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 A B S T R A C T

This article aims to revisit the multi-phase field model using the Puck failure criteria for Fiber-Reinforced 
Composites (FRCs). Specifically, this work proposes a robust multi-phase field formulation relying on the Puck 
failure criteria for triggering the fracture in fiber and the inter-fiber (matrix-dominated) separately, using 
two independent phase-field damage variables in a thermodynamically consistent framework. Furthermore, 
the formulation encompasses two distinct characteristic length scales, and a structural tensor is employed to 
penalize the gradient of the phase field, enhancing the accuracy of qualitative and quantitative predictions. 
Seven benchmark examples of unidirectional reinforced composites are utilized to demonstrate the model’s 
predictive capabilities. The first four examples compare the proposed model with experimental results 
stemming from the related literature. In particular, the crack propagation with different fiber orientations, 
including the extreme cases involving fiber orientated parallel to the loading direction leading to debonding 
along the matrix and fiber interface are presented for each case. Furthermore, the last three examples serve 
as benchmarks to further validate the model’s predictive capability. The unnotched tension specimens are 
examined to evaluate the effects of defects/voids on crack propagation in the FRCs in various ply orientations.
1. Introduction

In recent years, there has been an unprecedented surge in the 
utilization of composite materials across various industries. This surge 
could be attributed to the unique combination of mechanical, ther-
mal, and chemical properties. Among the composites, Fiber-Reinforced 
Composites (FRCs) emerged as exceptional candidates for engineering 
applications. The strategic alignment of the continuous fibers in var-
ious kinds of matrix material provides enhanced strength, stiffness, 
and damage resistance. Despite their impressive attributes, FRCs face 
significant challenges in predicting fracture due to their complex failure 
mechanisms [1].

The numerical and experimental studies of the composites are often 
categorized as (a) microscopic theory, (b) mesoscopic theory, and (c) 
macroscopic theory. Microscopic studies focus on studying composites 
at a scale where fiber and matrix are separated, later utilizing the 
results using homogenized models at larger scales. Mesoscopic models, 
however, consider the inter-laminar and intralaminar properties of the 
composites and aim to predict fracture from a single-ply point of view, 
consequently striking a balance between the microscopic and the larger 
macroscopic view. This article focuses on the mesoscopic analysis of the 
single plies [1].

∗ Corresponding author.
E-mail address: pavan.kumar@tuwien.ac.at (P.K. Asur Vijaya Kumar).

The most common failure modes for a homogenized single-ply in-
clude inter-fiber/matrix dominated failure and fiber dominated failure. 
The critical energy release rate related to each failure mode is different, 
with magnitudes sometimes spanning across two orders. Even though 
inter-fiber dominated failure is the most significant failure mode, unless 
the loading path aligns with the fiber’s direction, inter-fiber dominated 
failure can combine with fiber dominated failure under mixed mode 
loading conditions. For the sake of simplicity, inter-fiber dominated 
failure is refereed to as matrix failure, while the fiber dominated failure 
is refereed to as fiber failure herein.

The phase-field method offers an advantage in modeling composites 
since the gradient of the Phase-field indicates the potential crack path. 
Furthermore, combining the gradient with the material characteriza-
tion direction can accurately account for the anisotropy. See [2–7] to 
name a few. The phase-field methods, in general, use Griffith’s ap-
proach to fracture by smearing the crack [8–10]. Consequently, phase 
field methods have been able to model crack propagation, coalescence, 
and branching [11]. Although phase-field models are criticized for their 
inability to nucleate the crack without the ad hoc criteria [12,13], the 
phase-field model, in conjunction with other criteria, such as strength 
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criteria, emerged as an appealing computational tool for studying 
fracture nucleation, and propagation under various loading conditions. 
The phase-field methods are used to study brittle materials [14–24], dy-
namic fracture [15,24–28], hydrogen embrittlement [29–31], thermo-
mechanical fracture [32–34], and composites [35–45], fatigue [46] to 
name a few.  Several failure methods have been proposed within the 
context of Phase-field methods in modeling composites, such as [7,35,
40,47,48].

A recent paper by Oscar et al. [12,49] suggests that classical varia-
tional phase field models cannot predict crack nucleation. Furthermore, 
the study suggests that criteria for the strength (that the complete 
strength surface) independent of the characteristic length scale have 
to be included in the formulation for the phase field model to describe 
crack nucleation accurately. In other words, the crack nucleation has 
to be primarily accompanied by ad hoc criteria apart from interpola-
tion of the characteristic length scale 𝓁 (of phase field). Within the 
context of the FRCs, the phenomenological criteria such as Puck [50], 
Hashin [51], or physically based criteria such as [52–60] which consid-
ers the complete strength surface of the FRC has to be included in the 
model to account for the crack initiation and nucleation. In contrast, 
coalescence and crack propagation are successfully captured by the 
phase-field method without any ad hoc criteria.

When considering the multiple failure modes, the interaction be-
tween the failure modes, such as fiber and the inter-fiber (referred 
to as matrix failure which includes all the modes of Puck inter-fiber) 
failure, has to be considered. Consequently, the authors introduced a 
multi-phase field variable relying on the Puck failure criteria in [5,6]. 
The article uses two-phase fields to trigger failure in fiber and matrix 
in continuous FRCs at the ply level. The model differentiates all five 
modes of the Puck. Furthermore, it was demonstrated that such a model 
could accurately describe the failure, such as delamination migration 
(along with the cohesive zone model) in [6] using 44-cross ply lami-
nates. The article in [5,6] used an invariant-based formulation without 
any penalty of fiber orientation direction of the phase field gradient. 
Furthermore, it implemented a three-layer structure utilizing UMAT 
and UEL of ABAQUS. Consequently, the qualitative analysis could be 
made more accessible, whereas the crack propagation in the angled 
plies was more challenging to obtain. This can be mainly attributed 
to the lack of directional dependent structural tensors to penalize the 
gradients of the phase field. Furthermore,

Another multi-phase approach in parallel was developed in [61] 
based on the fast Fourier transform. This method splits the energy into 
multiple anisotropic energies stemming from the fiber and the matrix, 
each represented by a separate phase field [61]. Following [5,6], Singh 
and Pal [42] developed a multi-phase field framework for complex frac-
ture response. This approach has been applied to mixed mode fractures 
in rocks [62], elastic buckling behaviors [63], and evaluating fatigue 
life in composite joints [64], and explicit dynamics in FRCs [65]. 
The article [7] presents the most prominent failure mechanism at 
the material point level, and [66] combines with cohesive-like crack 
methods. [67] applied PF methods to three-dimensional fiber–matrix 
composites, [7] proposed a PF model for intralaminar and interlaminar 
failure in long fiber composites, [2] proposed an explicit PF model 
for progressive failure in FRCs. More recently, [68] presented the 
double-phase field model to account for multiple failure in composites. 
See [5,68,69] and the references thereafter for a more details.

Min et al. [70] proposed general strategies such as maximum princi-
ple stress, maximum shear stress, maximum principle strain or similar 
criteria to guide fracture direction in the phase-field model. But the 
Puck failure was not realized in the article. Furthermore, such general 
approach cannot be directly applied to composites due to its intrinsic 
material anisotropy and the distinct directional nature of the fiber 
and the inter-fiber failure. In this work, we address these limitations 
by employing orientation specific structural tensors that penalized the 
gradient of the phase field. This article provides a simpler mathematical 
model with an easy implementation in a thermodynamically consistent 
2 
framework. Consequently, the present model can now be used for 
both qualitative and quantitative prediction of cracks in FRCs. This 
article only presents the results regarding the unidirectional laminates, 
whereas the results regarding the isotropic and mixed laminates will 
be considered elsewhere. Furthermore, this article also aims to provide 
benchmark examples within the realm of the fracture predictions of the 
FRCs by combining multiple experimental results and the common nu-
merical examples in the literature. In order to make these benchmarks 
more accessible, and to alleviate the reproducibility crisis, all the input 
files and the codes are made publicly available. As far as the authors’ 
knowledge, no articles within the context of phase-field methods are 
available to successfully predict crack propagation in FRCs, which are 
demonstrated using all the benchmarks presented.

The article is organized as follows. Section 2 presents the modeling 
framework of the multi-phase field model within the context of ener-
gies. The Puck failure criteria is presented in Section 3. Furthermore, 
this section also provides insights into the energy considerations of the 
fiber and the matrix based on the Puck failure theory. Thermodynamic 
consistency of the formulation, along with the choice of the driving 
force, is presented in Section 4. It is worth noting that no tension/com-
pression split in the formulation or the driving force is utilized in the 
model since the Puck failure theory can also account for compressive 
stress state and their subsequent failure modes. Furthermore, finite 
element implementation, along with the weak forms, stiffness matrix, 
and the residuals, are provided in Section 5. Additionally, a detailed 
algorithmic description of the FE implementation is also provided. Sec-
tion 6 delves into numerical examples constructed using the proposed 
model. Moreover, this section considers seven benchmark examples, 
each serving a different purpose to test the ability of the proposed 
framework. The first part of this section focuses on comparing the 
proposed model with the experimental results and other numerical 
methods. After the scrutiny, further benchmark examples are proposed 
to test the model’s predictive capability. Section 8 presents the conclu-
sions of this work. Data availability provides the codes and the input 
files used in the article.

2. Variational formulation

This section introduces the variational formulation of the multi-
phase field model, incorporating Puck failure theory. The model uses 
Puck failure theory to initiate cracks, while crack propagation is gov-
erned by the phase field approach. Since the model distinguishes be-
tween fiber and inter-fiber failure, a generalized framework is ini-
tially presented. This framework is then streamlined to align with 
the fundamentals of the phase field method, ensuring thermodynamic 
consistency. Puck failure criteria is utilized using the stress state in the 
local ply setting, whereas the stiffness and residuals for finite element 
implementation are expressed in the global setting. Consequently, a 
unified framework addressing both global and local ply settings, in-
cluding their transformations are provided. Furthermore, the details 
regarding the implementation are presented in Section 5.

Consider an arbitrary body in 𝑛-dimensional Euclidean space  with 
its delimiting boundaries 𝜕. For every position vector 𝐱 ∈ , define 
a vector valued displacement field 𝐮(𝐱, 𝑡) such that 𝐮(𝐱, 𝑡) ∶  × [0, 𝑡] →
R𝑛, with 𝜏 ∈ [0, 𝑡] being pseudo time. Let 𝛤𝑓  and 𝛤𝑚 be crack sets 
representing fiber failure and matrix failure, respectively, such that 
𝛤𝑓 , 𝛤𝑚 ⊂ R𝑛−1, and 𝛤𝑓 ∪ 𝛤𝑚 = 𝛤  as shown in Fig.  1.

The total energy in the system is assumed to be a consequence of 
the (i) applied displacement 𝐮̄, such that 𝐮 = 𝐮̄ on 𝜕𝐮, (ii) traction 
𝐭̄ = 𝝈 ⋅ 𝐧 on 𝜕𝑡 with an outwards unit normal 𝐧, such that 𝜕𝐮 ∪ 𝜕𝑡 =
𝜕 and 𝜕𝐮 ∩ 𝜕𝑡 = ∅. Furthermore, (iii) body force can be applied 
as 𝒇𝒗 ∶  → R𝑛. As a consequence of the applied forces on the 
system, the body experiences a strain field 𝜺(𝐱, 𝑡) defined as a symmetric 
gradient of the displacement field. i.e 𝜺(𝐮) =

(

∇𝐮 + ∇𝐮𝑇
2

)

. The damage 
in the fiber and matrix is approximated using a scalar-valued field 
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Fig. 1. Geometric description of the body under consideration: (a) sharp crack and (b) 
regularized crack representation.

d𝑓 , d𝑚 respectively such that d𝑓 (𝐱, 𝑡), d𝑚(𝐱, 𝑡) ∶  × [0, 𝑡] → [0, 1]. 
Here, d = 0 refers to intact material, whereas d = 1 refers to as 
completely failed material. The variational methods to fracture for 
long fiber reinforced composites using the Puck failure theory can be 
re-iterated using additive decomposition of the total internal energy. 
Consequently, the total internal energy of the system can be written as 
a additive combination of

1. Strain energy 𝛹𝑓  stemming from fiber.
2. Strain energy 𝛹𝑚 stemming from the matrix.
3. Applied external energy 𝛹𝑒𝑥𝑡.
4. Fracture energy 𝑓  corresponding to the fiber failure, and
5. Fracture energy 𝑚 corresponding to the matrix (inter-fiber) 
failure.

The total internal energy density of the system using its additive 
constituents can be written as 
𝛹 (𝐮, 𝛤𝑓 , 𝛤𝑚) = 𝛹𝑓 (𝐮) + 𝛹𝑚(𝐮) +𝑓 (𝛤𝑓 ) +𝑚(𝛤𝑚) − 𝛹𝑒𝑥𝑡(𝐮). (1)

According to Griffith’s theory, the fracture is seen as a competition be-
tween the strain energy and the energy required to create new surfaces, 
referred to as fracture energy. Within the context of Fiber-Reinforced 
Composites (FRCs) and the multi-phase field framework, the strain 
energy stemming from the fiber creates a new surface corresponding 
to fiber failure. Similarly, the strain energy stemming from the matrix 
creates a new surface corresponding to matrix failure. Keeping in mind 
Griffith’s theory, the total internal energy functional can be written as

𝛹 (𝐮, 𝛤𝑓 , 𝛤𝑚) = ∫∖𝛤𝑓
𝛹𝑓 (𝜺)dx + ∫∖𝛤𝑚

𝛹𝑚(𝜺)dx + 𝐺𝐶,𝑓𝑛−1(𝛤𝑓 ∩ ∖𝜕𝑡)

+ 𝐺𝐶,𝑚𝑛−1(𝛤𝑚 ∩ ∖𝜕𝑡) − 𝛹𝑒𝑥𝑡(𝐮). (2)

Here, 𝐺𝐶,𝑓 , and 𝐺𝐶,𝑚 are the fracture energy densities corresponding 
to the fiber and the matrix, respectively. Whereas 𝛹𝑓 (𝜺) and 𝛹𝑚(𝜺)
are the undamaged strain energy densities for the fiber and matrix, 
respectively. The external work 𝛹𝑒𝑥𝑡(𝐮) due to the applied loading can 
be defined as 
𝛹𝑒𝑥𝑡(𝐮) ∶= ∫

𝒇𝒗 ⋅ 𝐮dx + ∫𝜕𝑡

𝐭̄ ⋅ 𝐮dS. (3)

The crack sets 𝛤𝑓 , and 𝛤𝑚 in Eq.  (2) are unknown a priori. Within the 
context of the Phase-field models, the fracture energies for the fiber and 
matrix failure are approximated as 

𝑓 (𝛤𝑓 ) = ∫𝛤𝑓
𝐺𝐶,𝑓  dS ≈ ∫

𝐺𝐶,𝑓

4𝑐𝑤
𝛾𝑓 (d𝑓 ,∇d𝑓 )dx, (4)

𝑚(𝛤𝑚) = ∫𝛤𝑚
𝐺𝐶,𝑚 dS ≈ ∫

𝐺𝐶,𝑚

4𝑐𝑤
𝛾𝑚(d𝑚,∇d𝑚)dx, (5)

where 𝛾𝑖(d𝑖,∇d𝑖) for 𝑖 = (𝑓,𝑚) is the crack surface energy density 
function defined as 

𝛾𝑓 (d𝑓 ,∇d𝑓 ) =
𝛼(d𝑓 ) + 𝓁𝑓

[

∇d𝑓 ⋅𝑓 ⋅ ∇d𝑓
]

, (6)

𝓁𝑓

3 
Fig. 2. Schematic diagram of the material orientations and structural tensor.

𝛾𝑚(d𝑚,∇d𝑚) =
𝛼(d𝑚)
𝓁𝑚

+ 𝓁𝑚
[

∇d𝑚 ⋅𝑚 ⋅ ∇d𝑚
]

. (7)

Here, 𝑐𝑤 ∶= ∫ 𝑠
0

√

𝛼(𝑠)𝑑𝑠 is the normalization parameter. In line with 
the AT2 model, the distribution of each phase-field variable is achieved 
by choosing the geometric crack function as 𝛼(d𝑖) = d2𝑖 (𝑖 = 𝑓,𝑚). Notice 
that 𝛼 ∶ [0, 1] → [0, 1]. Furthermore, 𝑓 , and 𝑚 is a second order 
structural tensor defined as 
𝑓 = 𝑒2 ⊗ 𝑒2, 𝑚 = 𝑒1 ⊗ 𝑒1, (8)

where 𝑒1 is the principle material direction 1 aligned with the fiber 
orientation. Whereas 𝑒2 is the transverse in-plane orientation with 
respect to the fiber, perpendicular to 𝑒1. For the fiber orientation of 
𝜃 from the global X- co-ordinate, the material basis functions 𝑒1, and 𝑒2
are given by 

𝑒1 =
[

cos 𝜃
sin 𝜃

]

, and 𝑒2 =
[

− sin 𝜃
cos 𝜃

]

. (9)

Consequently, the structural tensors 𝑓 , and 𝑚 adjust the non-
local part of the fracture energy to penalize the material orientations 
in the fiber and the matrix respectively.

The structural tensor was first introduced in [7]. The structural 
tensor for the matrix was modified to include the material orientation 
to penalize the inter-fiber-dominated cracks introduced in [2]. On the 
contrary, this article uses two different structural tensors corresponding 
to the fiber and the inter-fiber/matrix. While using a structural tensor 
for the matrix is justified in [2], Appendix  A provides further evidence 
by comparing the effects of the structural tensor. Furthermore, Fig.  2 
presents the schematic diagram of the material direction 𝑒1, 𝑒2. The 
material directions can also be seen as the projection of the fiber 
orientation onto the global coordinates. 

According to Puck’s failure criteria, in most cases, the fracture plane 
in the fiber is approximately perpendicular to the fiber direction. Con-
sequently, the fiber failure is restricted to the direction perpendicular to 
the fiber [50]. Most of the failures are inter-fiber-dominated, especially 
in the unidirectional plies, unless the load application aligns with the 
fiber orientation. When the fiber failure is dominant, the structural 
tensor corresponding to the fiber becomes helpful in obtaining the crack 
propagation. Appendix  B compares the two models with and without 
the fiber structural tensor. Specifically, the fiber-dominated cracks tend 
to smear more in the absence of the fiber structural tensor. These effects 
become prominent in the presence of multiple modes of failure. The 
analysis of the laminates suggests that using a structural tensor for 
fiber-dominated failure better captures the interaction between fiber 
and inter/fiber damage. The laminate results are omitted here and will 
be presented in another article.

Notice that due to the addition of the structural tensor in Eqs.  (6) 
and (7), the gradients are penalized. In a two-dimensional setting, the 
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phase field gradient is represented by ∇d = [∇𝑥d,∇𝑦d]. Consequently, 
due to the structural tensor, the non-local part of the surface energy can 
be written as 𝐺𝑐𝓁𝑐 [∇𝑥d ⋅ cos2(𝜃) +∇𝑦d ⋅ sin

2(𝜃) ± 2 cos(𝜃) sin(𝜃) ⋅∇𝑥d∇𝑦d]. 
This introduces an extra term 2𝐺𝑐𝓁𝑐 cos(𝜃) sin(𝜃)⋅∇𝑥d∇𝑦d. Recalling that 
𝜃 is the fiber orientation, this term is maximum when the 𝜃 = 45◦, and 
reduces as the 𝜃 → 0◦, 90◦. Consequently, it introduces a thick bank of 
cracks when the 𝜃 = 45◦ can be observed in all the numerical examples 
throughout this article. In order to avoid spurious crack widths, one can 
consider the length scale dependent on the fiber orientation. In order 
to have a fair comparison of the results, the length scale is considered 
constant in this article, independent of the fiber orientation. However, 
𝓁 = 𝓁

2 cos 𝜃 sin 𝜃
 can also be considered. 

Note that Puck failure theory is mainly based on the stress-field 
𝝈 in principle material orientation (fiber orientation). In contrast, the 
solution to the weak forms, including elemental stiffness, residual 
vectors are computed globally. Consequently, a global and local coor-
dinate system is introduced in the sequel. The quantities in the (local) 
principle material orientation are referred to as (⋅), whereas the global 
orientation is represented as (⋅). Within this context, the transforma-
tion from local to global coordinates and vice versa is obtained using 
the following transformation matrix  according to [71–74] given as 

 =
⎡

⎢

⎢

⎣

cos2 𝜃 sin2 𝜃 2 cos 𝜃 sin 𝜃
sin2 𝜃 cos2 𝜃 −2 cos 𝜃 sin 𝜃

−cos 𝜃 sin 𝜃 cos 𝜃 sin 𝜃 cos2 𝜃 − sin2 𝜃

⎤

⎥

⎥

⎦

. (10)

The strain field in the local ply setting can be computed using the global 
strains as 
𝜺 =

(

−1)𝑇 ⋅ 𝜺. (11)

The constitutive stiffness matrix C can be written in the global setting 
as 
C = −1 ⋅ C ⋅

(

−1)𝑇 . (12)

As a consequence, the stress in the global coordinates can be computed 
as 
𝝈 = C ⋅ 𝜺, (13)

and in the local form as 
𝝈 =  ⋅ 𝝈. (14)

Furthermore, strain energy density contribution associated with the 
fiber can be written as 
𝛹𝑓 (𝐮, d) = 𝑔(d) 1

2
𝜺 ∶ C

𝑓 ∶ 𝜺, (15)

where 

C
𝑓 =

⎡

⎢

⎢

⎣

𝐶11 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

, (16)

with 𝐶11 =
𝐸11

1 − 𝜈12𝜈21
.

Similarly, the strain energy density contribution associated with the 
matrix takes the form 
𝛹𝑚(𝐮, d) = 𝑔(d) 1

2
𝜺 ∶ C

𝑚 ∶ 𝜺, (17)

where 

C
𝑚 =

⎡

⎢

⎢

⎣

0 𝐶12 0
𝐶12 𝐶22 0
0 0 𝐶33

⎤

⎥

⎥

⎦

, (18)

with 𝐶12 =
𝜈12𝐸11

1 − 𝜈12𝜈21
, 𝐶22 =

𝐸22
1 − 𝜈12𝜈21

, and 𝐶33 = 𝑔12. Here 𝐸11, 𝐸22, 
and 𝑔12 are the longitudinal, transverse and shear modulus respectively, 
whereas 𝜈12, and 𝜈21 = 𝜈12

𝐸11
𝐸22

 are the Poisons’s ratio. Furthermore, 𝑔(d)
is the degradation function, whose specific details are presented in the 
sequel.
4 
The total energy of the systems in Eq.  (2) can be written as

𝛹 (𝐮, d𝑓 , d𝑚) = ∫
𝑔(d) 1

2
𝜺 ∶ C

𝑓 ∶ 𝜺dx

+ ∫
𝑔(d) 1

2
𝜺 ∶ C

𝑚 ∶ 𝜺dx − 𝛹𝑒𝑥𝑡(𝐮) (19)

+ ∫

[

𝐺𝐶,𝑓
𝛼(d𝑓 )
𝓁𝑓

+ 𝓁𝑓
[

∇d𝑓 ⋅𝑓 ⋅ ∇d𝑓
]

]

dx

+ ∫

[

𝐺𝐶,𝑚
𝛼(d𝑚)
𝓁𝑚

+ 𝓁𝑚
[

∇d𝑚 ⋅𝑚 ⋅ ∇d𝑚
]

]

dx. (20)

Note that, due to the additive decomposition of the strain energies and 
the fact that all the strain energies are in local-material orientation, the 
total internal energy in the compact notation takes the form

𝛹 (𝐮, d𝑓 , d𝑚) = ∫
𝑔(d) 1

2
𝜺 ∶ C ∶ 𝜺dx − 𝛹𝑒𝑥𝑡(𝐮)

+ ∫

[

𝐺𝐶,𝑓
𝛼(d𝑓 )
𝓁𝑓

+ 𝓁𝑓
[

∇d𝑓 ⋅𝑓 ⋅ ∇d𝑓
]

]

dx (21)

+ ∫

[

𝐺𝐶,𝑚
𝛼(d𝑚)
𝓁𝑚

+ 𝓁𝑚
[

∇d𝑚 ⋅𝑚 ⋅ ∇d𝑚
]

]

dx. (22)

Here, C is the total constitutive stiffness of the FRC that reads 
C = C

𝑓 + C
𝑚, (23)

leading to 

C =

⎡

⎢

⎢

⎢

⎣

𝐶
11 𝐶

12 0

𝐶
12 𝐶

22 0
0 0 𝐶

33

⎤

⎥

⎥

⎥

⎦

. (24)

Furthermore, due to the multiple phase fields, the total constitutive 
stiffness of the damaged material C̃ takes the form 
C̃ = 𝑔(d)C

𝑓 + 𝑔(d)C
𝑚, (25)

C̃ =

⎡

⎢

⎢

⎢

⎣

𝑔𝑓
𝑔𝑚

min{𝑔𝑓 , 𝑔𝑚}

⎤

⎥

⎥

⎥

⎦

𝑇

⋅

⎡

⎢

⎢

⎢

⎣

𝐶
11 𝐶

12 0

𝐶
12 𝐶

22 0
0 0 𝐶

33

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑔𝑓𝐶
11 𝑔𝑚𝐶

12 0

𝑔𝑚𝐶
12 𝑔𝑚𝐶

22 0
0 0 min{𝑔𝑓 , 𝑔𝑚}𝐶

33

⎤

⎥

⎥

⎥

⎦

. (26)

Here, 𝑔𝑓 =
(

1 − d𝑓
)2, and 𝑔𝑚 =

(

1 − d𝑚
)2 in line with standard AT2 

formulation [25], such that 𝑔𝑖(0) = 1, 𝑔𝑖(1) = 0, and 𝑑𝑔𝑖
𝑑d𝑖

≥ 0 for 𝑖 = 𝑓,𝑚. 
Consequently, the degraded stresses due to the damage in the local and 
the global reference system take the form 
𝝈̃ = 𝑔(d)𝑇 ⋅ 𝝈; 𝝈̃ = −1 ⋅ 𝝈̃. (27)

3. Puck failure criteria

The initiation of the damage relies on the Puck failure theory [50]. 
Puck failure criteria distinguish the fiber dominated and (matrix) inter-
fiber dominated failure independent of each other. Consequently, the 
damage can be initiated using the Puck failure criteria, and the evolu-
tion of the damage can be performed using the phase-field approach. In 
a two-dimensional setting, ∥ (subscript 1) is used to represent the fiber 
direction, whereas ⟂ (subscript 2 and subscript 3) represents the direc-
tion normal to fiber direction in plane and out of plane respectively, 
for the ply-coordinates in a local setting 0 − 𝐞1 − 𝐞2 − 𝐞3.

Puck failure theory distinguishes five modes of failure. They are (i) 
fiber failure in tension, (ii) fiber failure in compression, (iii) Mode-A 
(transverse tension) in the matrix, (iv) Mode-B (transverse compres-
sion) in the matrix, and (v) Mode-C (out of plane transverse com-
pression) in the matrix. Furthermore, each failure mode is triggered 
based on an energetic consideration that the exposure factor reaches 1. 
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Consequently, due to the multi-phase field framework, exposure factors 
stemming from each mode are named separately to distinguish the 
failure mode in the presented model.

The modulus 𝐸11, 𝐸22, and 𝐸12 are the longitudinal and shear 
modulus, respectively, in the local ply orientation. Furthermore, 𝑅𝑇

11, 
𝑅𝑇
22, and 𝑅12 stands for the tensile longitudinal strength in fiber di-

rection and transverse tensile strengths, respectively. Whereas 𝑅𝐶
11 and 

𝑅𝐶
22 represent the compressive strength in the fiber direction and the 

direction transverse to the fiber. The major Poisson’s ratios are written 
as 𝜈12, and 𝜈23. Additionally 𝑃+

21, 𝑃−
21, 𝑃+

22, 𝑃−
22 are the matrix inclina-

tion parameters. As a consequence of the strength considerations in 
all modes, Puck failure theory considers the entire strength surface, 
see [5,50] for more details.

3.1. Fiber failure

Within the context of fiber dominated failure, fracture is triggered 
by evaluating the so-called failure exposure factor (material efforts) in 
each of the identified failure mechanisms. The exposure factor relates 
the length of pseudo 𝝕, and the corresponding material fracture vector 
𝝕𝑓𝑟, i.e. 𝐹𝑖 = |𝝕| ∕ ||

|

𝝕𝑓𝑟
|

|

|

, see [75]. The failure is initiated when the 𝐹𝑖
reaches the value 1.

With the stress in the local coordinates, the fiber failure exposure 
factor 𝐹 𝑇

𝑓  in tension can be defined as the ratio of the stress in the 
fiber to the strength of the fibers, written as 

𝐹 𝑇
𝑓 =

𝜎11
𝑅𝑇
11

, if 𝜎11 > 0. (28)

Similarly, the fiber failure expose factor in compression takes the 
form 

𝐹𝐶
𝑓 =

√

√

√

√

√

(

𝜎11
𝑅𝐶
11

)2

+ 𝛼

(

𝜎12
𝑅12

)2

if 𝜎11 < 0. (29)

where 𝛼 ∈ [0, 1] is the shear influence parameter for the compressive 
fiber failure.

3.2. Matrix failure

The exposure factor corresponding to matrix dominated failure can 
be distinguished based on the Mode of fracture. If 𝜎22 > 0, the exposure 
factor in Mode-A in tension for the matrix takes the form 

𝐹 𝑇
𝑚 =

√

√

√

√

√

(

𝜎12
𝑅12

)2

+

(

1 − 𝑃+
21 ⋅

𝑅𝑇
22

𝑅12

)2

+

(

𝜎22
𝑅𝑇
22

)2

+
𝑃+
21𝜎


22

𝑅12
. (30)

Mode B corresponds to the transverse compressive stress with a longi-
tudinal shear stress below a fracture resistance. The exposure factor for 
the Mode-B matrix fracture is triggered, if the stress state fulfills 𝜎22 < 0
as well as 
[

|

|

|

|

|

𝜎22
𝜎12

|

|

|

|

|

> 0

]

&&

[

|

|

|

|

|

𝜎22
𝜎12

|

|

|

|

|

<
|

|

|

|

|

𝑅𝑎
22

𝑅𝑐
12

|

|

|

|

|

]

, (31)

where 𝑅𝑎
22 =

𝑅12
2𝑃−

21

⎧

⎪

⎨

⎪

⎩

√

1 + 2𝑃−
21

𝑅𝐶
22

𝑅12
− 1

⎫

⎪

⎬

⎪

⎭

, and 𝑅𝑐
12 = 𝑅12

√

1 + 2𝑃−
22. The 

exposure factor for the compression in Puck Mode-B takes the form 

𝐹𝐶
𝑚 =

√

√

√

√

√

(

𝜎12
𝑅12

)2

+

(

𝑃−
21 ⋅

𝜎22
𝑅12

)2

+
𝑃−
21𝜎


22

𝑅12
. (32)

Similarly, if the stress 
[

|

|

|

|

𝜎12


|

|

|

|

> 0

]

&&

[

|

|

|

|

𝜎12


|

|

|

|

<
|

|

|

|

𝑅𝑐
12
𝑎

|

|

|

|

]

, (33)

|

𝜎22 | |

𝜎22 | |

𝑅22 |

5 
is satisfied. A transverse compressive stress state with a longitudinal 
shear stress that is sufficiently high to induce fracture on an inclined 
plane to the fiber axis is associated with mode-C matrix failure. The 
compression exposure factor corresponding to the Puck Mode-C matrix 
failure can be written as 

𝐹𝐶
𝑚 =

(

𝜎12
2(1 + 𝑃−

22)𝑅12

)2

−

(

𝜎22
𝑅𝐶
22

)2 𝑅𝐶
22

𝜎22
. (34)

Assuming that the Puck failure criteria is met for the stress state of 
𝜎∗ , the energy associated with fiber and the matrix during the Puck 
failure initiation (with one or multiple modes) can be computed as 

𝛹𝑓,0 =

⎧

⎪

⎨

⎪

⎩

1
2
𝜎11𝜀


11 if 𝐹 𝑇

𝑓 , 𝐹𝐶
𝑓 = 1

0 if 𝐹 𝑇
𝑓 , 𝐹𝐶

𝑓 < 1,
(35)

𝛹𝑚,0 =

⎧

⎪

⎨

⎪

⎩

1
2
(

𝜎22𝜀

22 + 𝜎12𝜀


12
)

if 𝐹 𝑇
𝑚 , 𝐹𝐶

𝑚 = 1

0 if 𝐹 𝑇
𝑚 , 𝐹𝐶

𝑚 < 1.
(36)

4. Thermodynamic consistency and driving force

Assuming the isothermal conditions, the second law of thermody-
namics, which ensures the consistency of the formulation takes the form 

 = [𝝈 ∶ 𝜺̇] − 𝜕𝛹 ∶  ≥ 0, (37)

where  is the set of internal variables, and (𝑥̇) =
𝑑(𝑥)
𝑑𝑡

 is the time 
derivative. Setting the internal variables  as a triplet (𝐮, d𝑓 , d𝑚), and 
their respective gradients, the Clausius–Duhem Inequality in Eq.  (37) 
can be written as 

 =
(

𝝈 − 𝜕𝛹
𝜕𝜺

)

𝜺̇−
(

𝜕𝛹
𝜕d𝑓

ḋ𝑓 + 𝜕𝛹
𝜕∇d𝑓

∇ḋ𝑓

)

−
(

𝜕𝛹
𝜕d𝑚

ḋ𝑚 + 𝜕𝛹
𝜕∇d𝑚

∇ḋ𝑚

)

≥ 0.

(38)

Since 𝝈 = 𝜕𝛹
𝜕𝜺

= C̃ ∶ 𝜺, the dissipating potential above takes the 
form 
 = 𝑓 ⋅ ḋ𝑓 +𝑚 ⋅ ḋ𝑚 ≥ 0, (39)

where 𝑓 , and 𝑚 are the forces associated with the fiber and the 
matrix, respectively, whose specific expression can be computed as

𝑓 = 2(1 − d𝑓 )𝛹 − 𝐺𝐶,𝑓

[

d𝑓

𝓁𝑓
− 𝓁𝑓∇d𝑓 ∶ 𝑓 ∶ ∇d𝑓

]

, (40)

𝑚 = 𝑔′(d)𝛹 − 𝐺𝐶,𝑚

[

d𝑚
𝓁𝑚

− 𝓁𝑚∇d𝑚 ∶ 𝑚 ∶ ∇d𝑚

]

. (41)

Notice that, in order for the expression 𝑔′(d)𝛹 to be well defined, 
we consider min(𝑔𝑓 , 𝑔𝑚) first and then consider the derivative of the 
𝑔(d). Consequently, from Eq.  (39), (40), and (41), along with the 
boundedness of the phase-field variables d𝑓 , d𝑚 ∈ [0, 1] leads to the first 
order optimality conditions, referred to as Karush–Kuhn–Tucker (KKT) 
conditions. The particular form of the KKT conditions can be written 
as

ḋ𝑓 ≥ 0,−𝑓 ≤ 0, ḋ𝑓 ⋅𝑓 = 0, (42)

ḋ𝑚 ≥ 0,−𝑚 ≤ 0, ḋ𝑚 ⋅𝑚 = 0. (43)

Furthermore, in Eq.  (40), and (41), the expression
𝐺𝐶,𝑖

[

d𝑖
𝓁𝑖

− 𝓁𝑖∇d𝑖 ∶ 𝑖 ∶ ∇d𝑖

]

 for each 𝑖 = 𝑓,𝑚 indicates the energetic 
crack resistance, and 𝑔′(d)𝛹 (𝜺) is the crack driving force.

In order to enforce the irreversibility of the phase-field variables, the 
driving force based on the Puck Failure criteria is considered. Assuming 
the energy required for initiating the Puck failure is known as in Eq. 
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(35), and (36), the driving force takes the form 

𝑓 = max
𝜏∈[0,𝑇 ]

{

𝜁𝑓

( 𝛹𝑓

𝛹𝑓,0
− 1

)}

if 𝛹𝑓,0 > 0, and 0 otherwise,

(44)

𝑚 = max
𝜏∈[0,𝑇 ]

{

𝜁𝑚

(

𝛹𝑚
𝛹𝑚,0

− 1
)}

if 𝛹𝑚,0 > 0, and 0 otherwise.

(45)

Here, the factors 𝜁𝑓 , and 𝜁𝑚 are the dimensionless parameters to char-
acterize the activation of the fracture due to the fiber and matrix 
failure.

5. Finite element implementation: Compact UEL

With this at hand, the solution to Eq.  (22) at every discrete time 
step 𝜏 ∈ [0, 𝑡] can be obtained by solving as a minimization problem. 
i.e., Determine (𝐮, d𝑓 , d𝑚) from 

(𝐮∗, d∗𝑓 , d
∗
𝑚) = Arg min𝛹 (𝐮, d𝑓 , d𝑚), (46)

with  = { ̇d𝑓 , ̇d𝑚 ≥ 0,  for all 𝐱 ∈ }. The triplet (𝐮, d𝑓 , d𝑚) in Eq.  (22) 
is solved by taking the first variation of the total energy functional. For 
any admissible test function (𝛿𝐮, 𝛿d𝑓 , 𝛿d𝑚) in an appropriate space of 
distributions, the following weak form for the continuous multi-phase 
field problem can be derived

∫
𝝈̃ ∶ 𝜺(𝛿𝐮)dx − ∫

𝒇 𝒗 ⋅ 𝛿𝐮dx + ∫𝜕𝑡

𝐭̄ ⋅ 𝛿𝐮dS = 0, (47)

∫
𝐺𝐶,𝑓

[

d𝑓

𝓁𝑓
𝛿d𝑓 + 𝓁𝑓 ⋅ ∇d𝑓 ⋅𝑓 ⋅ ∇𝛿d𝑓

]

dx − ∫

(

𝝈̃ ∶ 𝜺𝛿d𝑓
)

dx = 0, (48)

∫
𝐺𝐶,𝑚

[

d𝑚

𝓁𝑚
𝛿d𝑚 + 𝓁𝑚 ⋅ ∇d𝑚 ⋅𝑚 ⋅ ∇𝛿d𝑚

]

dx − ∫

(

𝝈̃ ∶ 𝜺𝛿d𝑚
)

dx = 0. (49)

The functional space  is discretized into 𝑛𝑒 non-overlapping isopara-
metric elements such that  ≈

⋃𝑛𝑒
𝑒=1 

(𝑒) and partition of unity holds. 
Recalling the standard Bubnov–Galerkin methods, the functional space 
for the primary fields is defined as (𝐮, d𝑓 , d𝑚) ∈ (B𝑢,B𝑓 ,B𝑚). Where

𝐮 ∈ B𝑢 ∶= {𝐮 ∈ 𝐻1()|∇𝐮 = 𝑢̄ on 𝜕𝑢}, (50)
d𝑓 ∈ B𝑓 ∶= {d𝑓 ∈ 𝐻1()|d𝑓 ∈ [0, 1], ḋ𝑓 ≥ 0,  for all 𝐱 ∈ }, (51)

d𝑚 ∈ B𝑚 ∶= {d𝑚 ∈ 𝐻1()|d𝑚 ∈ [0, 1], ḋ𝑚 ≥ 0,  for all 𝐱 ∈ }. (52)

Similarly, the test functions are defined in the functional spaces as 
(𝛿𝐮, 𝛿d𝑓 , 𝛿d𝑚) ∈ (A𝑢,A𝑓 ,A𝑚). In specific,

𝛿𝐮 ∈ A𝑢 ∶= {𝛿𝐮 ∈ 𝐻1()|∇𝛿𝐮 = 0 on 𝜕𝑢}, (53)
𝛿d𝑓 ∈ A𝑓 ∶= {𝛿d𝑓 ∈ 𝐻1()|∇𝛿d𝑓 ≥ 0,  for all 𝐱 ∈ }, (54)

𝛿d𝑚 ∈ A𝑚 ∶= {𝛿d𝑚 ∈ 𝐻1()|∇𝛿d𝑚 ≥ 0 for all 𝐱 ∈ }. (55)

With this setting, the primary fields and their respective gradients can 
be interpolated as 

𝐮𝑒 =
𝑛𝑒
∑

𝑖=1
𝐍𝑢
𝑖 𝐮

𝑒
𝑖 , d𝑒𝑓 =

𝑛𝑒
∑

𝑖=1
𝐍d
𝑖 d

𝑒
𝑓 ,𝑖, d𝑒𝑚 =

𝑛𝑒
∑

𝑖=1
𝐍d
𝑖 d

𝑒
𝑚,𝑖, (56)

∇𝐮𝑒 =
𝑛𝑒
∑

𝑖=1
𝐁𝑢
𝑖 𝐮

𝑒
𝑖 , ∇d𝑒𝑓 =

𝑛𝑒
∑

𝑖=1
𝐁d
𝑖 d

𝑒
𝑓 ,𝑖, ∇d𝑒𝑚 =

𝑛𝑒
∑

𝑖=1
𝐁d
𝑖 d

𝑒
𝑚,𝑖, (57)

where 𝐍𝑢
𝑖 , and 𝐍d

𝑖  are the shape functions associated with the node 𝑖 for 
the fields 𝐮, and two phase fields (d𝑓 , d𝑚) respectively. Furthermore, 𝐁𝑢

𝑖 , 
and 𝐁d

𝑖  are the derivatives of the shape functions at the node 𝑖 for 𝐮, and 
the two phase fields respectively. With the same interpolation functions 
for the variational test functions counterparts, i.e., (𝛿𝐮, 𝛿d𝑓 , 𝛿d𝑚), the 
discrete version of the elemental residual vectors takes the form 

𝐑𝑒 = (𝐁𝑢)𝑇 𝜎̃dx − (𝐍𝑢)𝑇 𝐟𝑣dx − (𝐍𝑢)𝑇 𝐭dS, (58)
𝐮 ∫(𝑒) ∫(𝑒) ∫𝜕𝐁(𝑒)
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𝐑𝑒
𝑓 = ∫(𝑒)

−2(1 − d𝑓 )(𝐍d)𝑇𝑓 +
𝐺𝐶,𝑓

𝓁𝑓

[

(𝐍d)𝑇 d𝑓 + 𝓁2
𝑓 (𝐁

d)𝑇𝑓∇d𝑓
]

dx,

(59)

𝐑𝑒
𝑚 = ∫(𝑒)

−2(1 − d𝑚)(𝐍d)𝑇𝑚 +
𝐺𝐶,𝑚

𝓁𝑚

[

(𝐍d)𝑇 d𝑚 + 𝓁2
𝑚(𝐁

d)𝑇𝑚∇d𝑚
]

dx.

(60)

Notice that the system of equations is non-linear due to the presence 
of fracture and the Puck failure criteria embedded in the history vari-
ables 𝑓 ,𝑚. From Eq.  (59), (60), it is easy to see that the residuals 
corresponding to the fiber and the matrix failure are independent from 
each other but are coupled with the equilibrium equation (strain energy 
of the bulk) in Eq.  (58). The corresponding Newton–Raphson iteration 
for the globally assembled system at (𝑛 + 1) step can be expressed as 

⎡

⎢

⎢

⎣

𝐮
d𝑓
d𝑚

⎤

⎥

⎥

⎦𝑛+1

=
⎡

⎢

⎢

⎣

𝐮
d𝑓
d𝑚

⎤

⎥

⎥

⎦𝑛

−
⎡

⎢

⎢

⎣

𝐾𝐮𝐮 0 0
0 𝐾𝑓𝑓 0
0 0 𝐾𝑚𝑚

⎤

⎥

⎥

⎦

−1

𝑛+1

⎡

⎢

⎢

⎣

𝐑𝐮
𝐑𝑓
𝐑𝑚

⎤

⎥

⎥

⎦𝑛

, (61)

where the particular form of the elemental stiffness matrix reads 

𝐾𝐮𝐮 ∶=
𝜕𝑒

𝐮
𝜕𝐮𝑒

= ∫(𝑒)
(𝐁𝑢)𝑇 C̃𝐁𝑢dx, (62)

𝐾𝑓𝑓 ∶=
𝜕𝑒

𝑓

𝜕d𝑒𝑓
= ∫(𝑒)

(

2𝑓 +
𝐺𝐶,𝑓

𝓁𝑓

)

(𝐍d)𝑇𝐍d + 𝐺𝐶,𝑓𝓁𝑓 (𝐁d)𝑇𝑓𝐁ddx,

(63)

𝐾𝑚𝑚 ∶=
𝜕𝑒

𝑚
𝜕d𝑒𝑚

= ∫(𝑒)

(

2𝑚 +
𝐺𝐶,𝑚

𝓁𝑚

)

(𝐍d)𝑇𝐍d + 𝐺𝐶,𝑚𝓁𝑚(𝐁d)𝑇𝑚𝐁ddx.

(64)

The above system of equations has been implemented in Abaqus-
UEL to take advantage of the in-built Newton–Raphson solver and the 
automatic time-stepping scheme. A detailed algorithm implementation 
is provided in Algorithm 1. The details regarding the codes, input files, 
are provided in the Data Availability section.

6. Numerical examples

This section presents the performance of the proposed multi-phase 
field formulation. In this section, numerical examples concerning (i) 
Single-Edge Notched Tension (SENT), (ii) Open Hole Tension (OHT), 
(iii) Compact Tension (CT), (iv) Centre Notched Tension (CNT), (v) 
Three-Point Bending (TPB), (vi) Bi-Material Interface (BMI), and finally 
(vii) Tension in unnotched specimens are presented. Furthermore, this 
section is divided into two parts based on the nature of the examples 
concerning the literature. The first part, which includes benchmarks 
(i), (ii), (iii), and (iv), provides a comparison with the experimen-
tal results both qualitatively and quantitatively based on the crack 
propagation path and force reactions, respectively. The second part, 
with benchmarks (v), (vi), and (vii), are aimed to show the predictive 
capability of the proposed model. Furthermore, tension in unnotched 
specimens account for several possible defects, such as randomly dis-
tributed micro-cracks/impurities, to assess the crack propagation in 
tension without stress concentrators. With these examples, we aim 
to provide a list of cumulative benchmark examples for numerical 
applications. In each example, the fiber orientation is varied between 
0◦ and 90◦ to understand the effects of the ply orientation, while the 
symmetric case such as −60◦, −45◦, and −30◦ are shown in Appendix 
A.

The material properties used for each example in the local ply co-
ordinates are classified into four sections: (1) Elastic properties of the 
composite ply as in Table  1, (2) strength properties of the composite ply 
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Table 1
Elastic properties of the composites.
 𝐸11 (MPa) 𝐸22 (MPa) 𝐸12 (MPa) 𝜈11 𝜈23 𝐺12 (MPa) 
 114800 11700 9600 0.0222 0.21 9600  
Table 2
Strength properties of the elastic.
 𝑅𝑇

11 (MPa) 𝑅𝑇
22 (MPa) 𝑅𝐶

11 (MPa) 𝑅𝐶
22 (MPa) 𝑅12 (MPa) 

 2000 70 1650 240 105  
Table 3
Puck failure properties.
 𝑃 +

21 𝑃 −
21 𝑃 +

22 𝑃 −
22 𝐸𝐹

11 (MPa) 𝜈𝐹11 𝛼 
 0.3 0.25 0.225 0.225 114800 0.21 0 
Table 4
Multi-phase field properties.
 𝓁𝑓  [mm] 𝓁𝑚 [mm] 𝐺𝐶,𝑓

[ N
mm

]

𝐺𝐶,𝑚

[ N
mm

]

𝜁𝑓 𝜁𝑚 
 0.1 0.3 106.3 0.7879 5 1  
Algorithm 1 Algorithmic implementation Multi-phase field model for 
FRCs with Puck failure Criteria.
Input: Given {𝐮𝑛, d𝑛𝑓 , d𝑛𝑚}, compute {𝐮(𝑘),𝑛+1, d

(𝑘),𝑛+1
𝑓 , d(𝑘),𝑛+1𝑚 }.

1. Compute Rotation Tensor  according to Eq.  (10).
2. Compute Structural Tensor 𝑓 ,𝑚 according to Eq.  (8).
3. Loop over the integration points based on the previous converged 
configuration 𝑡𝑛

 3.1 Compute the shape functions N𝑢
𝑖 , and Nd

𝑖  and the 
derivatives of the shape functions B𝑢𝑖 , and Bd𝑖 .

 3.2 Interpolate the nodal phase-field values.
 3.3 Compute global strains with 𝜺𝑔 = B𝑢𝑖 ⋅ 𝐮𝑛. and local strains 

using Eq.  (11).
 3.4 Construct the constitutive stiffness matrix in the local co-

ordinate C, and compute the constitutive global stiffness matrix 
using Eq.  (12) .

 3.5 Compute the stress in global coordinates using Eq.  (13), 
and in local ply coordinates using Eq.  (14) .

 3.6 Using 𝝈, compute the Puck exposure factors as in Section 
3.

 3.7 Compute the energy from fiber using Eq.  (15), and energy 
from matrix using Eq.  (17).

 3.8 Compute the driving forces using Eqs.  (40) and (41).
 3.9 Compute the degraded stiffness matrix and the stress 

using Eqs.  (26) and (27) respectively.
 3.10 Pull back the degraded stress into the global system 

using Eq.  (27).
 3.11 Compute the residuals as in Eqs.  (58)–(60), and stiffness 

matrix using Eqs.  (62)–(64).
4. Construct the element matrices and the internal force vectors of 
the complete system.
5. Perform the final assembly.

as in Table  2, (3) Puck failure properties as in Table  3, and (4) Multi-
phase field properties as in Table  4. Specific material properties for 
each example are provided in the sequel. Additionally, unless otherwise 
noted, an approximate median value is provided together with the 
measurement error of ±0.2◦ in order to quantify the crack propagation 
angles resulting from the numerical simulations.

6.1. Single Edged Notched Tension (SENT)

A single-edged notched tension specimen is considered in this sec-
7 
tion to compare the crack propagation with the experimental investi-
gation. The experimental results are taken from [76] and reproduced 
with permission from Elsevier. The example consists of the plate of 
dimension 1 × 2 mm with an edge notch, with fibers oriented at an 
angle 𝜃 with respect to the global 𝑥-axis as shown in Fig.  3(a). The 
thickness of the specimen is taken as 1 mm. The bottom of the plate is 
fixed in 𝑦-direction, with one point fully restrained. The displacement 
load is applied on the top surface as shown in Fig.  3(a). No restriction is 
applied to the displacement in the horizontal direction at the top of the 
specimen. The numerical simulations compare the crack propagation 
path and the load reaction for different angled ply varying from 0◦ to 
90◦. The material properties are considered as in Tables  1–4 in line with 
the experimental results in [76].

The numerical experiments regarding the SENT specimen are also 
presented in [2–4,69,77] using the phase-field method. Fig.  4 presents 
the comparison of the crack path observed in the experiments and 
the present model for the fiber orientations 𝜃 = 0◦ − 60◦. The crack 
runs parallel to the fibers, leading to a matrix-dominated cracking. 
Furthermore, all the cracks grow in an unstable manner. The numerical 
results presented are in good agreement with the experimental obser-
vations. The Force vs. displacement graph for the fiber orientation of 
𝜃 = 0◦−60◦ is presented in Fig.  3 (b) along with the Puck initiation. The 
comparison between the present model and the other available models 
in the related literature is presented in Table  5. The crack propagation 
angles presented in the Table  5 are measured from the center, where 
the Phase-field value is dense in an undeformed configuration. The 
Table  5 shows an excellent agreement with the experimental methods 
compared to other models. Furthermore, Fig.  C.26 presents the crack 
propagation for fiber oriented with 𝜃 = −30◦, 𝜃 = −45◦, and 𝜃 =
−60◦. Force vs. displacement results for the negative fiber orientation 
coincide with their positive counterpart. Hence, they are omitted for 
the sake of brevity.

Prior studies using phase-field literature, as in [2,69], reported that 
the fiber orientations 𝜃 = 90◦ that involve fiber debonding are proven 
challenging due to the sharp turn and likelihood of the crack propagat-
ing both upward and downwards in the fiber direction. Consequently, 
the numerical crack propagation path in the related literature showed 
a deviation of 3◦ − 8◦ from the experimentally observed results. See 
Table  5. The results obtained from the proposed model for 𝜃 = 90◦

are presented in Fig.  5(b). It can be seen that the numerical model 
accurately describes the experimental results even for the fiber oriented 
at 𝜃 = 90◦. The Force vs. displacement graph for the 𝜃 = 90◦ is presented 
in Fig.  5(a) along with the force at which Puck failure initiates. In all the 
SENT examples, it is observed that a long nucleation phase follows Puck 



P.K. Asur Vijaya Kumar et al. Composite Structures 372 (2025) 119549 
Fig. 3. (a) Geometric description of the single-edged notched tension specimen (all the units are in mm), (b) force vs. displacement plots along with Puck initiation for the fiber 
orientations of 0◦, 30◦, 45◦, and 60◦.
Fig. 4. Comparison between experimental results from [76] and the present model in terms of crack propagation for the fiber orientations of (a) 𝜃 = 0◦, (b) 𝜃 = 30◦, (c) 𝜃 = 45◦, 
and (d) 𝜃 = 60◦. Results from [76] are reproduced with permission from Elsevier.
failure initiation before the crack propagation and subsequent drop in 
the reaction force.

6.2. Open-hole tension

The second example aims to show the responses to an open-hole ten-
sion. The experimental results for the open hole tension are taken from 
[78]. The experimental results are presented for the fiber orientations
of 𝜃 = 0◦, 𝜃 = 45◦, and for 𝜃 = 90◦ whose dimensions differ across 
8 
each specimen subjected to fiber orientation. Consequently, this section 
is divided into two parts: (a) Comparison with the experiment based 
on [78] and (b) generalized numerical results. In order to compare 
the experimental investigation in terms of crack propagation path and 
the load response, section (a) is provided. After establishing the com-
parison with experimental results, a generalized results are presented 
with the same geometry across all the fiber orientations to effectively 
understand the effect of the fiber orientation.
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Fig. 5. (a) Force vs. displacement plot along with the Puck failure initiation for fiber orientation of 90◦. (b) Comparison of crack propagation between experimental results 
from [76] and the present model. Results from [76] are reproduced with permission from Elsevier.
Table 5
Comparison between the present and the other available methods.
 Fiber orientation 0◦ 30◦ 45◦ 60◦ 90◦  
 Experimental results [76] 0 30 45 60 90  
 Cahill et al. [76] (XFEM) 0 29 43 57 83  
 Zhang et al. [2] 0 29 43.6 57.5 87  
 Ishank et al. [69] 0 28.2 42.5 56 85.4 
 Pranavi et al. [4] – 29 42 55 –  
 Mrunmayee et al. [3] – 27.3 42.7 57 –  
 Hrishikesh et al [77] 0 27.5 42 57 –  
 Present model 0 30.35 46.18 60.40 90  
Fig. 6. (a) Force vs. displacement curve comparison for the open hole tension between the experiment [78] and the present model. (b) Geometrical description of the open hole 
tension specimen for comparison with the experiment.
6.2.1. Comparison with the experiments

The open hole tension has been addressed numerically using phase 
field method in [2,3,35,79–81]. Fig.  6(b) presents the geometrical 
description of the specimen. Furthermore, the width of the specimen 
is always kept constant at 3.81 cm (1.5ε inch). The length 𝐿 is taken as 
𝐿 = 5.08cm (2ε inch) for fiber orientation of 𝜃 = 90◦, 𝐿 = 7.62cm (3ε
inch) for 𝜃 = 45◦, and the 𝐿 = 10.16cm (4ε inch) for 𝜃 = 0◦ in line with 
the experiment [78]. The numerical simulations considers the elastic 
properties of the specimen to be 𝐸11 = 136000 MPa, 𝐸22 = 4670 MPa, 
𝐸12 = 𝐺12 = 3200 MPa, 𝜈12 = 0.011, and 𝜈23 = 0.33. Meanwhile, the 
strength properties are taken as 𝑅𝑇 = 2142 MPa, 𝑅𝑇 = 42.5 MPa, and 
11 22
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𝑅12 = 90 MPa. Furthermore, the fracture properties are considered as 
𝓁𝑓 = 10 mm, and 𝓁𝑚 = 6 mm, 𝐺𝐶,𝑓 = 81.5 N

mm
, and 𝐺𝐶,𝑚 = 0.67 N

mm
in line with the experimental observations [78]. Fig.  6(a) compares 
force vs. displacement plots between the experimental results and the 
proposed model along with the Puck Initiation, while Fig.  7 compares 
the crack propagation path concerning the experimental observation. 
For the ply with the fiber orientation of 𝜃 = 45◦, the numerical results 
show a crack propagation angle of 𝜃 = 45.64◦ ± 0.25◦ in line with 
the experimental results. For the 𝜃 = 90◦, the experimental results 
are partially provided in [78] without the picture of the experimental 
observation; hence, only results stemming from the numerical results 
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Fig. 7. Comparison with the experiments for the open hole tension. Numerical results for (a) 𝜃 = 0◦ (c) 𝜃 = 45◦, and (e) 𝜃 = 90◦. The experimental results for the (b) 𝜃 = 0◦, and 
(d) 𝜃 = 45◦. The experimental results are produced from [78] with permission from Elsevier.
Fig. 8. Geometrical description of the open hole tension specimen. (b) Force vs. disp plots along with the Puck failure initiation for the fibers oriented at an angle of 𝜃 = 30◦, 
𝜃 = 45◦, 𝜃 = 60◦, and 𝜃 = 90◦.
Fig. 9. Crack propagation in open hole tension for the fiber angles of (a) 𝜃 = 30◦, (b) 𝜃 = 60◦, (c) 𝜃 = 45◦, (d) 𝜃 = 90◦.
are presented. A similar pattern of crack propagation can also be seen 
in [79]. For the case with fibers orientated horizontally, i.e., 𝜃 = 0◦, the 
crack propagation has an equal probability of propagating from both 
top and bottom part of the hole. Consequently, the numerical results 
show symmetrical crack propagation from both the top and bottom 
parts of the hole. In conclusion, the force vs. displacement presented in 
Fig.  6(b) and crack propagation path presented in Fig.  7 show excellent 
co-relation both qualitatively and quantitatively with the experimental 
observations.

6.2.2. Generalized open hole tension
In order to standardize the results from open-hole tension, a general 

geometry is used. The Fig.  8(a) shows the geometry under consid-
10 
eration taken from [82]. A symmetric boundary condition consisting 
of a prescribed displacement along the x-coordinate on the left and 
right edges of the plate is applied. Within this context, eight different 
fiber directions are considered, i.e. fibers with orientation of 0◦, 30◦, 
45◦, 60◦, 90◦, −30◦, −45◦, and −60◦. The domain is discretized using 
12712 4-node quadrilateral plane stress elements. Each of the numerical 
simulations considers the characteristic length scale of fiber and matrix 
as 𝓁𝑓 = 8 mm, and 𝓁𝑚 = 4 mm respectively, while the rest of the 
properties are kept as presented in Tables  1–3.

The crack propagation results stemming from the OHT for the fiber 
orientation of 30◦, 45◦, 60◦, and 90◦ are shown in Fig.  9. Each of the 
figures also presents the principle material direction in a white dotted 
line along the crack propagation path. The actual crack propagation 
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Fig. 10. Crack propagation in the open hole tension for the fiber orientation of 𝜃 = 0◦.
angles for fiber orientations of 30◦, 45◦, 60◦ are measured to be 31.2◦, 
46.18◦, 60.56◦ with an measuring error of ±0.2◦. Besides the case where 
the fibers coincide with the horizontal direction, all cases exhibit purely 
matrix-dominated cracking behavior, where only the matrix is damaged 
parallel to the fiber direction with no activation of fiber failure. The 
crack propagation in the symmetric case of −30◦, −45◦, and −60◦ are 
presented in Appendix Fig.  D.27.

For the fiber orientation of 0◦-case, the matrix-dominated failure 
occurs along the fiber direction, where the matrix crack stemming from 
the top and the bottom of the open hole extends as in Fig.  10(a). 
Furthermore, the matrix crack is accompanied by a fiber failure that 
runs across the specimens vertically, starting from the top and bottom 
of the hole, as in Fig.  10(c). Consequently, the matrix gets damaged in 
the areas where fiber failure is present, as in Fig.  10(b).

Due to the interaction between the fiber and inter-fiber failure, the 
behavior of the fibers with the orientation of 0◦ differs from the other 
cases. All cases except the 0◦-exhibit unstable crack growth, indicated 
by the sharp drop in reaction force once the crack has formed. This 
can be observed from Fig.  8(b). Furthermore, the force vs. displace-
ment curves exhibit a linear behavior until the Puck matrix failure 
initiation (independent of the PUCK mode) criteria are met, followed 
by an unstable crack growth and complete failure of the structure. 
Additionally, the displacement at failure of each structure decreases 
with the decreasing fiber orientation angle while the structure’s load-
bearing capacity increases. This could be attributed to the involvement 
of fiber at lower ply angles. It is also interesting to note that, as the fiber 
orientation changes from 90◦ to 30◦, the delay between Puck failure 
initiation and unstable crack propagation increases. Precisely, for the 
fiber orientation of 90◦, the puck failure initiation is immediately 
followed by unstable crack propagation, while for the fiber orientation 
of 30◦, the Puck failure initiation is followed by a small nucleation 
phase before unstable crack propagation as shown in Fig.  8(b).

6.3. Compact tension

This example compares the experimental and numerical investiga-
tions regarding the crack propagation path in compact tension speci-
mens subjected to tensile loading conditions. The experimental results 
presented in this section are mainly from the Institute of Polymer 
Product Engineering, Johannes Kepler University, Linz, Austria. The 
details regarding the experimental setup are omitted in this article. The 
geometry under consideration as in the experimental setup is presented 
in Fig.  11(a), with a thickness of 5.5 mm. A symmetric loading is 
applied to the top and bottom surface via the holes using the clamps 
as in Fig.  12(b) (for example). The experiment consists of carbon fiber 
reinforced unidirectional plies, each of thickness 0.125 mm, stacked on 
top of each other. Three different orientations of 0◦, 45◦ (considered as 
−45◦ as per the previous numerical convention), and 90◦. The crack 
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propagation path in the experiments for the fiber orientation of 0◦, 45◦
(−45◦), and 90◦ are presented in Fig.  12(b), (d) and (f) respectively. It is 
also evident from Fig.  12 that the crack propagation follows the path of 
the fiber orientation. Consequently, this led to an inter-fiber-dominated 
failure. Similar experimental results regarding the compact tension for 
the fiber orientations of 0◦ and 90◦ can be found in [83].

The numerical results concerning the compact tension utilize the 
material properties as in Tables  1–4. Furthermore, the characteristic 
length scale associated with the matrix is considered as 𝓁𝑚 = 2.5 mm, 
while the length scale associated with fiber as 𝓁𝑓 = 5 mm. The 
numerical model is meshed with 36947 elements to map the structure 
accurately. The Fig.  11(a), (c) and (e) presents the comparison of the 
crack path for the fiber orientations of 0◦, 45◦ (−45◦), and 90◦ respec-
tively. The crack propagation path obtained in the numerical results is 
measured as 0◦, 45.40◦ ± 0.2◦, and 90◦ respectively. The results show 
the ability of the model to accurately describe the crack propagation 
path in comparison with the experiments. Furthermore, for the case 
with fiber orientations of 90◦, the experimental results shows crack 
propagation upwards as in Fig.  12 (f), while the numerical results show 
the crack propagation in both upward and downward directions. This 
could be due to two main factors: (a) the asymmetrical notch due to 
machining arising from the experimental setup, and (b) the probability 
of the crack taking the path. The experimental results of the multiple 
samples show that the crack propagation is sometimes upward and 
sometimes downward. Consequently, due to geometrical symmetry, the 
numerical model predicts both the possibility of crack propagation in 
samples with fiber orientation of 90◦. Furthermore, Fig.  13 presents the 
crack propagation for the fiber orientations with 30◦, 45◦ and 60◦. In all 
the cases, inter-fiber-dominated failure is observed. Fig.  11(b) presents 
the force vs. displacement curves for fiber orientations of 0◦– 90◦ along 
with the Puck Initiation. It can be easily observed that as the fiber 
orientation increases, the structure’s load-bearing capacity increases. 
For the fiber orientations close to 90◦, the strength of the structure 
increases, leading to more fracture resistance. Note that the force 
vs. displacement curves are not compared against the experimental 
work, and this will be presented in our future article along with the 
detailed experimental results. Additionally, the crack propagation in 
the symmetric cases is presented in Appendix Fig.  E.28.

6.4. Centre Notched Tension (CNT)

This example shows the model’s ability to predict crack prop-
agation and compares them with the experimental results for the 
center-notched tension plate. The experimental results concerning the 
center-notch tension specimens are presented in [76]. The geometry, 
excluding the clamps for the mounting, consists of the Length of 𝐿 =
48 mm and the width of 𝑊 = 25 mm. The notch is placed at the center 
of the plate, and its width is considered to be 9.6 mm. Numerically, only 
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Fig. 11. (a) Geometrical description of the compact tension specimen under consideration, (b) force vs. displacement curve along with the Puck failure initiation for the fiber 
orientations of 0◦, 30◦, 45◦, 60◦, and 90◦.
Fig. 12. Comparison between the experimental observation and present model of the crack propagation path in compact tension for fiber orientation of (a), (b) 0◦, (c), (d) 45◦, 
and (e), (f) 90◦. Credits: Prof. Zoltán Major, Johannes Kepler University, Linz, Austria.
Fig. 13. Crack propagation in compact tension specimen for the fiber orientation of (a) 30◦, (b) 45◦, and (c) 60◦.
the geometry without clamps is modeled with 15524 elements. The 
bottom part of the plate is completely fixed, where the displacement 
boundary conditions are applied to the top boundary. The material 
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properties are taken as in Tables  1–4 in line with the experimental 
setup [76]. The characteristic length scales for the matrix and the fibers 
are considered as 𝓁𝑚 = 10 mm and 𝓁𝑓 = 4 mm. respectively. Fig. 
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Fig. 14. Comparison between the experimental observations from [76] and the present model for the fiber orientations of (a) 0◦, (b) 30◦, (c) 45◦, (d) 60◦, and (e) 90◦. The 
experimental results are reproduced from [76] with permission from Elsevier.
Fig. 15. (a) Geometrical description of the three point bending specimen. (b) Force vs. displacement curves along with the Puck failure initiation in TBP specimen for the fiber 
orientation of 0◦, 30◦, 45◦, 60◦, and 90◦.
Fig. 16. Crack propagation in three-point bending specimen with fiber orientation of (a) 0◦, (b) 30◦, (c) 45◦, (d) 60◦, and (e) 90◦.
14 presents the comparison of the crack path with the experimental 
observations for the plies with fiber orientations of 0◦, 30◦, 45◦, 60◦, 
and 90◦ in the same order as mentioned here. Furthermore, the actual 
angles of the crack prorogation from the numerical results are estimated 
as 0◦, 29.85◦ ± 0.2◦, 44.52◦ ± 0.2◦, 59.85◦ ± 0.2◦, and 90◦ respectively. 
All the failure mechanisms are flagged as matrix-dominated failures. 
Consequently, the length scale corresponding to the fiber does not 
play any role. For the fiber with the orientations of 90◦, experimental 
investigation as in Fig.  14(e) suggests that the likelihood of crack 
propagating from both sides is equal. Furthermore, the crack is likely 
to travel symmetrically up and down. Within this context, only one 
crack travels and reaches the top and bottom clamping surface due to 
crack shielding, while the other crack only propagates either top or 
bottom. The numerical observations presented in Fig.  14(e) also match 
the experimental observation [76]. Force vs. displacement curves are 
not given for the CNT specimens for brevity reasons. However, it has 
been observed that the force vs. displacement curve follows a similar 
pattern to that of SENT specimens.
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6.5. Three-point bending

This section shows the crack propagation in a three-point bending 
specimen. The numerical simulations are done with the different fiber 
orientations as in Sections 6.1 and 6.2. All the numerical specimens use 
the same geometry and discretization as in the previous sections. The 
geometry consists of a unidirectional ply of length 𝐿 = 145 mm with the 
span of 𝑆 = 105 mm. A notch is placed at the center of the span with a 
one-third height of the specimen. Furthermore, the specimen has two 
supports, where the left support is a fixed and the right support is a 
floating bearing. The load is applied as a constant displacement at the 
top of the specimen as shown in Fig.  15(a). The domain is discretized 
with 20736 elements. The material properties are taken as in Tables  1–4 
with 𝓁𝑚 = 4 mm and 𝓁𝑓 = 8 mm. A similar analysis for the three-point 
bending using phase field is shown in [84], where the authors consider 
stiff support for the effective distribution of the force.

In our numerical simulation, we observed that the supports fail, 
and no crack propagation is found for the case with fiber orientations 
of 0◦. Fig.  16(a) shows the damage at the supports. Furthermore, for 
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Fig. 17. Geometrical description of the bi-material interface specimen.

the fiber orientation of 30◦, 45◦ crack propagation is shown in Fig. 
16(b), (c) respectively are obtained. After these points, the crack is 
developed at load application points, leading to abrupt changes in 
the force vs. displacement plot. Consequently, only the results until 
this point are considered for the simulation. This could be due to the 
low matrix strength compared to the fibers. As a workaround, stiff 
boundaries can be considered as in [84]. Furthermore, Fig.  16(d) and 
(e) present the three-point bending for the fiber orientations of 60◦, 
and 90◦, respectively. No failed boundary issues are found in these 
cases. Fig.  15(b) presents the force vs. displacement curve for the three-
point bending specimen for various fiber orientations along with their 
Puck initiation. As the angle of the fiber increases, the structure’s load-
bearing capacity increases, contrary to the other sections. This is due 
to the definition of the fiber orientation angle and the load application 
direction of the fiber orientation in the geometric description.

Furthermore, in order to simulate the crack propagation in the 
ply with fiber orientation of 0◦, stiff sections are introduced at the 
boundaries as in Appendix Fig.  G.30(a). The crack propagation due to 
the stiff boundaries is presented in Appendix Fig.  G.30(d) with fiber 
orientation of 0◦. The numerical simulations show that the crack forms 
horizontally as the load increases, leading to stable crack propagation 
until the crack propagates the whole structure span. Furthermore, stiff 
boundaries induce longer cracks for the fiber orientations of 30◦, 45◦ as 
shown in Fig.  G.30.

6.6. Bimaterial interface

This section presents the model’s predictive capability to handle 
interfaces between two different fiber orientations. For this purpose, 
a unit square with an edge notch is divided into two segments. A 
depiction of the problem, including its boundary condition, is shown 
in Fig.  17. The left segment is always set up to have a fiber orientation 
of 0◦, while the right side has different fiber directions for each case, 
as in [4]. These fiber directions are 30◦, 45◦, 60◦, and 90◦. The same 
discretization and boundary conditions are used for each case, with the 
domain being discretized by 20306 elements. The material properties 
are different to the ones in Tables  1–2 with the elastic properties being 
𝐸11 = 171000 MPa, 𝐸22 = 9080 MPa, 𝐺12 = 5390 MPa and 𝜈12 = 0.0169. 
The strength properties are set to 𝑅𝑇

11 = 2323.5 MPa, 𝑅𝑇
22 = 62.3 MPa, 

𝑅𝐶
11 = 1200.1 MPa, 𝑅𝐶

22 = 199.8 MPa and 𝑅12 = 92.3 MPa. The properties 
relating to Puck failure are the same as in Table  3. Lastly, the multi-
phase field properties are considered to be 𝓁𝑓 = 0.1 mm, 𝓁𝑚 = 0.05 mm, 
𝐺𝐶,𝑓 = 81.5 N

mm  and 𝐺𝐶,𝑚 = 1.2774 N
mm  while the rest of the properties 

remain unchanged. A similar example for the bi-material interface and 
multiple interface problems has been presented in [4], where a traction 
separation law is used at the interface to differentiate the layers. This 
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article shows that the presented model can be used directly without 
any cohesive zone model. Within the context of [4], the work in this 
article presents a perfect interface. In contrast, the soft interfaces need 
an additional layer between the left and right domains with reduced 
stiffness (and fracture toughness).

The matrix damage plots for all cases except 90◦ are shown in Fig. 
18. All cases exhibit a matrix crack along the different fiber orientation, 
showing that the present implementation can handle material inter-
faces. Furthermore, when the crack hits the interface, a small kinking 
of the crack in the left interface can be seen before the crack propagates 
on the right domain. This could be due to the bonded interface leading 
to a change of material properties at the interface. Similar kinking 
can also be observed in [4]. For the fiber orientations corresponding 
to 90◦, the interaction between the matrix damage and fiber damage 
can be clearly seen in Fig.  19. Within this context, first, the matrix 
fails in the left domain and propagates to the interface. As soon as 
the crack hits the interface, the crack starts to propagate upwards, 
following the fiber direction of the right domain as presented in Fig. 
19(a) leading to a classic example of debonding along the fiber–matrix 
interface. Furthermore, fiber damage is initiated at this point but not 
fully damaged; consequently, fibers in tension can be seen in Fig.  19(b). 
As the crack progresses, the crack arrests while increasing the fiber 
tension as shown in Fig.  19(c) and (d).

Fig.  20 shows the force–displacement curves for fiber orientations 
of 30◦, 45◦, and 60◦. All cases exhibit linear elastic behavior at first, 
followed by a sudden drop in the reactions as soon as the crack hits 
the interface. For each case, a color-coded map of the crack hitting the 
interface and the corresponding load drop in the force vs. displacement 
is presented in Fig.  20. The cases with fiber orientations of 45◦ and 60◦
exhibit higher stiffness given the loading direction, leading to stable 
crack propagation in the beginning and becoming unstable when the 
crack is close to the boundary. Furthermore, the fibers with orientations 
of ±30◦ show completely unstable crack propagation, leading to a 
further drop in the force as shown in Fig.  20.

6.7. Tension in unnotched specimens

Carbon Fiber-Reinforced Polymers (CFRPs) are prone to defects. The 
defined variability from the nominal flat laminate is often classified as 
a defect. See [85] for more details. The fiber defects can occur due to 
misalignments, in-plane and out-of-plane fiber undulations, and folds of 
the plies in fiber or transverse to fiber directions. Furthermore, the fiber 
defects depend highly on the fiber architecture [85]. At the same time, 
matrix defects stem from porosity or starved areas, dry spots, and fiber 
washouts [86]. The studies regarding the defects suggest a reduction of 
10% in the strength due to the fold defects [87–89]. The effects of the 
voids, fiber washouts, and the locally compacted regions can be found 
in [90,91] and the reference therein.

Consequently, this example aims to show the intricate nature of 
the crack propagation in the specimens without any stress concentra-
tions. Under these conditions, the crack first initiates microscopically, 
followed by a coalescence. These cracks nucleate, combine to form a 
larger crack followed by propagation. Under such circumstances, the 
crack path can only be entirely determined if the statistical data regard-
ing the internal flaws of the structure is available. In order to solve such 
a system numerically, a few randomly distributed cracks are installed 
in the structure by reducing the fracture energy (or strength) at those 
points by 5%–10% herein refereed to as defect points. Furthermore, due 
to the reduced fracture energy (or strength), micro-cracks are formed 
at these points, followed by a coalescence and crack propagation.

Fig.  21(a) presents the geometrical description of the specimen. A 
pristine plate with fibers oriented in 0◦ and 90◦ is used for this example. 
For the ply with fiber orientation of 30◦, 45◦, and 60◦ the geometry in 
Fig.  21(a) would always have a crack starting from the boundary. To 
circumvent the boundary effects in the angles plies, another geometry 
with a length of 𝐿 = 5 mm is taken. In order to simulate the actual test 
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Fig. 18. Crack propagation in the bi-material interface for the fiber orientation of second layer of (a) 30◦, (b) 45◦, and (c) 90◦.

Fig. 19. Crack propagation of the bi-material interface with fiber orientation of 90◦, along with the interplay between the fiber and matrix failure.

Fig. 20. Force vs. displacement plots for the bi-material interface with crack propagation for the fiber orientation of 0 − 30◦, 0 − 45◦, and 0 − 60◦.
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Fig. 21. (a) Geometric description of the tension in unnotched specimen used for the fiber orientation of 0◦, and 90◦, and (b) presents the geometrical description for fiber 
orientations of 30◦, 45◦, and 60◦. (c) Representative force vs. displacement curves along with the Puck failure initiation.
Fig. 22. (a) Matrix failure in different regions due to different configurations for the fiber orientation of 0◦, and (b) presents the fiber failure in different regions due to different 
configurations for the fiber orientation of 90◦.
case, the top and bottom parts of the geometry contain a material with 
very high stiffness and fracture toughness, as shown in Fig.  21(b). It is 
further noted that, stiff clamp has no effects on the crack propagation 
if the defect points are far away from the boundaries. Furthermore, the 
cracks originating from the boundary are discarded in this section.

Fifteen different random distributions of micro-cracks are planted 
in each model for each fiber orientation. Each distribution consists of 
the six micro-defects in the form of reduced fracture energy (5%–10%) 
assigned at random element. It is further noticed that, reducing the 
strength or reducing fracture energy lead to same results both quali-
tatively and quantitatively. Consequence, fracture energy is chosen in 
this article. Furthermore, only seven numerical simulations are shown 
here to maintain the conciseness of the article. The nucleation and the 
coalesce for each of the samples are omitted for the sake of brevity. The 
material properties considered are presented in Tables  1–4 with length 
scales taken as 𝓁𝑓 = 0.05 mm and 𝓁𝑚 = 0.25 mm.

Fig.  22(a) presents the matrix failure for the fibers oriented in 0◦. 
Seven configurations show different possibilities for damage in line 
with the experimental observations. It is interesting to see that, in the 
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last three configurations, two matrix dominated cracks are seen. In all 
these configurations, only one crack is formed initially, followed a an 
unstable crack propagation of the second one. This could either indicate 
volatility of the matrix dominated damage or numerical instability 
stemming from the unstable crack propagation. Furthermore, Fig.  22(b) 
presents the fiber failure for the fiber oriented in 90◦. Consequently, the 
load-carrying capacity for the structures with fiber orientations of 90◦
is higher. Additionally, it is noticed that in both cases, the microcracks 
are formed first, followed by a coalesce between these cracks, followed 
by unstable crack propagation.

Fig.  23(a), (b) and (c) presents the different crack paths for the 
fibers with the orientation of 30◦, 45◦, and 60◦ respectively. In all these 
cases, only matrix-dominated failure is observed with no fiber damage, 
while the crack path is parallel to the fibers. Fig.  21(b) presents the 
force vs. displacement curve along with the Puck initiation. The early 
onset of the Puck initiation is approximately calculated as 10 − 12%
less than the total load-carrying capacity due to the reduced fracture 
energy owing to artificial defects. Furthermore, due to the unstable 
crack propagation, in all the fifteen randomly distributed samples for 
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Fig. 23. Matrix failure in different regions due to the different configurations for the fiber orientation of (a) 30◦, (b) 45◦, and (c) 60◦.
each fiber orientation, the difference in the force vs. displacement 
curves is less than 2%. Consequently, only one representative force vs. 
displacement curve for each fiber orientation is presented here for the 
sake of brevity.

7. Convergence studies

All simulations presented in this work were performed using six 
cores and employed the automatic time-stepping feature available in 
the Abaqus/Standard solver. The analyses were carried out with NL-
GEOM=ON, using a Newton–Raphson solver with the stabilize op-
tion enabled. Time step cutbacks were permitted after 300 iterations, 
with a minimum time stepping increment of 1 × 10−10 and a maximum 
of 1 × 10−3.
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During crack propagation phases, occasional cutbacks in the time 
increment were observed. Table  6 presents the total computational 
time for each simulation associated with experimental comparison 
benchmarks, offering a practical estimate of solver performance.

While the current implicit implementation exhibits robust conver-
gence, it is worth noting that explicit formulations as showed in [92] 
demonstrated improved computational efficiency and scalability for 
large-scale fracture problems. Exploring such explicit approaches with 
the present model is a valuable direction for future development.

8. Conclusion

A multi-phase field damage model capable of handling damage in 
both fiber and inter-fiber failure separately is proposed in this article. 
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Table 6
Summary of the total time for the simulations.
 Geometry Orientation 

(𝜃)
Total DOF Total time

(min)
 

 Plate with Notch 0 193844 63.31  
 45 75.43  
 90 27.16  
 Compact Tension 0 149856 709.7  
 45 413.71  
 90 214.892  
 Open Hole Tension 0 51980 437.05  
 45 43.61  
 90 28.73  
 Centered Notch 0 63268 53.81  
 Tension 45 40.73  
 90 43.28  
The article utilizes the Puck failure theory for the crack initiation based 
on the local stress state, whereas the phase-field method propagates the 
crack. The directional nature of the fracture energy stemming from the 
various fiber orientations is considered for effective crack propagation. 
The first four examples show the model’s ability to replicate qualitative 
and quantitative experimental results. In contrast, the last three exam-
ples show the model’s ability to predict crack propagation in complex 
experimental settings.

An overall analysis of the Puck initiation suggests that each example 
can be fairly categorized into two parts. In examples such as OHT, 
TPB, and unnotched tension specimens, the Puck failure criteria are im-
mediately followed by crack nucleation and propagation, consequently 
leading to a drop in reactions as soon as the Puck failure criteria are 
fulfilled. On the other hand, for the other examples, such as SENT, CNT, 
Bi-material interface, and CT, the Puck initiation is followed by a fairly 
long nucleation with subsequent crack propagation. Consequently, the 
quantitative analysis for the first case can be done with any driving 
force. In contrast, for the second case, the parameters 𝜁𝑚 and 𝜁𝑓  can 
control the driving force, providing an extensive range of flexibility for 
both qualitative and quantitative analysis of the FRCs. 

Furthermore, the interplay between the fiber and the matrix failure 
is shown in two different contexts: (a) pure fiber failure (Unnotched 
tension), and (b) the effects of the fiber failure on the matrix (TBP, CT) 
are presented to show the ability of the model to understand fracture 
in FRCs effectively.

Due to the two-dimensional nature of the model, the model cannot 
capture out-of-plane cracks and delamination between the plies. Fur-
thermore, when the Puck criteria are followed by a long nucleation 
phase, the parameters 𝜁𝑚 𝜁𝑓  need to be calibrated to capture the 
nucleation. 

Finally, this work brings many benchmark examples together in 
the FRCs. Furthermore, the codes written in ABAQUS UEL and the 
input files are presented in the data availability section to alleviate the 
reproducibility crisis and bring transparency to the work.
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Appendix A. Effect of matrix structural tensor

This section presents the effects of each structural tensor in the 
presented model. Consequently, four different models are considered 
as follows 

1. Without both structural tensors, similar to [5]. i.e 𝑓 = 𝑚 = I.
2. We consider only the structural tensor corresponding to the fiber 
(𝑓 ), in the absence of the matrix structural tensor. i.e 𝑚 = I.

3. Only structural tensor corresponding to the matrix (𝑚) in the 
absence of the fiber structural tensor as in [2]. i.e 𝑓 = I.

4. Present model with both structural tensors (𝑓 ,𝑚) are consid-
ered.

Fig.  A.24 presents the comparison of the different models using the 
plate with the notch example as considered in Section 6.1 with the same 
boundary conditions and material properties with the fiber orientation 
of 𝜃 = 45◦. It is apparent from Fig.  A.24 that Case-1 and Case-2 without 
the structural tensor corresponding to the matrix (𝑚) cannot predict 
crack propagation path. Case-3, which corresponds to only the matrix 
structural tensor and the present model (Case-4), can predict the crack 
propagation well. 

In conclusion, only the structural tensor corresponding to the matrix 
(𝑚) is sufficient to predict crack propagation correctly when the 
inter-fiber/matrix dominates the damage. 

Appendix B. Effect of fiber structural tensor

This section presents the effects of the structural tensor correspond-
ing to the fiber (𝑓 ). Puck’s failure criteria suggest that, in most 
cases, the fracture plane in the fiber is approximately perpendicular 
to the fiber direction. Consequently, the fiber failure is restricted to 
the direction perpendicular to the fiber [50]. The example considers 
Tension in unnotched specimens as in Section 6.7 corresponding to the 
case when the fibers are oriented parallel to the load application (with 
𝜃 = 90◦) leading to fiber failure. With the same boundary conditions 
and material properties, Fig.  B.25 compares the crack initiation, coa-
lescence, and propagation of the fiber failure in the plate without a 
notch. It can be seen that, in the absence of the structural tensor, the 
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Fig. A.24. Comparison of the plate with notch sample with and without structural tensors.
Fig. B.25. Comparison of fiber failure with crack initiation, coalescence, and propagation for a plate without a notch with and without a fiber structural tensor 𝑓 .
crack smears more. Furthermore, the crack coalescence leads to a thick 
band. Later, the coalescence leads to the localization of the stresses and 
crack propagation. The crack propagation is sharper in the presence of 
the structural tensor corresponding to the fiber (𝑓 ). It is also observed 
that in the absence of 𝑓 , the load–displacement response is higher. It 
is important to note that Fig.  B.25 only presents the fiber failure, while 
the matrix failure around the fibers is omitted for brevity. 

Furthermore, it is also observed that in the laminates where the 
interaction between the fiber and inter-fiber failure is prominent, the 
model with structural tensor 𝑓  performs better in capturing the 
interactions.

Appendix C. Single Edged Notched Tension

See Fig.  C.26.
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Appendix D. Open hole tension

See Fig.  D.27.

Appendix E. Compact tension

See Fig.  E.28.

Appendix F. Three point bending

See Fig.  F.29.

Appendix G. Bi-material interface

See Figs.  G.30 and G.31.
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Fig. C.26. Crack propagation for the fiber orientation of (a) 𝜃 = −30◦, (b) 𝜃 = −45◦, (c) 𝜃 = −60◦.

Fig. D.27. Crack propagation in open hole tension for the fiber angles of (a) 𝜃 = −30◦, (b) 𝜃 = −45◦, (c) 𝜃 = −60◦.

Fig. E.28. Crack propagation in compact tension specimen for the fiber orientation of (a) −30◦, (b) −45◦, and (c) −60◦.
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Fig. F.29. Crack propagation in three-point bending specimen with fiber orientation of (a) −30◦, (b) −45◦, and (c) −60◦.
Fig. G.30. Crack propagation in three-point bending examples with stiff load boundaries for different fiber orientations.
Fig. G.31. Crack propagation in the bi-material interface for the fiber orientation of second layer of (a) −30◦, (b) −45◦, and (c) −60◦.
Data availability

The codes used for this paper, including the input files and the 
FORTRAN codes can be downloaded from the following GitHub link: 
https://github.com/Pavan-asur/Multi-phase-field-Puck-FRC.
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