve multiple interacting factors that influence the system’s evolution. For instance, whether a computation
finishes on time might depend on both its computational complexity and the current availability of system resources.
To handle such intricacies, we often employ a factored representation. In this approach, the overall state space S is
defined as the Cartesian product of multiple state factors or modalities: S = S1 × S2 × . . . SN . Thus, a specific
state s is defined as tuple s = (s1, s2, . . . , sN ), where each element si represents the value of the i-th factor (e.g.,
resource level, computation complexity) within its respective domain Si. This factored structure naturally leads to
representations of the transition (B) and observation (A) matrices that capture the interplay between these factors,
often exploiting conditional independencies for a more compact and interpretable model.

The state transition models (B) They define the dynamics of the system, modelling p(st+1|st, ut), which is the
probability of transitioning to state st+1 given the current state st and action ut. In the simple case with a single state



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

modality (N = 1), B can be viewed as a 3-tensor of shape (|S|, |S|, |U |), where |S| is the number of states and |U |
is the number of actions. When the state is factored into N modalities, st = (st,1, . . . , st,N ), representing the full
transition function p(st+1|st, ut) as a single high-dimensional tensor becomes impractical both computationally and
for descriptive purposes. The size of such a tensor would grow exponentially with the number of modalities N . To
manage this complexity, we utilize the factored nature of the state space to represent the transition dynamics B in a
structured and compact manner [Boutilier et al.(1999)]. This is commonly achieved using a factored representation,
often based on a Dynamic Bayesian Network (DBN). The underlying assumption is that the state of a single modality
at the next time step, st+1,i, typically depends only on a limited subset of state modalities at the current time step
t (denoted as its parents, Pa(si) ⊆ {st,1, . . . , st,N}) and the action ut. Therefore, instead of defining one large
tensor B, the transition model is specified by defining, for each modality i, its Conditional Probability Table (CPT):
P (st+1,i|Pa(si), ut). These CPTs describe the local dependencies and how each modality evolves based on its spe-
cific influencing factors. These dependencies can be informed by an analysis of the system’s behavior, such as the
interdependencies illustrated in Figure 3. A precise definition of these CPTs requires identifying the relevant parent
variables Pa(si) for each si and quantifying their influence. Fortunately, the AIF framework allows for learning these
parameters from interactions. In this work, we explore both expert-based specification and AIF-learned approaches
for constructing the parameters of the factored transition model (B), assessing their respective challenges, benefits,
and limitations. Notice that in Section 4.1, where the POMDPs for all agents are defined, we will specify the DBNs
for each factor and the specific rules detailing the CPTs can be found at the Appendix.

The conditional observation probabilities (A) They define the likelihood of receiving a specific observation ot
given the system is in state st. That is, they model the distribution p(ot|st). This likelihood function is crucial for the
agent, as its goal is typically to invert this mapping via inference (e.g., using Bayes’ theorem) to estimate the hidden
state st based on the observed outcome ot. In its matrix form, A typically has dimensions (|O|, |S|), where |O| is
the number of possible observations and |S| is the number of states. In this work, however, we make a simplifying
assumption of perfect sensing, meaning the observations correspond directly to the underlying states (ot = st). We
justify this assumption based on two primary reasons pertinent to our application domain. First, for the system under
study, we possess full observability over the variables constituting the state representation. For example, we do not
need to infer internal states like GPU usage from indirect measurements; we can directly monitor the relevant system
parameters. Second, the precision of sensor data obtainable from modern computing devices is generally high relative
to the granularity of our state representation. Since we employ categorical variables with reasonably large bins for
discretization, the inherent measurement precision typically does not necessitate a complex sensor noise model within
our POMDP framework. Consequently, for the agents defined in Section 4.1, the observation likelihood A reduces to
an identity mapping. In the context of our factored state space s = (s1, . . . , sN ), this means that for each modality
i, the observation oi perfectly reveals the state si, making the observation function an identity matrix for each factor.
It is important to acknowledge that this perfect sensing assumption should be relaxed when modeling more complex
scenarios involving significant partial observability or latent variables that must be inferred indirectly. Examples
include tasks requiring the inference of hidden user intentions or internal states of external systems (e.g., inferring the
success of a remote machine learning service based on subsequent user interactions). For such problems, defining a
non-identity A matrix becomes essential.

Preferred Outcomes (C) This refers to a subset of possible outcomes that the agent aims to observe as a result of
its actions. In our case, the fulfillment of SLOiDs is clearly a preferred observation for the agents. Note that preferred
outcomes are not represented as probability distributions, but rather as log-probabilities. The preferred outcomes can
be adjusted as the agent and the environment evolve, showing that preferences can change according to the current
states.

Initial state (D) This component encodes the agent’s belief over its initial state for each state modality. In this work,
the initial state is randomized, but it can be specified to enforce particular scenarios if needed.

2.3 Active Inference – AIF

AIF is a corollary of the Free Energy Principle (FEP), that describes how agents resolve uncertainty in their un-
derstanding of the world by minimizing their variational free energy [Parr et al.(2022)]. More generally, the FEP
applies to all kinds of adaptive agents that learn accurate world models, also called generative models, because
they allow agents to understand and interpret observations generated by unobservable latent variables. Hence,
agents are able to minimize the discrepancies between their generative model and the actual generative pro-
cess that governs the environment [Friston(2013)]. To minimize their free energy, agents take epistemic actions
that allow them to resolve uncertainty, but they also change the environment to move it into a state that ful-
fills its internal preferences, achieving homeostasis. This describes the exploration-exploitation tradeoff inherent



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

to agent-based systems. For more details about the FEP, the interested reader can check the following references
[Friston et al.(2016), Kirchhoff et al.(2018), Friston et al.(2009), Friston et al.(2024b)].

In AIF, agents compute the expected free energy (EFE) for different policies (π), which are sequences of actions
considered over various planning horizons. This allows agents to simulate their plan by computing the EFE for each
action in the policy and selecting the one that minimizes EFE over the entire policy. In that regard, the policy length
(pl) represents the number of time steps ahead that the agent simulates when evaluating policies. A longer pl allows the
agent to consider more downstream consequences of actions when minimizing the EFE over the entire policy horizon.
This means the optimal policy selected might involve an initial action that is not myopically optimal but enables lower
EFE overall. However, increasing pl significantly increases the computational resources required for planning. The
EFE can be broken down into two main components:

EFE = −

Pragmatic Value︷ ︸︸ ︷
EQ(o|π)[lnP (o|C)]−

Information Gain︷ ︸︸ ︷
EQ(o,s|π)DKL [Q(s|o) ∥Q(s)] (1)

Here, the pragmatic value (pv) reflects the expected log probability, given the approximated world model (or, the
posterior distribution) Q, of obtaining a desirable observation o under a specific policy π. The information gain (ig)
represents the expected reduction in uncertainty (that is, the expected model improvement), expressed as the expected
Kullback-Leibler divergence (DKL) between the prior belief about the world state s, and the posterior belief computed
after obtaining a new observation. By balancing these factors, a policy that minimizes EFE not only achieves desired
outcomes in the short term, but also enhance the agent’s understanding of the environment, leading to improved
decision-making in the longer term. Hence, AIF ensures an accurate model for decision-making, allowing agents to
persist over time [Palacios et al.(2020)]. Specifically for CC systems, this ensures long-term SLOiD fulfillment. This
capability, closely related to lifelong learning, allows AIF agents to make decisions under uncertainty or dynamically
changing environments. In particular, continuous exploration would foster alternative ways of scaling a service, and
thus, increases its resilience.

3 Vision

Large scale computing systems, such as the CC, require mechanisms that underwrite each component’s requirements
in a decentralized manner. In this context, we want to highlight the term distributed intelligence, as it encompasses
numerous concepts that are essential for achieving an equilibrium in distributed computing systems.

3.1 Distributed Intelligence

Contrarily to central Cloud services, the logic in CC systems is distributed over a widespread computing infrastructure.
Figure 1 gives an intuition of a CC architecture that comprises multiple tiers, such as the IoT, and multiple computing
layers from Edge, over Fog, up to the Cloud. As data travels from the IoT towards larger data centers, devices along
the streaming pipeline can process the data through a network of microservices. Each processing service is supervised
by a dedicated AIF agent that is responsible for (1) continuously evaluating SLOiD fulfillment and (2) taking actions
whenever SLOiDs are violated, e.g., scaling the resources or quality of services. For taking actions, each agent uses
a generative model that allows it to interpret the processing environment. Further, AIF agents (3) communicate and
collaborate among themselves to exchange information (e.g., learned models or context) or actual workloads.

3.2 Problem description

Consider an application deployed within the CC that consists of three services organized in a pipeline. Each service
performs a specific task, but they are interdependent, forming a sequential workflow. Using AIF agents, we will show
how these services can autonomously adapt in a decentralized manner while cooperating to help each other achieve
their objectives.

The use case consists of three services, which we refer to as the Producer, Worker, and Consumer, according to their
position in the processing pipeline. Consider that the three services can form a chain in a smart city use case, where
each service is hosted on different devices distributed across a city; this is also depicted in Figure 2:

The Producer service is attached to a video camera, interacting with the camera to prepare and send batches of images
to a downstream service for further processing. The Worker service, deployed on an Edge server, performs tasks such
as face detection and blurring to preserve pedestrian anonymity. Once the images are processed, they are sent to the
final user of the image stream. The Consumer service runs on a smartphone or in an autonomous vehicle for traffic
analysis, ensuring that the client’s quality of experience (QoE) requirements are met to maintain user satisfaction with
the overall application.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

Edge Computing

stream raw data

adjust device

stream processed data

exchange information
resolve service states

IoT Tier Fog / Cloud Computing

Distributed Active Inference Agent #2

Latency
Energy

Service Level Objectives (SLOs) Interpretation
Model

Pr
oc

es
si

ng
 L

ay
er

In
te

llig
en

ce
 L

ay
er

Latency
Energy

Service Level Objectives
in Device (SLOiDs)

Interpretation
Model

adjust service

request change

adjust
service

DAI Agent #1 DAI Agent #3

offload computation

Figure 1: High-level vision of distributed intelligence in computing continuum systems; each processing service is supervised by
a distributed AIF agent that evaluates on-device requirements, communicates with other AIF agents to exchange information and
resolve states of other components, and takes action whenever SLOiDs are violated to restore the system equilibrium.

App data App data

Worker Consumer

FPS requests
FPS and Resolution request

Video Configuration Timely computation QoE control

Producer

Responsibilities:

Internal communication:

Services

Figure 2: Smart city service pipeline from data producer to consumer. The Producer provides a video stream and adapts its
configuration according to the needs of the Worker or Consumer. The Worker performs latency-sensitive processing, while the
Consumer ensures QoE by influencing the configuration of upstream components.

Each service must fulfill a different set of SLOiDs and have different actions available. The Consumer SLOiDs are
focused on controlling the user’s Quality of Experience (QoE). Three are defined: the first, named Success, ensures
that the service has correctly fulfilled its goal, e.g., the correct application of a privacy filter to each video frame. The
second, Smoothness, measures the quality of the video stream by assessing the smoothness of consecutive frames.
The third SLOiD, C-consumption, monitors the energy consumption of the service, including the extra cost needed to
communicate with other services. The Consumer service has a single action available (Toggle comm), which consists
of enabling or disabling the communication channel with the Producer service in order to request a change on the
video stream configuration, i.e., changing the frames per second or the resolution.

The Worker processes the video stream as a batch of images received within a specified deadline. The SLOiD Latency,
ensures that the processing time for each batch remains below a given threshold. Like the Consumer, the Worker also
has a W-consumption SLOiD, which tracks its energy consumption and the overhead associated with communicating
with other services. Note that in both cases, communication refers to non-functional data exchange that improves
control over SLOiDs. The Worker has two actions available: it can switch on and off its GPU in order to accelerate the
images processing (Switch GPU), notice that this is only possible when the deployment host has an available GPU.
Second, it can enable or disable the communication channel (Toggle comm) with the Producer service to request a
change on FPS configuration of the video stream.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

The Producer records the video stream with specific configurations and sends the images to the Worker. As the
service with direct control over the recording settings, the Producer ’s non-functional objective is to adjust the video
configuration to satisfy both the Worker and the Consumer. Therefore, its three SLOiDs are Worker satisfaction with
FPS (WF), Consumer satisfaction with FPS (CF), and Consumer satisfaction with Resolution (CR). When the
Producer does not receive any request from the Worker or the Consumer or the request is not to change anything,
the SLOiDs are considered fulfilled. The Producer has 2 possible actions which consist of changing the resolution
(Change resolution) and the FPS (Change FPS) of its attached camera.

Table 1: Summary of the defined SLOiDs for the three AIF agents
Producer Worker Consumer

Description Description Description
Worker satisfaction with FPS WF Processing time Latency Correct application of the privacy filter Success
Consumer satisfaction with FPS CF Energy consumption of the service W-consumption Quality of the final video stream Smoothness
Consumer satisfaction with resolution CR Energy consumption of the service C-consumption

4 Methodology

In this article, we demonstrate how intelligence can be distributed across CC services by modeling agents using
AIF, enabling them to manage services autonomously and collaboratively, an essential capability for decentralized
application management in the CC. Now, we formally define the AIF agents as POMDPs, describe the tools and
simulation setup, and conclude with a description of the experiments.

4.1 POMDPs definition

4.1.1 Producer’s POMDP model

State modalities (S) The Producer’s state (S) contains five modalities. Three of them are SLOiDs: WF, CF, and
CR, as in Table 1. The other two state modalities are FPS and Resolution. The WF, CF, and CR modalities can each
take three state values: Increase, Stay, and Decrease. The Stay value is assumed when no message is received from
either the Consumer or the Worker, as if they are satisfied with the current value. The FPS modality can take the values
{12, 16, 20, 26, 30}, and the Resolution modality can take the values {120p, 180p, 240p, 360p, 480p, 720p}. Figure 3
illustrates the modalities and actions of the Producer, and how they influence the state modalities at the next time step.
This can be interpreted as a Dynamic Bayesian Network (DBN) representing the evolution of the Producer ’s state
modalities, with the assumption that the relationships between variables remain fixed at each time step.

FPS WF / CF

WF / CF

Change 
FPS

State variable

Producer
Service

SLOiD

Action

CR

Change
Resolution

Resolution
CR

FPS

Change
FPS

FPS

Resolution
Change

Resolution

Resolution

t t+1t t+1t t+1

Figure 3: Producer ’s DBN. The model includes five modalities, two of which behave identically and are therefore grouped together
in the figure. The colors correspond to the services each modality is associated with.

Actions (U) The Producer ’s action set (U) consists of two actions, each with three possible values.

1. Change FPS: Increase, Stay, and Decrease the FPS current value.

2. Change resolution: Increase, Stay, and Decrease the Resolution current value.

Consider that to limit the exponential growth of possible actions, both Increase and Decrease modify the current value
by one step, e.g., increasing resolution from 120p to 180p.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

State Transition Model (B) The dependencies defining the transition probabilities B for each state modality, given
other system states at time t and actions ut, are illustrated in Figure 3. We define the Conditional Probability Tables
(CPTs) for each modality using the rules described in Appendix A. For the alternative case where the AIF agent learns
the transition parameters, the CPTs are initialized with uniform probability distributions instead of the deterministic
rules. However, the underlying DBN structure defining the dependencies (as shown in Figure 3) remains identical
in both the expert-defined and learned models. This applies for the 3 POMDP models described, i.e., the Producer,
Worker, and Consumer.

Observations (O) The set of observations represents the possible outputs of the external environment, produced
after an action u ∈ U has been taken. As explained earlier, in this work we are assuming a perfect sensing. That is, an
identity mapping between states and observations. To this end, the set of observations (O) for the agent is equivalent to
the set of states (S). Consequently the likelihood mapping A is defined as a set of identity matrices, one per modality.
This applies for the 3 POMDP models described.

Preferred Ouctomes (C) In this work, we consider the Producer to have no preferences over the FPS and Res-
olution sets. The preferred outcomes of the requests from the Worker and the Consumer are to receive a Stay,
meaning their configuration requests are satisfied. More in detail, the vectors are initially defined as follows:
CWF = {0.25, 1.5, 0.25}; CCF = {0.5, 3.0, 0.5}; and CCR = {0.5, 3.0, 0.5}. It is worth mentioning that the re-
quests from the Consumer have a higher maximum value than the ones of the Worker, to indicate the ultimate goal
is achieving satisfaction at the end of the pipeline, and considering that the Worker might have other capabilities to
satisfy its goals.

Initial state (D) We consider the initial state to be unknown, its values are uniformly distributed adding up to 1. This
applies for the 3 POMDP models described.

4.1.2 Worker’s POMDP model

State modalities (S) The Worker has six state (S) modalities. Two of them are SLOiDs: Latency and W-
consumption, as in Table 1. The others are state variables: Execution Time, FPS, Share Information, and GPU,
all can be seen in Figure 4. Each modality can take specific values based on the system’s behavior. Latency is a
boolean modality: it takes the value True when the computation is completed within the deadline, and False when the
computation exceeds the deadline. Execution Time is a categorical modality representing the time required to com-
plete the computational task. It can take the values {LOW, MID-LOW, MID, MID-HIGH, HIGH}, corresponding to
the following durations in milliseconds: (0 , 15], (15 , 30], (30 , 45], (45 , 60], and (60 , ∞). The FPS state modality
is defined as for the Producer. W-consumption is a state modality that reflects the energy consumption of the de-
vice, considering GPU usage and the activation of the upstream communication channel. The levels are LOW, MID,
and HIGH, corresponding to an overall consumption below 7W, between 7–8W, and above 8W, respectively. Share
Information is a boolean state modality that is True when the upstream communication channel is active, allowing the
Worker to communicate with the Producer, and False when it is disabled. GPU is also a boolean state modality: it is
True when the GPU is on and False when it is off.

Execution time
GPU

Execution
time

Switch GPULatency
Toggle
Comm.

Latency

FPS
FPS

Switch
GPU

GPU

W-Consumption

Toggle Comm.

Share Info.

W-Consumption

Toggle Comm.

Share 
Info.

Switch
GPU

GPU

Share Info.

GPU
State variable

SLOiD

Action

Worker
Service t t+1 t t+1 t t+1t t+1

Figure 4: Worker ’s DBN. The model includes six modalities, two of which are SLOiDs. The colors correspond to the services each
modality is associated with.

Actions (U) The Worker’s action set (U) consist of two actions:

1. Switch GPU: Switch off and Switch on modifies the GPU current state and Stay keeps the current state.
2. Toggle comm: Enable and Disable the upstream communication channel.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

State Transition Model (B) The dependencies defining the transition probabilities B for each state modality, given
other system states at time t and actions ut, are illustrated in Figure 4. We define the Conditional Probability Tables
(CPTs) for each modality using the rules described in Appendix B.

Preferred Outcomes (C) There are no preferred outcomes for the FPS, the Share Information, or the GPU, hence
they are initialized as a vector of zeros. The Latency preferred outcome is True, hence the vector is defined C Latency =
{0.1, 3}. The Execution Time prefers values that are MID or below, the vector is: C Exec. Time = {3, 2.5, 2, 0.25, 0.1}.
Finally, the W-consumption is expected to be LOW or MID, its vector is: C W-consumption = {3, 2.5, 0, 5}

4.1.3 Consumer’s POMDP model

State modalities (S) The Consumer’s state (S) consists of six modalities. Three of them are SLOiDs: Success,
Smoothness, and C-consumption, as in Table 1. The other three are system variables: FPS, Resolution, and Share
Information, as can be seen in Figure 5. Each modality can take specific values based on the system’s behavior.
Success is a boolean modality: it takes the value True if the service has properly applied the privacy filter, and
False otherwise. Smoothness is a categorical state modality representing the distance shift of a pixel between two
consecutive frames. It can take the values (SHORT, MID-SHORT, MID, MID-LONG, LONG), which correspond to a
pixel movement of (0−25], (25, 50], (50, 75], (75, 100], (100,∞) pixels. The C-consumption modality is defined as
for the Worker, but without the influence of the GPU status, only considering the device’s energy consumption and
the activation of upstream communication. Both the FPS and the Resolution state modalities are defined similarly to
those for theProducer. Finally, the Share Information is defined in the same way as for the Worker.

t t+1

Success Smoothness

Resolution

Toggle
Comm.

Success

FPS

Toggle
Comm.

Distance

C-consumption

Share
Info.

C-consumption
Toggle
Comm.

FPS

Toggle
Comm.

Resolution

Share
Info.

FPS

Resolution

Share Info.
State variable

SLOiD

Action

Consumer
Service t t+1 t t+1 t t+1

Figure 5: Consumer ’s DBN. The model includes six modalities, three of which are SLOiDs. The colors correspond to the services
each modality is associated with.

Actions (U) The Consumer action set (U) consist of:

1. Toggle comm: Enable and Disable the upstream communication channel.

State Transition Model (B) The dependencies defining the transition model B for each state modality, given other
system states at time t and actions ut, are illustrated in Figure 5. We define the Conditional Probability Tables (CPTs)
for each modality using the rules described in Appendix C.

Preferred Outcomes (C) There are no preferred outcomes for the FPS, Resolution, or Share Information, so their
vectors are all zeros. The Success preferred outcome is True, hence the vector is as follows: C Success = {0.25, 3}.
The Smoothness preferred outcome is MID or lower, so the vector is: C Smoothness = {3, 2.5, 2, 0.5, 0.1}. Finally, the
C-consumption preferred outcome is MID or lower, so the vector is: C C-consumption = {3, 2.5, 0.5}.

4.2 Tools and simulation setup

In this section we present the AIF library used, the dataset, the key elements of the simulation process.

4.2.1 Active inference with pymdp

All experiments in this article are conducted using pymdp [Heins et al.(2022)], which is a Python library that simplifies
the implementation of AIF agents. pymdp provides a set of classes and methods for modeling, inference, learning, and



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

control: the core class, Agent, allows to define an AIF agent, whose methods provide the key functionalities needed
for AIF agents, such as policy/action selection, state inference, and parameter learning.

It is important to note that the type of actions performed by the agents, as well as the complex relationships between
state modalities and actions, are not commonly encountered in standard AIF scenarios. Therefore, the version of
pymdp used for this work was based on a customized fork from GitHub1, which is specifically adapted to handle these
types of complex state transitions.

4.2.2 Dataset

The dataset are the traces of the processing environment of the pipeline of streaming services. The traces have been
recorded using different hardware to account for the diversity of the CC. The dataset records various system param-
eters, including execution time, CPU utilization, memory usage, energy consumption, image resolution, frames per
second (FPS), the success of the privacy model, the smoothness between consecutive frames, the type of device, and
GPU usage in the described pipeline. So, it provides all the required data to rebuild the use case for this article. The
dataset is publicly available on GitHub2.

The use case described here is similar to that presented in [Sedlak et al.(2024a)], in the sense that it consists of multiple
sequential processing services. However, whereas in [Sedlak et al.(2024a)] the AIF agent controls the entire system, in
this paper, each service is associated with an autonomous agent, making the system both multi-agent and decentralized.

Further, the dataset was generated by independently adjusting key system parameters —image resolution, video frame
rate, and GPU status— providing an independent set of behaviors for each parameter combination. This makes the
dataset particularly well-suited for our simulation experiments, as it allows us to model independent behaviors and
interactions between variables.

The dataset is used to simulate different operational scenarios for the pipeline, helping to validate the performance
of the active inference agents under varying conditions. Since the dataset missed few combinations of resolution
and FPS, some missing FPS values were approximated. Specifically, the missing FPS values were interpolated by
averaging the neighboring values. The standard deviation of these neighboring values was also considered to ensure a
realistic approximation of the missing data.

4.2.3 Simulation

Several simulation experiments are conducted to identify the gaps needed to leverage active inference in the context
of Computing Continuum system, to make distributed intelligence a reality. Combining both disciplines (AIF and the
CC) presented various challenges, and running experiments helped us to better understand how they can be integrated
effectively. The code for these simulations can be found in the following GitHub Repo3.

Each experiment was run for 200 time steps and repeated at least 10 times to account for the variations in initial
conditions. These correspond to the initial values of the system’s parameters: image Resolution, FPS, GPU status,
Worker sharing information, and Consumer sharing information. Randomized initial configurations are used in every
repetition ensuring that agents could start in diverse states, including possible equilibrium states where no immediate
action is required.

The simulation process can be summarized as follows:

1. Initialization. At the beginning of each experiment, the agents’ initial state and parameters are set randomly.
2. Policy computation. Each agent computes the best policy according to the active inference framework, i.e.,

a policy that minimizes the EFE.
3. Action selection. The agents selects the first action and applies it to the system. Consequently, the environ-

ment and the system changes. It is important to remark that agents can take all available actions at each time
steps, meaning that the Producer can simultaneously change the resolution and the FPS of the camera.

4. New Observation. The environment generates a new observation for each agent by sampling from the
dataset; this sample need not follow a temporal sequence but must correspond to the result of the chosen
action.

5. Infer state and learn parameters. Based on these new observations, agents can infer their new state and
learn the parameters of the transition model.

1https://github.com/ran-wei-verses/pymdp
2https://github.com/borissedlak/analysis/tree/main/data, last accessed on April 25th, 2025
3https://github.com/vikcas/AIF for CC

https://github.com/borissedlak/analysis/tree/main/data


Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

6. Repetition. At this point a new policy is computed, repeating the cycle for 200 times.

4.3 Evaluation

During the experiments, we evaluated two key aspects:

• SLOiDs fulfillment rate. The agent’s ability fo meet its service goals. For visualization purposes, at each
time step the cumulative SLOiD fulfillment rate is shown.

• Expected Free Energy. A measure used by AIF to assess their performance in terms of selecting the action
that helps them improve their model while fulfilling the SLOiDs, see Equation (1).

Each agent has the following SLOiDs fulfillment criteria:

• Producer: WF, CF, and CR = { Stay }
• Worker: W-consumption ≤ { MID } and Latency = { TRUE }
• Consumer: Success = { TRUE }, Smoothness and C-consumption ≤ { MID }

4.3.1 Experiments

We conduct five experiments to assess the suitability of AIF agents for autonomous and distributed management of
SLOiD fulfillment across the service pipeline.

SLOiD fulfillment This experiment evaluates how the three AIF agents fulfill their respective SLOiDs by selecting
appropriate actions given each state of the environment. We fix the policy length to 3 and use the defined transition
model. Results are presented in Section 5.1.

Learning the transition model This experiment assesses the impact of learning the transition model (B) on the
agent’s performance. We again set the policy length to 3, use the default learning parameters from the pymdp library,
and initialize the transition model with B matrices, each containing a uniform distribution over transitions from any
current state to the next. Results are presented in Section 5.2.

Comparison to multi-agent reinforcement learning This experiment uses the same environment than the 2 previ-
ous experiments, but the SLOiDs are controlled by 3 reinforcement learning-based agents. We use an algorithm from
the state-off-the-art named Proximal Policy Optimization [Schulman et al.(2017)] and compare the results with the
previously obtained as a baseline for the AIF agents. Results are presented in Section 5.3.

Heterogeneous hardware This experiment explores the response of the AIF agents to severe environment changes,
mimicking as if they were redeployed in different hardware. To do so, after 75 time-steps into controlling the services
in a specific device, they are change to a different one. We see both the dynamic adaptation of the system, as well as
the need of adapting the SLOiDs to the pair service-hardware. Results are presented in Section 5.4

Computing cost This experiment analyzes the computational cost and the resulting performance of AIF agents. We
compare the initial results obtained to those obtained with a shorter policy length. We have seen that given the same
models, the policy length has a large effect on the computational cost. Results are presented in Section 5.5.

5 Results

5.1 SLOiD fulfillment

This experiment assesses the agents’ ability to select appropriate actions based on expert-defined transition models.
As shown in Figure 6, all agents stabilize their SLOiDs fulfillment rates around 50 steps. However, the Worker agent
clearly struggles more to achieve high SLOiDs fulfillment rates compared to the others. This reduced performance
is primarily due to the competing SLOiDs integrated into its model. Specifically, the W-consumption mandates
switching off the GPU and communication channel, while the Latency requires them to be switched on if the proper
setting of the camera is not selected. In addition to its lower maximum SLOiD fulfillment rate, the Worker agent also
exhibits greater performance variance. This higher variance may stem from the Producer ’s preference for prioritizing
the satisfaction of the Consumer over that of the Worker. As a result, even if the Worker consistently selects optimal
actions, the outcome may not meet expectations, depending on the requests from the Consumer to the Producer.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0
S

LO
iD

s 
fu

lfi
llm

en
t r

at
e

WF
CF
CR

(a) Producer SLOiDs fulfillment rate for
WF, CF, and CR.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

W-consumption
Latency

(b) Worker SLOiDs fulfillment rate for
Latency and W-consumption.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

C-consumption
Success
Smoothness

(c) Consumer SLOiDs fulfillment
for Success, Smoothness, and C-
consumption.

Figure 6: SLOiDs fulfillment rate with no B parameter learning and policy length of 3.

5.2 Learning the transition model

Figure 7 shows the SLOiD fulfillment rate for each AIF agent in a variation of the previous experiment where agents
must select actions to fulfill SLOiDs while simultaneously learning the transition model. In comparison with the
results from the previous experiment (Figure 6), we observe that all agents stabilize their SLOiD fulfillment rates
also around the 50 time steps. The overall fulfillment rate of the agents is lower than in the previous case. This
indicates increased difficulty in finding performance-maximizing policies when the model is unknown and must be
learned online. For example, agents Producer and Consumer, which reached nearly 100% fulfillment in the previous
experiment, are around 80-90% in this learning scenario. An interesting observation is that in these learning trials, the
Worker agent appears to prioritize the Latency over W-consumption, resulting in better fulfillment rates compared to
its performance in the previous experiment with the expert model.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

WF
CF
CR

(a) Producer SLOiDs fulfillment rate for
WF, CF, and CR.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

W-consumption
Latency

(b) Worker SLOiDs fulfillment rate for
Latency and W-consumption.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

C-consumption
Success
Smoothness

(c) Consumer SLOiDs fulfillment
for Success, Smoothness, and C-
consumption.

Figure 7: SLOiDs fulfillment rate with B parameter learning and policy length of 3.

5.3 Comparison to multi-agent reinforcement learning (MARL)

The same three agents were implemented within a multi-agent reinforcement learning (MARL) framework using
RLlib [Liang et al.(2018), Wu et al.(2021)] and the PPO algorithm [Schulman et al.(2017)]. Consistent with the AIF
experiments, we did not fine-tune any parameters, allowing us to assess each method’s general capabilities in this
scenario. We consider two distinct training regimes: minimal (400,000 time steps) and extensive (40 million time
steps), mirroring the exploration of two scenarios with the AIF agents. Evaluation is performed over 200 time steps.
The reward function of each agent is computed by assigning a reward for every SLOiD it fulfills. Therefore, actions
that lead to fulfilling more SLOiDs result in higher rewards.

Figure 8 shows the SLOiD fulfillment rates for all the MARL agents. The top three plots (Figures 8a, 8b, and 8c)
correspond to agents trained under the minimal training regime. In this case, their performance is clearly lower than
that of the AIF agents. The Producer agent fails to stabilize consumer satisfaction with resolution, and the Worker
agent shows a declining trend in fulfilling the W-consumption SLOiD. In contrast, the three plots at the bottom
(Figures 8d, 8e, and 8f) correspond to the extensive training regime, where agents have acquired sufficient knowledge
of the environment to consistently fulfill all their SLOiDs.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

Although this article does not aim for a direct comparison between the two approaches, it is worth noting the significant
data efficiency of the AIF agents. Specifically, the learning AIF agents achieved their results with less than 200 time
steps of runtime data, a stark contrast to MARL agents which model the environment through neural networks, which
typically require large amounts of data.

0 50 100 150 200
Time steps

0.4

0.6

0.8

1.0

SL
Oi

D 
fu

lfi
llm

en
t r

at
e

WF
CF
CR

(a) Minimally trained MARL Producer
agent. SLOiDs fulfillment rate for WF,
CF, and CR.

0 50 100 150 200
Time steps

0.4

0.6

0.8

1.0

SL
Oi

D 
fu

lfi
llm

en
t r

at
e

W-consumption
Latency

(b) Minimally trained MARL Worker
agent. SLOiDs fulfillment rate for La-
tency and W-consumption.

0 50 100 150 200
Time steps

0.4

0.6

0.8

1.0

SL
Oi

D 
fu

lfi
llm

en
t r

at
e

C-consumption
Success
Smoothness

(c) Minimally trained MARL Consumer
agent. SLOiDs fulfillment for Success,
Smoothness, and C-consumption.

0 50 100 150 200
Time steps

0.4

0.6

0.8

1.0

SL
Oi

D 
fu

lfi
llm

en
t r

at
e

WF
CF
CR

(d) Extensively trained MARL Producer
agent. SLOiDs fulfillment rate for WF,
CF, and CR.

0 50 100 150 200
Time steps

0.4

0.6

0.8

1.0

SL
Oi

D 
fu

lfi
llm

en
t r

at
e

W-consumption
Latency

(e) Extensively trained MARL Worker
agent. SLOiDs fulfillment rate for La-
tency and W-consumption.

0 50 100 150 200
Time steps

0.4

0.6

0.8

1.0

SL
Oi

D 
fu

lfi
llm

en
t r

at
e

C-consumption
Success
Smoothness

(f) Extensively trained MARL Consumer
agent. SLOiDs fulfillment for Success,
Smoothness, and C-consumption.

Figure 8: MARL simulation, showing the SLOiD fulfillment rates for the minimally- and well-trained agents

5.4 Heterogeneous hardware

Figure 9 illustrates the experimental results when the hosting environment of the AIF agents was deliberately and
suddenly altered, simulating an offloading of their services to different hardware. Specifically, Figure 9a displays the
performance of the AIF Worker agent while learning the transition model, whereas Figure 9c shows the same Worker
agent operating with a known transition dynamics model. Prior to analyzing these results, it is crucial to note that the
new host exhibits significantly higher energy consumption compared to the initial one. Consequently, fulfilling the
W-consumption SLOiD becomes exceedingly challenging without redefining it. Bearing this in mind, we observe a
clear degradation in the W-consumption SLOiD for both Worker agents. This degradation is more pronounced for the
learning agent. However, the learning agent demonstrates a faster reduction in the variance of the Latency SLOiD,
which can be attributed to its superior adaptability. Furthermore, Figure 9b presents the expected free energy (EFE)
for the AIF Worker learning agent during the same experiment. It is evident that the agent initially reduces its EFE.
However, the EFE suddenly increases due to the environmental change, after which the agent successfully resumes
its EFE reduction. In contrast, Figure 9d depicts the EFE for the AIF Worker non-learning agent. This agent also
experiences a change in its EFE, primarily characterized by a substantial reduction in its variance. This suggests a
narrowed range of possible actions for the agent following the offloading process.

5.5 Computing cost

Two main factors influence the computational cost for AIF agents: (1) learning the transition model, and (2) the length
of the planned policy. In this analysis, computational cost primarily refers to execution time.

On average and in a Apple M3 chip with 18GB of RAM, a single time step in the environment takes approximately
80.55 seconds when the transition model must be learned for a policy length of 3. In contrast, when transitions are pro-
vided, the same step takes only 1.17 seconds on average. While these durations naturally depend on the computational
capacity of the device, the ratio between them offers a more device-agnostic metric: learning the transition model



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

W-consumption
Latency

(a) Worker SLOiDs fulfillment while learning transi-
tion model and facing sudden environmental change.

0 50 100 150 200
Time steps

10

0

10

20

30

E
xp

ec
te

d 
Fr

ee
 E

ne
rg

y

Worker EFE

(b) Expected Free Energy for the Worker learning
the transition model.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

W-consumption
Latency

(c) Worker SLOiDs fulfillment with known tran-
sition model and facing a sudden environmental
change.

0 50 100 150 200
Time steps

28

26

24

22

20

E
xp

ec
te

d 
Fr

ee
 E

ne
rg

y

Worker EFE

(d) Expected Free Energy for the Worker without
learning the transition model.

Figure 9: AIF Worker agent suffering an offloading to a new and different host after 75 time steps controlling its SLOiDs.

results in a slowdown of approximately 69.08×. Interestingly, this computational burden diminishes with shorter pol-
icy horizons due to the reduced combinatorial complexity. When repeating the experiment with a policy length of
1, the slowdown ratio is halved, the learning agent is approximately 35× slower than its counterpart with provided
transitions.

Given this computational overhead, it is important to evaluate agent performance under constrained policy lengths.
To this end, we assess SLOiD fulfillment rates under the same setup used in previous evaluations. When agents had
to learn the transitions with a policy length of 1, agents achieved fulfillment rates comparable to those with a policy
length of 3, see Figure 10. Surprisingly, the Producer agent fulfillment rate (Figure 10b) was consistently higher for
length-1 policies than for length-3, which was unexpected. This result may stem from the relatively small number
of repetitions (10) and the stochastic nature of the environment, where identical actions in the same state can yield
different outcomes. Additionally, most agent actions are boolean, and the environment exhibits limited temporal
dependencies. As a reminder, environmental responses are based on the agent’s action in the previous state, and new
states are sampled to fulfill constraints without necessarily maintaining temporal continuity. Consequently, in this
scenario, policy length may not be a critical factor in minimizing expected free energy (EFE)4. However, it is a key
factor to consider in order to minimize the resource requirements of the agents.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

WF
CF
CR

(a) Producer SLOiDs fulfillment rate,
they are WF, CF, and CR.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

W-consumption
Latency

(b) Worker SLOiDs fulfillment rate,
they are Latency and W-consumption.

0 50 100 150 200
Time steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
LO

iD
s 

fu
lfi

llm
en

t r
at

e

C-consumption
Success
Smoothness

(c) Consumer SLOiDs fulfillment rate,
they are Success, Smoothness, and C-
consumption.

Figure 10: SLOiDs fulfillment rate with B parameter learning and policy length of 1.

4Although longer policies generally achieve lower EFE values, this effect is partly an artifact of EFE computation: longer
policies distribute cumulative EFE over more steps, which lowers the average per step.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

6 Discussion

The results indicate that AIF agents effectively support distributed intelligence in the CC, enabling interdependent
services to collaborate while maintaining consistent performance, quality, and cost. This work represents a first step
toward realizing that vision. In what follows, we examine the gap between our current implementation and the broader
potential of intelligence distribution using AIF in the CC. We organize the discussion into design-time and runtime
considerations, while acknowledging that several aspects span both.

6.1 Design

6.1.1 AIF Agent Model

This work introduces an AIF agent model for supervising services based on predefined SLOiDs. Defining these
SLOiDs is critical to ensure service compliance with performance expectations in its execution environment. This
task is simpler when prior deployment knowledge exists; otherwise, changes in host devices can compromise SLOiDs
fulfillment due to mismatched assumptions.

Modeling the AIF agent requires identifying dependencies between SLOiD variables and system vari-
ables. These dependencies—especially those involving inter-service interactions may remain hidden with-
out cross-service analysis [Casamayor Pujol et al.(2024)]. Causal discovery methods like those by Mariani et
al. [Mariani and Zambonelli(2024)] offer potential support, although typically post-deployment. In this study, we
modeled service data as Bayesian Networks (BNs) and derived Markov Blankets as a prerequisite for both learned and
predefined transition models [Sedlak et al.(2024a)].

Once dependencies are identified, they must be quantified, leading to two key design choices: (i) whether to model
variables as discrete or continuous, and (ii) how to acquire the relationship parameters.

We chose discrete variables for computational tractability. This required determining variable granularity, num-
ber of classes and class thresholds, effectively coarse-graining the agent’s model and limiting behavioral resolu-
tion. Continuous modeling, while more expressive, demands richer data and assumptions on variable distribu-
tions [Çatal et al.(2020)], and is computationally intensive.

Regarding quantification, we explored both deterministic (expert-based) and learned approaches (see subsections 5.1
and 5.2). Expert-based models are stable but rigid, and increasingly inadequate as system complexity grows. Learned
models offer adaptability and autonomy, but incur high computational cost and demand longer convergence times.

6.1.2 Deployment

Although our experiments relied on simulations, deploying AIF agents alongside services within a real CC infras-
tructure is essential. This requires tight integration between services and their supervisory agents to enable real-time
SLOiD adaptation or parameter adjustments. Such integration promotes a novel design paradigm in which services
natively support adaptive supervision through new interfaces, enabling autonomous control and continuous optimiza-
tion.

6.2 Runtime

At runtime, a core challenge is the combinatorial explosion of state-action pairs. To mitigate this, we used binary
actions (e.g., Switch off , Switch on), and occasionally a neutral option (Stay), which reduced complexity but limited
precision. This trade-off can hinder the agent’s ability to reach target states efficiently when fine-grained control is
needed. The effect worsens with longer policy lengths, making it critical to match action granularity and policy horizon
to the environment’s dynamics. We propose addressing this with hierarchical action-selection: AIF agents choose high-
level actions, while a secondary controller handles precise execution [Pezzato et al.(2020), Parr and Friston(2018),
Tschantz et al.(2022)]. Such hybrid strategies, as suggested in [Collis et al.(2024)], could improve adaptability and
efficiency.

Flexibility is also vital in dynamic settings. Services may adjust preferences based on context or stakeholders. AIF
agents accommodate this via direct updates to expected outcomes (C), adapting to runtime goals. Software updates,
common in CC, may alter service behavior or capabilities. While minor behavior changes can be handled through
continual learning, new capabilities may obsolete the agent’s model. Detecting and adapting to such changes—or
enabling agents to extend their models accordingly—remains an open challenge. This leads to the concept of model
transfer, sharing models across similar services or devices could accelerate adaptation and support federated learning-



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

like knowledge aggregation. Future work should explore mechanisms for safe and effective model transfer between
AIF agents.

7 Related work

In the context of this work, we identified two topics that have been addressed to some extent in existing work, namely
adaptive mechanisms for the Computing Continuum, and distributed intelligence through Active Inference. The first
topic targets the problem domain and the latter one the methodology applied. We present a concise description of
related work and contrast it with our presented work to highlight the research gap we aim to fill.

7.1 Adaptive Mechanisms for the Computing Continuum

The CC is an emerging paradigm that has only been developed and extended over the last recent years of
research [Dustdar et al.(2023)]; in particular, there remain multiple challenges in orchestrating such large-scale
systems [Casamayor Pujol et al.(2023)], which require intelligent adaptation mechanisms. As such, Filinis et
al. [Filinis et al.(2024)] present an intelligent auto-scaling agent for the CC, which scales the replicas of serverless
functions that are deployed over a continuum. Closely related to that, Zafeiropoulos et al. [Zafeiropoulos et al.(2024)]
provide a Reinforcement Learning (RL)-based auto-scaling environment for CC systems that explored the synergies
between low- and high-level controlling entities to achieve globally optimal solutions. Their core motivation was
to combine SLOs with dynamic processing requirements, which also applies to Octopus, a framework developed by
Zhang et al. [Zhang et al.(2023)]. Octopus finds optimal service configurations in multi-tenant edge computing sce-
narios; for this, it predicts SLO fulfillment of two variables based on a deep neural network. To detect SLO violations
of a scheduling task, Shubha et al. [Shubha and Shen(2023)] presented AdaInf, which can find SLO-fulfilling resource
allocations between model training and inference; such mechanisms will prove essential to the CC.

While research on adaptive cloud mechanisms has made significant progress [Verma and Bala(2021)], the CC is still
unexploited, but recent advances in Edge orchestration techniques promise to improve this. For example, through
offloading techniques between mobile Edge devices and stationary computing resources, like Fog or Cloud. As such,
Ma et al. [Ma et al.(2024)], Wu et al. [Wu et al.(2023)], and Spring et al. [Spring et al.(2025)] provide orchestration
mechanisms that can be integrated into the CC. To make accurate predictions of how intent-based services in the
CC will behave, Akbari et al. presented iContinuum [Akbari et al.(2024)], a simulation environment that can run
experiments in Edge-to-Cloud scenarios.

Given the presented research, we conclude that research on the CC is still at its beginning, if not at an infant stage, with
most works focusing on the potentials and challenges of the CC and comparably few empirically-evaluated solutions.
As Edge computing advances, including the research on multiple distributed agents in Edge networks, orchestration
mechanisms, as presented in this paper, will be heavily needed to ensure collaboration between multiple computational
tiers.

7.2 Distributed Intelligence through Active Inference

While AIF as a concept has been developed and enhanced over recent years [Friston et al.(2024a),
Friston et al.(2023a)], its transition towards applications is still at a relatively early stage [Friston et al.(2024b)].
Outside of neuroscience, AIF was mostly applied to robotics, as shown by the work of Lanillos et
al. [Lanillos et al.(2021)] and Oliver at al. [Oliver et al.(2022)], who use it as a framework for sensing and per-
ception. In particular, Oliver et al. give a comprehensive overview of how AIF allows (robotic) systems to act under
uncertainty. Complementarily, De Vries et al. [de Vries(2023)] formulate a general design for AIF agents that applies
across disciplines.

Nevertheless, applications of AIF to continuous stream processing systems are still scarce, with some exception, such
as the works of Sedlak et al. [Sedlak et al.(2024a), Sedlak et al.(2024b)]. There, the authors show how to ensure SLOs
of continuous video processing tasks by training a service interpretation model solely from observations; models were
then shared between agents to speed up convergence to globally optimal solutions. In another work, Danilenka et
al. [Danilenka et al.(2024)] developed an AIF agent that could optimize the SLO fulfillment of a federated learning
task. Given the heterogeneity within the CC, they used AIF to find the optimal training configuration for individual
clients. Levchuk et al. [Levchuk et al.(2019)] provide another example of a multi-agent system in which AIF is used
to guide the exploration-exploitation tradeoff of multiple distributed agents. Noteworthy, they showed how agents’
perception and collaboration could improve the convergence of sensing tasks.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

Given the presented work, we conclude that AIF is regarded as a very promising solution for agent-based sensing envi-
ronments, as can be found natively in the IoT domain. While some concepts of AIF have made their transition to ma-
chine learning and reinformcement learning [Mazzaglia et al.(2022), Tschantz et al.(2020a), Tschantz et al.(2020b)],
wholesome solutions that encompass an entire software system are still scarce. To that extent, the research presented
in this paper provides a well-needed guideline on how to design AIF agents in distributed computing scenarios. AIF
can be of particular advantage in large-scale computing networks, like the CC, where empirically verifiable solutions
are needed to prove the correctness of an approach.

8 Conclusions

In this article, we explored the use of AIF to distribute intelligence across a multi-service application within the CC.
Specifically, we focused on a video stream processing pipeline requiring face blurring before delivery to the final
consumer. This was achieved by deploying an AIF agent for each service and equipping them with mechanisms for
elastic adaptation to service-specific requirements.

Our findings suggest that AIF is a promising approach for managing distributed applications in the CC. The AIF
agents effectively fulfilled each service’s SLOiDs by selecting targeted actions and, when necessary, adapting based
on the outcomes of their decisions. When provided with expert-defined transition models, the agents achieved over
90% SLOiD fulfillment rates. In contrast, agents that learned their models through interaction with the environment
achieved rates approximately 10% lower. When compared to state-of-the-art alternatives such as multi-agent reinforce-
ment learning, we observed that extensively trained MARL agents slightly outperformed AIF agents. However, under
minimal training conditions, AIF agents exhibited superior performance. We also analyzed agent behavior during
service offloading scenarios, where the deployment environment changed. The AIF agents demonstrated adaptability
by detecting the environmental shift and exploring new policies to recover fulfillment rates. Notably, agents learning
their own transition models were capable of strategically deprioritizing unachievable SLOiDs in favor of maximizing
achievable ones, showcasing a high degree of flexibility. Finally, we evaluated the computational cost of AIF agents in
terms of execution time. A key factor in their efficiency is the selection of an appropriate policy length (i.e., look-ahead
depth), as longer horizons can significantly increase computation time, especially in complex environments.

Looking ahead, AIF agents can be developed through a combination of expert knowledge, where the consequences of
actions are predefined, and autonomous lifelong learning, where agents learn action outcomes over time. This hybrid
design strategy supports the adaptability needed to address the heterogeneity and dynamism inherent in CC environ-
ments. We have also identified several gaps and promising directions for future research aimed at further aligning AIF
capabilities with the unique demands of the CC. From a design perspective, further work is needed to enhance model
flexibility, improve action predictability, and integrate more complex state-action relationships that better reflect real-
world CC scenarios. On the runtime side, tackling challenges such as the action-state explosion and adapting models
in response to environmental changes is critical for deploying robust and accountable AIF-driven services. Some of
these challenges have been addressed in the broader AIF literature and could be adapted for CC applications. For in-
stance, alternative planning algorithms have been proposed to enable faster [Champion et al.(2023), Paul et al.(2024)]
and more sophisticated [Friston et al.(2021), Friston et al.(2023b)] action selection. Another promising direction is the
incorporation of partially observed environments with a form of theory of mind, enabling agents to infer the internal
states, intentions, and likely future actions of other agents [Albarracin et al.(2024)]. Combining these avenues will be
crucial for modeling and managing the complex interactions that arise among large numbers of agents in distributed
systems.

In summary, this study demonstrates that Active Inference offers a powerful foundation for distributed intelligence
in the Computing Continuum. AIF agents can not only fulfill predefined service-level objectives but also adapt au-
tonomously to evolving conditions. These findings lay the groundwork for future advancements in AIF-driven service
orchestration and highlight the potential of AIF as a tool for enabling resilient, intelligent, and autonomous service
management across the CC.

Acknowledgments

This work is supported by CNS2023-144359 financed by MICIU/AEI/10.13039/501100011033 and the European
Union NextGenerationEU/PRTR.
Thanks to Dimitrije Markovic for his support.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

References

[Akbari et al.(2024)] Negin Akbari, Adel N. Toosi, John Grundy, Hourieh Khalajzadeh, Mohammad S. Aslanpour,
and Shashikant Ilager. 2024. iContinuum: An Emulation Toolkit for Intent-Based Computing Across the Edge-
to-Cloud Continuum. IEEE Computer Society, 468–474. https://doi.org/10.1109/CLOUD62652.2024.
00059

[Albarracin et al.(2024)] Mahault Albarracin, Riddhi J Pitliya, Toby St. Clere Smithe, Daniel Ari Friedman, Karl
Friston, and Maxwell JD Ramstead. 2024. Shared Protentions in Multi-Agent Active Inference. Entropy 26, 4
(2024), 303.

[Baek et al.(2020)] Beomhan Baek, Joohyung Lee, Yuyang Peng, and Sangdon Park. 2020. Three Dynamic Pricing
Schemes for Resource Allocation of Edge Computing for IoT Environment. IEEE Internet of Things Journal 7,
5 (May 2020), 4292–4303. https://doi.org/10.1109/JIOT.2020.2966627

[Beckman et al.(2020)] Pete Beckman, Jack Dongarra, Nicola Ferrier, Geoffrey Fox, Terry Moore, Dan Reed, and
Micah Beck. 2020. Harnessing the computing continuum for programming our world. In Fog Computing,
A. Zomaya, A. Abbas, and S. Khan (Eds.). John Wiley & Sons, Ltd, 215–230. https://onlinelibrary.
wiley.com/doi/full/10.1002/9781119551713.ch7

[Beltran(2016)] Marta Beltran. 2016. Defining an Elasticity Metric for Cloud Computing Environments. In Proceed-
ings of the 9th EAI International Conference on Performance Evaluation Methodologies and Tools (VALUE-
TOOLS’15). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
Brussels, BEL, 172–179. https://doi.org/10.4108/eai.14-12-2015.2262685

[Beyer et al.(2016)] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site Reliability
Engineering: How Google Runs Production Systems (1st ed.). O’Reilly Media, Inc.

[Boutilier et al.(1999)] C. Boutilier, T. Dean, and S. Hanks. 1999. Decision-Theoretic Planning: Structural As-
sumptions and Computational Leverage. Journal of Artificial Intelligence Research 11 (July 1999), 1–94.
https://doi.org/10.1613/jair.575

[Casamayor Pujol et al.(2023)] Victor Casamayor Pujol, Andrea Morichetta, Ilir Murturi, Praveen Kumar Donta, and
Schahram Dustdar. 2023. Fundamental Research Challenges for Distributed Computing Continuum Systems.
Information 14, 3 (March 2023), 198. https://doi.org/10.3390/info14030198

[Casamayor Pujol et al.(2024)] Victor Casamayor Pujol, Boris Sedlak, Yanwei Xu, Praveen Kumar Donta, and
Schahram Dustdar. 2024. DeepSLOs for the Computing Continuum. In Proceedings of the 2024 Workshop
on Advanced Tools, Programming Languages, and PLatforms for Implementing and Evaluating algorithms
for Distributed systems (ApPLIED’24). Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/3663338.3663681

[Champion et al.(2023)] Théophile Champion, Marek Grześ, Lisa Bonheme, and Howard Bowman. 2023. Decon-
structing deep active inference. https://doi.org/10.48550/arXiv.2303.01618 arXiv:2303.01618 [cs].

[Collis et al.(2024)] Poppy Collis, Ryan Singh, Paul F. Kinghorn, and Christopher L. Buckley. 2024. Learning in
Hybrid Active Inference Models. https://doi.org/10.48550/arXiv.2409.01066

[Danilenka et al.(2024)] Anastasiya Danilenka, Alireza Furutanpey, Victor Casamayor Pujol, Boris Sedlak, Anna
Lackinger, Maria Ganzha, Marcin Paprzycki, and Schahram Dustdar. 2024. Adaptive Active Inference Agents
for Heterogeneous and Lifelong Federated Learning. https://doi.org/10.48550/arXiv.2410.09099

[de Vries(2023)] Bert de Vries. 2023. Toward Design of Synthetic Active Inference Agents by Mere Mortals.
arXiv:2307.14145 [nlin, stat].

[Dustdar et al.(2023)] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Kumar Donta. 2023. On Distributed
Computing Continuum Systems. IEEE Transactions on Knowledge and Data Engineering 35, 4 (April 2023),
4092–4105. https://doi.org/10.1109/TKDE.2022.3142856

[Dustdar et al.(2011)] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong. 2011. Principles of
Elastic Processes. Internet Computing, IEEE 15 (Nov. 2011), 66–71.

[Filinis et al.(2024)] Nikos Filinis, Ioannis Tzanettis, Dimitrios Spatharakis, Eleni Fotopoulou, Ioannis Dimolitsas,
Anastasios Zafeiropoulos, Constantinos Vassilakis, and Symeon Papavassiliou. 2024. Intent-driven orchestration
of serverless applications in the computing continuum. Future Generation Computer Systems 154 (May 2024),
72–86. https://doi.org/10.1016/j.future.2023.12.032

[Friston(2013)] Karl Friston. 2013. Life as we know it. Journal of The Royal Society Interface 10, 86 (Sept. 2013),
20130475. https://doi.org/10.1098/rsif.2013.0475

https://doi.org/10.1109/CLOUD62652.2024.00059
https://doi.org/10.1109/CLOUD62652.2024.00059
https://doi.org/10.1109/JIOT.2020.2966627
https://onlinelibrary.wiley.com/doi/full/10.1002/9781119551713.ch7
https://onlinelibrary.wiley.com/doi/full/10.1002/9781119551713.ch7
https://doi.org/10.4108/eai.14-12-2015.2262685
https://doi.org/10.1613/jair.575
https://doi.org/10.3390/info14030198
https://doi.org/10.1145/3663338.3663681
https://doi.org/10.48550/arXiv.2303.01618
https://doi.org/10.48550/arXiv.2409.01066
https://doi.org/10.48550/arXiv.2410.09099
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1016/j.future.2023.12.032
https://doi.org/10.1098/rsif.2013.0475


Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

[Friston et al.(2021)] Karl Friston, Lancelot Da Costa, Danijar Hafner, Casper Hesp, and Thomas Parr. 2021. Sophis-
ticated inference. Neural Computation 33, 3 (2021), 713–763.

[Friston et al.(2016)] Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, John O’Doherty,
and Giovanni Pezzulo. 2016. Active inference and learning. Neuroscience & Biobehavioral Reviews 68 (Sept.
2016), 862–879. https://doi.org/10.1016/J.NEUBIOREV.2016.06.022

[Friston et al.(2024a)] Karl J Friston, Lancelot Da Costa, Alexander Tschantz, Alex Kiefer, Tommaso Salvatori, Vic-
torita Neacsu, Magnus Koudahl, Conor Heins, Noor Sajid, Dimitrije Markovic, et al. 2024a. Supervised structure
learning. Biological Psychology (2024), 108891.

[Friston et al.(2009)] Karl J. Friston, Jean Daunizeau, and Stefan J. Kiebel. 2009. Reinforcement Learning or Active
Inference? PLOS ONE 4, 7 (July 2009), e6421.

[Friston et al.(2024b)] Karl J. Friston, Maxwell JD Ramstead, Alex B. Kiefer, Alexander Tschantz, Christopher L.
Buckley, Mahault Albarracin, Riddhi J. Pitliya, Conor Heins, Brennan Klein, Beren Millidge, Dalton AR Sak-
thivadivel, Toby St Clere Smithe, Magnus Koudahl, Safae Essafi Tremblay, Capm Petersen, Kaiser Fung, Ja-
son G. Fox, Steven Swanson, Dan Mapes, and Gabriel René. 2024b. Designing ecosystems of intelligence from
first principles. Collective Intelligence (2024). https://doi.org/10.1177/26339137231222481

[Friston et al.(2023a)] Karl J Friston, Tommaso Salvatori, Takuya Isomura, Alexander Tschantz, Alex Kiefer, Tim
Verbelen, Magnus Koudahl, Aswin Paul, Thomas Parr, Adeel Razi, et al. 2023a. Active inference and intentional
behaviour. arXiv preprint arXiv:2312.07547 (2023).

[Friston et al.(2023b)] Karl J Friston, Tommaso Salvatori, Takuya Isomura, Alexander Tschantz, Alex Kiefer, Tim
Verbelen, Magnus Koudahl, Aswin Paul, Thomas Parr, Adeel Razi, et al. 2023b. Active inference and intentional
behaviour. arXiv preprint arXiv:2312.07547 (2023).

[Fürst et al.(2018)] Jonathan Fürst, Mauricio Fadel Argerich, Bin Cheng, and Apostolos Papageorgiou.
2018. Elastic Services for Edge Computing. In 2018 14th International Conference on Net-
work and Service Management (CNSM). 358–362. https://ieeexplore.ieee.org/abstract/
document/8584964?casa_token=39ojZ7iLIZEAAAAA:abK3nEI9LXbzy4GFAFGop2IytWTSZup_
qrLa5It5LCaoh6dOfJvlu-qWzeJ2TXUlukKTWw ISSN: 2165-963X.

[Heins et al.(2022)] Conor Heins, Beren Millidge, Daphne Demekas, Brennan Klein, Karl Friston, Iain Couzin, and
Alexander Tschantz. 2022. pymdp: A Python library for active inference in discrete state spaces. Journal of
Open Source Software 7, 73 (May 2022), 4098. https://doi.org/10.21105/joss.04098

[Hu et al.(2023)] Shihong Hu, Weisong Shi, and Guanghui Li. 2023. CEC: A Containerized Edge Computing Frame-
work for Dynamic Resource Provisioning. IEEE Transactions on Mobile Computing 22, 7 (July 2023), 3840–
3854. https://doi.org/10.1109/TMC.2022.3147800

[Hu et al.(2020)] Xiaoyan Hu, Lifeng Wang, Kai-Kit Wong, Meixia Tao, Yangyang Zhang, and Zhongbin Zheng.
2020. Edge and Central Cloud Computing: A Perfect Pairing for High Energy Efficiency and Low-Latency.
IEEE Transactions on Wireless Communications 19, 2 (Feb. 2020), 1070–1083. https://doi.org/10.1109/
TWC.2019.2950632

[Kirchhoff et al.(2018)] Michael Kirchhoff, Thomas Parr, Ensor Palacios, Karl Friston, and Julian Kiverstein. 2018.
The Markov blankets of life: autonomy, active inference and the free energy principle. Journal of The Royal
Society Interface (2018).

[Lanillos et al.(2021)] Pablo Lanillos, Cristian Meo, Corrado Pezzato, Ajith Anil Meera, Mohamed Baioumy, Wataru
Ohata, Alexander Tschantz, Beren Millidge, Martijn Wisse, Christopher L. Buckley, and Jun Tani. 2021. Active
Inference in Robotics and Artificial Agents: Survey and Challenges. https://doi.org/10.48550/arXiv.
2112.01871 arXiv:2112.01871 [cs].

[Levchuk et al.(2019)] Georgiy Levchuk, Krishna Pattipati, Daniel Serfaty, Adam Fouse, and Robert McCormack.
2019. Active Inference in Multiagent Systems: Context-Driven Collaboration and Decentralized Purpose-Driven
Team Adaptation. In Artificial Intelligence for the Internet of Everything. Academic Press, Online.

[Liang et al.(2018)] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. 2018. RLlib: Abstractions for Distributed Reinforcement Learning.
In International Conference on Machine Learning (ICML). https://arxiv.org/pdf/1712.09381

[Lin et al.(2018)] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E. Haque, Lingjia Tang, and
Jason Mars. 2018. The Architectural Implications of Autonomous Driving: Constraints and Acceleration. In
Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’18). Association for Computing Machinery, New York, NY, USA, 751–766.
https://doi.org/10.1145/3173162.3173191

https://doi.org/10.1016/J.NEUBIOREV.2016.06.022
https://doi.org/10.1177/26339137231222481
https://ieeexplore.ieee.org/abstract/document/8584964?casa_token=39ojZ7iLIZEAAAAA:abK3nEI9LXbzy4GFAFGop2IytWTSZup_qrLa5It5LCaoh6dOfJvlu-qWzeJ2TXUlukKTWw
https://ieeexplore.ieee.org/abstract/document/8584964?casa_token=39ojZ7iLIZEAAAAA:abK3nEI9LXbzy4GFAFGop2IytWTSZup_qrLa5It5LCaoh6dOfJvlu-qWzeJ2TXUlukKTWw
https://ieeexplore.ieee.org/abstract/document/8584964?casa_token=39ojZ7iLIZEAAAAA:abK3nEI9LXbzy4GFAFGop2IytWTSZup_qrLa5It5LCaoh6dOfJvlu-qWzeJ2TXUlukKTWw
https://doi.org/10.21105/joss.04098
https://doi.org/10.1109/TMC.2022.3147800
https://doi.org/10.1109/TWC.2019.2950632
https://doi.org/10.1109/TWC.2019.2950632
https://doi.org/10.48550/arXiv.2112.01871
https://doi.org/10.48550/arXiv.2112.01871
https://arxiv.org/pdf/1712.09381
https://doi.org/10.1145/3173162.3173191


Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

[Ma et al.(2024)] Huahong Ma, Bowen Ji, Honghai Wu, and Ling Xing. 2024. Video data offloading techniques in
Mobile Edge Computing: A survey. Physical Communication 62 (Feb. 2024), 102261. https://doi.org/
10.1016/j.phycom.2023.102261

[Makina et al.(2024)] Hela Makina, Asma Ben Letaifa, and Abderrezak Rachedi. 2024. Survey on security and pri-
vacy in Internet of Things-based eHealth applications: Challenges, architectures, and future directions. SECU-
RITY AND PRIVACY 7, 2 (2024), e346. https://doi.org/10.1002/spy2.346

[Manaouil and Lebre(2020)] Karim Manaouil and Adrien Lebre. 2020. Kubernetes and the Edge? report. Inria
Rennes - Bretagne Atlantique. https://inria.hal.science/hal-02972686

[Mariani and Zambonelli(2024)] Stefano Mariani and Franco Zambonelli. 2024. Distributed Discovery of Causal
Networks in Pervasive Environments. In 2024 IEEE International Conference on Pervasive Computing and Com-
munications Workshops and other Affiliated Events (PerCom Workshops). 1–6. https://doi.org/10.1109/
PerComWorkshops59983.2024.10502971

[Mazzaglia et al.(2022)] Pietro Mazzaglia, Tim Verbelen, Ozan Catal, and Bart Dhoedt. 2022. The free energy prin-
ciple for perception and action: A deep learning perspective. Entropy 24, 2 (2022), 301.

[Nardelli et al.(2024)] Matteo Nardelli, Gabriele Russo Russo, and Valeria Cardellini. 2024. Compute Continuum:
What Lies Ahead?. In Euro-Par 2023: Parallel Processing Workshops. Springer Nature Switzerland, Cham,
5–17. https://doi.org/10.1007/978-3-031-50684-0_1

[Oliver et al.(2022)] Guillermo Oliver, Pablo Lanillos, and Gordon Cheng. 2022. An Empirical Study of Active
Inference on a Humanoid Robot. IEEE Transactions on Cognitive and Developmental Systems 14, 2 (June
2022), 462–471. https://doi.org/10.1109/TCDS.2021.3049907

[Palacios et al.(2020)] Ensor Rafael Palacios, Adeel Razi, Thomas Parr, Michael Kirchhoff, and Karl Friston. 2020.
On Markov blankets and hierarchical self-organisation. Journal of Theoretical Biology 486 (Feb. 2020).

[Parr and Friston(2018)] Thomas Parr and Karl J. Friston. 2018. The Discrete and Continuous Brain: From Decisions
to Movement—And Back Again. Neural Computation 30, 9 (Sept. 2018), 2319–2347. https://doi.org/
10.1162/neco_a_01102

[Parr et al.(2022)] Thomas Parr, Giovanni Pezzulo, and Karl J. Friston. 2022. Active Inference: The Free Energy
Principle in Mind, Brain, and Behavior. MIT Press. Google-Books-ID: UrZNEAAAQBAJ.

[Paul et al.(2024)] Aswin Paul, Noor Sajid, Lancelot Da Costa, and Adeel Razi. 2024. On efficient computation in
active inference. Expert Systems with Applications 253 (2024), 124315.

[Pezzato et al.(2020)] Corrado Pezzato, Riccardo Ferrari, and Carlos Hernández Corbato. 2020. A Novel Adaptive
Controller for Robot Manipulators Based on Active Inference. IEEE Robotics and Automation Letters 5, 2 (April
2020), 2973–2980. https://doi.org/10.1109/LRA.2020.2974451

[Schulman et al.(2017)] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. https://doi.org/10.48550/arXiv.1707.06347
arXiv:1707.06347 [cs].

[Sedlak et al.(2024a)] Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and Schahram Dustdar. 2024a.
Equilibrium in the Computing Continuum through Active Inference. Future Generation Computer Systems (May
2024). https://doi.org/10.1016/j.future.2024.05.056

[Sedlak et al.(2024b)] Boris Sedlak, Victor Casamayor Pujol, Andrea Morichetta, Praveen Kumar Donta, and
Schahram Dustdar. 2024b. Adaptive Stream Processing on Edge Devices through Active Inference. https:
//doi.org/10.48550/arXiv.2409.17937 arXiv:2409.17937 [cs].

[Shahra et al.(2024)] Essa Q. Shahra, Wenyan Wu, Shadi Basurra, and Adel Aneiba. 2024. Intelligent Edge-Cloud
Framework for Water Quality Monitoring in Water Distribution System. Water 16, 2 (Jan. 2024), 196. https:
//doi.org/10.3390/w16020196

[Shubha and Shen(2023)] Sudipta Saha Shubha and Haiying Shen. 2023. AdaInf: Data Drift Adaptive Scheduling for
Accurate and SLO-guaranteed Multiple-Model Inference Serving at Edge Servers. In Proceedings of the ACM
SIGCOMM 2023 Conference (ACM SIGCOMM ’23). Association for Computing Machinery, New York, NY,
USA, 473–485. https://doi.org/10.1145/3603269.3604830

[Spring et al.(2025)] Nikolaus Spring, Andrea Morichetta, Boris Sedlak, and Schahram Dustdar. 2025. MACH:
Multi-Agent Coordination for RSU-centric Handovers. https://doi.org/10.48550/arXiv.2505.07827
arXiv:2505.07827 [cs].

[Sukhmani et al.(2019)] Sukhmani Sukhmani, Mohammad Sadeghi, Melike Erol-Kantarci, and Abdulmotaleb El Sad-
dik. 2019. Edge Caching and Computing in 5G for Mobile AR/VR and Tactile Internet. IEEE MultiMedia 26, 1
(Jan. 2019), 21–30. https://doi.org/10.1109/MMUL.2018.2879591

https://doi.org/10.1016/j.phycom.2023.102261
https://doi.org/10.1016/j.phycom.2023.102261
https://doi.org/10.1002/spy2.346
https://inria.hal.science/hal-02972686
https://doi.org/10.1109/PerComWorkshops59983.2024.10502971
https://doi.org/10.1109/PerComWorkshops59983.2024.10502971
https://doi.org/10.1007/978-3-031-50684-0_1
https://doi.org/10.1109/TCDS.2021.3049907
https://doi.org/10.1162/neco_a_01102
https://doi.org/10.1162/neco_a_01102
https://doi.org/10.1109/LRA.2020.2974451
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1016/j.future.2024.05.056
https://doi.org/10.48550/arXiv.2409.17937
https://doi.org/10.48550/arXiv.2409.17937
https://doi.org/10.3390/w16020196
https://doi.org/10.3390/w16020196
https://doi.org/10.1145/3603269.3604830
https://doi.org/10.48550/arXiv.2505.07827
https://doi.org/10.1109/MMUL.2018.2879591


Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

[Tschantz et al.(2020a)] Alexander Tschantz, Manuel Baltieri, Anil K Seth, and Christopher L Buckley. 2020a. Scal-
ing active inference. In 2020 international joint conference on neural networks (ijcnn). IEEE, 1–8.

[Tschantz et al.(2022)] Alexander Tschantz, Laura Barca, Domenico Maisto, Christopher L. Buckley, Anil K. Seth,
and Giovanni Pezzulo. 2022. Simulating homeostatic, allostatic and goal-directed forms of interoceptive control
using active inference. Biological Psychology 169 (March 2022), 108266. https://doi.org/10.1016/j.
biopsycho.2022.108266

[Tschantz et al.(2020b)] Alexander Tschantz, Beren Millidge, Anil K Seth, and Christopher L Buckley. 2020b. Rein-
forcement learning through active inference. arXiv preprint arXiv:2002.12636 (2020).

[Verma and Bala(2021)] Shveta Verma and Anju Bala. 2021. Auto-scaling techniques for IoT-based cloud applica-
tions: a review. Cluster Computing 24, 3 (Sept. 2021). https://doi.org/10.1007/s10586-021-03265-9

[Wu et al.(2023)] Yuxin Wu, Changjun Cai, Xuanming Bi, Junjuan Xia, Chongzhi Gao, Yajuan Tang, and Shiwei
Lai. 2023. Intelligent resource allocation scheme for cloud-edge-end framework aided multi-source data stream.
EURASIP Journal on Advances in Signal Processing 2023 (May 2023).

[Wu et al.(2021)] Zhanghao Wu, Eric Liang, Michael Luo, Sven Mika, Joseph E. Gonzalez, and Ion Stoica.
2021. RLlib Flow: Distributed Reinforcement Learning is a Dataflow Problem. In Conference on Neu-
ral Information Processing Systems (NeurIPS). https://proceedings.neurips.cc/paper/2021/file/
2bce32ed409f5ebcee2a7b417ad9beed-Paper.pdf

[Zafeiropoulos et al.(2024)] Anastasios Zafeiropoulos, Nikos Filinis, Eleni Fotopoulou, and Symeon Papavassiliou.
2024. AI-Assisted Synergetic Orchestration Mechanisms for Autoscaling in Computing Continuum Systems.
IEEE Communications Magazine (2024). https://doi.org/10.1109/MCOM.001.2200583

[Zahidi et al.(2024)] Usman A. Zahidi, Arshad Khan, Tsvetan Zhivkov, Johann Dichtl, Dom Li, Soran Parsa, Marc
Hanheide, Grzegorz Cielniak, Elizabeth I. Sklar, Simon Pearson, and Amir Ghalamzan-E. 2024. Optimising
robotic operation speed with edge computing via 5G network: Insights from selective harvesting robots. Journal
of Field Robotics n/a, n/a (July 2024). https://doi.org/10.1002/rob.22384

[Zhang et al.(2019)] Daniel (Yue) Zhang, Tahmid Rashid, Xukun Li, Nathan Vance, and Dong Wang. 2019. Het-
eroEdge: taming the heterogeneity of edge computing system in social sensing. In Proceedings of the Interna-
tional Conference on Internet of Things Design and Implementation (IoTDI ’19). Association for Computing
Machinery, New York, NY, USA, 37–48. https://doi.org/10.1145/3302505.3310067

[Zhang et al.(2023)] Ziyang Zhang, Yang Zhao, and Jie Liu. 2023. Octopus: SLO-Aware Progressive Inference Serv-
ing via Deep Reinforcement Learning in Multi-tenant Edge Cluster. In Service-Oriented Computing. Cham.
https://doi.org/10.1007/978-3-031-48424-7_18

[Çatal et al.(2020)] Ozan Çatal, Samuel Wauthier, Cedric De Boom, Tim Verbelen, and Bart Dhoedt. 2020. Learning
Generative State Space Models for Active Inference. Frontiers in Computational Neuroscience 14 (Nov. 2020).
https://doi.org/10.3389/fncom.2020.574372

Appendix

A Producer’s transition model

WF Modality The transition probabilities for the WF modality specify the distribution
P (WFt+1|WFt,FPSt,Change FPSt). These probabilities depend on the current state of the modality (WFt),
the current FPS state (FPSt), and the relevant action component (Change FPSt). Fully specifying the corresponding
Conditional Probability Table (CPT) explicitly would require defining a 3x3 transition matrix for each of the 5 FPS
values and 3 Change FPS values (15 matrices total). However, we define the CPT completely and more compactly
using the following rules:

1. If Change FPSt = Stay, the state remains unchanged: WFt+1 = WFt.

2. The state also remains unchanged if boundary conditions for FPS prevent the action’s effect: i.e., if
Change FPSt = Increase and FPSt is already the highest value, or if Change FPSt = Decrease and FPSt is
already the lowest value.

3. If Change FPSt = Increase (and FPS is not maximum):

• If WFt = Decrease or WFt = Stay, then WFt+1 = Decrease.
• If WFt = Increase, then WFt+1 = Stay.

https://doi.org/10.1016/j.biopsycho.2022.108266
https://doi.org/10.1016/j.biopsycho.2022.108266
https://doi.org/10.1007/s10586-021-03265-9
https://proceedings.neurips.cc/paper/2021/file/2bce32ed409f5ebcee2a7b417ad9beed-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2bce32ed409f5ebcee2a7b417ad9beed-Paper.pdf
https://doi.org/10.1109/MCOM.001.2200583
https://doi.org/10.1002/rob.22384
https://doi.org/10.1145/3302505.3310067
https://doi.org/10.1007/978-3-031-48424-7_18
https://doi.org/10.3389/fncom.2020.574372


Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

4. If Change FPSt = Decrease (and FPS is not minimum):
• If WFt = Increase or WFt = Stay, then WFt+1 = Increase.
• If WFt = Decrease, then WFt+1 = Stay.

Note that these rules simplify the dependency on the FPS state, using it only to check boundary conditions. The
precise dynamics might vary with specific hardware configurations in practice, but this expert model captures the
intended behaviour.

CF & CR Modalities The transition dynamics for CF are defined analogously, depending on itself at t,
FPSt, and Change FPSt. The dynamics for CR follow the same pattern but depend on CRt, Resolutiont, and
Change Resolutiont.

FPS & Resolution Modailities The transitions for the FPS and Resolution modalities them-
selves are fully deterministic. These dynamics are defined by P (FPSt+1|FPSt,Change FPSt) and
P (Resolutiont+1|Resolutiont,Change Resolutiont), respectively. Their dependencies are shown in Figure 3,
and their CPTs are defined by the following rules:

1. If the action (Change FPS or Change Resolution) is Stay, the value remains unchanged at t+ 1.
2. If the action is Increase, the value at t+1 transitions to the next higher discrete level defined for the modality,

unless the value at t is already the maximum, in which case it remains unchanged.
3. If the action is Decrease, the value at t+ 1 transitions to the next lower discrete level, unless the value at t is

already the minimum, in which case it remains unchanged.

B Worker’s transition model

Latency Modality The transition P (Latencyt+1|Latencyt,Toggle Commt) is simplified to depend only on the cur-
rent state Latencyt and the action taken on the upstream communication channel (Toggle Commt)

5. The CPT is
defined by the following deterministic rules:

1. If Toggle Commt = Enable, the state transitions to or remains True: Latencyt+1 = True.
2. If Toggle Commt = Disable, the state remains unchanged: Latencyt+1 = Latencyt.

This simplification assumes controlling the communication channel fully dictates this SLO status in our model. All
state modalities affected by the action Toggle Comm assume that the Producer agent will support the request sent by
the other agents.

Execution Time Modality The transition P (ExecTimet+1|ExecTimet,GPUt, Switch GPUt) depends on the current
Execution Time, the current GPU state, and the action applied to the GPU. The CPT is defined by these rules:

1. If Switch GPUt = Stay, or if Switch GPUt = Switch off when GPUt = Off, or if Switch GPUt = Switch on
when GPUt = On. Then, the Execution Time remains unchanged (ExecTimet+1 = ExecTimet).

2. If the GPU is on (i.e., Switch GPUt = Switch on and GPUt = Off, leading to GPUt+1 = On), the Execution
Time decreases by one discrete step (ExecTimet+1 = prev(ExecTimet)). If ExecTimet is already the lowest
value, it remains unchanged.

3. If the GPU is off (i.e., Switch GPUt = Switch off and GPUt = On, leading to GPUt+1 = Off), the Execution
Time increases by one discrete step (ExecTimet+1 = next(ExecTimet)). If ExecTimet is already the highest
value, it remains unchanged.

FPS Modality The transition P (FPSt+1|FPSt,Toggle Commt) depends on the current FPS value and the action on
the upstream communication channel.

1. If communication is disabled or unchanged (Toggle Commt = (Disable or Stay)), the FPS remains the same:
FPSt+1 = FPSt.

2. If communication is enabled (Toggle Commt = Enable), the FPS decreases by one discrete step: FPSt+1 =
prev(FPSt). If FPSt is already the lowest value, it remains unchanged.

5Latency also depends on the Execution Time and the FPS, however, here we focus on the communication action to simplify all
definitions.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

W-consumption Modality The P (W-consumptiont+1|W-consumptiont, ShareInfot,GPUt,Toggle Commt, Switch GPUt)
depends on the current W-consumption state, the states of Share Information and GPU, and the actions applied
to them. We assume the resulting W-consumption state depends on whether the ShareInfo and GPU states are
effectively activated or deactivated by the actions taken. The CPT rules are:

1. If both Share Information and GPU are activated (transition to or stay True), W-consumption increases by
one step: W-consumptiont+1 = next(W-consumptiont).

2. If one modality (ShareInfo or GPU) is activated while the other’s state remains unchanged, W-consumption
increases by one step: W-consumptiont+1 = next(W-consumptiont).

3. If either modality is deactivated (transitions to or stays False), W-consumption decreases by one step:
W-consumptiont+1 = prev(W-consumptiont).

4. If one modality is activated and the other is deactivated within the same time step, W-consumption remains
the same: W-consumptiont+1 = W-consumptiont.

5. If both modalities’ states remain unchanged, W-consumption remains the same: W-consumptiont+1 =
W-consumptiont.

Share Info Modality The transition P (ShareInfot+1|ShareInfot,Toggle Commt) depends on the current state and
the action on the upstream communication channel. The CPT rules are:

1. If the action is Disable, the state becomes False: ShareInfot+1 = False.
2. If the action is Enable, the state becomes True: ShareInfot+1 = True.
3. If the action is Stay, the state remains unchanged: ShareInfot+1 = ShareInfot.

GPU Modality The transition P (GPUt+1|GPUt, Switch GPUt) depends on the current state and the action applied
to the GPU. The CPT rules mirror those for Share Info, using actions Switch on, Switch off , and Stay:

1. If Switch GPUt = Switch off, then GPUt+1 = False.
2. If Switch GPUt = Switch on, then GPUt+1 = True.
3. If Switch GPUt = Stay, then GPUt+1 = GPUt.

C Consumer’s transition model

Success Modality The transition P (Successt+1|Successt,Resolutiont,Toggle Commt) depends on the current Suc-
cess state, the Resolution, and the upstream communication action. The CPT is defined by the following rules, which
currently simplify the dependency on Resolutiont:

1. If Toggle Commt is Enable, the state transitions to or remains True: Successt+1 = True.
2. If Toggle Commt is Disable or Stay, the state remains unchanged: Successt+1 = Successt.

Smoothness Modality The transition P (Smoothnesst+1|Smoothnesst,FPSt,Toggle Commt) depends on the cur-
rent Smoothness state, the FPS state, and the upstream communication action. The CPT rules are:

1. If Toggle Commt is Disable or Stay, the state remains unchanged: Smoothnesst+1 = Smoothnesst.
2. If Toggle Commt is Enable: the resulting state Smoothnesst+1 becomes True, reflecting the expectation that

enabling communication aims to improve this SLO, potentially by facilitating an FPS increase.

C-consumption Modality The transition P (C-consumptiont+1|C-consumptiont, ShareInfot,Toggle Commt) de-
pends on the current C-consumption state, the current Share Information state, and the upstream communication
action. The CPT rules are:

1. If Toggle Commt = Enable causes Share Information to switch from False to True (e.g., ShareInfot = False),
then C-consumption increases: C-consumptiont+1 = next(C-consumptiont).

2. If the action Toggle Commt = Disable causes Share Information to switch from True to False (e.g.,
ShareInfot = True), then C-consumption decreases: C-consumptiont+1 = prev(C-consumptiont).

3. In all other cases, C-consumption remains unchanged: C-consumptiont+1 = C-consumptiont.



Distributed Intelligence in the CC with AIF Casamayor Pujol et al.

FPS and Resolution Modalities The transitions P (FPSt+1|FPSt,Toggle Commt) and
P (Resolutiont+1|Resolutiont,Toggle Commt) depend on their respective current states and the upstream com-
munication action. The deterministic CPT rules are:

1. If Toggle Commt is Disable or Stay, the respective modality’s value remains unchanged (FPSt+1 = FPSt,
Resolutiont+1 = Resolutiont).

2. If Toggle Commt is Enable, both the FPS and Resolution values increase by one discrete step, if possible (i.e.,
FPSt+1 = next(FPSt), Resolutiont+1 = next(Resolutiont)), subject to saturation at their maximum values.

Share Information Modality The transition probabilities P (ShareInfot+1|ShareInfot,Toggle Commt) are defined
identically to the corresponding modality in the Worker agent model.


	Introduction
	Background
	Service Level Objectives in Devices – SLOiDs
	Partially Observable Markov Decision Processes – POMDPs
	Active Inference – AIF

	Vision
	Distributed Intelligence
	Problem description

	Methodology
	POMDPs definition
	Producer's POMDP model
	Worker's POMDP model
	Consumer's POMDP model

	Tools and simulation setup
	Active inference with pymdp
	Dataset
	Simulation

	Evaluation
	Experiments


	Results
	SLOiD fulfillment
	Learning the transition model
	Comparison to multi-agent reinforcement learning (MARL)
	Heterogeneous hardware
	Computing cost

	Discussion
	Design
	AIF Agent Model
	Deployment

	Runtime

	Related work
	Adaptive Mechanisms for the Computing Continuum
	Distributed Intelligence through Active Inference

	Conclusions
	Producer's transition model
	Worker's transition model
	Consumer's transition model

