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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/Pavan-asur/M
ulti-phase-field-Puck-FRC

This article aims to revisit the multi-phase field model using the Puck failure criteria for Fiber-Reinforced
Composites (FRCs). Specifically, this work proposes a robust multi-phase field formulation relying on the Puck
failure criteria for triggering the fracture in fiber and the inter-fiber (matrix-dominated) separately, using

Keywords:
A yMWulti- phase field two independent phase-field damage variables in a thermodynamically consistent framework. Furthermore,
B.FRC the formulation encompasses two distinct characteristic length scales, and a structural tensor is employed to

penalize the gradient of the phase field, enhancing the accuracy of qualitative and quantitative predictions.
Seven benchmark examples of unidirectional reinforced composites are utilized to demonstrate the model’s
predictive capabilities. The first four examples compare the proposed model with experimental results
stemming from the related literature. In particular, the crack propagation with different fiber orientations,
including the extreme cases involving fiber orientated parallel to the loading direction leading to debonding
along the matrix and fiber interface are presented for each case. Furthermore, the last three examples serve
as benchmarks to further validate the model’s predictive capability. The unnotched tension specimens are
examined to evaluate the effects of defects/voids on crack propagation in the FRCs in various ply orientations.

C. Phase-field method
D. ABAQUS UEL
E. Fracture

1. Introduction The most common failure modes for a homogenized single-ply in-
clude inter-fiber/matrix dominated failure and fiber dominated failure.
In recent years, there has been an unprecedented surge in the The critical energy release rate related to each failure mode is different,
utilization of composite materials across various industries. This surge
could be attributed to the unique combination of mechanical, ther-
mal, and chemical properties. Among the composites, Fiber-Reinforced
Composites (FRCs) emerged as exceptional candidates for engineering
applications. The strategic alignment of the continuous fibers in var-
ious kinds of matrix material provides enhanced strength, stiffness,

and damage resistance. Despite their impressive attributes, FRCs face

with magnitudes sometimes spanning across two orders. Even though
inter-fiber dominated failure is the most significant failure mode, unless
the loading path aligns with the fiber’s direction, inter-fiber dominated
failure can combine with fiber dominated failure under mixed mode
loading conditions. For the sake of simplicity, inter-fiber dominated
failure is refereed to as matrix failure, while the fiber dominated failure

significant challenges in predicting fracture due to their complex failure
mechanisms [1].

The numerical and experimental studies of the composites are often
categorized as (a) microscopic theory, (b) mesoscopic theory, and (c)
macroscopic theory. Microscopic studies focus on studying composites
at a scale where fiber and matrix are separated, later utilizing the
results using homogenized models at larger scales. Mesoscopic models,
however, consider the inter-laminar and intralaminar properties of the
composites and aim to predict fracture from a single-ply point of view,
consequently striking a balance between the microscopic and the larger
macroscopic view. This article focuses on the mesoscopic analysis of the
single plies [1].
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is refereed to as fiber failure herein.

The phase-field method offers an advantage in modeling composites
since the gradient of the Phase-field indicates the potential crack path.
Furthermore, combining the gradient with the material characteriza-
tion direction can accurately account for the anisotropy. See [2-7] to
name a few. The phase-field methods, in general, use Griffith’s ap-
proach to fracture by smearing the crack [8-10]. Consequently, phase
field methods have been able to model crack propagation, coalescence,
and branching [11]. Although phase-field models are criticized for their
inability to nucleate the crack without the ad hoc criteria [12,13], the
phase-field model, in conjunction with other criteria, such as strength
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criteria, emerged as an appealing computational tool for studying
fracture nucleation, and propagation under various loading conditions.
The phase-field methods are used to study brittle materials [14-24], dy-
namic fracture [15,24-28], hydrogen embrittlement [29-31], thermo-
mechanical fracture [32-34], and composites [35-45], fatigue [46] to
name a few. Several failure methods have been proposed within the
context of Phase-field methods in modeling composites, such as [7,35,
40,47,48].

A recent paper by Oscar et al. [12,49] suggests that classical varia-
tional phase field models cannot predict crack nucleation. Furthermore,
the study suggests that criteria for the strength (that the complete
strength surface) independent of the characteristic length scale have
to be included in the formulation for the phase field model to describe
crack nucleation accurately. In other words, the crack nucleation has
to be primarily accompanied by ad hoc criteria apart from interpola-
tion of the characteristic length scale # (of phase field). Within the
context of the FRCs, the phenomenological criteria such as Puck [50],
Hashin [51], or physically based criteria such as [52-60] which consid-
ers the complete strength surface of the FRC has to be included in the
model to account for the crack initiation and nucleation. In contrast,
coalescence and crack propagation are successfully captured by the
phase-field method without any ad hoc criteria.

When considering the multiple failure modes, the interaction be-
tween the failure modes, such as fiber and the inter-fiber (referred
to as matrix failure which includes all the modes of Puck inter-fiber)
failure, has to be considered. Consequently, the authors introduced a
multi-phase field variable relying on the Puck failure criteria in [5,6].
The article uses two-phase fields to trigger failure in fiber and matrix
in continuous FRCs at the ply level. The model differentiates all five
modes of the Puck. Furthermore, it was demonstrated that such a model
could accurately describe the failure, such as delamination migration
(along with the cohesive zone model) in [6] using 44-cross ply lami-
nates. The article in [5,6] used an invariant-based formulation without
any penalty of fiber orientation direction of the phase field gradient.
Furthermore, it implemented a three-layer structure utilizing UMAT
and UEL of ABAQUS. Consequently, the qualitative analysis could be
made more accessible, whereas the crack propagation in the angled
plies was more challenging to obtain. This can be mainly attributed
to the lack of directional dependent structural tensors to penalize the
gradients of the phase field. Furthermore,

Another multi-phase approach in parallel was developed in [61]
based on the fast Fourier transform. This method splits the energy into
multiple anisotropic energies stemming from the fiber and the matrix,
each represented by a separate phase field [61]. Following [5,6], Singh
and Pal [42] developed a multi-phase field framework for complex frac-
ture response. This approach has been applied to mixed mode fractures
in rocks [62], elastic buckling behaviors [63], and evaluating fatigue
life in composite joints [64], and explicit dynamics in FRCs [65].
The article [7] presents the most prominent failure mechanism at
the material point level, and [66] combines with cohesive-like crack
methods. [67] applied PF methods to three-dimensional fiber-matrix
composites, [7] proposed a PF model for intralaminar and interlaminar
failure in long fiber composites, [2] proposed an explicit PF model
for progressive failure in FRCs. More recently, [68] presented the
double-phase field model to account for multiple failure in composites.
See [5,68,69] and the references thereafter for a more details.

Min et al. [70] proposed general strategies such as maximum princi-
ple stress, maximum shear stress, maximum principle strain or similar
criteria to guide fracture direction in the phase-field model. But the
Puck failure was not realized in the article. Furthermore, such general
approach cannot be directly applied to composites due to its intrinsic
material anisotropy and the distinct directional nature of the fiber
and the inter-fiber failure. In this work, we address these limitations
by employing orientation specific structural tensors that penalized the
gradient of the phase field. This article provides a simpler mathematical
model with an easy implementation in a thermodynamically consistent
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framework. Consequently, the present model can now be used for
both qualitative and quantitative prediction of cracks in FRCs. This
article only presents the results regarding the unidirectional laminates,
whereas the results regarding the isotropic and mixed laminates will
be considered elsewhere. Furthermore, this article also aims to provide
benchmark examples within the realm of the fracture predictions of the
FRCs by combining multiple experimental results and the common nu-
merical examples in the literature. In order to make these benchmarks
more accessible, and to alleviate the reproducibility crisis, all the input
files and the codes are made publicly available. As far as the authors’
knowledge, no articles within the context of phase-field methods are
available to successfully predict crack propagation in FRCs, which are
demonstrated using all the benchmarks presented.

The article is organized as follows. Section 2 presents the modeling
framework of the multi-phase field model within the context of ener-
gies. The Puck failure criteria is presented in Section 3. Furthermore,
this section also provides insights into the energy considerations of the
fiber and the matrix based on the Puck failure theory. Thermodynamic
consistency of the formulation, along with the choice of the driving
force, is presented in Section 4. It is worth noting that no tension/com-
pression split in the formulation or the driving force is utilized in the
model since the Puck failure theory can also account for compressive
stress state and their subsequent failure modes. Furthermore, finite
element implementation, along with the weak forms, stiffness matrix,
and the residuals, are provided in Section 5. Additionally, a detailed
algorithmic description of the FE implementation is also provided. Sec-
tion 6 delves into numerical examples constructed using the proposed
model. Moreover, this section considers seven benchmark examples,
each serving a different purpose to test the ability of the proposed
framework. The first part of this section focuses on comparing the
proposed model with the experimental results and other numerical
methods. After the scrutiny, further benchmark examples are proposed
to test the model’s predictive capability. Section 8 presents the conclu-
sions of this work. Data availability provides the codes and the input
files used in the article.

2. Variational formulation

This section introduces the variational formulation of the multi-
phase field model, incorporating Puck failure theory. The model uses
Puck failure theory to initiate cracks, while crack propagation is gov-
erned by the phase field approach. Since the model distinguishes be-
tween fiber and inter-fiber failure, a generalized framework is ini-
tially presented. This framework is then streamlined to align with
the fundamentals of the phase field method, ensuring thermodynamic
consistency. Puck failure criteria is utilized using the stress state in the
local ply setting, whereas the stiffness and residuals for finite element
implementation are expressed in the global setting. Consequently, a
unified framework addressing both global and local ply settings, in-
cluding their transformations are provided. Furthermore, the details
regarding the implementation are presented in Section 5.

Consider an arbitrary body in n-dimensional Euclidean space B with
its delimiting boundaries 0. For every position vector x € /3, define
a vector valued displacement field u(x, ¢) such that u(x,?) : Bx[0,¢] —
R", with z € [0,7] being pseudo time. Let I'; and I, be crack sets
representing fiber failure and matrix failure, respectively, such that
I;. I, cR*! and I'; UT, =TI as shown in Fig. 1.

The total energy in the system is assumed to be a consequence of
the (i) applied displacement u, such that u = @wondB,, (ii) traction
t = o -n on 93, with an outwards unit normal n, such that 03, U dB, =
0B and 0B, n 0B, = @. Furthermore, (iii) body force can be applied
as f, B — R". As a consequence of the applied forces on the
system, the body experiences a strain field £(x, 7) defined as a symmetric
Vu + Vu”

2
in the fiber and matrix is approximated using a scalar-valued field

gradient of the displacement field. i.e e(u) = . The damage
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Fig. 1. Geometric description of the body under consideration: (a) sharp crack and (b)
regularized crack representation.

0, 0y respectively such that 0,(x,1), 0,(x,1) B x [0,1] — [0,1].
Here, © = 0 refers to intact material, whereas 0 = 1 refers to as
completely failed material. The variational methods to fracture for
long fiber reinforced composites using the Puck failure theory can be
re-iterated using additive decomposition of the total internal energy.
Consequently, the total internal energy of the system can be written as
a additive combination of

. Strain energy ¥, stemming from fiber.

. Strain energy ¥,, stemming from the matrix.

. Applied external energy ¥?,,,.

. Fracture energy W, corresponding to the fiber failure, and

g bHh W -

. Fracture energy W,, corresponding to the matrix (inter-fiber)
failure.

The total internal energy density of the system using its additive
constituents can be written as

YW, Iy, L) =) + 2, ) + W) + Wy (L,) = o (W), €))

According to Griffith’s theory, the fracture is seen as a competition be-
tween the strain energy and the energy required to create new surfaces,
referred to as fracture energy. Within the context of Fiber-Reinforced
Composites (FRCs) and the multi-phase field framework, the strain
energy stemming from the fiber creates a new surface corresponding
to fiber failure. Similarly, the strain energy stemming from the matrix
creates a new surface corresponding to matrix failure. Keeping in mind
Griffith’s theory, the total internal energy functional can be written as

W(u,Ff,Fm)=/B\r ?’f(e)dx+/B\F Wm(e)dx*'GCfo"’l(FfnE\aB,)
f m

+ G "I, N B\OB)) — ¥, (w). )

Here, G¢ s, and G, are the fracture energy densities corresponding
to the fiber and the matrix, respectively. Whereas ¥(e) and Y7, (¢)
are the undamaged strain energy densities for the fiber and matrix,
respectively. The external work ¥?,,,(u) due to the applied loading can
be defined as

¥, () :=/fv-udx+/ t-udS. 3)
B 0B,

The crack sets Iy, and I, in Eq. (2) are unknown a priori. Within the
context of the Phase-field models, the fracture energies for the fiber and
matrix failure are approximated as

Ge,
w,(rf)z/ Ges dSz/Tfyf(af,Vaf)dx, @
Ty B "w
GCm
Wm(rm)=/ Gem dsz/—’Vm(Dm,VDm)dX, %)
n ’ B 4cw
where y;(0;,V0;) for i = (f,m) is the crack surface energy density
function defined as

i@ V) = ——= +Cp [VOp - A VO] (6)
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e, €1

Fig. 2. Schematic diagram of the material orientations and structural tensor.

a(,,)
¢

m

Y@ VO,,) = 8, [V0, - A, - V0,]. @)

Here, ¢, := fo‘Y \/Ed s is the normalization parameter. In line with
the AT2 model, the distribution of each phase-field variable is achieved
by choosing the geometric crack function as a(9;) = D[.z (i = f,m). Notice
that « : [0,1] — [0, 1]. Furthermore, A r»and A, is a second order
structural tensor defined as

Af=e; ®e, A,=e Qe (8)

where ¢, is the principle material direction 1 aligned with the fiber
orientation. Whereas e, is the transverse in-plane orientation with
respect to the fiber, perpendicular to e,. For the fiber orientation of
0 from the global X- co-ordinate, the material basis functions e;, and e,
are given by

o = [cosé)] Cand e = [— sine] . ©

sin @ cos 6

Consequently, the structural tensors A,, and A, adjust the non-
local part of the fracture energy to penalize the material orientations
in the fiber and the matrix respectively.

The structural tensor was first introduced in [7]. The structural
tensor for the matrix was modified to include the material orientation
to penalize the inter-fiber-dominated cracks introduced in [2]. On the
contrary, this article uses two different structural tensors corresponding
to the fiber and the inter-fiber/matrix. While using a structural tensor
for the matrix is justified in [2], Appendix A provides further evidence
by comparing the effects of the structural tensor. Furthermore, Fig. 2
presents the schematic diagram of the material direction e;, e,. The
material directions can also be seen as the projection of the fiber
orientation onto the global coordinates.

According to Puck’s failure criteria, in most cases, the fracture plane
in the fiber is approximately perpendicular to the fiber direction. Con-
sequently, the fiber failure is restricted to the direction perpendicular to
the fiber [50]. Most of the failures are inter-fiber-dominated, especially
in the unidirectional plies, unless the load application aligns with the
fiber orientation. When the fiber failure is dominant, the structural
tensor corresponding to the fiber becomes helpful in obtaining the crack
propagation. Appendix B compares the two models with and without
the fiber structural tensor. Specifically, the fiber-dominated cracks tend
to smear more in the absence of the fiber structural tensor. These effects
become prominent in the presence of multiple modes of failure. The
analysis of the laminates suggests that using a structural tensor for
fiber-dominated failure better captures the interaction between fiber
and inter/fiber damage. The laminate results are omitted here and will
be presented in another article.

Notice that due to the addition of the structural tensor in Egs. (6)
and (7), the gradients are penalized. In a two-dimensional setting, the
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phase field gradient is represented by Vo = [V, V,0]. Consequently,
due to the structural tensor, the non-local part of the surface energy can
be written as G.¢,[V,0- cos2(0) + Vo sin?(6) + 2 cos(8) sin(6) - vV, ov,0l.
This introduces an extra term 2G,.Z, cos(9) sin(#)-V, 0V 0. Recalling that
0 is the fiber orientation, this term is maximum when the § = 45°, and
reduces as the # — 0°,90°. Consequently, it introduces a thick bank of
cracks when the 6 = 45° can be observed in all the numerical examples
throughout this article. In order to avoid spurious crack widths, one can
consider the length scale dependent on the fiber orientation. In order
to have a fair comparison of the results, the length scale is considered
constant in this article, independent of the fiber orientation. However,
¢ = ————— can also be considered.

N%%gsglse{? %uck failure theory is mainly based on the stress-field

y is mainly n the e

o in principle material orientation (fiber orientation). In contrast, the
solution to the weak forms, including elemental stiffness, residual
vectors are computed globally. Consequently, a global and local coor-
dinate system is introduced in the sequel. The quantities in the (local)
principle material orientation are referred to as (-)*, whereas the global
orientation is represented as (-)°. Within this context, the transforma-
tion from local to global coordinates and vice versa is obtained using
the following transformation matrix R according to [71-74] given as

cos2 9 sin” @ 2 cos 0 sin 6
R = sin” @ cos2 9 —2cos@sinf |. (10)
—cos@sin@ cos@sind cos? O —sin’ O

The strain field in the local ply setting can be computed using the global
strains as

el = (R_I)T - €9. an

The constitutive stiffness matrix C* can be written in the global setting
as
co=r".ct (R 12)

As a consequence, the stress in the global coordinates can be computed
as

69 =CY. ¢, 13)
and in the local form as
of =R -6 a4

Furthermore, strain energy density contribution associated with the
fiber can be written as

1
Wy,0) = g@)7e" 1 CF : £, (15)
where

Cp 0 0
ci=|0o o of 16)

0 0 0

E

with C, = 1

L= vipvy |
Similarly, the strain energy density contribution associated with the

matrix takes the form

?,,(u,0) :g(b)%et 1 CE : et a7
where
0 C, O
Ci=|Cyp, Cp 0O (18)
0 0 Cy
E E
with Cj, = dbAll , Cy = T 2__and Cy; = g),. Here E,,, En,

~VioVar . — V12V21 .
and g, are the longitudinal, transverse and shear modulus respectively,
whereas v,,, and v,, = vle—“ are the Poisons’s ratio. Furthermore, g(d)

. . . 22 . . .
is the degradation function, whose specific details are presented in the
sequel.
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The total energy of the systems in Eq. (2) can be written as

Y(u,0,,0,) = /g(a)%ef D CF o efdx
B
+ /g(D)%eC DCEfdx - () 19)
B

@(@f)
+/[GC,/- Lte, [Va/-~Af-VDf]]dx
B ‘s

+ / [Gc,m“(a'”)wm [me-Am~Vam]]dx. (20)
B

fm

Note that, due to the additive decomposition of the strain energies and
the fact that all the strain energies are in local-material orientation, the
total internal energy in the compact notation takes the form

Y(,0,.,0,) = /g(D)%eE :CE: elfdx -, ()
B

+ [ |Gey +2, Vo, - Ay Vo ]| dx (21)
sl 7 ¢y
0
+ / [GC,m “(f W | (Vo A, me]] dx. 22)
B m
Here, C£ is the total constitutive stiffness of the FRC that reads
Ct=Ct+Ch, (23)
leading to
c c
. ¢ Cp 0
=|ct c
C ch, Cp 0 24
0 0 C5

Furthermore, due to the multiple phase fields, the total constitutive
stiffness of the damaged material C* takes the form

Ct = g@CF +50)Cy, (25)
i u Yo r
. &r ¢y € O
= . L L
c L Ch Gy OE
| min{g/, &} 0 0 Cj
gCl anCl 0
=| &uCl, 8uCs, 0 : (26)
|0 0 min{g,, g, }CL,

Here, g, = (1 - af)z, and g, = (1- a,,,)z in line with standard AT2
de.
formulation [25], such that g;(0) = 1, g;(1) = 0, and d—i’ >0fori=f,m

Consequently, the degraded stresses due to the damagé in the local and
the global reference system take the form

& =g’ - ot 69 =R"".5". 27

3. Puck failure criteria

The initiation of the damage relies on the Puck failure theory [50].
Puck failure criteria distinguish the fiber dominated and (matrix) inter-
fiber dominated failure independent of each other. Consequently, the
damage can be initiated using the Puck failure criteria, and the evolu-
tion of the damage can be performed using the phase-field approach. In
a two-dimensional setting, || (subscript 1) is used to represent the fiber
direction, whereas L (subscript 2 and subscript 3) represents the direc-
tion normal to fiber direction in plane and out of plane respectively,
for the ply-coordinates in a local setting 0 —e; — e, — e5.

Puck failure theory distinguishes five modes of failure. They are (i)
fiber failure in tension, (ii) fiber failure in compression, (iii) Mode-A
(transverse tension) in the matrix, (iv) Mode-B (transverse compres-
sion) in the matrix, and (v) Mode-C (out of plane transverse com-
pression) in the matrix. Furthermore, each failure mode is triggered
based on an energetic consideration that the exposure factor reaches 1.
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Consequently, due to the multi-phase field framework, exposure factors
stemming from each mode are named separately to distinguish the
failure mode in the presented model.

The modulus E,;, Ey, and E;, are the longitudinal and shear
modulus, respectively, in the local ply orientation. Furthermore, RITI,
R;z, and R;, stands for the tensile longitudinal strength in fiber di-
rection and transverse tensile strengths, respectively. Whereas RIC] and
RZC2 represent the compressive strength in the fiber direction and the
direction transverse to the fiber. The major Poisson’s ratios are written
as vip, and vy3. Additionally P, P;;, Pj,, P;, are the matrix inclina-
tion parameters. As a consequence of the strength considerations in
all modes, Puck failure theory considers the entire strength surface,

see [5,50] for more details.
3.1. Fiber failure

Within the context of fiber dominated failure, fracture is triggered
by evaluating the so-called failure exposure factor (material efforts) in
each of the identified failure mechanisms. The exposure factor relates
the length of pseudo w, and the corresponding material fracture vector
w,, ie F;=|w|/|w/,|, see [75]. The failure is initiated when the F,
reaches the value 1.

With the stress in the local coordinates, the fiber failure exposure
factor FT in tension can be defined as the ratio of the stress in the
fiber to the strength of the fibers, written as

GC
FfT = R_‘Tl, if of >0. (28)

11

Similarly, the fiber failure expose factor in compression takes the
form

£\? £\?
%1 %12 e r
FfC = R_C +a R_lz if o, <0. (29)
11

where a € [0, 1] is the shear influence parameter for the compressive
fiber failure.

3.2. Matrix failure

The exposure factor corresponding to matrix dominated failure can
be distinguished based on the Mode of fracture. If 052 > 0, the exposure
factor in Mode-A in tension for the matrix takes the form

£ \? T\ 2 r£\?2 + L
o R o, P o
FZ: 12 + 1_PZ‘:£ + % +M_ (30)
Ryy Ry R, Ry

Mode B corresponds to the transverse compressive stress with a longi-
tudinal shear stress below a fracture resistance. The exposure factor for
the Mode-B matrix fracture is triggered, if the stress state fulfills 0'2£2 <0
as well as

L L a
o, . R
[%>0]&& = 32], GD
%12 °n 12
C
Rip _Ry -
where RS, = P 1+2P; R, 1¢, and R}, = R;4/1+2P,. The
21

exposure factor for the compression in Puck Mode-B takes the form

£\?2 £\?2 - L

o o, P; o
FC = 2 (p-.%22) 2% 32
" (R12 2 Ry Ry 32)

Similarly, if the stress

O_[i O’E c
[—'2 >0| && ||[2] < |2, (33)
% n 22
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is satisfied. A transverse compressive stress state with a longitudinal
shear stress that is sufficiently high to induce fracture on an inclined
plane to the fiber axis is associated with mode-C matrix failure. The
compression exposure factor corresponding to the Puck Mode-C matrix
failure can be written as

c 2 £ \2 pc
FC = <—612 > - (2) Rx (34)
m =\ 20+ PR, RS, ) ok

Assuming that the Puck failure criteria is met for the stress state of
of, the energy associated with fiber and the matrix during the Puck
failure initiation (with one or multiple modes) can be computed as

L pr ¢pT pC
—or € if F1,F$ =1
W= 1nén : fT fC (35)
lfFf,Ff <1,
Lie e £,y ifpT pC_
v = E(522522+a12512) if FT,FS =1 36)
m,
0 if FTFS < 1.

4. Thermodynamic consistency and driving force

Assuming the isothermal conditions, the second law of thermody-
namics, which ensures the consistency of the formulation takes the form

D=[oc:&é]—-0;¥% : 120, (37)

. . . d . .
where 7 is the set of internal variables, and (x) = 4x) is the time

derivative. Setting the internal variables 7 as a triplet (u,? £50m)s and
their respective gradients, the Clausius—-Duhem Inequality in Eq. (37)
can be written as

D=(6—g)é—<awb P 4 va'f>—<£ém+£vém>zo.
m m

o+ 2
oe o, T av, PR Vo
(38)
Since ¢ = ?)—T = CY : €Y, the dissipating potential above takes the
€
form
D=D;-9;+D, 0,20, (39)

where D, and D,, are the forces associated with the fiber and the
matrix, respectively, whose specific expression can be computed as

0,
s CAL
D, =2(1-0,)¥ -Gc, [f_f — Vo, Ap Vaf], (40)

D, =g @Y - Gc,, [;—”’ — £, V0, Ay Vam] . (41)
m

Notice that, in order for the expression g’(?)¥ to be well defined,
we consider min(g,, g,,) first and then consider the derivative of the
g(0). Consequently, from Eq. (39), (40), and (41), along with the
boundedness of the phase-field variables 2,9, € [0, 1] leads to the first
order optimality conditions, referred to as Karush—-Kuhn-Tucker (KKT)
conditions. The particular form of the KKT conditions can be written
as

0,20,-D; <0,9,-D; =0, (42)
9,>0,-D,<0,9,-D,=0. (43)
Furthermore, in Eq. (40), and (41), the expression
Ge, [;—' —¢;Vo, 1 A; : Vo,| for each i = f,m indicates the energetic

crack résistance, and g’(0)¥(¢) is the crack driving force.

In order to enforce the irreversibility of the phase-field variables, the
driving force based on the Puck Failure criteria is considered. Assuming
the energy required for initiating the Puck failure is known as in Eq.
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(35), and (36), the driving force takes the form

4
max 4 ¢, AN if ¥;,>0 and 0 otherwise,
7€[0,T] Yro ’

(44)

Hy

14
max {gm (—m - 1> } if ¥,,>0 and 0 otherwise.
r€[0.T] Yo g
(45)

Here, the factors {, and ¢, are the dimensionless parameters to char-
acterize the activation of the fracture due to the fiber and matrix
failure.

5. Finite element implementation: Compact UEL

With this at hand, the solution to Eq. (22) at every discrete time
step 7 € [0,¢] can be obtained by solving as a minimization problem.
i.e., Determine (u,0,2,,) from

(u*,0%,0;) = Arg ming¥#(u,d,0,,), (46)

with S = {af,am > 0, for all x € B}. The triplet (u, 0,,0,) in Eq. (22)
is solved by taking the first variation of the total energy functional. For
any admissible test function (u,50,6,,) in an appropriate space of
distributions, the following weak form for the continuous multi-phase
field problem can be derived

/&9' : eg(éu)dx—/fv~6udx+/ t-suds = 0, (47)
B B 0B,

0
/Gw [f—f(sa,+ff~vaf-,4f-v5a‘]dx /( €950,) dx = 0, (48)
B r B

0 X
/Gcm 250, + 0 VO, - A, - VOO, dx—/(&9
B B

The functional space B is discretized into n, non-overlapping isopara-
metric elements such that B ~ [JI¢ B and partition of unity holds.
Recalling the standard Bubnov—Galerkin methods, the functional space
for the primary fields is defined as (u, 0,,0,) € (B,,B,,B,). Where

1 €950,,) dx

0. (49

ue®B, :={ue H'(B)|Va=iondB,}, (50)
0, €B, :={0, € H(B)o, €[0,11,3, >0, for all x € B}, (51)
v, €8, = (v, € HB), €[0,11,3, >0, for all x € B)}. (52)

Similarly, the test functions are defined in the functional spaces as
(0u,60,,60,) € (mu,mf,mm). In specific,

sue, :={6ue H'(B)|Véu=0on dB,}, (53)
80, €Uy 1= (80, € H'(B)|V6d, > 0, for all x € B}, (54)
80,, €, := {60, € H' (B)|Vés0,, > 0 for all x € B}. (55)

With this setting, the primary fields and their respective gradients can
be interpolated as

u® —ZN[ u;,

Vue —ZB, w, Vo4 =

ZN?D"N
ZB?D;,,

where N, and N? are the shape functions associated with the node i for
the fields u, and two phase fields (2,,9,,) respectively. Furthermore, B,
and B? are the derivatives of the shape functions at the node i for u, and
the two phase fields respectively. With the same interpolation functions
for the variational test functions counterparts, i.e., (5u, 50 £200,), the
discrete version of the elemental residual vectors takes the form

R¢ = / BT5%dx — / N9TE,dx — / (N9TtdS, (58)
B B oB(©)

Z N2OE . (56)

Z B¢ ., (57)
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Ge.
R;:/B( 21 -0 )N Hy + —L [(N”)Taf+f2(B°)TAfvaf]d

(59

Ge.
R® =/ “2(1 =0,)(N)TH,, + —=
B

m

2 (N, + 2B A4, V0,,] dx.

m

(60)

Notice that the system of equations is non-linear due to the presence
of fracture and the Puck failure criteria embedded in the history vari-
ables H s+ H,,. From Eg. (59), (60), it is easy to see that the residuals
corresponding to the fiber and the matrix failure are independent from
each other but are coupled with the equilibrium equation (strain energy
of the bulk) in Eq. (58). The corresponding Newton-Raphson iteration
for the globally assembled system at (n + 1) step can be expressed as

1

u u KW 0 o T [ Ry
L = o |-| 0o K/ 0 R, |, (61)
Dm n+1 am n 0 0 K n+1 R'" n
where the particular form of the elemental stiffness matrix reads
oR?¢ ~
KW= U BT C ;B dx, (62)
ou¢ B

6Rj, Ge.
K/ = s =/()< Hp+ —= )(N )IN? + G 2 (BT ABYdx,
f B f

(63)

mm . IR Gem T NO o\T ?
K™ 50 = o 2H,, + 7 N®)'N° + G 2, (B°)" A, B dx.
m € m
(64)

The above system of equations has been implemented in Abaqus-
UEL to take advantage of the in-built Newton-Raphson solver and the
automatic time-stepping scheme. A detailed algorithm implementation
is provided in Algorithm 1. The details regarding the codes, input files,
are provided in the Data Availability section.

6. Numerical examples

This section presents the performance of the proposed multi-phase
field formulation. In this section, numerical examples concerning (i)
Single-Edge Notched Tension (SENT), (ii) Open Hole Tension (OHT),
(iii) Compact Tension (CT), (iv) Centre Notched Tension (CNT), (v)
Three-Point Bending (TPB), (vi) Bi-Material Interface (BMI), and finally
(vii) Tension in unnotched specimens are presented. Furthermore, this
section is divided into two parts based on the nature of the examples
concerning the literature. The first part, which includes benchmarks
(i), (ii), (iii), and (iv), provides a comparison with the experimen-
tal results both qualitatively and quantitatively based on the crack
propagation path and force reactions, respectively. The second part,
with benchmarks (v), (vi), and (vii), are aimed to show the predictive
capability of the proposed model. Furthermore, tension in unnotched
specimens account for several possible defects, such as randomly dis-
tributed micro-cracks/impurities, to assess the crack propagation in
tension without stress concentrators. With these examples, we aim
to provide a list of cumulative benchmark examples for numerical
applications. In each example, the fiber orientation is varied between
0° and 90° to understand the effects of the ply orientation, while the
symmetric case such as —60°, —45°, and —30° are shown in Appendix
A.

The material properties used for each example in the local ply co-
ordinates are classified into four sections: (1) Elastic properties of the
composite ply as in Table 1, (2) strength properties of the composite ply
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Table 1
Elastic properties of the composites.
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E,, (MPa) E,, (MPa) E,, (MPa)

G, (MPa)

114800 11700 9600

0.0222 0.21 9600

Table 2
Strength properties of the elastic.

R]Tl (MPa) R;Z (MPa)

R]CI (MPa)

RZC2 (MPa) R,, (MPa)

2000 70

1650

240 105

Table 3
Puck failure properties.

P P P}

E 1F] (MPa) \/]FI a

2 2
0.3 0.25 0.225

0.225

114800 0.21 0

Table 4
Multi-phase field properties.

4 v [mm] Z,, [mm]

Gy |2

mm

G || 5 &

mm

0.1 0.3 106.3

0.7879 5 1

Algorithm 1 Algorithmic implementation Multi-phase field model for
FRCs with Puck failure Criteria.
Input: Given {u”,d%.9" }, compute {un+1 pUont]
1. Compute Rotation Tensor R according to Eq. (10).
2. Compute Structural Tensor A 7o Am according to Eq. (8).
3. Loop over the integration points based on the previous converged
configuration ¢,

3.1 Compute the shape functions N;, and N? and the
derivatives of the shape functions B!, and B?.

3.2 Interpolate the nodal phase-field values.

3.3 Compute global strains with ¢, = B - u". and local strains
using Eq. (11).

3.4 Construct the constitutive stiffness matrix in the local co-
ordinate C*, and compute the constitutive global stiffness matrix
using Eq. (12) .

3.5 Compute the stress in global coordinates using Eq. (13),
and in local ply coordinates using Eq. (14) .

3.6 Using 6%, compute the Puck exposure factors as in Section

: D;}:),nﬂ 1.

3.

3.7 Compute the energy from fiber using Eq. (15), and energy
from matrix using Eq. (17).

3.8 Compute the driving forces using Egs. (40) and (41).

3.9 Compute the degraded stiffness matrix and the stress
using Egs. (26) and (27) respectively.

3.10 Pull back the degraded stress into the global system
using Eq. (27).

3.11 Compute the residuals as in Egs. (58)-(60), and stiffness
matrix using Egs. (62)-(64).
4. Construct the element matrices and the internal force vectors of
the complete system.
5. Perform the final assembly.

as in Table 2, (3) Puck failure properties as in Table 3, and (4) Multi-
phase field properties as in Table 4. Specific material properties for
each example are provided in the sequel. Additionally, unless otherwise
noted, an approximate median value is provided together with the
measurement error of +0.2° in order to quantify the crack propagation
angles resulting from the numerical simulations.

6.1. Single Edged Notched Tension (SENT)

A single-edged notched tension specimen is considered in this sec-

tion to compare the crack propagation with the experimental investi-
gation. The experimental results are taken from [76] and reproduced
with permission from Elsevier. The example consists of the plate of
dimension 1 x 2 mm with an edge notch, with fibers oriented at an
angle 6 with respect to the global x-axis as shown in Fig. 3(a). The
thickness of the specimen is taken as 1 mm. The bottom of the plate is
fixed in y-direction, with one point fully restrained. The displacement
load is applied on the top surface as shown in Fig. 3(a). No restriction is
applied to the displacement in the horizontal direction at the top of the
specimen. The numerical simulations compare the crack propagation
path and the load reaction for different angled ply varying from 0° to
90°. The material properties are considered as in Tables 1-4 in line with
the experimental results in [76].

The numerical experiments regarding the SENT specimen are also
presented in [2-4,69,77] using the phase-field method. Fig. 4 presents
the comparison of the crack path observed in the experiments and
the present model for the fiber orientations § = 0° — 60°. The crack
runs parallel to the fibers, leading to a matrix-dominated cracking.
Furthermore, all the cracks grow in an unstable manner. The numerical
results presented are in good agreement with the experimental obser-
vations. The Force vs. displacement graph for the fiber orientation of
0 = 0°—60° is presented in Fig. 3 (b) along with the Puck initiation. The
comparison between the present model and the other available models
in the related literature is presented in Table 5. The crack propagation
angles presented in the Table 5 are measured from the center, where
the Phase-field value is dense in an undeformed configuration. The
Table 5 shows an excellent agreement with the experimental methods
compared to other models. Furthermore, Fig. C.26 presents the crack
propagation for fiber oriented with 6 = —30°, § = —45°, and 0 =
—60°. Force vs. displacement results for the negative fiber orientation
coincide with their positive counterpart. Hence, they are omitted for
the sake of brevity.

Prior studies using phase-field literature, as in [2,69], reported that
the fiber orientations 6 = 90° that involve fiber debonding are proven
challenging due to the sharp turn and likelihood of the crack propagat-
ing both upward and downwards in the fiber direction. Consequently,
the numerical crack propagation path in the related literature showed
a deviation of 3° — 8° from the experimentally observed results. See
Table 5. The results obtained from the proposed model for § = 90°
are presented in Fig. 5(b). It can be seen that the numerical model
accurately describes the experimental results even for the fiber oriented
at @ = 90°. The Force vs. displacement graph for the § = 90° is presented
in Fig. 5(a) along with the force at which Puck failure initiates. In all the
SENT examples, it is observed that a long nucleation phase follows Puck
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—a—0=0"
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o ——0 =45°
e —ewe ) = 600
e Q Puck Initiation
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%1073

L 8
25 3
displacement [mm]

Fig. 3. (a) Geometric description of the single-edged notched tension specimen (all the units are in mm), (b) force vs. displacement plots along with Puck initiation for the fiber

orientations of 0°, 30°, 45°, and 60°.

a)

b)

Fig. 4. Comparison between experimental results from [76] and the present model in
and (d) 6 = 60°. Results from [76] are reproduced with permission from Elsevier.

failure initiation before the crack propagation and subsequent drop in
the reaction force.

6.2. Open-hole tension

The second example aims to show the responses to an open-hole ten-
sion. The experimental results for the open hole tension are taken from
[78]. The experimental results are presented for the fiber orientations
of 6 = 0°, & = 45°, and for & = 90° whose dimensions differ across

C)

d)

terms of crack propagation for the fiber orientations of (a) § = 0°, (b) 0 = 30°, (c) 0 = 45°,

each specimen subjected to fiber orientation. Consequently, this section
is divided into two parts: (a) Comparison with the experiment based
on [78] and (b) generalized numerical results. In order to compare
the experimental investigation in terms of crack propagation path and
the load response, section (a) is provided. After establishing the com-
parison with experimental results, a generalized results are presented
with the same geometry across all the fiber orientations to effectively
understand the effect of the fiber orientation.
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Fig. 5. (a) Force vs. displacement plot along with the Puck failure initiation for fiber orientation of 90°. (b) Comparison of crack propagation between experimental results
from [76] and the present model. Results from [76] are reproduced with permission from Elsevier.

Table 5

Comparison between the present and the other available methods.
Fiber orientation 0° 30° 45° 60° 90°
Experimental results [76] 0 30 45 60 90
Cahill et al. [76] (XFEM) 0 29 43 57 83
Zhang et al. [2] 0 29 43.6 57.5 87
Ishank et al. [69] 0 28.2 42,5 56 85.4
Pranavi et al. [4] - 29 42 55 -
Mrunmayee et al. [3] - 27.3 42.7 57 -
Hrishikesh et al [77] 0 27.5 42 57 -
Present model 0 30.35 46.18 60.40 90

a)1200 b)
o 1
1000 - —a—Experiment 6 = 45° >
—a— Numerical 6 = 45°
- -+ - Experiment 6 = 90° —
800 [ --+-Numerical 6 = 90° H> 0
. Puck Initiation ———
Z
& 600 r
= 3.81cm (1.5")
; > -
R=0.3175cm (0.125")
400 ——
N _’
200 |
0 . I . . . )
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 L -
displacement [mm] =

Fig. 6. (a) Force vs. displacement curve comparison for the open hole tension between the experiment [78] and the present model. (b) Geometrical description of the open hole
tension specimen for comparison with the experiment.

6.2.1. Comparison with the experiments R, = 90 MPa. Furthermore, the fracture properties are considered as
¢y =10 mm, and #,, = 6 mm, G¢ , = 81.5%, and G¢, = 0.67{1[11\1—m
in line with the experimental observationsnﬂ78]. Fig. 6(a) compares
force vs. displacement plots between the experimental results and the
proposed model along with the Puck Initiation, while Fig. 7 compares
the crack propagation path concerning the experimental observation.
For the ply with the fiber orientation of § = 45°, the numerical results
show a crack propagation angle of § = 45.64° + 0.25° in line with
the experimental results. For the 6 = 90°, the experimental results
are partially provided in [78] without the picture of the experimental
observation; hence, only results stemming from the numerical results

The open hole tension has been addressed numerically using phase
field method in [2,3,35,79-81]. Fig. 6(b) presents the geometrical
description of the specimen. Furthermore, the width of the specimen
is always kept constant at 3.81 cm (1.5¢ inch). The length L is taken as
L = 5.08cm (2e inch) for fiber orientation of § = 90°, L = 7.62cm (3¢
inch) for @ = 45°, and the L = 10.16cm (4¢ inch) for 8 = 0° in line with
the experiment [78]. The numerical simulations considers the elastic
properties of the specimen to be E;; = 136000 MPa, E,, = 4670 MPa,
E;, = Gy, = 3200 MPa, v, = 0.011, and v,; = 0.33. Meanwhile, the
strength properties are taken as R} = 2142 MPa, R}, = 42.5 MPa, and
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oEmmT: (.,

Fig. 7. Comparison with the experiments for the open hole tension. Numerical results for (a) 6 = 0° (c) 6 = 45°, and (e) 6 = 90°. The experimental results for the (b) # = 0°, and
(d) 6 =45°. The experimental results are produced from [78] with permission from Elsevier.

y —a—0 =30
—e 0=145"
< —— -4-0=060"
—een) = 90°
- 9 f— QO Puck Initiation
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- — o
R=3.2mm T @
JPa— — ¢ et I *
e H
-— | E— - :‘
4
-~ f— i
‘ i
130mm 0 : ‘ ‘ ‘ ‘
) 3 > b) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
a displacement [mm)]

Fig. 8. Geometrical description of the open hole tension specimen. (b) Force vs. disp plots along with the Puck failure initiation for the fibers oriented at an angle of 6 = 30°,

0 =45° 6 =60°, and 6 = 90°.

Fig. 9. Crack propagation in open hole tension for the fiber angles of (a) 6 =30°, (b) 6 = 60°, (¢) 6 =45°, (d) 6 =90°.

are presented. A similar pattern of crack propagation can also be seen
in [79]. For the case with fibers orientated horizontally, i.e., 8 = 0°, the
crack propagation has an equal probability of propagating from both
top and bottom part of the hole. Consequently, the numerical results
show symmetrical crack propagation from both the top and bottom
parts of the hole. In conclusion, the force vs. displacement presented in
Fig. 6(b) and crack propagation path presented in Fig. 7 show excellent
co-relation both qualitatively and quantitatively with the experimental
observations.

6.2.2. Generalized open hole tension
In order to standardize the results from open-hole tension, a general
geometry is used. The Fig. 8(a) shows the geometry under consid-

10

eration taken from [82]. A symmetric boundary condition consisting
of a prescribed displacement along the x-coordinate on the left and
right edges of the plate is applied. Within this context, eight different
fiber directions are considered, i.e. fibers with orientation of 0°, 30°,
45°, 60°, 90°, —30°, —45°, and —60°. The domain is discretized using
12712 4-node quadrilateral plane stress elements. Each of the numerical
simulations considers the characteristic length scale of fiber and matrix
as £, = 8 mm, and 7, = 4 mm respectively, while the rest of the
properties are kept as presented in Tables 1-3.

The crack propagation results stemming from the OHT for the fiber
orientation of 30°, 45°, 60°, and 90° are shown in Fig. 9. Each of the
figures also presents the principle material direction in a white dotted
line along the crack propagation path. The actual crack propagation
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Fig. 10. Crack propagation in the open hole tension for the fiber orientation of 8 = 0°.

angles for fiber orientations of 30°, 45°, 60° are measured to be 31.2°,
46.18°, 60.56° with an measuring error of +0.2°. Besides the case where
the fibers coincide with the horizontal direction, all cases exhibit purely
matrix-dominated cracking behavior, where only the matrix is damaged
parallel to the fiber direction with no activation of fiber failure. The
crack propagation in the symmetric case of —30°, —45°, and —60° are
presented in Appendix Fig. D.27.

For the fiber orientation of 0°-case, the matrix-dominated failure
occurs along the fiber direction, where the matrix crack stemming from
the top and the bottom of the open hole extends as in Fig. 10(a).
Furthermore, the matrix crack is accompanied by a fiber failure that
runs across the specimens vertically, starting from the top and bottom
of the hole, as in Fig. 10(c). Consequently, the matrix gets damaged in
the areas where fiber failure is present, as in Fig. 10(b).

Due to the interaction between the fiber and inter-fiber failure, the
behavior of the fibers with the orientation of 0° differs from the other
cases. All cases except the 0°-exhibit unstable crack growth, indicated
by the sharp drop in reaction force once the crack has formed. This
can be observed from Fig. 8(b). Furthermore, the force vs. displace-
ment curves exhibit a linear behavior until the Puck matrix failure
initiation (independent of the PUCK mode) criteria are met, followed
by an unstable crack growth and complete failure of the structure.
Additionally, the displacement at failure of each structure decreases
with the decreasing fiber orientation angle while the structure’s load-
bearing capacity increases. This could be attributed to the involvement
of fiber at lower ply angles. It is also interesting to note that, as the fiber
orientation changes from 90° to 30°, the delay between Puck failure
initiation and unstable crack propagation increases. Precisely, for the
fiber orientation of 90°, the puck failure initiation is immediately
followed by unstable crack propagation, while for the fiber orientation
of 30°, the Puck failure initiation is followed by a small nucleation
phase before unstable crack propagation as shown in Fig. 8(b).

6.3. Compact tension

This example compares the experimental and numerical investiga-
tions regarding the crack propagation path in compact tension speci-
mens subjected to tensile loading conditions. The experimental results
presented in this section are mainly from the Institute of Polymer
Product Engineering, Johannes Kepler University, Linz, Austria. The
details regarding the experimental setup are omitted in this article. The
geometry under consideration as in the experimental setup is presented
in Fig. 11(a), with a thickness of 5.5 mm. A symmetric loading is
applied to the top and bottom surface via the holes using the clamps
as in Fig. 12(b) (for example). The experiment consists of carbon fiber
reinforced unidirectional plies, each of thickness 0.125 mm, stacked on
top of each other. Three different orientations of 0°, 45° (considered as
—45° as per the previous numerical convention), and 90°. The crack

11

propagation path in the experiments for the fiber orientation of 0°, 45°
(—45°), and 90° are presented in Fig. 12(b), (d) and (f) respectively. It is
also evident from Fig. 12 that the crack propagation follows the path of
the fiber orientation. Consequently, this led to an inter-fiber-dominated
failure. Similar experimental results regarding the compact tension for
the fiber orientations of 0° and 90° can be found in [83].

The numerical results concerning the compact tension utilize the
material properties as in Tables 1-4. Furthermore, the characteristic
length scale associated with the matrix is considered as #,, = 2.5 mm,
while the length scale associated with fiber as #, = 5 mm. The
numerical model is meshed with 36947 elements to map the structure
accurately. The Fig. 11(a), (c) and (e) presents the comparison of the
crack path for the fiber orientations of 0°, 45° (—45°), and 90° respec-
tively. The crack propagation path obtained in the numerical results is
measured as 0°, 45.40° + 0.2°, and 90° respectively. The results show
the ability of the model to accurately describe the crack propagation
path in comparison with the experiments. Furthermore, for the case
with fiber orientations of 90°, the experimental results shows crack
propagation upwards as in Fig. 12 (f), while the numerical results show
the crack propagation in both upward and downward directions. This
could be due to two main factors: (a) the asymmetrical notch due to
machining arising from the experimental setup, and (b) the probability
of the crack taking the path. The experimental results of the multiple
samples show that the crack propagation is sometimes upward and
sometimes downward. Consequently, due to geometrical symmetry, the
numerical model predicts both the possibility of crack propagation in
samples with fiber orientation of 90°. Furthermore, Fig. 13 presents the
crack propagation for the fiber orientations with 30°, 45° and 60°. In all
the cases, inter-fiber-dominated failure is observed. Fig. 11(b) presents
the force vs. displacement curves for fiber orientations of 0°- 90° along
with the Puck Initiation. It can be easily observed that as the fiber
orientation increases, the structure’s load-bearing capacity increases.
For the fiber orientations close to 90°, the strength of the structure
increases, leading to more fracture resistance. Note that the force
vs. displacement curves are not compared against the experimental
work, and this will be presented in our future article along with the
detailed experimental results. Additionally, the crack propagation in
the symmetric cases is presented in Appendix Fig. E.28.

6.4. Centre Notched Tension (CNT)

This example shows the model’s ability to predict crack prop-
agation and compares them with the experimental results for the
center-notched tension plate. The experimental results concerning the
center-notch tension specimens are presented in [76]. The geometry,
excluding the clamps for the mounting, consists of the Length of L =
48 mm and the width of W = 25 mm. The notch is placed at the center
of the plate, and its width is considered to be 9.6 mm. Numerically, only
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Fig. 11. (a) Geometrical description of the compact tension specimen under consideration, (b) force vs. displacement curve along with the Puck failure initiation for the fiber
orientations of 0°, 30°, 45°, 60°, and 90°.

a)

Fig. 12. Comparison between the experimental observation and present model of the crack propagation path in compact tension for fiber orientation of (a), (b) 0°, (c), (d) 45°,
and (e), (f) 90°. Credits: Prof. Zoltdn Major, Johannes Kepler University, Linz, Austria.

Fig. 13. Crack propagation in compact tension specimen for the fiber orientation of (a) 30°, (b) 45°, and (c) 60°.

the geometry without clamps is modeled with 15524 elements. The properties are taken as in Tables 1-4 in line with the experimental
bottom part of the plate is completely fixed, where the displacement setup [76]. The characteristic length scales for the matrix and the fibers
boundary conditions are applied to the top boundary. The material are considered as ¢,, = 10 mm and ¢, = 4 mm. respectively. Fig.

12
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Fig. 14. Comparison between the experimental observations from [76] and the present model for the fiber orientations of (a) 0°, (b) 30°, (c) 45°, (d) 60°, and (e) 90°. The

experimental results are reproduced from [76] with permission from Elsevier.
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Fig. 15. (a) Geometrical description of the three point bending specimen. (b) Force vs. displacement curves along with the Puck failure initiation in TBP specimen for the fiber

orientation of 0°, 30°, 45°, 60°, and 90°.

a)

Fig. 16. Crack propagation in three-point bending specimen with fiber orientation of (a) 0°, (b) 30°, (c) 45°, (d) 60°, and (e) 90°.

14 presents the comparison of the crack path with the experimental
observations for the plies with fiber orientations of 0°, 30°, 45°, 60°,
and 90° in the same order as mentioned here. Furthermore, the actual
angles of the crack prorogation from the numerical results are estimated
as 0°, 29.85° + 0.2°, 44.52° + 0.2°, 59.85° + 0.2°, and 90° respectively.
All the failure mechanisms are flagged as matrix-dominated failures.
Consequently, the length scale corresponding to the fiber does not
play any role. For the fiber with the orientations of 90°, experimental
investigation as in Fig. 14(e) suggests that the likelihood of crack
propagating from both sides is equal. Furthermore, the crack is likely
to travel symmetrically up and down. Within this context, only one
crack travels and reaches the top and bottom clamping surface due to
crack shielding, while the other crack only propagates either top or
bottom. The numerical observations presented in Fig. 14(e) also match
the experimental observation [76]. Force vs. displacement curves are
not given for the CNT specimens for brevity reasons. However, it has
been observed that the force vs. displacement curve follows a similar
pattern to that of SENT specimens.
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6.5. Three-point bending

This section shows the crack propagation in a three-point bending
specimen. The numerical simulations are done with the different fiber
orientations as in Sections 6.1 and 6.2. All the numerical specimens use
the same geometry and discretization as in the previous sections. The
geometry consists of a unidirectional ply of length L = 145 mm with the
span of .§ = 105 mm. A notch is placed at the center of the span with a
one-third height of the specimen. Furthermore, the specimen has two
supports, where the left support is a fixed and the right support is a
floating bearing. The load is applied as a constant displacement at the
top of the specimen as shown in Fig. 15(a). The domain is discretized
with 20736 elements. The material properties are taken as in Tables 1-4
with £,, =4 mm and £, = 8 mm. A similar analysis for the three-point
bending using phase field is shown in [84], where the authors consider
stiff support for the effective distribution of the force.

In our numerical simulation, we observed that the supports fail,
and no crack propagation is found for the case with fiber orientations
of 0°. Fig. 16(a) shows the damage at the supports. Furthermore, for



P.K. Asur Vijaya Kumar et al

NREERERARRRENEEN
— | S
A A '

Fig. 17. Geometrical description of the bi-material interface specimen.

the fiber orientation of 30°, 45° crack propagation is shown in Fig.
16(b), (c) respectively are obtained. After these points, the crack is
developed at load application points, leading to abrupt changes in
the force vs. displacement plot. Consequently, only the results until
this point are considered for the simulation. This could be due to the
low matrix strength compared to the fibers. As a workaround, stiff
boundaries can be considered as in [84]. Furthermore, Fig. 16(d) and
(e) present the three-point bending for the fiber orientations of 60°,
and 90°, respectively. No failed boundary issues are found in these
cases. Fig. 15(b) presents the force vs. displacement curve for the three-
point bending specimen for various fiber orientations along with their
Puck initiation. As the angle of the fiber increases, the structure’s load-
bearing capacity increases, contrary to the other sections. This is due
to the definition of the fiber orientation angle and the load application
direction of the fiber orientation in the geometric description.

Furthermore, in order to simulate the crack propagation in the
ply with fiber orientation of 0°, stiff sections are introduced at the
boundaries as in Appendix Fig. G.30(a). The crack propagation due to
the stiff boundaries is presented in Appendix Fig. G.30(d) with fiber
orientation of 0°. The numerical simulations show that the crack forms
horizontally as the load increases, leading to stable crack propagation
until the crack propagates the whole structure span. Furthermore, stiff
boundaries induce longer cracks for the fiber orientations of 30°, 45° as
shown in Fig. G.30.

6.6. Bimaterial interface

This section presents the model’s predictive capability to handle
interfaces between two different fiber orientations. For this purpose,
a unit square with an edge notch is divided into two segments. A
depiction of the problem, including its boundary condition, is shown
in Fig. 17. The left segment is always set up to have a fiber orientation
of 0°, while the right side has different fiber directions for each case,
as in [4]. These fiber directions are 30°, 45°, 60°, and 90°. The same
discretization and boundary conditions are used for each case, with the
domain being discretized by 20306 elements. The material properties
are different to the ones in Tables 1-2 with the elastic properties being
E,, = 171000 MPa, E,, = 9080 MPa, G, = 5390 MPa and v;, = 0.0169.
The strength properties are set to R, = 2323.5 MPa, R], = 62.3 MPa,
RS, =1200.1 MPa, RS, = 199.8 MPa and R, = 92.3 MPa. The properties
relating to Puck failure are the same as in Table 3. Lastly, the multi-
phase field properties are considered to be #, = 0.1 mm, £,, = 0.05 mm,
Ger=8L5 % and G¢,, = 1.2774 % while the rest of the properties
remain unchanged. A similar example for the bi-material interface and
multiple interface problems has been presented in [4], where a traction
separation law is used at the interface to differentiate the layers. This
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article shows that the presented model can be used directly without
any cohesive zone model. Within the context of [4], the work in this
article presents a perfect interface. In contrast, the soft interfaces need
an additional layer between the left and right domains with reduced
stiffness (and fracture toughness).

The matrix damage plots for all cases except 90° are shown in Fig.
18. All cases exhibit a matrix crack along the different fiber orientation,
showing that the present implementation can handle material inter-
faces. Furthermore, when the crack hits the interface, a small kinking
of the crack in the left interface can be seen before the crack propagates
on the right domain. This could be due to the bonded interface leading
to a change of material properties at the interface. Similar kinking
can also be observed in [4]. For the fiber orientations corresponding
to 90°, the interaction between the matrix damage and fiber damage
can be clearly seen in Fig. 19. Within this context, first, the matrix
fails in the left domain and propagates to the interface. As soon as
the crack hits the interface, the crack starts to propagate upwards,
following the fiber direction of the right domain as presented in Fig.
19(a) leading to a classic example of debonding along the fiber-matrix
interface. Furthermore, fiber damage is initiated at this point but not
fully damaged; consequently, fibers in tension can be seen in Fig. 19(b).
As the crack progresses, the crack arrests while increasing the fiber
tension as shown in Fig. 19(c) and (d).

Fig. 20 shows the force-displacement curves for fiber orientations
of 30°, 45°, and 60°. All cases exhibit linear elastic behavior at first,
followed by a sudden drop in the reactions as soon as the crack hits
the interface. For each case, a color-coded map of the crack hitting the
interface and the corresponding load drop in the force vs. displacement
is presented in Fig. 20. The cases with fiber orientations of 45° and 60°
exhibit higher stiffness given the loading direction, leading to stable
crack propagation in the beginning and becoming unstable when the
crack is close to the boundary. Furthermore, the fibers with orientations
of +30° show completely unstable crack propagation, leading to a
further drop in the force as shown in Fig. 20.

6.7. Tension in unnotched specimens

Carbon Fiber-Reinforced Polymers (CFRPs) are prone to defects. The
defined variability from the nominal flat laminate is often classified as
a defect. See [85] for more details. The fiber defects can occur due to
misalignments, in-plane and out-of-plane fiber undulations, and folds of
the plies in fiber or transverse to fiber directions. Furthermore, the fiber
defects depend highly on the fiber architecture [85]. At the same time,
matrix defects stem from porosity or starved areas, dry spots, and fiber
washouts [86]. The studies regarding the defects suggest a reduction of
10% in the strength due to the fold defects [87-89]. The effects of the
voids, fiber washouts, and the locally compacted regions can be found
in [90,91] and the reference therein.

Consequently, this example aims to show the intricate nature of
the crack propagation in the specimens without any stress concentra-
tions. Under these conditions, the crack first initiates microscopically,
followed by a coalescence. These cracks nucleate, combine to form a
larger crack followed by propagation. Under such circumstances, the
crack path can only be entirely determined if the statistical data regard-
ing the internal flaws of the structure is available. In order to solve such
a system numerically, a few randomly distributed cracks are installed
in the structure by reducing the fracture energy (or strength) at those
points by 5%-10% herein refereed to as defect points. Furthermore, due
to the reduced fracture energy (or strength), micro-cracks are formed
at these points, followed by a coalescence and crack propagation.

Fig. 21(a) presents the geometrical description of the specimen. A
pristine plate with fibers oriented in 0° and 90° is used for this example.
For the ply with fiber orientation of 30°, 45°, and 60° the geometry in
Fig. 21(a) would always have a crack starting from the boundary. To
circumvent the boundary effects in the angles plies, another geometry
with a length of L =5 mm is taken. In order to simulate the actual test
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Fig. 18. Crack propagation in the bi-material interface for the fiber orientation of second layer of (a) 30°, (b) 45°, and (c) 90°.

Fig. 19. Crack propagation of the bi-material interface with fiber orientation of 90°, along with the interplay between the fiber and matrix failure.
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Fig. 21. (a) Geometric description of the tension in unnotched specimen used for the fiber orientation of 0°, and 90°, and (b) presents the geometrical description for fiber
orientations of 30°, 45°, and 60°. (c) Representative force vs. displacement curves along with the Puck failure initiation.
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Fig. 22. (a) Matrix failure in different regions due to different configurations for the fiber orientation of 0°, and (b) presents the fiber failure in different regions due to different

configurations for the fiber orientation of 90°.

case, the top and bottom parts of the geometry contain a material with
very high stiffness and fracture toughness, as shown in Fig. 21(b). It is
further noted that, stiff clamp has no effects on the crack propagation
if the defect points are far away from the boundaries. Furthermore, the
cracks originating from the boundary are discarded in this section.

Fifteen different random distributions of micro-cracks are planted
in each model for each fiber orientation. Each distribution consists of
the six micro-defects in the form of reduced fracture energy (5%-10%)
assigned at random element. It is further noticed that, reducing the
strength or reducing fracture energy lead to same results both quali-
tatively and quantitatively. Consequence, fracture energy is chosen in
this article. Furthermore, only seven numerical simulations are shown
here to maintain the conciseness of the article. The nucleation and the
coalesce for each of the samples are omitted for the sake of brevity. The
material properties considered are presented in Tables 1-4 with length
scales taken as £, = 0.05 mm and #,, = 0.25 mm.

Fig. 22(a) presents the matrix failure for the fibers oriented in 0°.
Seven configurations show different possibilities for damage in line
with the experimental observations. It is interesting to see that, in the
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last three configurations, two matrix dominated cracks are seen. In all
these configurations, only one crack is formed initially, followed a an
unstable crack propagation of the second one. This could either indicate
volatility of the matrix dominated damage or numerical instability
stemming from the unstable crack propagation. Furthermore, Fig. 22(b)
presents the fiber failure for the fiber oriented in 90°. Consequently, the
load-carrying capacity for the structures with fiber orientations of 90°
is higher. Additionally, it is noticed that in both cases, the microcracks
are formed first, followed by a coalesce between these cracks, followed
by unstable crack propagation.

Fig. 23(a), (b) and (c) presents the different crack paths for the
fibers with the orientation of 30°, 45°, and 60° respectively. In all these
cases, only matrix-dominated failure is observed with no fiber damage,
while the crack path is parallel to the fibers. Fig. 21(b) presents the
force vs. displacement curve along with the Puck initiation. The early
onset of the Puck initiation is approximately calculated as 10 — 12%
less than the total load-carrying capacity due to the reduced fracture
energy owing to artificial defects. Furthermore, due to the unstable
crack propagation, in all the fifteen randomly distributed samples for
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Fig. 23. Matrix failure in different regions due to the different configurations for the fiber orientation of (a) 30°, (b) 45°, and (c) 60°.

each fiber orientation, the difference in the force vs. displacement
curves is less than 2%. Consequently, only one representative force vs.
displacement curve for each fiber orientation is presented here for the
sake of brevity.

7. Convergence studies

All simulations presented in this work were performed using six
cores and employed the automatic time-stepping feature available in
the Abaqus/Standard solver. The analyses were carried out with NL-
GEOM=0N, using a Newton-Raphson solver with the stabilize op-
tion enabled. Time step cutbacks were permitted after 300 iterations,
with a minimum time stepping increment of 1 x 10~ and a maximum
of 1x 1073
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During crack propagation phases, occasional cutbacks in the time
increment were observed. Table 6 presents the total computational
time for each simulation associated with experimental comparison
benchmarks, offering a practical estimate of solver performance.

While the current implicit implementation exhibits robust conver-
gence, it is worth noting that explicit formulations as showed in [92]
demonstrated improved computational efficiency and scalability for
large-scale fracture problems. Exploring such explicit approaches with
the present model is a valuable direction for future development.

8. Conclusion

A multi-phase field damage model capable of handling damage in
both fiber and inter-fiber failure separately is proposed in this article.
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Table 6
Summary of the total time for the simulations.
Geometry Orientation Total DOF Total time
) (min)
Plate with Notch 0 193844 63.31
45 75.43
90 27.16
Compact Tension 0 149856 709.7
45 413.71
90 214.892
Open Hole Tension 0 51980 437.05
45 43.61
90 28.73
Centered Notch 0 63268 53.81
Tension 45 40.73
90 43.28
The article utilizes the Puck failure theory for the crack initiation based Acknowledgment

on the local stress state, whereas the phase-field method propagates the
crack. The directional nature of the fracture energy stemming from the
various fiber orientations is considered for effective crack propagation.
The first four examples show the model’s ability to replicate qualitative
and quantitative experimental results. In contrast, the last three exam-
ples show the model’s ability to predict crack propagation in complex
experimental settings.

An overall analysis of the Puck initiation suggests that each example
can be fairly categorized into two parts. In examples such as OHT,
TPB, and unnotched tension specimens, the Puck failure criteria are im-
mediately followed by crack nucleation and propagation, consequently
leading to a drop in reactions as soon as the Puck failure criteria are
fulfilled. On the other hand, for the other examples, such as SENT, CNT,
Bi-material interface, and CT, the Puck initiation is followed by a fairly
long nucleation with subsequent crack propagation. Consequently, the
quantitative analysis for the first case can be done with any driving
force. In contrast, for the second case, the parameters ¢, and ¢, can
control the driving force, providing an extensive range of flexibility for
both qualitative and quantitative analysis of the FRCs.

Furthermore, the interplay between the fiber and the matrix failure
is shown in two different contexts: (a) pure fiber failure (Unnotched
tension), and (b) the effects of the fiber failure on the matrix (TBP, CT)
are presented to show the ability of the model to understand fracture
in FRCs effectively.

Due to the two-dimensional nature of the model, the model cannot
capture out-of-plane cracks and delamination between the plies. Fur-
thermore, when the Puck criteria are followed by a long nucleation
phase, the parameters {, ¢, need to be calibrated to capture the
nucleation.

Finally, this work brings many benchmark examples together in
the FRCs. Furthermore, the codes written in ABAQUS UEL and the
input files are presented in the data availability section to alleviate the
reproducibility crisis and bring transparency to the work.

CRediT authorship contribution statement

Pavan Kumar Asur Vijaya Kumar: Writing — original draft, Formal
analysis, Conceptualization. Rafael Fleischhacker: Visualization, Vali-
dation, Software. Aamir Dean: Software, Data curation, Conceptualiza-
tion. Raimund Rolfes: Writing — review & editing, Supervision. Heinz
E. Pettermann: Writing — review & editing, Supervision, Resources.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

18

The authors sincerely acknowledge the technical discussion and
pictures of Compact tension from experimental work provided by Prof.
Zoltdn Major and Andreas Kapshammer from the Institute of Polymer
Product Engineering, Johannes Kepler University, Linz, Austria.

The authors acknowledge TU Wien Bibliothek for financial support
through its Open Access Funding Programme.

Appendix A. Effect of matrix structural tensor

This section presents the effects of each structural tensor in the
presented model. Consequently, four different models are considered
as follows

1. Without both structural tensors, similar to [5]. i.e A, = A, =1

2. We consider only the structural tensor corresponding to the fiber
(Aj), in the absence of the matrix structural tensor. i.e A, =L

3. Only structural tensor corresponding to the matrix (A,,) in the
absence of the fiber structural tensor as in [2]. i.e A r=L

4. Present model with both structural tensors (A, A,,) are consid-
ered.

Fig. A.24 presents the comparison of the different models using the
plate with the notch example as considered in Section 6.1 with the same
boundary conditions and material properties with the fiber orientation
of 6 = 45°. It is apparent from Fig. A.24 that Case-1 and Case-2 without
the structural tensor corresponding to the matrix (A,,) cannot predict
crack propagation path. Case-3, which corresponds to only the matrix
structural tensor and the present model (Case-4), can predict the crack
propagation well.

In conclusion, only the structural tensor corresponding to the matrix
(A,,) is sufficient to predict crack propagation correctly when the
inter-fiber/matrix dominates the damage.

Appendix B. Effect of fiber structural tensor

This section presents the effects of the structural tensor correspond-
ing to the fiber (A,). Puck’s failure criteria suggest that, in most
cases, the fracture plane in the fiber is approximately perpendicular
to the fiber direction. Consequently, the fiber failure is restricted to
the direction perpendicular to the fiber [50]. The example considers
Tension in unnotched specimens as in Section 6.7 corresponding to the
case when the fibers are oriented parallel to the load application (with
0 = 90°) leading to fiber failure. With the same boundary conditions
and material properties, Fig. B.25 compares the crack initiation, coa-
lescence, and propagation of the fiber failure in the plate without a
notch. It can be seen that, in the absence of the structural tensor, the
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Fig. A.24. Comparison of the plate with notch sample with and without structural tensors.
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Fig. B.25. Comparison of fiber failure with crack initiation, coalescence, and propagation for a plate without a notch with and without a fiber structural tensor A .
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crack smears more. Furthermore, the crack coalescence leads to a thick Appendix D. Open hole tension
band. Later, the coalescence leads to the localization of the stresses and
crack propagation. The crack propagation is sharper in the presence of See Fig. D.27.

the structural tensor corresponding to the fiber (A f). It is also observed
that in the absence of A, the load-displacement response is higher. It
is important to note that Fig. B.25 only presents the fiber failure, while
the matrix failure around the fibers is omitted for brevity.

Appendix E. Compact tension

. . . See Fig. E.28.
Furthermore, it is also observed that in the laminates where the

interaction between the fiber and inter-fiber failure is prominent, the
model with structural tensor A, performs better in capturing the
interactions.

Appendix F. Three point bending
See Fig. F.29.
Appendix C. Single Edged Notched Tension Appendix G. Bi-material interface

See Fig. C.26. See Figs. G.30 and G.31.
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a)

Fig. C.26. Crack propagation for the fiber orientation of (a) 8 = —30°, (b) 8 = —45°, (¢) 6 = —60°.

Fig. D.27. Crack propagation in open hole tension for the fiber angles of (a) 8 = —30°, (b) 8 = —45°, (c) 6 = —60°.

Fig. E.28. Crack propagation in compact tension specimen for the fiber orientation of (a) —30°, (b) —45°, and (c) —60°.
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Fig. F.29. Crack propagation in three-point bending specimen with fiber orientation of (a) —30°, (b) —45°, and (c) —60°.

d)

Fig. G.31. Crack propagation in the bi-material interface for the fiber orientation of second layer of (a) —30°, (b) —45°, and (c) —60°.

Data availability

The codes used for this paper, including the input files and the
FORTRAN codes can be downloaded from the following GitHub link:
https://github.com/Pavan-asur/Multi-phase-field-Puck-FRC.
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