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 A B S T R A C T

The symmetry and magnitude of unconventional spin–orbit torques in ferromagnet/heavy metal/ferromagnet 
trilayers are investigated. Several spin-generating mechanisms are considered such as the anomalous Hall 
effect, anisotropic magnetoresistance, the Rashba–Edelstein effect, and the spin Hall effect. Optimal material 
thicknesses and magnetization configurations for maximizing out-of-plane spin torques for breaking the bilayer 
symmetry are presented. Furthermore, field-free switching simulations of a perpendicular SOT-MRAM utilizing 
the optimized trilayer torques are demonstrated, showing improved switching currents compared to another 
reported trilayer-based device.
 

1. Introduction

Spin–orbit torques (SOT) enable rapid and energy-efficient ma-
nipulation of magnetic states in emerging spintronic devices [1–3]. 
Conventional SOTs, generated through the spin Hall effect (SHE) in the 
bulk and the Rashba–Edelstein effect (REE) at the interface in heavy 
metal (HM)/ ferromagnetic (FM) bilayers have proven to be successful 
in switching logical states in SOT magnetoresistive random access 
memory (SOT-MRAM) [4–6]. The logical state is stored in the rela-
tive magnetization orientation of two magnetic layers called the free 
layer (FL) and the reference layer (RL), separated by a tunnel barrier 
(TB) forming a magnetic tunneling junction (MTJ). These devices can 
achieve sufficiently high densities to challenge conventional memories 
such as SRAM by utilizing perpendicular magnetic anisotropy [7,8]. 
However, due to the symmetry of conventional SOTs, reversing a 
perpendicular magnetic state is challenging without additional assis-
tance, such as an external magnetic field [2,3,8]. A promising approach 
involves leveraging unconventional SOTs in FM/NM/FM trilayers to 
break this symmetry [9–11]. By introducing a second FM layer below 
the NM, additional spin currents can be obtained through spin–orbit 
coupling (SOC) in the FM bulk and the FM/NM interface, offering 
enhanced control over the resulting SOTs compared to bilayers [12,13].

We investigate unconventional SOTs in trilayers to identify optimal 
configurations for achieving field-free switching of perpendicularly 
magnetized FM layers. We consider a FePt/W/CoFeB trilayer with an 
in-plane electrical current and in-plane CoFeB magnetization perpen-
dicular to the current, a direction along which the bilayer torques 
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vanish due to their symmetry. In the FePt bulk, spin currents are 
generated through the anomalous Hall effect (AHE) and anisotropic 
magnetoresistance (AMR) [14]. We consider the SHE in the bulk of the 
W layer, and we compute the spin currents generated through the REE 
by considering spin-dependent scattering from a Rashba SOC potential 
at the W/FM interfaces. We include the four spin current contributions 
in a spin drift–diffusion model and calculate the SOTs acting on the 
CoFeB layer.

Combining the drift–diffusion model with the Landau-Lifshitz-Gilbert
(LLG) equation allows modeling of the magnetization dynamics. We 
investigate the magnetization dynamics in a CoFeB/W/CoFeB trilayer-
based SOT-MRAM cell, optimized for maximizing the trilayer torques 
from the REE. We demonstrate deterministic field-free switching and 
improved performance compared to a similar reported device [10].

2. Micromagnetic model

The magnetization dynamics are described by the LLG equation: 
𝜕𝐦
𝜕𝑡

= −𝛾𝜇0𝐦 ×𝐇eff + 𝛼𝐦 × 𝜕𝐦
𝜕𝑡

+ 1
𝑀𝑆

𝐓𝐒 (1)

𝒎 = 𝑴∕𝑀𝑆 is the normalized magnetization, 𝑀𝑆 is the saturation 
magnetization. 𝛾 is the gyromagnetic ratio, 𝜇0 is the permeability 
of vacuum, and 𝛼 is the Gilbert damping constant. The first term 
describes the precession of the magnetization around an effective mag-
netic field 𝑯eff , the second term describes the damping of the mag-
netization towards this field, and the third term describes the spin 
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torques 𝐓𝐒 acting on the magnetization. The effective field consists of 
several important contributions, such as the exchange field, demagneti-
zation field, anisotropy field, and the interfacial Dzyaloshinskii–Moriya 
interaction [15]: 
𝐇eff = 𝐇exch +𝐇demag +𝐇aniso +𝐇iDMI (2)

The spin torque is obtained from the non-equilibrium spin accumula-
tion 𝑺 transverse to the magnetization [16]: 

𝐓𝐒 = −
𝐷𝑒

𝜆2𝐽
𝐦 × 𝐒 −

𝐷𝑒

𝜆2𝜙
𝐦 × (𝐦 × 𝐒) (3)

𝜆𝐽  and 𝜆𝜙 are exchange and dephasing lengths, respectively, while 𝐷𝑒
is the electron diffusion coefficient.

3. Spin drift-diffusion model

The non-equilibrium spin accumulation is obtained by solving its 
continuity equation for a steady state [16]: 

𝜕𝐒
𝜕𝑡

= 0 = −∇𝐽𝑆 −𝐷𝑒

(

𝐒
𝜆2𝑠𝑓

+ 𝐒 ×𝐦
𝜆2𝐽

+
𝐦 × (𝐒 ×𝐦)

𝜆2𝜑

)

(4)

(𝐽𝑆 )𝑖𝑗 is the spin polarization current density in units of A/s, with 
direction 𝑗 and polarization 𝑖, and 𝜆𝑠𝑓  is the spin-flip length.

The spin polarization current density is described by the diffusion 
of spin accumulation, the flow of spins carried by an electrical current 
polarized by the local magnetization [17]:
𝐽𝑆 = − 𝐷𝑒∇𝑺

−
𝜇𝐵
𝑒
𝛽𝜎𝐦⊗

(

𝐉𝐂 − 𝑒
𝜇𝐵

𝛽𝐷𝐷𝑒 (∇𝑺)T 𝐦
)

(5)

𝐉𝐂 = 𝜎𝐄 is the electrical current density from the applied field 𝐄, where 
𝜎 is the electrical conductivity. The applied electrical field is given by 
𝐄 = −∇𝑉 , where 𝑉  is the electrical potential, obtained from solving 
∇ ⋅ 𝐉𝐂 = 0 with Dirichlet boundary conditions for the applied voltage 
at the contacts. 𝛽𝜎 and 𝛽𝐷 are the dimensionless electrical current 
polarization and diffusion spin polarization, respectively. 𝜇𝐵 is the Bohr 
magneton and 𝑒 is the elementary charge.

At external boundaries not containing contacts, we assume zero flux 
of spin and electrical currents, i.e., (𝐽𝑆 )𝑖𝑗𝑛𝑗 = 0 and 𝐉𝐂 ⋅ 𝐧 = 0, where 
𝐧 is the interface normal. At internal interfaces, we use the boundary 
conditions from the magnetoelectronic circuit theory [16].

In HMs, the spin current from the SHE flows perpendicularly to the 
electrical field with a polarization perpendicular to both [16]: 
𝐽SHE
𝑆 = −𝜃SH

𝜇𝐵
𝑒
𝜀𝐉𝐂 (6)

𝜃SH = 𝜎SH∕𝜎 is the dimensionless spin Hall angle, which captures the 
efficiency of the charge to spin current conversion, where 𝜎SH is the 
spin Hall conductivity. 𝜀𝑖𝑗𝑘 is the Levi-Civita tensor.

In FMs, the spin current from the AHE is polarized along 𝐦 and 
flows along 𝐦 × 𝐄 [12]: 

𝐽AHE
𝑆 = −𝜃AH

𝜇𝐵
𝑒
𝐦⊗ (𝐦 × 𝐉𝐂) (7)

𝜃AH is the anomalous Hall angle.
The AMR spin current is also polarized along 𝐦 with the direction 

given by 𝐦(𝐦 ⋅ 𝐄) [12]: 

𝐽AMR
𝑆 = −𝜃AMR

𝜇𝐵
𝑒
𝐦⊗𝐦(𝐦 ⋅ 𝐉𝐂) (8)

𝜃AMR is the AMR angle.
At HM/FM interfaces, the REE is captured by boundary conditions 

for the spin current at either side of the interface [15,18]:

𝐽REE
𝑆 𝐧|HM = −

𝜇𝐵
𝑒

𝝈𝐇𝐌
𝐒 (𝒎,𝑬)

𝜎
𝐽 ip
𝐶 (9)

𝐽REE
𝑆 𝐧|FM = −

𝜇𝐵
𝑒

𝜸𝐅𝐌𝐒 (𝒎,𝑬)
𝜎

𝐽 ip
𝐶 (10)
2 
Fig. 1. A sketch of the FePt/W/CoFeB trilayer geometry considered, where 𝜃 and 𝜙
are the polar and azimuthal angles of the FePt magnetization direction, respectively. 
𝐄𝐱 is an applied electric field along the 𝑥 direction.

𝐽 ip
𝐶  is the magnitude of the in-plane current at the interface. 𝝈𝐇𝐌

𝐒  and 
𝜸𝐅𝐌𝐒  are interfacial conductivity tensors computed by considering quan-
tum mechanical scattering of a Rashba SOC and exchange potential at 
the interface [15]. The spin torque due to the exchange interaction at 
the interface is given by 

𝐓int
𝐒 = −

𝜇𝐵
𝑒

𝜸𝐦𝐚𝐠
𝐒 (𝒎,𝑬)

𝜎
𝐽 ip
𝐶 𝛿(𝑧), (11)

for an interface at 𝑧 = 0, where 𝜸𝐦𝐚𝐠
𝐒  is the interface torkivity ten-

sor [18].
The spin currents from the SHE, AHE, AMR, and REE are included 

as additional contributions to Eq.  (5). All of the considered spin-
generating effects have a reciprocal effect on the charge current density, 
which are assumed to weakly affect the resulting spin accumulation and 
torques and are, therefore, not considered in this work.

4. Trilayer SOTs

We consider a FePt(𝑑FePT)/W(𝑑W)/CoFeB(1.2 nm) trilayer system 
with an in-plane electrical current density of 1012 A/m2, where 𝑑FePT
and 𝑑W is the FePt and W thickness, respectively. We keep the CoFeB 
magnetization fixed along ̂𝐳×𝐄, where the bilayer torques from the SHE 
and REE vanish, leaving only the contribution from the trilayer torques. 
The system is depicted in Fig.  1, where the polar and azimuthal angles 
describe the FePt magnetization direction. FePt exhibits the AHE and 
AMR with reported Hall angles of approximately 0.25 and −0.015 [12,
14], respectively. It has been widely reported that W has a large spin 
Hall angle of approximately −0.3 in its high resistance 𝛽 phase [19]. 
Due to the strong SOC in W, we consequently assume a strong REE is 
present at the W/FM interfaces. We solve the drift–diffusion equations 
for this system and analyze the resulting out-of-plane torques acting on 
the CoFeB layer, as these torques bring the magnetization out-of-plane 
and break the symmetry of the conventional torques.

Fig.  2 shows the thickness dependence of out-of-plane spin torques 
on the FePt and W thickness. As the trilayer spin currents originat-
ing from the FePt and FePt/W interface diffuse due to bulk spin-flip 
processes, a HM thickness below the spin-diffusion length is necessary 
to maximize their contribution (2.4 nm in W [20]). The opposite is 
generally desired in HM/FM bilayers as the anti-damping torques in-
crease with the HM thickness up to a saturation point [21]. Therefore, 
the trilayer contribution from the SHE peaks at thicknesses near the 
spin-diffusion length as the total SHE spin current increases with the 
HM thickness, while the SHE spin current scattered from the bot-
tom FM decreases with the thickness. Consequently, the HM thickness 
significantly affects which contribution dominates.

For increasing FePt thickness, we observe that the REE contribution 
remains constant, while the SHE contribution increases for decreasing 
thickness and saturates with increasing thickness. Similarly to the 
SHE torques in bilayers, we observe that AHE and AMR torques in-
crease with the FePt thickness, reaching saturation points based on the 
spin-diffusion length (5 nm in FePt [12]).
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Fig. 2. Thickness dependence of the out-of-plane unconventional SOTs acting on the 
CoFeB magnetization in a FePt/W/CoFeB(1.2 nm) trilayer. Panel (a): The thickness of 
W is varied while FePt thickness is fixed at 6 nm. Panel (b): W thickness is fixed at 
2 nm, and the FePt thickness is varied. FePt magnetization directions, which maximize 
the resulting torques, are chosen.

Fig. 3. Angular dependence of the out-of-plane unconventional SOTs acting on the 
CoFeB magnetization in a FePt(6 nm)/W(2 nm)/CoFeB(1.2 nm) trilayer. The CoFeB 
magnetization points along −𝑦, where the conventional bilayer torques vanish. Panels 
(a), (b), (c), and (d) show the spin torque contribution from the AHE, AMR, REE, and 
SHE, respectively.
3 
Fig.  3 shows the dependence of the out-of-plane SOTs on the FePt 
magnetization direction, revealing a strong angular dependence of the 
torques. In particular, the REE is most pronounced, when the magne-
tization aligns with the current direction, suggesting it could be the 
dominating mechanism for magnetization reversal in CoFeB/Ti/CoFeB 
trilayers [11]. The AHE and SHE have a similar angular dependence, 
where a 45◦ tilted magnetization orthogonal to the current direction 
is preferred for maximizing their contribution. The AMR contribution 
is also the most pronounced, when the magnetization is tilted by 45◦, 
however, it is the strongest in the 𝑥-𝑧 plane.

5. Field-free switching with trilayer SOTs

Combining the drift–diffusion and the LLG equation and solv-
ing them together with the finite element method, enables simu-
lations of the magnetization dynamics during switching of the FL. 
We consider a CoFeB/W SOT line with a width of 70 nm, below a 
CoFeB(FL)/MgO(TB)/CoFeB(RL) perpendicular MTJ with a diameter of 
60 nm, and simulate the switching of the FL from the antiparallel to the 
parallel state. To represent a typical SOT-MTJ, we consider a thickness 
of 1.2 nm for the FL, and 1.0 nm for the TB and the RL [2,3,7].

The magnetization of the bottom CoFeB layer is fixed along the 
current direction to maximize the REE contribution. To focus on the 
effects of unconventional torques on switching performance, we aim to 
minimize any interlayer effects between the bottom CoFeB layer and 
the FL. Since the unconventional torques originating from the REE are 
independent of the bottom layer’s thickness, we consider a thickness of 
4.0 nm, as used in [22], where it was reported that the stray field did 
not strongly influence the switching.

To optimize the unconventional torques from the REE, a thin W 
layer with a thickness below the diffusion length is necessary, as shown 
in Fig.  2a. However, thicknesses below 1.0 nm can induce a strong 
interlayer exchange coupling (IEC) between the bottom CoFeB and the 
FL [23]. Although this could be beneficial, it falls outside the scope of 
our study. Therefore, we will use a W thickness of 1.0 nm to ensure a 
strong REE contribution while eliminating the need to account for the 
IEC.

Fig.  4 shows the evolution of the FL magnetization over time for var-
ious applied currents. For all the applied currents, we observe field-free 
switching and similar dynamics: The magnetization is quickly switched 
halfway, and thereafter, damped oscillations bring the magnetization 
to the fully switched configuration. With increasing current magnitude 
the oscillations decrease in amplitude and relax faster.

Assuming that switching off the current after the average
𝑧-component of the normalized magnetization reaches −0.75 guarantees 
that the magnetization relaxes to the fully switched state. Thus, we 
can roughly estimate the required switching current pulse width. Fig. 
5 shows the switching current as a function of the inverse switching 
pulse width. We compare our results with the ones from a previously 
reported similar trilayer device [10]. The simulation results of our 
proposed SOT-MTJ configuration suggest a drastic decrease in the 
required switching current.

6. Conclusion

In conclusion, we demonstrate that FM/HM/FM trilayers can gener-
ate unconventional SOTs acting on the upper FM layer, which are tun-
able by the lower FM magnetization direction. Our spin drift–diffusion 
approach enables the study and optimization of SOTs concerning ma-
terials, layer thickness, and magnetization directions. Ultimately, cou-
pling the computed torques with the Landau–Lifshitz–Gilbert equation 
is essential for investigating the resulting magnetization dynamics to 
demonstrate deterministic field-free switching. With optimized uncon-
ventional SOTs our simulations of the resulting dynamics demonstrate 
a structure which promises a drastic reduction in switching currents 
compared to similar devices.
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Fig. 4. Average 𝑧-component of the FL magnetization in a 
CoFeB(4 nm)/W(1 nm)/[CoFeB(1.2 nm)/MgO (1 nm)/CoFeB(1 nm)] SOT-MTJ 
as a function of time ([⋅] denotes the MTJ part of the stack), for various applied 
currents.

Fig. 5. (a): Switching time as a function of the inverse switching current pulse width, 
for the same system as in Fig.  4. (b): A schematic of the trilayer SOT-MTJ system 
considered.
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