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Soil Moisture Retrieval in Slow-Moving Landslide
Region Using SAOCOM L-Band: A Radiative
Transfer Model Approach
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Abstract—Radiative transfer models have been extensively ap-
plied in soil moisture studies; however, their application to L-band
synthetic aperture radar (SAR) data has not been fully explored.
This research introduces a comprehensive approach for soil mois-
ture retrieval using SAOCOM L-band SAR dual-polarization data
(VV=VH). The novel bistatic radiative transfer modeling frame-
work (RT1) is used, validated previously with Sentinel-1 C-band
SAR and advanced scatterometer (ASCAT) data. For the first
time, the RT1 model is applied to SAOCOM L-band data over
the Petacciato landslide area in Italy, covering the period from
January 2021 to December 2023. A statistical comparison of soil
moisture estimates derived from L-band SAR data (A = 23 cm) is
conducted, with the model’s performance evaluated against multi-
ple regional-scale soil moisture datasets, including ASCAT, ERA-5
Land, and soil moisture active passive. Validation is performed
using soil moisture time series and advanced statistical methods.
The study incorporates the antecedent precipitation index (API),
calculated from precipitation in the days leading up to an event, as
an indicator of soil moisture, helping assess retained moisture from
prior rainfall. The proposed methodology exhibits high accuracy,
as evidenced by a strong correlation (» > 0.67, RMSE = 0.0936
m?/m3, MSE = 0.088 m*/m?, and Bias = -0.0603 m>/m?) between
the RT1 soil moisture retrieval and reference datasets, such as AS-
CAT data. This approach provides a reliable tool for continuous soil
moisture monitoring in landslide-prone regions, with SAOCOM
L-band SAR and radiative transfer modeling enhancing retrieval
in complex and agricultural terrains for improved landslide mon-
itoring.

Index Terms—Antecedent precipitation index (API), bistatic
radiative transfer model (RT1), mass movement, microwave,
radiative transfer, SAOCOM L-band, soil moisture, synthetic
aperture radar (SAR), vegetation.
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NOMENCLATURE
API Antecedent precipitation index.
SAR Synthetic aperture radar.
SMOS Soil moisture and ocean salinity.
SMAP Soil moisture active passive.
ASCAT  Advanced scatterometer.
MODIS  Moderate resolution imaging spectroradiometer.
WCM Water cloud model.
RT1 Bistatic radiative transfer model.
CHIRPS Climate hazards group infrared precipitation with
station data.
DEM Digital elevation model.
RTC Radiometric terrain correction.
ASI Italian Space Agency.
ESA European Space Agency.
SLC Single-look complex.
NESZ Noise equivalent sigma zero.
METOP  Meteorological operational.
GEM Goddard earth model 6.
LAI Leaf area index.
swll Volumetric soil water layer 1.
DN Digital numbers.
w Single-scattering albedo.
T Vegetation optical depth.
af Backscatter coefficient or sigma nought.
BRDF Bidirectional reflectance distribution function.
P Volume-scattering phase function.
RMSH Root-mean-square height.
IEM Integral equation model.
PDFs Probability density functions.
MSE Mean-squared error.
RMSE Root-mean-square error.

I. INTRODUCTION

OIL moisture is a critical parameter in the hydrological
S cycle, influencing numerous environmental processes, in-
cluding weather patterns, vegetation growth, and the occurrence
of natural disasters, such as floods and landslides [1], [2], [3], [4].
In the context of landslides, soil moisture is pivotal in triggering
slope instability [5], [6]. Monitoring soil moisture is particu-
larly important for slow-moving landslides, which are often
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intensified by prolonged rainfall and seasonal wetting and drying
cycles [7].

Assessing the relationship between soil moisture and land-
slides necessitates high spatial and temporal resolution mea-
surements of surface soil moisture (SSM) in regions prone to
landslides. Landslides represent significant hazards worldwide.
Soil moisture plays a critical role in increasing landslide sus-
ceptibility by increasing soil weight, reducing cohesion, and
decreasing interparticle friction—factors that contribute to soil
destabilization, particularly on steep slopes. In addition, elevated
pore pressure resulting from increased soil moisture reduces soil
shear strength and density, thereby further compromising slope
stability [8], [9]. Therefore, monitoring soil moisture dynamics,
facilitated by SAR technology, is essential for landslide hazard
assessment and developing strategies to manage moisture and
mitigate ground deformation risks. Accurate soil moisture data
enhances the prediction of hydrological responses to rainfall,
facilitating the development of more effective early warning
systems [10]. Slow-moving landslides, which advance at rates
ranging from millimeters to meters per year [11], are typically
triggered by precipitation and can be monitored over decades
using remote sensing (RS) and ground-based methods [12], [13].
RS has revolutionized soil moisture monitoring, providing
large-scale, continuous datasets crucial for assessing landslide
risks [14]. Moreover, soil moisture estimation is essential for
managing water resources, predicting crop yields, and mitigating
climate change impacts [15]. Among these technologies, SAR
is particularly promising due to its ability to penetrate cloud
cover and provide data irrespective of weather conditions [16].
SAR systems operate at various wavelengths, such as C-band
(e.g., Sentinel-1) and L-band (e.g., SAOCOM)), offering distinct
tradeoffs between penetration depth and sensitivity to surface
roughness [17].

While coarse-resolution (10-50 km) soil moisture data de-
rived from microwave radiometers and scatterometers—such as
SMOS [18], SMAP [19], and ASCAT [20]—provide valuable
insights for large-scale numerical weather prediction and climate
models, these datasets fail to capture local-scale soil moisture
variations. Numerous small-scale applications, including local-
ized weather prediction, risk, and disaster management, as well
as hydrological, forestry, and agricultural practices, require a
spatial resolution below 1 km to adequately represent local
conditions and meet the specific needs of end users [21].

This high spatial resolution can be achieved through SAR
instruments, such as the C-band SAR onboard the ESA Coper-
nicus Sentinel-1 satellite constellation (S1A, S1B, and their
upcoming successors S1C and S1D). Among available SAR sen-
sors, Sentinel-1 is particularly well-suited for soil moisture mon-
itoring due to its excellent temporal coverage [22]. However, the
Sentinel-1 dataset exhibits unique sampling and measurement
characteristics that necessitate adaptations to existing retrieval
strategies [23], [35], [39], [24], [25], [26], [27], [28]. However,
their moderate wavelengths limit their capability to penetrate
deeper soil layers, where subsurface moisture conditions are
critical [29]. L-band SAR, with its longer wavelength, provides
greater soil penetration and is less affected by vegetation, making
it more suitable for monitoring soil moisture in complex terrains
and vegetated areas [30], [31], [32].
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In addition to SAR, other RS technologies, such as pas-
sive microwave sensors (e.g., SMAP) and optical sensors (e.g.,
Sentinel-2), have been employed for soil moisture estima-
tion [33], [34]. Sentinel-1 SAR imagery enables the retrieval
of SSM with high spatial (100 m) and temporal resolution.
This study introduces two methodologies for estimating soil
moisture using Sentinel-1 data in VV polarization, in combi-
nation with Sentinel-2 optical imagery to account for vegetation
effects [35]. Ma et al. [36] highlighted the potential of fusing
active and passive microwave measurements for robust global
SSM mapping. This study leveraged this potential by integrating
L-band SMAP and C-band ASCAT data, which observe the
Earth at comparable spatial scales. This novel approach aimed
to enhance SSM estimation accuracy and temporal resolution.
Furthermore, integrating satellite-based soil moisture estimates
with ground-based measurements and hydrological models has
enhanced the accuracy of soil moisture data across diverse
environments.

Merlin et al. [37] applied a disaggregation algorithm to data
from the SMOS mission and the MODIS, generating soil mois-
ture maps with a spatial resolution of 1 km. Similarly, Paloscia
et al. [38] utilized machine learning techniques with data from
the Copernicus Sentinel-1 SAR to produce soil moisture maps at
comparable resolutions. Foucras et al. [39] integrated Sentinel-1
SAR, Sentinel-2 optical imagery, and MODIS data to achieve an
enhanced spatial resolution of 500 m using a change detection
approach.

Despite these advancements, significant challenges remain
in accurately estimating soil moisture, particularly in com-
plex terrains and densely vegetated areas. One key limitation
of current SAR-based methods is their sensitivity to surface
roughness and vegetation, which can introduce errors in soil
moisture retrieval [16]. Higher frequency SAR, such as X -band,
is especially affected by these factors, resulting in less accurate
soil moisture estimates in densely vegetated or rough surface
regions [21], [40].

Another challenge concerns the temporal resolution of SAR
data. Although SAR provides valuable information on soil mois-
ture, high-frequency observations are essential to capture rapid
fluctuations in soil moisture conditions, particularly following
precipitation events that may induce landslides [3], [41], [42].
The integration of SAR data with complementary sources, such
as passive microwave sensors, presents a promising strategy
for addressing temporal gaps in soil moisture observations.
However, significant challenges persist in achieving effective
harmonization of data across different sensor platforms [36].

The WCM also faces limitations in representing complex
radar signal interactions with land surfaces, particularly in re-
gions with significant topographic and vegetation complexi-
ties [43]. Advanced models are necessary to effectively address
these complexities [44], [45].

Radiative transfer models have been widely utilized in soil
moisture retrieval studies; however, their application to L-band
SAR data remains largely underexplored. Previous research has
predominantly focused on employing radiative transfer models
with data from scatterometers (e.g., ASCAT) and Sentinel-1
C-band SAR [46], [47]. Despite its significant potential, the
use of SAOCOM L-band SAR data, which provides deeper soil
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penetration and greater sensitivity to soil moisture variations, has
not been extensively investigated. This gap underscores the need
for further research into integrating radiative transfer modeling
with SAOCOM L-band SAR data for improved soil moisture
retrieval.

The bistatic first-order radiative transfer model (RT1) frame-
work, developed by Quast [48], [49], was employed to esti-
mate soil moisture using SAOCOM L-band dual-polarimetric
datasets (VV-=VH) in the landslide-prone Adriatic coastal region
of Petacciato. This analysis provides valuable insights into the
region’s soil moisture dynamics.

This study presents a novel application of the RT1 for soil
moisture retrieval using dual-polarization (VV-VH) SAOCOM
L-band SAR data. It represents the first known effort to apply
RT1 with SAOCOM data at a regional scale for landslide moni-
toring, focusing on the complex terrain and vegetated conditions
of the Petacciato region in Italy from January 2021 to December
2023. By leveraging the deeper soil penetration and enhanced
dielectric sensitivity of L-band SAR, the study extends the
applicability of RT1 beyond previous implementations, which
were primarily limited to ASCAT scatterometer and Sentinel-1
C-band data.

The methodology incorporates multisensor validation using
ASCAT, ERAS5-Land, and SMAP datasets to assess the reliabil-
ity of RT1-derived soil moisture estimates in the absence of in
situ measurements. In addition, rainfall data from the CHIRPS
are used to compute the API, a key hydrometeorological variable
for assessing soil saturation and landslide triggering potential.

This study addresses the challenges of complex topography
and vegetation cover, thereby enhancing the operational capac-
ity of SAOCOM for geohazard applications and providing a
scalable, transferable framework for soil moisture monitoring
in landslide-prone areas. The rest of this article is organized as
follows. Section II outlines the study area. Section III describes
the datasets and methodology. Section IV presents the results.
Section V discusses the findings in the context of related studies.
Finally, Section VI concludes this article.

II. STUDY AREA

Petacciato is situated in the northwestern part of the Molise
region in central Italy, within the outermost section of the central-
southern Apennine chain [refer to Fig. 1(b)]. The hilly terrain of
the region, in combination with its coastal proximity, increases
the vulnerability of specific areas to landslides, especially during
episodes of intense rainfall or seismic events. The Petacciato
landslide exhibits rotational-translational movements, with dis-
placements reaching tens of centimeters during reactivation
events. Notably, the landslide extends beyond the shoreline, il-
lustrating its impact on both terrestrial and marine environments.
Its failure mechanism has been extensively investigated through
hydromechanical modeling, which incorporates critical factors
such as rainfall infiltration and material instability [50].

Regions characterized by steep slopes, unconsolidated soils,
and inadequate drainage systems are particularly susceptible to
landslides. A substantial proportion of these events affect clastic
soft units exposed along cliffs and coastal slopes, which are
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widespread across the Mediterranean region. These geological
units consist of a regressive marine sequence composed of clay,
sandstone, and conglomerates dating from the Early to Middle
Pleistocene [refer to Fig. 1(c)]. The strata dip northeastward
at angles ranging from 3° to 8°, closely corresponding to the
slope’s inclination. Overlying these clays are layers of sand and
conglomerate, measuring between 70 and 100 m in thickness,
forming a robust cap upon which the town of Petacciato is built.
The local stratigraphy features lithologies varying from clay and
clayey silts to sandy clay, sand, and gravel [51], [52].

The landslide-prone zone illustrated in Fig. 1(b) is among the
largest in Europe, notable both for its extent and the level of
hazard it presents. Covering approximately 17 square kilome-
ters, this area is particularly significant for its susceptibility to
landslides. Within this zone, a four-square-kilometer section is
distinguished by a prominent, active landslide scarp. Historical
records indicate that reactivations of the Petacciato landslide
date back to 1909, with notable events resulting in severe damage
to local infrastructure and the ancient village. The landslide’s
activity is characterized by retrogressive movements at the
crown area and a prograding toe extending into the submerged
nearshore environment [53].

The substantial scale of this landslide-prone area, combined
with the active features it contains, underscores the pressing
need for comprehensive research, continuous monitoring, and
the implementation of effective mitigation strategies to address
potential hazards [54].

III. MATERIALS AND METHODS
A. Digital Elevation Model

The TINITALY DEM, a seamless DEM of Italy released
in 2007, represents bare-Earth elevations and is classified as
a DEM. It was constructed by integrating individual DEMs
sourced from various Italian regions and is provided as a 10-m
resolution grid in GeoTIFF format. The DEM utilizes the UTM
WGS 84 zone 32 projection system [refer to Fig. 1(d)]. The
maximum elevation observed within this dataset is 209 m. This
high-resolution DEM is a critical resource for RTC in SAR
imagery and for determining local incidence angles in soil
moisture retrieval applications [55], [56].

Slope, a key topographic attribute derived from a DEM, refers
to the rate of change in elevation over a specified distance.
Typically expressed in degrees, the slope indicates the steepness
or incline of the terrain. It is calculated by analyzing elevation
differences between neighboring DEM pixels. A slope value of
0° represents flat terrain, while 90° corresponds to a vertical cliff
[refer to Fig. 1(e)]. Within the landslide body, the slope angles
range from 30° to 50° in the active landslide scarp. The average
slope across the area varies between 15° and 30°, with some
sections featuring vertical cliffs.

B. SAOCOM L-Band Data

SAR instruments capture high-resolution imagery regardless
of cloud cover, time of day, or weather conditions and can
operate across various wavelengths. This study utilized data
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Fig. 1.

(d)

(a) World map illustrating Italy country. (b) Study area map—Petacciato landslide (Red line represents the extent of the landslide area). (c) Geological
formation map. (d) DEM map. (e) Slope map (in degrees) (Map Credits: World Topographic Map Esri, TomTom, Garmin, FAO, METI/NASA, USGS, CGIAR).
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Fig. 2. SAOCOM acquisitions in ascending and descending orbit (total 90

images acquired).

TABLE I
TEMPORAL RESOLUTION AND SPATIAL RESAMPLING OF REFERENCE PRODUCTS

Product Details

ASCAT Data period: Jan 2021-Dec 2023
Temporal resolution: 0.4 d
Spatial resampling: 6.25 km

ERA-5 Land Data period: Jan 2021-Dec 2023
Temporal resolution: 1.0 d
Spatial resampling: 9 km

SMAP-NSIDC Data period: Jan 2021-Dec 2023
Temporal resolution: 0.12 d
Spatial resampling: 9 km

CHIRPS Data period: Jan 2021-Dec 2023

Temporal resolution: 5 d
Spatial resampling: 5.5 km

from Argentina’s SAOCOM L-band mission, distributed by
the Italian Space Agency [57]. The mission consists of two
Sun-synchronous satellites: SAOCOM-1 A, launched in 2018,
and SAOCOM-1B, launched in 2020, providing a temporal
resolution of 8 to 16 days. Soil moisture retrieval was conducted
using data collected between January 2021 and December 2023
(refer to Fig. 2), processed by the RT1 package. The analysis
employed SLC data in VV-VH polarization and STRIPMAP
mode, with a resolution of 5 m in the range direction and 10 m
in the azimuth direction. The processing workflow is thoroughly
described in the methods section.

C. Reference Products

This section provides an overview of the reference products
utilized in our analysis (refer to Table I for details).

1) ASCAT Data: It is a C-band active microwave RS in-
strument mounted on the meteorological operational satellite
series. Although initially designed to measure wind speed and
direction over oceans and not specifically intended for soil mois-
ture monitoring, the instrument’s characteristics—particularly
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its 5.7 cm wavelength, high radiometric accuracy, and multiple
viewing capabilities—render it a valuable tool for soil moisture
measurements [64].

The EUMETSAT HSAF ASCAT soil moisture product fea-
tures a spatial resolution of 25 km and spatial sampling of 6.5 km,
utilizing the WARP 5 Grid (sinusoidal DGG) with 82 nodes
per swath row. It is referenced to the Goddard Earth Model 6
and is distributed by HSAF. The data are available as a time
series in a binary format, with updates provided infrequently
since 1 January 2007. The spatial coverage spans from 60°S
to 80°N and 180°W to 180°E, with soil moisture values ex-
pressed as relative values, where O represents dry conditions
and 100 indicates saturation. The soil moisture unit is converted
from % saturation to m*/m? for uniformity of the reference
dataset [65].

2) ERA-5 Land Reanalysis Data: The ERAS-Land dataset is
an enhanced version of the ERAS climate reanalysis, offering a
spatial resolution with a grid spacing of 9 km [58]. It provides
comprehensive information on soil and vegetation variables at
hourly intervals on a global scale. For this study, the following
parameters were utilized.

a) lai_lv (Parameter ID: 66): LAI, Low Vegetation [m*/m?]:
This parameter represents the surface area of one side of
all the leaves within a specified land area for vegetation
classified as “low,” which includes crops, mixed farming,
irrigated crops, short grass, tall grass, tundra, semidesert,
bogs, marshes, evergreen shrubs, deciduous shrubs, and
water-land mixtures. The data are utilized to simulate the
seasonal impact on signal attenuation as the L-band prop-
agates through the vegetation layer. For more information
on the incorporation of LAI variability, please refer to
Section IV.

b) swvll (Parameter ID: 39): Volumetric Soil Water Layer 1
[m?/m?]: This parameter quantifies the volume of water
in soil layer 1, which extends from O to 7 cm in depth,
with the surface level defined as O cm. The dataset serves
as a reference for assessing the quality of the retrievals
presented in Section I'V.

3) SMAP Data: The SMAP Level-4 soil moisture product
provides continuous data on surface and root-zone soil mois-
ture, alongside variables such as surface meteorological forcing,
soil temperature, evapotranspiration, and net radiation. During
SMAP instrument outages, soil moisture estimates rely solely
on land model simulations without the assimilation of SMAP
brightness temperature data, as seen during outages in mid-2019
and late 2022. The product integrates SMAP L-band brightness
temperature data from satellite passes into a land surface model
gridded using the 9 km EASE-Grid 2.0 projection. In addition,
SPL4ASMGP provides 3-hourly geophysical data fields, trans-
formed into geographic coordinates using the Geospatial Data
Abstraction Library for integration with Google Earth Engine
(GEE) [60].

The SMAP satellite soil moisture product is widely used for
agriculture and water resource management [77]. Time-series
SSM data acquired from GEE for the period between 1 January
2021, and 31 December 2023, is used as a reference dataset to
evaluate the quality of retrieval from the RT1 algorithm.
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4) CHIRPS Rainfall Data and API: CHIRPS is a 30+ year
quasi-global rainfall data set. Spanning 50°S—50°N (and all lon-
gitudes), starting in 1981 to near-present, CHIRPS incorporates
0.05° resolution satellite imagery with in situ station data to
create gridded rainfall time series for trend analysis and seasonal
drought monitoring. As of 12 February 2015, version 2.0 of
CHIRPS is complete and available to the public [66].

The API is commonly employed to estimate surface runoff
based on recorded rainfall events, typically measured through
rain gauges or other estimation techniques in watersheds that
are either unmonitored or lack direct hydrological data, such
as discharge records [80]. API is calculated by considering the
precipitation recorded in the days preceding the event it refers
to and can also serve as an indicator of soil moisture. The initial
water content of the soil plays a critical role in shaping the
runoff response, as dry soils react differently compared to moist
or saturated soils. Although the underlying physical processes
are complex, conceptually, this variation in response can be
attributed to a reduction in the soil’s infiltration capacity [81].

Kohler and Linsley [82] introduced the following equation for
calculating the API

-1
APL= )" Pk M

t=—1

where ¢ denotes the number of antecedent days, k is a decay
constant, often referred to as the recession coefficient, and P,
represents the precipitation on the day ¢. This model is also
sometimes referred to as “retained rainfall” [83].

Equation (1) presents the recession coefficient as constant,
which disagrees with the physical processes that vary at different
temporal scales. The recession coefficient should consider water
losses due to evapotranspiration or drainage. Here, the decay
constant is set to 0.85. The decay constant, denoted as k, rep-
resents the rate at which the influence of previous precipitation
on the API decreases over time. A value of 0.85 for k implies
that 85% of the precipitation from the previous day is “retained”
in the index for the following day, while 15% is “lost” or no
longer considered influential. This indicates that the watershed
or soil retains a significant portion of past precipitation, making
it suitable for areas with moderate water infiltration, storage,
or runoff. A lower value (e.g., 0.5) would indicate faster decay,
meaning that past rainfall has a shorter-term influence, while
a higher value (e.g., 0.95) would suggest slower decay, with
precipitation having a more extended effect.

D. Methods

This study utilized time-series data from the SAOCOM
L-band SAR datasets collected in 2021, 2022, and 2023. A
total of 90 images from the SAOCOM L-Band dataset were
processed and analyzed. The SLC data were obtained and
preprocessed using SNAP software. The preprocessing steps
included radiometric calibration, which converts pixel values
from digital numbers to a standard geophysical measurement
unit of radar backscatter; slant-range to ground-range conver-
sion, which adjusts pixel geometry to a geographic projection
for scientific analysis; and multilooking, which employs spatial
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averaging to reduce image speckle noise while converting the
data to ground range, resulting in images with standardized pixel
sizes and reduced resolution.

A refined Lee speckle filter (5 x 5) was then applied to
effectively remove noise or speckles in the images without
further compromising spatial resolution. Preprocessing SAR
data to address geometric distortions, particularly in regions with
significant topographic variation, necessitates a rigorous and
systematic approach to ensure analytical accuracy. A central as-
pectof this preprocessing is RTC, which resolves both geometric
and radiometric distortions. Geometric terrain correction, com-
monly referred to as geocoding, employs high-resolution DEMs
to rectify pixel locations affected by terrain slopes and elevation
changes, thereby ensuring precise alignment with geographic
coordinates. In addition, radiometric terrain normalization ad-
dresses distortions arising from variations in incident angles and
backscatter intensity by implementing pixel-specific corrections
based on the DEM. Collectively, these procedures effectively
mitigate geometric distortions and guarantee a consistent, accu-
rate representation of SAR backscatter data, establishing RTC
as an indispensable preprocessing method for studies involving
complex terrain [84].

Spatial resolution: To mitigate noise and speckle effects,
SAOCOM data were resampled to an effective spatial resolution
of 500 m before soil moisture retrieval. Each 500 m x 500 m
pixel encompasses a variety of soil and vegetation characteris-
tics, providing spatially averaged parameters that represent the
integrated radar response within the pixel. This resampling—
from the native SAOCOM resolution of around 10 m to a 500 m
scale—aims to improve the robustness of soil moisture retrieval
by accounting for the complex SAR signal behavior observed at
finer spatial scales at 10 m.

Temporal resolution: The SAOCOM constellation satellites
(S1A and S1B) operate in a near-polar, sun-synchronous orbit
with a temporal resolution of an 8- to 16-day repeat cycle.
Data acquisition is nonuniform across ascending and descending
passes. Subsequently, both ascending and descending geome-
tries were combined.

Dynamic masking was applied to eliminate high backscatter
responses from urban features and corner reflectors (> —2 dB)
as well as low backscatter responses from water bodies (<
—17 dB). This threshold was determined based on the spatial
and temporal backscatter patterns of known water bodies across
multiple SAOCOM acquisitions. This value reliably delineated
both permanent and ephemeral water features with minimal
misclassification. As SAOCOM’s noise equivalent sigma zero
typically ranges from —-20 to —28 dB, the chosen threshold
remains well above the sensor’s detection limit, ensuring the
validity of the observed low-backscatter responses. Please note
that the RT1 model was implemented using VV polarization.
The methodology is illustrated in Fig. 3. A comprehensive ex-
planation of the RT1 model and its retrieval process is provided in
the following section. Finally, validation was conducted through
comparative analysis and advanced statistical techniques, as
described in Section IV.

1) RTI Model: The retrieval of soil moisture from radar data
involves separating the measured backscatter sigma nought ()
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Fig. 3. Detailed methodology.

into contributions from soil and vegetation [17]. In this study,
we utilize the RT1 model, a first-order radiative transfer model,
combined with a nonlinear least squares optimization routine to
achieve this separation [48].

The RT1 model describes the scattering response of a
vegetation-covered surface using successive orders of scattering
expansions of the radiative transfer equation. The approach
applies to a rough surface covered by a sparse distribution
of particulate media. A key assumption in this model is that
radiation scattered more than once within the vegetation layer
contributes minimally to the radar signal detected by the sensor.
This simplification leads to the optical depth (1) and single-
scattering albedo (w) model [17], where single-particle prop-
erties used in radiative transfer theory, such as the scattering
coefficient (k) and extinction coefficient (k. ), are encapsulated
in the single-scattering albedo w = :—5 and the optical depth
T = hkex. Here, h represents the height of the vegetation layer.
The backscatter coefficient (o) is represented as a power series
in K, where each term accounts for increasing scattering events

0

0 _ 27
— cos(0
0 = Opare-soil € 2

0
+ Jvegetation

+ 0(09(55) interactions

+oee 2)

For bare soil, the response is described using the BRDF, which
accounts for both the magnitude and directionality of the scat-
tered radiation. For vegetation, the response is characterized by
the volume-scattering phase function (p), and the magnitude of
the scattering response is governed by the w [49]. The RT1 model

DYNAMIC
MASKING -
(£-17 dB &= 2dB)

STATISTICAL ANALYSIS

is given by
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Here, fus represents the fraction of bare soil within the ob-
served area, and o i, denotes all first-order interaction contri-
butions, which are represented as half-space integrals over the
product of p and the BRDF.

To fully specify the RT1 model, both p and BRDF, as well as
effective vegetation parameters 7 and w, need to be parameter-
ized. These parameters must be related to biophysical variables
such as soil moisture, vegetation water content, and roughness.
The complexity of these parameterizations must be balanced
to ensure a physically meaningful representation of the scene
while maintaining computational feasibility and avoiding issues
of underdetermination in the retrieval procedures.

2) RTI Model Parametrization: The following section pro-
vides a summary of the parameterization strategy employed
in this study, along with a discussion of the implications and
influencing factors that informed the selected parameterizations.

1) Bare soil: Many semiempirical bare soil scattering models

exist in the literature that focus just on the parametrization



of the mono-static (e.g., backscattering) component of the
scattered radiation via a combination of statistical rough-
ness parameters such as correlation length (1), RMSH, and
Fresnel reflection coefficients [67], [68], [69], [73]. Never-
theless, to estimate the first-order interaction contributions
(cri?n) in (2), the complete bistatic scattering characteristics
must be parameterized.

In principle, electromagnetic scattering from a rough sur-
face can be described with the help of the IEM [70] or its
more recent successors like [IEM2M [71] or AIEM [72].
While such models are very insightful for general scat-
tering mechanisms, their use in parameter optimization,
particularly for dynamic vegetation correction over large
datasets, requires nonlinear regression that quickly be-
comes computationally prohibitive.

This study uses a scalable parametrization approach for
soil scattering behavior modeling, which is a suitable
method for big-data processing. This is achieved by em-
ploying a generalized Henyey—Greenstein function [47],
defining the bistatic scattering behavior. It also contains a
specular peak, normalized to the hemispherical reflectance
at the nadir (g = 0) and labeled as N. The width of the
specular peak is controlled by a directionality parameter
t, which varies from O for a Lambertian surface to 1 for
a mirror-like surface, whereas the parameter a permits
the introduction of anisotropy into the incidence-angle
behavior.

This parametrization separates the parameters ¢ and a,
which govern the behavior in the incidence angle of the
BRDF and are linked to soil roughness and texture, from
the parameter NV, which governs the overall scale of the
scattered radiation and is connected to soil permittivity
(e), which at microwave wavelengths is highly dependent
on the amount of moisture within the soil

N -

HG(t,0) = L Lt
’ 4T (142 — 2t cos(@)]g/2

O, = acos(fy) cos(fs) — sin(fy) sin(6) cos(po — ¢s)
Ro(t, a)

(1=
2a2t2

(1+t2+at) — /(1L + 2 + 2at)(1 + 12)
(1+ %+ 2at)

“)

Here, (0o, ¢0) and (0, ¢s) represent the directions of
the incident and scattered radiation, respectively. It is
worth noting that this approach is not based directly on
geometric, statistical roughness parameters in the form of
A and RMSH but provides a more general description of
the bistatic scattering distribution caused by wave-particle
interaction within the top few centimeters of soil. Hence,
according to the general principle of retrieval, the effect
of soil properties on the microwave backscattering coeffi-
cient ¥ (6, ¢) is described by the scattering directionality
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parameter t, adapted within the retrieval process. This
approach offers a solution that is both computationally
effective and scalable for big-data applications.

Vegetation: The scattering and absorption of incoming
radiation by vegetation are characterized by radiative
transfer parameters such as the 7 and w. In addition, the
angular scattering behavior of the vegetation is represented
by a “volume scattering phase-function” (p). Although
theoretically, the shape of p can be estimated using sta-
tistical electrodynamics by approximating vegetation el-
ements (like trunks and leaves) as simplified dielectric
shapes [74], this study’s dataset limits the possibility of
retrieving a comprehensive set of parameters governing
the incidence-angle dependency of the vegetation’s contri-
butionto g (#). Since only one incidence angle is available
per measurement, both p and w remain ambiguous param-
eters to the zero-order vegetation contribution described in
(2). Disentangling these parameters would require either
a detailed study of higher order interactions or bistatic
measurements. However, such higher order corrections
contribute minimally to the overall backscatter signal and
remain sensitive to the parameterization of the BRDF.
As a result, for monostatic measurements with limited
incidence-angle variation, retrieving vegetation direction-
ality parameters alongside (w) is practically impossible.
Therefore, an isotropic phase-function was assumed for p

PO)= 1

It is important to note that this choice influences the
magnitude of the estimated w values since the zero-order
vegetation contribution is proportional to w?p(. .. ). Any
comparison of w across studies must consider the asso-
ciated choice of p. To account for seasonal vegetation
changes, the optical depth 7 was modeled using the aux-
iliary LAI time series from the ERAS-Land dataset [58].
While the relationship between 7 and LAI is typically
complex and influenced by several physiological factors,
parameterizing this relationship at a spatial resolution
of 500 m remains challenging. Therefore, a simplified
approach was adopted, assuming a homogeneous dynamic
range [46]

&)

7 = LAI — scaled to [0, 1]. (6)

This range avoids absorption saturation in the vegetation
layer, recognizing that, at a 500 m resolution, parts of
the pixel will likely have low or moderate vegetation
cover. The use of auxiliary data inevitably introduces
uncertainties that propagate to the final model parameters,
complicating the retrieval process and potentially degrad-
ing soil moisture estimation performance. Although the
ERAS5-Land dataset has a spatial resolution of ~ 9 km and
reflects monthly climatology from the MODIS MOD12A2
LAI [58], [59], it provides a smooth, continuous time
series for estimating seasonal vegetation dynamics. How-
ever, its spatial variability is insufficient to capture abrupt
changes in o at finer resolutions like 500 m. Thus, the LAI
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TABLE II
SUMMARY OF PARAMETER SPECIFICATIONS USED IN THE RESULTS

Param Min Max Value
N 0.01 0.075 0.02
w 0.01 0.50 0.20
ts 0.01 0.50 0.15

dataset was harmonized to mitigate spatial representative-
ness issues, with the retrieved w values capturing residual
spatial variability within the RT1 parameterization.

3) Retrieval Procedure: The retrieval procedure employs a
nonlinear least squares regression utilizing the trust-region re-
flective Levenberg—Marquardt algorithm [75], as implemented
in the Python module scipy.optimize [76].

Given that the soil moisture state can vary significantly from
one timestamp to the next, a distinct N value is optimized
for each SAOCOM timestamp. According to [47], physical
plausibility considerations—based on Kirchhoff’s law and L-
band emissivity measurements—suggest that NV < 0.1. Conse-
quently, the retrieval range for IV is set between [0.01, 0.075],
with an initial value of 0.02 The actual bare-soil scattering
response Tpyre-soil 18 influenced by both NV and the directionality
parameter t, of the BRDF function [as defined in (4)]. This
parameter is estimated for each pixel as a temporally constant
value within the range of [0.01, 0.4], with a starting value of
0.2. The parameter ¢, fully specifies the bistatic soil scatter-
ing directionality required for estimating first-order interaction
contributions. It is important to note that, due to the mono-static
nature of the measurements with a limited range of incidence
angles, the bistatic part of the distribution should be regarded as
a “best-guess” rather than a precise estimate, which could only
be obtained with a true bistatic measurement setup.

The SAOCOM dataset is missing orbital data, possibly due to
larger orbital tubes or other data acquisition challenges. There-
fore, the permissible range for w is set between [0.01, 0.5]. Given
that w is the primary parameter influencing the strength of the
vegetation contribution, three different initial values (0.05, 0.20,
and 0.4) were tested to evaluate the effect of different starting
values on the parameter estimates. The summary of parameter
specification is given in Table II.

IV. RESULTS

A. Soil Moisture Retrieval Performance

This section presents the results of the parameterization of
the RT1 model applied to the time series from 1 January 2021 to
31 December 2023, using the retrieval start value w, processed
with and without the first-order interaction contribution. The soil
moisture retrieval performance is discussed here. This analysis
reveals a linear relationship between the nadir hemispherical
reflectance (/V) and the volumetric soil moisture in the topsoil
layer. Please note that all comparative analyzes are based on the
mean values of RT1 and reference datasets, including ASCAT,
SMAP, ERAS, and API. Mean values are considered due to the
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unavailability of in situ soil moisture data, making comparisons
with reference datasets more appropriate.

Fig. 4 presents the temporal evolution of VV-polarized
backscatter (¢, in dB) acquired from ascending and descending
SAOCOM orbits between 2021 and 2023. Fig. 5 illustrates the
time series of soil moisture retrieved using the RT1 model from
ascending and descending SAOCOM SAR orbits over the same
period.

Fig. 6 presents a time series comparison of soil moisture data
from multiple sources between January 2021 and December
2023. The left y-axis represents mean soil moisture levels in
m? / m? for the ASCAT, SMAP, and ERA5 datasets, while the
right y-axis displays the mean scaled RT1-SM values in per-
centage. The ASCAT and SMAP datasets, depicted with dashed
blue and orange lines, respectively, exhibit similar trends char-
acterized by rapid fluctuations across seasons, particularly after
precipitation events. In contrast, the ERAS5 dataset, represented
by a solid green line, demonstrates a more stable trend with
reduced variability. The RT1-SM values, illustrated by red dots
and scaled on the right y-axis, are compared with three reference
datasets: ASCAT, SMAP, and ERAS. The comparison between
the RT1-retrieved soil moisture and the reference datasets offers
important insights into model behavior, performance, and sea-
sonal dynamics. Notably, the RT1, ASCAT, and SMAP datasets
exhibit consistent overall trends.

B. Impact of Vegetation on Soil Moisture Retrieval Accuracy

L-band (A = 23 cm) can penetrate sparse to moderate veg-
etation canopies, interacting with both the canopy and the un-
derlying soil. In vegetated areas, the backscatter is influenced
by both the canopy and the soil surface, with signal attenuation
and scattering depending on factors such as vegetation type,
density, moisture content, and the LAI. The LAI, defined as
the ratio of leaf surface area to ground area (m?/m?), plays
a critical role in soil moisture retrieval using the RT1 model.
In such regions, LAI significantly impacts the scattering and
absorption of microwave signals emitted or reflected by the
soil surface. A higher LAI typically leads to increased canopy
scattering and reduced signal penetration, complicating the ac-
curate detection of soil moisture. In the RT1 model, vegeta-
tion parameters such as LAI are incorporated to correct for
these effects, thereby enhancing the precision of soil moisture
estimates.

Consequently, LAl is a critical parameter for evaluating RT1
soil moisture despite the ambiguity in its spatial resolution. It
facilitates the differentiation between the contributions of vege-
tation and soil moisture. Refer to Fig. 7 for further illustration.

C. Relationship Between API and RT1 SM

The API reflects the cumulative effect of prior rainfall on
soil moisture levels. The relationship between the API and RT1
soil moisture is a critical factor in understanding hydrological
processes and soil moisture dynamics. An explanation of the
APl is provided in Section III. Fig. 8 illustrates the relationship
between the API and RT1 soil moisture, revealing a significant
delay in the time series. This delay suggests that precipitation
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Fig. 4. Time series of VV-polarized backscatter sigma (dB) acquired from ascending (blue) and descending (green) SAOCOM orbital geometries. The plot
illustrates temporal variations in SAR backscatter over the study area between 2021 and 2023 (Latitude: 42.017079, Longitude: 14.869953).
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Fig. 5. Time series of mean-scaled soil moisture retrieval (RT1-SM) derived from ascending and descending SAOCOM orbits over the study area from 2021 to
2023. Ascending soil moisture is illustrated in blue color, and descending soil moisture is illustrated in green color.

does not directly lead to immediate changes in soil moisture
levels due to the involvement of various complex processes,
including percolation, runoff, and evapotranspiration.

From Fig. 9, the observed cross-correlation lags of 0 lag
(corresponds to 5 days based on the temporal resolution) and 12
lag (corresponds to 60 days based on the temporal resolution)
between the API and RT1 soil moisture. Please note that the
effects may not be real due to the lack of physical evidence.
Further details are discussed in Section V.

D. Statistical Intercomparison

Fig. 10 illustrates scatter plots demonstrating the correlations
between RT'1-SM and the reference datasets (swll, ASCAT-SM,
SMAP-SM, and API), each highlighted with a Pearson’s cor-
relation coefficient. For each pair, the scatter points represent
individual data points, with a trendline indicating the overall
direction of the relationship. Plots with higher Pearson’s corre-
lation values, such as RT1-SM versus ASCAT-SM (r = 0.66)
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Fig. 6. Mean soil moisture time-series trends [2021-2023]: RT1-SM (dark red dots) compared to ASCAT (blue), SMAP (orange), and ERAS (green). The gray

line represents the maximum threshold for soil moisture, while the vertical blue line indicates the maximum soil moisture observed in the time series.
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Fig. 7. Comparative time-series trends of RT1-SM (blue color) and LAI (green color) [2021-2023].

and SMAP-SM versus swll (ERA-5) (r = 0.88), demonstrate
a clearer, more linear relationship. This suggests that these
variables closely align in their representation of soil moisture
dynamics. In contrast, plots with lower r values (e.g., RT1-SM
versus SMAP-SM, r = 0.43) show more scatter around the trend

line, suggesting that while the datasets are related, they capture
different nuances of soil moisture.

Fig. 11 shows the Pearson’s correlation heatmap, illus-
trating the strength and direction of linear relationships be-
tween RT1 retrieved soil moisture and reference datasets
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Fig. 8. Comparative time-series trends of RT1-SM (blue color) and API (green color) [2021-2023].
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(ASCAT-SM, SMAP-SM, swll, and API). RT1 shows a strong
positive correlation with ASCAT-SM, indicating that it closely
tracks soil moisture patterns measured by ASCAT, likely re-
sponding similarly to changes in conditions despite potential
differences in surface handling. The correlation with SMAP-SM

is moderate, suggesting notable differences in measurement
approaches, possibly due to variations in sensor technology or
resolution. Similarly, RT1 has a moderate correlation with swll,
indicating some alignment but not fully capturing the same mois-
ture dynamics. In contrast, RT1 exhibits a very strong correlation
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Fig. 10.

with the API, highlighting its responsiveness to recent rainfall
and moisture accumulation, particularly during wetter periods.
Overall, RT1 aligns well with ASCAT-SM and API, capturing
short-term soil moisture fluctuations effectively while showing
more moderate correlations with SMAP-SM and swl1, reflecting
differences in how these datasets model soil moisture. RT1-SM
correlates most strongly with ASCAT-SM (r = 0.66), indicating
that these two datasets likely captured the same soil moisture
dynamics.

1) Seasonality Decomposition: Seasonality decomposition
is a statistical technique employed to analyze and elucidate the
underlying components of a time series dataset by separating
it into distinct elements: trend, seasonality, and residuals (or
noise). This technique can be effectively implemented using the
seasonaldecompose function from the Python package.
The trend component represents the long-term progression of
the series, indicating the general direction in which the data
are moving over time. The seasonal component captures regular
repeating patterns that occur at fixed intervals (e.g., weekly),
reflecting the influence of cyclical factors such as seasonal cy-
cles. The residual component comprises random fluctuations or
irregularities that cannot be attributed to either trend or seasonal
effects. By decomposing a time series into these components,
analysts can gain a deeper understanding of the data’s behavior
and identify the underlying patterns that influence the observed
values. Fig. 12 illustrates the seasonal variation of RT1-SM and
ASCAT data. The ASCAT data were included in the analysis
due to its high correlation with RT1-SM.

2) Soil Moisture Anomalies: Anomalies refer to deviations
from the expected or average behavior of a dataset, highlighting
unusual variations that can provide insights into underlying
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patterns or changes within the system being investigated. In our
analysis, we employed a 30-day rolling mean to capture the
underlying trends in the dataset while smoothing out short-term
fluctuations. This approach allows for a clearer observation of
the seasonal patterns and variations present in the data.

In the context of time series analysis, anomalies are calculated
by subtracting the smoothed or seasonal component (such as the
30-day rolling mean) from the original values. This methodology
allows researchers to identify significant deviations, whether
positive or negative that may signal extraordinary events or
fundamental shifts in the underlying process. By analyzing these
anomalies, researchers can uncover trends, diagnose potential
issues, and enhance their understanding of the dynamics influ-
encing the dataset. Fig. 13 depicts the anomalies for the 30-day
rolling period, calculated as the seasonality subtracted from the
actual datasets.

3) Statistical Intercomparison of RT1-SM With SMAP, AS-
CAT, and ERAS5 Using RMSE, and Bias: To evaluate the per-
formance of RT1-retrieved soil moisture, originally expressed
as % saturation, the values were converted to volumetric units
(m?/m?) using

Orr1 = fs X ¢ @)
where Ot is the volumetric soil moisture, fs is the % sat-
uration output of the RT1 model, and ¢ = 0.45 was adopted
based on values retrieved from the NASA GLDAS soil porosity
database [88].

Pairwise statistical comparisons were performed between
RT1-SM and other datasets (SMAP-SM, ASCAT-SM, ERAS-
swll) using the following metrics:
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1) Mean squared error (MSE):

n

_ 1 2
MSE_nZ(yZ ;)2 )

i=1
2) RMSE:

RMSE = VMSE = \/ % Z;l(yi —z)%  (9)

3) Bias:

Bias — — > (i — ) (10)
i
where
e 1, reference soil moisture value at time step 7 (e.g., SMAP-
SM, ASCAT-SM, or ERA5-swll);

e y, corresponding RT1-derived soil moisture value;

® 7 total number of valid (nonmissing) paired observations.

To assess the agreement between RT1-derived soil moisture
and reference datasets, three standard statistical metrics were
employed. MSE quantifies the average of the squared differences
between paired observations, capturing both the variance and

-0.8

-0.7

Heatmap of Pearson’s correlation coefficients between RT1-SM and reference dataset.

systematic deviation between the datasets. RMSE, being the
square root of MSE, retains the original units (m®/m?) and
provides an interpretable measure of the overall error magnitude.
The bias represents the average difference between the reference
and target values, indicating whether the retrievals systemat-
ically overestimate or underestimate soil moisture. Together,
these metrics offer a comprehensive evaluation of retrieval
accuracy and consistency [87]. API was deliberately omitted
from the evaluation to avoid inconsistencies arising from unit
discrepancies.
Table III presents the summary of error metric results.

V. DISCUSSION

This study constitutes the first regional-scale application of
SAOCOM L-band SAR data for soil moisture retrieval using the
RT1 model, specifically adapted for landslide-prone regions. By
integrating dual-polarimetric L-band SAR observations within
the RT1 framework, the research advances the operational utility
of SAOCOM for landslide monitoring.

Fig. 4 presents the backscatter signal, which is influenced by
soil moisture, vegetation water content, and surface roughness.
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Fig. 12.  Seasonality decomposition of RT1-SM and ASCAT-SM [2021-2023].
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Fig. 13.  Soil moisture anomalies (The blue shaded curve represents the PDF for ASCAT-SM anomalies, and the orange shaded curve represents the PDF for
RT1-SM anomalies.

Overall, the backscatter exhibits clear seasonal patterns, with  sparse vegetation. Fig. 5 presents the time series of soil moisture
higher o values typically observed during wetter months— retrievals, revealing distinct seasonal variations. Peak soil mois-
likely reflecting increased soil dielectric constant and vegetation  ture values are typically observed during wetter months, while
water content. Conversely, lower backscatter values correspond  lower values are observed during the summer season, likely
to drier conditions, characterized by reduced soil moisture and  due to elevated temperatures and increased evapotranspiration.
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TABLE III
SUMMARY OF PAIRWISE COMPARISONS AMONG SOIL MOISTURE DATASET
(VOLUMETRIC UNITS, M3 /M3)

Comparison MSE | RMSE Bias

SMAP-SM vs RT1-SM 0.0094 | 0.0968 | -0.0400
ASCAT-SM vs RT1-SM 0.0088 | 0.0936 | -0.0603
ERAS5-swll vs RT1-SM 0.0097 | 0.0983 | -0.0584
SMAP-SM vs ASCAT-SM | 0.0057 | 0.0754 | 0.0125
SMAP-SM vs ERAS5-swll | 0.0150 | 0.1225 | -0.1107
ASCAT-SM vs ERAS-swll | 0.0225 | 0.1498 | -0.1243

Although both ascending and descending orbital tracks exhibit
similar temporal patterns, differences in magnitude may result
from variations in surface conditions at the time of acquisition.
The combined use of both orbit directions enhances temporal
resolution and contributes to more reliable and continuous soil
moisture monitoring.

The retrieved soil moisture estimates were rigorously
validated against multiple independent reference datasets—
including ASCAT, ERAS5-Land, and SMAP—to ensure cross-
sensor consistency and to evaluate model performance across
varying spatial and temporal scales. Fig. 6 illustrates that during
wet seasons (spring/summer), the RT1 retrievals show a stronger
correlation with ASCAT and SMAP, particularly during peri-
ods of increased soil moisture. Seasonal patterns are apparent
across all datasets, with ASCAT and SMAP displaying more
pronounced variability than ERAS, which provides a smoother,
less variable representation of soil moisture. Although RT1
retrievals are not continuous, they generally follow the seasonal
patterns of the other datasets, particularly aligning with moisture
peaks during wetter periods (October—November). While the
RT1 retrievals effectively capture critical points within broader
soil moisture trends, their lack of continuous temporal cov-
erage makes them less suitable for comprehensive monitor-
ing compared to the other datasets. Nevertheless, Fig. 6 illus-
trates the general consistency of the RT1 model with satellite
observations and reanalysis data despite its limited temporal
resolution. Brocca et al. [61] conducted a study to test and
evaluate various soil moisture products in Italy, including those
derived from Sentinel-1 datasets for the RT 1 model. The findings
revealed both the limitations and potential of the assessed prod-
ucts. Sentinel-1-based products, such as S1-COP and S1-RT1,
demonstrated the ability to reproduce high-resolution spatial
patterns, effectively detecting localized events related to irri-
gation, fire, and precipitation. Brunelli et al. [62] employed
a change detection algorithm over the Po Valley in Italy us-
ing SAOCOM L-band data to map soil moisture beneath the
vegetation layer. Their preliminary results demonstrated the
potential of SAOCOM data for soil moisture retrieval under
moderately vegetated conditions. However, in more complex
environments—particularly those with dense vegetation cover—
the change detection approach may be limited in its ability to
fully represent vegetation structure and dynamics. In such cases,
physically based models like RT1 offer a more comprehensive
framework, as they account for bistatic scattering and decom-
pose total backscatter into surface and volume contributions.
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The selection of an appropriate soil moisture retrieval model is
application-specific. For instance, in densely vegetated regions
such as the Petacciato landslide area, advanced radiative transfer
modeling can provide a more accurate characterization of veg-
etation effects and thereby improve soil moisture estimation.

As LAI increases, particularly during spring and summer
(refer to Fig. 7), the soil moisture values retrieved by the RT1
model become less variable. This is likely due to the canopy
absorbing or scattering a substantial portion of the microwave
signal, limiting the model’s ability to detect changes in soil
moisture. In addition, during these periods, soil moisture values
may appear lower or less responsive because of interception
by the vegetation, such as rainfall being absorbed by leaves. In
contrast, during fall and winter, when LAI decreases, the RT1
model captures soil moisture fluctuations more clearly. With less
vegetation, the microwave signal interacts more directly with the
soil surface, improving the accuracy of soil moisture retrieval.
This analysis underscores the importance of accounting for
vegetation effects in radiative transfer models when estimating
soil moisture in vegetated areas.

Fig. 8 illustrates the relationship between the API and RT1-
SM, highlighting how the response of RT1 soil moisture to
precipitation is influenced by various hydrological processes that
unfold over time. Following a rainfall event, water must infiltrate
the soil surface, saturate the upper layers, and gradually percolate
downward, thereby affecting deeper soil moisture levels. In
addition, processes such as evaporation and transpiration further
complicate this relationship, as they can reduce moisture levels
before the soil equilibrates with the newly added water. This
observed delay underscores the importance of considering the
temporal dynamics of soil moisture in response to precipitation,
particularly when assessing potential impacts on hydrological
behavior and slope stability, such as in landslide-prone areas. De
Moraes et al. [79] describe the API as a method for estimating
soil moisture. The study emphasizes the establishment of thresh-
olds based on landslide occurrences to enhance the prediction of
such events. The API demonstrates a linear relationship with soil
moisture, making it a crucial parameter for landslide prediction
and the development of early warning systems for mass move-
ments. Zhao et al. [78] compared the predictive performance of
RS thresholds with rainfall thresholds, finding that RS thresholds
offer superior prediction capabilities characterized by higher
hit rates and lower false alarm rates. These positive results
suggest that the modified API provides improved performance
in indexing soil moisture conditions, enhancing its utility for soil
moisture estimation and related applications.

Fig. 9 illustrates that a lag of O indicates precipitation can
immediately influence soil moisture levels. This immediate re-
sponse is critical for understanding how initial rainfall saturates
the upper soil layers, potentially triggering rapid changes in
slope stability. Such saturation can increase pore pressure and
reduce the soil’s shear strength, thereby making slopes more
vulnerable to failure and significantly heightening the risk of
landslides. Conversely, a lag of 12 highlights the delayed effects
of precipitation on soil moisture, indicating that significant
changes in RT1-SM occur approximately 60 days after rainfall
events. Understanding these temporal dynamics is critical for
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managing the risk of slow-moving landslides, as it provides
valuable insights for both immediate responses to rainfall and
long-term monitoring strategies to ensure slope stability.

Figs. 10 and 11 illustrate that while RT1-SM shows a positive
correlation with all datasets, the strength of the correlation
varies. These variations are likely attributable to differences in
how each dataset measures or represents soil moisture, such
as differences in sensor type, spatial resolution, temporal res-
olution, or underlying model assumptions. Notably, RT1-SM
exhibits a strong correlation with ASCAT data, while SMAP
and ERA-5 also demonstrate significant intercorrelation.

The trend component of the seasonality decomposition,
shown in Fig. 12, exhibits similar characteristics between
datasets. However, RT1 demonstrates a more pronounced abil-
ity to capture seasonal cycles compared to the ASCAT data.
Conversely, the residual components display comparable be-
havior, reflecting consistency in the representation of irregular
variations.

Fig. 13 illustrates the PDFs of two sets of anomaly values over
this period, with the blue-shaded area representing the PDF of
ASCAT-SM Anomaly and the orange-shaded area correspond-
ing to RT1-SM Anomaly. The shapes of the two distributions
are quite similar, indicating that both ASCAT-SM and RT1-SM
anomalies exhibit comparable behavior over time. Both PDFs
peak near zero, meaning that for both datasets, most of the
anomalies are small (close to their seasonal averages). The
overlap between the two distributions is significant, showing
that the anomalies from both datasets tend to fall within similar
ranges. This suggests that both datasets capture variations in
soil moisture in a similar way, which is expected given that
both represent soil moisture conditions. The anomalies for both
datasets range roughly between —0.6 and 0.4. This means that
the deviations from the seasonal averages in both datasets can
go below or above their mean values by up to about 0.6 and
0.4, respectively. A reported Pearson correlation coefficient of
0.67 suggests a moderate to strong positive linear relationship
between the two dataset, implying that as anomalies in one
dataset increase, those in the other dataset also tend to rise.
Overall, the plot shows that both ASCAT-SM and RT1-SM
anomalies have similar distributions and tend to follow similar
patterns over time, as evidenced by the overlap in their PDFs.

The performance of RT1-derived soil moisture estimates
was assessed through pairwise comparisons with satellite-based
SMAP, ASCAT, and ERAS5-swll datasets using standard error
metrics: mean squared error (MSE), root mean squared er-
ror (RMSE), bias, and Peasrson’s correlation. The comparison
with ASCAT-SM yielded the lowest RMSE (0.0936 m?/m?),
lowest MSE (0.0088), and the highest correlation (0.6619),
indicating that RT1 aligns more closely with active microwave
observations. In contrast, comparisons with SMAP-SM and
ERAS-swll resulted in slightly higher RMSE values (0.0968 and
0.0983 m3/m?, respectively) and moderate correlations (0.4312
and 0.4754), accompanied by systematic underestimation with
biases of —0.0400 and —0.0584 m?/m?, respectively. Notably,
the intersensor comparisons among the reference datasets them-
selves (e.g., SMAP versus ERAS5-swll and ASCAT versus
ERAS5-swll) exhibited even larger discrepancies, with RMSE
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values up to 0.1498 m? /m? and biases exceeding —0.12 m? /m3.
These results indicate that the RT1 retrievals fall within the
expected range of interproduct variability and exhibit reliable
performance, particularly in agreement with ASCAT. However,
the consistent negative bias observed across all RT1 compar-
isons suggests a need for further refinement, potentially through
improved parameterization strategy in future study.

Higher resolution soil moisture data (with spatial resolutions
of tens of meters or finer) can significantly improve the un-
derstanding of how soil moisture variations influence relatively
small-scale features, such as landslides. While landslides often
measure only a few tens of meters in length and width, they can
occasionally be much larger. Soil moisture exhibits considerable
spatial variability even over small areas, driven by factors such as
slope inclination and aspect, differences in material properties,
and varying conditions of moisture recharge and drainage.

Liaoetal. [63] emphasized the need for high-resolution spatial
and temporal measurements of near-SSM in landslide-prone
regions, employing airborne UAVSAR L-band data. The study
applies a forward scattering model for soil moisture retrieval
over grasslands. However, in this study, we focused on large-
scale soil moisture variations due to the absence of in situ data
for validation at finer spatial scales. Soil moisture dynamics are
significantly influenced by complex topography, where factors
such as slope, aspect, cultivation patterns, proximity to stream
networks, land use land cover changes, and surface runoff play
critical roles. In addition, the dense vegetation within the study
area poses a challenge by attenuating microwave signals, thereby
complicating soil moisture retrieval and potentially introducing
inaccuracies. The absence of in situ sensors for validation further
constrains the calibration and validation of SAR-derived results.

A primary limitation of the RT1 model is its restricted set
of predefined BRDFs and volume-scattering phase functions,
which currently includes only a few basic examples. Although
future versions are expected to support more advanced scattering
distributions, such as delta-peaked functions, these have not yet
been implemented. In addition, when the number of expan-
sion coefficients (ncoefs > 20) for BRDF or phase functions
becomes large, the model may suffer from numerical preci-
sion errors, limiting its ability to accurately represent complex
anisotropic scattering in heterogeneous surface conditions com-
mon to landslide-prone regions.

VI. CONCLUSION

This study represents the first evaluation of the RT1 mod-
eling framework’s capability to retrieve soil moisture using
SAOCOM L-band SAR backscatter. It emphasizes the unique
advantages of employing SAOCOM data and provides a com-
prehensive analysis of retrieval performance over a three-year
period (2021-2023) in the absence of ground-truth measure-
ments. The findings demonstrate a strong correlation with the
ASCAT dataset, achieving a Pearson’s correlation coefficient
of 0.67, thereby underscoring the potential of resampled SAO-
COM SAR backscatter ¢° for soil moisture retrieval at a re-
gional scale. In contrast, moderate correlations were found with
the SMAP and ERAS5 soil moisture datasets, while the API
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exhibited a Pearson’s correlation of 0.55. RT1 proves to be
a flexible and adaptable approach that performs effectively in
this application. In addition, the incorporation of rainfall data
and the API enhances the robustness of the results, offering
a more comprehensive approach to landslide risk assessment.
This research offers new insights into soil moisture dynamics
in landslide-prone areas, presenting a promising solution for
improving landslide monitoring and reducing the impacts of
these natural disasters on vulnerable communities.

To correct for effects induced by seasonal variability in the
vegetation cover, the parametrization employs an LAI time
series, scaled to a unified range to mimic the temporal signal
of the associated vegetation optical depth (7). The spatial vari-
ability of vegetation coverage was accounted for by retrieving a
temporally constant estimate of the single-scattering albedo (w).
The assumption of a unified dynamic range for (7), together
with a spatially varying (w), proved to be a robust method
for correcting long-term vegetation dynamics with a minimal
number of unknown variables.

This study reveals significant cross-correlation lags of 0 days
and 12 days between the API and RT1-SM, which are critical for
understanding slow-moving landslides. The 0-day lag indicates
that rainfall can immediately affect soil moisture, leading to
surface layer saturation that increases pore pressure and de-
creases soil shear strength, thereby heightening landslide risk.
In contrast, the 12-day lag reveals that notable changes in RT1
SM occur roughly 12 days postrainfall, suggesting that moisture
accumulation over time can further elevate the risk of slope
instability in slow-moving landslides.

Seasonal variations in RT1 soil moisture were analyzed along-
side ASCAT data, with both datasets exhibiting similar trends.
However, RT1 captured seasonal cycles more distinctly than
ASCAT. Residual components from both datasets displayed
comparable patterns, reinforcing the reliability of the RT1 frame-
work.

The proposed methodology represents a significant advance-
ment in soil moisture retrieval, particularly for regional-scale
landslide monitoring applications where in situ soil moisture
data are often unavailable. By leveraging the enhanced vegeta-
tion penetration capabilities of L-band SAR and the novel RT1
radiative transfer model, this study improves the accuracy of soil
moisture retrieval. The strong correlations between SAR-based
soil moisture estimates and regional-scale datasets confirm the
robustness of this approach, establishing it as a reliable tool for
continuous soil moisture monitoring.

Future work will focus on achieving soil moisture retrieval at
spatial resolutions ranging from 10 to 50 m, enabling detailed
investigations into localized soil moisture dynamics and their
impacts on small-scale geomorphic features such as landslides.
This advancement is expected to provide a more precise under-
standing of the interactions between soil moisture and geomor-
phic processes.

To support these efforts, the planned installation of in situ
sensors in landslide-prone regions will enable continuous mon-
itoring of soil moisture. These sensors will deliver real-time
data, providing valuable insights into soil moisture dynamics.
Future research will also explore the feasibility of using this
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approach to retrieve high-resolution soil moisture data at a local
scale, which is critical for understanding moisture variations
that significantly influence slope stability and the occurrence of
shallow landslides.

Moreover, obtaining high-resolution soil moisture data at
spatial resolutions of 10-50 m will allow for a more detailed
analysis of spatial variability, which is crucial for examining
localized effects on slope stability. A sensitivity analysis will
also be conducted to evaluate how different land cover types
affect soil moisture retrieval at local scales. Soil moisture re-
trieval will be performed using multifrequency SAR datasets—
Cosmo-SkyMed (X -band), Sentinel-1 (C-band), and SAOCOM
(L-band)—to enable a more comprehensive comparison across
frequencies. This analysis will provide insights into the influence
of vegetation types and land use practices on soil moisture
dynamics, enhancing the predictive capabilities for landslide
risks and informing the development of effective mitigation
strategies.

ACKNOWLEDGMENT

The authors would like to thank the Italian Space Agency
(ASI) and CONAE for providing the SAOCOM datasets for my
scientific research [57], the TU Wien Department of Geodesy
and Geoinformation (Mr. Pavan Muguda Sanjeevamurthy) for
supplying the ASCAT data and the necessary support. The
processing and analysis of the results presented in this article
were conducted using the RT1 Python package [48]. They also
would like to thank to the various open-source packages that con-
tributed to this work: NumPy [85], SciPy [76], and Pandas [86].

Credit authorship contribution statement: Divyeshkumar
Rana: Data collection and processing, conceptualization,
methodology, formal analysis, investigation, visualization,
writing—Original draft. Raphael Quast: conceptualization,
formal analysis, investigation, visualization, writing—review
and editing. Wolfgang Wagner: Conceptualization, methodol-
ogy, investigation, writing—review and editing, supervision.
Paolo Mazzanti: Conceptualization, methodology, investigation,
writing—review and editing, supervision. Francesca Bozzano:
Investigation, writing—review and editing, supervision.

REFERENCES

[1] M. J. Froude and D. N. Petley, “Global fatal landslide occurrence
from 2004 to 2016,” Natural Hazards Earth Syst. Sci., vol. 18, no. 8,
pp- 2161-2181, 2018.

[2] D. Kirschbaum, T. Stanley, and Y. Zhou, “Spatial and temporal analysis
of a global landslide catalog,” Geomorphology, vol. 249, pp. 4-15, 2015.

[3] L.Brocca, F. Ponziani, T. Moramarco, F. Melone, N. Berni, and W. Wagner,
“Improving landslide forecasting using ASCAT-derived soil moisture data:
A case study of the torgiovannetto landslide in central Italy,” Remote Sens.,
vol. 4, no. 5, pp. 1232-1244, 2012.

[4] D.Rana, P. Mazzanti, and F. Bozzano, “Estimation of high-resolution soil
moisture from dual frequency synthetic aperture radar (SAOCOM L-band
& sentinel-1 C-band) dataset in the petacciato landslide area, Italy,” in
Proc. 15th Eur. Conf. Synthetic Aperture Radar, 2024, pp. 387-392.

[5] R. M. Iverson, “Landslide triggering by rain infiltration,” Water Resour.
Res., vol. 36, no. 7, pp. 1897-1910, 2000.

[6] T. A. Bogaard and R. Greco, “Landslide hydrology: From hydrology
to pore pressure,” Wiley Interdiscipl. Reviews: Water, vol. 3, no. 3,
pp. 439-459, 2016.

[71 D. Rana, P. Mazzanti, and F. Bozzano, “Assessing the correlation of
time-series soil moisture and ground deformation at petacciato landslide,



16000

(8]

[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

Italy,” EGU General Assem. 2024, Vienna, Austria, Apr. 14-19, 2024,
doi: 10.5194/egusphere-egu24-912.

M. Berti and A. Simoni, “Field evidence of pore pressure diffusion
in clayey soils prone to landsliding,” J. Geophysical Res.: Earth Surf.,
vol. 115, no. F3, 2010.

K. Terzaghi, “Mechanism of landslides,” Appl. Geology Eng. Practice,
Sidney Paige, 1950.

S. L. Gariano and F. Guzzetti, “Landslides in a changing climate,” Earth-
Sci. Rev., vol. 162, pp. 227-252, 2016.

P. Lacroix, A. L. Handwerger, and G. Biévre, “Life and death of slow-
moving landslides,” Nature Rev. Earth Environ., vol. 1, no. 8, pp. 404-419,
2020.

A. L. Handwerger, E. J. Fielding, M.-H. Huang, G. L. Bennett, C. Liang,
and W. H. Schulz, “Widespread initiation, reactivation, and acceleration of
landslides in the northern california coast ranges due to extreme rainfall,”
J. Geophys. Research: Earth Surf., vol. 124, no. 7, pp. 1782-1797, 2019.
W. H. Schulz, J. B. Smith, G. Wang, Y. Jiang, and J. J. Roering, “Clayey
landslide initiation and acceleration strongly modulated by soil swelling,”
Geophys. Res. Lett., vol. 45, no. 4, pp. 1888-1896, 2018.

S.-B. Kim, M. Moghaddam, L. Tsang, M. Burgin, X. Xu, and E. G. Njoku,
“Models of L-band radar backscattering coefficients over global terrain for
soil moisture retrieval,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2,
pp. 1381-1396, Feb. 2014.

W. Wagner et al., “Operational readiness of microwave remote sensing
of soil moisture for hydrologic applications,” Hydrol. Res., vol. 38, no. 1,
pp. 1-20, 2007.

M. Zribi et al., “Analysis of L-band SAR data for soil moisture estimations
over agricultural areas in the tropics,” Remote Sens., vol. 11, no. 9, 2019,
Art. no. 1122.

FE. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing:
Active and Passive. Volume 3-From Theory to Applications. Dedham, MA,
USA: Artech House, 1986.

Y. H. Kerr, P. Waldteufel, J.-P. Wigneron, J. Martinuzzi, J. Font, and M.
Berger, “Soil moisture retrieval from space: The soil moisture and ocean
salinity (SMOS) mission,” IEEE Trans. Geosci. Remote Sens., vol. 39,
no. 8, pp. 1729-1735, Aug. 2001.

D. Entekhabi et al., “The soil moisture active passive (SMAP) mission,”
Proc. IEEE, vol. 98, no. 5, pp. 704-716, May 2010.

W. Wagner et al., “The ascat soil moisture product: A review of its speci-
fications, validation results, and emerging applications,” Meteorologische
Zeitschrift, vol. 22, pp. 5-33, 2013, doi: 10.1127/0941-2948/2013/0399.
J. Peng et al., “A roadmap for high-resolution satellite soil moisture
applications—confronting product characteristics with user requirements,”
Remote Sens. Environ., vol. 252, 2021, Art. no. 112162.

A. Balenzano et al., “Sentinel-1 soil moisture at 1km resolution: A vali-
dation study,” Remote Sens. Environ., vol. 263, 2021, Art. no. 112554.
B. Bauer-Marschallinger et al., “Toward global soil moisture monitoring
with sentinel-1: Harnessing assets and overcoming obstacles,” I[EEE Trans.
Geosci. Remote Sens., vol. 57, no. 1, pp. 520-539, Jan. 2019.

H. H. Nguyen, S. Cho, J. Jeong, and M. Choi, “A D-vine copula quantile
regression approach for soil moisture retrieval from dual polarimetric sar
sentinel-1 over vegetated terrains,” Remote Sens. Environ., vol. 255, 2021,
Art. no. 112283.

H.-J. F. Benninga, R. van der Velde, and Z. Su, “Sentinel-1 soil moisture
content and its uncertainty over sparsely vegetated fields,” J. Hydrol. X,
vol. 9, 2020, Art. no. 100066.

L. Zhu, R. Si, X. Shen, and J. P. Walker, “An advanced change detection
method for time-series soil moisture retrieval from sentinel-1,” Remote
Sens. Environ., vol. 279, 2022, Art. no. 113137.

D. Mengen, T. Jagdhuber, A. Balenzano, F. Mattia, H. Vereecken, and C.
Montzka, “High spatial and temporal soil moisture retrieval in agricultural
areas using multi-orbit and vegetation adapted sentinel-1 SAR time series,”
Remote Sens., vol. 15, no. 9, 2023, Art. no. 2282.

N. Bhogapurapu, S. Dey, A. Bhattacharya, C. Lépez-Martinez, I. Hajnsek,
and Y. S. Rao, “Soil permittivity estimation over croplands using full
and compact polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 4415917.

L. Zhuo, Q. Dai, D. Han, N. Chen, B. Zhao, and M. Berti, “Evaluation of
remotely sensed soil moisture for landslide hazard assessment,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 1, pp. 162-173,
Jan. 2019.

I. Hajnsek, T. Jagdhuber, H. Schon, and K. P. Papathanassiou, “Potential
of estimating soil moisture under vegetation cover by means of polSAR,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 2, pp. 442-454, Feb. 2009.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

M. Hosseini and H. McNairn, “Using multi-polarization C-and L-band
synthetic aperture radar to estimate biomass and soil moisture of wheat
fields,” Int. J. Appl. Earth Observation Geoinformation, vol. 58, pp. 50-64,
2017.

H. Maetal., “An assessment of 1-band surface soil moisture products from
SMOS and SMAP in the tropical areas,” Remote Sens. Environ., vol. 284,
2023, Art. no. 113344s.

Y. Xu,J. Kim, D. L. George, and Z. Lu, “Characterizing seasonally rainfall-
driven movement of a translational landslide using SAR imagery and
SMAP soil moisture,” Remote Sens., vol. 11, no. 20, 2019, Art. no. 2347.
H. Dadkhah, D. Rana, E. Ghaderpour, and P. Mazzanti, “Integrating multi-
sensor remote sensing data for comprehensive spatio-temporal wildfire-
assessment in campania provinces— Italy,” in Proc. Copernicus Meetings,
2024.

Q. Gao, M. Zribi, M. J. Escorihuela, and N. Baghdadi, “Synergetic use
of sentinel-1 and sentinel-2 data for soil moisture mapping at 100m
resolution,” Sensors, vol. 17, no. 9, 2017, Art. no. 1966.

H. Ma et al., “Surface soil moisture from combined active and passive
microwave observations: Integrating ASCAT and SMAP observations
based on machine learning approaches,” Remote Sens. Environ., vol. 308,
2024, Art. no. 114197.

O. Merlin, C. Rudiger, A. Al Bitar, P. Richaume, J. P. Walker, and Y.
H. Kerr, “Disaggregation of SMOS soil moisture in southeastern Aus-
tralia,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1556-1571,
May 2012.

S. Paloscia, S. Pettinato, E. Santi, C. Notarnicola, L. Pasolli, and A.
Reppucci, “Soil moisture mapping using sentinel-1 images: Algorithm
and preliminary validation,” Remote Sens. Environ., vol. 134, pp. 234-248,
2013.

M. Foucras, M. Zribi, C. Albergel, N. Baghdadi, J.-C. Calvet, and T.
Pellarin, “Estimating 500-m resolution soil moisture using sentinel-1 and
optical data synergy,” Water, vol. 12, no. 3, 2020, Art. no. 866.

M. El Hajj, N. Baghdadi, and M. Zribi, “Comparative analysis of the
accuracy of surface soil moisture estimation from the C-band L-bands,” Int.
J. Appl. Earth Observation Geoinformation, vol. 82,2019, Art.no. 101888.
E. Ghaderpour, H. Dadkhah, H. Dabiri, F. Bozzano, G. Scarascia Mug-
nozza, and P. Mazzanti, “Precipitation time series analysis and forecasting
for italian regions,” Engi. Proc., vol. 39, no. 1, 2023, Art. no. 23.

H. Dadkhah, D. Rana, E. Ghaderpour, M. Ferrarotti, and P. Mazzanti,
“Multi-sensor approach to assessing the wildfire severity-induced land-
slide risk: A case of ischia island, Italy,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., 2024, pp. 3448-3452.

A. Graham and R. Harris, “Extracting biophysical parameters from re-
motely sensed radar data: A review of the water cloud model,” Prog. Phys.
Geogr., vol. 27, no. 2, pp. 217-229, 2003.

A. Wicki, P. Lehmann, C. Hauck, S. I. Seneviratne, P. Waldner, and
M. Stihli, “Assessing the potential of soil moisture measurements for
regional landslide early warning,” Landslides, vol. 17, pp. 1881-1896,
2020.

T. Jagdhuber, 1. Hajnsek, K. P. Papathanassiou, and A. Bronstert, “Soil
moisture retrieval under agricultural vegetation using fully polarimet-
ric SAR,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2012,
pp. 1481-1484.

R. Quast, W. Wagner, B. Bauer-Marschallinger, and M. Vreugdenhil, “Soil
moisture retrieval from sentinel-1 using a first-order radiative transfer
model—A case-study over the Po-valley,” Remote Sens. Environ., vol. 295,
2023, Art. no. 113651.

R. Quast, C. Albergel, J.-C. Calvet, and W. Wagner, “A generic first-
order radiative transfer modelling approach for the inversion of soil and
vegetation parameters from scatterometer observations,” Remote Sens.,
vol. 11, no. 3, 2019, Art. no. 285.

R. Quast, “RT1,” 2021. [Online]. Available: https://rt]1.readthedocs.io/en/
latest/

R. Quast and W. Wagner, “Analytical solution for first-order scattering in
bistatic radiative transfer interaction problems of layered media,” Appl.
Opt., vol. 55, no. 20, pp. 5379-5386, 2016.

S. Lignon, F. Laouafa, F. Prunier, H. D. V. Khoa, and F. Darve, “Hydro-
mechanical modelling of landslides with a material instability criterion,”
Geotechnique, vol. 59, no. 6, pp. 513-524, 2009.

C. R. Group, “Geotechnical report for Petacciato landlside,” Sapienza
Univ. Rome, Rome, Italy, Tech. Rep., 2022.

F. Fiorillo, “Geological features and landslide mechanisms of an unstable
coastal slope (Petacciato, Italy),” Eng. Geol., vol. 67, no. 3/4, pp. 255-267,
2003.


https://dx.doi.org/10.5194/egusphere-egu24-912
https://dx.doi.org/10.1127/0941-2948/2013/0399
https://rt1.readthedocs.io/en/latest/
https://rt1.readthedocs.io/en/latest/

RANA et al.: SOIL MOISTURE RETRIEVAL IN SLOW-MOVING LANDSLIDE REGION USING SAOCOM L-BAND

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

M. Fiorucci, S. Martino, M. Della Seta, L. Lenti, and A. Mancini, “Seismic
response of landslides to natural and man-induced ground vibrations:
Evidence from the petacciato coastal slope (central Italy),” Eng. Geol.,
vol. 309, 2022, Art. no. 106826.

M. Fiorucci et al., “Long-term hydrological monitoring of soils in the
terraced environment of cinque terre (North-Western Italy),” Front. Earth
Sci., vol. 11, 2023, Art. no. 1285669.

S. Tarquini and L. Nannipieri, “The 10 m-resolution tinitaly DEM as a
trans-disciplinary basis for the analysis of the italian territory: Current
trends and new perspectives,” Geomorphology, vol. 281, pp. 108-115,
2017.

S. Tarquini, S. Vinci, M. Favalli, F. Doumaz, A. Fornaciai, and L. Nan-
nipieri, “Release of a 10-m-resolution DEM for the italian territory:
Comparison with global-coverage DEMs and anaglyph-mode exploration
via the web,” Comput. Geosci., vol. 38, no. 1, pp. 168-170, 2012.

ASI, “Satélite argentino de observaciéon con microondas (argentine mi-
crowaves observation satellite),” 2020. [Online]. Available: https://www.
asi.it/en/earth-science/saocom/

ECMWEF, “Era5-land hourly data from 1950 to present,” 2019. [Online].
Available: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
eraS-land?tab=overview

J. Mufioz-Sabater et al., “EraS-land: A state-of-the-art global reanalysis
dataset for land applications,” Earth Syst. Sci. Data, vol. 13, no. 9,
pp. 4349-4383, 2021.

Google and NSIDC, “Spl4smgp.007 smap 14 global 3-hourly
9-km surface and root zone soil moisture,” 2015. [Online]. Avail-
able: https://developers.google.com/earth-engine/datasets/catalog/
NASA_SMAP_SPL4SMGP_007#description

L.Broccaetal., “Exploring the actual spatial resolution of 1km satellite soil
moisture products,” Sci. Total Environ., vol. 945, 2024, Art. no. 174087.
B. Brunelli, D. Festa, F. Mancini, and W. Wagner, “Surface soil moisture
retrieval via change detection using SAOCOM l-band data over the Po val-
ley (Italy),” in Proc. EGU Gen. Assem. Conf. Abstr., 2024, Art. no. 16418.
T.-H. Liao, S.-B. Kim, A. L. Handwerger, E. J. Fielding, M. H. Cosh,
and W. H. Schulz, “High-resolution soil-moisture maps over landslide
regions in northern california grassland derived from SAR backscattering
coefficients,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 4547-4560, 2021.

W. Wagner et al., “The ascat soil moisture product: A review of its
specifications, validation results, and emerging applications,” Meteorol-
ogische Zeitschrift, vol. 22, no. 1, pp. 5-33, 2013. [Online]. Available:
http://dx.doi.org/10.1127/094172948/2013/0399

E. Hsaf, “Eumetsat HSAF ASCAT soil moisture,” 2007. [Online]. Avail-
able: http://www.ipf.tuwien.ac.at/radar

C. Funk etal., “The climate hazards infrared precipitation with stations—A
new environmental record for monitoring extremes,” Sci. Data, vol. 2,
no. 1, pp. 1-21, 2015.

P. C. Dubois, J. Van Zyl, and T. Engman, “Measuring soil moisture
with imaging radars,” IEEE Trans. Geosci. Remote Sens., vol. 33, no. 4,
pp- 915-926, Jul. 1995.

Y. Oh, “Quantitative retrieval of soil moisture content and surface rough-
ness from multipolarized radar observations of bare soil surfaces,” IEEE
Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 596—601, Mar. 2004.

N. Baghdadi and M. Zribi, “Evaluation of radar backscatter models IEM,
oh and dubois using experimental observations,” Int. J. Remote Sens.,
vol. 27, no. 18, pp. 3831-3852, 2006.

J. L. Alvarez—Pérez, “An extension of the IEM/IEMM surface scattering
model,” Waves Random Media, vol. 11, no. 3, 2001, Art. no. 307.

J. L. Alvarez-Pérez, “The IEM2M rough-surface scattering model for
complex-permittivity scattering media,” Waves Random Complex Media,
vol. 22, no. 2, pp. 207-233, 2012.

K.-L. Chen, K.-S. Chen, Z.-L. Li, and Y. Liu, “Extension and validation
of an advanced integral equation model for bistatic scattering from rough
surfaces,” Prog. Electromagnetics Res., vol. 152, pp. 59-76, 2015.

R. Fieuzal and F. Baup, “Improvement of bare soil semi-empirical radar
backscattering models (oh and dubois) with SAR multi-spectral satellite
data (x-, c-and 1-bands),” Adv. Remote Sens., vol. 5, no. 4, pp. 296-314,
2016.

P. de Matthaeis and R. Lang, “Microwave scattering models for cylin-
drical vegetation components,” Prog. Electromagnetics Res., vol. 55,
pp. 307-333, 2005.

J. Moré, “Numerical Analysis the Levenberg-Marquardt Algorithm: Im-
plementation and Theory,” Berlin, Germany: Springer, 1978.

P. Virtanen et al., “Scipy 1.0: Fundamental algorithms for scientific com-
puting in python,” Nature methods, vol. 17, no. 3, pp. 261-272, 2020.

(771

(78]

[79]

[80]

[81]
[82]
[83]

[84]

[85]
[86]

[87]

[88]

16001

A. Nanda, N. Das, G. Singh, R. Bindlish, K. M. Andreadis, and S.
Jayasinghe, “Harnessing SMAP satellite soil moisture product to optimize
soil properties to improve water resource management for agriculture,”
Agricultural Water Manage., vol. 300, 2024, Art. no. 108918.

B. Zhao et al., “Estimation of soil moisture using modified antecedent
precipitation index with application in landslide predictions,” Landslides,
vol. 16, pp. 2381-2393, 2019.

M. A. E. D. Moraes et al., “Antecedent precipitation index to estimate
soil moisture and correlate as a triggering process in the occurrence of
landslides,” Int. J. Geosciences, vol. 15, no. 1, pp. 70-86, 2024.

S. Ali, N. Ghosh, and R. Singh, “Rainfall-runoff simulation using a
normalized antecedent precipitation index,” Hydrological Sci. J.—J. des
Sci. Hydrologiques, vol. 55, no. 2, pp. 266-274, 2010.

R.J. Heggen, “Normalized antecedent precipitation index,” J. Hydrologic
Eng., vol. 6, no. 5, pp. 377-381, 2001.

M. A. KohlerandR. K. Linsley, Predicting the Runoff From Storm Rainfall.
College Park, MD, USA: U.S. Dept. Commerce, 1951.

V. P. Singh and D. K. Frevert, “Watershed modeling,” in Proc. World Water
Environ. Resour. Congr., 2003, pp. 1-37.

F. Meyer, “Spaceborne synthetic aperture radar: Princ., data access, and
basic process. techn.,” in Synthetic Aperture Radar (SAR) Handbook:
Comprehensive Methodologies Forest Monitoring Biomass Estimation.
2019, pp. 21-64, doi: 10.25966/nr2¢c-s697.

C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585,
no. 7825, pp. 357-362, 2020.

W. McKinney et al., “Data structures for statistical computing in python,”
SciPy, vol. 445, no. 1, pp. 51-56, 2010.

D. Entekhabi, R. H. Reichle, R. D. Koster, and W. T. Crow, “Performance
metrics for soil moisture retrievals and application requirements,” J. Hy-
drometeorol., vol. 11, no. 3, pp. 832-840, 2010.

D. Hillel, Environmental Soil Physics. San Diego, CA, USA: Academic,
1998.

Divyeshkumar Rana (Student Member, IEEE) re-
ceived the bachelor’s degree in civil engineering from
Dr. S. and S. S. Gandhi Government Engineering
College, Surat, India, in 2018, and the master’s degree
in geomatics from CEPT University, Ahmedabad,
India, in 2020. He is currently working toward the
National Ph.D. degree in Earth observation with the
Department of Earth Sciences, Sapienza University
of Rome, Rome, Italy, under the guidance of Prof.
Paolo Mazzanti and Prof. Francesca Bozzano. His
Ph.D. dissertation was titled “Multi-Frequency SAR

Datasets for Ground Deformation and Soil Moisture Monitoring of Unstable
Ground,” aims to explore the relationship between soil moisture and ground
deformation caused by landslides, sinkholes, and subsidence.

An enthusiastic and quick learner with a strong interest in innovation and
technology, he is passionate about remote sensing sciences. His research focuses
on multifrequency SAR datasets for soil moisture retrieval using the radiative
transfer algorithm (RT1) and applies PS-InSAR techniques to monitor ground
deformation associated with landslides, sinkholes, and subsidence.

Dr. Rana is also an active member of IEEE Geoscience and Remote Sensing
Society Standards Committee, IEEE Remote sensing Environment, Analysis
and Climate Technologies Technical Committee, and the Indian Society of
Geomatics (ISG) in India.

Raphael Quast is currently working toward the Ph.D.
degree in microwave remote sensing with the Vienna
University of Technology, Vienna, Austria, and is
affiliated with GeoSphere Austria, Vienna, Austria.


https://www.asi.it/en/earth-science/saocom/
https://www.asi.it/en/earth-science/saocom/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land{?}tab$=$overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land{?}tab$=$overview
https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL4SMGP_007#description
https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL4SMGP_007#description
http://dx.doi.org/10.1127/0941{?}2948/2013/0399
http://www.ipf.tuwien.ac.at/radar
https://dx.doi.org/10.25966/nr2c-s697

16002

Wolfgang Wagner (Senior Member, IEEE) received
the Dipl.-Ing. degree in physics and the Dr.techn.
degree in remote sensing from Vienna University of
Technology (TU Wien), Vienna, Austria, in 1995 and
1999, respectively.

From 1999 to 2001, he was with DLR, Oberpfaf-
fenhofen, Germany. In 2001, he was a Professor for
Remote Sensing with TU Wien. He is a Co-Founder
of the Earth Observation Data Centre (EODC), Vi-
enna, Austria. He has developed models for retrieving
soil moisture and other land surface variables from
a scatterometer, synthetic aperture radar (SAR), and full-waveform LiDAR
observations. His main research interest is to gain a physical understanding
of the mechanisms driving the interaction of electromagnetic waves with the
land surface.

Dr. Wagner is a member of the advisory groups for METOP-SG SCA,
Sentinel-1 NG, and HydroGNSS. In support of his master’s and Ph.D. studies,
he was the recipient of fellowships to carry out research at NASA, ESA, and the
EC Joint Research Centre. He was also the recipient of the ISPRS Frederick
J. Doyle Award and the Friedrich Hopfner Medal awarded by the Austrian
Geodetic Commission. From 2008 to 2012, he was the ISPRS Commission VII
President; from 2009 to 2011, he was an Editor-in-Chief of the open-access
journal Remote Sensing, and from 2016 to 2019, he was the Chair for the
GCOS/WCRP Terrestrial Observation Panel for Climate.

Paolo Mazzanti received the Graduate degree in
geology and the Ph.D. degree in earth sciences.

He is currently a Professor of Engineering Geology
and a Lecturer on Remote Sensing and Geologi-
cal Risks with the Department of Earth Sciences,
Sapienza University of Rome, Rome, Italy, the largest
university in Europe, and a member of Centro di
Ricerca perla Previsione, Prevenzione e Controllo dei
Rischi Geologici (CERI), Rome, Italy. He is also the
Co-Founder of NHAZCA S.r.l., a startup of Sapienza
University of Rome. He organizes professional train-
ing courses in Italy and abroad, including the annual “International Course on
Geotechnical and Structural Monitoring,” which has attracted more than 650
professionals from 50+ countries and 40 renowned partners. With more than 35
supervised degrees and doctoral theses in Engineering Geology, Geotechnics,
and Remote Sensing, he has also been an invited speaker at universities and re-
search centers worldwide. He serves on various technical committees, including
the TRB Engineering Geology Committee, the International Society of Soil Me-
chanics and Geotechnical Engineering, and PIARC, and audits for AIGA. Over
the last 15 years, he has managed technical consulting projects in tunnels, oil and
gas, dams, transport infrastructures, landslides, and archaeological assets in 15+
countries. He has authored 120+ scientific papers on applied geology, remote
sensing, geotechnical and structural monitoring, radar monitoring systems, and
infrastructure management.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

Francesca Bozzano received the Graduate degree in
geological sciences from the University of Rome “La
Sapienza,” Rome, Italy, in 1987 and the Ph.D. degree
in earth sciences.

From 1991 to 2000, a Researcher from the Univer-
sity of Rome “La Sapienza,” an Associate Professor
from November 2000 to November 2013 and then
a Full Professor with the Department of Earth Sci-
ences, Engineering Geology “Sapienza” University
of Rome, Rome, Italy. Since 2003, she has been a
member of the CERI Research Centre (Prediction,
Prevention and Mitigation of Geological Risks), Rome, Italy. Since 2009,
she has been a partner of NHAZCA, Rome, Italy, a spin-off company of
the “Sapienza” University of Rome,” Rome, Italy. She was a member of the
Technical Secretariat, Italian Ministry of Environment, Land and Sea Protection
(Directorate-General: Quality of Life) from 2010 to 2013. She was also a
Director of the CERI Research Centre (Prediction, Prevention and Mitigation
of Geological Risks), “Sapienza” University of Rome, from August 2014 to
October 2020. Her research interests include landslides, triggered by rainfall
and earthquakes, subsidence, Sinkholes in urban areas, multigeological hazards
and risks, land, structures and infrastructures monitoring, prediction of the
evolution of geological instabilities processes and engineering geological design
of structures, infrastructures and remedial interventions.

Dr. Bozzano was a member of the Italian Major Risk National Committee
(meteo-hydrogeological, hydraulic and landslide risk sector) appointed by the
Prime Ministerial Decree for the period 2017-2023 and by the Minister for
Civil Protection and Sea Policies for the period 2023-2028. Since December
2017 Member of the board of directors of the INGV (Istituto Nazionale di
Geofisica e Vulcanologia) appointed by the Minister of the Education, University
and Research. Since January 2021, she has been serving a Deputy Rector for
“Relation with research centers and bodies, consortia and association for the
third mission.”

- | M




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


