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 A B S T R A C T

ESA CCI soil moisture (SM) merges satellite microwave remote sensing datasets by means of their inverse-
uncertainty weighted average. Estimates of uncertainty are produced with Triple Collocation Analysis (TCA) 
and assume a constant level of noise for the entire sensor period. However, errors in soil moisture retrievals 
vary throughout the year, since many impacting environmental parameters are characterized by a seasonality 
of their own. Here, we attempt to quantify this seasonal component and assess the impact of time-variant 
uncertainty estimates on the quality of merged soil moisture. We derive a long-term error variance estimate 
for three satellite products (from ASCAT, AMSR2, and SMAP) per day of year using a sliding window of 90 days. 
Merging weights climatologies are subsequently obtained as the inverse of such uncertainty. We analyse the 
impact of the modified approach by comparison with the merging based on stationary uncertainties/weights. 
The two key findings are that (i) the merged soil moisture estimates do not differ significantly between the 
stationary and the seasonal merging because seasonal uncertainty variations, e.g. caused by vegetation cover, 
usually affect all satellite missions in a similar way and thus cause only marginal changes in their relative 
weighting; yet, (ii) an evaluation against in situ data suggests that the estimated uncertainties of the new 
merged product are more representative of their seasonal behaviour. Based on these findings, we conclude 
that using a seasonal TCA approach can add value to merged products such as the ESA CCI SM by providing 
a more realistic characterization of dataset uncertainty – in particular its temporal variation.
1. Introduction

An integral part of Climate Data Records (CDRs) of any variable is 
the inclusion of well-described, self-consistent, physically justified, and 
validated uncertainty information (Merchant et al., 2017). Such infor-
mation caters for a variety of applications, such as justifying the level of 
constraint of climate models with observations (Notz, 2015) or enabling 
model-data integration though assimilation (Reichle et al., 2008). A 
precise understanding of the spatio-temporal drivers of uncertainty is 
also fundamental in the process of data creation itself. For instance, 
the uncertainty of lower level (i.e., swath-format, single sensor) inputs 
should be accounted for when the data are aggregated into multisource 
gridded products. The European Space Agency’s Climate Change Initia-
tive for soil moisture (ESA CCI SM) is an example where multimission 
data is harmonized into a long-term record while accounting for un-
certainties in the retrieval of each mission (Gruber et al., 2019; Dorigo 
et al., 2017). There, estimates of inverse-uncertainty weights are used 
by a weighted merging of distinct soil moisture time series to obtain a 
product with a comparatively lower observational uncertainty (Gruber 
et al., 2017). Nonetheless, weighted merging is only preferred over 
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arithmetic averaging if the uncertainties – from which the weights are 
derived – can be estimated accurately (Reichle et al., 2008). In addition, 
to be instrumental, the uncertainties need to be consistent between 
products (that is, they should not reflect systematic biases between 
them), and should be complete in time and space (Gruber et al., 2017).

In the context of error-informed merging, uncertainty estimates that 
are sometimes provided with the individual sensor products (e.g., Pari-
nussa et al., 2011; Naeimi et al., 2009) cannot be readily exploited since 
the propagation scheme is typically inconsistent between the various 
retrieval algorithms and observation principles (i.e., radiometric or 
scatterometric) of L2 data – all of which can lead to estimation biases. 
In addition, error propagation accounts for the sequence of retrieval 
transformations and the parameterization uncertainties, but not for 
the assumptions incorporated in the retrieval model itself (Merchant 
et al., 2017). As a result, the given uncertainty is underestimated 
when local conditions violate such assumptions. Alternatively, Triple 
Collocation Analysis (TCA) (Stoffelen, 1998) is an error diagnostic tool 
used prominently in the remote sensing of soil moisture (Scipal et al., 
2008; Dorigo et al., 2010; Gruber et al., 2016). It aims to resolve 
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the random error variance (𝜎2𝜖 ) of three spatio-temporally collocated 
datasets with respect to the unknown truth that each observes using 
their temporal (co)variances. Unlike the error propagation approach, it 
is unaware of each exact transformations (and related error covariance 
matrix) in the retrieval chain, and implicitly includes failures of model 
assumptions, geo-location, or other unaccounted errors.

In order to obtain precise error variance estimates from TCA, a large 
enough number of collocated observations in the time series must be 
available, as otherwise the covariance matrix between the three time 
series is poorly defined and the error variance estimates unstable as a 
result (Zwieback et al., 2012b). For this reason, ESA CCI SM has so far 
used all available data points in the construction of the TCA triplet, 
which provides a single error variance estimate for a given location 
and sensor. In contrast to such stationary TCA approach, it has become 
evident that the uncertainty in satellite-based soil moisture varies at 
several temporal scales (Su et al., 2014), following dynamic conditions 
on the land surface which affect the sensitivity of the sensors to soil 
moisture (Loew and Schlenz, 2011; Wu et al., 2021). For example, 
the microwave signal attenuation from the vegetation layer – which is 
undisputedly one of the most prominent causes of uncertainties in soil 
moisture retrievals (Brocca et al., 2011) – follows seasonal phenological 
cycles that need to be corrected for in the retrieval (Vreugdenhil et al., 
2016) or otherwise can lead to temporally-varying uncertainties in the 
retrieved soil moisture (Zwieback et al., 2018). Wu et al. (2021) pro-
vide an exhaustive description of such effect by analysing time-lagged 
correlation dynamics between (rainfall-driven) vegetation growth and 
TCA-derived soil moisture retrieval error. Moreover, backscatter sig-
nal inversions, which contradict the soil moisture-scattering linearity 
assumed by many retrieval models (Wagner et al., 1999; Owe et al., 
2008), occur in the dry season due to subsurface scattering phenom-
ena (Wagner et al., 2024) causing seasonal uncertainty variations which 
can deter the applicability of satellite soil moisture for drought moni-
toring applications (Vreugdenhil et al., 2022). Although not yet linked 
to subsurface scattering phenomena, the uncertainty in soil moisture 
derived from microwave brightness temperatures was also found higher 
in the dry-season (Loew and Schlenz, 2011).

The evidence of seasonal error sources has potential implications 
when these errors are quantified and adopted for the uncertainty-based 
merging of soil moisture. The first question we want to address here 
is whether the seasonalities of the input products uncertainties covary 
in time – leaving their relative weights unchanged, similar as in the 
stationary-uncertainty approach – or if instead they act complemen-
tarily, resulting in a change of the merged soil moisture compared to 
static merging. It should also be assessed whether the soil moisture 
error based on seasonally-dynamic merging is more representative of 
the actual soil moisture error than that resulting from a static merging. 
Answering these questions is not only relevant for the merging design of 
the ESA CCI SM dataset considered here, but also for other multi-sensor 
(soil moisture) products.

Previous work has demonstrated that the merging improves after 
considering the input products synergies in a time-variant manner, 
rather than stationarily (Kim et al., 2016). However, in this case 
the merging was performed by optimizing the empirically-determined 
correlation with modelled references, which contrasts our objective 
to obtain a fully observation-based merging. Hence, we rely on the 
unbiased error characterization TCA technique which brings about a 
different challenge, where less accurate uncertainty estimates (hence 
merging weights) may result from the smaller sample size correspond-
ing to the seasonal subsets used in the dynamic approach (Loew and 
Schlenz, 2011). Based on this, the present study evaluates the benefit 
of seasonally-derived TCA uncertainty estimates in the ESA CCI SM 
merging. We aim to quantitatively assess their seasonal variations and 
relative magnitude, and their impact on the merged soil moisture and 
its overall uncertainty. We limit the analysis to three satellite-derived 
(active C-band, and passive C- and L-band) and one modelled soil 
moisture products used as observational inputs and TCA-supporting 
data, respectively. We further use uncertainty estimates derived from in 
situ data as a way to validate the uncertainty provided with the merged 
product.
2 
2. Data

Soil moisture observations from the Advanced SCATterometer (AS-
CAT), the Advanced Microwave Scanning Radiometer 2 (AMSR2), and 
the Soil Moisture Active Passive (SMAP) missions can be comple-
mentary depending on the land surface and vegetation conditions, 
due to the different measurement technologies (passive/active) and 
microwave frequency (C-/L-band) employed (Kim et al., 2018). Here, 
we investigate how their synergies change in time and how they play 
out in the season-based merging approach.

The product specifics are detailed in Section 2.1 and summarized in 
Table  1. To form the TCA data triplets, soil moisture estimates from the 
Global Land Data Assimilation System (GLDAS) are used (Section 2.2). 
The in situ data selection for the method benchmarking is given in 
Section 2.3.

2.1. Satellite soil moisture

2.1.1. ASCAT
The active EUMETSAT H SAF ASCAT SSM product H120 (SAF, 

2021) is derived from backscatter measured by the identical scatterom-
eters onboard the satellite series Metop-A, -B and -C using the TU Wien 
soil moisture retrieval algorithm (TUW-SMR) at 12.5 km horizontal 
sampling (Wagner et al., 1999). ASCAT sensors measure microwave 
radiation in the C-band of the electromagnetic spectrum, where the 
backscatter has a pronounced sensitivity to soil moisture and a penetra-
tion depth of just a few cm into the topsoil (Wagner et al., 2013). At this 
frequency, structural vegetation elements attenuate the backscatter sig-
nal, making it challenging to resolve soil moisture in densely vegetated 
areas (Draper et al., 2013), despite the dedicated vegetation parameter-
ization in the retrieval model (Vreugdenhil et al., 2016). In addition, 
soil moisture measurements from active microwave observations are 
deteriorated by surface roughness (Wagner et al., 2013) and dry soil 
conditions that may lead to subsurface scattering (Wagner et al., 2024).

A positive bias (i.e., wetter soil) in the observations from ASCAT-B 
was noticed with respect to ASCAT-C (and -A) on a global level (Scan-
lon et al., 2022), which may result in merged ASCAT time series 
with temporal breaks (Preimesberger et al., 2021) at the start of the 
ASCAT-C period. To account for this, we rescale the retrieved soil 
moisture signal from ASCAT-B to ASCAT-A by matching their distribu-
tions through linear scaling between distinct quantile bins, as described 
in Liu et al. (2011), Moesinger et al. (2020). Later, we merge ASCAT-
A, -B, and -C via a simple average of the spatially and temporally 
collocated, overlapping observations. All sensors of the ASCAT series 
have identical instrument specifications and are assumed here to have 
homogeneous random error levels.

2.1.2. Passive products
Surface soil moisture from SMAP and AMSR2 is based on the Land 

Parameter Retrieval Model (LPRM (Owe et al., 2008; van der Schalie 
et al., 2017). LPRM allows for the simultaneous retrieval of Vegetation 
Optical Depth (VOD) and soil moisture in Ku, C, X and L-band (van 
der Schalie et al., 2017). The brightness temperature observations are 
acquired from the AMSR2 sensor onboard the GCOM-W1 satellite and 
from SMAP and resampled from the original resolution to a 0.25◦ grid. 
Given that AMSR2 measures in multiple bands, we give preference 
to C-band observations, and only use X-band observations to fill the 
gaps. SMAP acquires observations in L-Band, which achieves a better 
penetration of the vegetation layer, and is often considered optimal for 
soil moisture retrieval (Kerr et al., 2010). Although LPRM allows for 
day-time soil moisture retrievals, a decision is made to only use night-
time observations due to the comparatively better quality w.r.t. the 
instable diurnal retrievals (Parinussa et al.), for both sensors. We mask 
the soil moisture with the LPRM quality flags raised in case of frozen 
soil or barren ground (van der Vliet et al., 2020), dense vegetation or 
potential radio frequency interference (RFI) contamination for specific 
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Table 1
Specifics of the satellite products used in this study.
 ASCAT AMSR2 SMAP  
 Product source EUMETSAT H SAF JAXA G-Portal NASA EarthData  
 Platform METOP-A/B/C GCOM-W1 SMAP  
 Product (Producer) H120 (EUMETSAT H SAF) LPRM (Planet) LPRM (Planet)  
 Product algorithm (version) TUW-SMR (v7) LPRM (v7.0) LPRM (v6.2)  
 Overpass local time 09:30/21.30 (Desc./Asc.) 01:30 (Desc.) 06:00 (Desc.)  
 Period used Sep 2012-Dec 2023 May 2012-Dec 2023 April 2015-Dec 2023  
 Revisit time (days) ∼1 ∼2 ∼2-3  
 Channel (freq. band) used 5.3 GHz (C) 6.925/7.3/10.65 GHz (C1/C2/X) 1.4 GHz (L)  
 Original horizontal resolution (km) 25 46 43  
 Retrieval Unit of soil moisture Degree of saturation (%) Volumetric (𝑚3 ∗ 𝑚−3) Volumetric (𝑚3 ∗ 𝑚−3) 
locations (de Nijs et al., 2015). Errors in passive soil moisture originate 
from the water contained in vegetation (as discussed for active systems) 
and from errors in the supporting data (e.g., skin temperature or 
soil composition), as well as approximations in the retrieval model 
design (Parinussa et al., 2011).

VOD is a model parameter that is derived along with soil moisture 
by LPRM. It quantifies the volume scattering and signal attenuation 
effects of the vegetation covering the soil, which has been previously 
used – as is used here – as a proxy of the soil moisture uncertainty (Gru-
ber et al., 2016). For this study, VOD data is obtained from the LPRM 
retrieval of AMSR2 in C-band and masked as described above for soil 
moisture. While the dense vegetation masking is not necessary in this 
case, VOD is effectively only used where soil moisture observations are 
available.

2.1.3. Data collocation and masking
To collocate the datasets in space, ASCAT needs to be first resam-

pled to the same 0.25◦ regular grid shared by ESA CCI SM, LPRM, and 
the model (Section 2.2). For this, a moving Hamming window with a 
search radius of  25 km and a minimum number of three neighbours 
is used. Only valid data points are included in the resampling since 
(similarly to LPRM) flags are raised in case of frozen ground, retrieval 
failure (i.e., out-of-bound soil moisture values), and additionally in case 
of volume scattering from sand. For all products, only time information 
on the respective acquisition day is retained, as the merged product 
is formally provided at daily resolution. A further collocation with 
the model for the TCA is described in Section 3.2. The masking of 
freezing/thaw is complemented by simultaneous use of information 
from the ASCAT and LPRM products, with the goal of homogenizing 
this key data quality aspect (van der Vliet et al., 2020). Therefore, 
days where at least one of the satellite datasets indicates frozen ground 
conditions are masked in all datasets, while the model is masked 
separately.

2.2. Model product

The Land Surface Model (LSM) Global Land Data Assimilation Sys-
tem (GLDAS) (Rodell et al., 2004) Noah L4, v2.1 is chosen to provide a 
third TCA dataset and an internally consistent climatology reference of 
more than two decades to which the satellite data is rescaled. GLDAS-
Noah v2.1 provides 3-hourly estimates of soil moisture at several depth 
layers at 0.25◦ resolution, of which a daily average of the uppermost 
layer (0–10 cm) only is used. The model estimates are masked if the 
temperature variable from the same layer is below 0 ◦C.

2.3. In situ reference

The International Soil Moisture Network (ISMN) centralizes the 
collection of soil moisture data from regional in situ networks on a 
global scale (Dorigo et al., 2021). Here, all sensors measuring soil 
moisture in the period 2015–2023 at a depth between 0–10 cm are 
considered (Fig.  A.11, Table  A.2). After removal of all data points 
not marked as ‘‘good’’ (‘‘G’’ flag) (Dorigo et al., 2013), the originally 
hourly observations within a day are averaged to match the temporal 
resolution of the satellite products.
3 
2.4. ESA CCI landcover

Coarse vegetation classifications can be used to discriminate be-
tween different absolute levels of soil moisture errors (Wu et al., 2021), 
helping to separately assess their impact on the merging. Here, the re-
sults are stratified based on the landcover data of ESA CCI v2.0.7 (E.S.A. 
Land Cover C.C.I. project team and Defourny, 2019) for the year 2015. 
We employed the CCI-landcover User Tool to aggregate the original 
300 m horizontal resolution values to the 0.25◦ grid used here, and 
further selected only locations with a majority land cover class abun-
dance higher than 40% at the quarter-degree level to avoid mixed-pixel 
results. The original classes were then grouped thematically according 
to Table  A.3 (Fig.  3b), leading to a clear-cut separation of vegetation 
regimes (Fig.  A.12).

3. Methods

In this study, we employ an adaptation of the current ESA CCI SM 
merging approach, which focuses on the uncertainty characterization 
and consequent weight estimation for the merging. This is only one 
aspect of the full merging algorithm, which comprises, sequentially: re-
moval of the inter-sensor biases, characterization of their uncertainties, 
uncertainty gap-filling, weights-based merging (Gruber et al., 2019), 
and break homogenization (Preimesberger et al., 2021). For context, we 
briefly review the merging algorithm as described in the latest product 
documentation (Dorigo et al., 2023) in Section 3.1 and afterwards focus 
on the innovation introduced in this study with respect to the ESA CCI 
SM baseline (Section 3.2).

3.1. Merging principle

Merging the input datasets into a single product 𝜃𝑚 requires finding 
the optimal weight parameters 𝑤 to average the soil moisture inputs 𝜃𝑖
of the 𝑛 considered sensors (which vary per location and day): 

𝜃𝑚 = 𝑓 (𝜃1,… , 𝜃𝑛) =
𝑛
∑

𝑖=1
𝑤𝑖𝜃𝑖 (1)

with associated soil moisture error variance 𝜎2𝜖  of the merged prod-
uct resulting from analytical uncertainty propagation of the merging 
equation: 

𝜎2𝜖,𝑚 =
𝑁
∑

𝑖=1

(

𝜕𝑓 (𝜃)
𝜕𝜃𝑖

)2
𝜎2𝜖,𝑖 =

𝑁
∑

𝑖=1
𝑤2

𝑖 𝜎
2
𝜖,𝑖 (2)

The weight associated to an input soil moisture observation is based 
on the reciprocal of its estimated random error, meaning that the 
measurements with a lower random error are weighted higher for 
merging: 

𝑤𝑖 =
1∕𝜎2𝜖,𝑖

∑𝑁
𝑛=1 1∕𝜎2𝜖,𝑛

(3)



P. Stradiotti et al. Science of Remote Sensing 12 (2025) 100242 
Fig. 1. Schematic of the sliding window for the uncertainty estimation over the three 
input timeseries.

The uncertainty itself is computed with TCA. Provided a set of three 
time series 𝑋, 𝑌 ,𝑍, the random error variance of each can be resolved 
by a system of three equations of the form (here for X): 

𝜎2𝜖𝑋 = 𝜎2𝑋 −
𝜎𝑋𝑌 𝜎𝑋𝑍
𝜎𝑌 𝑍

(4)

where 𝜎2𝑋 is the soil moisture signal variance and 𝜎𝑋𝑌 , 𝜎𝑋𝑍 , and 
𝜎𝑌 𝑍 are the covariances between 𝑋 and 𝑌 , 𝑋 and 𝑍, and 𝑌  and 𝑍, 
respectively. Provided that all the assumptions (Gruber et al., 2016; 
Zwieback et al., 2012b) are met, this method provides an estimate of 
the error variance 𝜎2𝜖  of each dataset. However, this assumes that the 
derived uncertainties remain constant over time, while instead error 
sources may be characterized by their own climatology. Therefore, 
while the 𝜎2𝜖  value derived with this approach is representative of 
the average uncertainty, it fails to consider the potential presence of 
seasonalities therein.

3.2. Seasonal adaptation of TCA

In this study, we use the two TCA triplets 𝑇𝐶𝐴𝑆𝑀𝐴𝑃−𝐴𝑆𝐶𝐴𝑇−𝐺𝐿𝐷𝐴𝑆
and 𝑇𝐶𝐴𝐴𝑀𝑆𝑅2−𝐴𝑆𝐶𝐴𝑇−𝐺𝐿𝐷𝐴𝑆 to estimate the uncertainties of SMAP, 
and for AMSR2 and ASCAT, respectively. The latter triplet is used to 
provide the estimate for ASCAT since it counts more observations due 
to the longer AMSR2 record and higher revisit frequency compared to 
SMAP.

The system of linear equations based on Eq. (4) is then solved 
separately for each day-of-year (DOY) considering all available years, 
effectively obtaining a 366 data points climatology of the uncertainty 
estimates. This is achieved by sliding a multi-year window of 90 days 
centred around each DOY which wraps around the edges of each year 
(Fig.  1).

The intention here is to robustly characterize the vegetation-driven 
error and other components with seasonal repeat cycle. A window size 
of 90 days (which exceeds the 60 days window previously recom-
mended by Kim et al., 2016) results in large global samples, although 
areas with annual freezing or snow cover only allow for uncertainty 
estimation for parts of the year (Fig.  A.13). Similarly, no uncertainty 
estimates are provided for desert areas due to permanent barren ground 
flagging.

Note that the bias between the triplets is removed in the same tem-
porally dynamic fashion, i.e., by performing the piecewise cumulative 
distribution function (CDF) matching of Liu et al. (2011) to 90-days, 
multi-year subsets of the entire time series. Using the same design as for 
the error estimation avoids incurring calibration errors that can lead to 
outliers or phase differences in the estimates (Zwieback et al., 2012a).
4 
3.2.1. Masking of the uncertainty estimates
We mask the TCA-based estimates using a stationary p-value de-

cision tree computed for a specific sensor combination and merging 
period based on the mutual correlations between datasets (Gruber 
et al., 2016), which helps determining whether the same phenomenon 
is observed by all datasets. Contrary to the TCA estimate itself, we 
do not evaluate the significance per DOY. This avoids observation-
scarce periods (i.e., in winter time) to more often incur insignificant 
correlations due to the reduced sample size. Given that an unweighted 
average is used in such scenario, this would in turn lead to a systematic 
difference in the merging performance between observation-dense and 
observation-scarce periods. A stationary significance test is judged 
robust enough and yet indicative of the overall time series quality.

3.2.2. Uncertainties gap-filling
When the uncertainty estimates are missing, either because of the 

described masking or unstable TCA estimates, the strong general rela-
tionship between soil moisture errors and VOD can be used to fill these 
gaps in the uncertainty estimates (Gruber et al., 2016). We adapt this 
method to take into account seasonally-varying vegetation conditions, 
for improved interpolation of seasonal uncertainty estimates: 
𝜎𝜖,𝐷𝑂𝑌 = 𝛼 + 𝛽1𝑉 𝑂𝐷1

𝐷𝑂𝑌 +⋯ + 𝛽𝑛𝑉 𝑂𝐷𝑛
𝐷𝑂𝑌 (5)

where 𝛼 and 𝛽 are the offset and polynomial coefficients, respectively, 
and 𝑛 is the polynomial order which was determined empirically to 
obtain the best fit (Gruber et al., 2016). While Eq. (5) is also valid in 
case of stationary uncertainty and VOD estimates (i.e., one per time 
series), the seasonal estimates (as argued here) better represent both 
quantities and may thus improve the description of Eq. (5). Following 
this logic, all DOY 𝜎2𝜖  values are mapped to the corresponding DOY 
average VOD value from the AMSR2 (2012–2023) climatology, and 
used in the same regression pool. We also weight the regression points 
proportionally to 1∕

√

𝑁 with 𝑁 the number of data points used to 
derive the uncertainty estimates. This accounts for the impact of sample 
size on the accuracy of the TCA estimates. The so-derived coefficients 
are then used to gap-fill the uncertainty estimates from the VOD 
climatology in a temporally-dynamic manner.

3.3. Uncertainty evaluation

To provide a validation reference for the estimated soil moisture 
uncertainty, we first remove both additive and multiplicative biases 
between each in situ (𝜃𝑖) and merged (𝜃𝑚) satellite soil moisture ob-
servation series by matching their mean and standard deviation. Later, 
we evaluate the unbiased-Root Mean Squared Difference (𝑢𝑏𝑅𝑀𝑆𝐷) 
between 𝜃𝑖 and the bias-corrected product (𝜃′𝑚): 

𝑢𝑏𝑅𝑀𝑆𝐷𝑚,𝑖 =

√

𝑁
∑ (𝜃′𝑚 − 𝜃𝑖)2

𝑁
(6)

and compare it to the stationary and dynamically merged soil moisture 
uncertainty. For the computation of Eq. (6), a satellite-in situ data 
pair is only considered when the two are spatially collocated within 
0.25◦ and within the same day. We further only consider the period 
of complete sensor availability (ASCAT, AMSR2, and SMAP) May 2015 
- December 2023 to remove the effect of the sensor transitions, and 
disregard collocated time series that contain less than 25% of the 
possible observations.

4. Results and discussion

4.1. Climatological uncertainty estimates

We first evaluate the intra-annual variability in the uncertainty 
estimates of the input products by looking at the inter-quartile range 
(IQR) of their distribution (Fig.  2). The IQR is for all products in the 
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Fig. 2. IQR of the soil moisture uncertainty climatology for the input products before uncertainty/VOD regression gap-filling. Gaps are due to too few collocated data and p-value
masking, and because the IQR is not shown if less than 30% of the 366 DOY values are available (to be compared with Fig.  A.13 for reference). The points indicate the locations 
shown in Fig.  3.
Fig. 3. (a) Input products uncertainty climatologies (before uncertainty/VOD regression gap-filling) and AMSR2 C-band VOD climatologies for the points shown in the (b) landcover 
aggregation map. Based on aggregated ESA CCI Landcover classes described in Table  A.3.
0.005 − 0.02 m3 ∗ m−3 range, with the exception of a few outstanding 
regions where the spread exceeds the 0.03 m3 ∗ m−3 value. For 
AMSR2, such high error variability regions are located at the edges 
of the densely forested regions of Eastern Brazil and south of Central 
Africa, in the grasslands and croplands of central India, and partly in 
the central US region between the eastern temperate forests and the 
Great Plains. With the exception of the latter region, the patterns are 
distinctly different for ASCAT, with a high range of uncertainty over the 
Sahel. High(er) variability is also observed in large parts of the Persian 
plateau, Australia, and Namibia. SMAP is generally more consistent 
with ASCAT than AMSR2, with the exception of Australia, where the 
variability patterns are roughly inverted.

Fig.  3a shows a direct comparison of the error climatologies with 
VOD for 6 arbitrary locations, hinting that fluctuations are not always 
explained by vegetation changes. For instance, at (1) the error of 
ASCAT increases sharply and becomes unstable in the second half of the 
year while no particular VOD changes are observed. Such oscillations of 
5 
ASCAT in barren and low vegetation cover regions coincide well with 
subsurface scattering patterns (Wagner et al., 2024). In a similar way, 
the error in SMAP at (3) is suddenly driven up just before and during 
the Sahel wet season (JJA) but no changes of the same magnitude are 
observed for ASCAT and AMSR2. Similar but less extreme behaviours 
are present at (2) and (4), where observed uncertainty changes are not 
matched by similar variations in VOD. In contrast, at (5) and (6) the 
VOD behaves more coherently with the estimated soil moisture uncer-
tainty and seems to explain well the observed fluctuations. Still, while 
the uncertainties are consistent in magnitude between the sensors at 
(6), the maximum uncertainty of SMAP and ASCAT is lower compared 
to that of AMSR2 at (5), reflecting the difficulty of passive C-band 
systems to resolve soil moisture under dense vegetation (Kim et al., 
2018).

Note that the TCA estimates shown in Fig.  3a are derived from 
smaller samples (determined by the 90-days sliding window size) than 
are the static TCA estimates that are derived from the entire time series. 
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Hence, they are themselves subject to greater sampling uncertainty, 
which incurs in a more ‘‘noisy’’ appearance. The effective number of 
samples that is included in each DOY window varies by season and 
location (due to masking), and between the two triplet combinations 
(Fig.  A.13). Nevertheless, with the current sliding window definition, 
the sample size after collocation is generally well above the often-
recommended 𝑁 = 100 value (corresponding to a ∼ 20% of uncertainty 
on the error estimates (Zwieback et al., 2012b)), especially in the 
Southern Hemisphere (SH). At latitudes above ∼ 40◦𝑁 the seasonal 
frozen soil/snow masking strongly affects the TCA sample size and 
causes it to vary throughout the year, while in the Arabic peninsula, 
Persian plateau, and in the Sahara desert regions observations are 
sparse due to barren ground masking. The less frequent revisit of SMAP 
(also visible for AMSR2 and ASCAT nearing the equator) decreases the 
observational density in the 𝑇𝐶𝐴𝑆𝑀𝐴𝑃−𝐴𝑆𝐶𝐴𝑇−𝐺𝐿𝐷𝐴𝑆 triplet compared 
to 𝑇𝐶𝐴𝐴𝑀𝑆𝑅2−𝐴𝑆𝐶𝐴𝑇−𝐺𝐿𝐷𝐴𝑆 . Therefore, especially for the latter TCA 
combination, it is legitimate to question whether the increase in tempo-
ral information sought here justifies the heightened uncertainty in the 
𝜎𝜖 and weights estimates. This question boils down to a comparison 
between the uncertainty in the estimates (𝜎𝜎 , driven by the sample 
size) and the difference between a static all-year estimate and that 
provided by each temporal subset, 𝜎𝐷𝑂𝑌𝑖 . This trade-off might call for a 
sample-size conservative strategy at high latitudes where TCA estimates 
are more susceptible to errors (Dorigo et al., 2010), or favour the 
seasonal approach in the regions where a strong climatology of 𝜎𝜖 is 
highlighted (Fig.  2). While the applied masking (Section 3.2.1) will 
partially mitigate the former case, a more meticulous approach in the 
merging algorithm could prove beneficial. Recent efforts have been 
undertaken to obtain such decision boundary based on bootstrapped 
confidence intervals of 𝜎𝜖 (Formanek et al., 2025), and should be 
considered as a subsequent refinement of the algorithm. Here, we try to 
establish the merit of the seasonal adaptation prior to 𝜎𝜎 considerations 
that similarly apply to the static merging scenario. In the present case, 
even considering only regions where the sampling-related uncertainty 
variability is at the lowest, strong error variability differences between 
the sensors are still observable, suggesting that the adapted TCA incor-
porates sensor-specific local differences. From the merging perspective 
of ESA CCI SM, such regions where sensors are singled out in terms of 
their intra-seasonal error fluctuations offer an opportunity to fine-tune 
the merging weights.

Notably, when calculating the annual mean of the climatological 
uncertainties, these means are typically smaller than the stationary 
uncertainty estimates that were generated from the entire time series 
directly. This is the case for all sensors (as visible from Fig.  A.14). 
ASCAT shows the largest difference, which is consistent with previous 
studies (Wu et al., 2021). Nevertheless, our primary concern is not the 
absolute uncertainty estimates of the products, but rather their relative 
magnitude – which determines the consequent change in merging 
weights. However, it should be noticed that (i) the described bias is 
larger for ASCAT compared to AMSR2 and SMAP and (ii) due to such 
bias in all sensors, the merged uncertainty will be lower overall.

4.2. Relationship between uncertainties and impact on the merging weights

The Pearson correlation coefficients (R) of the 𝜎2𝜖  climatologies 
shows that the best agreement globally is observed between the two 
passive sensors (Fig.  4). In contrast, active (ASCAT) shows several 
regions of null- or anticorrelation with AMSR2 (despite an overall 
good agreement) and SMAP, where null and weak anticorrelations are 
dominant outside of few local exceptions. The decorrelation of the 
SMAP and ASCAT uncertainties may be due to their specific sensitivity 
to vegetation change, as shown by the different response temporal lags 
to rainfall and vegetation (Wu et al., 2021). The correlation results sug-
gest that the seasonal drivers of uncertainty are shared predominantly 
between sensors based on the same (active, passive) instrument type 
and retrieval model, and to a lesser extent between different microwave 
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frequencies, confirming what seen on a time-stationary basis (Van der 
Schalie et al., 2018). As a result, merging synergies on a seasonal basis 
are to be looked mainly between active and passive sensors, confirming 
what previously found from a stationary perspective (Gruber et al., 
2017).

A seasonality in the uncertainty of the individual sensors does not 
directly generate a seasonality of the merging weights, since temporally 
coherent variations between the sensors may leave Eq. (3) unchanged. 
Based on both seasonal variability and temporal coherence of the un-
certainties, three merging weight scenarios can be outlined. In the first 
scenario, all the sensors have a similar seasonality, leaving the merging 
weights unchanged with respect to the stationary merging. This will 
reflect in seasonal effects of the merged soil moisture uncertainty, but 
not in a change of the muti-source soil moisture signal itself. This is 
the case, e.g., in the Sahel region and parts of the Indian subcontinent. 
In the second scenario, the seasonal merging can better make use 
of the intra-annual synergies between the sensors, corresponding to 
regions of lower uncertainty correlations between sensors in Fig.  4. 
In this case, the weights that are calculated from uncertainties with 
differing temporal fluctuations (Eq. (3)) will also exhibit a seasonal 
behaviour, and thus cause intra-annual changes in the merged soil 
moisture estimates as well.

In the absence of strong uncertainty oscillations, the 𝜎2𝜖  climatolo-
gies generally correlate well. In this third case, we can expect that 
neither the merged soil moisture estimate nor its uncertainty will be 
significantly affected by the seasonal approach. This can be observed 
for instance in the western part of the Great Plains in North America 
and parts of South America.

The impact of the different scenarios on the merging weights can be 
assessed directly by looking at their aggregates over the ESA CCI-land 
cover classes (Fig.  5). The Southern Hemisphere (SH) alone is consid-
ered to avoid the SH-NH climatologies cancelling off, and since the 
impact of seasonally frozen soil masking is minimal here. The lancover 
types well distinguish between different merging weights regimes. On 
average, ASCAT is assigned a higher weight with increasing vegeta-
tion density, which is consistent with the stationary merging (Gruber 
et al., 2017). Except for the lowest vegetated class BS, SMAP is always 
preferred over AMSR2, and the climatological fluctuations are similar 
between the two. As a consequence, the main weights trade-off during 
the year occurs between active and passive sensors. The strongest 
weight variations are observed for the shrubland, cropland, herbacous, 
and grassland land cover types. ASCAT weights peak at the end of 
the SH Summer (February–March) in shrublands, but slightly later for 
croplands (May), and herbaceus cover (May–June).

Overall, the seasonal weights do not depart substantially from the 
static case for most land cover types. Where they do, the difference is 
confined to only parts of the year. This is consistent with the lack of 
strong anticorrelation in the uncertainty climatologies (Fig.  4), which 
implies that the seasonal errors affect the inputs in a similar way, and 
consequently lead to similar relative sensors weights for each DOY as 
in the stationary case. The ranking of sensors by weight is similarly 
consistent with the stationary case, except for the shrubland case, 
where the relative weighting of ASCAT and AMSR2 is roughly inverted.

4.3. Merged soil moisture comparison

Using the seasonal uncertainty estimates from Section 4.2, we assess 
the difference on the merged soil moisture (combining ASCAT, SMAP, 
and AMSR2) compared to the stationary merging approach by their 
𝑅𝑀𝑆𝐷𝛩 (Fig.  6). We subset by season based on the expectation to see 
a different impact of the merging (e.g., the peak in the weight of ASCAT 
for the herbaceous cover only occurs in the SH Autumn and Winter, Fig. 
5). The shrubland cover shows a clear lag between seasons in terms of 
𝑅𝑀𝑆𝐷, with the SH Summer showing the largest discrepancy between 
the two merged products. This is consistent with the fact that the 
intra-annual vegetation dynamics (in terms of VOD) for this landcover 
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Fig. 4. Pearson R between the computed 𝜎2
𝜖  climatologies of the three sensors (before uncertainty/VOD regression gap-filling). Gaps are due to too few collocated data. The points 

indicate the locations shown in Fig.  3.
Fig. 5. Fractional weight applied to each sensor in the merging by landcover class. 
Each point represents the spatial median (SH only) for a certain DOY. The stationary 
weights are shown in the dashed line. Based on aggregated ESA CCI Landcover 
classes (BS: Bare and sparse vegetation, S: Shrubland, G: Grassland, C: Cropland, H: 
Herbaceous, TB: Treecover broadleaf, TN: Treecover needle-leaf) as described in Table 
A.3. The lancover classes are arranged by increasing mean VOD (Fig.  A.12) from left 
to right, and from top to bottom.

are very strong in the SH (Fig.  A.12). Vegetation types with strong 
climatologies, like croplands and herbaceous covers, do not show as 
strong a separation. For the herbaceous cover, the separation is only 
visible between the SH Autumn (MAM) and the rest of the year. For 
croplands (and tree covers), the seasonal separation is not as evident. 
Despite the overall stationary vegetation regimes, barren ground/sparse 
vegetation and grasslands display a higher 𝑅𝑀𝑆𝐷 during the year 
compared to the SH Winter. In this case, the difference is likely driven 
by other seasonal error sources than vegetation – subsurface scattering 
likely also not being the cause, given that a larger impact should be 
expected in the dry season (JJA).

The impact of the new merging on soil moisture is shown in terms of 
the 2015–2023 𝑅𝑀𝑆𝐷 with the stationary merging (Fig.  7). To remove 
the effect of differences in the intrinsic (location) variability, the value 
is expressed in terms of % of (stationary-merged) soil moisture standard 
deviation in the same period. Large parts of the domain show an impact 
of the seasonally-weighted merging of less than 10% of the original 
soil moisture variability, including most of Australia, the Great Plains 
region, India and central Asia, and most of Africa. However, a seasonal 
impact is observed in the croplands and grasslands of the Sahel region 
(DJF-MAM), in parts of southern Australia (JJA), in the mixed vegeta-
tion cover of the Horn of Africa (JJA) and Europe (DJF). The highest 
7 
Fig. 6. Distribution of the 𝑅𝑀𝑆𝐷 between the seasonally- and stationary-merged soil 
moisture products, by season and aggregated ESA CCI-land cover (SH only): BS: Bare 
and sparse vegetation, S: Shrubland, G: Grassland, C: Cropland, H: Herbaceous, TB: 
Tree cover broadleaf, TN: Tree cover needle-leaf) as described in Table  A.3.

all-year impact is seen in the sparse vegetation and bare ground regions 
spanning from the Sahara desert to the Arabic peninsula (characterized 
by low intrinsic soil moisture variability) and in the needle-leaf forests 
in the Siberian and Canadian regions, and the Persian plateau. Here, the 
𝑅𝑀𝑆𝐷 in the soil moisture obtained with the two merging approaches 
is comparable to the standard deviation in the stationary-merged soil 
moisture data.

Overall, soil moisture estimates are not substantially changed by the 
seasonal merging. The changes observed in terms of 𝑅𝑀𝑆𝐷 are gen-
erally both within the estimated uncertainty (for instance, the average 
estimated uncertainty over the in situ locations is ∼ 0.018 m3 ∗ m−3) 
and below the empirical error found against the ground measurements 
(see Section 4.4). Furthermore, barely any difference is found in the 
global correlation (𝑅𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 = 0.559, 𝑅𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = 0.561) and 𝑢𝑏𝑅𝑀𝑆𝐷
(𝑢𝑏𝑅𝑀𝑆𝐷𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 = 0.040 m3 ∗ m−3, 𝑢𝑏𝑅𝑀𝑆𝐷𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = 0.039 m3 ∗
m−3) against the in situ measurements (number of sensors 𝑛 = 3780, 
median collocated observations per sensor 𝑛 = 873, based on the dataset 
described in Section 2.3 and spatially and temporally collocated as 
described in Section 3.3).
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Fig. 7. 𝑅𝑀𝑆𝐷 between the seasonally- and stationary-merged soil moisture products in % of (stationary-merged) soil moisture standard deviation, by season. Regions where the 
stationary-merged soil moisture standard deviation is smaller than the global 10th percentile are hatched. Gaps are due to masking of the soil moisture estimates where no retrieval 
is possible or where the quality is not assured and flagged, for example due to dense vegetation, frozen soil, permanent ice cover, or radio frequency interference. The points 
indicate the locations shown in Fig.  3.
Fig. 8. Uncertainty of the seasonally- and stationary-merged soil moisture products for the points shown in Fig.  3. Based on aggregated ESA CCI Landcover classes described in 
Table  A.3.
4.4. Uncertainty representation

Here, we evaluate the propagated seasonal uncertainties associated 
with the merged soil moisture and compare their agreement with 
uncertainty estimates derived using ground-based observations. With 
the stationary approach, the only variability in the uncertainty after 
propagation (Eq. (2)) is given by the number of sensors providing 
a valid observation, which varies over time due to different satellite 
orbits and sensor-inherent observation masking. Depending on the 
difference between their uncertainties, this can result in a more or less 
evident saw tooth profile (Fig.  8). Moreover, step-changes in the overall 
uncertainty level are caused by the addition of sensors, which occur in 
September 2012 (AMSR2) and April 2015 (SMAP). These features are 
inherent in the merging design and persist in the seasonal approach, 
but with a superposition of a climatological signal. The oscillation in 
the uncertainty is generally centred on the stationary estimates, but 
can sometimes be higher or lower reflecting the bias in the input 
uncertainties (Fig.  A.14), as visible for instance at location (3), where 
the stationary uncertainty roughly provides the upper bound of the 
new uncertainty climatology, and (4), where on the contrary the new 
uncertainty is larger.

The bias in the TCA-based uncertainty estimates can be computed 
against the uncertainties estimated from in situ reference soil mois-
ture 𝑢𝑏𝑅𝑀𝑆𝐷𝑚,𝑖 (Eq. (6)). In Fig.  9, the 2015–2023 𝑢𝑏𝑅𝑀𝑆𝐷𝑚,𝑖 is 
compared with the mean 𝜎𝜖 at all available in situ locations. For 
both seasonal and stationary 𝜎 , the ratio is roughly log-normal and 
𝜖

8 
Fig. 9. Distribution of the uncertainty validation ratio for the seasonally- and 
stationary-merged soil moisture products.

offset from the centre, meaning that the uncertainty estimates are 
generally smaller compared to the reference soil moisture uncertainty 
for the seasonal and stationary approach alike. The underestimation is 
slightly larger for the seasonal merging, coherently with Fig.  A.14. The 
closeness to a standard normal distribution for the (log-)ratio is also 
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Fig. 10. Pearson R of the monthly ESA CCI SM error (𝑢𝑏𝑅𝑀𝑆𝐷𝑚,𝑖) and estimated seasonal uncertainty (𝜎𝜖) at each station in space (a), and (b) grouped by ESA CCI LC aggregated 
class.
Fig. A.11. Location of the available ISMN sensors (𝑛 = 3780) and relative networks in the period 2015–2023 included in the 0 − 10 cm depth.
Fig. A.12. Cumulative distribution functions of the mean AMSR2 VOD climatology 
averaged over the ESACCI-landcover aggregated class (sampled per Northern and 
Southern Hemisphere).

considered a measure of accurate uncertainty (Merchant et al., 2017). 
In this case, the strong biases in the distributions compared to the 0 
mean lead to a kurtosis of 7.4 and 9.7 for the seasonal and stationary 
products, respectively, which reflects an excess of outliers.

Overall, neither the stationary- nor seasonally-merged uncertainties 
are unbiased with respect to the ground-based uncertainty, and both 
9 
appear to be underestimated over the sampled stations. In this respect, 
it should be pointed out that the uncertainty 𝜎2𝜖  estimated with Eq. (2) 
is a measure of the random error variance in 𝜃𝑚 which does not 
consider possible static biases, and is relative to the data space of the 
scaling reference, GLDAS. The mean-standard deviation scaling of 𝜃𝑚
to the in situ data is intended to remove such biases. However, as 
previously noted (Gruber et al., 2020) this does not account for intrinsic 
differences in the signal-to-noise ratios of 𝜃𝑚 and 𝜃𝑖, which leaves an 
additional error component in 𝑢𝑏𝑅𝑀𝑆𝐷𝑚,𝑖 compared to 𝜎𝜖 . Such com-
ponent can be intuitively understood as the instrumental noise of the 
ground sensors. In addition, the satellite product and the in situ mea-
surements represent a different horizontal support, leading to a spatial 
scale random representativeness error (Gruber et al., 2013; Peng et al., 
2025) which similarly contributes to the overall budget of 𝑢𝑏𝑅𝑀𝑆𝐷𝑚,𝑖. 
In other words, the 𝑢𝑏𝑅𝑀𝑆𝐷 would essentially be a measure of the 
error standard deviation 𝜎𝜖 only if the in situ measurement were a 
perfect representation of the soil moisture integrated over the satellite 
footprint, i.e., if the measurement and representativeness errors were 
removed. While this is not realistic in most cases (Miralles et al., 2010) 
– explaining at least in part the underestimation seen in Fig.  9 – in situ 
soil moisture is still considered the most reliable source of reference 
data (Dorigo et al., 2021). We did not attempt to mitigate the impact 
of these errors in the uncertainty validation, for instance by limiting 
the in situ selection to fiducial reference measurements (FRMs) (Goryl 
et al., 2023). Firstly, because proposed FRMs indicators are generally 
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Fig. A.13. (a), (b) Average sample size for 366 climatological windows over the period 2015–2023 (c), (d) number of climatological windows with at least 30 valid observations 
over the period 2015–2023.
Fig. A.14. Difference of the stationary uncertainty and the median of the soil moisture uncertainty climatology for the input products after gap-filling through uncertainty/VOD 
regression. Gaps are due to too few collocated data and p-value masking.
inferred from a comparison with satellite based soil moisture (Gruber 
et al., 2013), which may lead to a confirmation bias in the comparison 
of 𝑢𝑏𝑅𝑀𝑆𝐷 and 𝜎𝜖 . Secondly, because errors in situ measurements 
affect the validation scores for the stationary and seasonally merged 
products in equal measure, and – in terms of evaluating the potential 
improvement in the new uncertainty representation – can be neglected.

Overall, temporal dynamics in the new soil moisture uncertainty 
match with the inter-seasonal dynamics of 𝑢𝑏𝑅𝑀𝑆𝐷𝑚,𝑖. The correlation 
between the two at monthly aggregation (which limits the impact of 
sensor availability-driven 𝜎𝜖 variability) results in a global (i.e., con-
sidering all ISMN sensors) median 𝑅 of 0.19, with 720 sensors (42% of 
the total) with 𝑅 > 0.3.

Fig.  10a shows that the correlation has an evident, although not 
clearly delimited, regional connotation. Notable negative correlations 
(𝑅 ≤ −0.3) are especially clustered in the western forested mountains 
of the United States and in Europe over the Romanian RSMN network. 
Negligible correlations (−0.3 < 𝑅 < 0.3) are generally more scattered 
and homogeneously distributed between the area of negative R and 
the West–East divide of the United States. Notable positive correlations 
(𝑅 ≥ 0.3) are grouped in the South-East and South-West of the United 
States, in most European Networks and especially COSMOS-UK and 
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REMEDHUS, and in the West African TAHMO Network. It should be 
noted that the ISMN is subject to a evident geographic sampling bias. 
Therefore, it is difficult to interpret the observed spatial patterns ro-
bustly. However, the results sufficiently show that the new uncertainty 
representation can be consistent with in situ estimates – at least in terms 
of seasonality – depending on some spatial land surface characteris-
tics. LC itself does not entirely explain such consistency, with only a 
small separation between the worst (𝑅𝑇𝑁 = 0.01) and best correlated 
(𝑅𝐻 = 0.36, weak positive) classes, and all showing a wide IQR (Fig. 
10b). A better separation is observed when classifying the sensors by 
network (Fig.  A.15). Considering that the in situ measurements also 
show distinct error regimes mainly by network (Gruber et al., 2013), 
this may at least in part explain the variability in correlation seen 
between the predicted uncertainty and the in situ based error, given 
that the in situ uncertainty is part of the 𝑢𝑏𝑅𝑀𝑆𝐷𝑚,𝑖 error budget. The 
natural absence of strong seasonalities in the uncertainty in large parts 
of the NH (see Fig.  2), where most of the ISMN stations are located, may 
also cause the (de-)correlation to be mainly driven by sampling-related 
estimation errors in 𝑢𝑏𝑅𝑀𝑆𝐷  and 𝜎 .
𝑚,𝑖 𝜖
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Fig. A.15. As Fig.  10b, but classified by ISMN network.
5. Conclusions and outlook

In this study, we evaluated an alternative merging strategy for 
multi-satellite soil moisture records, which implicitly accounts for sea-
sonal sources of uncertainty. To do so, we characterized the uncertainty 
of three satellite input products with a seasonal modification of TCA 
to obtain a climatology of error variance and (inversely proportional) 
merging weight estimates. We used in situ soil moisture measurements 
to evaluate the reliability of the provided uncertainty field. We further 
stratified the results using a land cover classification that strongly 
connotates different vegetation regimes by mean and variability, based 
on the expectation that vegetation characteristics are the main drivers 
of uncertainty in soil moisture retrievals.

In line with previous efforts, we found strong fluctuations in the 
uncertainty climatologies of satellite SM retrievals. Such fluctuations 
are generally consistent between the studied sensors – particularly 
between the two passive sensors AMSR2 and SMAP – leading to limited 
deviations in the seasonal weights compared to the static weights. 
The strongest seasonalities in the merging weights over the Southern 
Hemisphere (where there are less data gaps than over the Northern 
Hemisphere) are observed for the shrubland and herbaceous land cover 
types, and no clear relation of the weights seasonalities to the strength 
of the intra-annual vegetation cycle or mean vegetation conditions is 
identified.

When using the seasonal uncertainty information in the merging, 
the temporal consistency between the sensors’ uncertainty over time 
leads to only minor changes in the merged soil moisture product com-
pared to the static case. Despite this, the uncertainty field provided with 
the product is now connotated with a strong climatological component, 
which was previously unaccounted for. Net of an underestimation in its 
magnitude – which is also present for the stationary merged uncertainty 
– the new uncertainty agrees reasonably well with the in situ-based 
uncertainty in terms of correlation, increasing the confidence in its 
ability to realistically represent the error budget of the observations.

The adaptation of TCA suits the stated aim to improve the represen-
tation of uncertainty in CDRs, and could be achieved without necessity 
of additional data. Based on the above results, we find recommendable 
to account for the seasonal component of retrieval uncertainty – rather 
than its stationary value alone – in the context of error-informed 
data merging. Not only where, but also when, is the data reliable 
is an important piece of the uncertainty information which can lead 
to more meaningful Earth Observation-based data and better decision 
making (Gruber et al., 2025).

In terms of applicability, the method is limited by the availabil-
ity of valid observations in the pre-defined temporal subsets. This 
implies that a different temporal definition, by changing either the 
windowing frequency or its size, could be more suitable for example 
11 
in shorter data records. Based on this, we identify the retrieval of 
information on the stability of the uncertainty estimates in the merging 
as a logical next step towards finding the optimal trade-off between 
the temporal information carried in the uncertainty and its precision. 
Moreover, we strongly advocate for continued research in this field – 
particularly in the merging of higher-resolution soil moisture products. 
Here, the proposed approach becomes especially relevant due to more 
pronounced local-scale differences in surface conditions which affect 
the parameterization of the retrieval in return.
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Table A.2
References to the ISMN Networks used in the study.
 AMMA-CATCH Pellarin et al. (2009), Mougin et al. (2009), 

Cappelaere et al. (2009), Rosnay et al. (2009), Lebel 
et al. (2009), Galle et al. (2015)

 

 ARM Cook, 2018)  
 BIEBRZA S-1 Musial et al. (2016)  
 COSMOS Zreda et al. (2008, 2012)  
 COSMOS UK –  
 CTP_SMTMN Yang et al. (2013)  
 DAHRA Tagesson et al. (2014)  
 FLUXNET-AMERIFLUX –  
 FMI Ikonen et al., 2016)  
 FR_Aqui Al-Yaari et al. (2018), Wigneron et al. (2018)  
 GROW Xaver et al. (2020), Zappa et al. (2019, 2020)  
 HOAL Blöschl et al. (2016), Vreugdenhil et al. (2013)  
 HOBE Bircher et al. (2012), Jensen and Refsgaard (2018)  
 HYDROL-NET PERUGIA Hollinger and Isard (1994)  
 IMA_CAN1 Biddoccu et al. (2016), Capello et al. (2019a), Raffelli 

et al. (2017)
 

 IPE Alday et al. (2020)  
 KIHS_CMC –  
 KIHS_SMC –  
 LAB-net Mattar et al. (2016, 2014)  
 LABFLUX –  
 MAQU Su et al. (2011), Dente et al. (2012)  
 MySMNet Kang et al. (2019)  
 MOL-RAO Beyrich and Adam (2007)  
 NAQU Su et al. (2011), Dente et al. (2012)  
 NGARI Su et al. (2011), Dente et al. (2012)  
 NVE –  
 OZNET Smith et al. (2012), Young et al. (2008)  
 PBO_H20 Larson et al. (2008)  
 REMEDHUS González-Zamora et al. (2019)  
 RISMA Ojo et al. (2015), L’Heureux (2011), Canisius (2011)  
 RSMN –  
 SCAN Schaefer et al. (2007)  
 SD_DEM Ardö (2013)  
 SMN-SDR Zhao et al. (2020), Zheng et al. (2022)  
 SMOSMANIA Calvet et al. (2016), Albergel et al. (2008), Calvet 

et al. (2007)
 

 SNOTEL Leavesley et al. (2008), Leavesleys (2010)  
 SOILSCAPE Moghaddam et al. (2011, 2016), Shuman et al. (2010) 
 SONTE-China –  
 STEMS Capello et al. (2019a), Darouich et al. (2022)  
 TAHMO –  
 TERENO Zacharias et al. (2011), Bogena et al. (2018, 2012), 

Bogena (2016)
 

 TWENTE –  
 TxSON –  
 UMSUOL –  
 USCRN Bell et al. (2013)  
 VDS –  
 WIT-Network –  
 WSMN Petropoulos and McCalmont (2017)  
 XMS-CAT –  
 iRON Osenga et al. (2021, 2019)  

Table A.3
Lookup table of the ESACCI-landcover classes to the thematic grouping used to stratify 
the results.
 Acronym Thematic grouping ESACCI-landcover classes 
 BS Bare and sparse vegetation 200, 150, 152, 153  
 S Shrubland 12, 100, 120, 121, 122  
 H Herbacous 11, 110  
 G Grassland 130  
 C Cropland 10, 20, 30  
 TB Treecover, broadleaf 50, 62  
 TN Treecover, needle-leaf 70, 82  
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