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Abstract

From well-known, classical workflows such as Petri nets to one of the recent develop-
ments of modelling frameworks such as the Business Process Modelling Notation, the
development of system representations has long been established and improved through
the years. The common goal of such frameworks is to produce traceable, effective, and
well-understood functional and nonfunctional specifications of business and scientific
systems. This goal addresses issues from workflow design, verification, control and
monitoring, and continual improvement as systems evolve. Through the years, these
frameworks had been constructed, enabled, deployed and used under a singular or dual
perspective of modelling and verification relating to workflow dimensions, i.e. process,
resource, case. In literature, there is a huge gap for the support and enactment of all
three dimensions into one model for system representation and verification. That is, these
undertakings are mainly either process- or resource-centric. In terms of modelling with
all three dimensions in place, some support is observed in the Robustness Diagram(RD)
of the ICONIX framework. Because of its notational backbone, it was posed to serve as a
bridge for requirements traceability when using other workflows that focus solely on either
structure or behavior of system representations. It has potential in providing support
from requirements capture to testing to redesign of models. However, this diagram
has been underdeveloped with respect to these potentials in modelling and verification
especially for complex systems.

In this research, the Robustness Diagram with Loop and Time Controls(RDLT)
was introduced to support modelling and verification of complex systems. It is an
extension based from RDs. Building on RDs, we propose formalizations of RDLTs with
consideration for the use and representation of all three workflow dimensions in one
model. Additionally, by accounting the requirements of volatility, persistence, multi-state
configuration, and hierarchical structures and relationships present in complex systems,
the concept of a reset-bound subsystem(RBS) in RDLTs was also formulated. RBS enacts
capabilities of cancellation regions in well-known workflows in literature. However, RBS
enforces topological and behavioral requirements to perform resets in values in models.
Additionally, this research addressed the problems of explicitness and effectiveness of
representing data, control flow patterns(e.g. sequential, parallel, splits, n-out-of-k joins,
iteration, cancellation regions, etc.), and multi-level and multi-participant interactions.
These problems were also dealt under the specifications of all three workflow dimensions,
persistent and volatile structures and behavior in models.



In particular, this research introduced attribute-driven typing of vertices, arcs, and
substructures to enforce structural and functional specifications in RDLTs. The values of
the attributes and the resulting types of RDLT components directly influence their usage
and groupings for the execution of activities in models. Furthermore, they also influence
mechanisms for encapsulation of data and control flows in RDLTs. We proposed the
concept of Points-of-Interests(POIs) in RDLTSs that also rely on these information. POIs
are then used to establish special regions in the model. We formally defined these regions
and characterize their neighborhood structures. We established encapsulation rules for
RBS and add its information to the characterized neighborhoods to determine metrics
for the analysis of RDLTs. In this research, the metrics that were developed mainly
focus on topological- and type-bound reachability, delays that cause bottlenecks, task
synchronicity, and activity completion. They are computed with consideration of the
presence of maximal substructures in RDLTs. Each substructure supports the execution
of an activity profile for the completion of a case in a multi-activity RDLTs.

Among the model properties in literature for workflows, this research adopted and
introduced soundness and free-choice for RDLTs. (We focus on these two properties
because many other properties can be implied from them.) Noting the types of components
and substructures and the presence of RBS in them, a behavioral profile of RDLTS that
satisfy the first property is initially provided. This profile is produced by the use of
the results from our proposed algorithm for activity extraction. However, this research
devised two independent approaches to prove this property through structural views
that account the types and the presence of RBS in RDLTs. The first approach was
constraint-driven. RLDT attributes that pertain to the enforcement of splits and joins of
type-alike components were used. We developed the concepts of an extended RDLT and
a vertex-simplified RDLT to support this approach. Meanwhile, the second approach was
component use-driven. Attributes that pertain to repeatability of task execution were
checked in type-alike/mixed-type components and hierarchical structures and interactions
in RDLTs. This approach used our proposed encapsulation rules for RBS. Collectively,
both approaches proved soundness based on statically-verifiable information in RDLTs.

Meanwhile, the free-choice property for RDLTs was proposed and built from using the
POI-driven metrics for reachability, boundedness, and synchronicity. In literature, this
property focused on place-task relationships in workflows. In this research, it is extended
by including combinations of topology-, constraint-, and type-driven free-choiceness in
models. There are two RDLT configurations that were proposed for these combinations.
One adopts the well-known view of free-choiceness while the latter its extension. However,
both configurations consider all the workflow dimensions in modelling RDLTs.

In addition, this research provides efficient verification schemes for soundness, free-
choiceness, and other proposed model properties for RDLTs. Real-world examples of
RDLT models, including that of a complex energy system, was provided to illustrate how
their structural and behavioral profiles were captured where these properties are checked.
Finally, this research proved the relationships and hierarchies of RDLTs based on the
properties that can be verified from them.
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Introduction

In this chapter, a general background of classical and recent modelling frameworks
are presented. The developmental issues pertaining to their notational construction,
control and management schemes, transformations from design to deployment, current
state of technological support, and their weaknesses in representation are provided
and analyzed. From these information and the analysis, lists of generic and specific
problems are collected. This chapter further provides assertions of possibilities for areas
of improvement in modelling with respect to addressing these problems. It presents
the foundation on the rationale and goals of this research. In particular, it focuses on
presenting well-established graphical frameworks, such as Petri nets, whose theoretical
backbone became a basis for the formulation of many other modelling and verification
frameworks in literature. With the growing development and use of concepts and
technologies of Business Process Modelling, this chapter also includes a discussion, brief
survey, and analysis of one of its core language for design — the Business Process Model
and Notation(BPMN). This chapter also includes the recent developments in diagramming
standards of the Unified Modelling Language(UML). This standard had long been widely
used for modelling especially in business and academic settings. From one lesser known
diagramming support inside this standard, this chapter presents the UML’s Robustness
Diagram(RD) and its potentials to help address the different problems cited in this
section. It also provides descriptions of the formalisms and schemes that enrich the
current state and use of RDs for supporting the modelling and verification of complex
systems.

1.1 Background of the Study

On Workflows

Workflows and Workflow Management Systems(WfMS) are undeniably a huge part of
understanding, characterizing, analyzing, and improving different types of systems from
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the business to scientific domains. Workflows, as defined by the Workflow Management
Coalition [1], is “the automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for action,
according to a set of procedural rules” [2]. Workflow models are “general models
workflow structure, data, agents and execution policies according to user and application
needs” [4]. Policies ensure correctness of workflows. Workflow models are generally
used to aid in the analysis, verification, and eventual modifications of specifications in
workflows when such are deemed necessary. Meanwhile, WfMS is “a software system
that defines, creates, and manages the execution of workflows through the use of software,
running on one or more workflow engines, which is able to interpret the process definition,
interact with workflow participants, and, where required, invoke the use of information
technology tools and applications” [2]. Although these definitions are mainly focused on
businesses, they can also be adopted in the scientific domain. A scientific workflow is the
assembly of sets of scientific data processing activities with data dependencies between
them [5]. These processes can include data transformations, data mining processes,
database queries, simulations done in high performance computers. In the same manner,
scientific workflows are handled by scientific workflow management systems such as
Kepler [6], Taverna [7], Triana [8], WOODSS(WOrkflOw-based spatial Decision Support
System) [9], etc. More concretely, these workflows had been used for modelling ranging
from simple systems, e.g. a recruitment process in human resource management [10],
to complex ones such as those found in contract net protocols in bidding [11], flexible
manufacturing systems [12], gas station servicing |15], biological systems [16,/17], etc.
The complexity of systems mainly concern with the magnitude of the state space that
can be generated from the system’s structure and behavior. In [19,20], a complex
system can generate a huge state space because of its inherent processes which include
“asynchronous and sequential and stochastic behavior, by high level of concurrency and
conflict of its tasks and mutual exclusive resources. In general, a complex system
is an organization made up of many interacting components where these interactions
often lead to large-scale behaviors which are not easily predicted from a knowledge
only of the behavior of its individual components [21]. The unpredictability often arises
due to nonlinearity inherent in these behaviors. Nonetheless, such systems have the
capability to withstand failures from among these interactions. This is in part to the
hierarchical self-organization and its ability to withstand failures and perturbations by
use of memory [22,23]. Persistence in memory, relates to the system’s capability to
store and access information that is usable for system recovery when needed [24], e.g.
when impending failures are expected. Volatility(or ephemerality) in such systems is
the opposite of persistence, i.e. an attribute of possessing transience in their system and
work specifications. Accounting all these aspects of complex systems, it is therefore not
hard to see that certain problems that are computationally hard, i.e. NP-complete [18],
arise in their modelling and verification with respect to both structure and behavior.



Workflow Dimensions and Existing Models and Issues

Workflows are formulated under the three workflow dimensions [25] namely (1) process,
(2) resource, and (3) case, as seen in Figure

resource dimension

resource
L
B activity
.
£ _ task
P

process dimension

~_ "7~ work item
case dimension

Figure 1.1: The three dimensions of a workflow. (Image source: [25])

Formally, the process dimension is a specification of processes, where a process is
a partial ordering of a set of tasks performed by a system. This includes routing
specifications of control schemes of these tasks like sequential, conditional, iteration, etc.
A task is an atomic computation done by a system. Atomic means that, for modelling,
the internal structure is not relevant [2]. One classic workflow model where the process
dimension is being used is a Petri net [27,86,[87]. Petri nets provide graphical notation
showing step-by-step computations that are performed when conditions are satisfied given
some initial input configuration in the net. These nets, among many others, have an
exact mathematical definition of process executions with well-defined governing semantics
for an effective process analysis.

The resource dimension is a specification of resources, where a resource is an ob-
ject(e.g. user, database, component, etc.) with a determinable set of tasks to perform.
This set of tasks define the role of the resource in the system and therefore a part of the
functions in the organizational structure where a resource belongs in. In software engineer-
ing, this dimension is used in modelling some Unified Modelling Language(UML) [29]
diagrams such as Class and Component Diagrams. These types of diagrams are used to
model a system’s static, mostly structural information — i.e. the list of resources that
assist the accomplishment of the processes for some of the operations in a system.

The case dimension is a specification of cases, where a case represents an abstraction
of a set of entities that is processed from some point of execution of its workflow until its
corresponding output is produced. The concept of a case is equivalent to the concept
of tokens [2] in Petri nets [87]. As described in [2], a case is represented by a set of
tokens that are processed from an initial marking specification until one token arrives in
an output place in the net. Consider the case where the initial configuration has every
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token in this set in their corresponding source place. By enabling and firing transitions
in the net from this initial configuration to its corresponding final configuration, the
behavioral profile of the net describes one complete functionality of a system. Note that
the final configuration, in this sense, implies there is one token in a sink node which forces
termination of process executions in the net. Under the assumption of this completeness
of the behavioral profile from source/s to sink descriptions of a functionality in the
net, it is further implied that there are no tokens in all intermediate places in the net.
Intermediate places are places which are not a source or a sink in the net. In system
representation, this means that there are no unnecessary components found in the model
to execute such a case specification.

Cases can be illustrated by an example of having different scenarios that different
students in a university face during an enrolment period in a semester. For this enrolment
workflow, one case can mean a student is at his initial stage of enrollment, i.e. he is
registered as a student in the semester he is enrolling in. For this case, a token in the
source place of the net represents the condition that he is registered. Another case can
mean another student is already registered and he has selected the minimum number of
lecture units for the semester. For this second case, there are no tokens in the source
place but one token in the place representing the check for the lecture units for the
enrollment. Note that both cases can be embedded into one enrollment workflow and be
processed simultaneously using process instances of the net with a WfMS that controls,
manages, and distinguishes the two case implementations.

Work is a specification of a case with its relevant processes that enable an execution
of a case. An activity is the actual performance of a resource on a work specification.
Activities are either atomic or non-atomic |2]. Tasks are activities which are atomic.
Atomicity refers to the attribute in a workflow where there is encapsulation of work and
their enabling resources by means of a unitary graphical representation in its design. In
Business Process Model and Notation(BPMN) [2], this type of encapsulation is achieved
by using a rounded rectangle which pertains to the atomic activity itself. Because of
the activity’s atomicity, there is only one entry point and exit point in send and receive
interactions. With this, activities can be implemented as nested activities to enable
the creation of subprocesses within encapsulations. In Petri nets and workflow nets,
tasks/activities are represented as transitions. In workflow nets, nesting is represented
by task refinements [25] where subprocesses(known as subflows) are encapsulated in
transitions. By a task refinement of a transition, the entire specification of the transition’s
subflow processes can be revealed and analyzed.

Workflow nets offer capabilities of distinguishing and tracking parallel executions of
different cases across splits and joins of processes. This is done by providing graphical
components in its framework. (In colored Petri nets [31], cases can be tracked by the use
of colorings on the tokens. The colors are used for flow control and tracking although
graphical representations to deal with these representations are not well supported in this
type of Petri nets.) Moreover, one of the weaknesses of workflow nets is its absence of
support in modelling resource-related information such as organizational structures and
role assignments. Data handling with respect to role execution and management amongst
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resources in business processes are not fully and explicitly captured in workflows. Other
types of process models would have to be created and associated to these workflows, e.g.
human interaction workflows [2}32}33], to enable specification of this information.

Another type of workflow model, YAWL(Yet Another Workflow Language) [34],
mainly relies on the framework of workflow nets. It provides enhancements of the latter
by supporting some aspects of execution control. That is, multiple cases (in the form
of process instances) are handled more effectively by associating each task with its own
individual state transition diagram. Tokens representing multiple cases are coursed
through the transition diagram’s components. These components represent various states
of case handling within the task. These states specify whether the instance execution is
“enabled”, “executing”, “completed”, and “active”. The transition “add” is supplemented
in YAWL for multiple instance handling. For handling multiple instances, each task
is associated to a vector specifying the minimum, maximum, thresholds on number of
completed cases, and whether the creation of new tokens for succeeding instances are
made dynamically or not. The “add” transition is fired to put a token to the “enable”
condition as soon as a new instance is introduced in the “active” condition when the
dynamic setting in the task is provided [34].

Another enhancement is the nonlocal firing behavior in YAWL. This supports the
enabling of processes in a workflow which are influenced by other processes that are
not locally connected to the former processes. Nonlocal firing behavior in YAWL is
supported by the use of a task ¢ that performs cancellation on some predefined group G of
tasks/activities in a workflow which are associated to t. Cancellation is the interference
of the task ¢ in the execution of the elements in G given some circumstance [46]. This
interference can either be disabling or withdrawing the execution every task/activity
in G, if it is already executing. Such a task ¢ is referred to a cancellation task and
G is called its cancellation region. That is, a cancellation region are components in
workflows where cancellation occurs when its associated cancellation task is fired. A
real-world example for this control scheme is a cancellation of an order that is performed
by a customer in a workflow describing a product ordering system. When the cancellation
task is enabled and fired due to a message sent from a customer to a seller, all other tasks
such as product allocation, product delivery, invoice issuance, etc. are eliminated all at
once. For such a case, mechanisms in the workflow to remove other tokens that belong
to this case specification should be in place. In YAWL, this is achieved by associating a
cancellation region to each task. Note that connectivity among the cancellation task and
the members of its cancellation region is not required in a workflow.

Compared to other control flow languages, YAWL provides all but one control pattern,
i.e. implicit termination. Apart from the two enhancements above, YAWL also provides
effective support for OR-joins [46]. For models with both cancellation regions and OR-
joins, verifying certain properties such as soundness [25] becomes undecidable [46,47].
The hardness in tackling this problem stems from the following: (a)the dependence
on nonlocal information that is used to trigger cancellations, and (b)the semantics of
OR-joins that is incapable of realizing such information when resolving the processes
leading to those joins. In addition to this, the choice of which paths in splits or joins are
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still not explicit in YAWL. For instance, this choice made from using an “exclusive or
split” cannot be formally specified in YAWL. The “k-out-of-n join” is not fully supported
in YAWL. This type of join happens when multiple process specifications lead to this type
of join wherein one of these processes is disregarded/ignored when k out of n of them
has/have completed. This circumstance also implicitly brings up another shortcoming of
YAWL on specifying subsets of these n processes wherein their completion is sufficient to
proceed with the succeeding activities after the join component. This is also similar to
the problem of resolving OR~joins given that there are cancellation regions along these
components.

Two possible recommendations in tackling these problems in YAWL are the following
(i)enable aggregation of workflow components which are involved in a cancellation region
such that atomicity is enabled for these components, and (ii)provide explicitness of data-
driven conditions by directly associating them to arcs leading to the joins at design-time.
For (i), modellers should be able to abstract these components as one node in a graph
while tackling and resolving multiple interactions with some other system components.
That is, encapsulation is achieved while cancellations are still faithfully implemented
in the model. An option to enable this mechanism is to have a class/object view for
this node so it manages the cancellation region. With this view, those components will
be viewed as members of the class, either as task or an attribute that is involved in
data-driven conditions. This type of view, regardless if it is used on activities or resources
that are part of systems, induces the use and support of all the workflow dimensions |25]
in modelling. As a result, the explicitness of the structures and their relationships are
imposed in models. This also aids in the efficient and unambiguous mapping from one
type of model to another. In this research, this kind of abstraction is referred to as a
reset-bound subsystem(RBS) of the model. (For more information on other reset
mechanisms in process-centric modelling, see Reset Nets in [35,[36]) Implicitly, RBS can
provide a platform to enable a multi-level analysis of the model itself. At a lower level,
we enable analysis and verification of the cancellation region and its interaction as a
subprocess with respect to its environment, i.e. those resources, tasks, or other systems
that interact with the subsystem and are not part of the subsystem itself. Meanwhile, the
decision on whether the OR-join is executed (and therefore, all other preceding processes
leading to the join are aborted/ignored) is deterministic due to the explicitness of the
workflow components mentioned in (ii).

On Business Process Modelling for Complex Systems

With the growth of the modelling and adoption of many process-centric system designs
and analysis, the Business Process Management Initiative(BPMI) [37] started efforts
in standardizing them for process design, deployment, execution, maintenance, and
optimization in Business Process Management [38]. BPMI began to develop the Business
Process Model and Notation(BPMN) that is now maintained by another consortium,
i.e. the Object Management Group(OMG®) OMG® has since focused on technology

! The Website of OMG®: About OMG®, http://www.omg.org/gettingstarted/gettingstartedindex.htm



standards since the two groups merged in 2005. BPMN is considered as a graphical
standard [48] in Business Process Management(BPM). The BPMN 2.0 version has
been released by OMG® last 201 BPMN provides notations that is posed to be
easily understandable for users coming from either the business or technical aspects
of system design, management, and analysis. Furthermore, it also provides support
for modelling the different control schemes as in other workflows as well as process
choreographies [2]. Process choreographies show interactions across business entities.
BPMN provides some support to efficiently enact designs by enforcing some readily
mappable constructs for execution languages(e.g. Business Process Execution Language)
to adopt. It is also notable that the Workflow Management Coalition had recognized the
value of BPMN in modelling and has also enriched its support on executable aspects of
the notation [39]. BPMN is claimed to be the de-facto standard for process modelling [10].
The UML’s Activity Diagram and BPMN are considered the “two most expressive, easiest
for integration with the interchange and execution level, and possibly the most influential
in the near future” [48].

The backbone of BPMN in providing descriptions of processes and interactions in
systems is the concept of functional decomposition [2]. By the use of its elements for
describing flow, orchestrations, roles, and artefacts, the decomposition breaks down
coarse-grained functional specifications into fine-grained ones, i.e. atomic activities
themselves. In its attempt to perform this decomposition, the following criticisms and
drawbacks had been observed by researchers in the field of modelling:

(1) Concept excess. Concept excess pertains to the possibility of representing the
same semantics in multiple ways and has been found to negatively affect understand-
ability [10]. The drawback of frameworks which induce concept excess is having
modellers and /or nontechnical users to erroneously use and/or interpret another
notation in place of the appropriate one. By doing so with less consideration of
the significant effect of having minute alteration in representation, errors can be
brought up both during design and run-time specifications of the models. With
this, there is a gap that is created between the theoretical aspects and the actual
usage in practice of the modelling language.

With consideration to the latest release of BPMN, i.e. BPMN 2.0, a study in [10]
analyzed 585 process models from six different companies with variations on the
field of specialization, model sizes, and levels of experience of modellers in creating
such designs. The study was conducted in response to the lack of research in
analyzing the use of BPMN in actual practice. Their framework on analysis relies
on the checking techniques for structure, labelling, and layout that are founded on
35 well-known BPMN guidelines and correctness rules [49-51]. The paper reported
errors on the proper usage of muti-merges and the presence of deadlocks [25], i.e.
42% and 22%, respectively, in the models. Some elements of BPMN that are used
for orchestrations and process interactions, i.e. throwing message events 2] and

2 The Website of OMG®: Documents Associated With Business Process Model And
Notation ™ (BPMN™™) Version 2.0, http://www.omg.org/spec/BPMN/2.0/



main-to-subprocesses associations, have 48% and 86% errors in them, respectively.
With these, the authors provided recommendations in avoiding these errors brought
about by concept excess. One of these recommendations is the prohibition of the
use of multiple arcs that compose implicit splits and joins in the model. They can,
in fact, be sufficiently and more simplistically modelled by the use of gateways in
BPMN [10].

Although BPMN attempts to provide notational convenience and clarity of control
flows in model construction by use of gateways, this effort also becomes a nuisance
for model size. For example, by not having activities used as starting points of
splits and joins to avoid errors in process representation [10], it is imperative that
these activities are limited to have one incoming and one outgoing arc. Resolving
control flows, whether it is determined to be a join or split, are therefore performed
on gateways. By this scheme of representation, it is unavoidable to have a huge
size for the model.

(2) Lack of support for explicit representation of data and rules in BPMN.

(a) methods and attributes that influence interaction flows in processes cannot
be explicitly added to models using BPMN. The use of artefacts which lack
support in the enactment of the design is insufficient to specify these objectﬂ [2].
Through his online articldd, M. Pucher further states that because of this lack
of support, the specification of business rules in BPMN is also unsupported.
In fact, there is a problem of traceability with respect to the choice of process
paths for splits and merges in BPMN. This is due to the lack of explicit
information on the models themselves. Note that when the resource and
process dimensions are both in place in the frameworks of graphical standards,
the specification of these objects become natural and enforced in the design.

(b) there are no mechanisms to enable flow redirection in real-time using explicit
conditions that are based on data. Such redirections are essential for workflow
management when maximal use of a component is reached due to bottlenecks
in case executions. In real-world settings, resources are limited by nature
(e.g. number of personnel, memory capacity of disks used in databases),
therefore their corresponding BPMN designs must also reflect this and provide
a mechanism for such explicit re-routes at run-time during the enactment of
the business models. Mechanisms for resets, when effectively used, can help
deal with the limited storage capacity at run-time of system implementations.

(¢) BPM resources are passive elements, i.e. they are not, by themselves, part of
dynamic aspect of the model itself. BPMN restricts interaction in orchestra-
tions between tasks/activities and/or events [2]. An attribute of a resource, e.g.
memory capacity of a storage disk, imposes that resources are also modelled as
with dynamic attributes whose values can be a reason for utility or non-utility

3 Pucher, M: The Problem with BPM Flowcharts, https://isismjpucher.wordpress.com/2010/10/04/the-
problem-with-bpm-flowcharts/ (2014)
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of the components. Together with (a), BPMN inherently does not fully capture
structure and relations of resources.

(d) Ad-hoc tasks [2,52] in a subprocess in BPMN models do not have any form of
association to this subprocess based on control flows. These tasks can only be
executed upon an explicit specification of a choice given by a user through
the subprocess they are contained in. This choice pertains to the selected task
that is to be performed among the ad-hoc tasks in the subprocess. [52]. Real-
world processes need such kind of procedural support but the lack of explicit
representation of user-subprocess interactions induces the difficulty in the
immediate enactment of ad-hoc tasks from design into their implementation.
For the same reason, verification on model properties is hard to do for such
kind of abstraction in workflows.

(3) Problems in process orchestrations and information hiding. Orchestra-
tions are enabled by messages passed between two parties in a business system.
Under the BPMN framework, these message interactions provide another difficulty
in design and verification in models. Although multiple points of entries and exits
can be ideal to handle and manage bottlenecks, the framework of BPMN contradicts
its intent of process abstraction and information hiding. BPMN’s framework on
functional decomposition limits the view and representation of multi-level, organi-
zational structures and their interactions in models. As stated in [2], “there are
no formal investigations possible on the relationship between a business process
and its externally visible behavior” for these interactions. In practice, message
throwing and main to subprocess interactions lead to improper and/or incorrect
orchestrations for 48% and 86%, respectively, in the BPMN models in [10]. BPMN’s
foundation, alongside the possibilities of concept excess(see (1)) and the lack of
explicit representations for data and rules in modelling, easily induce confusion
and overwhelms designers. Misaligned interactions |2] between parties in an orches-
tration is therefore unsurprising in practice. Moreover, it is also notable that full
information hiding is unachievable whenever atomicity is not fully supported in
process specifications and interactions within and between participants of a business
process. Atomicity is eliminated when there exists multiple entries and exits of
communication arcs between swimlanes and pools in BPMN models. Structure of
processes which are internal to one party is partially revealed to the other. However,
when this structure can be encapsulated as one atomic activity, this revelation
is minimized or eliminated. Atomicity can also encourage, if not impose, proper
nesting and control of main and subprocesses in models. Note that by integrating
the resource, process, and case dimensions together in one design, atomicity and
encapsulation can be achieved in designing and verification of structural components
and their interactions.

In view of implementing multiple message interactions in multiple parties of an or-
chestration, a similar concept called workflow modules is found in workflow nets [25].
Such modules are disjoint in terms of process specifications and are only linked
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by messages passed through interfaces. These interfaces correspond to specially-
marked places in workflow nets. An interface between two modules is represented as
one place in a workflow net where structural compatibility [2] is observed between
all interactions when these modules are merged as one net. However, despite
this compatibility and the satisfaction of soundness in the individual nets, the
integrated net may not be sound [25]. For this scenario, the resulting net contains
token/s in its intermediate place/s although one token has already reached a sink
that invokes an improper termination of the execution in the net. Additionally,
in obtaining the integrated net, the exclusivity of the relation of the interfaces
with their associated module is lost. This is another problem in identifying proper
grouping of components into their corresponding submodules when decomposition
of the net is performed.

Functional decomposition in BPMN fails against model complexity The
functional decomposition framework that supports BPMN modelling aims at de-
scribing complex systems with their atomic activities and interactions. By the
decomposition, coarse-grained functionalities of complex systems are broken down
into their finest-grained activities. Much of this reductionist approach in complex
systems had been criticized by researchers in process modelling. A big part to this
criticism stems from the concept of complexity being a systemic property. That is,
the structure, behavior, and relationships of components with relation to others
that are found at a higher resolutions of complex system descriptions may not
entirely be determinable by those found at lower resolutions3 [53,54]. For this
reason, every level of resolution must be accounted in the design and analysis of
models of complex systems. In his online articlé®, Pucher particularly pinpoints
the lack of ability of BPMN to support the modelling of complex systems due to
functional decomposition. Although it can be argued that the relationships of main
and subprocesses can be used to model hierarchical structures, the support on effec-
tive schemes for design, implementation, and verification of interacting structures
is lacking(see (3) above). (Despite the current limitations of BPMN modelling,
there are still some process-centric verification frameworks for BPMN. They are
implemented with the aid of transforming BPMN notations and structures to some
classical models such as Petri nets [55-58|, m-calculus [59], Timed Automata [60],
agent-based representations [61], etc.).

Lack of support in (re)design and diagnosis of BPM models From design,
implementation, and management of BPM models, there is a huge consideration
for an efficient and traceable transformation of representations throughout these
stages. The BPM life cycle [2] covers design, configuration, execution and control,
diagnosis, and intelligent redesign of models. Although it is well-known that
workflow management is just a component of BPM, a survey in [48] of BPM
standards and technologies in practice concludes another thing. [48] states that
BPM standards and technologies today are, by their essence, largely WfMS. This
claim is also consistent with the findings in [40]. In [40], there are gaps in the



standards and technologies that are available in practice today that make the
support of the cycle partial. A few of these gaps are found in the diagnosis and
intelligent redesign of BPM models. For example, redesign is still mainly powered
by user judgement and limited to “what-if scenarios” in proposing updates to
models. To pinpoint substructures(e.g. bottleneck sources and points, workload
and resource allocation descriptions, routing probabilities in design and run-time)
whose properties result to weaknesses in designs are still mainly dependent on the
ability of the modellers to interpret results from data mining and/or verification.
These gaps are even apparent in one of the leading commercial BPM systems,
i.c. FileNet P8 BPM Suite Version 3.5 The suite was also reinforced with the
Process Mining Framework(ProM)ﬂ an open-source plug-in, that can perform
process mining and verification on models that are expressed as Event-Process
Chains, Petri nets, Colored Petri nets, etc. However, intelligent redesign of the
BPM cycle has yet to be fully supported. As for BPMN, it is already obvious that
there are still weaknesses even in the design and enactment stages as discussed in
the above items (1)-(4).

Although many issues have yet to be addressed in full to support the entire BPM
cycle, it is possible to address some of these issues by putting into models design-
driven mechanisms which help manage points and substructures that bring about
weaknesses such as bottlenecks. Process mining is mainly dependent on data.
However, by enforcing explicitness in data structures and rules rather than have
difficult-to-enact artefacts inside models, modellers can provide the workflows and
WI{EMS more effective controls for process utility, routing possibilities, structural
and behavioral associations at design and run time. When systems and system
parameters still have unknown values such that having monitoring data is a must in
defining and specifying workflows, it can be argued that their representations in an
initial workflow design can be preset to their real-world capacities, e.g. maximum
disk space of a storage device. When real-world data shows that actual processes
utilize much more of this capacity, therefore the initial design would already ideally
have a reroute mechanism at the onset since rules were already made explicit.

A View of the state of UML Notations

From these current problems in modelling, it is noticeable that a large portion of them
come from the fact that modelling and analysis are mainly process- or data-centric.
This is also due to the specificity of model construction that focus solely on describing
systems with only one or two workflow dimensions considered. These modelling and
analysis framework are akin to characterizing system structure and behavior by vertical
and horizontal abstraction [2]. That is, for vertical abstraction, high-level definitions of

“The Website of IBM: FileNet P8 BPM Suite Version 3.5 Documentation,
ftp://public.dhe.ibm.com/software/data/cm/filenet /docs/p8doc/35x/p8__35x_ Release_notes.pdf
(2011)

5The Website of Process Mining: ProM, Process Mining Group, Math&CS department, Eindhoven
University of Technology, http://www.processmining.org (2016)
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systems such that those expressed in textual, informal form are parsed first. Then the
sets of information pertaining to process, resource, and cases are isolated individually
and analyzed thereafter. Much of the characterization in literature focus on the process
dimension such as those modelling and analysis done on Petri nets, workflow nets,
m-calculus, UML, and BPMN. Examples to these undertakings focus on ensuring that
designs in these models satisfy certain conditions of workflow properties such as soundness,
deadlock-freeness, etc. [25]. (The formal definitions for these properties are given in
Section ) Meanwhile, horizontal abstraction looks at systems from its concrete to the
most abstract realizations of systems. That is, instances are identified such as those
groups of data derived from every instance of the enactment of workflows to the workflow
structure itself. By process and data mining, systems, subsystems, and their efficiency
can be analyzed and described by the patterns from monitoring data which are gathered
at different levels of design resolution.

Vertical abstraction is readily seen in the framework of UML modelling. In the latest
version of UML released last June 2015, i.e. UML 2.5E|, there is still a clear categorization
of models. This categorization captures either structure or behavior of systems as seen
in Figure [I.2] Note that the items in blue in the figure are not considered a part of the
official taxonomy of UML 2.5 diagrams. For example, there are no formal definitions
for the Manifestation Diagrams in UML 2.5. Manifestation diagrams intend to show
manifestations(i.e. implementations) of system components by artefacts(e.g. source files,
binary executable files, text documents, etc.) and their internal structures. With the
lack of this definition, the manifestation of components are represented by elements
of component diagrams or deployment diagrams. Meanwhile, in building a Network
Architecture Diagram, UML does not have a standard and specific elements which are
related to networking and network architectures. This diagram, despite its lack of formal
definitions in the release, are considered as Deployment Diagrams which are used to show
logical or physical network architecture in systems.

It is emphasized in aforementioned UML release that mixing of different kinds of
diagrams is allowed to combine both structure and behavior in modelling. This helps
illustrate the execution of cases/functionalities that a system provides. However, mixing,
in this sense, is more precisely described as a literal embedding of one UML diagram in
another, e.g. a class diagram embedded in a state machine diagram such as in [41]. With
the mixing of notations from different types of diagrams in one model, the problems on
explicitness of interactions, rules, and verification of model properties naturally arise.

An Opportunity of Integrating Workflow Dimensions

First called as “Objectory Process-Specific Extensions”, the Robustness Diagram(RD)
was just partially included as an appendage in the UML standard [28]. However, the
components and basic rules of construction of an RD provide a mechanism to partially
support a unified modelling scheme that uses all three workflow dimensions. When the

6 OMG® Unified Modeling LanguageTM, The Website of the UML 2.5 Release Documentation: UML
Diagrams Overview, http://www.uml-diagrams.org/uml-25-diagrams.html (2015)
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Figure 1.2: The UML 2.5 Diagrams and their Categories. (Image from the UML 2.5
Release Documentation.

ICONIX Framework was introduced , it highlighted on the use of Robustness Analysis.
Its focus was on the use of RDs from design- to implementation-level representations of a
system. Because of this streamlined modelling framework that the ICONIX provides, it
is imperative that researchers look at its diagramming core, i.e. Robustness Diagram.
This is done to identify some of the diagram’s weaknesses and provide solutions to them
as well as opportunities for holistic representations of complex systems where all three
workflow dimensions are in place.

Developed by Doug Rosenberg, the ICONIX Framework offers a minimalist,
streamlined approach for Use Case-driven UML modelling that is centered at using
Robustness Diagrams. It focuses on the use of a subset of the UML diagrams for object-
oriented analysis and design. Its major component in accomplishing its task is the usage
of robustness analysis. Robustness analysis provides capabilities to remove ambiguities
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in use case descriptions by ensuring that domain models are consistently represented
both in structure and behaviour in the UML diagrams.

Shown in Figure is the ICONIX Framework. This framework shows a Robustness
Diagram bridging the gap between modelling the static information of domain models
as represented by structural diagrams and their dynamic information as represented by
behavioral diagrams.
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Figure 1.3: The Use Case Driven Object Modelling of the ICONIX Framework .
(Image from )

Unlike other UML diagrams, a RD is capable of providing a holistic view of a domain
model. The current notations available in RD diagramming can, at the least, be used to
show domain objects, i.e. system resources, that can directly participate and support
the execution of tasks/ activities. A domain object can be either a boundary or an
entity object. Boundary objects represent resources which can interact with the system’s
environment and all other resources which are internal to the system, i.e. entity objects.
Tasks/activities are represented by RD controllers. A controller can therefore abstract
nested subprocesses where the controller itself acts as the subprocess’ interface to the
other components of the system. This means that the subprocess is only enacted when
its controller is reached.

In this research, we take advantage of these different categories of RD components to
establish structures, i.e. a class/object view, and therefore, roles and hierarchies. With
these natural grouping, the concept of cancellation regions can easily be adopted with
less utility of space and with distinguishable components for reset controls. This further
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creates opportunities to have explicit and well-defined controls in interactions of the
group between its members and across components not belonging to the group but are
part of the system. For such a special type of group with reset schemes that are invoked
from system interactions, we call it as a reset-bound subsystem(RBS) of RDLTs.
RBS themselves can, in essence, be abstracted further as one activity, i.e. a controller, in
a RD. This can be used to include volatility in the RD diagramming framework.

In addition to the specification of the resource-process dimension in the RD diagram-
ming, we propose to complete the specification of a system in RDs by putting explicit
syntax and semantics for case execution and management in the designs. We do this by
enacting actionable rules of execution. They will be based on settings/conditions of sys-
tem parameters/input, bounding parameters for execution, system topologies, and typing
of structures inside the system. For the first and second bases of execution, RDs provide
opportunities to explicitly incorporate parameters/input information through system
attributes. For the third and fourth bases, connectivities, attribute-driven constraints,
and typing of components provide means to realize semantics of joins and splits. At the
least, these information integrates the following execution control schemes in BPMN
and other workflows: (1)topology-driven, (2)gateway-driven, (3)artefact- and user-driven,
and (4)local and nonlocal information(cancellation region)-driven process flows. With
complete specifications of systems using all three dimensions in the design, we further
propose algorithms to aid in effective isolation of resources and tasks which execute a
particular case. In effect, activity profiles that support the completion of their corre-
sponding cases are isolated. Needless to say, we propose to provide effective construction
and verification schemes for RDs containing multiple activities in one design.

With these support and opportunities for further development in RDs, various
mathematical, scientific and business systems can be represented at different levels
of resolutions of complexity. Because RD components are easily distinguishable as
either a resource or process type, the interpretability of RDs can cater to technical
or nontechnical users. For the same reason, RDs provide opportunities of efficient
and effective requirements traceability from design specifications to their corresponding
implementations. Despite these opportunities, the current state of RDs and RD modelling
for both theory and practice is still pretty much in its infancy. For the meantime, it is
still treated as a scratchboard diagram in the initial stages of requirements definition and
specification. Their usage, however simplistic as of the moment and most of the time
for illustrative purposes only, can be found in processes such as a reservation systemm,
registration system [80], and human-computer interaction systems [74]. RDs in [74]
were also further used to measure the traceability of requirements across structural and
behavioral UML diagrams. With this significant absence of a pool of literature and use of
RDs, there are no definitions and verification schemes of properties to check their quality
and viability of system representation under a multidimensional view of workflows.

™ The Website of IBM: Robustness Diagram or Ideal Object Diagram Version 11.4.3, IBM Knowledge
Center. http://www.ibm.com/support/knowledgecenter/SS6RBX _11.4.2/com.ibm.sa.oomethod.doc/top
ics/c_Ideal_Object_ Diagram.html (2016)
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1.2 Problem Statement

In building models of complex systems [76], the recent releases of BPMN and other
existing workflow standards and technologies still do not resolve many gaps in effective
modelling of such systems. As discussed in Section much of these gaps are brought
about by the lack of support in modelling and verification of workflows that utilize all
workflow dimensions [25,26], i.e. process, resource, and case, in one model. Even with the
latest release of the UML 2.5 last June 20158, these gaps have yet to be addressed. The
distinctive classifications of the UML diagrams, i.e. structural and behavioral diagrams
particularly impose design restrictions in constructing designs with such integrated
environment. For example, structural diagrams such as Class and Deployment diagrams
can only show abstractions of the static information of systems. Meanwhile, behavioral
diagrams such as Use Case and Activity Diagrams show abstractions of the behavior of the
static elements of systems being modelled. The UML’s Activity Diagram, for example, has
been shown to be advantageous in the context of workflow specification against commercial
Workflow Management Systems as it can effectively provide support for control and
data specifications [42]. On the side of process modelling [44], Activity Diagrams were
also shown to lack support for the design of resources and cases [42] in systems. For
these concerns, the Robustness Diagrams of the Unified Modelling Language [29,30] are
still highly underdeveloped in supporting such integration of the workflow dimensions
for modelling complex systems. Although the ICONIX Framework [30] attempts to
provide a bridge between the two diagramming classifications of UML through the use
of Robustness Diagrams, formalisms are lacking for such kind of construction and for
requirements traceability from requirements definition to implementation of complex
systems. By this state of RD-based modelling, along with the existing foundations of
BPMN and workflows which are either process- or data-centric, there is an absence of
definitions of model properties and their corresponding verification schemes for such
kind of multidimensional workflows. However, it is notable to mention that existing
verification schemes are already well-established, albeit dimension-specific, and provide a
ground and inspiration for developing similar workflow properties for RDs.

Moreover, in modelling complex systems, i.e. those which inherently possess a large
number of states that is induced by chaos and bifurcations |76, 77] due to their nonlinear
processes, there is a need for supporting designs of persistent and volatile components
due to the said nature of these systems. Persistence and volatile structures support the
need for memory — whether for state recovery and/or state modification due to irregular
or regular behavior of systems. Needless to say, state enumeration in workflows poses
problems for real-world complex systems. This is due to the exponential space explosion
in enumerating all of the states as in Continuous Petri nets [79] used for modelling
manufacturing systems [81]. For example, a model checking tool known as SPIN [82]
is limited to enumerating at most 1 million states [83] from workflows. Although the
number of states that is derivable from a model is unquestionably high, the presence
of bounding values and other control mechanisms can reduce this statistic significantly.
This can be achieved through aggregation of values and/or states and by explicitly
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imposing reroutes using this mechanism when necessary(e.g. under the presence of
bottlecks). These bounds and control mechanisms can be embedded in persistent and
volatile components in workflows either in their structural profile or in the attributes
associated to these components. Because these structures provide means for storage of
data regarding the execution of processes and workload distribution for resources in case
handling, they can be used to lessen or remove certain weaknesses such as bottlenecks at
run-time in models. In the current results of literature, there is an absence of formalisms
in effective construction, implementation, and model verification of workflows wherein
all three workflow dimensions are in place and whose structures contain persistent and
volatile components.

1.3 Aim of the Work

The general aim of this research is the formalization of effective modelling and verification
of complex system representations which use all three workflow dimensions, i.e. process,
case, resource, under the Robustness Diagram with Loop and Time Controls(RDLT)
specifications. RDLTs are extensions proposed for Robustness Diagrams. Due to the
integration of the workflow dimensions into one design, multiple functional specifications
arise in RDLTs. Each of this functional specification imply a set of tasks constituting
one activity profile in the system. This profile describes the execution of a case through
the support of a set of resource and process specifications in a model. We establish a
framework that would support designs and model verification of multi-input, multi-output,
and multi-activity RDLTs. Activities in complex systems might include requirements
for persistent and/or volatile structures in their representations. This research addresses
the lack of literature to address both the integration of all workflow dimensions and the
persistence/volatility requirements for modelling complex systems. We aim to establish
mechanisms so as to support the creation and handling of these persistent and volatile
components in RDLTs. We provide design specifications that illustrate effective embedding
of such structures in the designs. These aims are supported by the the concept of explicit
typing of arcs and vertices that will impose restrictions on reachability and process
flow controls for substructures and components in the models. We propose metrics for
reachability and synchronicity of task executions in RDLTs with considerations of the
typing and connectivity profiles of components. One key difference of this research with
the results in literature with respect to establishing means for synching of tasks is that
synchronizations are not just imposed by connectivity. For this research, we collectively
account connectivity, typing of arcs and vertices and their attribute values, and dealing
with these information either individually or collectively to identify and measure aspects
of synching of task execution. We propose algorithms to isolate individual activities from
RDLTs by accounting all of these information during activity extraction for each output
vertices in the models. We propose instances of an RDLTs for real-world complex systems
and illustrate activity extraction from them.

Meanwhile, we propose different model properties to be used for modelling and model
verification for RDLTs with consideration of the integration of all workflow dimensions in
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the designs. We focus on adopting and extending the properties that are established in
literature, e.g. deadlock-freeness, boundedness, free-choiceness, soundness [25], to the
proposed RDLTs. (The formal definitions for these properties are given in Section [2])
Because of the introduction of persistence and volatility in our proposed modelling
framework, we formulate these properties in RDLTs to address these two aspects of
representing complex systems. The formulation of these properties mainly rely on identi-
fying different types of a Point-Of-Interest(POI) in the models. A POI is a vertex
in a models wherein possibilities of deadlocks, delays in reachability, task repetitions
and synchronizations are present. We propose formalisms to identify these points and
relate their structural placements, connectivities, and their relevant graph attributes with
other components in RDLTs. Furthermore, we establish different types of substructures
and neighborhood relative to the presence of these POIs. We prove and verify model
properties in these subgraphs and relations and establish generalizations of the properties
for the entire model. The introduction of an extended RDLT is proposed in this research
to establish these generalizations of the properties. Finally, we also aim to establish
hierarchies amongst these properties and provide polynomial time and space verification
of such relations in RDLT substructures and the whole model itself.

More specifically, this research aims to achieve the following,

1. Propose a framework for designing and handling multidimensional RDLTs with
support on persistence and volatility in structure and behavior. This framework
shall account abstractions, control schemes, and metrics for effective complex
systems modelling. Collectively, they will address modelling and verification under
the construction of an integrated representation of all workflow dimensions, i.e.
process, resource, and case. More specifically, the proposed framework shall address
the following,

a) Information Abstraction.

i. support for modelling static and modifiable components in RDLTSs for iso-
lating activities embedded in RDLTs. Apart from connectivities, the model
shall support the use and modelling of (a) multi-type vertices, arcs, and
subgraphs, (b) time- and constraint-bound vertices, arcs, and subgraphs,
(c) system parameters and constraints imposed on them, e.g. bounds for
temperature, pressure, etc., (d) combinational relationships between two
or more constraints, e.g. disjunctions(i.e. splits), conjunctions(i.e. joins),
that are bound to the typing of RDLT components,

ii. support the modelling of explicit associations and controls of the system
components and the tasks that they execute. By these associations,
subgraphs in the model which correspond to volatile structures can be
discriminated from the others, and

iii. support the modelling of hierarchical relations of structures and processes
with the identification of system components and their associations with
the tasks they execute.
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b) Control Abstraction.

i.

ii.

iii.

enable the modelling of control schemes for sequential, parallel, condi-
tional(joins and splits), iterative, and time-bound resets in the RDLT
attributes,

support sharing and exclusivity of information that are embedded in
modifiable RDLT attributes. This shall enable or disallow the execution
of processes despite the connectivities and type-related relations of the
static components in RDLTs, and

enable embedding of multiple activities through the support of information
sharing, exclusivity, and time-bound attributes in RDLTs.

c¢) Persistence and Volatility. Provide mechanisms to maintain persistence
and enable volatile structures and behavior in RDLT modelling such as

i.

ii.

storage for information that control vertex reachability and synching of
task executions in RDLTs, and

definitions of types of RDLT vertices, arcs, and substructures(referred to
as “reset-bound subsystems”) that impose resets on the values of RDLT
attributes when they are used in some time steps during the execution of
activities.

d) Computable Metrics for Reachability, Delays, and Synchronizations.
Formulation of different types of a Point-of-Interest(POI), i.e. vertices in
the models wherein possibilities of deadlocks, delays in reachability, task
repetitions and synchronizations are present, as well as types of neighborhood
that are defined over them. More specifically,

i.

ii.

iii.

iv.

vi.

definition of a POI, called a Point-of-Delays(POD), which is a vertex
in RDLTs where there is a delay of its reachability /use that is caused by
the settings of the attribute values in the model,

definition of a POI, called a Point-Of-Reentry(POR), which is a vertex
in RDLTs that is the first point of reuse of components/substructures/tasks,
definition of a POI, called a Point-of-Synching(POS), which is a vertex
in RDLTs where synching can be imposed for succeeding tasks account-
ing topological restrictions and/or constraints based on RDLT attribute
settings,

formulation of definitions for metrics on reachability, delays, and syn-
chronicity for the aforementioned POIs in RDLT5,

. provide computations of the metrics in polynomial time and space com-

plexity

establish types of structures and neighborhood relations using these metrics
and attribute settings, e.g. nonself-controlling structures which relate
to the presence of deadlocks. These deadlocks can be brought about by
multiple constraints associated to type-alike components of RDLTs.
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2.

1.4

Real-world application. Provide instances of RDLT models of real-world com-
plex systems to illustrate designing and handling of RDLTs for such systems. We
shall focus on building RDLTs for energy systems, e.g. adsorption chiller. We model
its reactor chambers, condenser, evaporator, valve system, and different modes of
operations and illustrate how one of its activities relating to one of its modes, i.e.
adsorption, is extracted using our proposed algorithms. We describe substructures
in the model with relation to different model properties proposed in this research.

Model Properties and Verification. Propose formalisms of model properties
and verification schemes for RDLTs with persistence and volatility. We adopt and
extend model properties found in literature to the construction and semantics
of designing and handling of multi-activity RDLTs. In particular, we establish
properties, relationships, and computability of metrics supporting their identification
in RDLTs with certain focus on the following:

a) reachability of vertices bound to topology and constraints derivable from
RDLT attribute settings,

b) boundedness and delays of reachability for PODs that are influenced by the
presence of POR and POS vertices and with different types of structures
induced by these points of interests in RDLTs

c) free-choiceness for different types of structures mentioned above. In addition to
focusing on topology to define free-choice structures for PODs and the vertices
whom they share a common parent, we establish a relation of these vertices
with respect to their POS ancestors to define another aspect of free-choice
structures. This aspect considers the types defined over arcs, vertices, and
time-bound attributes in RDLTs.

d) soundness in multi-activity workflow designs that includes persistence and
volatility. We propose ancillary properties that can verify for soundness by
using information on the structure of RDLTs and by algorithms based on
graph reduction operations. These operations can be done on substructures
involved in individual activities or on the extension of the multi-activity RDLT
itself.

e) hierarchies and other relations between properties in RDLTS, and

f) proposing means of verification of model properties in substructures and the
entire model itself within polynomial amount of time and space.

Methodological Approach and Structure of Work

In this section, a layout of the research activities that are used in the accomplishment
of the research objectives is provided. They are enumerated based on the usage of the
proposed concepts and schemes from design to verification of RDLT models for complex
systems. Furthermore, the structure in discussing these activities is given by citing the
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corresponding sections in this manuscript where they are provided. An activity diagram
that shows this ordering is given in Figure [1.4] as a graphical guide to the readers.

To create RDLT models for real-world complex systems, we propose RDLT constructs
and control schemes for effective and traceable designs in multidimensional workflows
with a supplementary task of model verification. Based on the constructs themselves,
static information such as task specifications, objects/resources, parameters, constraints,
subgroups supporting the execution of some cases are readily identifiable from the model
itself. Meanwhile, based on the control schemes, modellers are given rules and samples
of design specifications to handle the creation of process flows. These shall effectively
support multi-activity, -input, and -output RDLT despite the presence of persistent and
volatile structures in the design requirements. The formalisms for the construction of
multi-activity RDLTs and the specifications of embedding the different process flows and
controls are provided in Section [3.1]

Given an RDLT model of a real-world complex system, the proposed framework of
model analysis and verification comes in two approaches, i.e. holistic and compositional.
These approaches are represented as two independent flows emanating from the Abstract
Model node in Figure [I.4and only merging at a time when the RDLT and/or its submodels
are verified. These approaches are detailed as follows:

Firstly, the holistic approach in designing and verifying RDLTs takes in an entire
specification of a system. An RDLT, possibly designed with multiple activities and time-
bound attributes, is analyzed using its entirety. In this approach, an extended RDLT is
created from the given model. Using the extended RDLT of a model, the framework
produces a vertez-simplified RDLT that only uses the information of the constraints
that are bound to system parameters. The model simplification also isolates each
RDLT subgraph wherein time-dependent and reset-bound attributes are present. This
subgraph is proposed in Sectionas the reset-bound subsystem(RBS). The simplification
encapsulates every RBS with another representation, however, preserving pertinent
information with regard to interactions. Representation, for this case, would account to
the connectivities established between persistent components of the RDLT and some
vertices belonging to every RBS. Furthermore, the representation abstracts all volatile
components in the subgraph while summarizing the RBS’s topological information.
Summarization discounts constraints imposed by attribute values of the arcs in every RBS.
We refer to this simplification of RDLTs as a level-1 simplification of the model. A level-2
simplification of the model uses each RBS as input to the vertex-simplification process.
The formalisms of extended and vertex-simplified RDLTS, the simplification process and
rules, and the resulting multi-level perspectives of RDLT models and derivations thereof
are formally defined in Section [8] Using graph contraction rules on the simplified models,
the proposed framework assesses whether the static information in the model does not
impede with the continuous execution of processes that support the accomplishment
of every activity in the RDLT. Whenever this is the case, the contraction reduces the
entire model itself into a single vertex. The governing rules and the operations in graph
contractions in RDLTs are proposed in Section [3.5]

Meanwhile, because the bounded repeatability of tasks that influences the modification
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of the time-dependent attributes in the design, the framework performs a separate
analysis for them. Note that this separation of analysis can be done since we can view
repeatability of tasks separate from the satisfiability of the constraints. The latter are
examined throughout the process of model simplification and contraction. For the former
analysis, models are assessed such that the total number of times the persistent/volatile
components are used in an activity corresponds to the total number of times their
consequent persistent/volatile components are used in an activity. Graphically speaking,
this analysis accounts indegrees and outdegrees of vertices, their associated arcs, and
the types that are defined over them based on the attributes in the model. Section
provides the definitions and steps that support these analyses on RDLTs. Collectively,
the results in this holistic approach can be used to verify the compliance of the entire
model with RDLT with respect to the properties that are proposed in this research.
However, it is notable that the results from the holistic approach is usable to determine
the compliance of substructures of RDLTs with respect to the workflow properties that
are formulated in this research. Moreover, they can also be used to produce lists of
substructures or aspects of the RDLT which can be targets of modification in the model.
They can be used in redesign whenever users want specific properties to be maintained
in these substructures.

On another hand, the compositional approach proposed in this research for model
construction, analysis and verification follows a bottom-up scheme. In contrast with the
holistic one, it splits an entire RDLT into its maximal substructures. Each maximal
substructure corresponds to a set of RDLT components that support at least one activity
corresponding to some case execution in the model. Each of these maximal substructures
is analyzed and verified. This is done by identifying every Point-of-interest(POI) and
studying the different types of substructures around this point. These POIs are vertices
where constraints associated to their incident arcs are present. These constraints affect
reachability of the POIs such that delays can be induced by them. Another consequence of
these constraints is synchronicity in using the tasks associated to these vertices, whether
desired by modellers or not. Moreover, the attributes in vertices and arcs in an RBS
are analyzed. Because of the possibilities for modifications on graph attributes induced
by such RBS, samples of design specifications to effectively designing and maintaining
them in RDLTs are also given in this research. Compared to the holistic approach,
the compositional approach checks POI- and RBS-based neighborhoods rather than
dealing with graph components based solely on topology and interactions. The second
approach also provides metrics from the information that are gathered from these local
neighborhood to establish a characterization of the models. These metrics provide bounds
for reachability, delays, and synchronizations whenever they exist in RDLTs. Each of
the maximal substructures can be verified and these substructures can be collectively
used to conclude generalizations for the entire model with respect to compliance of
RDLT properties. The formalisms of maximal substructures and how they are efficiently
determined from multi-activity RDLTs are provided in Section [3.5] The definition of
POIs, RBS, the neighborhood relations, and typing of components that they establish
are given in Section
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For both holistic and compositional approaches, their analyses rely on the pool of
model properties that are defined in this research for RDLTs as shown in Figure
These properties are discussed in Chapter [3] Hierarchies and relationships among these
properties are proved in this research. The summarization of the hierarchies and other
relations of the proposed model properties can be seen in Section 3.7 We provide
instances of RDLT models for a real-world complex system, i.e. an energy system, and
illustrate activity extraction from it. Throughout the discussions of properties for RDLTs,
these instances are used to illustrate the verification process of these properties. Finally,
the computational complexity in extracting activities and model verification is also given.
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Review of Related Literature

In this chapter, a detailed look at the specifications of different classical workflows,
Business Process Model and Notation(BPMN), the Unified Modelling Language with
emphasis on Robustness Diagrams, and their supporting platforms and technologies
are given. These are additionally reviewed and analyzed for their capabilities, benefits,
and weaknesses in terms of complex system representation. Model properties for a
process-centric verification on models, particularly on workflow nets, are highlighted in
this chapter. A discussion about resource- and process-centric verification in BPMN is
also shown. The relationship of BPMN models and workflow nets are given to show
how this verification is performed on the former set of models. This chapter also looks
into modelling under the perspective of the approaches model abstractions, i.e. vertical
and horizontal. For the first approach, one illustrative discussion is given by the use of
the categorization of models/diagrams in the Unified Modelling Language. This shall
highlight the innate difficulty in providing modelling frameworks that have an integrated
environment for embedding all three workflow dimensions in one model. Under the
second approach, a detailed look at the modelling and management of process instances
in workflows are provided. Lastly, a discussion of the current formalisms and recent
literature for the UML’s Robustness Diagram are provided. The challenges on modelling
and verification in this diagramming framework are given with consideration of its
potential to support an integrated platform for all three workflow dimensions.

2.1 Workflows and Model Properties

On Petri Nets and Workflow Nets

Petri nets are often quoted to be the basis of the basic workflow patterns which many
modelling frameworks are based and/or inspired from. From graphical to execution
standards in modelling, the influence of Petri nets can be found in Business Process
Modelling technologies, UML modelling, YAWL, event-driven process chains, among
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others [48]. Therefore, it is only fitting that the theory of modelling and verification
for systems as represented by their Petri nets model is discussed in this research. The
definitions in this section are mainly taken from [2584] with additional descriptions
supplemented for explanatory purposes. Although Petri nets and Workflow nets only
highlight the process and case dimensions, they provide a comprehensive theoretical
foundation that is needed in this research. In this research, we use this foundation to
help build up theories on modelling and verification of models wherein all three workflow
dimensions are used. For this section, soundness and free-choice properties are the
main foci because there are many other properties that are implicated by them [25].
Furthermore, these two properties also have relations to each other. That is, the latter
is usable to verify in efficient time the former in workflow models [84]. This research
takes inspiration from these relations to build hierarchies and relationships among RDLT
properties under the integration of all workflow dimensions in one model.

Definition 1 (Petri nets and Markings) A Petri net is a directed bipartite graph
where its nodes represent transitions(i.e. tasks) and places(i.e. conditions for task
execution) such that a place p is considered a pre-condition(post-condition) for a task t if
there is a directed arc from p(t) to t(p). p is called an input place(output place) of a
transition t if p is a pre-condition(post-condition) for t. The notations et and te refer to
the sets of input and output places of t, respectively. Similarly, pe and ep refer to the
sets of tramsitions that have p as an input and output place, respectively.

A place(condition) p is satisfied if there is at least one token in p. A transition t
is enabled if every input place of t has at least one token. If t is enabled, then it
may fire. Firing t means that every output place of t gets one token. Furthermore, every
input place of t loses one token. A distribution of tokens in all the places is called a
marking(i.e. state). A dead marking means that the marking does not enable any
transition. A dead transition t means that t can never be fired.

Formally, a Petri net is a 4-tuple (P, T, F, My) where P and T are finite sets of places
and transitions such that PNT =0, F C (P xT)U (T x P) is a set of flow relations,
and My : P — N is its initial marking. A marking is defined by the function M : P — N
where M (p) denotes the number of tokens inp € P. Transitions and places are graphically
drawn as rectangles and circles, respectively. Meanwhile, tokens are drawn as black dots
inside the circles. When a transition t is fired at a marking M, the firing produces a

successor marking M' of M (written as M EN M) defined for every place p € P where
M(p), if p¢ ot andp ¢ te, orp € ot and p € te,

M'(p)={ M(p)—1, ifpcetandp¢te,
M(p)+1, ifp¢etandpc te.
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There are four routing schemes in Petri nets [87], namely, (a)sequential, (b)parallel,
(c)conditional, and (d)iteration as seen in Figure From these schemes, different types
of joins and splits can be enabled.

ENnEl
Pzé p4
(a) (b)

Figure 2.1: Routing schemes: (a)sequential, (b)conditional, (c)parallel, (d)iteration
(Image source: [87])

Figure 2.1] (a) shows a sequential flow from using the token in pl to enable A. A fires
thereby removing the token from pl and producing one in p2.

Figure (b) shows a conditional routing control whereby a choice for firing is made
on either B or C which are both enabled from the token in p3. This structure forms an
instance of an OR-~split. With this, only one of the transition fires and then a token is
produced in p4 and the token in p3 is removed. Note that the structure of the transitions
B and C with respect to p4 is an OR-join. Only one of the process flows from p3 to p4 is
executed to put one token in p4 at the outset.

Figure (c) shows the AND-split where a token in p5 enables and causes D to fire
such that both p6 and p7 contain one token each. Furthermore, the presence of tokens in
every input place of E enables E. Note that the structure of p6 and p7 with relation to
E is an instance of an AND-join. That is, all conditions(represented by p6 and p7) to
fire £ must be satisfied(represented by the presence of at least one token in p6 and p7).

Meanwhile, Figure (d) shows an iteration of process execution as one token is
repeatedly produced in p9 by a series of firing of F' and G. For this Petri net, the output
place of G accumulates tokens indefinitely per iteration of the execution. This structure
can be used to simulate counting of the number of executions of tasks. There will always
be exactly one token that is removed or present/produced in p9 and pl0 throughout the
series of firing of F' and G. However, this will not be true if the output place of G is
assigned to be the sink place such that the execution of the processes stops at the first
firing of G. Upon this termination, there is also one token in p9 and one in the output
place of G.
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For brevity, the following notations are used for the marking M,

(1) My L My: My is produced from M; with the firing of the transition ¢,
(2) My — Mjy: there exists a transition that produced My from My,

(3) My 2y M,,: the firing sequence o = tity...t,_1 that is used to produce M, from

M, by a series of firings My 2 My, My 25 My, ..., M, 2% M,
The notation M; > Msy(M; > M) means that My(p) > Ma(p)(Mi(p) > Ma(p)) for
every element p € P.

Soundness in Workflows

Definition 2 (Reachable markings) A marking M, is reachable from M, in a Petri
net, denoted as My = M, if and only if there is a firing sequence o such that My < M,,.
Note that the empty firing sequence is allowed, i.e. My = Mj.

Definition 3 (Deadlock-free) A Petri net is deadlock-free if every reachable mark-
ing enables some transition, i.e. if no dead marking can be reached from the initial
marking.

Definition 4 ((Elementary) Paths, Conflict-freeness) A path C' = z1z2... %, is
a series of nodes in a Petri net from x1 to x, such that (z;,x;11) € F for 1 <i<n—1.
The set of nodes that is found in C is denoted as a(C). C is elementary if and only if
x; # x;j for every z;,x; € a(C) where i # j. C is conflict-free if and only if for any
transition x; € o(C) and j #i—1, x; ¢ ox;.

Definition 5 (Strongly connected) A Petri net is strongly connected if and only if,
for every pair of nodes x and y in the net, there is a path from x to y.

Definition 6 (Workflow nets) A Petri net PN is a Workflow net if and only if the
following hold,

(1) PN has two special places, i.e. a source place i where i = (), and a sink place o
where oe = ),

(2) if a transition t* is added to PN and an arc connects o to t* and t* to i, i.e.
ot* = {0} and t*e = {i}, then the resulting Petri net is strongly connected.

The notations 7 and o will be used to denote the initial and final markings of the workflow
net, respectively, where ¢ has the configuration M (i) > O(with M (i) = 1 for workflows
with one case being processed) and M (p) = 0 for p € P\{i}, and o has M (o) > 0 and
M(p') =0 for p’ € P\{o}.
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Definition 7 (Soundness) A Workflow net PN = (P, T, F,i) is sound if and only if
the following hold,

(1) if i > M, then M = o, i.e. for every reachable marking M from i, there is a firing
sequence usable to reach o from M.

This condition assures that all reachable markings in the net would also lead to the
final marking o. This means that the execution of the net will eventually terminate.

(2) if i 5 M and M > o, then M = o, i.e. o is the only marking reachable from i
with one token in place o.

This condition assures that when a token reaches o, all other places in the net has
no token inside. This corresponds to proper termination of all processes in the net
such that there are no computations that are halted when the sink place is reached.

(3) for every t € T, there are M and M’ satisfying that i = M and M 5N M, i.e.
there are no dead transitions in the net.

This condition assures that every transition is involved in at least one process
specification that the net executes.

Definition [7] was eventually referred to as “classical soundness” when variations of
this property were introduced [55],59] for verification of models with weaker or stronger
notions of this property.

Definition [7] offers a very strict criterion because it imposes that all process in-
stances/cases are completed with no tasks pending, cancelled, or withdrawn when one
token reaches the sink. For systems that can allow modelling and implementation wherein
at least every transition is involved in a case that is properly completed, i.e. the marking
o is reached, other less restrictive notions of soundness is investigated in [55}59] for
Workflow and Petri nets. Some of these notions of soundness in these investigations are
as follows,

Definition 8 (Sound firing sequence) Let o be a firing sequence and let M be a
marking in a workflow net PN = (P, T, F,i). o is a sound firing sequence if i < M

/
g .
and M — o for some firing sequence o’.

Definition 9 (Relaxed Soundness) A workflow net PN is relaxed sound if and
only if each of its transition is an element of some sound firing sequence, i.e. ¥t € T,

IM, M' such that i3> M 5 M' % o.

Relaxed soundness requires at least one case that completes with exactly one token
in the sink o and all other places have no tokens for each transition in the net. Implicitly,
transitions can participate in the execution of cases without a proper termination of all
the tasks in place.
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Definition 10 (Weak Soundness) A workflow net PN is weak sound if and only if
the following hold,

(1) for every marking M where i~ M, M = o,
(2) for every marking M where i~ M and M > o, M = o.

Definition [L0] removes the requirement that all transitions be involved in the execution
of cases as long as proper completion, i.e. o is reached, for every reachable marking
from 7. Note that deadlocks can never occur in weak sound workflows. When workflows
of different functionalities are collected together and made to interact and coordinate
together by some interfacing specifications to serve another purpose, some of their built-in
tasks may not be needed in the latter job. For this, checking for weak soundness in the
aggregated workflows may be sufficient in checking whether they would indeed support
the expected functionality that they collectively provide.

Definition 11 (Lazy Soundness) A workflow net PN is lazy sound if and only if
the following hold,

(1) for every M where i = M, there exists M’ such that M = M’ and M'(0) = 1,
(2) for every M where i = M, M(o0) < 1.

Lazy soundness imposes that every reachable marking from ¢ will eventually lead
to a completion of a case that it helps to execute, thereby, putting one token in o.
However, when one token reaches o, no other tokens are allowed to be added to it by some
process instance that has yet to complete. Note that [2] emphasizes the difference between
“completion” and “termination” of process instances for this definition. That is, o is loosely
used in Definition [11] to mean the final node that is defined in the workflow. Nonetheless,
o does not have any outgoing arc yet putting one token in o(in Definition [11](1)) only
implies the execution of its corresponding case is completed. Termination happens when
every process execution that is running in the net are terminated. Therefore, completion
is not allowed when a termination event has already been executed in the net.

Definition 12 (Easy soundness) A workflow net PN is easy sound if and only if
i o.

For the succeeding definitions from [55], the notations ¥ and o* mean that the
marking has M (i) = k and M(o) = k, k € N, respectively, and all other places have
0 tokens.

Definition 13 (k-soundness) A workflow net PN with i* is k-sound if and only if
for every M where i = M, M = oF.

The definition of classical soundness(Definition [7}(1)) anticipates exactly one token
when process executions in workflows terminate. Therefore, Definition [7]).(1) implies
1-soundness. Weak soundness is also 1-soundness.
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Definition 14 (up-to-k-soundness) A workflow net PN is up-to-k-sound if and
only if PN is l-sound for all0 <1<k, ke N.

Definition 15 (Generalized soundness) A workflow net PN is generalized sound
if and only if for all k € N, PN is k-sound.

(classical) soundness

X%

generalized soundness

PN

relaxed soundness

v

weak soundness =
1-soundness

<

v

up-to-k-soundness
(k=2)

easy soundness

v

lazy soundness

k-soundness (k>2)

Figure 2.2: The relationships of the different notions of soundness in workflows. Arrows
refer to the “implies” relationship of one property to another, e.g. (classical) soundness
implies weak soundness. (Image source: [55])

Free-choice Petri nets

At a certain marking of the net, when two transitions are enabled and can be fired
simultaneously they are said to be concurrent. On another hand, for two transitions that
are enabled by a common input place, they are in conflict with each other whenever the
choice of firing one disables the other. That is, the transition which was not fired cannot
execute its computation as well as its succeeding ones which rely on its firing. For certain
business processes, the freedom to make this choice between executing the tasks must
not be impeded by the rest of the system. That is, every choice is free. A workflow that
satisfies this condition is said to be free-choice. The free-choice property can be enforced
by structural compositions as defined below,

Definition 16 (Free-choice) A Petri net is free-choice if and only if, for every two
transitions t, and to, ety N ety # () implies oty = ets.

Free-choice and (classical) sound workflows are closely related to each other. The latter
is verifiable in efficient time by using the former. By this way, the need for enumeration of
all reachable markings in Definition [7]is avoided. The size of the state space of arbitrary
workflow nets can easily become huge which poses the problem in enumeration. Deciding

31



the soundness of workflow nets may be intractable [84] and checking for model properties
that relates to it, i.e. liveness and boundedness in Definitions [17] and respectively, is
EXPSPACE-hard [85].

Definition 17 (Live) A Petri net PN = (P, T, F, My) is live if and only if, VM’ where
Moy 5 M’ and every transition t € T, there exists M" where M’ = M" which enables t.

Definition 18 (Bounded) A Petri net PN = (P, T, F, My) is bounded if and only if,
VM’ where My = M’ and Vp € P, there exists a b € N such that M'(p) < b.

In [25], the following lemma was proven,

Lemma 1 Let PN be a Petri net and PN be its workflow net with the initial marking
i. A Petri net PN is sound if and only if PN is live and bounded.

By the use of the Rank Theorem [84], the relation of free-choice to liveness and
boundedness is established in workflows. This further establishes a relation of free-
choiceness to classical soundness in workflows(by Lemma [1)). This way of proving
soundness by the free-choice property can be performed in efficient time(see Corollary .
(The Rank Theorem can help show liveness and boundedness in a net by characterizing
a net’s classes, i.e. S-systems and T-systems, and invariants thereof. S-systems are
nets where each transition has only one input place and one output place. By this way,
concurrency is absent in the net. Meanwhile, T-systems have every place with one input
transition and one output transition. Through this, conflicts never happen. The reader
is directed to [84] for a more detailed discussion on the proof of Corollary [1} )

Corollary 1 It is decidable in polynomial time whether a free-choice workflow net is
sound.

The reader is referred to [55] for the schemes and results with respect to the verification
of the different notions of soundness, as well as the computational complexity in proving
them.

Although Petri nets and workflow nets are mainly concerned with representations
using the process dimension, this research adopts the same kind of structurally-driven
perspectives of models to prove properties in efficient time. This adoption will now
consider models that have all three workflow dimensions, i.e. process, resource, and case,
in place.

2.2 The Business Process Model and Notation

Along with the Class Diagram of the UML, Business Process Model and Notation(BPMN)
is considered to be one of the two most expressive and easiest for integration for the
interchange and execution level of business process management as discussed in Section
[[] With this view, this section provides the technical information of the BPMN and its
framework as well as a critical perspective on its advantages and weaknesses for systems
modelling in theory and practice.
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The Building Blocks in BPMN

The components of BPMN are divided into four categories [23]: (1)Flow objects,
(2)Connecting objects, (3)Artefacts, and (4)Swimlanes. Figure [2.3] presents the notational
elements in each of the categories and their corresponding graphical representations for
modelling.

Flow objects are the building blocks of business processes. An event is a stage of
execution of an activity, i.e. its start or termination, or an intermediate stage — an activity
momentarily suspends its termination while interactions between other activities are
performed. An activity/task encapsulates the process specifications that are performed
for some case with or without a set of resources that enact these processes. A rounded
rectangle, representing a task/activity, abstracts these information, and therefore, upholds
atomicity in its representation of the task/activity. The labels on each task/activity can
use a verb-case combination where the verb pertains to the type of enactment of the
task for some case, e.g. “Place Order”. Activities can be annotated graphically to signify
nesting of activities, i.e. subprocesses, and/or the presence of the execution of multiple
cases/process instances. Gateways represent joins and splits of processes that lead to or
from them, respectively. Symbols inside the graphical notation of the gateways specify
the type of split or join that they implement. For example, the ‘4’ signifies an AND split
or join of processes that are linked to the gateway.

Swimlanes Connecting Objects Flow Objects Artefacts
% Sequence Flow ——*» Activity {j Data Object D
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Figure 2.3: Categories of elements in BPMN.(Image source: [3])

Artefacts are nonactionable information in BPMN models. That is, they do not
directly influence execution of process flows or choices thereof. They act as means
of support for model interpretability. They may be expressed in informal, textual or
graphical form for documentation purposes.

Connecting objects connect the components of BPMN models. Sequence and message
flow objects specify the order of the components’ execution and the type of the interaction,
i.e. sequential execution of the two components linked by the sequence flow or an indication
of a requirement in receiving/sending a message that triggers an execution of an event.

Swimlanes represent organizational/participant information, i.e. (1) a pool that
represents the name of an organization/participant, and (2) lanes that represent the
entities found in the organization, e.g. departments. Each lane can contain flow and
connecting objects that show some processes that are performed inside the business entity.
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By the use of swimlanes and connecting objects, interactions can be done between and
within swimlanes of BPMN models.

Shown in Figure is a MBPN model of a recruiting process illustrated in [10].
This model illustrates one specification of employee recruitment from the time the
applicant submits his application to the HR Department until a decision is made by the
latter regarding his acceptance or rejection of his application. The interactions between
the applicant and the HR Department can be seen by the messages sent along the
communication arcs that cross between swimlanes in the model. An XOR gateway joins
two process flows regarding acceptance or rejection of the applicant. The “Application
assessment” activity contains a subprocess which evaluates some requirements pertaining
to the qualifications of the applicant.
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Figure 2.4: A BPMN model of a recruitment process in an organization.(Image source:
[10])

BPMN and the process dimension

Figure [2.4) can help show some of the immediate drawbacks in using implicit splits or
joins and the use of gateways in models. Apart from these drawbacks in the sample
BPMN model in this figure, the following are some other notational limitations of BPMN,

(i) BPMN provides freedom to connect components of the same category which can
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lead to ambiguity in modelling. For example, such connection is seen in Figure [2.4]
which involves three activities, namely, “Application assessment”, “Acceptance of
applicant”, and “Reject applicant”. This example shows an implicit split of process
flows from the first to the second and third activities. This split semantically means
a parallel execution of the latter set of activities. Conceptually, this parallelism
contradicts the intended business process of having exactly one of the processes
to be executed, i.e. either accept or reject an applicant. From this sample, it can
be seen that this freedom on notational convenience and concept excess can add
ambiguity and/or errors in representing process flows.

(ii) The splits and joins, either coming from activities themselves or from gateways, do
not explicitly provide information as to the basis of the choice of process execution.
For example, the implicit split such as the one mentioned in (i) do not state which
parameter is used to make the decision of acceptance or rejection of an applicant.
Annotations can be added however they are not readily actionable. They may
induce ambiguity when formalisms are absent in interpreting and transforming
them to executable entities in WfMS.

(iii) Implicit splits for process flows lead to mismatched split-join combinations in
designs. Note how the model uses an implicit split in (i) which induces two parallel
process that eventually converge to an XOR join gateway — a gateway that expects
exactly one incoming process flow to be executed.

(iv) The subprocess of the “Application assessment” activity in Figure show a
syntactically erroneous nesting of activities. This error is induced by labelling the
subprocess’ pool as “Recruiting Department” albeit it is just semantically a part of
the “Application assessment” activity which is executed in the HR Department.

(v) Note that there is no explicit representation of rules that control the execution of
the subprocess in (iv) when its main process is reached in the flow.

The problems of implicit joins and splits in (i) and nesting in (iv) are mentioned
in [10]. This paper mentions that aforementioned errors, although preventable, happen
in actual BPMN models of real-world systems. These models were developed using
BPMN 2.0 and represent 585 business processes from six companies. They vary in size
as well as they come from differing industries. They are analyzed and checked using 35
well-known BPMN guidelines and correctness rules that were proposed/recommended
in [49-51].

One of the recommendations in [10] that help avoid the errors relevant to (i) is to
avoid implicit splits and joins. Gateways can substitute implicit splits and joins while
still able to capture the same relations that are intended to be modelled using the latter
but without ambiguity in notational representations. This duplication in intent among
these control constructs is known as “concept excess”. In particular, concept excess refers
to the possibility to represent the same semantics in multiple graphical ways [10]. It has
been shown to negatively affect understandability [62] of models. Furthermore, the use
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Figure 2.5: Error percentages in modelling guidelines and correctness rules [49-51]
determined from real-world BPMN models as computed in [10].(Image source: [10])

of gateways enforces modellers to be explicit in the type of split or join that is required
in managing the process flows.

Model verification for process-centric workflows such as Petri nets and workflow
nets [25,[27] are well-known. In literature, this model verification is adopted for some
aspects in BPMN modelling which is mainly powered by BPMN to classic workflow
transformations. The issue in (iii) can also be addressed when these transformations
are checked for being well-structured nets. A hindrance to this adoption is the lack of
explicitness of BPMN models such as in (i), (ii), and (v), as well as lack of formalisms
for effective and rule-based interactions between interacting participants.

Another control scheme that is enacted using gateways are the k out of n process
executions in joins. For this, a complex gateway of BPMN is used with n preceding
process flows(and k of them are executed where k is less than or equal to n) that joins
at the gateway. This scheme is also offered as a means to enable representations of
fault tolerant systems wherein k out of n process need to be executed before activities
after the join are performed [63]. Implicitly, this means that there are at least n process
specifications which are actually performed and which ends at the join gateway. They
can correspond to different process flows that are taken by considering different process
flows from preceding split gateways in the designs.
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Figure [2.0] illustrates the use of a complex gateway in a representation of a fault
tolerant system [63]. This gateway can aid in performing the “n out of k process” pattern
in a BPMN model for such real-world systems. In this example, all n process specifications
lead from a parallel gateway. Note that activities themselves may encapsulate subprocesses
such that their execution time may differ relative to each other. That is, some activities
might take longer than others to complete. A complex gateway waits for k£ of them to
finish and thereby execute Activity C. At this level of model resolution, it is not easily
determinable which subset of the processes are considered as the k processes that the
gateway anticipates for completion. Furthermore, there is also no means of imposing
certain subsets of process executions to be waited for by the complex gateway. Note that
the same problem of the lack of support for explicit rules are still seen in the split and

join in Figure [2:6]
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Figure 2.6: A BPMN model of a fault tolerant system using a complex gateway for the
“k out n process” pattern.(Image source: [63])

Whenever there are still n — k activities that have not completed and a terminal event
is reached in the execution of the model, then the entire process instance is considered
completed. For a workflow net representation with this design involving such type of join
gateway, there will be tokens that are left out in non-terminal places in the net. This
implies that soundness will not hold for such kind of design.

In proving for properties in models that contain complicated process specifications,
e.g.n out of k process pattern, discriminator, multiple instances without synchronization,
there are efforts such as in [594|65] that introduced different notions of well-known model
properties in workflows. An example of these properties is soundness, namely, (1)classical
soundness, (2)generalized soundness, (3)relaxed soundness, (4)weak soundness, (5)up-to-
k-soundness(k > 2), (6)easy soundness, (7)lazy soundness, and (8)k-soundness(k > 2)(see
Section . The results in these efforts also included specifications on the verification
process of these notions of soundness. The results on decidability of workflow nets that
contain different types of such control flow structures with respect to these notions of
soundness are detailed in [65].
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On Process Interactions in BPMN modelling

The same problems for explicitness in designs and control schemes mentioned in Section 2.2]
for BPMN modelling can still be found in interactions between swimlanes of its models.
Added to these problems are the lack of formalisms to establish effective and explicit
rules in interactions between process participants, e.g. message throws [10]. Note on the
high percentage of errors with respect to message flows seen in Figure 2.5

Figure shows a process interaction in an auctioning system [2}3] with three
participants, namely, a Bidder, an Auctioning Service, and a Seller. In this auction
system, every bidder must ask an auctioning service to participate by sending a request.
As a response, the service may immediately send an acceptance or a rejection to the
bidder’s request. The service can alternatively forward such request to its seller. With
this, the seller can decide whether the request is accepted or rejected and then informs
the service of the decision. Thereafter, the service can send back this decision to the
requesting bidder. Notice how the exclusive nature of whether an acceptance or rejection
for the two interactions is not immediately apparent in the model. Furthermore, by
occluding their corresponding process specifications, it cannot be revealed that they
indeed are exclusive and for which conditions they are enacted upon.
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Acceptance Rejection ’ L
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Figure 2.7: The auctioning system viewed at the level of message passing in interactions
of process participants.(Image adopted from |[3].)

The interactions and abstractions thereof in Figure can be modelled by the
swimlanes of BPMN. The interactions are modelled by communication arcs that are
linked to events in the lanes for message passing. In order to prove properties and
correctness of these interactions and abstractions, some aspects of BPMN models can be
transformed to workflow modules [64] to help in verifying the effectiveness of interactions
among the participants. Workflow modules are essentially Petri nets with some places
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which are identified as interfaces [64]. These interfaces serve as sending or receiving places
of tokens in the net. The net’s tokens correspond to messages sent between interacting
modules. The concept of structural compatibility [2] and the varying levels thereof for
interactions are used for verification of the models. For each of these levels, modules are
checked for their number of interfaces and how these interfaces are used in the module.
Furthermore, compatibility between modules is measured by the sufficiency of the number
of sending/receiving places and whether every message sent(received) from one module
is received(sent) by another. Pairs of interacting interfaces are identified and will be
merged as one when their interacting modules are integrated as a workflow net.

Figure 2.8 shows two workflow modules corresponding to the Auctioning Service and
Seller participants from Figure Note that their interfaces (places) have been given
the same names to resolve the integration of of the two nets. These modules only show a
part of the interactions of the participants in Figure

The interactions shown in the modules in Figure correspond to their messaging
for acceptance and rejection recommendations in the auctioning process. The labelling
of the transitions/task imply the type of messaging involved, i.e. a prefix of ‘I’ is a
task corresponding to a sending of a message while ‘7’ a receiving message. By firing a
transition, a token can be distributed from one module to another when this token reaches
an interface place. Note that the integration of the modules is supported by creating
a workflow net with an added input place ‘i’, output place 'o’, two transitions ‘t1’ and
‘t2’, and arcs(drawn using dashed lines) that connect these additional components with
the components in the two modules as shown in the figure. Lastly, pairs of interacting
interfaces(i.e. places with the same names) are merged to create a unified workflow.

Note that from the process of integrating workflow modules, it is not hard to see
that there can be certain properties in the structure and behavior of the modules which
hold for each of them but not for their workflow net. For example, deadlock-freeness and
soundness may not hold in the integrated workflow [25].

BPMN and the resource dimension

As discussed in Section the passiveness of resources/participants with respect to the
interactions in BPMN models(such as in Figure is carried on through its workflow
net representation(such as in Figure . In design frameworks wherein resources are
essentially designed to act as containers and/or grouping symbols which cannot be
explicitly and/or readily usable throughout model transformations from their design to
implementation, the following issues arise,

e Resources do not and cannot directly interact with model components. They are
merely limited to being graphical guides to imply roles that are supported by a set
of events and activities in the workflow.

¢ Resources do not and cannot have modifiable attributes that can be used to control
and manage its set of model components.
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Figure 2.8: Workflow modules that show the interaction between Auctioning Service and
Seller participants with respe