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Introduction

@ 2011 Nobel Prize in Physics: "The discovery of the accelerating expansion of
the Universe through observations of distant supernovae”

@ Also, according to inflation theory, the early universe underwent an
exponential expansion

@ Accelerated expansion of universe = de-Sitter spacetime

@ But linearly realised SUSY w/o scalar fields does not allow positive
cosmological constant



No-go Results for Linear Superalgebra in dS,

Linearly realised A'=1 SUSY does not allow for dS; solutions.

No Majorana Killing Spinor

@ Majorana Killing spinors, needed for linear realisation of A'=1 SUSY in
curved Lorentzian spacetimes, do not exist in dS;.



No-go Results for Linear Superalgebra in dS,

Linearly realised A/'=1 SUSY does not allow for dS; solutions.

No Majorana Killing Spinor

© Majorana Killing spinors, needed for linear realisation of A'=1 SUSY in
curved Lorentzian spacetimes, do not exist in dS,.

No Unitary Representation

@ Linear dS, super-algebra in which the {Q, Q} anti-commutator closes on
the generators of the SO(4, 1) dS isometry group, does not have unitary
representations.
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No-go Results for Linear Superalgebra in dS,

In dS/AdS algebras translations have a non-zero commutator:
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The Lie algebras are SO(4, 1) for dS and SO(3, 2) for AdS.
Linear SUSY algebra:
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1 1
{Qa, Qs} = = 5 (1")asPu = g7 (V" )apMuy [Py, P] =0

[Pm Qa] =



No-go Results for Linear Superalgebra in dS,

In dS/AdS algebras translations have a non-zero commutator:

-1 fordS

1
P.,Pl=s—
[Pu, P s4 +1 for AdS

B M,, where s= {

The Lie algebras are SO(4, 1) for dS and SO(3, 2) for AdS.

Linear SUSY algebra:
1
[P Q] = H(’Yﬂ Q)a Mpuws Qa] = — (’Yﬂu)aﬁQﬂ

1 1
{Qa, Qs} = =5 (1")asPu = g7 (V" )apMuy [Py, P] =0

Jacobi Identity Forbids Linear Superalgebra in dS,
On embedding the dS/AdS algebra in the above linear SUSY algebra, the Jacobi

identi
identity [P, Py, Q=0

fixes s = 1. Therefore, linear A'=1 super-dS algebra does not exist in 4D.



Move to non-linear SUSY

@ Pure dS SUGRA was constructed by realising A'=1 SUSY non-linearly

o Different methods to realise SUSY non-linearly:
o Nilpotent superfields
o Goldstino brane action
o Stiickelberging unimodular supergravity



o Different methods for realising A/'=1 SUSY non-linearly
o Do different constructions give the same action?

o How to compare the actions?



Brief Historical Review

@ In 2015 Bergshoeff, Freedman, Kallosh & Proeyen presented dS SUGRA
for the first time using superconformal methods.

o Later in 2015 Bandos, Martucci, Sorokin & Tonin presented dS SUGRA
by coupling a goldstino 3-brane to minimal supergravity.

o Alot of work has been done on dS SUGRA in recent years [Antoniadis,
Dudas, Farakos, Ferrara, Hasegawa, Kehagias, Kuzenko, Porrati, Sagnotti,
Scalisi, Wrase, Yamada, ..."15-"21]

o Cosmological and inflationary models in dS SUGRA [Andriot,
Antoniadis, Dudas, Ferrara, Sagnotti, Buchmuller, Heurtier, Wieck, Ferrara,
Kallosh, Linde, Thaler, Zavala, Zwirner, ...'15-'21]

@ Brane models [Angelantonj, Antoniadis, Dudas, Mourad, Parameswaran,
Pradisi, Riccioni, Sagnotti, Uranga, Vercnocke, Zavala, ..."99-'21]



@ Nilpotent Superfield Construction

@ Goldstino Brane Action in Supergravity
© Unimodular Gravity

@ Stiickelberged Unimodular Supergravity

@ Comparison b/w the dS actions from Unimodular SUGRA and Goldstino
Brane Construction

@ Constructing Full Stiickelberged Unimodular Supergravity Action

@ Discussion



Nilpotent Superfield Construction

In superconformal model we use 3 multiplets:

1) chiral compensating multiplet {X°, %, F°},
2) nilpotent chiral multiplet S = {X*, G, F1},
3) Lagrange multiplier multiplet {A, x", F"}.

The Lagrangian is [E Bergshoeff, D Freedman, R Kallosh & A Proeyen "15]
£ = X' Fle + IWX)E + XY
where /, J = 0, 1; n;; = diag(—1, 1) and the superpotential W is
W =a(X%?3+ b(X%)2Xx?

where a and b are arbitrary constants.



Nilpotent Superfield

S=X"+v20G+6°F*

Nilpotency constraint:  S% = 0

= (X2 +2v206XT + 62 (2F X -G =0

2
1. 9
= X' =3m




Nilpotent Superfield

S=X"+V20G +6°F!

Nilpotency constraint: $2=0
= (X +2v20GXT +6°(2F X' - G*) =0
g2

X'=
- 2F1

This eliminates the fundamental scalar partner of the goldstino G and
hence SUSY is realised non-linearly.

It gives solutions with the cosmological constant

A= |b]* —af?



Goldstino Brane Action in Supergravity

Sg = S5s¢ + Sya  [IBandos, L Martucci, D Sorokin, M Tonin ’15]

2 m(B)
. 2—i2/dszBerE - = (/ d6§L€+h.c.>

Standard pure SUGRA Ads cosmologiggl constant term
— / d*¢ detE(z(€))

Goldstino brane coupled to SUGRA

¢' are the 3-brane worldvolume coordinates with i = 0, 1, 2, 3. Coupling to
supergravity is given via the embedding in the bulk superspace as

¢ = 2M(€) = (x"(€),0%(6), 8°(€))



Goldstino Brane Action in Supergravity

The solutions to the equations of motion of the auxilliary fields show that
they belong to nilpotent superfields.

Sg perturbed up to the 3 order in fluctuations, is:

=32 /d x [{v=g R —&"""* (.0,Dytx + h.c.) }(3) {2\/— (Az— ?> }(3)

+ {2mypo™ p, + 2iA2Go" P, — 2,A2ga“D“g + $mA2G?
+ Lhamyuot iy + 2mipuh, o, + Aa(ihGot g, — iGh" Lo Py
— ihdo"D,G + iGh 0" DG + 2iGo" &P G + 2hmG?) + h.c.}]

G is the goldstino.



Volkov-Akulov Lagrangian

In 1972 Dmitrij Vasilievich
Volkov and Vladimir P. Akulov
developed the Volkov-Akulov
Lagrangian formalism. It
realizes supersymmetry entirely
with a fermion.

Volkov

Spontaneous breaking of SUSY
produces a Goldstone field.
Volkov-Akulov formalism enables the
construction of the Lagrangian of the
Goldstone field. SUSY is realised
non-linearly with just one fermion and
no boson.




Constructing Volkov-Akulov Action

N=1inD=4
SUSY transformations:

6x*=i(ec?@ —Ec?h), 0% =

Replace the Grassman coordinate 6 with the field x(x).
0% — Kk x%(x)
ox? = iK% (e0?x —x0%E), OX =€ +ir? (€0 X — x07€) D2
It is easy to check that the above transformation realises SUSY algebra.
(805 — 0y6e) X = 2iK2 (e 0?7 — no? €) Dax™
{Qa y Qﬁ} = 2001’8_3 Pa

Q. (a0 = 1,2) are Weyl spinor generators
P, are translation generators.



Constructing Volkov-Akulov Action

Find a SUSY-invariant Cartan one-form:
g = e ¥"PaeifQ e 10Q
Q=—ig-ldg = E?P, + E*Qqy + E5 Q%
E? = dx? + ix*(xo? dX — dx 0 %)

Construct Volkov-Akulov Action
In D dimensions:
1 1
S = W/Eah.“a[) EXNE® . ANED = — ?/ dDX det E;




Unimodular Gravity




Why Unimodular Gravity?

! /d4x\/—_g(R—2A)

Einstein-Hilbert action: S =
167 GN

A is a constant to begin with, so can have only one value throughout.

Unimodular gravity action:

1
9= 167TGN

/ d*xv/=2R — 2\(x) (V=E — c0)

:O:>\/—_g:€0

SA(x)



Why Unimodular Gravity?

! /d4x\/—_g(R—2A)

Einstein-Hilbert action: S =
167 GN

A is a constant to begin with, so can have only one value throughout.

Unimodular gravity action:

_ 1 4
5_167TGN/d xv/—gR —2A\(x) (vV/—g — €0)
)
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Taking the divergence of the above equation gives

V.N(x)=0.



Why Unimodular Gravity?

- /d4x\/—_g(R—2A)

Einstein-Hilbert action: S =
167 GN

A is a constant to begin with, so can have only one value throughout.

Unimodular gravity action:

1

_ 4 — _ s
5_167TGN/d xv/—gR —2A(x)(vV/—g — €0)
5S
e =0 = Ru—iRgu+NANx)=0

Taking the divergence of the above equation gives
V.N(x)=0.
A has emerged as a constant of integration from within the theory itself.

Unimodular gravity has the advantage of allowing at once for both positive and
negative A.



Unimodular Gravity

Unimodular Gravity Action:

1
§ = d*x [v/—gR — 2\(x) (v/—g —
167TGN/ x[V-g (x) (V=& —e)]
where A(x) is a Lagrange multiplier field imposing the unimodularity condition:

€p is a constant, traditionally set to unity. But it breaks diffeomorphism
invariance because of the term
/ d4X A €0 -



Unimodular Gravity

Unimodular Gravity Action:

S =t | 4 [V=ER ~ 20 (V¢ - )]

where A(x) is a Lagrange multiplier field imposing the unimodularity condition:
V=8 =¢€

€p is a constant, traditionally set to unity. But it breaks diffeomorphism
invariance because of the term
/ d*xNeg.

How to restore the broken diffeomorphism invariance?



Symmetry Breaking

Free Maxwell Lagrangian:

1
Ly =— ZFWFW where F,, = 9,A, — 0, A,

It is gauge invariant under the transformation A, — A, + d 0.



Symmetry Breaking

Free Maxwell Lagrangian:

Ly =— %FWF“” where F,, = 0,A, — 0,A,

It is gauge invariant under the transformation A, — A, + d 0.
1 m?

But on adding a mass term, such that £, = — a gl ¥ = TANA“
gauge invariance is lost. :-/



Symmetry Breaking

Free Maxwell Lagrangian:
1
Ly =— ZF’“’FW where F,, = J,A, — 0,A,

It is gauge invariant under the transformation A, — A, + d 0.

1 2
But on adding a mass term, such that £}, = — 2 L — %ANA”,
gauge invariance is lost. :-/

1 L, m?
ﬁM:_ZF}lJ/FM —7AMAH

A=A+ 1
—_

2
— 2 Fu " — T (A = u0)(A" = 9a)



Restoration of Broken Symmetry via the Stiickelberg

Procedure

Promote the parameter « to a field f.

A 1 o n_ o
£M:_ZFMVF —7(A#—8ﬂf)(A — O"f)



Restoration of Broken Symmetry via the Stiickelberg

Procedure

Promote the parameter « to a field f.

A 1 v m? H Iz
£M:—ZFWF —7(Au—8uf)(A — O0Mf)

CNM is invariant under
0A, = Oy, Of = —ar.

So now we have a gauge-invariant Lagrangian £, with a mass term.



Perturbative Approach




Unimodular Gravity and the Stiickelberg Procedure

Under active diffeomorphism tranformation, A transforms as
A= N =N—EHON+ 370, (§"0uN) + ...

We promote the diffeo parameter £ to the field ¢*. Then the action
becomes

S6 = Toncy / d*x[v/—gR —2\/=g + 2N e [1 + 9, 0"
+56"0,0,0" + 5 (0:0) (8,6") + .. ]
It is invariant up to the relevant order, when ¢* transforms as

S = — €M — 3EV0,¢" + 3970, E" + ...



Unimodular Gravity and the Stiickelberg Procedure

We can also do passive diffeomorphism transformation.

N Stiickelberg
xt — B (x) ———> s

H(x)

Then the Stiickelberged action is

Ss = m/d‘lx |:\/ —gR— 2N\ <\/ —8 — ‘Det (%)

o)

Using s = x + ¢ + ... the two Stiickelberged actions are identical order
by order in ¢*.



Stiickelberged Unimodular Supergravity

Perturbative Approach




N = 1 Supergravity Action

Now we supersymmetrise the theory and see what solutions we get.

N = 1 supergravity action

§==

Sty / d*x d*© ER + h.c.

Volume element factor £ is

E=Fo + V2OF, + ©0F,  with
Fo = %e,
]:1 - #60’#1;”7

Fo = —%eM* - %ezﬁu (340" — &% a") b, .



N'=1 Supergravity Action

N=1 supergravity action

S=—g /d4x d’©ER + h.c.
Superfield R is

1
R = _E(RO + OR: + @eRg), with
7?'0 = M7

Ry = 0t 5"y, — io"h, M + i, b"

1 = 2 1 1o
Ra = R+ 5" Yo + SMM® + 2b,b" — el D" + ~PiM

1 -1 o i
- E'I/Juaﬂdjuby + gsuypa(djuo'vaa + Tﬁuavacr) o

Supergravity multiplet: ¢s; = (ef, ¥}, b, M).



N = 1 Unimodular Supergravity Action

N = 1 unimodular supergravity action [S. Nagy, A. Padilla, 1. Zavala '19]
SI=E e / d*xd’© [ER + tA (€ — &)] + h.c.

where

50 — €0 — %m@z



N = 1 Unimodular Supergravity Action

N = 1 unimodular supergravity action [S. Nagy, A. Padilla, I. Zavala '19]

S=—g /d4x d’O [ER + N (€ — &)] + h.c.
where
& = €eo — 3mO”.
The Lagrange multiplier field A is
A= Ao+ V2OA; + N\,©?



N = 1 Unimodular Supergravity Action

N = 1 unimodular supergravity action [S. Nagy, A. Padilla, I. Zavala '19]

S = —sch /d4x d’© [ER + IN(E — &)] + h.c.
where
Eo =€ — 1m@?.
The Lagrange multiplier field A is

A =Ny + V20O + A,©O?

Varying over A, we get



Super-Stiickelberg Procedure

Stiickelberg trick is performed up to the 2" order in Stiickelberg fields, so the

diffeo and SUSY transformations of the superfield components are derived up to
the 2" order in £* and e.

Then we promote the diffeo and SUSY transformation parameters to fields:

& — o* and € — (



Super-Stiickelberg Procedure

Stiickelberg trick is performed up to the 2" order in Stiickelberg fields, so the
diffeo and SUSY transformations of the superfield components are derived up to
the 2" order in £# and e.

Then we promote the diffeo and SUSY transformation parameters to fields:

&= ¢¢ and € —

Symmetry breaking part: 16 / d*x (2N\2e9 — mAg + h.c.)
The action can then be constructed perturbatively as:
167Gl =v/=& R — M"M + b, + 77 (5,5, Dby — 0B, )|
1\/_{ 2g + V2ih o Py, + 20 (PG b, + M*) + h. c}

+2[ Ao + 8N | € — m g + HETCE N + e



de Sitter Solutions

Gy + Quv [MM* + 2b°b, + Re(Ay — AgM™)]

+bub, =0,
*%M+A0:0,
bﬂ-zoa

—Ouha +mdu Ao — 28,¢" 0, Ny + 30, (670, \2)
+20,0"0uNo — 20, (6" 0uMo) + hc. =0,
V=gM* —m —md,¢* — 39, [¢"0,¢"] =0,
V=g + 1+ 3" + 59, (6"3,¢") = 0.

(qu = g,uu: with vV—g= 1.

= A2 = K , with Im(Ag) =0.

1
ce.= Ay — §m2 = Ky — %Kg



Stiickelberged Unimodular Supergravity Action

We finally arrive at the following action: [S. Bansal, S. Nagy, A. Padilla, I. Zavala '20]

6)
S= 5 /d4 [{vV=gR — """ ($u0, D, + h.c.) }(3) {2\/ (Az = ?>}
+ {2m ot i, + 2iAG0" D, — 2iAs00" DG + EmALG?
+ Lhmipuo™ iy + 2mph Mo, + Aa(ihGot G — iGH Lo Py
— ihGo" DG + iGh" 0" DG + 2iGo 5P G + 2hmd?) + h.c.}] .

Same as the Goldstino brane action! [I Bandos, L Martucci, D Sorokin, M Tonin ’15]



Complete Action




Stiickelberged Unimodular Gravity Action

to All Orders




Unimodular Gravity

Unimodular Gravity Action:

S = torc. | 4 [V=ER — 200 (V=g - )]

where A(x) is a Lagrange multiplier field imposing the unimodularity condition:

VE=c

Under a finite diffeomorphism A(x) transforms as
A(x) = N(x) = e Xp(x),

where £#(x), a 4-vector, is the diffeomorphism parameter.



Diffeomorphism Transformation of the Action

1
S=—F+ / d*x [v/=g R(x) — 2¢/=g A(x) + 2 g A(x)]
167 GN
[Diffeomorphism

1
S o 1671'GN

/ d*x [\/—_g R(x) —2v/—g N(x) + 20 e5V(X)6VA(x)]

How to restore the broken diffeomorphism invariance?



Applying Stiickelberg Procedure to Unimodular Gravity

Action

Coming back to our unimodular gravity action, we apply the Stiickelberg
procedure by promoting the diffeomorphism parameter £#(x) to Stiickelberg
fields ¢*(x):

e"POuN(x) o e?"MAp(x)

where unlike £ (x) which is a 4-vector, ¢*(x) is a set of four fields — ¢°(x),

¢'(x), ¢*(x) and ¢*(x).



Applying Stiickelberg Procedure to Unimodular Gravity

Action

Coming back to our unimodular gravity action, we apply the Stiickelberg

procedure by promoting the diffeomorphism parameter £#(x) to Stiickelberg
fields ¢*(x):

e Bup(x) = e?Ip(x)
where unlike £ (x) which is a 4-vector, ¢*(x) is a set of four fields — ¢°(x),
¢'(x), $°(x) and ¢*(x).

On applying the Stiickelberg procedure on the transformed unimodular gravity
action, we get,

1
I = 167TGN

/ d*x [\/—_gR —2v/=gN(x) + 2 ¢ e¢"(X>3vA(x)] .



Diffeomorphism Transformation of the Stiickelberg Fields

Diffeomorphism invariance of the Stiickelberged action requires that
o=@ (x)0y N (x) = e—¢”(X)8u/\(X)'
Using the fact that A(x) = e*” )% \’(x), we immediately infer that

a9 (0 _ g—6" ()0 £ ()0, |



Diffeomorphism Transformation of the Stiickelberg Fields

Diffeomorphism invariance of the Stiickelberged action requires that
e ()0, N(x) = e—¢”(><)8u/\(x).
Using the fact that A(x) = " )% N\’(x), we immediately infer that
—4 ()0 _ =" (x)0y € (X)0s

Using the integral form of the Baker-Campbell-Hausdorff formula, and working
to linear order in ¢, we get,

disv(x
B ()0, = ¢ ()0, — T a2 ()0,

— ead¢r(x)a,)

where adx(Y) = [X, Y]



Diffeomorphism Transformation of the Stiickelberg Fields

Diffeomorphism invariance of the Stiickelberged action requires that
(e PI%YN (x) = e ¢ I A(x).
Using the fact that A(x) = e*” )% \’(x), we immediately infer that
e~ ()0 _ g=¢"(x)0 £"(x)0:

Using the integral form of the Baker-Campbell-Hausdorff formula, and working
to linear order in ¢, we get,

" Y o adgr(99,) e
¢ (x)0, = ¢”(x)0, 1 e (x)0y
< Bi(—1)kadf,.,
_ ¢V(X)8V +Z k o (o~ ( )au)gv(x)(aV,

k=0

where adx(Y) = [X, Y] and B," are the Bernoulli numbers,

1 1

1
- B —O B - —— el
6’ g ’ & 30,

Bf =1 Bf =3, Bf =



Stiickelberged Unimodular Supergravity Action

to All Orders




N'=1 Supergravity Action

N'=1 supergravity action
S=—5 / d*x d*© ER + h.c.

Infinitesimal (diffeomorphism + SUSY) = Infinitesimal SUGRA:

1, M=up,

5E = —d [(—1)M5M5] , where (-1)" = {—1 = a-



N'=1 Supergravity Action

Infinitesimal (diffeomorphism + SUSY) = Infinitesimal SUGRA:

0 = —0um [(—I)MEME] . where (-1)M= {_li %:Z’

The superfield =7, expressed in terms of a novel matrix Oy " introduced by us:
p p N N

@
=M =¢NogM, where &N =|e”
—&
€

&#: diffeomorphism parameter, €%, local SUSY parameters



N'=1 Supergravity Action

Infinitesimal (diffeomorphism + SUSY) = Infinitesimal SUGRA:

M=y,

0 = —0m [(—I)MEMé’] , where (—1)M= {_:li M=o

The superfield =, expressed in terms of a novel matrix O,\-,M introduced by us:

_ _ 138
=M= §NONM, where ¢N = [
&
¢#: diffeomorphism parameter, ¢*,&: local SUSY parameters
Components of matrix ONM:
OM_{557M:” OM { 0, M=u
M=

— ? B = e l 2\ S —
0, M=« 5,B+3® M 5[3’ M=a

ZIOBUZB—}—GZ(J)V&“U”)B, M=p

B_{',B B 02, Bol _Lozpa(d 5 +lo2 n -
i© Q/ijaﬂﬁ.—l@ wp® O'BB-—ze w3(¢u0”0“)5+69 bus"‘”fo'vﬁ., M=c.



N'=1 Unimodular Supergravity Action

N=1 unimodular supergravity action [S. Nagy, A. Padilla, I. Zavala '19]

S=__° /d4xd2@ [ER+ EN(E — &)] + h.c.

T 8nGy
Varying over A, we get

E=&.



N'=1 Unimodular Supergravity Action

Unimodularity condition: £ = &

In components it reads:

1, _
5€ =€o,

iv2 T

w=eatp, =0,

—leM* — ley, (5"0" — V0") b, =5m.

The unimodular supergravity action is invariant under a restricted set of SUSY
and diffeo transformations,

5E =0 where 0= —0dy [(—1)M EMe} .

This invariance preserves the conditions listed above.



Supergravity Transformation of Supergravity Multiplet

Supergravity multiplet: ¢s; = (ef, ¥}, b, M).

Infinitesimal supergravity transformation of g : d¢psg = O¢psg + O(c.2)Psg

Oce = =" 0vel — (0u8")el
Octh = —€"0u 0 — (9w
O¢by = —€" 0 by — (0u€") by
6:M = —£"9,M,

8(e.00€n = i (Yuo’e— eaazﬁu) ,
Oe,a¥p = —2Due” + éM(EO'ME)a + ibue® + é'b" (e0vau)™,
Oe,eyM = —¢ (O"ua'u'lﬂ;w + b, — ia”i/_JuM) ,
6(6 e)b o = € [% .5’-Yd+%55a’l;’y;y,yd;y—é‘M*’l/}ad“S-Fi' (d_}appb&x +'1Z'5p pbad _1;5 pabap)]

— & [3975 u+ Fsa%a T+ EMPBass— 5 (Vs bV, bas =5 by |

6'yda



Supergravity Transformation of Chiral Superfield

SUGRA transformation of chiral superfield
Infinitesimal: A(Z) — A(Z) = N(Z) + 8¢\(Z) = N(Z) — =MouN(Z),

with Z = (x#, ©%).



Supergravity Transformation of Chiral Superfield

SUGRA transformation of chiral superfield
Infinitesimal: A(Z) — A(Z) = AN(Z) + 8eN(Z) = N(Z) — =MouN(Z),
with Z = (x*, ©%).

The infinitesimal passive transformation corresponding to the above active
transformation, i.e.

M 5 ZM = ZM _ g ZM = ZM L =M,

is contractible.



Supergravity Transformation of Chiral Superfield

SUGRA transformation of chiral superfield
Infinitesimal: A(Z) — A(Z) = N(Z) + 8¢\ (Z) = N(Z) — =MouN(Z),
with ZY = (x*, ©%).

The infinitesimal passive transformation corresponding to the above active
transformation, i.e.

M 5 ZM = ZM _ 5. 7M = ZM L =M
is contractible. Therefore its finite version can be obtained via exponentiation:

ZM o Z'M _ o= 7 M



Supergravity Transformation of Chiral Superfield

SUGRA transformation of chiral superfield
Infinitesimal: A(Z) — A(Z) = N(Z) + 8¢\ (Z) = N(Z) — =MouN(Z),
with ZY = (x*, ©%).

The infinitesimal passive transformation corresponding to the above active
transformation, i.e.

ZM 5 ZM = ZM _ §:7M = ZM L =M
is contractible. Therefore its finite version can be obtained via exponentiation:
ZM 5 7'M = 7% ZM.

This finite passive transformation induces the following finite active
transformation.

Finite: A(Z) — N'(Z) = %A\ (2).



Supergravity Transformation of Chiral Superfield

SUGRA transformation of chiral superfield
Infinitesimal:  A(Z) — A(Z) + 8:\(Z) = N(Z) — =MouN(2),
Finite: A(Z) — N(Z) = e%¢A\(2)

with Z = (x*, ©%).



Supergravity Transformation of Chiral Superfield

SUGRA transformation of chiral superfield
Infinitesimal: A(Z) — A(Z) + 6¢\(Z) = N(Z) — =MouN(Z),
Finite: A(Z) — N(Z) = e%¢A\(2)

with ZY = (x*, ©%).

The composition of two finite transformations follows the
Baker-Campbell-Hausdorff formula:

6651 eéﬁz — 6551 +6€2+%[5§1 35£2]+ﬁ[5£1 [661 76£2]]_%[6€2 [561 7662]]"'"'

where the ... denote higher order commutators.



Supergravity Transformation of Chiral Superfield

Finite SUGRA transformation: \'(Z) = e%¢A(Z)

[0e,, 0] = Oes(er.e0) = —=5 Om.



Supergravity Transformation of Chiral Superfield

Finite SUGRA transformation: \'(Z) = e%¢A(Z)
[0¢, 0¢.] = Oes(e1.62) = —=5'Om-

M _
-3 = —17—2]SL+6§1—2 562—1 )

[,]sc: superspace generalisation of the standard Lie bracket for vector fields.



Supergravity Transformation of Chiral Superfield

Finite SUGRA transformation: \'(Z) = e%A(Z)

[0e,, 0] = Oea(er.en) = —Z5 Om.

—3 - [— 7—2]5£ + 651 —2 552—1 )
[,]sc: superspace generalisation of the standard Lie bracket for vector fields.

The additional terms are a consequence of the fact that, unlike in General
Relativity, our transformation parameters now depend on supergravity fields.

The above commutator brackets are just the supergravity version of deformed
brackets for field dependent parameters, which have appeared in [S. Nagy, J.
Peraza & G. Pizzolo "24, M. Campiglia & J. Peraza '21, G. Barnich and C. Troessaert '10, etc.]



SUGRA Transformation of the Action

S—

1 1
— /d6Z <5R+ ghE - 650/\) + h.c.

[SUGRA transformation

1 1
S =g /d6Z <€R+ NE—céo 65€A> + h.c.

How to restore the broken supergravity invariance?



Restoring Broken Supergravity Invariance

Super-Stiickelberg procedure comes to the rescue!



Applying the Stiickleberg Procedure

Promote the SUGRA transformation parameters to Stiickelberg fields:
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Applying the Stiickleberg Procedure

Promote the SUGRA transformation parameters to Stiickelberg fields:




Applying the Stiickleberg Procedure

Promote the SUGRA transformation parameters to Stiickelberg fields:
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Applying the Stiickleberg Procedure

Promote the SUGRA transformation parameters to Stiickelberg fields:

(e e
S L e O
& %

Ernst Stiickelberg

=M=eVogM —  oM=0My gl

_ w
P = M|y o= 0"lo_o 8" = (?ﬂ)

In the end, we arrive at the final form of the Stiickelberged action:

1 1
S=—5= /dﬁz <8R~|— gEN- 650e5¢/\) + h.c.



SUGRA Transformation of the Stiickelberg Fields?

New fields — New SUGRA transformations!
What are the SUGRA transformations of the Stiickelberg fields?

Sep™ =7



Deriving ¢ ¢"

Supergravity invariance of the Stiickelberged action requires that
P2 N(Z) = e*N(Z).
Since \'(Z) = €% \(Z), we get,

!
€% = e%% %,



Deriving ¢ ¢"

Supergravity invariance of the Stiickelberged action requires that
o\ (Z) = e*N(Z).
Since \'(Z) = €% \(Z), we get,
e‘s:# = e e %,

Using the integral Baker-Campbell-Hausdorff formula, i.e., given e? = e*e”,

x log(x)
x—1

)

1
Z=X+ ( / B(edx etadv) dt> Y, where B(x)=
0

we get,

1
8Ly = 6 — [/ B (et e ) dt] Se .
0



Deriving ¢ ¢"

Supergravity invariance of the Stiickelberged action requires that
o N(Z) = e N(2).

Since \'(Z) = e%¢\(Z), we get,

¥ = el
Using the integral Baker—-Campbell-Hausdorff formula, i.e., given e? = eXe”,
! adx ,tad X IOg(X)
Z=X+ B(e**e™™)dt | Y, where B(x)= 1"
0 _

we get,

1
8y = b4 — [/ B (et ) dt] e .
0

Linearizing in &, we get,

5 = 8y — B (¢ ) d¢.



Deriving ¢ ¢"

We have d, = o4 — B (ead%) J¢ - Using the fact that

y — Bly*

YY) — _

B(e) =15 = Kl
k=0

where B; are the Bernoulli numbers

1
9

1 1

Bf =1, B} =3 Bf=¢ B{ =0 Bl =—Z, .,

we arrive at the following expression:
o p+
0y =0p— D - adj 0,
k=0
where

ad§¢5€ = [5¢? 00c [6¢7 [6473 55 ]] e ] 0

k times



Deriving ¢ ¢"

(o]
B+
Derived expression: 6;5 =0¢p — E —kl; ad§¢5€.
k=0

We know,

8o B, 5 = 5 + 8¢(00)

= 545 = ad5¢(5£ = OM,\‘I 6§¢N 8M~



Deriving ¢ ¢"

Derived expression: dy, = i k—’j ad’ 508
We know, =
S 2 6l = 84 + 8¢ (0g)
= 0 — ads,, e — OM g 8¢ " .
= depM:

6$¢M8M = (OMN5§¢ 8M |e =0 —Z Kl ad5¢5£|e 0

where B, differ from B, only fork =1: B, = —1/2and B," = 1/2.



SUGRA Transformation of the Stiickelberg Fields

oo o0 =
M _ (k) oM _ k =(k)M
S =3 50N = =M
k=0 k=0
where
az(kfl)M
E(k)M _ E(k*l)NaNd)M _ ¢N8NE(k71)M _ 5&905g )

O0psg



SUGRA Transformation of the Stiickelberg Fields

6" = Zfsék)(ﬁM =- Z k_k!E(k)M}e=o
k=0 k=0

where

6:(k_1)M
=M = =(=DNgu oM — eNgy=k—DM _ 2= 5.0, .
Dpsg

Using the recursive formula we get explicit expressions for the supergravity
transformations of the Stiickelberg fields, to all orders. For e.g.,

50 pr _ep
=0 (Goie) = (C&)

T sMgv B 2 (10,8 — €"0,0") +i (Cote— 60“5)
; <6(1)<a) ; % (" 0ue™ — 10, (") + é (EU”C_ - CUHE) %0:



To summarise, we have the full expression for invariant A" = 1 SUGRA action:

1 1
§=—5= /dﬁz <8R—|— cEN- 650e5¢/\) + h.c.

It admits a maximally symmetric solution, with the cosmological constant given
by 1,

Aeﬂ‘:Az—gm o



To summarise, we have the full expression for invariant A" = 1 SUGRA action:

1 1
S = —grc /d62 <SR+ cEN- 6€0e6¢A> + h.c.

It admits a maximally symmetric solution, with the cosmological constant given
by 1
Aeff = A2 — §m2 o

The value of At can have either sign. A¢s >0 corresponds to a dS solution that
spontaneously breaks the underlying supersymmetry.



To summarise, we have the full expression for invariant A" = 1 SUGRA action:

1 1
§=—5= /dﬁz <€R—|— cEN- 650e5¢A> + h.c.

It admits a maximally symmetric solution, with the cosmological constant given
by 1

/\eff = A.2 — §m2 .
The value of Ag can have either sign. A¢g > 0 corresponds to a dS solution that
spontaneously breaks the underlying supersymmetry.

We have taken a significant step forward by constructing the super-Stiickelberg
action to all orders, providing the complete A/ = 1 supergravity action.

This represents a substantial advance in the development of a complete and
consistent framework for de Sitter vacua in supergravity.



Absence of Pathological Terms

Possible extra term [Volkov, Soroka '73, '74] that didn’t show up:
VEEH Py,
where the invariant vielbein and gravitino combinations are
82 = e + DX + 2i00°%, — 2i1,0°0 + i00°D,.0 — iD,00°0 ,
QZM =ty + 15“0.

Ghost field?



Discussion

@ If the full pure de Sitter actions obtained via different methods match up to
all orders, it indicates the existence of an underlying comprehensive theory
at higher energies, such as a string-theory model.

@ The existence of such a string-theory model was corroborated in [I Bandos,
M Heller, S Kuzenko, L Martucci, D Sorokin '16] where special cases of the
pure dS SUGRA coupled to matter, were shown to match certain parts of the
4D effective action for an anti-D3-brane coming from the flux
compactifications of 10D type IIB SUGRA.

@ Find the 10D supergravity and string theory counterparts of this 4D pure dS
supergravity, in search of dS vacua.

@ It would also be worthwhile to use the pure dS SUGRA action for
constructing phenomenological actions in inflationary cosmology.



Thank you!



