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Abstract

In nature, ants are well known for collectively carrying loads, birds fly in large flocks,
and fish gather in schools. Such collective behavior is not only relevant in nature, but
also for an increasing number of robotic systems. Multi-agent Systems (MAS) can
provide benefits for a wide range of application areas, as groups of robots can collectively
perform tasks that are way beyond the capabilities of individual agents. In this thesis,
we introduce methods to coordinate and control robotic agents in both antagonistic
and collaborative MAS in confined environments. We exemplarily work on two different
scenarios, which are autonomous driving respectively racing, and formation control for
a flock of quadcopters. For each of these scenarios, we use a three-pronged approach
consisting of theoretical analysis and reasoning, implementation and simulation, and
hardware experiments.

For the autonomous racing task, we use machine learning to drive an agent in a timed
racing scenario. We show that in simulation, the model-based deep Reinforcement
Learning (RL) algorithm outperforms a number of other model-free RL algorithms, and
we empirically demonstrate that this control method is able to successfully transfer the
learned policy from simulation to a real-world test environment. In our collaborative
MAS consisting of a group of drones, we control quadcopters to form and maintain a flock
formation. We introduce Spatial Predictive Control (SPC) as a fully distributed control
method that is based only on the position of the individual drone itself and on those
of neighboring drones. Hardware experiments demonstrate SPC’s robustness against a
potential sim-to-real transfer gap and its capability to perform properly in the presence
of significant sensor noise and the extra latency of positional and control signals. For
scenarios, where even positional observations are not possible, we present Distributed
Distance-based Control (DDC), which is fully distributed and solely based on scalar
distance measurements and local position estimation. To the best of our knowledge, we
are the first to demonstrate such a controller on aerial MAS and perform experiments
with real hardware drones.
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CHAPTER

Introduction

“Alone we can do so little; together we can do so much.”, says Helen Keller, an American
author and lecturer. This is not only true for humans, but also for a great number of
animals and even robotic systems. Ants are well known for collectively carrying heavy
loads, birds fly in large flocks or V-formations, and fish gather in schools to protect
against predators. Also in robotics, Multi-agent Systems (MAS) can provide a wide range
of benefits for very different application areas, as robots can collectively perform tasks
that are way beyond the capabilities of individual agents. In this thesis, we introduce
methods to coordinate and control MAS in confined environments.

As benefits rarely come without additional challenges, this is also true for MAS.
First, coordinating and controlling MAS needs appropriate methods for perception
and localization. For most control methods, agents also need to be aware of the position
of other agents, to take proper actions. As this might be difficult to achieve in practice,
in this thesis, we work on obviating this requirement at least partially. Secondly, some
control methods might require individual agents to exchange information among them.
This requires careful consideration in real-world applications, as typically transmission
bandwidth is limited, has only a certain range, and might even be interrupted due to
external influences. To address this issue, we seek ways to limit necessary inter-agent
communication for our coordination method to a minimum. Lastly, the individual agents
use this information, which was perceived by themselves and received from other agents,
to infer control actions. These control actions are subject to their task-specific objective,
such that they form and maintain the respective formation. Note, that this formation
is not governed by a central coordinator or master controller, but it solely emerges by
the individual agent’s actions. In our thesis, we propose control methods that are more
efficient in reaching and maintaining such formations.
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1.

INTRODUCTION

1.1 Motivation: Biological Multi-agent Systems

When looking at ants, we see that they can achieve incredible things when working
together. They collectively carry loads much heavier than their own body weight [Gell5],
when transporting food or building materials. For this collective motion there is a
high degree of coordination required, which demands efficient communication between
ants. For Paratrechina longicornis ants, there is no single leader, but navigation, while
collectively carrying, is a distributed effort, as it emerges by the joint behavior of the
individual ants [Gell5]. Ants are also able to build floating rafts out of their interlinked
bodies to survive floods [MTH11] and float effortlessly for multiple days. These rafts of
Solenopsis invicta ants demonstrate self-assembly and self-healing abilities, which makes
the overall ant colony behave like a superorganism.

Flocks of starlings are more resilient to predators as they would be alone [GoolT].
Collective behavior observed in starling murmurations of Sturnus vulgaris is reported to
be an effective anti-predator adaptation. Large numbers of birds are safer when gathering
at suitable roosting sites together, while in contrast, they would be more vulnerable
flying to the roost individually. Multiple advantages are reported for murmuring at the
roosting site, which are the dilution effect, higher vigilance leading to a detection effect,
and also predator confusion [Gool7]. For birds, V-shaped formation greatly helps to
reduce energy consumption when flying over long distances [Por14; LS70]. Groups of
northern bald ibises Geronticus eremita which fly in a V-shaped flock, do not only place
themselves in aerodynamically optimum positions but also synchronize their flapping to
maximize the upwash benefit [Porl4].

While cooperation is beneficial in the aforementioned examples, we might also observe
antagonistic behavior within groups of animals. Competition for resources, such as food
and water, is one of the most obvious reasons for antagonistic behavior between individuals
[SF51; Geol3|. Aggressive behavior in such competitive scenarios can be considered as
an optimization problem, where such strategies evolve when the benefits of aggression
outweigh its costs and when the benefit/cost ratio is higher than other, non-aggressive,
behavior [SF51]. Social structures and hierarchy fights, as well as inter-male fighting to
win mates, are observed between animals [McG86]. Such behaviors involve elaborated
strategies and careful consideration of benefits versus risks of the confrontation [Pay98].

Further examples of biological multi-agent systems include swarms of bees, fish schooling,
herds of mammals, and many more [Gool7]. The aforementioned examples of cooperative
behaviour of animals show the benefit of collaboration that helps to achieve a goal
better or more efficiently. In some cases it would even be impossible to achieve the goal
individually, so the emergent behavior of a group of individuals is crucial to solve the task.
In engineering, there was always the idea to mimic nature in certain aspects, including
collective behavior. Therefore also, the collaboration of individual robots is a highly
relevant topic relating to research in the area of MAS. Analogously, also antagonistic
behavior has its counterparts in engineering applications when individual agents compete
to solve a specific task faster, more efficiently, or more reliably.
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1.2. Robotic Multi-agent Systems

1.2 Robotic Multi-agent Systems

Since Josef Capek coined the term robot [Cap20] in 1920, robots have been used for a
multitude of tasks in various application areas. These range from industrial automation,
inspection and maintenance in hazardous environments, transport and mobility, to
entertainment and arts. Even though in many of these applications, more than one robot
is used, this is not necessarily a MAS. For the context of this thesis, we consider a group
of robots as a MAS subject to the following key properties.

e Emergent Behaviour from Individual Control Actions:

Control actions should be derived individually by each agent in a distributed manner
without any central coordinator or master controller. Features and behavioral
patterns of the overall system will emerge from the actions of individual agents
rather than being imposed by an external control entity. Actions of agents are based
on sensed information, optionally further information that is exchanged among
the agents or from other sources, and the task-specific objective. This property is
important for a reactive and resilient system, as it does not require a single entity
that processes all relevant information to determine every agent’s control action.
If there were such a central coordinator or master controller, the robots could be
considered as some type of distributed actuator, but not individual agents.

e Agents as Partially-Observable Markov Decision Processes (POMDPs):
In a MAS, each individual agent can be described by a Partially-Observable
Markov Decision Process (POMDP). In this description, the state space includes
the individual agent’s own state, as well as the state of other agents and the
environment. Each of the state variables might be continuous and infinite in value
and time domain and, therefore, should be appropriately mapped to a discrete set
with the required precision and value domain. Most importantly, it is, in most
cases, impossible to sense (measure) the entire state, which implies only partial
observability. To derive an appropriate action, maximizing the agent’s reward, it is
therefore necessary to estimate a belief state based on the available observations.

e Variable Number of Agents:

In general, the system should be capable of dealing with any number of agents.
However, in practical scenarios, the maximum number of agents can be limited by
different factors such as spatial constraints, the cost of robots, or hardware resource
limitations. Nevertheless, the system design and algorithms itself should neither
limit the minimum nor the maximum number of agents by an arbitrary number.
This makes it possible to scale the system to larger and smaller application scenarios.
It is also a necessary property to make the overall system resilient against the
fault of individual agents. While in a cooperative scenario, an unlimited number of
agents should be able to work together to achieve a certain goal, also in antagonistic
scenarios, the number of competing agents should not be restricted.
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1.

INTRODUCTION

e Interchangeable Agents:

The system shall not depend on the presence of a designated leader or any kind of
distinctive master agent. In the simplest case, all agents are completely identical
and employ the same control scheme. Also, their control actions should react to
every other agent’s behavior in the same way, which makes agents interchangeable
without influencing the behavior of the whole system. In more complex scenarios,
there could be different types and categories of robots (e.g. ground-based robots
and aerial robots). However, there should be no fixed subset of agents, where others
depend on their presence and/or actions.

e Individual Sensing Capabilities:

Each individual agent should have sensing capabilities to gather information about
its own state and the environment. The state of an agent could be the position
or pose, but it also includes further information such as internal temperature or
battery level. Relevant information about the environment includes potential obsta-
cles, surface conditions, other objects, visual impressions, and further information
relevant to any specific task. Most importantly, the environment explicitly includes
other agents, where distance, position, and pose could be relevant information to
capture with sensors. Having sensing capabilities is also a necessary condition for
the first property of this list, which is to determine its own control actions. Note
that the full system state is, in general, only partially observable, which relates to
the property of describing agents as POMDPs.

From these aforementioned properties, one might conclude, that individual agents are
totally independent and solely base their control actions on information gathered by their
own sensors. However, if not stated otherwise in the specific chapter of this thesis, we do
not make such strong assumptions about MAS, but allow to have the following abilities:

e Information Exchange:

Agents might exchange information (e.g., over radio transmission protocols) with
each other. This can include its own state information, any information about
the environment, or derived control actions. It is also possible to re-transmit
information that was sent by another agent, building some sort of relay network to
exchange information over longer distances. However, as in practice, bandwidth is
limited, agents might only exchange a subset of their available information with a
limited update rate. Furthermore, they could limit their communication to agents,
which are in close vicinity, often referred to as neighbors. This is especially relevant,
as otherwise the property variable number of agents would lead to an unmanageable
quadratic growth of messages from every to every agent.



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1.3. Application Areas

e Support Infrastructure:
Global-Navigation Satellite System (GNSS) is a well-known and widely used method
to determine its own position at nearly any point on the Earth’s surface. For outdoor
applications, this is state-of-the-art for robot localization. There exist comparable
types of indoor localization systems [Fer17; Laol8], which can be used to determine
robot positions. We consider both types of such systems as support infrastructure,
which can be available to a MAS for a given scenario unless otherwise stated in the
respective chapter of this thesis. Other types of comparable support infrastructure
could be passive or active optical markers, as well as radio transmission markers.

e Off-board Computation:

While in general, we assume for all agents of a MAS to derive individual control
actions in a distributed manner without any central coordinator or master controller,
we relaxed this property on an implementation level only. For some hardware
implementation tests, we send all the necessary information from the agents to
a computer and execute our algorithm implementation there. Results are then
again sent to the agents to carry out these actions. One might consider this
approach as central coordinator or master controller, but actually, all computations
on the computer are done in individual software nodes without exchanging any
information between them. We took this approach to simplify implementation and
allow for deeper debugging and logging capabilities of algorithmic internals. With
additional porting effort, but without any algorithmic modification, the very same
implementation could actually be executed on the robot hardware, obviating the
need for this off-board computation. Therefore this is not an actual property of
the MAS, but only of our proof-of-concept implementations.

1.3 Application Areas

There are many application areas that benefit from the emergent properties when using
robotic MAS. These MAS can either be collaborative or antagonistic — for both types,
we find a multitude of examples in literature. Apart from that, we also notice applications
that deploy multiple robots that do not feature the properties of a MAS introduced in
Section 1.2, which we also briefly present in Section 1.3.3.

1.3.1 Collaborative Robotic MAS

Robotic MAS can collectively perform tasks that are way beyond the capabilities of individ-
ual agents, as shown by multiple surveys [Rin21; Chul8a]. For Search-and-Rescue (SAR)
applications, there is a wide variety of collaborative multi-agent approaches using ground,
aerial, floating, and underwater vehicles [Que20b]. Specific examples are drone fleets that
can help rescue operations in disaster scenarios [Cam14]. Collaborative mapping can be
used in earthquake-damaged buildings via ground and aerial robots [Micl4]. Further
scenarios for multi-agent systems include transportation, where they can collectively carry
a heavy load while still being much more agile than a single larger drone [MFK11; LK18|.
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Inspection of large and complex structures can be done by aerial MAS [Mia20; Jin20].
MAS can also play a role in environmental monitoring, space exploration, agriculture,
entertainment, and industrial maintenance [Sch20].

1.3.2 Antagonisitc Robotic MAS

There are applications and scenarios where robotic agents are in competition with each
other and, therefore, might exhibit antagonistic behavior. A quintessential example of
such a competitive scenario is autonomous racing [Bet22]. If there is no coordination with
other road users, autonomous driving, in general, might also be considered competitive
to some extent, while individual agents still need to obey the traffic rules. Autonomous
delivery of goods using aerial vehicles [Lem21] or ground-based vehicles [Li20] is another
example of when multiple competing operators deploy their autonomous robots in the
same airspace, respectively streets.

1.3.3 Centrally Controlled Multi-robot Systems

In 2012, there was the first large-scale light show using Unmanned Aerial Vehicles (UAVs)
demonstrated at the open-air music festival Klangwolke in Linz, Austria [Hor12]. At this
time, 50 quadcopters equipped with multicolor LEDs were used to form a 3D display in
the night sky. Thereafter many more light shows were performed with up to thousands of
UAVs [ZCI21]. Unlike the aforementioned description of MAS, where agents dynamically
place themselves such that the respective formation is reached, these light shows follow a
pre-determined movement schedule. The formations and movement patterns are generated
beforehand and fully pre-programmed [Wen22; Hua21l; NK22]. For the context of our
work, we, therefore, do not consider such systems with a central coordinator as MAS.

In warehouses and distribution centers, robotic handling systems are increasingly ap-
plied. There are automated robotic handling systems, such as shuttle-based storage and
retrieval systems, shuttle-based compact storage systems, and robotic mobile fulfillment
systems [ADR19]. Large logistics companies operate fleets of hundreds of mobile robots
to move shelves in warehouses [Mou02; DWO08]. These robots are used to move the shelves
from their storage location to picking stations and vice-versa. For such a warehouse
system, a centralized optimization approach is used to optimize the path for each robot
based on information about the location of all goods on the shelves, the allocation of
tasks to picking stations, and joint robot trajectory planning [LCH19; Bar20]. As the
trajectories of such robot fleets are centrally controlled, we also do not consider these
systems as MAS, in the context of our work.
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1.3. Application Areas

1.3.4 MAS in Confined Environments

Every robotic system deployed in any real-world scenario is subject to limitations imposed
by its environment. Notably, these are space constraints given by the designated operation
area. In outdoor scenarios, e.g., SAR [Cam14], this area is defined by the given search
perimeter and restricts where UAVs shall operate. Similarly, for any application in an
inhabited area, e.g., drone shows in cities [Hor12], the allowed operation area is given
by regulatory constraints. For indoor applications, space constraints are even more
confined [Raz21]. Despite the limitation of the available space, robots are also hindered
in their free movement by static or dynamic obstacles. These obstacles could be, e.g.,
trees [Loq21; Zho22], structural building elements and furniture [Raz21|, as well as
artificial obstacles [Son23]. In this thesis, we, therefore, deal with obstacle avoidance
as well as compactness metrics to assess if a group of robots fits in a certain confined
volume and is able to operate under these environmental constraints.

/}3 \> \

Y

(a) Separation rule
(b) Alignment rule
(c) Cohesion rule

Figure 1.1: Flocking model introduced by Reynolds [Rey87] with force terms (a) separation,
(b) alignment, and (c) cohesion (picture taken from [AYS14]).
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INTRODUCTION

1.4 State of the Art

Before dealing with the control of multiple agents, we consider the competitive MAS
scenario of autonomous racing, where the task is to control a single racing agent in
competition with other opponent agents. Then, we look at descriptions of aerial MAS
formations and their control methods and strategies. Subsequently, we summarize what
observations are used for such control methods, and what information is exchanged
between the individual agents for such systems.

1.4.1 Control for Competitive MAS

Autonomous racing is a quintessential example of MAS in a competitive scenario. For the
objective of completing laps without collision and reaching the target as fast as possible,
individual agents behave antagonistically toward other participating racing agents. The
rising popularity of self-driving cars has led to rapid growth in this research field in recent
years [Bet22]. Autonomous racing is also highly relevant as it is related to automated
driving in urban and general environments and, therefore, pushing research that can
eventually be transferred to these application areas.

Traditional control divides this problem into independent sub-problems: perception,
planning, and control. Recent success in the context of Formula Student [Kab19b; Kab19a;
And20] has been achieved by Model Predictive Control (MPC) and by engineering the
perception pipeline using sensor fusion of LiDAR and RGB cameras. Several approaches
plan an optimal trajectory [VT05; RNH15; TC13; Vaz20].

A large amount of research dealing with Reinforcement Learning (RL) in the context of
autonomous racing made use of camera images and adopted model-free methods [Jarl8;
RMDO7; Ken19]. In [Fuc20], the authors used Soft Actor-Critic (SAC) to control a racing
car in simulation by feeding the controller with state information and ad-hoc features
about the road curvature. Another recurrent trend for autonomous racing consists of
combining MPC and deep RL [BB20b; Will7]. In most of these works, the agent is
assumed to be an Markov Decision Process (MDP), that is, to have a fully observable
state. In contrast, in this thesis we assume that the state is only partially observable,
that is, the model of the agent is a POMDP.

1.4.2 Formation Control of Aerial MAS

All collaborative MAS applications require some control method to establish a certain
formation and maintain it throughout the operation of the system. In order to work
with MAS formations, it is first necessary to describe such formations and their specific
properties for the respective application area. This description of how the formation of
agents should look is not necessarily linked to a specific control method. However most
papers describe a formation and also propose an associated control method to achieve
a MAS formation based on their given description. Therefore, also in this section, we
consider description and control method together.
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1.4. State of the Art

Reynolds [Rey87] was the first to propose a flocking model, using cohesion, separation,
and velocity alignment force terms (see Figure 1.1) to compute agent accelerations. Even
though it originally described flocking for computer animation, its principles are directly
applicable to actual robotic systems. Reynolds model was extensively studied [ER10]
and adapted for different application areas [Chul8a]. Alternative flocking models, based
on cost functions, are considered in [Olf06; Meh18; Mar14; SSF19; BLMO08|. In [TJP03],
a formulation based on a cost function that is defined in terms of scalar distances to
other agents only, is introduced. Gradient optimization for robot control has been
studied in [Sch09]. Other formulations consider swarm control in the context of formation
rigidity [SG17; Poz21; Zell5|.

In most of these approaches, flocks are described using point models. This means that
physical properties of agents (e.g., quadcopters) such as mass and inertia, are not taken
into account for evaluation. In addition to these largely theoretical approaches, in [V4sl18;
SSF21; SSF22], flocking controllers are implemented and tested on real hardware. In
contrast to these works, we use a detailed drone model for our simulations and furthermore
perform experiments with actual hardware drones in this thesis. The approach of [SSF21;
SSF22] involves the use of model-predictive control, which is known to be computationally
rather expensive and requires a physical model of the agents. We, in contrast, propose
control methods that obviate the need for such computationally expensive calculations.

1.4.3 Observations and Communication of MAS

As introduced, MAS might include the perception of other agents and some method
of localization in order to determine each agent’s position. MAS coordination is more
challenging if observations are limited, and therefore perception and/or localization is
not available or limited. This means the whole system state is only partially observable
by the individual agents, which is also reflected in the description of agents as POMDPs.

In [Lu23; Sasl7; Mohl18; Whe20], agents are equipped with cameras and/or LiDAR
sensors that are used for (relative) localization. Other works [OA14; Aral6; KPA17;
LXW18; WWP10; BS20], including the survey [OPA15], assume individual agents can
sense relative positions of their neighboring agents with respect to their own local
coordinate systems. One example of a system to measure relative displacement vectors
among a group of quadcopters, called UVDAR, is using cameras and ultraviolet led
markers [Wall9; Wall8; WSF18]. This system was demonstrated indoors as well as
outdoors for a variable number of quadcopters. However, sensors to determine this
information are not necessarily available in every scenario. In this thesis, we therefore
deal with agents as POMDPs, where the state is only partially observable.

If agents are able to interchange messages, they can communicate their distance measure-
ments, acceleration, and possibly further information. In [AY11; ST08; ZWG19; GLX20;
JAH20], message exchange (transmitting acceleration, angular velocity, or other data)
is used between at least some of the agents. As there might exist scenarios where such
information exchange is at least temporarily not available, we consider the case of very
limited, respectively non-existent, information exchange in this thesis.
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1.5 Methodology

The research conducted in this thesis is in the area of robotics and Cyber-Physical
Systems (CPS). For CPS, physical components and software are deeply interconnected, as
they interact in both directions. These interactions of CPS and the physical environment
do not only depend on the value correctness of calculations but also on their timely
behavior. This aspect is especially relevant when dealing with real-time constraints of
certain systems. Despite this timing aspect, which is mostly neglected in pure software-
based applications, also imperfections of models are of special interest in this research
area. To describe the interactions of a CPS with its environment, we can create a model
describing a subset of the real world, which is relevant to the specific scenario. However,
every model needs to make abstractions or simplifications to be practically tractable.
Even if the model is very detailed, there might be aspects of the real world that are
hard to measure exactly and, therefore, cannot be modeled perfectly. This leads to an
inherent imperfection of the model. When such a model is used to simulate real-world
scenarios, this leads to a so-called sim2real transfer gap. To address these issues, we use a
three-pronged approach consisting of theoretical analysis and reasoning, implementation
and simulation, and hardware experiments.

e Theoretical Analysis and Reasoning:

The basis for our research is a thorough literature study in order to analyze the
current state-of-the-art of control methods, relevant measurement and sensor tech-
nology, means of communication, and physical properties of the robotic agents.
Following this, we identify which aspects of the current state-of-the-art can be
improved or are yet incomplete or missing. Based on this, we formulate research
questions, as introduced in Section 1.6. For these questions, we first give a mathe-
matical formulation of the problem and try to model the scenario consisting of the
MAS agents and their environment. We seek to develop a new approach addressing
the stated research question and describe it in a high-level language or as a purely
mathematical formulation using our model. This part can be considered as employ-
ing a rationalist [Ede07] approach since we use mathematical and logical reasoning
to deduct attributes of our control approach under the given properties of our robot
model and environment model. To assess the performance of a control method,
we define relevant quality metrics for the respective scenario. These are, e.g., lap
time and collision-safety distance for autonomous racing (refer to Chapter 5) or
compactness, inter-agent distance, and obstacle clearance for drone flocking (refer
to Chapters 2 to 4). In the stage of theoretical analysis, we are not necessarily able
to give guarantees for our control methods w.r.t to these quality metrics.
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1.5. Methodology

e Implementation and Simulation:

The new approach that we first developed and described in a high-level language
or as a purely mathematical formulation is thereafter implemented as a software
program. This software can then be used in an appropriate simulation environment,
which emulates the physical model of our robotic agents and their environment.
In this part of our research, we conduct extensive experiments in this simulation
environment. This part, as well as the following hardware experiments, can be
considered as employing a technocratic [Ede07] approach, as we gather a posteriori
knowledge by these executions of simulations. On the one hand, we intuitively can
asses if the implementation actually controls agents in the expected way. On the
other hand, we use the aforementioned quality metrics to quantitatively assess the
controller’s performance. If thresholds for certain quality metrics are violated, we
consider the controller as not functional, and we need to revise its design and/or
implementation. This could imply that another iteration of theoretical analysis is
needed in order to come up with a modified control formulation. In other cases,
it might be sufficient to fix potential implementation mistakes or to adjust some
parameters of the controller. Using the simulation environment, we are also able to
quantitatively evaluate the implementation over a range of different parameters, to
search for its most optimal values w.r.t. to certain quality metrics. We furthermore
use simulations to compare our developed controllers to other previously published
controller designs and based on quality metrics, we quantitatively compare them.

Hardware Experiments:

As the aforementioned sim2real transfer gap is a critical concern for any type of
robotic system, we perform experiments with real hardware robots. For autonomous
racing, we use a model race car and build several different race tracks to drive in
our lecture hall at the university (refer to Chapter 5). For drone flocking, we use up
to seventeen Crazyflie 2.1 quadcopters to perform experiments at various indoor
locations that are big enough, including a fire department’s vehicle hall (refer to
Chapters 2 to 4). In these experiments, the controller’s performance is assessed by
the very same quality metrics as in the simulation. These hardware experiments
follow the principle of empirical falsification [Pop59]. Repeated and structured
experiments are performed for a set of pre-defined task-specific scenarios and a
variation of configurations (e.g., number of agents). While these experiments cannot
formally prove any properties of the controllers, we can demonstrate their fitness

to apply them to real hardware robotic systems and actual physical environments.

11
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1.6 Contributions of this Thesis

The contributions of this dissertation to advance the state of the art in research on
MAS are as follows: At first, we consider the competitive MAS scenario of autonomous
racing, as introduced in Section 1.4.1, where we present a RL approach to control a single
POMDP agent, competing for the fastest lap time. Given the different MAS formations
and control methods introduced in Section 1.4.2 and available types of observations and
communication in Section 1.4.3, we seek ways to improve on these. We present a control
method for a swarm of drones that only needs positional observations of neighboring
drones and does not require the physical model of the agents. We furthermore present
another control method that even does not need positional observations but only scalar
distance measurements to neighboring drones.

1.6.1 Reinforcement Learning for Autonomous-Racing POMDPs

For autonomous racing there exist a large number of engineered solutions based on
traditional control. These solve the independent sub-problems of perception and/or
localization, planning, and control. Monte Carlo localization [Fox99] is an efficient
method to determine the position of a robot on a map based on sensor (e.g. LiDAR)
measurements. Optimal trajectories can be pre-planned, w.r.t to different metrics (e.g.
minimum lap time, distance, curvature) [VT05; RNH15; TC13; Vaz20]. Subsequently it
remains to employ a control method to follow this trajectory. The Pure Pursuit Path
Tracking Algorithm [Cou92| is an example of such a method, which is widely used in
Fltenth racing [OKe20; Agn20].

However, deploying deep RL agents in the real world is difficult. This is because they
require running a significantly large amount of episodes to obtain reasonable performance
[SB18]. This performance is only tractable in simulation environments. Subsequently,
the agents should also overcome the challenges of transferring learned dynamics from
simulation to the real world. We set out to design deep RL models that are able to learn
to autonomously complete time-lap racing tasks. Considering the real-world conditions,
we formalize the problem as a POMDP. This is necessary, as the state is not directly
observable by the available sensor data and therefore, we need to infer a policy that gives
a mapping from the history of observations (respectively belief states) to actions.

In our publication [Bru22| (see Chapter 5), we address the following research question:

RQ 1:
How to design deep reinforcement learning models that are able
to learn to autonomously complete time-lap racing tasks?
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1.6. Contributions of this Thesis

1.6.2 MAS Control Without a Plant-Dynamics Model

On the one hand, many control methods for aerial MAS (see Section 1.4.2) describe the
agents as point models. These works assume agents to be single points with a specific
mass and describe the behavior as a double integrator when forces are acting on this
point. Some even simpler models do not consider mass and inertia but only model it as
single integrator dynamics based on the agent’s velocities and positions. These models
clearly neglect the detailed physical behavior of actual aerial robots, such as quadcopters
and fixed-wing aircraft. When control methods based on a point model are described in

theory only, it is unclear whether and to what extent they are applicable to real hardware.

On the other hand, there are controllers, such as MPC, which use detailed models of the
agents. However, MPC is computationally expensive and, therefore, not applicable for

all robots, as embedded systems typically have limited onboard computation capabilities.

This can be either due to hardware restrictions, but also for energy efficiency reasons.

In our work, we, therefore, investigate the gap between these two approaches. Given
an actual robotic system with its associated physical behavior, we seek to design an
optimized controller without internally using the physical model of the agents.

In our publication [Bra23| (see Chapter 2), we address the following research question:

RQ 2:

How to design a distributed controller that minimizes a given po-
sitional cost function for robotic agents with black-box positional
low-level-controllers, no available model of the plant dynamics,
and only positional observations of their environment?

13
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1.6.3 MAS Control Under Limited Observations

Most control methods, introduced in Section 1.4.2, require knowledge of the position of
all agents, or at least of neighboring agents. Where the neighborhood of an agent can, for
example, be defined as a subset of all the drones within a certain distance. Some control
methods also require other drone’s velocities or accelerations. This has two implications
w.r.t observations and communication (also refer to Section 1.4.3).

First, agents need to determine their own position, velocity, and acceleration in a global
coordinate system. GNSS and comparable types of indoor localization systems [Ferl7;
Laol8], can determine such position vectors. However, these systems might not be
installed or are currently unavailable at some locations. Moreover, they are unlikely
to be available in some applications (e.g., underwater SAR and cave exploration). If
a positioning system is not available, it remains to use onboard sensors to determine
relative position vectors from one agent to another. Such methods were also introduced
in Section 1.4.3.

Second, agents might communicate this information either point-to-point, via multi-
or broadcast messaging. It enables individual agents to control their actions based
on local measurements as well as information from other agents. Such exchange of
information needs to be done in a coordinated manner (e.g., to avoid collisions on the
radio transmission carrier frequency). It takes time until the message is delivered, and
transmissions might get lost. There also might exist scenarios where such information
exchange is at least temporarily not available.

In our work, we therefore seek to develop a MAS formation controller with only limited
observations (scalar distance measurements) and limited (or without) information ex-
change. This was partially discussed in our publication [Bra22c] (see Chapter 3) and
subsequently more extensively addressed in our paper [Bra24] (see Chapter 4), to answer
the following research question:

RQ 3:

How can the controller design for distance-based cost functions
be generalized such that control actions are chosen based only on
scalar distances without knowledge of relative position vectors?
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1.7. Publications

1.7 Publications

The remainder of this cumulative dissertation consists of the following published papers:

e Chapter 2:

Publication: Andreas Brandstitter, Scott A. Smolka, Scott D. Stoller, Ashish
Tiwari, and Radu Grosu. ,Multi-Agent Spatial Predictive Control with Application
to Drone Flocking®“. In: 2023 IEEE International Conference on Robotics and
Automation (ICRA). 2023, pp. 1221-1227. por: 10.1109/ICRA48891.2023.
10160617

Conference ranking: A* / Al1!

Abstract: We introduce Spatial Predictive Control (SPC), a technique for solving
the following problem: given a collection of robotic agents with black-box Positional
Low-Level Controllers (PLLCs) and a mission-specific distributed cost function,
how can a distributed controller achieve and maintain cost-function minimization
without a plant model and only positional observations of the environment? Our
fully distributed SPC controller is based strictly on the position of the agent itself
and on those of its neighboring agents. This information is used in every time
step to compute the gradient of the cost function and to perform a spatial look-
ahead to predict the best next target position for the PLLC. Using a simulation
environment, we show that SPC outperforms Potential Field Controllers, a related
class of controllers, on the drone flocking problem. We also show that SPC works on
real hardware, and is therefore able to cope with the potential sim-to-real transfer
gap. We demonstrate its performance using as many as 16 Crazyflie 2.1 drones in
a number of scenarios, including obstacle avoidance.

Author’s contribution: Survey of the state of the art and formulation of
research question. Theoretical and conceptual design of the proposed method.
Mathematical formulation of Spatial Predictive Control (SPC) and analysis of cost
function terms’ derivative. Conceptual design and implementation of simulation
environment and scenario definitions. Software implementation of control method
and drone model in the simulation environment. Analysis of the controller’s behavior
and properties in simulation. Refinement of controller design and parameters and
repeated improvements in simulation. Conceptual design and implementation of
hardware setup for experimental evaluation on real hardware quadcopters. Portation
and adaption of the controller’s software implementation to be used on the hardware
quadcopters. Execution and evaluation of hardware experiments. Presentation of
current status at regular meetings with other co-authors to discuss the progress of
the work. Preparing the graphics and presenting the work in written form.

! IEEE International Conference on Robotics and Automation (ICRA) is ranked A* according to
CORE2023 [Edu23] and Al according to Qualis [Edul2].
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e Chapter 3:

Publication: Andreas Brandstéitter, Scott A. Smolka, Scott D. Stoller, Ashish
Tiwari, and Radu Grosu. ,Towards Drone Flocking Using Relative Distance
Measurements“. In: Leveraging Applications of Formal Methods, Verification and
Validation. Adaptation and Learning. Ed. by Tiziana Margaria and Bernhard
Steffen. Cham: Springer Nature Switzerland, 2022, pp. 97-109. 1SBN: 978-3-031-
19759-8. po1: 10.1007/978-3-031-19759-8_7

Conference ranking: C / B4 ?

Abstract: We introduce a method to form and maintain a flock of drones only
based on relative distance measurements. This means our approach is able to
work in GPS-denied environments. It is fully distributed and therefore does not
need any information exchange between the individual drones. Relative distance
measurements to other drones and information about its own relative movement
are used to estimate the current state of the environment. This makes it possible
to perform lookahead and estimate the next state for any potential next movement.
A distributed cost function is then used to determine the best next action in every
time step. Using a high-fidelity simulation environment, we show that our approach
is able to form and maintain a flock for a set of drones.

Author’s contribution: Analysis of potential direction of future work with
regards to the previously published work and survey of the state of the art, and
thereafter formulation of research question. Theoretical and conceptual design of
the proposed method for controlling a MAS without position information. Sketch
and implementation of first proof-of-concept studies for the proposed control
methods. Conceptual design and implementation of simulation environment and
scenario definitions. Software implementation of control method in the simulation
environment using the drone model from previous works. Analysis and evaluation
of the controller’s behavior and properties in simulation. Presentation of current
status at regular meetings with other co-authors to discuss the progress of the work.
Preparing the graphics and presenting the work in written form.

2 International Symposium on Leveraging Applications of Formal Methods Verification and Validation
(ISoLA) is ranked C according to CORE2023 [Edu23] and B4 according to Qualis [Edul2].
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1.7. Publications

e Chapter 4:

Publication: Andreas Brandstitter, Scott A. Smolka, Scott D. Stoller, Ashish
Tiwari, and Radu Grosu. , Flock-Formation Control of Multi-Agent Systems us-
ing Imperfect Relative Distance Measurements“. In: 2024 IEEE International
Conference on Robotics and Automation (ICRA). 2024, pp. 12193-12200. DOI:
10.1109/ICRA57147.2024.10610147

Conference ranking: A* / Al13

Abstract: We present distributed distance-based control (DDC), a novel approach
for controlling a multi-agent system, such that it achieves a desired formation, in a
resource-constrained setting. Our controller is fully distributed and only requires
local state-estimation and scalar measurements of inter-agent distances. It does not
require an external localization system or inter-agent exchange of state information.
Our approach uses spatial-predictive control (SPC), to optimize a cost function
given strictly in terms of inter-agent distances and the distance to the target loca-
tion. In DDC, each agent continuously learns and updates a very abstract model of
the actual system, in the form of a dictionary of three independent key-value pairs
(A3, Ad), where Ad is the partial derivative of the distance measurements along a
spatial direction AS. This is sufficient for an agent to choose the best next action.
We validate our approach by using DDC to control a collection of Crazyflie drones
to achieve formation flight and reach a target while maintaining flock formation.

Author’s contribution: Analysis of directions for future work in our previously
published paper. Theoretical and conceptual design of the identified improvements,
which lead to the development of the DDC approach. Software implementation
of DDC in simulation environment employing the previously used drone model.
Analysis and evaluation of the controller’s behavior and properties in simulation.
Refinement of controller design and parameters and repeated improvements in sim-
ulation. Conceptual design and implementation of hardware setup for experimental
evaluation on real hardware quadcopters. Portation and adaption of the controller’s
software implementation to be used on the hardware quadcopters. Execution and
evaluation of extensive hardware experiments. Presentation of current status at reg-
ular meetings with other co-authors to discuss the progress of the work. Preparing
the graphics and presenting the work in written form.

3 IEEE International Conference on Robotics and Automation (ICRA) is ranked A* according to
CORE2023 [Edu23] and Al according to Qualis [Edul2].
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e Chapter 5:

Publication: Axel Brunnbauer®, Luigi Berducci*, Andreas Brandstéatter®, Math-
ias Lechner, Ramin Hasani, Daniela Rus, and Radu Grosu. , Latent Imagination
Facilitates Zero-Shot Transfer in Autonomous Racing”. In: 2022 International
Conference on Robotics and Automation (ICRA). (* indicates equal contribution).
2022, pp. 7513-7520. DOI: 10.1109/ICRA46639.2022.9811650

Conference ranking: A* / A14

Abstract: World models learn behaviors in a latent imagination space to enhance
the sample-efficiency of deep RL algorithms. While learning world models for high-
dimensional observations (e.g., pixel inputs) has become practicable on standard RL
benchmarks and some games, their effectiveness in real-world robotics applications
has not been explored. In this paper, we investigate how such agents generalize to
real-world autonomous vehicle control tasks, where advanced model-free deep RL
algorithms fail. In particular, we set up a series of time-lap tasks for an FITENTH
racing robot, equipped with a high-dimensional LiDAR sensor, on a set of test tracks
with a gradual increase in their complexity. In this continuous-control setting, we
show that model-based agents capable of learning in imagination substantially out-
perform model-free agents with respect to performance, sample efficiency, successful
task completion, and generalization. Moreover, we show that the generalization
ability of model-based agents strongly depends on the choice of their observation
model. We provide extensive empirical evidence for the effectiveness of world models
provided with long enough memory horizons in sim2real tasks.

Author’s contribution: The main focus is on the implementation, demonstra-
tion, evaluation, and analysis of sim2real transfer capabilities by experimentation
using a hardware model race car. Comparing the simulated properties with the
demonstrated abilities of the agent in a number of different real-world experiments.
Responsible for the hardware setup, including building and operating the model
race car hardware platform, consisting of chassis, sensors, actuators, and embedded
computing platform. All software on the model race car, which is required to
operate the car and to execute the same inference node, as in simulation: Linux
operating system, drivers, and the Robot Operating System (ROS) stack. Porting
and adapting the implemented control agent to run properly on the model race
car hardware platform. Responsible for the track setup, including all race track
infrastructure with track barriers, network, and camera setup, to conduct the
hardware experiments. Conducting and overseeing the hardware experiments in
the lecture hall, recording and evaluating the associated results to demonstrate
the sim2real capability of the proposed RL algorithm. Iterative improvements on
the overall system design and parameters based on hardware experiment results.
Present and discuss the findings and conclusions in written and graphical form.

* IEEE International Conference on Robotics and Automation (ICRA) is ranked A* according to
CORE2023 [Edu23] and Al according to Qualis [Edul2].
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Abstract

We introduce Spatial Predictive Control (SPC), a technique for solving the following
problem: given a collection of robotic agents with black-box Positional Low-Level
Controllers (PLLCs) and a mission-specific distributed cost function, how can a distributed
controller achieve and maintain cost-function minimization without a plant model and
only positional observations of the environment? Our fully distributed SPC controller is
based strictly on the position of the agent itself and on those of its neighboring agents.
This information is used in every time step to compute the gradient of the cost function
and to perform a spatial look-ahead to predict the best next target position for the
PLLC. Using a simulation environment, we show that SPC outperforms Potential Field
Controllers, a related class of controllers, on the drone flocking problem. We also show
that SPC works on real hardware, and is therefore able to cope with the potential sim-
to-real transfer gap. We demonstrate its performance using as many as 16 Crazyflie 2.1
drones in a number of scenarios, including obstacle avoidance.

2.1 Introduction

A collection of drones can perform tasks that cannot be accomplished by individual
drones alone [Chul8b]. It can, for example, carry a heavy load while still being much
more agile than a single larger drone [MFK11; LK18]. In search-and-rescue applications,
the drones can explore unknown terrain by covering individual paths that jointly cover
the entire area [Cam14; BS18; Micl4]. These collective maneuvers can be expressed as
the problem of minimizing a positional cost function, i.e., a cost function that depends on
the positions of the drones (and possibly information about their environment). Such a
problem formulation requires a method to localize each drone within a common reference
frame, e.g. a Global-Navigation Satellite System (GNSS) or an indoor localization system.

Off-the-shelf drones, such as Crazyflie [Giel7]|, DJI [SZ 21], and Parrot [Par21], come
equipped with a Positional Low-Level Controller (PLLC). Such a controller takes a
position argument as input and maneuvers the drone to this position, where it then hovers.
PLLCs are common in other types of robotic systems, including the Landshark [Bla21]
and Taurob [Tau21] unmanned ground vehicles, and the Bluefin®-12 [Gen21] unmanned
underwater vehicle. Unfortunately, the PLLC’s code is often proprietary, and the exact
parameters of the physical drone model might not be available. Since the PLLC and
physical drone together form the plant to be controlled, a dynamic model of the plant is
often unavailable, for one or both of these reasons.

In this paper, we address the following problem: Design a distributed controller that
minimizes a given positional cost function for robotic agents with black-box PLLCs,
no available model of the plant dynamics, and only positional observations of their
environment.

To solve this problem, we introduce Spatial Predictive Control (SPC), a novel distributed
high-level approach to multi-agent control. In SPC, each agent’s controller identifies
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Figure 2.1: Given the positions shown for drones 0 to 3, the greyscale heatmap indicates the
value of the cost function for a drone i at each point, if it was placed at that point. The direction
in which drone 7 should move is determined by the gradient of the cost function (shown for
positions a, b, and ¢). SPC evaluates the cost at the spatial lookahead (indicated by the colored
dots) along this direction and chooses the best value for drone i’s next position (the red arrow).

N equally-spaced points within a maximum look-ahead distance € - N from its current
position in the direction of the negative gradient of a cost function ¢. The SPC controller
then computes the value of ¢ for each of these points and chooses the one with minimal
cost as the target location to be sent to the PLLC. The PLLC makes a best effort to
reach this location, while in the next time-step, SPC provides an updated target.

SPC vs MPC. To solve the stated problem, one might consider the PLLC as part of the
plant and design a Model Predictive Control (MPC) for the high-level control. Such an
approach is not applicable since neither a dynamic model of the physical plant nor the
internals of the PLLC are available. Even if an approximate dynamic model could be
obtained using system identification techniques, and if the code for the PLLC is available
(e.g., for Crazyflies), MPC remains a computationally expensive method [NM14]. This is
especially relevant for embedded processors with limited computing capabilities. MPC
needs to calculate the predicted behavior for the plant model over a specified time horizon
in order to search for an optimal control input. In contrast, SPC does not require a plant
model and avoids extensive prediction calculations.

SPC vs Planning. Given that (robotic) agents are equipped with PLLCs, one might ask
if a controller is actually needed, or would a planning-based approach suffice. Based on
the initial positions of agents and obstacles, a plan of way-points could be generated for
the PLLC to follow. Since, however, the environment is constantly changing due to the
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movement of other agents (and possibly obstacles), such a plan would become quickly
outdated. This is exactly the type of problem we address with SPC: in every time step,
we use the observations of the environment to calculate the next input to the PLLC; the
PLLC makes a best effort to reach this position. Hence, the key difference between SPC
and planning is the granularity of the time horizon: planning uses long time horizons for
calculating trajectories, whereas in our approach, feedback from the plant in every time
step is used to recalculate the desired next position.

SPC vs PFC. Potential Field Controllers (PFCs) are well-known controllers for mobile
robots. Prior work [TJP03; Sch09] has considered their application to flocking. PFCs
view the cost function as defining a potential field, and thus, PFCs use the gradient of the
potential as the force (or acceleration) the controller needs to apply. There are two issues
with using PFCs for our stated problem. First, when the environment has obstacles and
a large number of moving drones, the cost function becomes time-varying and nonlinear
(as in Figure 2.1), and local gradients become misleading. Second, in our setting, we can
not set the acceleration directly because we only have access to the PLLC. Nevertheless,
we can adapt and use PFC in our setting, but our experiments confirm that it performs
poorly compared to SPC, which evaluates the cost function at multiple candidate future
positions within the spatial look-ahead horizon to find the best next position (in terms
of cost-function minimization).

Application to Drone Flocking: After introducing SPC as a general approach, we
apply it to a distributed multi-agent system with the goal of achieving flock formation,
and maintaining flock formation while moving to a specified target location, avoiding
obstacles in the process.

The local cost function ¢ for this problem (see Section 2.3.2) depends only on the locations
of the drones. As illustrated for four drones in Figure 2.1, the negation of the gradient of
¢ (see Section 2.3.3) suggests a direction of movement for drone i. The SPC algorithm
(see Section 2.2) evaluates its local cost function at multiple points in that direction. As
the figure illustrates, this enables the drone to see peaks and valleys in the cost function
that may lie ahead.

The main contributions of this paper are:

e We introduce the novel concept of Spatial Predictive Control, a control methodology
well suited for PLLCs.

e SPC is model-free. One only needs to be able to determine the cost at different
locations along the direction of the cost function’s gradient in order to apply it.
Also, SPC does not need to measure the velocity or acceleration of neighboring
drones.

e We evaluate SPC using drone flocking in a drone simulation environment.
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e We further experimentally validate our approach by achieving flocking with real
drone hardware in the form of off-the-shelf Crazyflie quadcopters in a number of
different scenarios.

2.2 SPC for multi-agent systems

We describe the distributed control problem addressed in this paper and then present
SPC for solving this problem.

2.2.1 Distributed Control for Distributed Cost Minimization in the
Presence of PLLCs

We consider a multi-agent system consisting of a set D of agents. Every agent ¢ € D has
a state (o, x;,), Where x;, is the observable part of its state and x;, is the hidden part
of its state. Agent i has a control input u; and its dynamics is assumed to be given by
some unknown function f:

dl’io (t) dl‘ih (t)

(S S = (b iot), (1), wa(1)) (1)

Agent i has access to the observable state of a subset H; C D of agents. H; will be
referred to as the neighborhood of i.

The objective for the multi-agent system is given in terms of a cost function ¢(x;q, T mio)
that maps the observable state of agent i (z;,) and of its neighbors (z;,) to a non-
negative real value. Here we use zp;, as shorthand for (xjo) jeH;- Agent i’s goal is to
minimize ¢(Zio, X frio)-

In our setting, we do not have ability to directly set u;. Instead, we can only set a
reference value 3:52) that is then used by some black-box, low-level controller PLLC' to
internally set the control input.

ui(t) = PLLC(t, wio(t), i (), ') (2.2)
Both the dynamics of each agent (function f) and the details of the PLLC (function

PLLC) are unknown. The cost function ¢ is given. We want to find a procedure that
allows each agent to minimize its cost in the above setting.

2.2.2 Spatial Predictive Control (SPC)

Let Vg, ¢(%io, ©Hio) denote the gradient of cost function ¢ with respect to x;,. One way
to minimize the cost ¢(x;0, Tfio) would be to follow the negative of the gradient at every
point. However, if the cost function is nonlinear (e.g., has many peaks), then gradients
can be misleading. The key observation underlying SPC is that each agent should look
ahead in the observable state space, in the direction of the negative gradient, to determine
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the reference value for its observable state. An SPC controller picks N equally-spaced
points within a maximum look-ahead distance €- N from the current observable state and
in the direction of the negative gradient, where € and N are parameters of the controller.
At any given state (z;(t), Trio(t)), the set @; containing these equally-spaced points is
given by:

Vx. C(xio(t),l’]ﬂo(t))
QZ’ = {xw(t)—n-e- ©

Ve, c(@io(t), THio(t)
Here Vg, c(zio(t), zHio(t)) denotes the evaluation of the gradient of ¢ at the point

(2io(t), THio(t)). Our spatial-predictive controller selects the point in @); with minimum
(r)

20

yn_o..zv} (2.3)

cost as the next target position x; ’ for agent i:

2" = argmin (c(&io, Trio(t))) (2.4)

Zio€Q;
Note that the SPC controller recomputes the reference %(Z) at each time step. This is
important because this computation of the reference does not take into account the motion
of the neighbors. However, SPC will respond to any change in neighbors’ observable
states in its next computation of the reference.

2.3 Application to Multi-Agent Flocking Problem

This section starts with background on flocking, describes how to use SPC for this
application, and then presents metrics to assess the quality of a flocking controller.

2.3.1 The Flocking Problem

A set of agents D is in a flock formation if the distance between every pair of agents is
“not too large and not too small.” These requirements yield the first two terms of our cost
function: cohesion and separation. These two terms are sufficient to cause the agents to
form and maintain a flock formation.

In our model, drone i has access to positions of only a subset H; of drones, namely its
local neighbors. Hence, we define a local cost function, parameterized by ¢, which uses
only the positions of drones in {i} U H;.

2.3.2 Cost Function

Consider a drone 4, ¢ in D. Let p;, when it appears in the local cost function of drone
1, denote the position of drone j as known to drone ¢; this may differ from the actual
position due to sensing error. Let pg, denote the tuple of positions of drones in H; and
let 74 be the radius of each drone. We define the cost function c¢(p;, py,) as:

c(pi, pH;) =Ceon(PisPH;) + Csep(Pi> PH, )+
Ctzzr(piapHi) + Cobs(pi) (25)
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Figure 2.2: Directional movements (indicated by arrows) induced by cost-function terms:
a: Cohesion, b: separation, c: target seeking, and d: obstacle avoidance.

The value of the cohesion term increases as drones drift apart, and the separation term
increases as drones get closer together. Each term has a weight, denoted by a subscripted
w.

Cohesion term:

1

Ccoh(piapHi) = Weoh * ‘H’ ’ Z sz - ij2 (2'6)
' jeH;
Separation term:
1 1
csep(piypHi) = Wsep * ﬁ . Z ~5 (27)
il jem, maz(||lp; — pjll — 2ra, 0)

The function max(., 0) ensures positive values when there is sensor noise, but does not
further influence the cost function; 0 denotes a very small positive value.

The mission-specific target seeking term sets a target location, denoted by piq,, for the
entire flock. The obstacle avoidance term prevents the drones from colliding with infinitely
tall cylindrical objects. Let K denote the set of obstacles. For k € K, let r; denote the
radius of obstacle k, and let p; denote its center on the xy-plane.

Target-seeking term:

2
Pi+ X jeH, P
Ctar(pivai) = Wtar * ||Ptar — ﬁ (28)
T
Obstacle-avoidance term:
1 1
Cobs(p’i) = Wobs * 777 3 (29)

KL e maz(|P(p:) = prll—rx—7a,0)
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2. MULTI-AGENT SPATIAL PREDICTIVE CONTROL WITH APPLICATION TO DRONE FLOCKING
The function P(.) projects a vector to the xy-plane.
2.3.3 Gradient of the cost function
For SPC, the gradient of the cost function is required in Eq. (2.3), and is given by (for
readability, we elide function arguments):
Vpi€ = Vp.Ceoh + Vp;Csep + Vp,Ctar + Vi, Cobs (2.10)
Cohesion gradient:
1
vpq;ccoh =2 Weon | Pi — m : Z bj (2'11)
th jeH;
Separation gradient:
2w .
Vi Csep = Hsep ) b p;Zg (2.12)
\Hil &g, (lpi—pjll—2ra)” [pi—p;|
Target-seeking gradient:
2'wta7‘ pi+Z'GH-pj
Vo, Ctar = : I=—ice 2.13
piCtar ’Hz“i‘l ’Hz|+1 tar ( )
Obstacle-avoidance gradient:
2Wobs pr — P (ps)
Vi Cobs = 71" D : (2.14)
(K| i (P ) =prll—=re—7a)"- [|P (i) = pi|
2.3.4 Flock-Formation Quality metrics
Collision avoidance: To avoid collisions, the distance between all pairs of drones must
remain above a specified threshold dist;,.. We define a metric for the minimum distance
between any pair of drones as follows:
distmin = ingbi;r;# llpi — pjll (2.15)
We set disty, = 2 - 7q + Tsafety, Where 74 is the radius of the drone, and rg4pesy is a safety
margin.
Compactness: Compactness of the flock is measured by the maximum distance of any
drone from the centroid of the flock. It is defined as follows:
> jepPj
COMPmax = Ilrgg( ]‘GT“ — Di (216)
26
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2.4. Experimental Evaluation

It is expected to stay below some threshold compyy,.; otherwise, the drones are too far
apart.

Obstacle clearance: Keeping a safe distance from obstacles is required to avoid collisions.
We therefore measure the minimum distance from any drone to any obstacle:

cleargp; = _min |P(pi) — ol (2.17)

For safety, this should always be greater than some threshold cleariy, = rq 4 1 + Tsafety-

2.4 Experimental Evaluation

We evaluated SPC on the drone flocking problem using simulations and experiments with
Crazyflie 2.1 drones.

2.4.1 Simulation Experiments

As a simulation framework, we use crazys [SAI18], which is based on the Gazebo [KHO04]
physics and visualization engine and the Robotic Operating System (ROS) [Sta]. Our
SPC algorithm is implemented in C++ as a separate ROS node. It receives position
messages from neighboring drones, and control messages, such as the target location or
a stop command, from the human operator. It outputs a set-point to the PLLC. The
SPC we implemented is fully distributed: there is no central optimizer and no further
information is exchanged between ROS nodes. The SPC node calculates the gradient
according to Eqgs. (2.11)-(2.14). The spatial look-ahead parameter N is determined
dynamically based on the distance to the target location, where N* € N7 is a system
parameter:

N =[N*-maz(1,min(1.5- (||pi — ptar| +0.5),3))] (2.18)

This allows the drones to more quickly reach distant target locations and reduces the
controller’s computational cost (by reducing |@;|) once the flock reaches the target. There-
after, the set-point position xg) is determined by Egs. (2.3)-(2.4). Auxiliary functions,
like hovering at the starting position, are also implemented in this node. In the simula-
tions, we added Gaussian sensor noise, with ¢ = 10cm, for drone position measurements.
Cost-function weights and controller parameters (Table 2.1) were determined empirically
by analysis of the controller behavior. Note that the maximum look-ahead distance € - N
should not be too large, to avoid "seeing through" other drones or obstacles. On the
other hand, a small value for N reduces the granularity of the controller action space,
leading to a bang—bang controller if N = 1.
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Figure 2.3: Experiments were performed using four different scenarios: a: without obstacles,
b: with one obstacle, c: with 2 obstacles, and d: with 13 obstacles indicated in dark-blue. The
direct path between the numbered target locations pi,, (red dots) is indicated with red arrows.
(z-dimension is elided in these plots, since it is constant for all target locations.)

Figure 2.4: Simulation experiments using simulation environment. Snapshot of a: flock of 30
drones; and b: flock of 15 drones with 2 obstacles.
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2.4. Experimental Evaluation

PLLC A PLLCB Hardware

Cost weights | weon 20m~! 20m~1! 20m~!
Wsep 12m=! 12m~! 12m~1!

Wtar 150m~—t  150m~! 150m 1

Wobs 18m~1 18m~1! 35m~!

SPC parameters | N* 6 3 3
€ 0.0bm 0.05m 0.04m

PFC gain | k 0.003m  0.0015m n.a.
Dimensions | rq4 0.07m 0.07m 0.07m
Tk 0.25m 0.25m 0.25m

Tsafety 0.06 m 0.06 m 0.06 m

Table 2.1: Parameters used in simulation experiments and hardware experiments.

To evaluate SPC and its implementation, we defined four path-based scenarios (trajecto-
ries), as shown in Figure 2.3. The end points on the path (shown in red) are provided
in a timed sequence as target location piq,-. There are four scenarios: without obstacles
(Figure 2.3a), with 1 obstacle (Figure 2.3b), with 2 obstacles (Figure 2.3¢), and with 13
obstacles (Figure 2.3d). Simulations were conducted with flocks of size |D| =4, 9, 15, and
30. Using radius rg = 0.9m, the neighborhood is defined by:

Hi={j e D\{i} A llpi = pjll <ru} (2.19)

To check SPC’s robustness to different PLLCs, we experimented with two PLLCs with
different step responses. PLLC B reaches its set-point for - and y-dimensions in less than
half the time of PLLC A, while overshooting by about 50 % more. The PLLCs behave
very similarly in the z-dimension. Figure 2.4 show snapshots of the simulations. A video is

provided in the Supplementary Material and available at: https://youtu.be/iUkaYrnZz9k.

2.4.1.1 Results

The analysis of the quality metrics for collision avoidance, compactness, and obstacle
clearance show that our SPC-based approach successfully maintains a stable flock. In
Figure 2.5, metrics are plotted over time for three representative simulations. Data from
the prefix of an execution, when the drones move from random starting positions into
flock formation, are omitted when computing the metrics.

2.4.1.2 Computational complexity

The computation time of Eq. (2.4) is O(|Q| - (|Hi| + |K])). |H;| is bounded by |D| and
also depends on rg. Introducing a concept of neighborhood for obstacles can reduce the
computation time.

29


https://youtu.be/iUkaYrnZz9k

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.

MULTI-AGENT SPATIAL PREDICTIVE CONTROL WITH APPLICATION TO DRONE FLOCKING

30

a) 30 drones, no obstacles b) 9 drones, 1 obstacle C) 15 drones, 2 obstacles
3m T T T T T T 3m T T T T 3m T T T T

25 1 25 T 25 1

2+ - 2+ g 2t ]

n
T
L

1
Distance
-
i
1

Distance
[=1
W
I i g
1
Distance
o =
wn W
%{ [
1
=)
W
j
1

0 10 20 30 40 50s Time 0 10 20 30 40s Time 0 10 20 30 40s Time
distpj, —— COMPpax — cleargy,; disty, (20cm) - - - - cleary,, (38cm)

Figure 2.5: Quality metrics over time for SPC simulations using PLLC B for exemplary
scenarios of a: 30 drones with 0 obstacles, b: 9 drones with 1 obstacle, and c: 15 drones with
2 obstacles. Results for other simulation experiments were very similar. While the flock is
passing the obstacle(s) the metrics temporarily degrade, however values dist,;, and clearq;
stay above the respective thresholds, meaning there are no collisions, throughout the whole
simulation. Analogously compp,q.. stays below the threshold (5m), indicating that a compact
flock is continuously maintained.

2.4.1.3 Comparison with PFC

To compare SPC with [Sch09; TJP03], we also experimented with a PFC controller
based solely on gradients. In this controller, the gradient vector V,, c is used to determine

the next set-point 9352) for the PLLC as follows:
2\ = pi — k- Vp,c(pi) (2.20)

10

The control law stated in [TJP03] provides an acceleration vector, which we adapted
in Eq. (2.20) to a positional variant as required by the PLLC. We determined the gain
k empirically such that the target of the flock was reached within the same time as
our SPC implementation. The gain determines how aggressively the controller moves
the drone toward the target location. In the experiments detailed below, the gain is
constant, as in [Sch09; TJP03]. We also briefly experimented with dynamic gain, where
k is computed using a function similar to the one in Eq. (2.18). This had relatively small
effects. Compared to the results with static gain reported below: collision avoidance
improved slightly for some scenarios; obstacle clearance improved for some cases with
PLLC A, while it worsened with PLLC B; and compactness improved moderately.

Figure 2.6 shows performance metrics for simulations of SPC and PFC controllers. While
both perform reasonably well without obstacles, SPC’s performance is superior in the
presence of obstacles. This validates our hypothesis that SPC is particularly valuable
when the cost function is more nonlinear (adding obstacles has that effect). Whenever a
drone enters or leaves another drone’s neighborhood, the cost function instantaneously
changes its value; the gradient changes too. This causes the PFC controller to fail: in these
simulations, we observed oscillating behavior and multiple collisions. SPC successfully
deals with all of these situations. In short, SPC is more robust to nonlinearities in the
cost function and differences in the behavior of the PLLC.
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Figure 2.6: Performance comparison for SPC and PFC. Values are min (for collision avoidance
and obstacle clearance) or maz (for compactness) over the simulation duration. SPC satisfies
distip, in nearly every scenario, while PFC frequently violates it, especially in the presence of
obstacles. SPC maintains compyy, in every scenario, while for PFC, comp,,q,; sometimes gets
very high, even out of range.
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2.4.2 Hardware Experiments

We also experimented with real drones, specifically, Crazyflie 2.1-quadcopters [Giel7];
see Figure 2.7a. For localization, we used the Loco-Positioning system [Bit21]. The
drones seamlessly integrated with the localization system, resulting in a (internal) PLLC
that enables a drone to hold its position at a given set-point. Stability, however, depends
on both the accuracy of the localization system and on the mechanical limitations of the
drone. When hovering at a given set-point, we observed noise in the drone’s position in
the range of 15 cm. This was also noted in [Que20a].

In the hardware implementation, we used ROS with the same software node as in
Section 2.4.1, with only minor parameter modifications. This demonstrates the robustness
of SPC with respect to a potential sim-to-real transfer gap. Since Crazyflies are incapable
of running ROS on-board, we transmit the position updates to a PC that runs the
controller and transmits the set-point position to the drone. Our experiments therefore
also show that SPC is resilient to the additional delay introduced by radio transmission
of position updates and set-point messages. Our controller, however, could be ported to
run directly on ROS-capable drones, since we run it separately for each drone.

For the hardware experiments we used the same scenarios, as in the simulation experiments
(Figure 2.3), except with 13 obstacles. Flocks of size |[D|=2, 4, 9, and 16 were used.

2.4.2.1 Results

Figures 2.7b and 2.7c show pictures of our experiments in a lecture hall. A video is
provided in the Supplementary Materials. To show the drone movements for one example
experiment with 16 drones, the recorded traces of the localization system are plotted in
Figures 2.7d, 2.7e, and 2.7f.

Figure 2.8 presents performance metrics for our hardware experiments. Data from the
prefix of an experiment, when the drones move from initial starting positions into flock
formation, are omitted when computing the metrics. Figure 2.8 shows that our SPC-based
approach successfully maintains a stable flock of Crazyflie drones by satisfying thresholds
for collision avoidance, compactness, and obstacle clearance in nearly every scenario for
the full duration of the experiment. Detailed plots for some critical scenarios are shown
in Figure 2.8b, and Figure 2.8d. There are transient violations of the metrics, which are
likely caused by measurement issues in the localization system; our controller, however,
is able to promptly re-establish proper operation. Figure 2.9 provides a comparison of
simulation and hardware experiments. It establishes that the controller performance
metrics are slightly worse and noisier.
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direct path between target locations p,,

X drone position at time t drone trace history

Figure 2.7: Hardware experiments. a: Crazyflie 2.1 quadcopters were used. b: A flock of 16
drones and c: 9 drones with 2 obstacles in our lecture hall (a video is in the Supplementary
Materials). d, e, f: Recorded traces show the movements of the 16 drones for one exemplary
experiment.
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Figure 2.8: Performance metrics for hardware experiments. a: Values are min (for collision
avoidance and obstacle clearance) or maxz (for compactness) over the experiment. Experiments
show that the flock is properly maintained: disty,, is satisfied in every scenario but one (see
transient violation at ¢ = 15s in b). Similarly for cleary,, (see transient violation at ¢ = 25s in
d). b, ¢, d: Metrics for the whole duration of the hardware experiment for selected scenarios.
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Figure 2.9: Comparison of simulation and hardware experiments for 9 drones without obstacles.
a: Recorded traces show the movements of the drones. b: Metrics for the entire duration of the
experiment. The hardware-experiment metrics are a bit more noisy. This also explains why the
hardware-experiments metrics in Fig. 2.8 are slightly worse.

2.5 Related work

SPC can be viewed as combining features of MPC and PFC. MPC does a lookahead in
time to decide the best control action. It requires a model of the system to compute
states at future time points. Intuitively, MPC computes all the states that can be
reached in k time steps using different control inputs, picks the best feasible trajectory,
and returns the associated control action. In contrast, SPC ignores the system model
and feasibility altogether and instead searches for good target states by enumerating
promising candidates. Both MPC and SPC recompute their action in each time step
using an optimization procedure to handle noise and variability in environment. PFC
uses the gradient of the cost to pick the next action, just like SPC, but PFC does not
perform any optimization.

Reynolds [Rey87] was the first to propose a flocking model, using cohesion, separation,
and velocity alignment force terms to compute agent accelerations. Reynolds model
was extensively studied [ER10] and adapted for different application areas [Chul8a].
Alternative flocking models are considered in [O1f06; Meh18; Mar14; SSF19; BLM08], and
[TJP03]. Other formulations consider swarm control in the context of formation rigidity
[SG17; Poz21; Zell5]. In these approaches, flocks are described using point models. This
means that physical properties of agents (e.g., drones) such as mass and inertia, are not
taken into account. In our work, we evaluate SPC on a realistic physical drone model, as
well as on real hardware.

In addition to these largely theoretical approaches, in [V4s18; SSF21; SSF22], flocking
controllers are implemented and tested on real hardware. However, the approach of [SSF21;
SSF22] involve the use of model-predictive control, which is computationally more
expensive than SPC. In contrast to SPC, [Vas18] requires the velocity of neighboring
drones. Gradient optimization for robot control has been studied in [Sch09]. In contrast,
SPC uses spatial look-ahead as opposed to pure gradient descent.
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2.6 Conclusions

We introduced the concept of Spatial Predictive Control (SPC), and demonstrated its
utility on the drone flocking problem. SPC is fully distributed. It is based only on
the position of the individual drone itself, and on those of neighboring drones. This
information is used to compute the gradient of the local cost function and to perform a
spatial prediction for the best next action.

We performed an extensive experimental evaluation of SPC on the drone flocking problem.
Our simulation experiments used a physics engine with a detailed drone model. Our
results demonstrated SPC’s ability to form and maintain a flock, avoid obstacles, and
move the flock to multiple target locations. They also highlighted SPC’s robustness to
sensing noise and PLLC variability, and its role in the controller hierarchy.

We also evaluated the same controller implementation on a flock of Crazyflie 2.1 quad-
copters in different scenarios, thereby demonstrating the effectiveness of SPC in controlling
real hardware. Needing only a minor parameter adjustment, and no modifications to
the control algorithm, SPC proved to be very robust in terms of a potential sim-to-real
transfer gap. The hardware experiments also highlighted SPC’s capability to perform
properly in the presence of significant sensor noise introduced by the localization system
and the extra latency introduced by radio transmission of positional and control signals.

We also experimentally compared SPC with a related PFC-based approach of [Sch09].
We found that SPC exhibits superior performance and stability, as its discrete search
for an optimal solution enables it to avoid oscillations. SPC is a general technique for
designing middle-level controllers sandwiched between high-level planners and PLLCs
that often come integrated with the hardware.
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2.8 Additional Material

This section comprises additional figures which were not published in [Bra23|, but can be
found in the extended version [Bra22b].
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To check SPC’s robustness to different PLLCs, we experimented with two PLLCs,
step responses. PLLC B reaches its set-point for z- and y-dimensions in less than
of PLLC A, while overshooting more. The PLLCs behave very similarly in the

Figure 2.11: The ROS-node of the SPC controller for a drone ¢ receives position messages of all
drones and control messages (e.g. swarm target location). It outputs the set-point for the LLC.
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Abstract

We introduce a method to form and maintain a flock of drones only based on relative
distance measurements. This means our approach is able to work in GPS-denied envi-
ronments. It is fully distributed and therefore does not need any information exchange
between the individual drones. Relative distance measurements to other drones and
information about its own relative movement are used to estimate the current state of the
environment. This makes it possible to perform lookahead and estimate the next state
for any potential next movement. A distributed cost function is then used to determine
the best next action in every time step. Using a high-fidelity simulation environment, we
show that our approach is able to form and maintain a flock for a set of drones.

3.1 Introduction

Flocking is a fundamental flight-formation problem. Birds flock for a variety of reasons,
including foraging for food, protection from predators, communal warmth, and for mating
purposes. Starling flocks can also perform high-speed pinpoint maneuvers, such as a 180°
turn [Att]. Some types of flocks in nature have distinct leaders, such as queen bees, and
queen ants. Other swarms are formed by animals that do not have a permanently defined
leadership, such as starlings or herrings. Although flocking is a well-studied problem
mathematically [Rey87; Meh18; CS07b; CS07al, its realization using actual drones is not
nearly as mature (but see [Vas18; SSF21]).

Drone swarms, a quintessential example of a multi-agent system, can carry out tasks that
cannot be accomplished by individual drones alone [Chul8b]. They can, for example,
collectively carry a heavy load while still being much more agile than a single larger
drone [MFK11; LK18]. In search-and-rescue applications, a swarm can explore unknown
terrain by covering individual paths that jointly cover the entire area [Cam14; BS18;
Mic14]. While flocking provides a number of advantages over individual flight, it also poses
a significant challenge: the need for a distributed control mechanism that can maintain
flock formation and its stability [O1f06]. These collective maneuvers can be expressed as
the problem of minimizing a positional cost function, i.e., a cost function that depends
on the positions of the drones (and possibly information about their environment). In
our formulation, every agent is identical, which means there is no designated leader.

To work with such a positional cost function, an absolute localization system is needed.
This can be an optical or radio-based system for indoor applications or GPS-based
localization for outdoor scenarios. In this work, we study the problem for scenarios that
lack an absolute localization system (GPS-denied environments). We only have the ability
to measure the distance to other drones and to measure the acceleration and rotational
velocity of the own drone using an onboard Inertial Measurement Unit (IMU). For flock
formation, we observe that the positional cost function can be replaced by a function
based solely on relative distances. This obviates the need for absolute localization. We
propose a method to simultaneously learn properties of the environment (inter-agent
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Figure 3.1: Our distributed controller forms and maintains a flock based on relative distance
measurements to other agents of the flock. The target location is shown in blue. Distance
measurements for drone i to other drones and to the target location are shown in orange.

distance changes), while at the same time maintaining the flock formation solely on
relative distance information.

In this paper, we address the following Challenge Problem: Design a distributed con-
troller that forms and maintains a flock based solely on inter-agent distance measurements.

To solve this problem, we introduce a method to estimate changes of the environment
based on the observed changes for previous movements and thereafter use this information
to minimize the cost-function over a set of candidate positions. We build upon our previous
work that introduced Spatial Predictive Control (SPC) [Bra22b] to select the best next
action from the set of candidate positions. However we have a substantially different
problem here, since we have limited observation capability: in the previous work [Bra22b],
absolute positions of all the drones were available; whereas in this work we can only
measure relative distances. This also changes our possibilities how to apply SPC: whereas
in the previous work it was possible to optimize the direction based on the cost function’s
gradient, we need to do a search on possible candidate positions in all directions in this
work.

Our agent’s observations consist of its own acceleration in three-dimensional space,
rotational velocity along three axes, and the relative distance to other agents, as well
as the distance to a fixed target location (as shown in Figure 3.1). (The target location
is currently only used to counteract drifting tendencies of the whole flock.) There is no
communication or central coordination, which makes our approach fully distributed. Our
flocking objective is formulated as a cost function (see Section 3.2.2) which is based on
these distance measurements. The corresponding action of each agent is a relative spatial
vector, to which the drone should move, to minimize its cost function’s value.
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Figure 3.2: Directional movements (indicated by arrows) induced by cost-function terms:
a: Cohesion, b: separation, c: target seeking, and d: obstacle avoidance (not implemented in our
method yet).

Paper Outline: Section 3.2 describes our cost function for flocking with target seeking
and related performance metrics. Section 3.3 introduces our method to represent environ-
mental knowledge and thereafter describes our distributed flocking controller. Section 3.4
presents the results of our experimental evaluation. Section 3.5 considers related work.
Section 3.6 offers our concluding remarks.

3.2 Drone Flocking

This section starts with background on flocking, introduces our cost function for flocking
with target seeking, and then presents metrics to assess the quality of a flocking controller.

3.2.1 What is a Flock?

A set of agents, D, is in a flock formation if the distance between every pair of agents
is range bounded; that is, the drones are neither too close to each other nor too far
apart. Our approach to flock formation is based on defining a cost function such that the
agents form a flock when the cost is minimized. The requirement that the inter-agent
distance is range bounded is encoded as the first two terms of our cost function, namely
the cohesion and separation terms shown in the next section. Note that the Reynolds
rules for forming a flock [Rey87] also include a term for aligning the drone’s velocities,
apart from the cohesion and separation terms. By not including velocity alignment term,
we potentially allow a few more behaviors, such as circling drones, but some of those
behaviors are eliminated by our third term, namely the farget seeking term.
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3.2.2 Cost Function

Consider drones ¢ and j, where 4,5 € D. Let d;;, when it appears in the local cost
function of drone i, denote the distance between drone i and drone j as it appears
to drone i; this may differ from the actual distance due to sensing error. Similarly [;
denotes the distance between drone i and the fixed target location p;,,-. In all cases,
distances are measured from the drone’s center of the mass. Let 7 gone denote the radius
of each drone (specifically the radius of the circumscribed sphere including propellers).
In our formulation for the cost function, drone ¢ has access to distances of only a subset
H,; C D of drones, namely its local neighbors. Hence, we define a local cost function,
parameterized by ¢, which uses only the distances to drones in H;. However for now we
only consider the case for global neighborhood, which is H; = D. We plan to extend
our experiments also to local neighborhood as future work (see Section 3.6.1). Let dp;,
denote the tuple of distances from drone ¢ to drones in H;. The cost function ¢ we use in
this paper is defined for every drone i € D as in Equation (3.1).

C(de ll) = CCOh(de’) + CSEP(dHi) + cta?“(li) (31)

The value of the cohesion term increases as drones drift apart, and the separation term
increases as drones get closer. Each term has a weight, denoted by a subscripted w.

Cohesion term: 1

Ccoh(dH-) = Weoh " 7477 " Z dz‘j2 (32)
’ |H;|
JEH;

Separation term:

1 1
Csep(dHi) = Wsep " 777 ~ 2
| H,| jer, max(di; — 27 grone, 0)

(3.3)

Here 0 denotes a very small positive value. The function maz(.,0) ensures the denomina-
tor remains nonzero, especially because sensor noise can cause distance measurements to
have errors.

To prevent the flock from moving in random directions, we currently use a target seeking
term with a fixed target location, denoted by pyq-, for the entire flock. Here I; denotes
the distance between the center of drone ¢ and the fixed target location pg,-.

Target seeking term:
Ctar(li) = Wtar - li2 (34)

With only cohesion and separation, the whole flock would form and move in random
directions and random locations in absolute world coordinates. This would make it of
limited use in any real-world scenario. Our target seeking term avoids this behaviour. All
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drones use the same target location; thus, this last term assumes shared global knowledge
of the target. The control algorithm will still be fully distributed. A way to avoid having
a fixed target location would be to designate one of the drones as the leader of the
flock. This leader could be equipped with additional sensors to get information about
its absolute position, allowing it to employ a different control scheme. We leave that
investigation for future work.

3.2.3 Flock-Formation Quality metrics

We define two quality metrics to assess the quality of the flock formation achieved by
a flocking controller. To compute these quality metrics, we assume to have access to
full ground truth information about the absolute positions of the drones. The position
(center of mass) of drone i is denoted by p;.

Collision avoidance: To avoid collisions, the distance between all pairs of drones
distance(D) must remain above a specified threshold distancey,.. We define the
metric for the minimum distance between any pair of drones as follows:

dist D) = i i — Di .
istance(D) = _min_ i~ 35)
distance(D) > distancey, (3.6)

We set distancei, = 2 - Tgrone + Tsafety, Where rg4fety is a safety margin.

Compactness: Compactness of the flock is determined by the flock radius. Radius is
defined as the maximum distance of any drone from the centroid of the flock:

2 jen Pj _

D i (3.7)

radius(D) = max
€D

The drones are said to be in a compact flock formation if radius(D) stays below some
threshold radiusy,; otherwise the drones are too far apart, not forming a flock.

radius(D) < radiusy, (3.8)

The value for radiusy,, is picked based on the drone model and other parameters

governing the flock formation problem. We set it to radiusg, = %\/%T, where we use

the drone radius 7 gne to incorporate the physical size and multiply by a factor F'.
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3.3 Distributed Flocking Controller using Relative
Distances

In our distributed approach to flock formation, each drone picks the best action at every
time step. The action here is a target displacement vector. Each drone picks the optimal
displacement vector for itself by looking ahead in different spatial directions and finding
a location that would minimize the cost if this drone moved there. To perform this
search, each drone needs capability to estimate the relative distances to other drones
when it moves to different potential target locations. To perform this estimation, each

drone stores some measurements from past time steps, which is described in Section 3.3.1.

Thereafter, Section 3.3.2 shows how this stored knowledge is used by each drone to
estimate relative distances of other drones for different possible displacements of itself.

3.3.1 Environmental knowledge representation

We describe the procedure from the perspective of Drone i. The “environment” for Drone
i consists of the current distances to the neighboring drones (and the fixed target), as
this is all the information Drone ¢ needs to evaluate the cost function. To represent the
knowledge of the environment, Drone i keeps two matrices, a (k x 3)-matrix N and a
(k x (|D| 4 1))-matrix P for some k > 3. The j-th row of N is a displacement vector for
Drone i. The j-th row of P is a vector of change in distances of every other drone and
the target to Drone i (as seen by Drone ¢ when it moved by displacement vector in j-th
row of V). In particular, P; is the change in distance of Drone j (or target if j = [D|+1)
as seen by Drone ¢ when it moved by the vector Ny.. The notation N, denotes the I-th
row vector of matrix IN. Let us see how the matrices NV and P are generated.

Each drone is capable of measuring its own acceleration vector in three dimensions a;.

By integration, the velocity vector ©; can be derived. Drone i constructs the matrices N
and P as follows:

1. Save the observations of time instant ¢. Let d;;; denote the distances to Drone
J, and let [;; denote the distance to the fixed target, at this time instant ¢ (as
obtained from the sensors).

diji = dij|j € Hyt (3.9)
L= 1|t (3.10)

2. Integrate velocity vector to keep track of its own position changes, which gives the
displacement vector wu;:
t

d;-:/ 7 di (3.11)
t—At
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3. If the norm of the change in position is larger than a threshold ||@;|| > sy, calculate
the changes in distances as follows:

dij = dije — dij—n (3.12)

li=diy—dig (3.13)

Here d;; s denotes the observed distance of Drone j at the previous time instant
t — At. If the length of the displacement vector is smaller than the threshold, we
go back to Step (1).

4. Add the displacement vector u; of Drone i as a row vector in matrix N and add the
vector (di1,. .. . di|D|, l;) as a row vector in matrix P. Note that we have assumed
here that the neighborhood H; of Drone ¢ is the full set D, but the details can be

easily adapted to the case when H; C D.

5. The process starts again at (1) and we thus keep adding rows to the matrices N
and P.

In this way, the matrix P reflects the available knowledge of how the distances to other
drones and to the target change when Drone i moves along vector u;. Note that this
data gets stale as time progresses, and the newly added rows clearly have more relevant
and current information compared to the rows added earlier. Furthermore note that u;
is obtained by double integration and therefore it is prone to acceleration sensing errors,
and also numerical errors. This influence is however limited, since integration times At
are also small.

When the procedure above is followed, the matrices N and P keep getting bigger. Let
Ny, denote the [-th row vector of matrix N. Let Ngs, Nps, N denote three displacement
(row) vectors taken from the (most recent rows in) matrix N such that they are linearly
independent — that is, they are all different from each other (Ng. # Npi # Nei), nonzero
(Ngs # 0, Nps # 0, N, # 6), and not in a common plane ((Ngx X Npi) - New # 6) These
three vectors form a basis in the three-dimensional space. Using a basis transform it
is therefore possible to estimate the change for distances for any movement vector .
Specifically, if

ﬁ:)\a'Na*‘i’)\b'Nb*‘i‘)\c'Nc* (314)

then we can compute the estimated change in distances of each of the other drones, d(%),

and the target, [(u) for this displacement @ as follows:

(d(a@),1(@)) = Xa - Pa+ Xy - Py + A - Pe (3.15)

(addition and multiplication in Equation (3.15) are applied element-wise on the vectors).

We have shown how the three vectors Ny, Nps, Nex can be used to infer the expected
change for any displacement vector @ for Drone i. To ensure that three different vectors
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3.3. Distributed Flocking Controller using Relative Distances

with meaningful data are present, our controller employs some optimizations in addition
to the procedure described above. A special startup procedure with random movements
is used to collect initial data. The three vectors (Ng«, Np«, Nex) and their associated
data in P are continuously updated to avoid outdated information. However, a vector is
only considered if the threshold sy, is exceeded within a certain time limit. This avoids
updates when the drone is moving very slowly over longer time-periods. To get the best
quality of the prediction for any displacement 4, it is desirable to have the vectors (Ng.,
Nps, Neyi) ideally, but not necessarily, orthogonal to each other. This also influences
which row (vector) gets replaced in the matrices N and P. As soon as one of the vectors
gets outdated, a random movement in an orthogonal direction might be triggered to
enhance the knowledge representation.

3.3.2 Distributed flocking controller

We now describe our control approach based on the cost function introduced in Sec-
tion 3.2.2 and on the environmental knowledge representation described in Section 3.3.1.

The set of candidate positions @ is defined as follows:

X

Q = Yy |[L‘ € {_6Q5056Q}’y € {—EQ,O,GQ},Z € {_GQ,O, EQ} (316)
z

This gives a set of 27 points on a equally spaced three dimensional grid. The spacing
distance of this grid is eg. Over this set @) the best action gpes¢ is searched by minimizing
the cost function c:

Gneat = arqgggin{C(CE(Q)Ji(Q))} (3.17)

If two candidate positions ¢; and g2 both have the same minimum value for the cost
function ¢, our implementation of argmin takes the last one based on the implementation
of the enumeration. The function c@(q) estimates the distances to drones, where lAz(q)
estimates the distance to the target, if the action ¢ is applied. For each ¢ € @, the
vector d;(q) (and the value I;(q)) is calculated by first computing the estimates of the
change vector d;(q), and the change I;(¢) using Equation 3.15. Now the distances can be
estimated by just adding the estimated change to the currently measured distances d;.
and [;:

di(q) = dis + di(q) (3.18)
Ii(q) = l; +1i(q) (3.19)

Each drone minimizes its local cost function (Eq. 3.17) in order to recompute the desired
set-point at every time step. As we similarly did in [Bra22b], this set-point is then handed
off to a low-level controller that controls the thrust of the drone’s motors so that it steers
towards this set-point.
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3.4 Experiments

We evaluated our method using simulation experiments. The goal of the experiments
was to investigate and demonstrate the ability to form and maintain a stable flock while
holding position at a target location.

< /féb‘ Ai;\
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/“?‘
Flock controll /fi:" Py >
OCK controller jg\

neighboring drone distances _. —
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o >
| -
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Figure 3.3: The ROS-node of the SPC controller for drone ¢ receives distance measurements to
neighboring drones and control messages (e.g. swarm target location, start/stop command). It
outputs the set-point for the internal low level controller.

3.4.1 Simulation Experiments

As a simulation framework, we use crazys [SAI18], which is based on the Gazebo [KHO04]
physics and visualization engine and the Robot Operating System (ROS) [Sta]. Our
algorithm is implemented in C++ as a separate ROS node. As shown in Figure 3.3, it
receives the measured distances to neighboring drones, and control messages, such as the
target location or a stop command, from the human operator. It calculates the best next
action according to Equations (3.16)-(3.19). The parameter €q is determined empirically
and fixed throughout the whole simulation. Auxiliary functions, like hovering at the
starting position, and landing after the experiments are finished, are also implemented in
this node.
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3.4. Experiments

In order to evaluate the control mechanism and its implementation, we fixed the target
location, as described above. This avoids drifting behaviour of the whole flock, which
could not be detected by relative distance measurements in any way. Simulations were
done with flocks of size |[D| =5, 9, and 15. Figure 3.4 shows a screenshot of a simulation
with 5 drones. All simulations use global neighborhood (H; = D) for now.

Figure 3.4: Screenshot of the end of the simulation with 5 drones. Shown from four different
camera views after the flock reached its target. The green dot indicates the target location. The
blue dots visualize the next action which is supplied to the lower level controller.
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Figure 3.5: Quality metrics for simulation with 5 drones. Threshold distanceyy, for collision
avoidance is satisfied most of the time. After settling in, the swarm radius remains below the
threshold radiusyp,., thus showing the ability to form a compact flock in the simulation. (Quality
metric recordings start at ¢ = 19 s after initialization procedure.)

3.4.2 Results

Early results show that our approach is able to properly form and maintain a flock
with only relative position measurements. Figure 3.5 shows performance metrics over
time for a simulation with 5 drones. The analysis of the quality metrics for collision
avoidance, and compactness show that our control approach successfully maintains a
stable flock (threshold distancey, is only violated for very short moments). Note that
these results are already obtained before extensive controller tuning. Using carefully
adjusted values for we,;, and wsep should lead to even better results and maintain the
threshold throughout the whole simulation.

3.5 Related work

Reynolds [Rey87] was the first to propose a flocking model, using cohesion, separation,
and velocity alignment force terms to compute agent accelerations. Reynolds’ model
was extensively studied [ER10] and adapted for different application areas [Chul8a].
Alternative flocking models are considered in [O1f06], [Meh18], [Mar14], [SSF19], [TJPO03],
and [Sch09]. In all these approaches, absolute position measurements and/or inter-
agent communication were available. In our work, we only work with relative distance
measurements and a fully distributed formulation.
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3.6. Conclusions

In addition to these largely theoretical approaches, in [V4s18] and [SSF21], flocking con-
trollers are implemented and tested on real hardware. However, the approach of [SSF21]
involves the use of Nonlinear Model Predictive Control (NMPC). In contrast to our work,
[Vas18] also requires the velocity of neighboring drones.

3.6 Conclusions

We introduced a method to control a flock only based on relative position measurements
to neighboring drones, and demonstrated its utility on the drone flocking problem. We
performed simulation experiments using a physics engine with a detailed drone model.
Our results demonstrated the ability to form and maintain a flock, and hold its position
on a target location.

3.6.1 Future work

As we currently have only intermediate results of the experiments with limited number
of agents, we plan to do more extensive testing with a wide set of different scenarios,
including larger number of drones, and local neighborhood (H; C D). Neighborhood
might be defined by euclidean distance, or alternatively by topological distance, as
introduced in [Bal08]. As further directions of future work, we plan to extend our
approach with obstacle avoidance capabilities. We also plan to test it for moving target
locations and various path tracking scenarios. To prepare for the transfer to real hardware
we plan to introduce sensor noise in the simulation and test the robustness of our method
to cope with such disturbances. As next goal it should then be implemented on real
drones, specifically, Crazyflie 2.1-quadcopters [Giel7].

(© 2022 Springer Nature Switzerland. Material from: Andreas Brandstétter, Scott A. Smolka,
Scott D. Stoller, Ashish Tiwari, and Radu Grosu. ,Towards Drone Flocking Using Relative
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Validation. Adaptation and Learning. Ed. by Tiziana Margaria and Bernhard Steffen. Cham:
Springer Nature Switzerland, 2022, pp. 97-109. 1sBN: 978-3-031-19759-8. DO1: 10.1007/978-
3-031-19759-8_17.
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Abstract

We present distributed distance-based control (DDC), a novel approach for controlling a
multi-agent system, such that it achieves a desired formation, in a resource-constrained
setting. Our controller is fully distributed and only requires local state-estimation and
scalar measurements of inter-agent distances. It does not require an external localization
system or inter-agent exchange of state information. Our approach uses spatial-predictive
control (SPC), to optimize a cost function given strictly in terms of inter-agent distances
and the distance to the target location. In DDC, each agent continuously learns and
updates a very abstract model of the actual system, in the form of a dictionary of three
independent key-value pairs (AS, Ad), where Ad is the partial derivative of the distance
measurements along a spatial direction As. This is sufficient for an agent to choose the
best next action. We validate our approach by using DDC to control a collection of
Crazyflie drones to achieve formation flight and reach a target while maintaining flock
formation.

4.1 Introduction

Multi-agent Systems (MAS) can collectively perform tasks which are beyond the abilities
of individual agents. For Search-and-Rescue (SAR) applications, there is a wide variety of
multi-agent approaches using ground, aerial, floating, and underwater vehicles [Que20b;
Cam14; Mic14]. MASs can also play a role in environmental monitoring, space exploration,
agriculture, entertainment, and industrial maintenance [Sch20]. All of these applications
require a coordination and control method for formation establishment and maintenance.

MAS formations, such as flocking, can be described by a (distributed) cost function c(x)
over the state variables & of an agent, such that when each agent minimizes this cost,
the system reaches the desired formation [Rey87; Olf06]. We call cost functions that
are defined in terms of scalar distances d C x to other agents only, distance-based
cost functions. For flocking, formulations using distance-based cost functions can be
found in [TJPO03; Bra23|. However, it turns out that controllers, such as Potential Field
Controller (PFC) [TJP03] and Spatial Predictive Control (SPC) [Bra23], choose their
actions based on the cost-function’s spatial gradient. Consequently, even for distance-
based cost functions, existing approaches require knowledge of relative-position vectors
to derive the spatial gradient, and subsequently the control actions.

A key challenge, therefore, is to determine if the controller design for distance-based
cost functions can be generalized such that control actions are chosen based only on scalar
distances without knowledge of relative position vectors?

While Global-Navigation Satellite System (GNSS) and comparable types of indoor
localization systems [Ferl7; Laol8|, can determine relative position vectors, they might
not be installed or currently available at some locations, and they are unlikely to be
available in some applications (e.g., underwater SAR, cave exploration). This further
motivates the above challenge.
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Figure 4.1: Block diagram of our DDC distributed formation controller, running locally on each
agent. Grey blocks were developed by us; for the white blocks, we use third-party state-of-the-art
implementations.

One approach to solve the above challenge is to estimate the relative positions of other
agents. This can be accomplished by measuring distances only, and using a coordinated
movement schedule in each time step, as in [CYA1l]. One can then apply methods
such as PFC or SPC to derive the actions. However, as shown by our experiments in
Section 4.5.2, this approach is impractical, since it is slow (only a subset of agents can
move simultaneously), and susceptible to sensing noise.

In this work, we propose a novel approach, called DDC (for distributed distance-based
control), that obviates the estimation of relative positions. Instead, it directly uses
estimated distance changes in the spatial gradient of the cost-function. A key idea is to
use a first order Taylor approximation of such changes. Intuitively, each agent maintains
a dictionary of three independent key-value pairs (AS, Ad), representing the partial
derivative Ad of distance measurements along spatial directions AS.

During an initial startup-phase, agents perform ezploration in orthogonal (or independent)
directions, to populate this dictionary. Agents then ezploit this dictionary to estimate
the expected change Ad when they displace themselves by A, as predicted by the
Taylor approximation. This enables them to estimate the new cost when moving by
a certain vector. As in [Bra23; Bra22c], to find the set-point with minimal cost, each
agent performs in every time-step, a search over a grid of points surrounding the current
location.

Importantly, each agent continuously updates its copy of the dictionary at each time
step with its last observation. In particular, agents replace stale information with newer
information, and they also occasionally perform an exploration step, where they take a

potentially non-optimal action, to maintain independence of the keys in this dictionary.

The dictionary is reminiscent of an attention layer used in transformers.

Note that each agent implicitly makes the simplifying, but not generally accurate,
assumption that other agents do not move. Under the constrained setting, this is our
only recourse. Our experiments show that our approach is able to tolerate this inaccurate
assumption. DDC passes the selected movement action to the agent’s low-level controller
that controls the motor thrust. Low-level controllers for quadcopters and their stability
is studied in numerous works, such as [Giel7; MK11; Flo14; Garl7].
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MAS DDC is suitable in resource-constrained settings, where individual agents: (1) Are
only able to perform local state-estimation with onboard sensors, (2) Do not communicate
any state information, and (3) Can only measure scalar distances to other agents (and
to the fixed target location). The local state-estimation of an agent is comprised of its
change in position relative to a prior position, velocity, acceleration, orientation and
optionally altitude. For this, onboard sensors, such as inertial-measurement units (IMUs),
optical flow modules, barometers, and altimeters are used. These sensors do not provide
any information about other agents.

As a consequence of (2), there is no central coordinator, and we thus present a fully
distributed approach. As another consequence of (2), triangulation, multilateration, rigid
graph based methods and joint (global) state-estimation are not applicable. Scalar dis-
tance measurements to other agents (and to the fixed target location) contain significantly
less information than relative position, pose, or angle measurements would do.

In our hardware implementation, distance measurements also turned out to be extremely
noisy, providing only imperfect measurements. In contrast to Model Predictive Control
(MPC) approaches, DDC does not need a physical model of the agents.

Summarising, the main contributions of this paper are:

e We introduce the concept of DDC, a novel formation control method, which is solely
based on onboard sensing, and on scalar distance measurements.

e DDC is model-free, fully distributed, and does not require internal-state information
of other agents.

e We evaluate DDC on the drone-flocking problem with target seeking, in a drone
simulation environment.

e We experimentally validate our approach, by achieving flocking with real off-the-shelf
quadcopters, Crazyflie 2.1 [GielT7].

4.2 Related Work

In [Lu23; Sas17; Mohl8; Whe20; Hep21], agents are able to localize themselves with
cameras, LIDAR sensors and/or external systems. In our setting, these sensors are
not available. Other works [OA14; Aral6; KPA17; LXW18; WWP10; BS20; Hel3],
including the survey [OPA15], assume individual agents can sense relative positions of
their neighboring agents with respect to their own local coordinate systems. This provides
considerably more information than scalar distance measurements.

Position estimation and control for two-dimensional (2D) scenarios are studied in [JDA17;
Chal8], but generalization to three-dimensional (3D) is not trivial. In [AY11; STOS;
ZWG19; GLX20; JAH20], message exchange (transmitting acceleration, angular velocity,
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or other data) is used between at least some of the agents. DDC does not use such
communication.

The work in [Stu09] makes use of anchor nodes, with fully known positions in a global
reference frame. In [CS19], a centralized approach to localization is presented. In contrast,
DDC is fully distributed. In [CYAOQ9], a single leader moving with constant velocity
is tracked by a single follower. In [Kanl4], one leading and two following agents are
described.

Formation control in [SS18] is based on distance measurements involving sinusoidal
perturbations to the agent’s actions. Perturbation frequencies are assumed to be pairwise
distinct, which limits application to larger numbers of agents, if in practice the allowed
range for frequencies is bounded by the agent’s mechanical limitations. Our previous
work in [Bra22c| sketched the idea of distance-based flocking using precise distance values,
but it could not handle imperfect measurements due to significant sensor noise and it
performed no hardware experiments.

In this paper, we therefore introduce DDC, which features a different method of data
accumulation, additional signal filtering, the use of exploration steps to assure an orthog-
onal basis, and a new slack parameter for the separation term. We evaluated DDC for
altitude-aided drone flocking on real hardware. The work in [CYA11] proposes a control
scheme with three alternating periods: identification, control, and resting (where the
agent needs to remain stationary). In Section 4.5.1 we provide a comparison of DDC to
this method, which turns out to be very susceptible to sensing noise and much slower.

4.3 Formation Controller

Consider a collection of |A| agents. Each agent i, where i ranges from 1 to |A], runs a
controller, consisting of the following blocks, as shown in Figure 4.1:

e Distance filter: As measurements of the scalar inter-agent distances coming from
real hardware are imperfect (noisy), the raw measurements d;3y of the distance
between agents ¢ and j at time t are filtered.

Low-
pass Low-
thr pass

— outq

outo

Figure 4.2: Rejection filter: When the input is within threshold thr of the low-passed signal,
the signal is fed through. Otherwise the filter outputs the low-passed signal (outs). Finally there
is an optional second low-pass (out).
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e State estimator: All sensor data that is available for the individual agent i (e.g.
acceleration @, rotational velocity &) is processed by a standard Kalman filter
(using the state-of-the-art implementation available for Crazyflies [Giel7]) for local
state estimation. This is used to estimate relative position s; (for Agent 1), i.e.,
relative to its position at ¢ = 0. Additional optional sensors that can directly
measure displacement AS; and/or absolute elevation z; can be incorporated when
available.

e Data accumulation: As the system operates, historical data of the change in
inter-agent distances Ad;;; for displacements A3} is stored in two matrices D, S.

e Distance estimator: The data stored in S and D is used to (linearly) estimate
the change in distances Ad;; (for all j) for any given candidate displacement ¢.

e High-level controller: The cost ¢(d) is evaluated on a set of candidate displace-
ments {¢}. The best is chosen as .

e Low-level controller: We use a PID controller (as implemented in [Giel7; SAI18])
to set the motor thrust for u.

4.3.1 Outlier Detection and Noise Filtering

Our hardware experiments use a collection of Crazyflie 2.1 quadcopters [Giel7], equipped
with the DWM1000 Ultra-Wideband (UWB) hardware module [Qor21] on Loco-positioning
deck with the software implementation of [Sha22], to sense the inter-agent distances. The
radio signals are used solely for inter-agent distance measurements. No internal state
information is exchanged over this channel. There are no fixed UWB beacons.

As noise in distance measurements is a critical concern for our system, we did an analysis
of the noise model. It turns out that outliers are common, and there is some additive
random noise. When looking at its energy spectrum, we found higher energy in low-
frequency ranges, as compared to white noise. Such a noise profile was also reported
in [Sha22].

Our filter tracks the input in, using an Infinite Impulse Response (ITR) low-pass filter; see
Figure 4.2. To detect outliers, we subtract the input in from the output of this low-pass
and compare it with a threshold thr. If it is below the threshold, we directly use in as
output; otherwise, we feed the low-passed signal to the output outo. After this rejection
filter, we use an optional IIR low-pass filter to produce outy. Cutoff frequencies and
threshold were determined empirically. In order to retain changes due to real movements,
the cutoff frequency must not be too low. Therefore low-frequency components of noise
cannot be filtered effectively. We observe, however, that higher-frequency noise is also
effectively suppressed by linear regression in our data accumulation block (step 3a in
Section 4.3.2).
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4.3.2 Data Accumulation in Key-Value Dictionary

Each agent i measures the current distances to neighboring agents (and the target) and
estimates it’s local position. For simplicity, we describe the distance estimation process
from the perspective of agent i, only. The same procedure is analogously applied for
estimating distance to the target.

Agent i stores the relevant data history in two matrices, a (3x3)-matrix S and a (3x|A|)-
matrix D. Row-k of S is a key displacement vector A§ (in 3-dimensional space) for agent
i. Row-k of D is a value vector Ad of change in distances to every other agent, as seen by
agent ¢ when it moved by displacement AS. In particular, Dy; is the change in distance
to agent j as seen by agent i, when it moved by the vector Sgs (Sg« is S’s k-th row
vector). The dictionary thus represents partial derivatives Dy, of distance measurements
along spatial directions Sg.

Let d;;; be the distance to agent j at time ¢. Each agent’s local state estimator is
capable of estimating its own position §; relative to its initial position at t=0. Agent ¢
continuously updates the matrices S and D as follows:

0. Set top and s, to be the initial time and position of Agent i.

1. Initialize empty sets 7" and M; for all j € A.

2. Save the current time ¢ and distances in sets: T' = TU{t}, M; = M;U{d;;.}. Calculate
the displacement vector As; based on relative position information:

AS; = 5 — 5, (4.1)
3.a) If the norm of this displacement vector is larger than a given threshold, i.e. if

[|AS¢|| > Sipyr, calculate the changes in distances by linear regression over the saved
measurements within At = ¢ — ¢ as follows:

dij = 117 Lrer dijr (4.2)
t= ﬁ ZTGTT (43)
Srer (r = 1) (dijr — dij)
Ady; = - A 4.4
&g Srer (1) t (44)

Note, that |T'| = |M;|. Go to Step (4).

b) If At is larger than a threshold At > #;,, set ty to be ¢ and sy, to be s, and go
back to Step (1). In this case the agent did not move considerably within A¢, and
we therefore discard such measurements.

c¢) Otherwise, go back to Step (2). Continue measuring.
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4. Select the row k in S, which is most similar to As}, by k = argmax, ¢ (1 9 31 {|Sp + A5t}

Replace row k in matrix S with the normalized displacement vector %, and replace

. . . , Ad;
row k in matrix D with the vector (HAACil;” ey HA;IIl ).

5. Set to to t and sy, to s¢, and start again at (1) and keep updating rows in the matrices
S and D, representing recent displacements of agent ¢ and associated changes in
distance measurements.

Note that relative position §; is obtained by a state estimator based on Inertial Measure-
ment Unit (IMU) data and similar sensors. State estimation is therefore prone to sensor
noise, and might drift over time. However, our overall approach is immune to such drifts
since it only depends on displacements As; that happen in time duration At, which is
bounded by ¢

4.3.3 Exploration

As the matrices S and D are initially empty, the agents first need to perform some
exploration: move in some non-optimal direction, measure inter-agent distances, and
populate the matrices with that information. This is done mainly in the startup phase.
Later, the moves are the computed control actions. We also keep track of when each row
was updated. If a row becomes older than some threshold t,;4, it is deleted. Exploration
is performed according to the following rules (x denotes the cross product of two vectors,
and « denotes the dot product):

1. If all rows of S and D are empty: Sample three random variables as the components
of vector 7. Apply action Gezpi,1 = Weapi ﬁ, where wegy is a scaling parameter.

2. Only 8. is not empty: Sample random vector 7 as in step (1). Apply the vector
Geapl.2 = Weapl % as action (which is by construction orthogonal to Sy.).

3. Only S14, and Sa. are not empty: Apply the vector Goppr3 = Wezpl % as action
(which is by construction orthogonal to Si, and Sa.).

4. All entries in § are non-empty:

a) If there exist two dependent rows k and m # k (pointing in a similar direction
ks * Smx| > Kipr), Where kyp,- is a parameter to quanti is similarity):
Six S , wh is a p ter to quantify this similarity): Apply
the vector Gezpra = Wegpi % as action (which is by construction orthogonal
to these row vectors).

b) If such rows do not exist, the vectors Si., S2., S3. are linearly independent;
i.e. they are all different (Si, # Sox # Ss«, ensured by 4a), nonzero (Si, # 0,
Sox # 0, S3. # 0, ensured by ||AZ;|| > su,), and not in a common plane
((S1x X Sz4) *S3y # 0, ensured by 2, 3, and 4). 0 is used as shorthand notation for
(0,0, 0)”. Exploration is finished and the controller can go to exploitation mode.
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4.3.4 Exploitation

The dictionary represents the partial derivative of distance measurements along spatial
directions Sy, pe{1,2,3) yielding associated values Di,. For any displacement vector ¢, we

compute the estimated change in distances to each other agent @((j’) by a first order
Taylor approximation:
Adix = M D1s + A2 Doy + A3 D3, (4.5)

(here, addition and multiplication are applied element-wise).
Since S14, Sox, S34 form a basis, the unique coefficients A1, A2, A3 of the linear combination
are given by:

d= A1 S+ A2 Soi + A3 S (4.6)

Likewise we can compute the estimated distances after the agent ¢ would have moved by
displacement vector §:

dij (@) = dij + Dd() (4.7)
4.3.5 High-Level Controller

Our high-level controller works with any distance-based cost function. It makes use of
distance measurements provided by our distance estimator to choose the best action
from a set of candidate actions as the resulting action.

The set of candidate actions @ is defined as follows:

E:{(w,y,z)T‘x,y,ze{—1,0,1}}\6 (4.8)
Q:{eQné” qe E,ne{1,..,NQ}}u6 (4.9)

This gives a set of 26 - Ng + 1 points which are spaced by a distance of €g each in every
direction, including diagonals. The estimated distances, if action ¢ is taken, are estimated
by Eq. (4.7). Over the set @, the best action gpes is chosen by minimizing cost function
c:

Ghest = argmin{c(dix (7))} (4.10)
qeQ

Each agent computes the desired position set-point at every time s.t. its local cost function
(Eq. 4.10) is minimized. This set-point is passed as input to a low-level controller to
control the drone’s propeller motors, as it is also done in [Bra23].
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Figure 4.3: Cost-function terms for drone flocking: a: cohesion, b: separation, c: target-seeking,
and d: elevation.

4.4 Application to Drone Flocking

In this section, we introduce a distance-based cost function for flocking and describe
quality metrics of flock formations.

4.4.1 Drone Flocking

Let A denote the set of agents. They are in flock formation if the distance between every
pair of agents is range bounded; that is, the agents are neither too close to each other
nor too far apart. To formulate this concept, we define a cost function that each agent
tries to minimize in order to achieve the formation. Cost function based formulations for
flocking were studied in [Rey87; TJP03; Meh18]. These works show the usefulness of such
a formulation for achieving flock formations and discuss properties w.r.t. to non-collision
and non-dispersion.

Consider drones i and j. Let d;; denote the distance between drones i and j, as it appears
to drone i (measured from their centers of mass). Let [; denote the distance between
drone ¢ and the target location psq,-. The radius of the circumscribed sphere of a drone is
denoted by 7grone- Drone i has only access to distances of a subset H; C A of the drones,
called its neighbourhood. Hence, the local cost function is parameterized by i, and uses
only the distances to drones in H;. We define H; using a neighborhood radius parameter
ry, as follows:

Hy={jldij <rm,j€A\{i}} (4.11)
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4.4. Application to Drone Flocking

The tuple of distances from drone ¢ to drones in H; is denoted by dp,. Our cost function
¢q (a for aerial) is defined for every drone i € A as follows:

Ca(dH” lz) = Ccoh(dHi) + Csep(dHi) + CtarA(li) (412)

a) Cohesion term:

> di” (4.13)

JEH;

Weoh
Ccoh(dHi) = CO'|

|Hi

As ceon(dp,) increases when drones drift apart, this term keeps drones together. Each
term includes a subscripted w as a weight.

b) Separation term:

Wsep 1

Csep(dHi) = 0 (414)

|HZ‘ jEH; mal’(dij_zrdmne_xsepa 6)

The separation term keeps drones apart, as it increases when drones get closer. Here
0 denotes a very small positive value. Function ma:r;(.,@) ensures a strictly positive
denominator. The slack parameter x e, is used to influence the minimum distance
between two drones. This parameter is different from previous works [Rey87; Bra23;
Bra22c|. During experimental validation, this showed significant impact on avoiding
collisions.

c¢) Aerial target-seeking term:
CtarA(li) = Wtar lz (415)

Our aerial target-seeking lets us move the flock towards a specified target location. In
simulation, we move the target location, while on real hardware, we switch between
different targets, where only the active one is used in the cost function. As all agents have
the same target location, we assume shared knowledge of that information. However,
the control algorithm itself is still fully distributed. Instead of a target location, one of
the drones could be designated as a leader. This leader could have additional sensors to
obtain information about its absolute position, to employ an alternative control scheme.

4.4.2 Altitude-Aided Drone Flocking

The size of the indoor space constrains movement in all three dimensions, but typical-
room height is most restrictive. We also want to place our target on the ground; as such,
the flock should reach this target indirectly, at a certain altitude. We therefore describe
an alternative cost function ¢4 (Eq. 4.16) for altitude-aided drone flocking. In real-world
environments, altitude measurements can be gathered by barometers or altimeters (e.g.
downward-facing range sensors).

Cg(dHiy L, Zz) = Ccoh(dHi> + Csep(dHi>+

(4.16)
Cta’rG’(lia Zz) + Celew (zz)
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d) Elevation term:
Celev(zi) = Welev (Celev - Zi)2 (417)

Here z; denotes the z-coordinate of the position of agent ¢, which is it’s altitude. This
term keeps the flock at a certain altitude, which is determined by the reference elevation

Cel ev:

e) Ground target-seeking term:
The distance I; of drone ¢ to the current target is projected to the x-y plane to compute
the cost term ciqra:

1i(li, z) \/max — 2;2,0) (4.18)

ctarc iy 2i) = cara(li(liy 21)) (4.19)

4.4.3 Flock-Formation Quality Metrics

We define metrics, and associated constraints, to assess the flock quality achieved by
DDC.

a) Collision avoidance: The distance between all pairs of drones dist(A) must remain
above a specified threshold distsn, = 2 - 7 grone + Tsafety, Where rg,pery is a safety margin.

dist(A) = d;j 4.20
ist(A) i i (4.20)
dist(A) > distyp, (4.21)

b) Compactness: The radius of the sphere circumscribing all agents would be the ideal
metric. This would require us, however, to know each agent’s position in a global
coordinate system, which we do not have. We thus instead use the maximum radius of
the pairwise inter-agent circumscribed spheres:

1
A)=- 4.22
Comp( ) 2 z,jrenj)z(;é] dz] ( )

c¢) Target reaching: To assess the quality of target-seeking, we determine, for each target
k, the average distance to the target:

t I; 4.93
ary,(A \A| l;l k (4.23)

When using ground a target-seeking term, I, is replaced by Iy
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4.5 Evaluation

We evaluate DDC’s performance in simulation and on real hardware using Crazyflie 2.1
quadcopters [Giel7]. In both cases, we use the same software implementation, with only
minor adjustments of empirically determined parameters.

4.5.1 Simulation Experiments

As simulation environment for our experiments, we used crazys [SAI18]. This is based on
the Gazebo [KH04] physics and visualization engine and the Robot Operating System
(ROS) [Sta]. We implemented DDC (the gray blocks shown in Figure 4.1) in C++,
as a separate ROS node. DDC receives measured distances d;%}, and relative position
information §;. Based on the cost function, it calculates the next action # and passes it
to the low-level controller. Controller parameters were determined empirically from a

range of values for each parameter by manual inspection of performance metrics.

As noise is critical (cf. 4.3.1), we modeled it in simulation by a sum of low-passed
white noise plus additional white noise. We tested different noise levels to assess DDC’s
robustness.

For evaluation, we used two positions sequentially supplied as target location: After
the drones formed a flock around the starting position (x,y, z) = (0,0, (eer ), they move
to (10m, 0, (eier) and then to (10m, 10m, (ejer ). We performed simulations with |A| =5,
9, and 15 drones. Quality metrics over time for representative simulation runs are shown
in Figure 4.5. The metrics for compactness (blue) and collision avoidance (orange)
show that DDC successfully maintains a stable flock without collisions. The flock moves
towards the target locations, as shown by the decreasing target-reaching metric (green).
While moving, compactness (blue) is temporarily degraded.

4.5.2 Comparison to Cyclic Stop-And-Go Strategy

We compared DDC to the cyclic stop-and-go strategy [CYA11], consisting of three
alternating periods: identification, control, and resting. This method allows only a subset
of agents, which are not neighbours of each other, to move simultaneously (i.e. to perform
identification or control). At the same time, all other agents are in resting phase, where
they need to remain stationary. This is easy in simulation, but hard to achieve in the
real world.

As [CYA11] does not provide an implementation, we took it upon ourselves to implement
it: In the identification phase, we use three orthogonal movements and true-range
multilateration [Fan86] to estimate other agent’s relative positions. For the control phase,
we use a variant of SPC [Bra23|, with the same parameters and cost function weights as
in DDC. For arbitration of the different phases, we allowed for central coordination,even
though in our problem statement agents are not able to exchange such information. In
our DDC approach, such coordination is not necessary. Comparison in Fig. 4.7 shows

that this method is susceptible to sensing noise and much slower in reaching the target.
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Figure 4.4: Drones used for hardware experiments: a: Crazyflie 2.1 quadcopter b: Five drones
(highlighted in red circles) while testing scenario JOIN.
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|A]=15, Ty =3m

Distance [m]
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Time [s] Time [s]
|A| =5, rag =00, altitude-aided |A|=15, rg =3m, altitude-aided
12 12
c) d)

Distance [m]
Distance [m]

Time [s] Time [s]

comp(D): compactness dist(D): collision avoidance tar(D): rarget reaching - - - - disty,
Figure 4.5: Metrics over time for representative simulation experiments. The target is updated
with a new position at ¢t; = 20s and t5 = 120 s, resulting in a saw-tooth shape. a: drone flocking
with 9 agents and global neighborhood, b: 15 agents and local neighborhood, c: altitude-aided

drone flocking with 5 agents and global neighborhood, d: 15 agents and local neighborhood.
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Figure 4.6: Hardware experiments. a Scenarios: LINE, forming a flock from starting positions
along a line; JOIN, two agents joining three agents at the target location; MOVE, a flock moves
between two alternating target locations. Plots of metrics and inter-agent distances for scenarios
b: LINE, c: JOIN, and d: MOVE.
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|A|=9, 7z =3m, without noise |A|=15, 7w =3m
14 14

a) 12 b) 12
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cyclic stop-and-go strategy: — comp(D): compactness dist(D): collision avoidance tar(D): target reaching
DDC: — comp(D): compactness dist(D): collision avoidance ~—tar(D): target reaching - - - - disty,

Figure 4.7: Comparison of DDC and cyclic stop-and-go strategy [CYA11], for simulations of
drone flocking with local neighborhood. For the latter, target reaching (green) decays much more
slowly, and compactness (blue) is considerably worse, than for DDC. a: 9 agents without distance
measurement noise, b: 15 agents with same noise level as in all other simulations of DDC.

4.5.3 Hardware Experiments

We experimented with Crazyflie 2.1 quadcopters [Giel7] with Loco-positioning deck,
featuring DWM1000 UWB modules [Qor21] for distance measurements and Flow deck v2
(with z-ranging altimeter and optical flow module); see Figure 4.4. To determine inter-
drone distances, we used a ranging software implementation [Sha22]. For each drone,
the measured distances d;7} and relative position information §; are transmitted to a
computer. There, DDC is executed in a separate ROS node for each drone (same as in
simulation), the next action @ is computed, which is then transmitted to the drone. Even
though it is executed on the same computer for all drones, DDC is fully distributed, as
there is no additional information exchange between the individual nodes.

We evaluated DDC in three scenarios. In Figure 4.6, the starting locations and traces of
representative experiments are visualized. In scenario LINE, the drones start in a line.
As the drones move into a more compact formation, the compactness metric improves
(becomes lower) over time. For JOIN, two drones start further away from target 0. They
join the other three, which are already closer to the target. For MOVE, the drones start
around target 0, indicated by forming flock. Then, when moving towards target 1 in the
next section, the average distance to the target continuously decreases. In the last section,
the flock returns to target 0. While moving, compactness is temporarily degraded. In all
of these scenarios, the metric for collision avoidance stays above the threshold. A video of
these hardware experiments is available online at https://youtu.be/InRoXIdc-WU.
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4.6 Conclusions

We introduced DDC, a MAS-formation-control approach which is fully distributed,
and solely based on scalar-distance measurements, and local-position estimation. We
demonstrated DDC on drone-flocking with target-seeking. To validate DDC, we took
a two-pronged approach: (1) We performed simulation experiments using a physics
engine with a detailed drone model, and (2) We performed experiments with real drones,
specifically, Crazyfiie 2.1 quadcopters. Our results demonstrate DDC’s ability to form
and maintain a flock, and move towards a target location. To the best of our knowledge,
we are the first to demonstrate such a controller on aerial MASs. While DDC is able to
satisfy the specified performance metrics, future work will focus on ensuring that the flock
reaches the target location by a given deadline and extending it with obstacle avoidance
capabilities. We plan to perform analysis on stability and guarantees for non-collision
and non-dispersion. We will also explore replacing our dictionary structure with more
general attention-based models and learning techniques.
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4.8. Recent Related Work

4.8 Recent Related Work

This section was not published in [Bra24], but provides additional related material and
background information on more recent related work. To give a concise overview of
related work and highlight the relevant aspects in comparison to our method, we present
them in a tabular form. The columns of Tables 4.1 to 4.4 are as follows:

e Observations
In our method, we only use scalar interagent distance measurements and onboard
IMU data. In contrast, other works use relative position measurements, bearing
angle measurements, visual observations, or a combination thereof. These types of
measurements can provide significantly more information than only scalar interagent
distances. Therefore, control methods relying on these are not directly comparable
to our proposed method.

¢ Communication
In our paper, we do not use any information exchange, i.e. communication, between
the individual agents. In related works, however, agents exchange their state
containing their own pose in a relative or global coordinate system, velocity,
acceleration, actions, or parts thereof. They might also exchange observations
about other agents, or relay information they received from others.

e Dimensionality (Dim. in column head)
We work with aerial robots, more specifically drones, and therefore need a method
for a 3D environment. Some other works use ground-based robots and, as such,
only work in 2D environments. Unless explicitly shown, it is not clear whether
these methods are applicable to 3D as well.

e Hardware demonstrated (HW in column head)

In our paper, we actually implement our method using real hardware drones. We
thereby experimentally demonstrate the fitness of this method to work with real
aerial robotic systems. Many other papers lack this aspect, as they either describe a
method in theory only or use simulations without actual hardware implementation.
Some even knowingly neglect the physical properties of the robotic systems by
describing the agents as simplified point models. For these works, it is therefore
unclear whether they are actually applicable to real robotic systems.

e Remarks
Other aspects that differentiate related works to our method could be, e.g.,
fully known positions of reference beacons/markers, limitations on the mini-
mum/maximum number of agents, distinctive leader-follower configurations, and
special requirements/limitations regarding the agents’ motions.
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Paper Observations Comm- Dim. HW Remarks
unication

Our work: Flock-Formation Con- interagent none 3D yes ours

trol of Multi-Agent Systems using distances and

Imperfect Relative Distance Mea- IMU data

surements [Bra24|

Cooperative navigation of MAVs In  interagent IMU data 2D no

GPS denied areas [STO08] distance and

bearing

Control for Localization of Targets distances to none 3D 2D anchor nodes

using Range-only Sensors [Stu09] anchor nodes only with known
positions

Coordination with the leader in a interagent none 2D no leader-

robotic team without active commu- distances follower

nication [CYAQ9] structure
(constant
velocity)

Decentralized control for satellite for- relative none 3D no

mation using local relative measure- positions and

ments only [WWP10] velocities

Range-only sensing for formation interagent distance 2D no rigid  body

shape control and easy sensor net- distances informa- framework

work localization [AY11] tion

Formation control using range-only interagent none 3D no cyclic  stop-

measurements [CYA11] distances and-go
strategy

Distributed formation control of mo- interagent velocity 2D no leader-

bile autonomous agents using rela- distances follower

tive position measurements [Hel3] structure

Distance-based undirected forma- relative none 3D no

tions of single-integrator and double- positions

integrator modeled agents in n -

dimensional space: DISTANCE-

BASED UNDIRECTED FORMA-

TIONS [OA14]

Distance-based formation control relative none 2D no leader-

with a single moving leader [Kanl4] positions follower
structure

Distributed Formation Stabilization relative none 2D no

Using Relative Position Measure- positions

ments in Local Coordinates [Aral6]

System for deployment of groups relative none 3D yes relative posi-

of unmanned micro aerial vehicles positions tion estima-

in GPS-denied environments using
onboard visual relative localization
[Sasl7]

tion based on
cameras

Table 4.1: Relevant aspects of additional related work in comparison to our method (1/4).
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4.8. Recent Related Work

Paper Observations Comm- Dim. HW Remarks
unication

Distance-Based Cycle-Free Persis- relative none 2D yes

tent Formation: Global Conver- positions

gence and Experimental Test With

a Group of Quadcopters [KPA17]

Simultaneous Velocity and Position interagent none 2D no circular mo-

Estimation via Distance-only Mea- distances tion needed

surements with Application to Multi-

Agent System Control [JDA17]

Adaptive 3D Distance-Based Forma- relative none 3D no leader-

tion Control of Multiagent Systems positions follower

with Unknown Leader Velocity and structure

Coplanar Initial Positions [LXW18]

Distance-based Formation Stabi- relative none 3D no

lization and Flocking Control for position and

Distributed Multi-agent Systems velocity

[WG18]

Fast Mutual Relative Localization of  relative none 3D yes relative posi-

UAVs using Ultraviolet LED Markers — positions tion estima-

[WSF18] tion based on
cameras

Relative Pose Estimation using relative odometry 2D yes

Range-only Measurements with positions data

Large Initial Uncertainty [Chal8]

Formation Shape Control Based on interagent none 3D no assumes

Distance Measurements Using Lie distances rigid forma-

Bracket Approximations [SS18] tion, needs
sinusoidal
perturba-
tions

Distributed adaptive control for relative velocity 2D no

distance-based formation and flock- positions data

ing control of multi-agent systems

[ZWG19]

An Integrated Localization and Con- interagent distances 2D no

trol Framework for Multi-Agent For- distances

mation [CS19]

3-D Relative Localization of Mobile interagent relative 3D no

Systems Using Distance-Only Mea- distances position

surements via Semidefinite Optimiza- informa-

tion [JAH20] tion

Distance-Based Multiagent Forma- relative none 3D no

tion Control With Energy Con- positions

straints Using SDRE [BS20)]

Table 4.2: Relevant aspects of additional related work in comparison to our method (2/4).
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FLOCK-FORMATION CONTROL OF MULTI-AGENT SYSTEMS USING IMPERFECT RELATIVE
DISTANCE MEASUREMENTS

Paper Observations Comm- Dim. HW Remarks
unication

Relative navigation of autonomous visual - 3D yes single drone

GPS-degraded micro air vehicles odometry only

[Whe20]

Ultra-Wideband and Odometry- interagent velocities 2D yes

Based Cooperative Relative Localiza-  distances and

tion With Application to Multi-UAV position

Formation Control [GLX20] estimates

Varying-coefficient =~ Based  Dis- positions positions 3D yes

tributed Formation Control of

Multiple UAVs [Hep21]

Autonomous Flight for Multi-UAV  LiDAR relative 3D yes

in GPS-Denied Environment [Lu23] odometry pose

Non-cooperative Stochastic interagent state and 2D yes target encir-

Target Encirclement by Anti- distances distances clement by 2

synchronization Control via agents

Range-only Measurement [Liu23]

A Distributed Technique for Lo- interagent distances 2D no static agents

calization of Agent Formations distances

From Relative Range Measurements

[CCW12]

Multi-vehicle formation using range- interagent none 2D no leader-

only measurement [Sun07] distances follower
structure

Minimization of the effect of noisy interagent none 3D no anchor nodes

measurements on localization of distances with known

multi-agent autonomous formations positions

[SFA09]

An Elasticity Inspired method for interagent none 2D no leader-

multi-AUVs formation control using distances follower

range-only measurements [XL14] structure

Coherent swarming of unmanned mi- relative none 3D yes relative posi-

cro aerial vehicles with minimum positions tion estima-

computational and communication tion based on

requirements [BS17] cameras

Cooperative relative positioning of interagent state 2D yes centralized

mobile users by fusing IMU iner- distances and estimates approach

tial and UWB ranging information IMU data

[Liul7]

Relative Position  Estimation interagent none 3D no multiple

in Multi-Agent Systems Using distances range  tags

Attitude-Coupled Range Measure- per agent

ments [Sha21]

Table 4.3: Relevant aspects of additional related work in comparison to our method (3/4).
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4.8. Recent Related Work

Paper Observations Comm- Dim. HW Remarks
unication
Distributed Formation Estimation interagent odometry 3D no
Via Pairwise Distance Measurements distances and data,
[Zie21] odometry parts  of
state
Relative Position Estimation Be- interagent odometry 3D yes HW demon-
tween Two UWB Devices With IMUs ~ distances and data stration for 2
[Cos21] odometry agents
Relative Localization of Mobile interagent none 2D yes multiple
Robots  with  Multiple Ultra- distances and range  tags
WideBand Ranging Measurements odometry per agent
[Cao21]
Flexible and Resource-Efficient interagent odometry 3D yes HW demon-
Multi-Robot Collaborative Visual- distances and data stration for 2
Inertial-Range Localization [NNX22] odometry agents
Relative Transformation Estimation interagent odometry 3D yes HW demon-
Based on Fusion of Odometry and distances and data stration for 2
UWB Ranging Data [NX23] odometry agents
Real-time Relative Pose Estima- interagent pose 3D no
tion for Muti-UAV Systems Using distances and estimates
Odometry and UWB Measurements IMU data
QY24
Fast Swarming of UAVs in GNSS- relative none 3D yes relative posi-
Denied Feature-Poor Environments positions tion estima-
Without Explicit Communication tion based on
[Hor24] cameras
High-Performance Relative Local- interagent state 3D yes centralized
ization Based on Key-Node Seek- distances and estimates approach
ing Considering Aerial Drags Using IMU data
Range and Odometry Measurements
[CLD24]
Reconfigurable Multi-Robot Forma- interagent odometry 2D yes leader-
tion via Ultra-Wideband Ranging in  distances and data follower
Unknown Environments [Guo24] odometry structure
Where are You? Unscented Particle interagent odometry 3D yes HW demon-
Filter for Single Range Relative Pose distances and data stration for 2
Estimation in Unobservable Motion odometry agents in 2D

Using UWB and VIO [Dur24]

only

Table 4.4: Relevant aspects of additional related work in comparison to our method (4/4).

75



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.

FLOCK-FORMATION CONTROL OF MULTI-AGENT SYSTEMS USING IMPERFECT RELATIVE

DISTANCE MEASUREMENTS

76

Summarizing, we conclude that our work differs from these related works in at least one
relevant aspect, as shown in the respective columns of Tables 4.1 to 4.4.

As already laid out in Section 4.2, some works use cameras, LiDAR sensors, and/or
external systems to localize neighboring agents. In our setting, such sensors are not
available. Regarding agent’s observations, the relative positions of their neighboring agents
in their own local coordinate system are provided in some works. This is substantially
different than scalar distance measurements and provides considerably more information.
Position estimation and control for 2D is studied in some works; however, it lacks
generalization to 3D. In some works, agents are allowed to exchange messages containing
their distance measurements, acceleration, odometry, internal states, and possibly further
information.

Noteworthily, there are a number of very recent papers, including [NNX22; NX23;
QY24; CLD24; Guo24; Dur24], addressing the problem of relative localization using
UWRB ranging and IMU and/or Visual Inertial Odometry (VIO) odometry data. Using
odometry data and distance measurements, these works combine individual trajectories,
e.g., by sliding-window optimization, to infer the relative positions in their own coordinate
system. For this, it is needed to exchange odometry data between individual agents. In
our work, there is no such information exchange.
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Abstract

World models learn behaviors in a latent imagination space to enhance the sample-
efficiency of deep Reinforcement Learning (RL) algorithms. While learning world models
for high-dimensional observations (e.g., pixel inputs) has become practicable on standard
RL benchmarks and some games, their effectiveness in real-world robotics applications
has not been explored. In this paper, we investigate how such agents generalize to real-
world autonomous vehicle control tasks, where advanced model-free deep RL algorithms
fail. In particular, we set up a series of time-lap tasks for an F1ITENTH racing robot,
equipped with a high-dimensional LiDAR sensor, on a set of test tracks with a gradual
increase in their complexity. In this continuous-control setting, we show that model-based
agents capable of learning in imagination substantially outperform model-free agents with
respect to performance, sample efficiency, successful task completion, and generalization.
Moreover, we show that the generalization ability of model-based agents strongly depends
on the choice of their observation model. We provide extensive empirical evidence for the
effectiveness of world models provided with long enough memory horizons in sim2real

tasks.

5.1 Introduction

Deploying deep Reinforcement Learning (RL) agents in the real world is difficult. This is
because they require running a significantly large amount of episodes to obtain reasonable
performance [SB18]. This performance is only tractable in simulation environments.
Subsequently, the agents should also overcome the challenges of transferring learned

dynamics from simulation to the real world.

In RL settings, it was shown that by learning representations of the state-space model
from high-dimensional observations and using them as a predictive model to train policies
in imagination, we gain performance, sample efficiency, and robustness [Haf20]. This
world model algorithm [HS18] was called Dreamer, and it demonstrated great performance

in learning long-horizon visual control tasks and Atari games [Haf21].

Providing a model of the world (state transition probability) to the agents (even though in
simulation) improves sample efficiency and, in some cases, the performance of a deep RL
agent [HS18; Hafl9; Haf20; Haf21]. However, there are still open research questions to be
investigated: For instance, how would world model compartments improve the sim2real
performance of RL agents in real-world applications? Where is the boundary between
the generalization capability of model-based algorithms such as Dreamer, compared
to advanced model-free agents such as soft actor-critic [Haal8]|, distributional models

[Bar18], and policy gradient [Sch17; Abd18], in sim2real applications?

In this paper, we aim to provide answers to the above questions. We construct a series of
time-lap autonomous racing tasks with varying degrees of complexity for an FITENTH
robot. The task is to learn to drive autonomously directly from high-dimensional LiDAR

inputs to successfully finish a lap without collisions.
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Figure 5.1: Model-based deep-RL (Dreamer) solves autonomous racing in complex tracks where
all advanced model-free methods fail.

We observe that as the complexity of the map increases, model-free agents get stuck in
similar local minima and cannot learn to complete the task. Contrarily, Dreamer can learn
a proper state transition model, and given enough imagination horizon, solves time-lap
tasks of arbitrary complexity (See Fig. 5.1). Moreover, we discover that model-based
techniques demonstrate desirable transferability: Dreamer agents trained on a single map
can generalize well to test tracks they have never seen before. In summary, our main
contributions are as follows:

e We demonstrate the effectiveness of advanced model-based deep RL compared to
model-free agents in the real-world application of autonomous racing.

e We show the transferability of advanced model-based deep RL agents to the real-
world applications where model-free agents fail.

e We empirically show that the learning performance and generalization ability of
Dreamer in sim2real applications highly depends on the choice of the observation
model, its resulting state transition probability model, and its imagination horizon.
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5.2 Problem Definition

We set out to design deep RL models that are able to learn to autonomously complete
time-lap racing tasks. Considering the real-world conditions, we formalize the problem
as a Partially-Observable Markov Decision Process (POMDP).

Notation and terminology.

A POMDP is defined as a tuple (S, A4,Q,0,T,R), where S, A, Q are the sets of states,
actions and observations, respectively. O and T denote stochastic observation and
transition functions, and R is a deterministic reward function. The transition function
T models the system dynamics and includes its uncertainty. It is defined as a stochastic
function 7 : S x Ax S — [0, 1] which returns the transition probability between two states
by applying actions. The observation function O models the system’s perception, including
its uncertainty. Its stochastic formulation O : S x Q — [0, 1] returns the probability
of perceiving an observation in a given state. The reward function is deterministic
R : S5 x Ax S — R, which returns the credit assigned to a transition. We discuss our
reward shaping subsequently.

Racing-agent setup.

In autonomous racing, the car drives along a race track by controlling its actuators with
continuous actions @ = (F,a)?, where F is the motor force applied to reach a fixed
target velocity, and « is the steering angle. In this scenario, the observations are range
measurements obtained by a Light Detection and Ranging (LiDAR) sensor with 1080
range measurements evenly distributed over a 270° field of view (see Fig. 5.2).

How do we aim to solve this racing objective?

Traditional control techniques model the state space as a set of continuous variables
such as the car’s pose, velocity, and acceleration. These quantities are usually estimated
from observations by dedicated perception and filtering modules. State-space planning
commonly uses sophisticated dynamics models for cars. This demands non-trivial system
identification techniques. Contrarily, we aim to replace the entirety of such modules
by learning an abstract state representation and transition model in a self-supervised
manner by building upon recent advances of model-based RL [Haf20].

5.3 Related Work

We include works that are closely related to our contributions.

Model-free RL in robot control.

Robot control has been a playground for RL algorithms for decades [SB18; Has20].
Model-free algorithms [Sch17; Haal8; Barl8] achieved state-of-the-art results in various
continuous control tasks, but their inherent sample inefficiency [Yul8] makes it challenging
to apply them in real-world settings. Off-policy [Mnil3; Haal8] methods reduce the
sample complexity by reusing old experience to some degree. However, they might
induce errors when deployed in a closed-loop with the real-world environment. Thus,
model-free approaches are often trained in simulation before being deployed on real
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Figure 5.2: Racing-agent setup: observations, actions and reward.

robots. This leads to difficulties when reproducing learned behaviors in the real setting
[Zhu20; ZQW20]. To overcome simulation mismatches, some approaches rely on domain
randomization and subsequent fine-tuning. In order to learn more robust policies [Penl18],
other works refined the physics simulator [Tan18; KMB20] or directly trained the policy
on real-world robots [Haal9; Sin19].

Model-based RL in robot control.

Model-based approaches, on the other hand, can leverage their learned dynamics model
by either planning or generating new training experience [Sut91]. Problems arise when no
sufficiently accurate dynamics model can be learned from data. An early representative of
model-based RL algorithms is PILCO [DR11] which learned a Gaussian Process from the
system’s states. Recent works on world models [HS18; Haf19; Haf20; Sch21] proved the
feasibility of learning a dynamics model for POMDPs by using noisy high-dimensional
observations instead of accurate states. They achieve better than state-of-the-art results
on various simulated control tasks while being significantly more sample efficient. However,
to the best of our knowledge, their application and challenges in real-world testbeds have
been less attended, which we will explore in the present work.
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Optimal control for autonomous racing.

Autonomous racing has been an active field of research in the control community. Tra-
ditional control does not solve the problem end-to-end but divides it into independent
sub-problems: perception, planning, and control. Recent success in the context of
Formula Student [Kab19b; Kabl9a; And20] has been achieved by Model Predictive
Control (MPC) and by engineering the perception pipeline using sensor fusion of LiDAR
and RGB cameras. Several approaches plan an optimal trajectory [VT05; RNH15; TC13;
Vaz20]. However, these techniques usually require detailed global information (e.g., map)
and an accurate dynamics model, not available in a POMDP setting, as in our case.
Here, we use a fully automated process that learns an approximated dynamics model in
an unsupervised fashion by only having access to LIDAR observations.

RL for autonomous racing.

A large body of research made use of camera images and adopt model-free methods [Jarl8;
RMDO07; Ken19]. In [Fuc20], the authors used Soft Actor-Critic (SAC) to control a racing
car in simulation by feeding the controller with state information and ad-hoc features
about the road curvature. To deal with the complexity of continuous action spaces, a
common technique is to discretize the domain, but this approach is not scalable. Another
recurrent trend consists of combining MPC and deep RL [BB20b; Will7]. However,
MPC requires to efficiently perform sampling through the model to scale with respect to
the time constraints. Conversely, the adoption of a policy network is more efficient and
suitable for an online setting.

Imitation Learning.

Imitation learning is the process of learning observation-to-action mappings from super-
vised data [Sch99]. It allows for behavior cloning by data aggregation (Dagger) [RGB11]
via supervised learning modes [Vor21; Lec20b] or by inverse RL [NROO]. Imitation
learning has been further adapted to imperfect [Wul9] and incomplete demonstrations
[SM19; Lec21]. In the context of end-to-end control of autonomous vehicles, learning from
expert demonstrations is the dominant choice of algorithm [Lec20a; Lec19], because other
RL methods would require efficient simulation platforms to achieve desirable performance
[Ami20]. For autonomous racing, as we already have a sample efficient simulator available,
we settle to use model-based RL algorithms over imitation learning.

5.4 Adapting Dreamer for Autonomous Racing

In this section, we revisit Dreamer [Haf20] and discuss its merits for autonomous racing.
We present two observation models that we utilize to learn the latent-dynamics model.
We then formulate a specialized reward function.

Introduction.

Dreamer is a model-based deep-RL algorithm that has recently achieved state-of-the-art
performance in simulated standard RL benchmarks [Haf20]. Dreamer learns a model
of the system dynamics from high-dimensional observations in an unsupervised fashion
and uses it to produce latent-state sequences to train an agent using an actor-critic
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algorithm [Haf20]. Dreamer implements the dynamics model as a Recurrent State-Space
Model (RSSM) with both stochastic and deterministic components [Haf19]. It consists
of four components, which are all implemented as deep neural networks [Haf20]:

Representation model: Dpo(St|St—1,a1—1,0¢) (5.1)
Observation model: qo(o¢|s¢) (5.2)
Reward model: qo(rt|st) (5.3)
Transition model: qo(St|st—1,ai—1) (5.4)

All components are jointly optimized to maximize the variational lower-bound as follows,
where Dxy, (P || Q) is the Kullback—Leibler divergence of distributions P and Q:

To =Iqlos) T =Inq(ryse)
Th = —BDxr, (p(se|si—1,ai-1,0¢) || q(5¢|8t-1,at-1))

Trec = Eyp [Z TIb+ Tk + Tb (5.5)
t

In contrast to [Haf20], our representation model uses a Multilayer Perceptron (MLP)
to encode the observations instead of convolutional layers. The reason for this design
decision is that LiDAR scans are not as high-dimensional as RGB images, and further
compression does not show better performance in our empirical evaluation.

Observation model.

This model reconstructs observations from latent states and is used only in the training
phase to generate learning signals for the representation model. In this work, we propose
two observation models for autonomous racing. One simply reconstructs the LIDAR
scan, which is analogous to the original model, and the other is based on reconstructing
occupancy maps. In Figure 5.3 we show snapshots of the simulation, the associated
LiDAR observation, and reconstructions sampled from these models.

The Distance reconstruction model, implemented by MLPs, predicts a Gaussian distri-
bution over the distance measurement of each LiDAR ray from latent states. We call it
Dreamer-Distance. Here, the observation is both the representation model’s input and
the observation model’s output.

Our novel Occupancy reconstruction model attempts to predict an occupancy grid map of
the agent’s surrounding based on its current state. Specifically, the model generates the
parameters for a multivariate Bernoulli distribution which, for every pixel, models the
probability of being occupied. The observation model is implemented using transposed
convolutions to construct a 2D grayscale image and is trained by providing patches of
the true occupancy grid map. We call the resulting agent Dreamer-Occupancy.
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Figure 5.3: Observation models and their reconstruction methods. Observations are in agent
coordinates. Row 1: bird-view of the racecar in simulation, Row 2: LiDAR scan in racecar

coordinates, Row 3: reconstructed LiDAR scan, Row 4: reconstructed local occupancy map

Actor-critic on latent imagination.

Having first learned a world model from observations, Dreamer then learns a policy purely
on latent state-action sequences [Haf20]. This approach allows Dreamer to efficiently
produce thousands of training sequences for RL without direct environment interaction,
which results in more data-efficient learning. Starting from these imagined sequences,
Dreamer uses an actor-critic algorithm to train the agent. The action model (policy)
aims to predict the best action while the value model estimates the value for each latent

state:

Action model: qs(a|se) (5.6)
Value model: gy (ve|st) (5.7)

To trade off bias and variance in value estimation, Dreamer uses an exponentially
weighted sum over different horizons [Haf20]. Moreover, the training process leverages
the availability of a learned dynamics model by back-propagating through it. This leads

to more effective gradient updates.

Reward shaping.

The reward design is critical for learning a policy. Sparse rewards over long episodes makes
the learning problem challenging. Starting from a simple approach that rewards agents
only when finished the race, we gradually refine the reward to provide a high-density

learning signal. The reward signal we propose for this task is defined as

c*|pr — pi—1| = ¢ x Apy, (5.8)
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where p; denotes the progress that has been made on the track at time ¢ and c is a
constant scalar. When colliding with the wall or other objects, the agent receives a
penalty and the episode terminates (see also Figure 5.2). The progress is computed by
a distance transform applied to the gridmaps for each track. This yields a normalized
progress estimate for each pixel on the map at a resolution of 5cm per pixel. Therefore,
the progress value can be easily queried from these maps given the current pose of the car.
In Figure 5.4 (bottom) we show the precomputed progress maps for each of our tracks.
The progress value ranges from 0 (light) to 1 (dark), where a progress of 1 corresponds
to one full lap.

Austria Columbia Treitlstrasse Barcelona

O o D

Figure 5.4: Top-view of the race tracks and relative Progress Maps adopted for reward design.
Austria (length = 79.45m), Columbia (61.2m), Treitlstrasse (51.65m) are used for training,
Barcelona (201m) is used only for evaluation. Red circles indicate difficult parts of the track.
The red circles show where all model-free agents fail to improve their performance.

Track Min. Width Length Min. Radius
Austria 1.86m 79.45m 2.78m
Columbia 3.53m 61.20m 7.68m
Treitlstrasse 0.89m 51.65m 3.55m
Barcelona 1.86m  201.00m 2.98m

Table 5.1: Track characteristics.
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5.5 Experiments

Here, we describe our experiments and evaluate the performance of model-free versus

model-based RL algorithms.

5.5.1 Experimental Setup

For our experiments, we train the agents in simulation before we transfer them to real
cars. In the following, we provide an overview of the simulation and real-world setup as

well as the training process.

Simulation environment.

To simulate a car model, we use the open-source physics engine PyBullet [CB19]. The
car model is a rigid body system based on the URDF model in [BB20a]. Our training
environment can simulate a broad set of sensory inputs, such as LiDAR sensors, RGB
cameras, and odometry. The model is actuated by applying force to the steering and

acceleration joints.

Training pipeline.

During training in simulation, we place the agent randomly on the track at the beginning
of an episode. Each training episode has a maximum length of 2000 timesteps, resulting
in 20 seconds of real-time experience. Agents learn to directly maximize the progress
covered in a small, predefined time interval. Observations and actions are normalized.
To account for latency experienced during testing and to increase the effectiveness of
actions, we repeat each action multiple times. We regularly evaluate the agent by placing
it on a fixed starting position for each track and let it run for at most 4000 timesteps
(i.e., 40 seconds) and average the maximum progress reached over five consecutive trials.
Dreamer is trained for 2 million timesteps. The model-free baselines are trained for 8

million timesteps.

Hardware setup.

The hardware platform is the FITENTH race series [OKe20]. It consists of an off-the-shelf
model race car chassis, with a Traxxas Velineon 3351R brushless DC electric motor,
which is driven by a VESC 6 MKIV Electronic Speed Controller (ESC). The laser
range measurements are produced by a Hokuyo UST-10LX LiDAR sensor. On-board
computation and control tasks are performed on an NVIDIA Jetson TX2. The on-board
system runs Ubuntu 18.04 as the base operating system and hosts the core services for the
Robot Operating System (ROS) stack [Sta]. To run Dreamer agents on our hardware, we
use Docker. A ROS interface node is used to translate observation and action messages.
The motor force commands are processed by integration to get the desired speed values.
We added an adaptive low pass filter for the steering commands to protect the servo

from high frequent steering operations.
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Figure 5.5: Top: Learning curves of model-free methods (top row) over 8 M steps and Dreamers
(bottom row) over 2M steps. The dashed lines report the maximum performance obtained by the
other algorithms as baselines. Performance averages over 5 runs. Bottom: Maximum progress
and lap time of trained models over different tracks in simulation. The bars show the result
averaged over 10 episodes on each track. The delimiters show the minimum and maximum
achieved. For Lap-Time results, we consider the best episode that finished one full lap.

87



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.

LATENT IMAGINATION FACILITATES ZERO-SHOT TRANSFER IN AUTONOMOUS RACING

88

Track difficulty.

To compare the difficulty of the tracks, we classified them according to several characteris-
tics (as also discussed in [Bra08] and [LLO1]). In particular, we measure the minimal track
width, the track length (shortest path), and its minimum curve radius. For curves, we
measure the radius of the largest circle that tangentially touches the outside of the curve
and also touches the inside of the curve. In Table 5.1 we summarize the characteristics
of the tracks.

5.5.2 Experimental Evaluation

In this section, we present the baseline algorithms and discuss their performance in
various racing scenarios. We conduct three different experiments: I) Evaluation of the
learning curves of Dreamer and model-free algorithms in simulation, IT) Evaluation of the
generalization ability by testing the trained models in simulation, and III) Evaluation of
the transferability on our real testing platform.

Model-free baselines.

We compare the performance of the Dreamer agent against the following advanced
model-free baselines: D4PG, an enhanced version of DDPG [Barl8], MPO, a stable
off-policy algorithm [Abd18], SAC, an off-policy actor-critic algorithm with less sensitivity
to hyperparameters [Haal9], PPO, an on-policy algorithm [Sch17], and PPO-LSTM, the
recurrent version of PPO using long short-term memory [HS97]. PPO-LSTM is chosen as
a baseline since policies built by recurrent networks demonstrate remarkable performance
in learning to control [Has21; Has19; LH20; Has22]. We tuned the hyperparameters for
each baseline algorithm with Optuna [Akil9].

Learning performance and sample efficiency.

In Figure 5.5 (left) we show the learning curves of the model-free and model-based
algorithms in three different tracks. Except for the simple track Columbia, all advanced
model-free methods fail to perform one lap in more complex maps successfully. On the
other hand, Dreamer efficiently learns to complete the tasks regardless of the degrees of
complexity of the tracks.

As shown in Figure 5.5, the performance of the Dreamer agents equipped with distance and
occupancy reconstruction models are comparable in Austria and Columbia. However, the
experiments on Treitlstrasse show better performance with occupancy-map reconstruction,
with which the agent can almost complete two full laps over the evaluation-time window.
This experiment suggests that the occupancy-map reconstruction speeds up the training
process. However, it biases the learning process on the track on which it was trained.
This affects the generalization capabilities of the policy, as illustrated in the following
experiment.

Performance on unseen tracks.

In this experiment, we evaluate the cross-track generalizability of the learned policies and
demonstrate the domain-adaptation skills of Dreamer. We trained polices on a single,
fixed track, i.e., Austria (AUT) and Treitlstrasse (TRT) and reported their evaluation



Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.5. Experiments

performance on other unseen tracks: Columbia (COL) and Barcelona (BRC). We compare
Dreamer to the best-performing model-free policy, MPO, and to a Follow-the-gap (FTG)
agent, which is a LIDAR-based reactive method that was successfully applied in past
FITENTH competitions [SG12].

Considering the learning methods shown in Figure 5.5 (right, top row), all the algorithms
can complete the simple track, COL. However, only Dreamer can generalize the racing
task and transfer the learned skills to other complex tracks. Generally, policies trained in
AUT achieve better performance as they can complete at least one lap in each other track.
Conversely, even though TRT contains challenging turns, the trained agents perform
poorly on unseen complex tracks (AUT). The reason might be that most turns in TRT
have the same direction, and consequently, the trained policy cannot generalize to altered
scenarios.

Moreover, we observed that the Dreamer-Occupancy agent shows lower generalization
skills compared to Dreamer-Distance. The learned policy results in a more aggressive
strategy, presenting a lower lap-time as shown in Figure 5.5 (right, bottom row). However,
the car often gets dangerously close to the track walls. This results in unsafe behavior
that increases the probability of collisions. Comparing the performance of Dreamer
with the adaptive FTG, we observe similar lap-times on all the tracks. However, the
predictable behavior of FTG results in a more stable controller. This is not surprising
considering that FTG is a programmed algorithm, and its parameters have been carefully
tuned to drive on the most challenging track, AUT. In conclusion, reconstructing the
occupancy area allows the agent overfit to the track it was trained on. This speeds up
learning, but hurts robustness to domain changes and thus worsens generalization.

Influence of imagination horizon.

Figure 5.6 shows that as we increase the imagination horizon for Dreamer, it performs
better. While this increase helps generate long-term trajectories in latent space as training
data, we observe that a further increase leads to a drop in performance in some of the
experiments. We suspect that this drop is caused by compounding model errors for longer
horizons.

Dreamer

n 14

9 Occupancy

‘éo 0] FEP R4 I 1lap

% 038 Dreamer

© .
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Figure 5.6: Dreamer’s performance vs. imagination horizon. Batch length =50, and action
repeat = 4. n=>5.
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Action Regularization.
Additionally, we observed that the driving behavior of the car resembles an on-off control
law, resulting in unnecessarily curvy trajectories. While this type of behavior is expected
for acceleration control [Lib11], it is counterproductive to perform unnecessary steering

commands. We experimented with different regularization techniques for continuous

control to minimize the steering effort and enforce temporal smoothness, similar to
the approaches in [Mys21] and [Sey21]. The resulting policy showed smoother steering
commands (see Figure 5.7) but did not show superior performance compared to the one
trained without regularization. The objective for the regularized action model is defined
as

H
Epoo | D7 (Valse) — pallacl3 — pallar — ai—1]]3)
t=0

where V) (s;) denotes the original value estimation term, p1 and pg are the control effort
and the temporal smoothing coefficients, respectively.

Sim2Real transfer.

In this experiment, we evaluate Dreamer policies with respect to their sim2real trans-
ferability. We test trained dreamers deployed on the car in a physical test track. A

video! demonstrating the driving performance of the Dreamer agent is supplied with

the submission. It presents the Dreamer agent completing a full lap in TRT in the
forward direction. Then, to evaluate its generalization capabilities, we tested the agent
in reversed direction. We observe that even if the agent was not trained in the reversed
direction and not directly on the TRT track, the agent can complete a successful lap.
Finally, we placed two obstacles after the most challenging turn and ran the agent in this

configuration. The Dreamer agents can complete the lap and securely avoid obstacles.

!The video can be viewed at: https://youtu.be/80fWVLArzJQ
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5.6 Conclusions

We show that Dreamer, a model-based deep RL algorithm, outperforms several other
model-free RL algorithms in simulation. Furthermore, we empirically demonstrate that
Dreamer is able to successfully transfer the policy that it learned in simulation to a

real-world test environment without the use of explicit domain randomization techniques.

Ultimately, we show how observation models and model horizon affect generalization and
domain adaptation of learned policies and that model-based agents can enable robust
autonomy in real-world settings.

Why Dreamer?

Dreamer is a comparably sample-efficient, high-performance deep RL algorithm. Its
learned state space model can not only be used for policy learning, but also for trajectory
planning approaches [Haf19].

How does the sim2real gap influence Dreamer’s performance?

The discrepancy between simulation and reality is and remains one of the main challenges
in RL. However, Dreamer’s latent state-space model is robust enough to transfer the
learned policy to the real world. This result is key for the deployment of RL algorithms
in the real world.

What are the limitations of this approach?

We observed that our learned policies often resemble bang-bang control [Sey21], which is
often not desirable in real-world robotics applications. To avoid this, the objective function
of the learning problem has to be carefully designed. Our experiments mitigated its
emergence by regularizing the original actor’s loss with action penalties to discourage sharp
changes between extreme values. This method relaxed the bang-bang behavior observed
in the obtained policies. Furthermore, the lack of structure in the latent space of the world
model makes it hard to interpret and is subject to ongoing research. All code, data and

appendix are available at: https://github.com/CPS-TUWien/racing_dreamer.
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5.9 Autonomous Racing in the Context of Antagonistic
MAS

This section was not published in [Bru22|, but comprises additional reasoning and further
description about this research in the context of antagonistic Multi-agent Systems (MAS).

Our work is based on the hardware platform of the FITENTH race series [OKe20].
Therefore, we also refer to this race series to analyze the various levels of complexity and
involvement of opposing agents, representing various types of MAS scenarios. In principle,
this also applies to other similar race series, such as Indy Autonomous Challenge [Ind24]
or Roborace [FIA24]. We classify the abilities of an agent in the following levels, where
one might build upon another. In this classification, (A) and (B) can be considered basic
abilities, and (C) to (E) are abilities for actual MAS.

(A) A single agent is operating on the race track with a static map. There are no other
agents and no obstacles, which are not represented on the map.

(A.1) The agent shall be able to continue a single lap without crashing into the
race track barriers. This can be considered a minimum requirement for any
functional agent.

(A.2) The agent continues multiple consecutive laps without crashing into the race
track barriers. This is a metric of the reliability of an agent. Note that in
simulation, if there is no noise, this might be of limited significance, but on real
hardware, even small perturbations and sensor noise might make a difference
between multiple laps.

(A.3) Laps should be completed as fast as possible. This metric might be the
most obvious one for any racing scenario. Over multiple laps, it might be
relevant to assess only the fastest lap, but alternatively also to consider the
full distribution of all lap times.

(B) Avoid static obstacles, which are not represented on the map. This ensures the
agent is actually able to react to its environment, despite only relying on map-based
pre-programmed information.

(C) Evading a single opponent that behaves rationally w.r.t. to the racing scenario.
This means it drives in the defined direction of the race track and follows any
reasonable race line. So, the agent can expect the opponent to not exhibit deliberate
blocking, wiggling, or abrupt stopping.

(C.1) The speed of the opponent is considerably lower than the agent’s own speed.

(C.2) The opponent is of similar speed as the agent, or even faster.

(D) Evade an arbitrary number of opponents that behave rationally w.r.t. to the racing
scenario. Opponents are assumed to be independent of each other, derive their
actions independently, and do not share a common collaboration tactic.
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(E) Evade one or more overly aggressive opponents. These might exhibit erratic or
malicious behavior w.r.t. to the racing scenario. This includes deliberate blocking,
wiggling, or even abrupt stopping. We still can assume the absence of wrong-way
drivers, as this contradicts their own objective of completing laps in the defined
racing direction. However, in most racing series, such overly aggressive behavior is
explicitly forbidden.

In our work, we successfully demonstrate that our method is able to solve (A.1) on maps
AUT, TRT, COL, and BRC. The other model-free methods, that we compare in our work,
fail to successfully complete a single lap on some of these maps. When testing simulation
experiments with multiple laps (A.2), we did not notice any significant problems and,
therefore, conclude that our trained agent is also capable of finishing a high number of
consecutive laps. In the hardware experiments, we performed successful experiments with
multiple consecutive laps. However, as the focus of this work is not on this aspect, we did
not run extensive experiments focusing on this metric. Regarding achieving fast lap times
(A.3), there is definitely a need for further research to optimize our trained policies for
that aspect. We compare our method with a FTG agent and got comparable lap times
in simulation and hardware experiments. FTG is an engineered reactive method that
is well-known and regularly applied in FITENTH competitions [SG12] by a multitude
of teams. However, there exist more advanced methods, such as MPC-based controllers
[Bec23], resulting in significantly faster lap times. In our hardware experiments, we
successfully demonstrate the ability to avoid static obstacles (B) by placing boxes on
the track. Such an example of an obstacle avoidance maneuver is also included in the
accompanying video! (in Figure 5.8 there is a snapshot of the video showing the relevant
scene with obstacles).

While participating in a number of international FITENTH races since 2020 with our team
Scuderia Segfault [Res24], we carefully observed various racing strategies and algorithms
employed by different teams. We notice that the vast majority of algorithms in this race
series do not actively consider other agents but rather treat them as bare obstacles to
avoid. This leads to our claim that in these cases, it should rather be considered as
“passing by at another agent”, than calling it “overtaking”. This is especially true for

the case where the opponent car is considerably slower than the overtaking one (C.1).

Even though not directly demonstrated, we, therefore, reason that based on the results
for obstacle avoidance (B), our proposed method would also be able to deal with slower
opponents on the track. In cases where the opponent is of comparable speed or even
faster (C.2) or when there are more opponents simultaneously on track (D), it needs
further analysis to draw a final conclusion, but we consider it likely that our method is
also capable of these scenarios. As aggressive opponents are prohibited by the rules of
the race series, we do not further consider these scenarios (E).

'The video can be viewed at: https://youtu.be/80fWVLArzJQ
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As our method’s observations are solely the LiDAR scans without any predefined trajec-
tories, it exhibits a fully reactive behavior. In Table 5.2 we compare the abilities of our
method with a FTG based reactive agent. Conclusions of FTG based agent are drawn on
observations from participating in a number of international FITENTH races between
2020 and 2024. Even though not primarily developed and trained for MAS scenarios,
our method is still applicable for the aforementioned classes (C) to (D) to at least some
extent. Further work could focus on testing and verifying such a trained policy on those
scenarios and also developing improved policies targeting these MAS abilities.

Our method FTG based agent Remarks

Basic ability (A.1) v demonstrated v yes

Basic ability (A.2) v demonstrated V' yes

Basic ability (A.3) ~ ~ there exist superior controllers
Basic ability (B) v' demonstrated V' yes

MAS ability (C.1) v by reasoning V' yes

MAS ability (C.2) ~ likely ~ partially

MAS ability (D) ~ likely ~ partially

MAS ability (E) — — prohibited by the rules

Table 5.2: Comparison of agent’s abilities. Conclusions of FTG based agent are drawn on
observations from participating in a number of international FITENTH races between the years
2020 and 2024.

LIDAR

Agent successfully avoids
obstacles on the track.

Figure 5.8: Snapshot of the video! accompanying the paper. We demonstrate avoidance of
static obstacles using two boxes that are placed on the racetrack.
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CHAPTER

Summary and Conclusions

In this work, we introduce methods to coordinate and control robotic agents in both
antagonistic and collaborative Multi-agent Systems (MAS). For each of these scenar-
ios, we use a three-pronged approach consisting of theoretical analysis and reasoning,
implementation and simulation, and hardware experiments.

For the autonomous racing task, we use machine learning, more specifically Reinforcement
Learning (RL), to drive a Partially-Observable Markov Decision Process (POMDP) agent
in a timed racing scenario. We show that the model-based deep RL algorithm Dreamer
outperforms a number of other model-free RL algorithms in simulation for this task. Using
an actual model race car, we empirically demonstrate that this control method is able to
successfully transfer the learned policy from simulation to a real-world test environment.
We also show how observation models and model horizon affect generalization and domain
adaptation of learned policies and that model-based agents can enable robust autonomy
in real-world settings. For developing robot control methods, the sim2real transfer
gap is an important issue. This is especially challenging in RL, when using simulated
environments to train a policy. We can demonstrate that in our scenario, the learned
policy is robust enough to be transferred to the real world. Despite these interesting
findings and observations, we notice that the ultimate performance of our control method,
w.r.t. to the relevant metric for racing, which is lap time, still lags behind traditional
control methods by a large margin. Developing competitive control methods for racing
in this scenario, therefore, requires additional research.

Our collaborative MAS consists of a group of drones, more specifically quadcopters,
that are tasked to form and maintain a flock formation. We first introduce the concept
of Spatial Predictive Control (SPC), and demonstrate its utility on the drone flocking
problem in simulation and using real hardware drones. SPC is fully distributed and is
based only on the position of the individual drone itself and on those of neighboring
drones. This information is used to compute the gradient of the local cost function
and to perform a spatial prediction for the best next action. In contrast to Model

97




Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfligbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

6.

SUMMARY AND CONCLUSIONS

98

Predictive Control (MPC), SPC has a low computational cost and does not require a
dynamic model of the plant. We give an experimental evaluation of SPC on the drone
flocking problem using a physics engine with a detailed drone model. These results
demonstrate SPC’s ability to form and maintain a flock, avoid obstacles, and move the
flock to multiple target locations. Hardware experiments demonstrate SPC’s robustness
against a potential sim-to-real transfer gap and its capability to perform properly in the
presence of significant sensor noise and the extra latency of positional and control signals.
We also experimentally compare SPC with a related approach based on a Potential
Field Controller (PFC) and show the superiority of our proposed method. SPC is a
general technique for designing middle-level controllers sandwiched between high-level
planners and Positional Low-Level Controllers (PLLCs) that often come integrated with
the hardware. In this research, we limit the observations to only provide positions of
neighboring agents but do not allow measurement or information exchange of velocities,
acceleration, and/or actions. However, there might exist scenarios, where even positional
observations of agents are not possible. This leads to a follow-up work which is also part
of this thesis.

We introduce Distributed Distance-based Control (DDC) as an MAS-formation-control
approach, which is fully distributed, and solely based on scalar distance measurements and
local position estimation. To validate DDC, we perform simulation experiments using a
physics engine with a detailed drone model and also compare it to a variant of a controller
with the same observations. Our DDC clearly shows superior performance in terms of all
relevant quality metrics. We demonstrate DDC on drone-flocking with target-seeking
using real hardware drones, thereby showing its fitness to form and maintain a flock, even
though scalar-distance measurements are extremely limited observations. To the best
of our knowledge, we are the first to demonstrate such a controller on aerial MAS and
perform experiments with hardware drones. While DDC is able to satisfy the specified
performance metrics, future work could further improve this controller and focus on
ensuring that the flock reaches the target location by a given deadline and extending it
with obstacle avoidance capabilities.

In this thesis, we deal with coordination and control for different types of MAS in
confined environments. First, for each of these scenarios, we give a theoretical analysis
and reasoning of the respective problem statement in order to propose an applicable
control method or technique. Second, this control method is implemented as actual
software and extensively validated using a suitable simulation environment. Last, the
implementation is also tested on real hardware robotic MAS to ultimately demonstrate
the usefulness and fitness of the proposed control method.
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tion, (b) alignment, and (c) cohesion (picture taken from [AYS14]). . . . . . .

Given the positions shown for drones 0 to 3, the greyscale heatmap indicates
the value of the cost function for a drone ¢ at each point, if it was placed at
that point. The direction in which drone ¢ should move is determined by the
gradient of the cost function (shown for positions a, b, and ¢). SPC evaluates
the cost at the spatial lookahead (indicated by the colored dots) along this
direction and chooses the best value for drone i’s next position (the red arrow).
Directional movements (indicated by arrows) induced by cost-function terms:
a: Cohesion, b: separation, c: target seeking, and d: obstacle avoidance.
Experiments were performed using four different scenarios: a: without ob-
stacles, b: with one obstacle, c: with 2 obstacles, and d: with 13 obstacles
indicated in dark-blue. The direct path between the numbered target locations
Prar (red dots) is indicated with red arrows. (z-dimension is elided in these
plots, since it is constant for all target locations.) . . . . . . . . ... ... ..
Simulation experiments using simulation environment. Snapshot of a: flock
of 30 drones; and b: flock of 15 drones with 2 obstacles. . . . .. .. ... ..
Quality metrics over time for SPC simulations using PLLC B for exemplary
scenarios of a: 30 drones with 0 obstacles, b: 9 drones with 1 obstacle, and
c: 15 drones with 2 obstacles. Results for other simulation experiments
were very similar. While the flock is passing the obstacle(s) the metrics
temporarily degrade, however values dist,,;, and clear,,; stay above the
respective thresholds, meaning there are no collisions, throughout the whole
simulation. Analogously compy,q. stays below the threshold (5m), indicating
that a compact flock is continuously maintained. . . . . . ... ... ... ..
Performance comparison for SPC and PFC. Values are min (for collision
avoidance and obstacle clearance) or maz (for compactness) over the sim-
ulation duration. SPC satisfies dists,, in nearly every scenario, while PFC
frequently violates it, especially in the presence of obstacles. SPC maintains
compypy in every scenario, while for PFC, compiq, sometimes gets very high,
even out of range. . . . ... Lo
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2.7 Hardware experiments. a: Crazyflie 2.1 quadcopters were used. b: A flock of
16 drones and c: 9 drones with 2 obstacles in our lecture hall (a video is in
the Supplementary Materials). d, e, f: Recorded traces show the movements
of the 16 drones for one exemplary experiment. . . . . . . . . ... ... ...

2.8 Performance metrics for hardware experiments. a: Values are min (for
collision avoidance and obstacle clearance) or max (for compactness) over the
experiment. Experiments show that the flock is properly maintained: distp,
is satisfied in every scenario but one (see transient violation at ¢t = 15s in b).
Similarly for clearsp, (see transient violation at ¢ = 25s in d). b, ¢, d: Metrics
for the whole duration of the hardware experiment for selected scenarios.

2.9 Comparison of simulation and hardware experiments for 9 drones without
obstacles. a: Recorded traces show the movements of the drones. b: Metrics
for the entire duration of the experiment. The hardware-experiment metrics
are a bit more noisy. This also explains why the hardware-experiments metrics
in Fig. 2.8 are slightly worse. . . . . . ... ... ... ... .. ........

2.10 To check SPC’s robustness to different PLLCs, we experimented with two
PLLCs, with different step responses. PLLC B reaches its set-point for z- and
y-dimensions in less than half the time of PLLC A, while overshooting more.
The PLLCs behave very similarly in the z-dimension. . . . . . . .. .. .. ..

2.11 The ROS-node of the SPC controller for a drone 7 receives position messages
of all drones and control messages (e.g. swarm target location). It outputs
the set-point for the LLC. . . . . . . . .. .. .. .

3.1 Our distributed controller forms and maintains a flock based on relative
distance measurements to other agents of the flock. The target location is
shown in blue. Distance measurements for drone 7 to other drones and to the
target location are shown in orange. . . . . . . . .. ... . L.

3.2 Directional movements (indicated by arrows) induced by cost-function terms:
a: Cohesion, b: separation, c: target seeking, and d: obstacle avoidance (not
implemented in our method yet). . . . . .. ... .o 000000

3.3 The ROS-node of the SPC controller for drone i receives distance measurements
to neighboring drones and control messages (e.g. swarm target location,
start/stop command). It outputs the set-point for the internal low level
controller. . . . . . . . . . e e e

3.4 Screenshot of the end of the simulation with 5 drones. Shown from four
different camera views after the flock reached its target. The green dot
indicates the target location. The blue dots visualize the next action which is
supplied to the lower level controller. . . . . . . . ... ... ... .......

3.5 Quality metrics for simulation with 5 drones. Threshold distance;y, for
collision avoidance is satisfied most of the time. After settling in, the swarm
radius remains below the threshold radiusyy,, thus showing the ability to
form a compact flock in the simulation. (Quality metric recordings start at
t = 19 s after initialization procedure.) . . . . .. ... ... L.
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5.5 Top: Learning curves of model-free methods (top row) over 8 M steps and
Dreamers (bottom row) over 2M steps. The dashed lines report the maximum
performance obtained by the other algorithms as baselines. Performance
averages over 5 runs. Bottom: Maximum progress and lap time of trained
models over different tracks in simulation. The bars show the result averaged
over 10 episodes on each track. The delimiters show the minimum and
maximum achieved. For Lap-Time results, we consider the best episode that

finished one full lap. . . . . . . .. .. Lo 87
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5.7 Impact of action regularization on TRT. The first row reports the steering
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