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S U M M A R Y 

Understanding processes in the Critical Zone requires reliable information about the vadose- 
zone aquifer, its geometry, and spatial v ariability. Commonl y, such information is obtained 

from boreholes, yet large areas might render their application prohibiti vel y expensi ve. Addi- 
tionall y, limited geolo gical a-priori information might bias the interpretation due to lateral 
geological changes smaller than the borehole sampling scale. The transient electromagnetic 
method (TEM) has emerged in the last decades as a well-suited method to ef ficientl y investi- 
gate the subsurface, as required for man y hydro geolo gical applications. The interpretation of 
TEM measurements relies mainly on deterministic inversions, offering only a limited insight 
on the uncertainty of the subsurface model. Uncertainty quantification, ho wever , is essential 
for integrating TEM results into hydro geolo gical models. Hence, we propose a combined ap- 
proach using both deterministic and stochastic inversion of TEM soundings to investigate the 
uncertainty of shallow ( < 40 m ) aquifers. Current stochastic approaches for TEM data rely on 

Markov chain Monte Carlo algorithms, which have to be run from scratch for each individual 
sounding. Alternati vel y, machine learning approaches, such as Bayesian Evidential Learning 

(BEL), can be much faster because they do not require retraining for every new data set. Hence, 
we investigate, in particular, the application of a single, common prior model space instead of 
multiple, individual prior model spaces to directly estimate the uncertainty of multiple TEM 

soundings. To this end, we combine forward modelling routines with the stochastic inversion 

approach BEL1D and assess our approach using both field data and numerical experiments. 

Key words: Electrical properties; Controlled source electromagnetics (CSEM); Machine 
learning; Statistical methods; Hydrogeophysics. 
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 I N T RO D U C T I O N  

ritical zone science is an emerging interdisciplinary field that re-
uires reliable information on the geometry of vadose-zone aquifer
nd aquitard systems (e.g. Singha & Navarre-Sitchler 2022 ; Her-
ans et al. 2023 ). This is essential, for instance, to quantify surface-

roundwater interactions (e.g. Winter 2000 ; Fleckenstein et al.
010 ; Ntona et al. 2022 ), to investigate the fate and transport of
ontaminants in the groundw ater (e.g. Atekw ana & Atekwana 2010 ;
assiani et al. 2014 ; Flores Orozco et al. 2021 ) and to character-

ze sea-water intrusion in coastal areas (e.g. Goldman et al. 1991 ;
u érin et al. 2001 ; Paepen et al. 2020 ; Cong-Thi et al. 2021 ; Deleer-

nyder et al. 2023 , among others). Critical zone investigations com-
onl y rel y on a limited number of boreholes where groundwater

evels are measured together with grain size analysis. Subsequently,
ontinuous and areal information is inferred by interpolation of
orehole data, which might bias the interpretation in particular for
C © The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
eterogeneous sites (e.g. Schulze-Makuch et al. 1999 ). Geophysi-
al methods allow to map the subsurface in a quasi-continuous and
on-inv asi ve w ay (e.g. Binley et al. 2015 ). Due to the relationship
etween electrical resistivity and textural properties of geological
aterials, the electrical resistivity tomography (ERT) is commonly

pplied to delineate the geometry of aquifers and hydraulic barriers
e.g. Binley et al. 2015 ). Yet, an e xtensiv e surv e y area or a large
epth of investigation require long surv e y lay outs, inv olving the
ogistics of moving heavy cables to map an area of interest and
hus, leading to relati vel y long acquisition times. Alternati vel y, the
ransient electromagnetic (TEM) method has emerged as a suit-
ble technique for hydro geolo gical investigations (e.g. Fitterman &
te w art 1986 ; Meju et al. 1999 ; Auken et al. 2003 ; Danielsen et al.
003 ; Christiansen et al. 2006 ). Recent advances in instrumentation
or waterborne (e.g. Lane et al. 2020 ; Yo geshw ar et al. 2020 ; B ücker
t al. 2021 and Aigner et al. 2021 ) and ground-based applications
e.g. Auken et al. 2018 and Street et al. 2018 ) have demonstrated
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the potential of the TEM method to collect e xtensiv e 3-D data sets 
to obtain the subsurface electrical resistivity in quasi real-time. 

Modelling and inversion techniques can use tens to thousands of 
soundings to resolve for 2-D and 3-D models of the subsurface (e.g. 
Yo geshw ar et al. 2020 ; Grombacher et al. 2022 ; Kang et al. 2022 ). 
Commonly, the inversion of TEM soundings relies on deterministic 
inversion algorithms (e.g. Auken et al. 2015 ; Heagy et al. 2017 ), 
which require a spatial regularization in the model space to enhance 
the consistency between the inverted model parameters and reduce 
the effect of data-error in the inverted model (e.g. Tikhonov & 

Arsenin 1977 ; Tarantola 2005 ). Deterministic inversions use either 
models with a small and pre-defined number of layers where both the 
electrical resistivity and the layer thickness are variable, or models 
consisting of many fixed-thickness layers with a smoothness con- 
straint (e.g. Minsley 2011 ). Deterministic inversions are affected by 
the ill-posedness of the problem, leading to a large number of mod- 
els being able to explain the data. Moreover, deterministic inversion 
schemes allow only for a limited quantification of uncertainty based 
on the propagation of the data error assuming a Gaussian distribu- 
tion of the data error (e.g. Aster et al. 2005 , 2018 ), for instance 
obtained from the linearized Jacobian matrix (e.g. Christiansen & 

Auken 2012 ). 
Stochastic approaches offer the advantage of exploring the full 

prior distribution of the model parameters, removing any hypoth- 
esis on the linearity of the model and the noise distribution (e.g. 
Tarantola 2005 ). Some of the first applications of stochastic meth- 
ods to electromagnetic data is attributed to Minsley ( 2011 ) and 
Trainor-Guitton & Hoversten ( 2011 ). Minsley ( 2011 ) used a trans- 
dimensional Markov chain Monte Carlo (McMC) algorithm to re- 
trieve the full posterior distribution of subsurface model parameters 
from frequency-domain EM data using ground-based and airborne 
EM systems. The same algorithm was successfully applied by Ball 
et al. ( 2020 ) to quantify a freshwater-brine interface, and Minsley 
et al. ( 2021 ) expanded the algorithm to include time-domain EM 

measurements. This parsimonious McMC algorithm has the advan- 
tage of determining the unknown number of layers with changing 
electrical properties in the subsurface. More recently, Blatter et al. 
( 2018 ) and Ray et al. ( 2023 ) have applied an McMC algorithm 

to TEM measurements obtained in Antarctica and Australia imag- 
ing hydro geolo gical structures and incorporating airborne system 

parameters. Ho wever , McMC algorithms require 100 000s iterative 
forward modelling runs to con verge to wards a static posterior distri- 
bution making them computational e xpensiv e. The computational 
timescales with the number of soundings, as the forward modelling 
must be run for every single sounding position to estimate the pos- 
terior distribution for each sounding. 

Recentl y, Bayesian e vidential learning (BEL) has emerged as a 
suitable alternative to approximate the posterior uncertainty and 
has been applied successfully to hydrogeological applications (e.g. 
Scheidt et al. 2015 , 2018 ). BEL w as successfull y applied to prob- 
lems covering flow-based inverse modelling (Scheidt et al. 2015 ), 
heat-storage capacity of an aquifer monitored with electrical resis- 
ti vity tomo g raphy (Her mans et al. 2018 ) and experimental design 
comparing well and geophysical data for temperature monitoring 
(Thibaut et al. 2022 ). Within the context of geophysical inversion, 
BEL establishes a direct relationship between model and data space, 
leading to a significant reduction of computational time, with the 
added benefit that forward modelling runs can be reused to estimate 
the posterior distribution of man y dif ferent data sets if the exact 
same system configuration is used (e.g. Michel et al. 2020 ). The 
BEL frame work w as expanded to allow the direct estimation of 
1-D model parameter uncertainty from surface nuclear magnetic 
resonance (SNMR) sounding estab lishing Bay esian Evidential 
Learning 1-D (BEL1D) imaging (Michel et al. 2020 ). The accu- 
racy of BEL1D to estimate the uncertainty was enhanced by ap- 
pl ying iterati ve prior resampling (IPR) and rejection sampling (RS; 
Michel et al. 2023 ). IPR and RS were developed to reduce the 
inefficiency associated with large prior model spaces that might 
result in an overestimation of uncertainty. The authors bench- 
marked their algorithm against an McMC approach based on a 
Metropolis Hastings algorithm with multiple chains (e.g. Vrugt & 

Ter Braak 2011 , and references therein) showing that BEL1D to- 
gether with IPR and RS yields an approximation of the posterior 
distribution close to the one obtained by McMC, yet significantly 
(95 per cent) reducing the computational time (see Michel et al. 
2023 ). Recently, Ahmed et al. ( 2024 ) demonstrated that a simi- 
lar reduction in posterior uncertainty, comparable to that from IPR 

and RS, can be obtained using a simple and efficient, misfit-based, 
threshold-rejection (TR) approach, thereby eliminating the need for 
IPR. 

We investigate the geometry of a shallow aquifer based on single- 
loop TEM soundings. The objective of this study is to quantify the 
uncertainty of the subsurface model parameters (i.e. layer thickness 
and resistivity). Our approach utilizes a combined approach based 
on initial deterministic inversion to formulate an informed prior 
model space for BEL1D. This combined approach allows for a sim- 
ilar uncertainty reduction, as pre viousl y reported b y Michel et al. 
( 2023 ) using IPR and RS, while allowing to re-use the informed 
prior model for other TEM soundings. We investigate, in partic- 
ular, whether stochastic inversion of each sounding independently 
retrieves similar uncertainties as the inversion of all soundings us- 
ing the same common prior model space. We expect that the main 
benefit of the common prior space approach is a reduction of the 
computational time compared to individual prior model spaces for 
each sounding position. We note that a prior definition based on the 
deterministic solution together with the TR approach, based on rel- 
ative root-mean-square errors as employed here, yields a pragmatic 
estimation of the posterior uncertainty, but not the true uncertainty 
as gi ven b y a rigorous Bayesian posterior (see Scales & Snieder 
1997 ). 

Our work is organized as follows. We start by briefly describ- 
ing the TEM method and the associated modelling approach, con- 
tinue with the BEL1D methodology and describe the field data 
as well as the numerical experiments. Then we demonstrate that 
the stochastic inversion yields similar results as the deterministic 
in version for tw o independent soundings and e v aluate our results 
by comparing to the lithology from two boreholes. This is fol- 
lowed by field measurements along a profile to demonstrate that 
a common prior model space can estimate similar uncertainties 
as individual prior model spaces for each sounding position for a 
laterall y homo geneous subsurface. We then e v aluate this common 
prior approach in a laterally heterogenous numerical experiments. 
We conclude with a discussion of the added value of the com- 
mon prior approach and the future perspectives associated to this 
study. 

2  M AT E R I A L  A N D  M E T H O D S  

2.1 Transient electromagnetic method—basics, 
instrumentation and processing 

The TEM method can be applied in different configurations (e.g. 
Nabighian et al. 1991 ), yet in this work we focus on the single-loop 
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onfiguration, aiming at simplifying field procedures, for instances
n comparison with separated transmitter and receiver loop anten-
as. A direct current is circulated in the horizontal square loop
ntenna and interrupted causing the primary magnetic field to de-
ay over time. This primary field induces eddy currents into the
round which dif fuse downw ard and laterally into the subsurface
ver time generating a secondary magnetic field (e.g. Nabighian
979 ). The temporal change of the secondary magnetic field can
e measured as a voltage-decay induced into a receiver loop an-
enna at the surface. The shape of the resulting decay curve de-
ends on the electrical resistivity ( ρ) of the subsurface. High values
f ρ reduce the signal strength of the secondary magnetic field,
hile low values of ρ enhance the signal strength. The voltage
ecay is commonly measured in logarithmically distributed time
indows which results in a few tens of individual voltage read-

ngs ranging from a couple of microseconds up to hundreds of
illiseconds. 
Field data measurements were obtained with the TEM-FAST

8 system manufactured by AEMR (Applied Electromagnetic Re-
earch, Utrecht, the Netherlands). The TEM-FAST system al-
ows injecting transmitter currents of 1 A or 4 A and the voltage
ecay can be measured in up to 48 lo garithmicall y distributed
ime windows ranging from 4 μs to 16 ms . The transmitter cur-
ent has a trapezoidal shape, where the front ramp is constant at
0 μs and the width of the current pulse ranges between 0.23 and
7.50 ms. 

.2 Forward modelling, deterministic inversion and 

istance-based global sensitivity analysis 

e use the 1-D TEM forward modeller proposed by Aigner et al.
 2024 ), which is based on the open-source library empypmod by

erthm üller ( 2017 ). These routines use the vertical transversal
sotropic approach which requires simple 1-D models consisting
f the layer thickness ( thk) and the corresponding electrical resis-
i vity ( ρ). Additionall y, the forw ard modeller employs the quasi-
tatic approximation and models the single-loop configuration with
 vertical magnetic dipole in the centre of the transmitter loop.
or the deterministic inversion, we use routines available in py-
IMLi (R ücker et al. 2017 ) that were connected to the forward
odelling (for details see Aigner et al. 2024 ). In particular, we use
 Mar quardt-type inv ersion approach and formulate three different
topping criteria: (1) maximum of 25 iterations, (2) reaching an
r ror-weighted root-mean-square er ror of the data misfit < 1, (3)
if ference of consecuti ve iterations < 2 per cent. The layer thick-
ess is allowed to vary in a range of 1 to 100 m , while the electrical
esistivity is allowed to vary in a range of 1 to 1000 �m . We perform
 distance-based global sensitivity analysis (DGSA, e.g. Fenwick
t al. 2014 ; Perzan et al. 2021 ) as described by Aigner et al. ( 2024 )
o derive the global sensitivity of the model parameters ( thk and ρ)
irectly from the prior model and data space obtained in the initial
tep of BEL1D (see Hermans et al. 2018 ). Such global sensitivities
 v aluate the influence that each model parameter has on the model
esponse. 

.3 Bay esian e vidential learning—BEL1D 

e estimate the uncertainty associated to subsurface electrical pa-
ameters with the Bayesian evidential learning 1D (BEL1D) imag-
ng framework that is described in depth by Michel et al. ( 2020 ).
EL1D obtains an approximation of the posterior distribution for
he model parameters using six main steps, namely: (1) forward

odelling of TEM responses from a prior model space for a given
ange of model parameters, commonly in a uniform distribution, (2)
imensionality reduction of the data and model space using prin-
ipal component analysis (PCA, e.g. Krzanowski 2000 ), (3) estab-
ishing statistical relationship between the reduced data and model
pace using canonical correlation analysis (CCA), (4) application of
ernel density estimation (KDE) to determine an approximation of
he posterior distribution in the CCA model space that is constrained
o the field data, (5) sampling of the obtained posterior distribution
ith the inverse transform method and (6) back-transformation of

he samples into the original data and model space b y appl ying the
nverse CCA transformation followed by the corresponding PCA
ack transfor mations. Fur ther details on the general idea behind
ayesian evidential learning (BEL) can be found in Scheidt et al.
 2018 ), while the system of equations including the noise propaga-
ion is available in Hermans et al. ( 2016 ). The main difference to
ur work is the usage of a KDE to approximate the joint probabil-
ty density function in the CCA space (instead of Gaussian linear
egression), which has the advantage of working also when the re-
ationship between reduced data and model space is not perfectly
inear (as detailed in Michel et al. 2020 ). In our analysis, we provide
nly a visual quantification of the information gain (e.g. Lindley
956 ), in contrast with previous studies that offer a rigorous, math-
matical quantification of the information gain (e.g. Ray et al. 2023 ;
trutz & Curtis 2023 ). 
We generate a prior model space based upon an initial determinis-

ic inversion of the TEM data using an n -layer model with variable
ay er thickness, w here n is the number of layers and n is chosen
ased upon prior knowledge of the site. We use the deterministic
nversion result to determine a prior range for each model parameter
i.e. thickness and ρ) with a minimum and maximum that is equal
o ± 1/4 of the model parameter value for each individual sound-
ng, resulting in a prior mean that is equal to each deterministic
nversion result. In the case of TEM soundings along a profile, we
lso investigate the use of a common prior space that is formulated
ased on the deterministic inversion results of all soundings along
he profile. For the common prior model space, we use a minimum
nd maximum prior boundary based on subtracting 1/4 of the mini-
um and adding 1/4 to the maximum of all deterministic inversion

esult parameters (i.e. thickness and ρ). We forward calculate the
rior data space from 30 000 models uniformly distributed in the
rior model space to achieve a sufficient sampling of the parame-
er space. In initial tests, we observed that the rather simple TEM
ecay curve can be suf ficientl y (i.e. larger than 95 per cent ex-
lained variance) described by only 3 to 5 dimensions, while the
odel space typically requires between 5 and10 PCA dimensions

ue to the larger complexity. The subsequent back-transformation
fter CCA and KDE requires that the PCA-reduced data space must
ave an equal or larger amount of dimensions than the PCA-reduced
odel space. Yet, the TEM data space requires a PCA dimensional-

ty reduction using fewer than 10 dimensions to facilitate a correct
stablishment of the statistical relationship between reduced data
nd model with CCA. In our numerical data experiments, we use
 PCA dimensions for the reduction of both the model and data
pace, while we use 10 PCA dimensions in the case of field data
esulting in an explained variance larger than 95 perc ent in all
he investigated data sets. The larger number of PCA dimensions
or the field data is related to a doubling of the layer number in
he field case. For the posterior model sampling, we use 15 000
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Figure 1. Overview of the field data measured at the soda lakes test site 
and the position of the test site within Austria (AT) and its neighbouring 
countries (HU—Hungary, SK—Slovakia, CZ—Czech Republic). 
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models per sounding to ensure a dense sampling of the posterior 
distribution. 

Compared to previous work by Michel et al. ( 2023 ), we do not 
apply IPR and RS because initial tests have shown that a simple 
threshold rejection (TR) based on the data misfit between measured 
data and posterior data samples leads to similar results obtained with 
IPR and RS. All BEL1D calculations were done with the adapted 
pyBEL1D routines published by Michel ( 2022 ). Throughout our 
work, we compute the relative root-mean-square error (rRMSE, see 
appendix of Aigner et al. 2024 ) using log-scaled differences be- 
tween the measured data and model responses (see Ahmed et al. 
2024 ) and set the rejection threshold to 3 per cent. In principle, 
TR is not aligned with the original idea of BEL or stochastic the- 
ory in general, because the application of a hard threshold (i.e. 
no probability rule) does not lead to convergence towards the ’true’ 
posterior distribution. Yet, TR offers an efficient method to approxi- 
mate the posterior distribution by removing unrealistic models from 

the posterior model space and ef ficientl y reducing the estimated un- 
certainty (see Ahmed et al. 2024 ). In addition, TR alleviates the 
need for additional forward model runs as in IPR, which opens 
the possibility to use a common prior to invert multiple soundings 
drastically reducing computational time. 
Table 1. Overview of the TEM-FAST 48 measuring settings for TEM data colle
square), the injected current, the turn-off ramp, the number of stacks, the number 
which the last gate is located. The first gate is at 4 μs for all soundings. 

Borehole: LL18 
Loop (m) Current (A) Ramp ( μs) Stacks () Gates ()

6.25 4.3 0.5 33280 24 
12.5 4.3 0.95 8320 32 
25.0 4.2 1.5 8320 36 
2.4 Case studies: transient electromagnetic field data, 
lithological information from boreholes and numerical 
experiments 

Field measurements were done in Burgenland, Austria 
(47 ◦46’12.2”N 16 ◦52’12.3”E) within the soda lakes of the ’Na- 
tionalpark Neusiedlersee—Seewinkel’. We collected TEM data at 
two ca. 10 m deep historical boreholes (see page 30 in Hermann 
2023 ) available in the vicinity of the profile (see Fig. 1 ) to e v aluate 
the accuracy of the resistivity model obtained with the deterministic 
and stochastic inversion algorithms. The borehole lithology also al- 
lows a direct interpretation of the electrical resistivity in terms of 
geological materials. We also collected data along a single profile 
at 36 sounding positions to determine the depth and the thickness 
of a confined aquifer. The site consists of two sandy gravel aquifers 
confined between silt rich layers. 

The TEM data collected at the boreholes were measured with 
a 6 . 25 m loop, a 12 . 5 m loop and a 25 . 0 m loop to investigate the
dif ferent sensiti vities associated with a change of the transmitter 
wavefor m (i.e. tur n-off ramp) due to the increased self-inductance 
of the larger loops. A comprehensive overview of the measurement 
settings can be found in Table 1 . We use a homogeneous five- 
layer initial model for the deterministic inversion of all field data 
and centre the prior model space for BEL1D on the deterministic 
inversion result. 

TEM field data were collected along a 2-D profile using a 12 . 5 m 

square loop during May of 2022 in dry surface conditions. We used 
4 A of transmitter current and collected voltage readings by stacking 
the data 8320 times in 28 windows ranging from 4 to 512 μs . For all 
field measurements, we use the error estimation by the TEM-FAST 

device but adjust relative data errors below a 3 per cent threshold to 
3 per cent , as e xperiments hav e shown that the device underestimates 
the actual data error. 

Our numerical data experiments aim at comparing results ob- 
tained from individual prior models for every sounding and a 
common prior model space for all soundings. The numerical data 
were generated for five soundings positions forming a profile that 
e xtends ov er 250 m with equal distances between soundings. We 
simulate the data using a 12 . 5 m single loop configuration with an 
injected current of 4 . 0 A and we contaminate the data with a rel- 
ative error of 3 per cent and use the same error values to define 
the error model in the inversion. The numerical models represent 
a confined aquifer system with varying depth and thickness of the 
aquifer. Low resistivity values ( < 30 �m ) of the top and bottom 

layers represent a higher fraction of fine grained materials which 
act as a hydraulic barrier, while the high resistivity in the second 
layer ( 200 �m ) represents the aquifer in sandy gravels (see Table 2 ). 
We use a three-layer initial model where each layer has the same 
resistivity ( 50 �m ) for the deterministic inversion of the numerical 
cted at the borehole positions including: the loop size (side-length of the 
of gates for observing the transient decay and the maximum time ( t max ) at 

Borehole: LL22 
 t max (ms) Stacks () Gates () t max (ms) 

0.24 66560 20 0.12 
0.96 13312 28 0.48 
1.90 8320 36 1.90 

 2025

art/ggaf236_f1.eps
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Table 2. Overview of the model parameters for generating numerical data including the sounding name, the pseudo distance, the layer thickness thk and the 
electrical resistivity ρ. 

Layer 1, soil, silts Layer 2, aquifer, sandy gravels Layer 3, aquiclude, silts 
Name Distance (m) thk (m) ρ ( � m ) thk (m) ρ ( � m ) thk (m) ρ ( � m ) 

T01 50 4 30 18 200 ∞ 15 
T02 100 9 30 18 200 ∞ 15 
T03 150 14 30 23 200 ∞ 15 
T04 200 11.5 30 15 200 ∞ 15 
T05 250 6.5 30 15 200 ∞ 15 
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 R E S U LT S  

.1 Proof of concept: e v aluation of the stochastic 
nversion using deterministic results and borehole data 

he main goal of this section is to demonstrate that the stochastic in-
ersion of TEM data collected at two boreholes can retrieve changes
n electrical resistivity that correspond to the soil composition as
bserved in the borehole lithology. The TEM inversion results and
ithology for boreholes LL18 and LL22 is presented in Fig. 2 for
wo different loop sizes. In general, we observe a three-layer model
hich corresponds to a confined aquifer. The stochastic inversion

esults (Figs 2 b and f) show similar three-layer models as the de-
erministic results (Figs 2 a and e) and the resistivity contrasts are
n agreement with the borehole lithology. The first layer is charac-
erized by low electrical resistivity ( < 10 �m ) corresponding to the
rganic soils and clayey silts. The second layer is characterized by
igh electrical resistivity (ca. 100 �m ) corresponding to the aquifer
n sands and gravels. The third layer is characterized by low elec-
rical resistivity ( < 20 �m ) corresponding to clayey silts acting as
he confining layer below the aquifer. At borehole LL18 we observe
n additional fourth layer that shows an increase in electrical re-
istivity (ca. 30 �m ) which might correspond to a second aquifer.
his fourth layer cannot be seen in the borehole due to the limited
epth of ca. 11 m and therefore we will not discuss the fourth layer
urther. 

Fig. 2 (b) shows the uncertainty for TEM data collected at bore-
ole LL18, while Figs 2 (c) and (d) show the global sensitivity from
he DGSA. The low resistive first layer obtained from both the 6.25
nd 12 . 5 m loops correctly resolves the clayey silt layer. The un-
ertainty of electrical resistivity is lower for the 12 . 5 m loop than
or the 6 . 25 m loop, in particular for the aquifer (layer two, between
.5 and 7 . 5 m ). The low uncertainty of electrical resistivity for the
2 . 5 m loop corresponds well with the high global sensitivity for
he resistivity of the first three layers. The uncertainty of the layer
hickness increases with increased depth, as expected considering
hat the deeper layers are significantly less sensitive to the measured
ata. The 6 . 25 m loop likely overestimates the resistivity in case of
ayers with high resistivity (i.e. > 30 �m ). 

Fig. 2 (f) shows the uncertainty for TEM data collected at bore-
ole LL18, while Figs 2 (g) and (h) show the global sensitivity from
he DGSA. The 6 . 25 m loop correctly estimates the depth to the
quifer with a low uncertainty (ca. 1 . 2 m ± 0 . 1 m ) and the thickness
f the first layer is also the most sensitive parameter of the inversion
s resolved by the DGSA (see Fig. 2 g). Similar to the TEM results
t borehole LL18, we observe that an increase in resistivity, also
ncreases the uncertainty of the actual value resolved, which corre-
ponds also to a lower global sensitivity. The depth to the bottom
f the aquifer is slightly overestimated by both loop sizes as we
bserve a depth of 9 . 0 m to the confining layer indicated by lower
esistivity ( 20 �m ) compared to a lithological change (from gravels
o silts) at already 7 . 8 m depth. The stochastic inversion resolves
n uncertainty of ± 2 . 0 m for the depth to this interface. Thus, the
nterpretation of the resistive layers is improved as we can now esti-

ate the accuracy of the aquifer geometry from the TEM soundings,
hich is not possible with the deterministic inversion or the DGSA

lone. 
Fig. 3 visually shows the information gain at borehole LL18 for

he 6.25 and the 12 . 5 m loops by comparing the prior data and model
paces to the posterior (after TR) data and model spaces. We can
bserve that the model response of the mean model fits the observed
ata well (see Figs 3 a and c). In general, Fig. 3 shows that the
ncertainty is lower closer to the surface and for layers with a lower
lectrical resistivity. This increase of the uncertainty with depth is
lso reflected in an increased range of the late time (ca. 1 × 10 −4 s )
osterior data distributions. This result validates the chosen prior
ange around the deterministic inv ersion, because e xtreme models
re rejected, while more conserv ati ve models are kept. An increase
f the prior range, would only lead to an increased number of
ejected models. Hence, our chosen prior space leads to an adequate
pproximate of the uncertainty. All of these observations are also
alid for the inversion of the sounding at borehole LL22 as seen in
ig. A2 in the Appendix. 

.2 Estimation of the aquifer geometry from TEM field 

ata at the soda lakes 

o demonstrate the applicability of BEL1D on TEM data and in-
 estigate stochastic inv ersion results from individual prior spaces
nd a single common prior space, we present field data results for
6 soundings collected along a profile with a length of 460 m . The
eterministic and stochastic inversion results (Fig. 4 ) reveal, in gen-
ral, a three layer model consisting of: (1) a first layer with a thick-
ess of ca. 10 m and a resistivity ranging between 15 and 40 �m
orresponding to sandy gravels associated to the shallow aquifer,
2) a conductive ( ρ < 15 �m ) second layer with a thickness of ca.
3 m corresponding to a confining layer of clayey silts at a depth
f ca. 10 m and (3) a third layer with intermediate resistivity values
ca. 25 �m ) corresponding to sandy material constituting a second
quifer at a depth of ca. 25 m . The first layer shows lateral anoma-
ies (at ca. 200, 320 and 400 m profile distance) corresponding to
ilty materials ( ρ < 20 �m ) which indicates a partially confined
quifer. 

We observe an increase in the uncertainty of the layer thick-
esses for deeper layers, as well as a larger uncertainty for layers
ssociated with higher resisti vity v alues. Howe ver, in the case of
he fifth model-la yer, w e observe a lower standard deviation of the
esisti vity v alues for the common prior results, which might be re-
ated to a correlation between the resistivity of the fourth and fifth
ay er (see F ig. A3 in the appendix). This low standard deviation
ay be also a consequence of the TR approach and the choice
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Figure 2. Direct comparison of borehole lithology to TEM results from a deterministic inversion and BEL1D. Results for borehole LL18 are shown in subplots 
a to d, while results of borehole LL22 are shown in subplots e to h. The uncertainty obtained from BEL1D is shown in b and f, where the colour bars are 
valid for all four logs, while the white error bars depict the single standard deviation of the layer thicknesses. The global sensitivity of the model parameters 
is shown in c, d, g and h, where dark bars indicate a sensitivity including the confidence interval abov e one, gre y bars indicate a sensitivity that is statistically 
inconclusive whereas white bars are related to model parameters that are not sensitive to the model response. 
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of the prior space, which provides only an approximation of the 
posterior uncertainty. The comparison of stochastic results from in- 
dividual prior model spaces (Figs 4 b, c) to those from a common 
prior model space (Figs 4 d, e) reveals that both approaches solve 
in general for the same three layer subsurface model. The com- 
mon prior approach (Figs 4 d, e), ho wever , solves for a smoother 
mean model laterally, while the individual prior approach solves 
for stronger lateral contrast, as well as for a larger range in resis- 
ti vity v alues (i.e. lower minimum and higher maximum resistiv- 
ity). We observe that the resisti vity v alues in the conductive (i.e. 
third) layer are more consistent laterally in the common prior result 
(Fig. 4 d) than for the individual prior result (Fig. 4 b). The lateral 
variability in the first and second la yers, how ever, is reduced com- 
pared to the lateral resistivity contrast in the deterministic (Fig. 4 a) 
and the stochastic inversion result from individual prior models 
(Figs 4 b, c). 

Histograms of the electrical resistivity (Fig. 5 ) reveal that the 
results from a common prior vary in a narrower range (ca. 15 to 
34 �m ), compared to the results from both the deterministic inver- 
sion and the individual priors (ca. 12 to 38 �m ). The distribution 
of the electrical resistivity from the individual prior result (Fig. 5 a) 
is left-skewed, while the distribution of the electrical resistivity 
from the common prior result (Fig. 5 a) is bi-modal. The contrast 
between high and low electrical resistivity remains large enough 
to ensure sufficient contrast to discriminate between layers as the 
majority of the standard deviation of electrical resistivity is below 

12 �m (see Figs 6 a and b). Ho wever , in the case of the common 
prior result, we observe separated bins (Fig. 6 b) compared to the 

art/ggaf236_f2.eps
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Figure 3. Stochastic inversion results from TEM data measured at borehole LL18 using a 6 . 25 m (a, b) and a 12 . 5 m (c, d) square single loop. Prior data and 
model spaces are shown in grey in the background, while the coloured lines represent the posterior data and model spaces. 
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ight-skewed distribution of the individual prior result (Fig. 6 a). The
ncertainty of the resistivity is similar for both approaches, rang-
ng between 3 �m for conductive layers and 12 �m for resistive
ayers (see Figs 6 a and d). The uncertainty of the layer thickness
s also similar for both prior model versions ranging between ca.
 . 0 m for shallow layers and ca. 7 . 0 m for deep layers (see Figs 6 c
nd d). 

The area (i.e. volume for a unit width in vertical direction m 

3 /m)
ssociated to the first aquifer amounts to ca. 20.000 m 

2 with an
ncertainty range of ca. 16 . 000 m 

2 to ca. 28 . 000 m 

2 (derived from
he one fold standard deviation of the upper and lower layer uncer-
ainty) and we obtain a depth to the shallow aquifer of ca. 3 . 0 m and
n uncertainty of 1 . 0 m . The second aquifer is located in a depth
f ca. 25 . 0 m with an uncertainty of 5 . 0 m . These quantification of
he aquifer geometry is independent of the prior model approach,
emonstrating that the common prior approach is capable of quan-
itati vel y retrie ving the same aquifer geometry as indi vidual priors
or each sounding. Moreover, the common prior approach increases
he consistency between the electrical units of adjacent units. The
ommon prior approach requires a computational time reduced by
5 per cent compared to the individual prior (544 to 1532 min ), due
o a reduction of the required forward model runs (570 000 instead
f 1620 000). 

.3 Numerical data experiment to compare the 
ncertainty estimation from individual prior models to a 
ingle common prior model for inversion of soundings 
long a 2-D section 

e have established the accuracy of BEL1D to resolve lithological
ontacts by comparing the stochastic results to borehole data. Ad-
itionally, we demonstrated for a laterally homogeneous subsurface
hat a common prior model can resolve the same electrical units
s a deterministic inversion and a stochastic inversion using indi-
idual priors for each sounding. We are no w in vestigating whether
he common prior approach can resolve for strong lateral contrasts.
o this end, we conduct a numerical experiment, along a short pro-
le with known lateral heterogeneities. Fig. 7 shows the numerical
odels, associated forward model responses and the correspond-
ng global sensitivity calculated with the DGSA methodology. The
umerical model represents a three layer lithology, with the second
ayer corresponding to the aquifer. In general, we observe higher
lobal sensitivity for model parameters close to the surface (i.e.
esistivity and thickness of the first layer). The thickness of the
rst layer shows a higher global sensitivity than the thicknesses of

he second layer (i.e. the aquifer). The DGSA results show an in-
onclusive global sensitivity for the resistivity of the second layer
nd demonstrate that the data is not sensitive to the resistivity of
he third layer. The thickness of the second layer is non-influential
n the model response for sounding positions T02, T03 and T04,
hile the global sensitivity of the second layer is slightly higher

but statistically still inconclusive) at sounding positions T01 and
05. 
Fig. 8 shows a 2-D model built from the results obtained with

he deterministic inversion (Fig. 8 a) and stochastic inversion using
ndividual prior model spaces for each sounding (Figs 8 b and c)
nd using a common prior model space for all soundings (Figs 8 d
nd e). The stochastic inversion results are visualized in terms of
he mean (Figs 8 b and d) and the standard deviation (Figs 8 c and e)
f the posterior distribution (thickness and resistivity). In general,
e observe for all sounding positions an increase in the uncertainty
f the layer thicknesses for deeper layers, as well as a larger un-
ertainty for the resistivity of the second layer, due to its higher
esisti vity v alues. The deterministic inv ersion solv es for thickness
alues close (i.e. ca. ± 2 m ) to their respective true interface depths.
he only exception is sounding position T04, where we can observe
 clear underestimation of the depth to the aquifer by ca. 3 m . We
bserve a similar bias in the mean of the stochastic inversion result
Figs 8 b and c) that was obtained from individual priors, because
he prior model space was centred on the deterministic inversion
esult. Stochastic inversion results using the common prior model
pace at sounding position T04 reveal an exact retrie v al of the first
ayer thickness and the uncertainty (Fig. 8 e) indicates that the data
an be also explained by a first layer that is 3 m thinner or thicker. 

The comparison between stochastic inversion results obtained
rom individual priors for each sounding position (Figs 8 b and c)
o those obtained from a common prior for all sounding positions

art/ggaf236_f3.eps
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Figure 4. Results from deterministic inversion (a) and BEL1D (b to e) for field TEM data collected at the soda lakes. The mean resistivity of the posterior 
distribution is shown in b for individual prior model spaces for each sounding and in d for a common prior model space used to estimate the posterior of all 
five soundings. The standard deviation of the posterior distribution is shown in c and e, where the white error bars indicate the single standard deviation of the 
layer thicknesses. 
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(Figs 8 d and e) reveals mainly consistent results, indicating that both 
approaches estimate an adequate posterior distribution of the model 
parameters. Ho wever , the uncertainty of the layer thickness obtained 
from the common prior is ca. 10 per cent larger than for the individ- 
ual priors, while the uncertainty of the layer resistivity is similar for 
both prior model approaches. The large (i.e. > 5 m ) uncertainty as- 
sociated with the layer thicknesses in the case of the common prior 
results can be attributed to the wider prior model space. In particu- 
lar, we observe that the layer thickness is overestimated at sounding 
positions T01 and T05. Hence, the wider prior model space results 
in a lateral smoothing of the obtained resistivity values, yet the un- 
certainty range (one standard deviation, see Fig. 8 e) shows that the 
true model lies within the solved posterior model space, except for 
the first layer thickness at sounding position T01 and the second 
layer thickness at sounding position T05. Sounding positions T01 
and T05 are related to the smallest first layer thickness, which is 
overestimated by the common prior results because these small first 
layer thicknesses are at the edge of the common prior model space. 
In comparison, the mean of the posterior distribution obtained from 

individual prior models for soundings T01 and T05 resolve the true 
model v alues slightl y better than the common prior solution result- 
ing in a slightly larger uncertainty. This is plausible because the 
larger uncertainty in the common prior approach is associated to 
the variability of the deterministic solutions. Additionally, due to 
the TR approach, all models in the posterior fit the data. This result 
mainly highlights that stochastic approaches are relying on a careful 
definition of the prior. 

Fig. 9 shows a comparison of the posterior correlation for the 
individual and the common prior at sounding position T03. The 
histograms in the main diagonal of Fig. 9 reveal that both prior 

art/ggaf236_f4.eps
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Figure 5. Histograms of the resulting mean resistivity distributions (for all 
layers) obtained from the deterministic inversion (a), stochastic inversion 
with individual priors for each sounding (b) and stochastic inversion with a 
common prior for all soundings (c). 
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paces result in similar posterior distributions that estimate the true
odel values with minor deviation for the thickness and resistivity

f the second layer. In the case of the thickness, both approaches
verestimate the thickness by ca. 20 per cent. The fourth histogram
n the main diagonal of Fig. 9 corresponds to the resistivity of
he second layer and reveals that both approaches (in terms of the
ean posterior distribution) underestimate the resisti vity b y ca. 50

er cent. Fur ther more, we obser ve a weak logarithmic correlation
etween the thickness and resistivity of the first lay er. F ig. A4 (in
ppendix) shows the same visualization at sounding position T01
nd indicates that the common prior approach might result in a bias
n the case of a true model that lies at the edge of the prior model

art/ggaf236_f5.eps
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Figure 7. Numerical models, forward modelled data and numerical error (grey dotted line in (a) to (e), as well as the corresponding model parameter 
sensitivities in (f) to (j). The vertical dashed line indicates the threshold of 1 (i.e. larger sensitivities indicate influential parameters) and the horizontal black 
lines the confidence interval of the corresponding sensitivity. Black bars in (f) to (j) indicate influential model parameters, white bars non-influential parameters 
and grey bars indicate model parameters with a statistically inconclusive sensitivity. 
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space, because the prior is not centred on the true model values. 
This is an indication that the results remain sensitive to the choice 
of the prior. 

Both the common and the individual prior approaches obtain the 
true model values within one standard deviation, yet, the com- 
mon prior approach requires a reduced computational time by 
51 per cent (75 to 155 min ). This reduction is directly related to 
the number of forward calculations that are required to obtain 
an approximation of the posterior distribution. In the case of the 
individual prior results (Figs 8 b and c) we ran 150 000 forward 
calculations (30 000 for each sounding) to obtain the prior model 
space. Additionally, we required 75 000 forward calculations to ob- 
tain the posterior distributions resulting in 225 000 forward cal- 
culations. In the case of the common prior, we ran only 30 000 
forward calculations to obtain a single prior model space that we 
used to obtain the posterior distributions for each sounding (75 000 
models for all soundings), which results in only 105 000 forward 
calculations. 

4  D I S C U S S I O N  

Our numerical and field data experiments show the added value 
of using a stochastic inversion approach to determine the aquifer 
geometry and the associated uncertainty from TEM data. The suc- 
cessful application of stochastic inversion relies on an adequate 
selection of the prior model space (e.g. Scheidt et al. 2018 ). Hence, 
the posterior distribution is dependent on the choice of the prior 
model space which is inherent to any stochastic method (e.g. Ahmed 
et al. 2024 ). In theory, the prior model space should represent all 
knowledge before acquiring data on the field and it is generally rec- 
ommended to be as large as possible. Large prior spaces, ho wever , 
tend to result in larger estimated uncertainties and require more 
samples for the learning phase, and thus, increase the computation 
time. Additionally, in large prior spaces, the relationship between 
data any model space becomes increasingly nonlinear, which may 
limit the applicability of the CCA method and might require more 
advanced approaches to map the data-model relationship in the fu- 
ture (e.g. Thibaut 2023 ). We propose here a pragmatic approach 
that combines a deterministic inversion with a subsequent stochas- 
tic inversion. In particular, we e v aluate an efficient estimation of 
the posterior model space for multiple TEM soundings from a com- 
mon prior space which is based on deterministic solutions of each 
sounding. 

In a first step, w e show ed that the TEM results from single sound- 
ing positions correspond to geological data obtained from two shal- 
lo w boreholes, sho wing that high electrical resistivity ( > 50 �m ) 
are associated with sandy gravel aquifers, whereas low electrical 
resistivity ( < 15 �m ) are associated with aquicludes consisting of 
clayey silts. We also showed that the sensitivity of the TEM method 
depends on the loop size, demonstrating that an increase of the 
loop size results in a sensitivity loss close to the surface, yet it im- 
proves the sensitivity and the delineation of deep interfaces. The 
comparison between the TEM results from both a deterministic 
and stochastic inversion approach correspond well to the lithology 
obtained from the tw o shallo w boreholes, demonstrating that the 
TEM method is capable of resolving the aquifer geometry while 
also providing the uncertainty of the derived interfaces. Our study 
shows that the forward modeller proposed by Aigner et al. ( 2024 ) 
can be implemented into the pyBEL1D framework (Michel et al. 
2023 ) to obtain a stochastic inversion of TEM data resolving the 
resisti vity v alues and thickness of subsurface materials, as well as 
their associated uncertainties. We also demonstrate that determin- 
istic and stochastic inversions provide consistent results. While the 
for mer per mits a fast analysis, they do not provide rigorous infor- 
mation about the accuracy of the model parameters. The stochastic 
inversion permits to solve for the uncertainty, but requires an in- 
creased computational time compared to the deterministic inversion. 
Choosing the prior space based on deterministic inversion results 
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Figure 8. Results from deterministic inversion (a) and BEL1D (b to e) for numerical TEM data. The mean resistivity of the posterior distribution is shown in 
(b) for individual prior model spaces for each sounding and in (d) for a common prior model space used to estimate the posterior of all five soundings. The 
standard deviation of the posterior distribution is shown in (c) and (e), where the white error bars indicate the single standard deviation of the layer thicknesses. 
The dashed lines indicate the true model interfaces of the numerically modelled aquifer that is confined between two conductive units. 
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s adequate to approximate the posterior model space as there is an
f fecti ve reduction of uncertainty over most model parameters (see
ig. 3 ). In the case of parameters where no uncertainty reduction is
bserved, we recommend to increase the prior space (e.g. ±1/3 or
1/2) 
In a second step, we investigate the use of a common prior to

btain the uncertainty of multiple TEM soundings from a single
arge prior model space. In particular , we sho wed that a common
rior model derived from the minimum and maximum values of
ll individual deterministic results resolves the interfaces and asso-
iated uncertainties of 36 TEM soundings at the field. Our results
emonstrate that in case of small lateral variations, the common
rior solution solves for equal models as the deterministic solution
nd the stochastic solution using individual prior models. Addition-
lly, the common prior solution has the advantage of solving for
aterally consistent models at depth, effectively leveraging the com-

on prior information to overcome the reduced sensitivity of our
EM configuration at depth without overly smoothing the shallow
arts of the model where the sensitivity of our TEM configuration
s much higher. 

In a third step, we investigate the common prior approach in a nu-
erical experiment with significant lateral variations. In this case,
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Figure 9. Correlation visualization of the posterior model space for sounding T03. The main diagonal shows the probability density for each model parameter 
and the orange bars correspond to the individual prior results while the red bars correspond to the common prior result. The right triangular entries (light 
orange circles) show the model parameter correlations for all parameter combinations in model units [thk (m), ρ ( �m )] corresponding to the individual prior 
result. The left triangular entries (dark red circles) show the model parameter correlations for all parameter combinations in model units [thk (m), ρ ( �m )] 
corresponding to the common prior result. The blue dashed line and the blue solid dots indicate the values of the true model. 
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we demonstrate a limitation of the common prior approach and show 

that the individual prior model solution solves such strong lateral 
changes better than the common prior approach. This highlights 
the advantage of using our approach that combines deterministic 
and stochastic inversion strategies because sole application of the 
deterministic inversion delivers only a linearized estimation of un- 
certainty based on the Jacobian matrix, while sole application of a 
stochastic inversion using a large prior model might result in the 
loss of lateral resolution. The estimated uncertainty corresponds 
well to the model parameters sensiti vity deri ved from DGSA show- 
ing that layers with high electrical resistivity are associated with a 
large uncertainty and low sensitivities, w hereas lay ers with a low 

electrical resistivity are associated with a small uncertainty and high 
sensitivities. 

Recent developments in instrumentation and field methodolo- 
gies allow for quasi-continuous TEM data collection in both 
ground-based (e.g. Auken et al. 2018 and Street et al. 2018 ) and 
waterborne studies (e.g. Lane et al. 2020 ; Yo geshw ar et al. 2020 ; 
B ücker et al. 2021 and Aigner et al. 2021 ). Such instruments are 
capable of collecting hundreds of soundings per day that are com- 
monly inverted using approaches with limited uncertainty quan- 
tification. Estimation of the model parameter uncertainty based on 
McMC approaches (e.g. Minsley 2011 ) for such a massive num- 
ber of soundings would be computational too e xpensiv e. Hence, 
the added value of the common prior space solution compared to a 
solution based on individual prior model spaces lies in a reduction 
( 65 per cent ) of the computation time for the 36 soundings collected 
at our field site. This reduction originates largely from the number of 
required forward simulations that is greatly reduced in the common 
prior approach, as the forward modelling for the prior samples must 
only be run once and only the posterior sampling and subsequent 
forward modelling must be run for each sounding. The reduction 
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n computation time, therefore, scales with the number of sound-
ngs, an impro vement o ver more traditional stochastic approaches.
ur ther more, the common prior result is laterally more consistent
t depth than the solutions from the deterministic inversion and the
ndividual priors, yet as shown in the numerical experiment, this

ight be problematic in the case of large lateral heterogeneities. 
This work provides added value for future studies which require

eophysical data to inform groundwater model either in terms of
eometr y (e.g. Her mans et al. 2015 ) or of processes (e.g. Perzan
t al. 2021 ). In coupled inversion approaches (e.g. Hinnell et al.
010 ), the link between geophysical and hydro geolo gical parame-
ers is through a petrophysical relationship (Irving & Singha 2010 ),
hich prevents the explicit inversion of geophysical data. Ho wever ,

pplying it in practice would often make the hydro geolo gical model
ore complex than necessary. For example, a model of a confined

quifer constrained by TEM data should include a shallow aquifer
nd the unsaturated zones as they impact the geophysical response.
herefore, sequential approaches where geophysical inversion re-
ults are used to constrain the geometry of the hydrological model
re still highly relevant. Recently, Enemark et al. ( 2024 ) proposed a
ethodology to assess the impact of geological uncertainty on hy-

ro geolo gical model predictions. The uncertainty of the geological
cenarios integrates an uncertainty component originating from the
nterpretation of a deterministic inversion model from airborne EM
ata (published in Møller et al. 2009 ) obtained with the SkyTEM
ystem (Sørensen & Auken 2004 ). Such uncertainty integration
ecessarily includes a subjective component related to the expert
ho provided an estimation of uncertainty. If the geophysical data
ere inverted stochastically, the geological uncertainty estimation
an be done in a fully probabilistic framework (e.g. Hermans et al.
015 ; Scheidt et al. 2018 ; Michel et al. 2023 ). Our study provides
he foundation for such future approaches that require the efficient
ncertainty estimation from TEM data. 

 C O N C LU S I O N  

e demonstrated that the stochastic inversion approach can be used
o ef ficientl y estimate the uncertainty associated with TEM sound-
ngs using numerical and field data experiments. To this end, we
ombined open-source modelling and inversion routines with the
pen-source package pyBEL1D. In particular, we use a combined
pproach that is based on an initial deterministic inversion to gen-
rate an informed prior model space, which is then used in the
tochastic framework to estimate the uncertainty of the model pa-
ameters (i.e. thickness and resistivity). The stochastic inversion
ith BEL1D offers the advantage that the posterior distribution of
ultiple TEM soundings can be estimated from a single prior model

pace, which drastically reduces the computational time for multiple
oundings. In a first step, we demonstrated that the deterministic and
tochastic results correspond with borehole data, associated to two
quifers. Low electrical resistivity values ( < 15 �m ) correspond to
ne grain sediments confining the aquifer, which is associated with
igh electrical resistivity values ( > 30 �m ). In a second step, we
nvestigate TEM data of 36 TEM soundings collected along a pro-
le and directly estimate the posterior model distributions as well
s the associated uncertainty to derive the aquifer geometry at the
oda lakes test site. Our results show that the common prior derives
imilar laterally homogeneous electrical units as the deterministic
olution and estimates similar uncertainties as the individual prior
olution. Additionally, the common prior solution is laterally more
onsistent along the profile than the solution based on individual
rior model spaces for each sounding while reducing the compu-
ational time by 65 per cent . In a third step, we investigated in a
umerical experiment associated to a confined aquifer with lateral
hickness variations, whether the common prior is capable of re-
rieving such strong lateral variations. Our results revealed that,
n case of strong lateral variability, the individual prior solution
etrieves the true models slightly better than the common prior so-
ution, yet both approaches resolve the true model values within
ne standard deviation of the mean model. These findings offer
he added value of efficient uncertainty estimation as required for
pplications using TEM system that are capable of continuously
ollecting huge data sets, which are essential to obtain the uncer-
ainty associated to aquifer system at large scales with a high lateral
esolution. 
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erthm üller , D. , 2017. An open-source full 3d electromagnetic modeler for
1d vti media in python: empymod, Geophysics, 82 (6), WB9–WB19. 
inter , T.C. , 2000. Ground Water and Surface Water: A Single Resource,
Diane Publishing. 
s
o geshw ar , P. et al. , 2020. Innov ati ve boat-towed transient
electromagnetics—investigation of the furnas volcanic lake hydrothermal
system, azores, Geophysics, 85 (2), E41–E56. 

P P E N D I X  A :  A P P E N D I X  

ig. A1 shows the deterministic and stochastic inversion results for
EM soundings at the position of two boreholes, each for three
ifferent loop sizes. The stochastic inversion results are represented
y the mean of the posterior distribution. The two subsurface in-
erfaces are related to: (a) the contact between fine sediments and
oarse sediments at ca. 1 . 0 m depth and (b) between coarse sedi-
ents and fine sediments at ca. 7 . 0 m depth. All inversion results

deterministic and stochastic) are characterized by a low RMS error
 < 3 per cent relative RMS error) indicated also by the data fit
urves in Fig. A1 . 

At borehole LL18, the deterministic and stochastic inversion
esults of the TEM data reveal a four -lay er model for the 6 . 25 m
oop and the 12 . 5 m loop (Figs A1 b and f): (1) a shallow conductive
ayer ( < 10 �m ) with a thickness of ca. 1 . 0 m corresponding to
ilty materials and the unsaturated zone, (2) an intermediate resistive
ayer ( > 30 �m ) with a thickness of ca. 7 . 0 m consisting of saturated
ntermediate sands associated to the shallo w aquifer , (3) a confining
ayer at a depth of ca. 8 m with a conductivity of ca. 15 �m due
o the clayey silt material and (4) a resistive (ca. 30 �m ) layer at a
epth of (ca. 15 m ) corresponding to a deep, sandy aquifer as the
lectrical resistivity is similar to the shallow aquifer. For the 25 . 0 m
oop (see Fig. A1 j) the inversion result reveals a two-layer model
hat cannot solve the thickness and depth of the shallow aquifer. Yet,
e observe the same depth ( 15 m ) to the deep aquifer (ca. 30 �m )
s obtained from the 12 . 5 m loop. Due to the inability of the 25 . 0 m
oop to solve for the shallow aquifer, we compare the borehole data
nly with the TEM inversion results of the 6 . 25 m and the 12 . 5 m
oops. The first interface between the aquiclude and the aquifer
orresponds well to the inversion results for the 6 . 25 m , but the
2 . 5 m loop overestimates the thickness of the first interface by ca.
 . 0 m . The second interface between the aquifer and the confining
ilt layer corresponds well to the inversion results for both loops,
ith a weaker contrast of the electrical conductivity in the 12 . 5 m

oop. 
At borehole LL22, the deterministic and stochastic inversion

esults reveal a three-layer model for the 6 . 25 m loop and the 12 . 5 m
oops (Figs A1 d and h): (1) a shallow conductive layer ( < 10 �m )
ssociated to silty materials, (2) an intermediate resistive layer (ca.
0 �m ) consisting of saturated coarse materials from the shallow
quifer and (3) a conductive layer (ca. 20 �m ) corresponding to the
onfining layer at a depth of ca. 10 m . The first interface between the
quiclude and the aquifer corresponds well to the inversion results
or the 6 . 25 m , but the 12 . 5 m loop overestimates the thickness of the
rst meter by ca. 2 . 0 m . The second interface at 2 . 0 m between the
quifer and the confining silt layer corresponds well to the inversion
esults for both loops. Due to the lack of geological information
o support our interpretation, we do not interpret deeper units. Our
esults reveal that the data collected with the 25 . 0 m loop lack
ensitivity close to the surface to characterise the shallow aquifer
imilar to borehole LL18 (Fig. A1 j), hence we will not further
iscuss the results of the 25 . 0 m loop. 

Fig. A2 visually shows the information gain at borehole LL22
or the 6 . 25 m and the 12 . 5 m loops by comparing the prior data and
odel spaces to the posterior (after TR rejection) data and model

paces. 
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Figure A1. Results from field data measured at boreholes LL18 (a, b, e, f, i and j) and LL22 (c, d, g, h, k and j) for a 6 . 25 m (a to d), a 12 . 5 m (e to h) and a 
25 . 0 m square single-loop. The 1-D results depict both the models from deterministic and a stochastic inversion using a threshold to reject models that result 
in an unrealistic data fit. The horizontal lines depict the contact between fine and coarse sediments at the top (interface one) and coarse and fine sediments at 
the bottom of the aquifer (interface two). 

Figure A2. Stochastic inversion results from TEM data measured at borehole LL22 using a 6 m (a, b) and a 12.5 m (c, d) square single loop. Prior data and 
model spaces are shown in grey in the background, while the coloured lines represent the posterior data and model spaces. 
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Fig. A3 shows a comparison of the posterior correlation for the
ndividual and the common prior at sounding position L12. The his-
ograms in the main diagonal of Fig. A3 reveal that both prior spaces
esult in similar posterior distributions that are retrieving the deter-
inistic result with the added value of assessing the uncertainty.

n the case of the thickness, both approaches (i.e. individual and
ommon prior) solve for almost the same posterior distributions.
he last histogram in the main diagonal of Fig. A3 corresponds

o the resistivity of the second layer and reveals that the com-
on prior approach obtains a larger uncertainty than the individual

rior. 
Fig. A4 shows a comparison of the posterior correlation for the

ndividual and the common prior at sounding position T01. The
istograms in the main diagonal of Fig. A4 reveal differences in the
osterior distributions obtained from the common prior and the in-
ividual prior approach. In the case of the thickness, only the second
ayer is equally well resolved by both approaches (i.e. individual and
ommon prior). The thickness of the first layer is overestimated by
he common prior approach by almost 100 per cent . In the case of
he resistivity, the first layer (third histogram of the main diagonal)
eveals that the common prior model approach overestimates the
esisti vity b y ca. 50 per cent while the indi vidual prior solves the
rue model value correctly. This points to an ambiguity between
he resistivity and the thickness of the first lay er, w hich cannot be
esolved by the common prior space due to the true model value
eing located at the border of the prior model space. The second
nd third layer show similar histograms for both approaches, yet the
esistivity of the second layer is underestimated in both solutions
y ca. 50 per cent . Fur ther more, we obser ve a weak logarithmic
orrelation between the thickness and resistivity of the first layer,
hich is likely related to the ambiguity between the first layer thick-
ess and resistivity. 
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Figure A3. Correlation visualization of the posterior model space for field data results obtained from sounding position L12. The main diagonal shows the 
probability density for each model parameter and the orange bars correspond to the individual prior results while the red bars correspond to the common 
prior result. The right triangular entries (light orange circles) show the model parameter correlations for all parameter combinations in model units [thk (m), 
ρ ( �m )] corresponding to the individual prior result. The left triangular entries (dark red circles) show the model parameter correlations for all parameter 
combinations in model units [thk (m), ρ ( �m )] corresponding to the common prior result. The black dashed line and the black solid dots indicate the values of 
the deterministic inversion result. 
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Figure A4. Correlation visualization of the posterior model space for sounding T01. The main diagonal shows the probability density for each model parameter 
and the orange bars correspond to the individual prior results while the red bars correspond to the common prior result. The right triangular entries (light 
orange circles) show the model parameter correlations for all parameter combinations in model units [thk (m), ρ ( �m )] corresponding to the individual prior 
result. The left triangular entries (dark red circles) show the model parameter correlations for all parameter combinations in model units [thk (m), ρ ( �m )] 
corresponding to the common prior result. The blue dashed line and the blue solid dots indicate the values of the true model. 
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