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Abstract

Ceramic materials exhibit exceptional hardness, thermal stability, and wear resistance,
making them highly suitable for cutting tool coatings and a wide range of engineering
applications. However, brittleness significantly limits the usage, and observing crack
mechanisms during experiments can be challenging. Furthermore, ceramics that exhibit
multiple stabilizable phases – susceptible to slight variations in stoichiometry or external
forces – can experience considerable diminishment in their mechanical properties. For
example, transition metal diborides (TMB2), commonly used as hard coatings, can
crystallize in three distinct structural polymorphs (P6/mmm: α, P63/mmc: ω and γ).
Although phase-dependent properties have been observed experimentally, no comprehen-
sive study yet explores the relationship between these phases and their behavior under
real-world conditions – an understanding essential for future applications.

This work provides modeling insights into the relationships between the stability,
structural, elastic, and fracture properties of Group-IV-VII TMB2 ceramics. The primary
methodologies applied include ab initio molecular dynamics (AIMD) and machine-
learning-potential-assisted classical molecular dynamics (ML-MD). AIMD is employed
to evaluate phase stability and intrinsic properties in an unbiased manner, while also
generating training and validation sets for machine learning interatomic potentials
(MLIP) within the moment tensor potential (MTP) framework. Using the developed
MLIPs, ML-MD enables simulations at the nanoscale, providing additional insights into
size-dependent behavior and phenomena that are not observable at the atomic scale.
The model materials are TiB2 (Group-IV, favor α phase), TaB2 (Group V, favor α
phase), WB2 (Group-VI, favor ω phase, the rest TMB2:s in this Group favor α phase),
and ReB2 (Group-VII, favor γ phase as TcB2, while MnB2 favors α phase).

My contribution to the field is presented through 3 core publications. The workflow
and dataset generation protocols provide a general framework for developing robust,
transferable MLIPs for ML-MD simulations of ceramics under diverse strains, tempera-
tures, and loading conditions–beyond the reach of ab initio methods. The exceptional
mechanical properties of mono-crystalline TMB2 under both ambient equilibrium and
extreme loading, and/or temperature conditions are also confirmed. Focusing on the
three primary phase structures, this work reveals phase transition behaviors under ambi-
ent conditions and external forces, showing that such transformations can be activated
by minor shear deformation when metastable phases are present. The transformation
between the α and ω phases are highlighted in Group-IV, V, and VI TMB2. This
suggests that in real synthesis processes, phase transformations might be induced by the
strain field modulations from the substrate material, particularly as additional forces
along the growth direction can accelerate the process. Moreover, since the fracture
toughness KIc is also essential for assessing ceramic’s performance yet challenging to
measure with atomistic precision, here-developed MLIPs are utilized to examine Mode-I
crack responses in TMB2:s at nanoscale, validated against experimental KIc values.
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Kurzfassung
Keramische Werkstoffe zeichnen sich durch außergewöhnliche Härte, thermische Stabilität und
Verschleißfestigkeit aus, was sie besonders geeignet für Schneidwerkzeugbeschichtungen und
zahlreiche technische Anwendungen macht. Allerdings schränkt ihre Sprödigkeit die Einsatzmög-
lichkeiten erheblich ein, und die experimentelle Beobachtung von Rissmechanismen gestaltet
sich schwierig. Zudem können keramische Materialien mit mehreren stabilisierbaren Phasen
– empfindlich gegenüber geringen Änderungen in der Stöchiometrie oder äußeren Einflüssen –
deutliche Einbußen ihrer Eigenschaften erfahren. Ein Beispiel sind Übergangsmetall-Diboride
(TMB2), die häufig als Hartstoffbeschichtungen verwendet werden und in drei unterschiedlichen
Polymorphen kristallisieren können (P6/mmm: α, P63/mmc: ω und γ). Obwohl phasenabhängige
Eigenschaften experimentell beobachtet wurden, existiert bislang keine umfassende Studie, die
den Zusammenhang zwischen diesen Phasen und ihrem Verhalten unter realen Anwendungsbe-
dingungen untersucht – ein Verständnis, das für zukünftige Anwendungen entscheidend ist.

Diese Arbeit bietet modellbasierte Einblicke in die Zusammenhänge zwischen der Stabilität
sowie den strukturellen, elastischen und bruchmechanischen Eigenschaften von TMB2-Keramiken
der Gruppen IV bis VII. Die Hauptmethoden umfassen ab initio Molekulardynamik (AIMD) und
klassische molekulardynamische Simulationen mit maschinell gelernten Potentialen (ML-MD).
AIMD wird eingesetzt, um die Phasenstabilität und intrinsische Eigenschaften unbeeinflusst
zu bewerten sowie Trainings- und Validierungsdatensätze für maschinell gelernte interatomare
Potentiale (MLIP) im Rahmen des Momententensor-Potentials (MTP) zu generieren. Basierend
auf den entwickelten MLIPs ermöglichen ML-MD-Simulationen Untersuchungen im Nanomaßstab
und liefern zusätzliche Erkenntnisse über größenabhängige Effekte und Phänomene, die auf
atomarer Ebene nicht beobachtbar sind. Die untersuchten Modellmaterialien sind TiB2 (Gruppe
IV, bevorzugt α-Phase), TaB2 (Gruppe V, bevorzugt α-Phase), WB2 (Gruppe VI, bevorzugt
ω-Phase; andere TMB2 dieser Gruppe bevorzugen die α-Phase) und ReB2 (Gruppe VII, bevorzugt
wie TcB2 die γ-Phase, während MnB2 die α-Phase bevorzugt).

Mein Beitrag auf diesem Forschungsgebiet wird durch drei zentrale Publikationen dargestellt.
Der entwickelte Workflow sowie die Protokolle zur Datensatzgenerierung bilden ein allgemeines
Rahmenkonzept zur Entwicklung robuster und übertragbarer MLIPs für ML-MD-Simulationen
von Keramiken unter verschiedenen Dehnungen, Temperaturen und Belastungsbedingungen –
über den Anwendungsbereich von ab initio-Methoden hinaus. Die außergewöhnlichen mechani-
schen Eigenschaften von einkristallinem TMB2 unter Gleichgewichtsbedingungen sowie unter
extremen Belastungen und/oder hohen Temperaturen werden ebenfalls bestätigt. Mit Fokus auf
die drei primären Phasenstrukturen zeigt diese Arbeit Phasenumwandlungen unter Umgebungs-
bedingungen und externen Kräften auf und belegt, dass solche Transformationen bereits durch
geringe Scherbelastungen ausgelöst werden können, sofern metastabile Phasen vorhanden sind.
Besonders hervorgehoben wird die Umwandlung zwischen der α- und der ω-Phase bei TMB2 der
Gruppen IV, V und VI. Dies legt nahe, dass Phasenumwandlungen in realen Syntheseprozessen
durch Spannungsmodulationen des Substrats induziert werden können, besonders wenn Kräf-
te entlang der Wachstumsrichtung den Prozess beschleunigen. Da die Bruchzähigkeit KIc ein
entscheidender, aber schwer messbarer Parameter für Keramiken ist, werden die entwickelten
MLIPs zur Untersuchung von Mode-I-Rissreaktionen in TMB2 im Nanomaßstab eingesetzt und
mit experimentellen Werten validiert.
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Chapter 1

Introduction

1.1 Evaluation of mechanical properties in experiments

Ultra-high temperature ceramics exhibit exceptional properties, including superior hard-
ness, wear resistance, and thermal stability, making them indispensable for demanding
engineering applications. These attributes enable their widespread use in industrial
settings, such as cutting tools, protective coatings, and aerospace components [1, 2].
The mechanical properties of these ceramics play a critical role in determining their
performance and reliability across a wide range of applications. This section explores
the experimental evaluation of these properties, as well as relevant difficulties. The
discussion begins with an overview of essential parameters such as hardness, Young’s
modulus, and fracture toughness. Subsequently, the phase-dependent nature of these
properties is examined, emphasizing how phase-dependence affects their synthesis process
and mechanical behavior. Finally, the section addresses the challenges associated with
understanding failure mechanisms, shedding light on the complexities of crack initiation,
propagation, and ultimate failure in these brittle yet indispensable materials.

1.1.1 Key mechanical parameters of ceramics

The mechanical behavior of ceramics is characterized by a set of key parameters, each
of which provides critical insights into their performance under specific loading and
environmental conditions. Understanding these attributes helps to optimize ceramics for
specific uses, while advancements such as high-entropy ceramics and superlattice aim to
address their limitations, expanding their applicability [1, 3].

Mechanical properties such as strength, toughness, and ductility are critical parameters
in understanding materials’ behavior under stress, are commonly evaluated using stress-
strain curves. The curve begins with the elastic region, where the slope represents
the elastic modulus – a measure of stiffness and resistance to deformation under
small strains. Strength, particularly, can be derived from larger strains while reaching
the maximum stress. Ductility, on the other hand, is defined as the area under the
stress-strain curve from the strain at the first maximum (i.e., strength) to the fracture
point. For brittle materials, these two points are very close or may even overlap. As
a result, their plastic deformation is negligible, leading to very low ductility. Finally,
toughness is the total area under the stress-strain curve, encompassing both elastic
and plastic deformation regions.

1



CHAPTER 1. INTRODUCTION

Experimentally, elastic modulus, which defines a material’s stiffness, is often measu-
red through ultrasonic testing or nanoindentation. For ceramics like aluminum nitride
(AlN) [4], the elastic modulus is typically high, indicating significant resistance to elastic
deformation under applied loads. The results generally show minimal deformation before
the material reaches its elastic limit, contributing to their role in load-bearing appli-
cations. While for ceramics it is more common to provide indications of “compressive
strength” rather than “tensile strength” (which is contrary to computational tests),
compressive strength tests [5, 6], usually conducted using uniaxial compression. As
shown in Fig. 1.1, materials like carbon-alloyed TaN show exceptional compressive
strength, while providing typical crack pattern after failure. Similarly, hardness can
be measured using techniques such as Vickers or Knoop hardness testing [7, 8]. These
methods involve indenting the material with a diamond tip under a controlled force,
and the hardness is determined by the depth indentation. Ceramics often exhibit high
hardness, indicating they can endure significant contact stresses without undergoing
deformation, underscoring their applicability in harsh environments [9, 10]. Further,
ductility is often quantified by the total elongation or reduction in cross-sectional area,
which reflects the material’s capacity to deform plastically before fracture.

Fig. 1.1: Typical mechanical response of ceramics, as illustreated with micro-pillar
compression tests from Ref. [5] . (a) Engineering stress-displacement curves
acquired during the compression tests conducted in situ in a SEM. (b) Yield stress σY
plotted as a function of pillar diameter D. The dashed horizontal line corresponds to
the average σY. (c,d) Representative SEM images of two pillars with D = (c) 500 nm
and (d) 800 nm before and after compression, respectively. For full resolution of the
SEM images, see the original publication (Ref. [5]).

In contrast, toughness, often measured by techniques such as the fracture tough-
ness test or notched beam bending, provides insight into a material’s ability to resist
crack propagation [11]. Ceramics typically exhibit brittle failure, meaning they fracture
suddenly with little to no plastic deformation before failure. When tested, materials
like silicon carbide (SiC) [12, 13] display a sharp, catastrophic break once the critical

2



1.1. EVALUATION OF MECHANICAL PROPERTIES IN EXPERIMENTS

stress intensity factor is reached. This brittleness is a hallmark of ceramics, where cracks
initiate at microstructural flaws and propagate rapidly. Hence, evaluating their ability
to resist crack propagation under stress through critical stress intensity factor (KIc) is
essential.

Crack propagation can occur under three distinct modes of loading: mode-I (opening
mode), mode-II (sliding or in-plane shear mode), and mode-III (tearing or out-of-plane
shear mode) [14, 15]. Among these, mode-I is considered the most critical for brittle
materials, as it typically represents the weakest fracture resistance. KIc is determined
experimentally using methods such as single-edge notched bending (SENB) and chevron-
notch techniques, by introducing a pre-crack or notch into the specimen, applying a
controlled load, and measuring the critical load at which crack propagation occurs. High
hardness ceramics like transition metal nitrides (TMN) presents normally low KIc of
around 1-5 MPa·m1/2 [5].

1.1.2 Phase-dependent mechanical properties

For ceramics such as silicon nitride (Si3N4), transition metal carbides like tungsten
carbide (WC), and transition metal diborides (TMB2), the presence of multiple stable
phases is affected by slight variations in stoichiometry or external forces can significantly
affect their mechanical properties [16–18]. Fig. 2.1 shows the theoretically stabilizable
phases of TMB2 compounds (where TM=Ti, Ta, W, Re).

Fig. 1.2: Phase stability comparison in ab initio calculations, as illustrated with
potential energy, EP, difference between each polymorph (α, ω, γ) and the lowest-
energy (ground-state) polymorph from room-temperature ML-MD equlibration (720-
atom supercells). The zero EP difference shows that TiB2 and TaB2 favor the α phase,
WB2 favors the ω phase, and ReB2 favors the γ phase. All the data are derived from
this study, for computational details see the Section 3.

In Si3N4, for example, there are two primary phases: the α-phase (s.g. P3m1) and
β-phase (s.g. P63/mmc). While both phases exhibit excellent high-temperature stability
and wear resistance, the β-phase typically offers better toughness and strength [16,
19]. Sintering can kinetically transform α phase to the ideal β-phase, but incomplete
conversion leads to mixed phases, reducing mechanical performance. WC, known for
its inherent stability, can experience a shift toward the cubic W2C phase with slight

3



CHAPTER 1. INTRODUCTION

deviations in stoichiometry from hexagonal phase, leading to a notable reduction in
mechanical performance and wear resistance [17, 20]. Fig. 1.3 shows the shear plasticity
strength of TMB2 compounds in different phases, highlighting how phase transitions can
significantly impact mechanical behavior, as detailed discussed in [Publication II]
together with phase transition behavior.

Defects and imperfect stoichiometry create discrepancies between theoretical predictions
and real-world mechanical performance. Formation of un-preferred phases can lead to
earlier failure or reduced operational performance, making it essential to account for these
variations when designing for high-stress environments. Understanding and predicting
these behaviors through modeling, alongside experimental validation, is crucial for
optimizing the performance and reliability in applications.

Fig. 1.3: Phase-dependent shear strength comparison with stress-strain curves during
shear deformation along (0001)[1210] at the nanoscale (≈15,000 atoms) of (a) TiB2,
(b) TaB2, (c) WB2, and (d) ReB2 in all three phases (α in teal, ω in blue, γ in
orange), as the gray triangular-line exhibit AIMD result in preferred phase (TiB2 and
TaB2 favor the α phase, WB2 favors the ω phase, and ReB2 favors the γ phase.). All
the data are derived from this study, for computational details see the Section 3.

1.1.3 Challenges in understanding failure mechanisms

Deformation and mechanical failure in ceramics are heavily influenced by the structural
composition and crystallographic defects, with microstructural flaws playing a crucial
role in determining overall strength and reliability. These effects arise not only at the
nanoscale in single-crystal regions but also in more complex structures where phase
transformations can occur between stable and metastable phases, either throughout
the material or in localized areas under ambient operation conditions. This interplay
between defects, microstructure, and phase behavior is central to understanding and
predicting the mechanical performance of ceramics.

Ceramics often exhibit complex failure mechanisms before reaching their ideal fracture
point, even in single-crystal forms – which are already challenging to synthesize – and
these mechanisms become even more complex in polycrystalline samples containing
numerous defects. Under deformation, instead of breaking along a clear cleavage plane,
multiple defect sites typically form, leading to intricate stress concentrations and ulti-
mately catastrophic failure when the highest strength is reached [21]. Consequently, the

4
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fracture stress observed in experimental conditions is often much lower than predicted
by atomistic simulations. Furthermore, localized phase transformations also adds to the
challenge of accurate detection and evaluation in experiment. Nanoscale simulations,
therefore, provide a critical tool for tracking these transformations and understanding
how they influence mechanical performance under stress.

Experimental techniques used to characterize ceramic materials often fall short in
resolving phase-dependent properties, making it difficult to fully understand how different
phases contribute to the material’s behavior under stress. On the top of that, this
limitation is worsened by the complex microstructural features inherent in ceramics,
which can include variations in grain size, porosity, and the presence of secondary
phases, all of which play a crucial role in determining their mechanical properties.
Furthermore, challenges in the experimental characterization of ceramic properties stem
even for the most cutting edge modern experimental methods (e.g., SEM and AFM), in
accurately capturing phase transitions, such as crystalline-to-amorphous transformations
or polymorphism [22, 23]. These transitions, which can affect material properties like
strength and toughness, are often subtle and difficult to detect in real time, complicating
the correlation between structure and performance. Consequently, there is a pressing
need for predictive modeling to complement experimental approaches, enabling a more
comprehensive understanding of the relationships between microstructure, defects, and
mechanical performance. Such modeling enables the isolation of individual defect effects,
which is challenging in experiments where multiple factors are intertwined, thereby
preventing clear identification of the dominant influences on material behavior.

1.2 Conventional modeling approaches: Foundations and limitations

Modeling material performance across different scales has been essential for understanding
and predicting material properties. From the atomistic scale to the mesoscale, this section
presents a comprehensive overview of current simulation methods for ceramic materials,
highlighting their typical outputs and limitations.

1.2.1 Atomistic simulations

The first-principles method calculates a system’s electronic states by solving Schrödinger
equation [24] without empirical parameters, based solely on fundamental physics 1.
The properties of condensed matter are primarily determined by the interactions of
valence electrons with each other and with ions, which define the electronic structure.
Understanding material’s properties through this approach involves using Hamiltonian
operators to solve interacting quantum many-body problems. The expression for the
interacting many-body Hamiltonian [25] is as follows

Htot =
∑︁

j

P 2
j

2Mj

+
∑︁

i

P 2
i

2m
+

∑︁
j <j

ZjZje
2

|Rj − Rj| +
∑︁
i<i

e2

|ri − ri| +
∑︁
i,j

−Zje
2

|Rj − ri| , (1.1)

1* General time-dependent Schrödinger equation: iℏ d
dt

|Ψ(t)⟩ = Ĥ|Ψ(t)⟩, where t is time, |Ψ(t)⟩ is the state vector
of the quantum, and Ĥ is the Hamiltonian operator, an observable.
** For a system of N electrons and M nuclei in a materials: ĤΨ (r1, r2, . . . , rN ) = EΨ (r1, r2, . . . , rN ), where E
is the total energy.
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CHAPTER 1. INTRODUCTION

where the first term on the left is the kinetic energy of the nucleus, the second term
is the kinetic energy of the valence electron, the third term represents the Coulomb
interaction between nuclei, the fourth term represents the Coulomb interaction between
electrons and the fifth term represents the interaction between the nucleus and the
electron. Here we have disregarded the spin and relativistic effects for the sake of
simplicity.

Exact solutions to quantum many-body problems are practically impossible due to the
complexity of the wave function, which scales exponentially with the number of particles.
A key challenge is accurately treating electron-electron interactions. For ground-state
properties, many-body problems can be effectively reduced using Density Functional
Theory (DFT), which solves self-consistent single-particle equations and provides an
approximation for analyzing electronic ground-state properties. Rather than solving for
the many-body wave function Ψ, DFT focuses on the electron density ρ(r), which is
a function of only three spatial coordinates, irrespective of the number of electrons.
Initially, the Hohenberg-Kohn theorem [26] established that a system’s ground-state
properties are uniquely determined by its electron density, providing the foundation for
DFT. However, it does not provide a practical way to calculate the electron density
directly. To overcome this limitation, the Kohn-Sham equation [27] was introduced,
reformulating the problem into a set of self-consistent single-particle equations, making
the calculations more accessible while retaining accuracy[︃

− ℏ2

2m
∇2 + V (r) + VH(r) + VX C(r)

]︃
ψi(r) = εiψi(r) , (1.2)

This expression is similar to the Schrödinger equation for a system containing multiple
electrons and multiple nuclei interacting with each other, but differs from it for a
multi-electron system. The left-hand side of the Kohn-Sham equation contains three
potentials: V , VH and VX C . The first potential, V , represents the Coulomb interaction
between the electron and nucleus. The second, VH , is the Hartree potential, accounting
for the classical electron-electron repulsion. And the third, VX C , captures the exchange-
correlation contribution, including quantum mechanical electron-electron interactions
that are beyond simple Coulomb forces. The iteration of self-consistent process follows:

– First define an initial guess for electron density ρ(r).
– Take the initial electron density as a known quantity, the Kohn-Sham equation is

solved for the single-particle wave function ψi(r).
– Use the single-particle wave function obtained in the second step to get the electron

density ρK S(r) = 2 ∑︀
i ψ∗

i (r)ψi(r).
– Compare the calculated electron density ρK S(r) with the initial electron density

ρ(r). If ρK S(r) and ρ(r) agree, then ρ(r) is the ground state electron density of
the system and can be used to calculate the total energy of the system. If different,
the previous calculated ρ must be updated. The cycle then continues from step 2.

By iteratively solving these self-consistent equations, DFT enables the accurate and
efficient calculation of electronic structure and material properties, bridging the gap
between fundamental quantum mechanics and practical material science applications.

6



1.2. CONVENTIONAL MODELING APPROACHES: FOUNDATIONS AND LIMITATIONS

Fig. 1.4: Stability tests in DFT calculations, as illustrated with formation energy
of MX binaries from Ref. [28] for (a) carbides, X=C, and (b) nitrides, X=N, in
the cubic rocksalt phase with fully occupied lattice sites (MX) or containing vacancies
(M0.75X, MX0.75, MX0.50), M=Al, Ti, Zr, Hf, Nb, V, Ta, Mo, W.

Today, DFT is a widely used first-principles method for studying the ground-state
properties of molecules and solids, including ceramics such as nitrides and carbides.
DFT helps explore various properties, such as phase stability (e.g., Ef of nitrides and
carbides ceramic with/without vacancies as shown in Fig. 1.4), electronic structure,
mechanical strength, and defect behavior in these materials. For example, in nitrides
and carbides, DFT can predict elastic-constants-based descriptors of mechanical proper-
ties, thermal stability, and thermoelectric parameters, making it valuable for designing
high-performance ceramics [28–32]. However, DFT has limitations, including high com-
putational costs, especially for large or complex structures, and difficulty accurately
modeling electron correlations and long-range interactions. To overcome some of these
limitations, ab initio molecular dynamics (AIMD) is often used in conjunction with
DFT. AIMD simulates the dynamic behavior of atoms and molecules over time, allowing
for more accurate studies of temperature-dependent properties and phase transitions in
ceramic materials.

AIMD is grounded in quantum mechanics, to compute forces between atoms during
simulations. Unlike classical molecular dynamics (MD), where force fields are predefined
and will be discussed later, AIMD dynamically calculates forces based on electronic
structure at each step, offering a more accurate description of atomic interactions. This
allows for the simulation under real-world conditions, such as temperature and pressure,
providing insights into time-dependent properties that static DFT calculations cannot
capture. AIMD offers several advantages, including the ability to account for temperature
effects, which is essential for studying thermal expansion, phase transitions, and diffusion
processes. For example, AIMD can explore how nitrides or carbides behave under high
temperatures, predicting properties like melting points or thermal stability [34–36]. It
can also handle larger and more complex systems than DFT, overcoming phonon-related
limitations by considering larger supercells. This flexibility makes AIMD useful for
designing and optimizing ceramic materials with intricate structures, such as multi-
phase, disordered systems, and superlattice structure, as shown in Fig. 1.5.

However, due to its computational intensity, AIMD simulations are often restricted to
short timescales (typically units of picoseconds) and relatively small system sizes (a few

7



CHAPTER 1. INTRODUCTION

Fig. 1.5: Finite-temperature AIMD calculations, as exemplified with snapshots of
AlN/TiN SLs from Ref. [33] with of (a) 1.25 nm, (b) 2.5 nm, and (c) 5 nm,
strained in the [110] direction (parallel to interfaces), corresponding to selected strain
steps. Snapshots at 14% (a,b,c) correspond to a stress drop one step beyond the yield
point. Snapshots at 18% (a), 26% (b), and 20% (c) correspond to the deepest stress
minimum during the stage of plastic deformation, while snapshots at 34% (a,b,c) show
the fracture point. The yellow colouring highlights structural changes and interface
incoherency, while the red colouring marks initiating voids/cracks. Panel (d) illustrates
the B1-to-B3 phase transformation in AlN.

hundred atoms). This limits its ability to capture long-term behavior, large-scale defect
evolution, or phenomena that require extended simulations, such as creep in ceramics or
very slow diffusion processes [21]. Despite these constraints, AIMD remains a powerful
tool for exploring dynamic and temperature-dependent properties at the atomic level.

1.2.2 Nanoscale simulations

Classical molecular dynamics (MD) simulates atomic interactions using predefined force
fields, allowing detailed insights into atomic-scale phenomena, for systems with thousands
to millions of atoms. It is computationally efficient for simulating short timescales (up
to units of nanoseconds) but becomes costly for large systems or long-term behavior.
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Fig. 1.6: Nanoscale tensile simulations of TMB2 in ML-MD (TM = Ti, Ta, W, Re)
along the [1010] direction, performed using MD with MLIP. (a) TiB2 and (b) TaB2 in
the α phase, (c) WB2 in the ω phase, and (d) ReB2 in the γ phase, which are their
preferred phases. Simulation sizes range from 104 to 106 atoms for each material. All
the data are derived from this study, for computational details see the Section 3.

9
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For ceramics, MD has proven useful in studying mechanical properties, diffusion, defect
dynamics, and thermal behavior. For example, MD simulations of ceramics like silicon
carbide (SiC) or titanium nitride (TiN) often involve system sizes ranging from tens of
thousands to millions of atoms [37–39]. This enables the study of fracture mechanics
(e.g., tensile tests for TMB2 as shown in Fig. 1.6 and discussed comprehensively in
[Publication I] ), crack propagation, or grain boundary behavior under various stress
and temperature conditions, offering a detailed understanding of atomic-level processes
in ceramics. MD’s flexibility lies in its ability to simulate different environmental
conditions, such as high temperature, pressure, or strain, making it suitable for diverse
applications. It can model complex scenarios, including interactions with impurities or
defects, providing a versatile tool for materials design and analysis. Researchers can
also define specific environments, like mechanical loading or thermal gradients, to study
how ceramics behave under real-world conditions.

However, MD has limitations. Its accuracy heavily depends on the quality of the
interatomic potentials, which define how atoms interact. Developing accurate potentials
for specific materials can be challenging, requiring deep knowledge of the material
system. Moreover, MD simulations require expertise to properly set up and interpret,
especially for complex ceramics with multiple phases or defects [40–42]. While MD is
powerful for short timescales and small to moderate system sizes, it struggles with
long-term processes or large-scale behaviors, limiting its applications.

1.2.3 Continuum modelling

Finite-element phase-field simulations, in contrast, operate on a mesoscale, modeling
the evolution of microstructures such as grain growth, phase transitions, and domain
patterns. It handles much larger systems (up to millimeters) over longer timescales (up
to seconds or more) at a reduced computational cost compared to MD, as it focuses on
continuous fields rather than individual atoms. This makes it valuable for predicting the
long-term durability of ceramics used in high-temperature applications, such as coatings
or refractory materials.

In ceramics studies, phase-field models can simulate grain growth or phase transfor-
mations across domains ranging from micrometers to millimeters, involving millions
of grains. One typical example is the study of tetragonal-to-monoclinic phase trans-
formations in zirconia (ZrO2)-based ceramics [44, 45]. In these systems, phase-field
simulations have been used to model how microcracks initiate and propagate due to this
transformation, especially in thermal barrier coatings exposed to extreme temperature
fluctuations. Another example is the observation of grain growth in traditional alloys [43,
46, 47], as shown in Fig. 1.7. Here, the evolution of grain boundaries is tracked over
time, providing insights into how microstructures coarsen with real-time processing,
effectively capturing the migration and interaction of grain boundaries, allowing for
predictions of grain size distributions and growth kinetics.

One major limitation of phase-field modelling is the high computational cost, especially
when simulating large systems or long-term processes, making it time-consuming and
resource-intensive. Additionally, the method relies on accurate material parameters,
such as grain boundary energies and mobility, which are often difficult to obtain or

10
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Fig. 1.7: Finite-element phase-field simulations, as exemplified with atomic evolution
in traditional alloys from Ref. [43] for the different time: (a) 15 s, (b) 2 min, (c-e)
18 min, and (f) 60 min. (d) and (e) are enlarged of the blue frames in (c). (d) The
process of the grain “19” is engulfed by surrounding grains. (e) The edge dislocations
inside the grain “7” and grain “9”, and the selected area Bragg fringe pattern.

measure for complex ceramic systems. Another limitation is that phase-field models,
while effective at capturing mesoscale phenomena, lack the atomic-level detail required to
fully understand nanoscale interactions [48, 49]. This makes the method less suitable for
studying phenomena where atomic-scale precision is critical, such as defect interactions
or small-scale phase transformations.

1.3 ML potentials: Bridging atomic and nanoscale

In MD simulations, interatomic potentials play a crucial role, as they define the forces
between atoms, governing material behavior at the atomic level. Empirical potentials
are applicable to traditional materials like metals, enabling simulations at scales that
are beyond the reach of DFT and AIMD. However, these empirical potentials are often
structure-specific and limited in their flexibility. They tend to work well for systems
with simple compositions and typical physical settings (like annealing or moderate
deformation) but are less effective for more complex materials or simulations requiring
magnetic properties or other specialized conditions.

11
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In recent years, machine learning interatomic potentials (MLIP) have emerged as a
promising alternative [50]. By leveraging large datasets and sophisticated algorithms,
MLIPs can capture a much wider range of atomic interactions, bridging the gap between
atomic-scale precision and nanoscale simulation capabilities [51, 52]. This has opened
new opportunities for exploring complex materials, such as multicomponent alloys or
ceramics, at unprecedented scales. MLIPs offer greater freedom in material selection and
enable more flexible simulation environments, such as handling diverse magnetic and
mechanical properties. However, the development of MLIPs remains in its early stages,
and a systematic strategy for generating and validating these potentials across different
materials systems is still lacking, posing challenges for their broader application.

1.3.1 Empirical potentials

Empirical interatomic potentials provide approximate mathematical descriptions of
atomic forces, allowing for efficient simulations of large systems. They are typically
derived from a combination of experimental data, such as lattice constants, elastic
constants, or cohesive energies, and quantum mechanical calculations. The fitting process
involves adjusting the potential parameters to reproduce these key properties for specific
materials. Common types of empirical potentials include the Lennard-Jones potential,
the Embedded Atom Model (EAM), and the Tersoff potential.

For simple and typical ceramics like cubic TiN and BN, which often exhibit ionic
or covalent bonding, potentials like the Tersoff potential are frequently used [53]. The
Buckingham potential is particularly effective for ionic materials, as it accounts for both
repulsive and attractive interactions between ions, making it suitable for ceramics like
ZrO2 [54, 55], while being less commonly used for metals. The Tersoff potential, on the
other hand, is often used for covalently bonded ceramics such as BN [56], as it includes
angular-dependent terms that better represent directional bonding in covalent systems.
For alloys, the EAM is one of the most commonly applied potentials. EAM is particularly
well-suited for metallic alloys, as it accounts for the many-body interactions characteristic
of metallic bonding. It has been used to model alloys like copper-aluminum or nickel-
titanium [57, 58], where the metallic nature of the bonding is critical to understanding
properties such as dislocation behavior and phase transformations.

The key advantage of empirical potentials is their computational efficiency, enabling
simulations of systems with millions of atoms over timescales of nanoseconds to micro-
seconds. This makes them ideal for large-scale simulations of grain boundaries, defects,
diffusion, and mechanical deformation in ceramics and alloys. Additionally, empirical
potentials are easy to implement and are widely available for many common materials,
providing a straightforward way to simulate a broad range of materials systems. However,
empirical potentials come with significant limitations. Their accuracy is confined to
the specific material systems for which they were designed, and they often struggle to
capture the full complexity of bonding in more diverse or complex materials. For exam-
ple, empirical potentials typically struggle to model systems with mixed bonding (e.g.,
ionic-covalent or metallic-ionic), and they lack the flexibility to handle materials with
magnetic properties or highly anisotropic interactions. Moreover, empirical potentials
are typically fitted to specific experimental or theoretical material’s parameters (e.g.,
lattice constants, cohesive energies, or elastic moduli), and their transferability to new
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materials or conditions is often poor. This restricts their use in studying novel materials
or complex phenomena, such as phase transitions or extreme environments.

1.3.2 ML-Based potentials

Machine-learning potentials represent a transformative approach for modeling interatomic
interactions, providing a significant advancement over traditional empirical potentials by
being data-driven and highly flexible. Unlike empirical potentials, MLIPs are trained on
quantum mechanical data – often derived from DFT or AIMD – to capture a broader
and more accurate range of atomic interactions 2. This makes them particularly valuable
for complex materials, where traditional models may struggle to describe the diversity of
bonding environments and atomic-scale phenomena. Fig. 1.8 summarizes the comparison
of present typical MLIPs [59].

Fig. 1.8: Comparison of MLIPs for Mo system trained using various formalisms and
their implementation from Ref. [59]. (right) Test error versus computational
cost. The gray dashed line indicates an approximate Pareto frontier formed by the
convex hull of points lying on the bottom left of the chart. Timings were performed
by LAMMPS calculations on a single CPU core. Black arrows denote the “optimal”
configuration for each MLIP that was used in subsequent comparisons. (left) Root-
mean-square errors in predicted energies for the selected MLIPs. The upper left and
lower right triangles within each cell represent training and test errors, respectively.

Several types of MLIPs have emerged in recent years, each offering unique metho-
dologies and strengths, could be classifed into three different models: artificial neural
network (NN) models, kernel-based models, and linear models [60]:

• As a representative example of the first category, Neural Network Potentials
(NNP) are among the most widely used, employing deep learning techniques

2* In the case of MLIP, the process involves fitting the energy, forces, or stresses of a specific configuration.
These configurations need to be encoded using descriptors of the local atomic environment in a mathematical
form for training, as discussed in the following paragraphs.
** This approach contrasts with training empirical potentials, where raw or direct data, such as lattice
constants or surface energy, are used directly without the need for encoding the atomic environment in such a
detailed manner [50]. 13
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to predict potential energy surfaces (PES) based on atomic configurations. This
approach, used in frameworks like ANI [61], has been applied to oxide ceramics,
accurately modeling phase transitions and defect behavior.

• A well-known example of second type, which employs a kernel function to map
atomic configurations into a higher-dimensional space where linear relationships can
be more easily identified, is Gaussian Approximation Potentials (GAP). GAP
utilized Gaussian process regression to interpolate PES [62]. GAP, as implemented
in the QUIP package [62], has been particularly effective for simulating complex
systems like tungsten alloys [63, 64], where both short-range covalent and long-
range Van der Waals interactions are significant.

• Finally, linear models typically use descriptors of atomic environments (e.g., radial
distribution functions, bond angles) as input features and fit a linear model to
predict the energy or forces. For instance, Atomic Cluster Expansion (ACE)
is designed to provide a systematic and hierarchical representation of interatomic
potentials as a sum of contributions from clusters of atoms [65]. ACE is implemented
in, e.g., the PACE software [66], which is optimized for large-scale simulations of
multicomponent systems. The ACE formalism allows for systematic improvements
in accuracy by expanding atomic cluster functions, offering a balance between
computational efficiency and precision. This makes ACE especially suited for a
wide range of materials systems, including where traditional potentials may fall
short. Compared to other MLIPs, ACE requires fewer fitting parameters, making it
more computationally manageable for large systems. Moment Tensor Potentials
(MTP), utilized in the MLIP package [67, 68], provide a middle ground between
accuracy and efficiency, employing moment tensor descriptors to capture local
atomic environments. Here the PES is represented as a linear combination of
moment tensor descriptors M, as Etotal = ∑︀

i

∑︀
α CαMα (Ri), where Cα are the

coefficients to be fitted, Ri is the local environment of atom i. MTPs have been
successfully used in large-scale simulations of ceramics like silica [69], demonstrating
their ability to case-dependent properties but still face limitations in terms of
transferability across different phases without extensive retraining.

However, the accuracy of these models is highly dependent on the quality and
diversity of the training data, and generating comprehensive datasets – especially for
multicomponent or highly anisotropic materials – remains computationally expensive.
Furthermore, while MLIPs like NNP, GAP, MTP, and ACE excel within the chemical
space they are trained on, their transferability to novel phases or extreme conditions is
often limited. A systematic strategy for training MLIPs that covers a broad range of
material properties, phases, and defect configurations is still lacking. Additionally, while
they offer near quantum-level accuracy for large-scale simulations, the computational
cost of training and the expertise required to implement them are significant challenges.

Furthermore, in recent years, a number of universal foundation models have been deve-
loped [70–72]. These models are designed to be applicable to a wide range of compounds
and are typically trained on large databases, such as the Materials Project [73], comple-
mented by additional DFT-generated datasets. They demonstrate promising scalability in
some complex environments, such as aqueous systems and cubic alloys. While generally
consistent with DFT, these models require caution under dynamic conditions or in less
stable, low-symmetry systems like orthorhombic phases and interfaces. Nonetheless, their
baseline representations greatly speed up training of specialized models.

14



Chapter 2

Materials selection

Group-IV-VII transition metal diborides (TMB2) are a significant class of materials
known for their remarkable properties, including high hardness, excellent transport
properties (both thermal and electrical), and unique structural characteristics, offering a
suitable basis for further optimization motivated by specific industrial needs [74]. Phase
and stoichiometry control in TMB2 compounds have garnered significant interest in
engineering fields, highlighting the need for large-scale simulations to predict and optimize
their behavior, thereby enhancing material performance and reliability in practical
applications. Fig. 2.1 illustrates the most typical three phase prototypes of Group-IV-
VII transition metal diborides, highlighting the α (space group(s.g.), P6/mmm), ω (s.g.
P63/mmc), and γ phases (s.g. P63/mmc). The α phase is favored by all Group-IV and
-V TMB2:s, Group-VI TMB2:s prefer to stabilize in α (CrB2 and MoB2) and ω (WB2)
phase, while the γ phase is characteristic of Group-VII TMB2:s [75, 76].

Fig. 2.1: Structural representations of the most typical phases in Group-IV-VII
transition metal diborides: (left) α phase, (middle) ω phase, and (right) γ phase.
Green atoms represent boron, while metal atoms are displayed in larger sized and dis-
tinguishable colors. The stackings marked here are according to the metallic sublattice.

2.1 Transition metal diborides

Group-IV (TiB2, ZrB2, HfB2) and Group-V (VB2, NbB2, TaB2) transition metal
diborides (TMB2:s) belong to a class of ultra-high temperature ceramics (UHTCs)
known for their excellent physical and chemical properties. These TMB2:s compounds
share several key characteristics, such as crystallizing in the same hexagonal AlB2-type
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structure (under/near ideal stoichiometry), exhibiting excellent thermal stability, and
having high hardness, wear resistance, and good electrical and thermal conductivity [77,
78]. However, Group-IV and -V diborides, generally exhibit higher melting points
(above 3000°C) compared to Group-VI diborides, which have melting points around
2100°C as summarized in Ref. [79]. Additionally, Group-IV diborides tend to show
superior oxidation resistance, forming protective oxide layers at high temperatures [80].
Regarding commonly applied temperatures, their similar mechanical response under
tensile and shear deformation between 300 to 1200 K is discussed in [Publication I]
and [Publication II] , with example of TiB2 and TaB2, respectively.

Fig. 2.2: Anisotropic properties of Group-IV TMB2:s during tensile deformation
along three main orientations. (Left) Stress-strain scatter pattern during tensile
deformation along [0001] (square), [1010] (hexagonal), and [1210] (rotated hexagonal)
for TiB2 (gray), ZrB2 (brown), and HfB2 (yellow). The shaded area represents isotropy,
with smaller areas indicating greater isotropy. Stress-strain curves of (a) TiB2, (b)
ZrB2, and (c) HfB2 along [0001] (teal), [1010] (red), and [1210] (blue), respectively.
All the data are derived from this study, for computational details see the Section 3.

Group-VI TMB2:s, including CrB2, MoB2, and WB2, exhibit slightly different
phase preferences and properties. While WB2 tends to favor the ω phase, in contrast
to the α phase preferred by the others. However, it can also be stabilized in the α
phase, which will be discussed further in the next chapter. In terms of applications,
CrB2 is commonly used for wear-resistant coatings and holds potential in tribological
applications [81]. MoB2 and WB2 are often utilized as hard coatings, high-temperature
structural materials, and have emerging potential in electronic applications due to
their conductivity and durability [82]. However, these materials tend to exhibit less
structural stability at extreme temperatures, with a tendency toward phase separation.
Research has shown that forming solid solutions between MoB2 and WB2 can enhance
their stability; however, this approach tends to reduce the material’s toughness [83–85].
In addition to previous researches, this work presents a direct comparison between
Group-IV to -VI TMB2 compounds, Tab. 1 summarizes the collected data on these
materials, highlighting their preferred crystallographic phases.

Group-VII TMB2:s are less frequently studied due to the high costs of synthesis and
the need for precise equipment and controlled conditions. These materials exhibit unique
bonding characteristics, with a tendency toward more complex phase behavior compared
to Group-IV-VI TMB2:s, primarily stabilizing in the γ phase. ReB2 stands out with
exceptional mechanical properties, achieving hardness around 54 GPa in experiments,
rivaling diamond [86]. ReB2 also has a high melting point (≈3000°C) and metallic
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Group TMB2 a c C11 C33 C44 C12 C13 E B G ν

TiB2 3.036 3.218 588 430 252 79 111 547 244 243 0.126
Group-IV ZrB2 3.176 3.536 531 381 263 68 129 511 232 226 0.132

HfB2 3.139 3.478 502 401 271 74 114 508 223 227 0.120

TaB2 3.094 3.327 510 392 252 72 125 486 221 214 0.134
Group-V VB2 2.998 3.030 652 496 224 136 125 572 283 246 0.164

NbB2 3.124 3.297 397 324 123 54 139 332 198 136 0.220

WB2 3.014 14.035 531 383 72 195 232 316 305 119 0.327
Group-VI CrB2 2.978 2.963 536 367 102 165 173 370 269 146 0.270

MoB2 3.031 3.328 508 413 126 127 187 392 270 156 0.257

Tab. 2.1: Room-temperature lattice parameters and elastic constants of Group-IV,V,VI
TMB2:s derived from ab initio MD simulations. Lattice parameters (a, c in Å) and
elastic constants (Cij , in GPa) at the temperature 300 K, presented together with
the polycrystalline bulk modulus, B (in GPa), shear modulus, G (in GPa), Young’s
modulus, E (in GPa), and Poisson’s ratio, ν. WB2 is in the ω phase, while all the
others in α phase. All the data are derived from this study, for computational details
see the Section 3.

conductivity, making it suitable for applications in extreme environments, such as wear-
resistant coatings. In contrast, MnB2 and TcB2 have limited industrial applications due
to their instability and lack of extensive research [87]. Also, magnetism is a characteristic
of Group-VII TMB2:s, which affect directly their electronic and mechanical behavior,
particularly in MnB2 [88], making it suitable for specific applications in electronics
or spintronics. However, it adds another layer of complexity for synthesis as well as
modelling. Current research trends focus on further developing ReB2 for ultra-hard
materials in the field of engineering, while MnB2 is considered as candidate for energy-
related application.

2.2 Phase-dependent behavior of diborides

The typical polymorph structures of TMB2 discussed here are the α, ω, and γ phases.
However, other phases can also appear, sometimes deviating from the ideal TM/B =
1:2 stoichiometry, and forming structures with different atomic ratios or incorporating
defects. Particularly for W-B system, which exhibits a wide range of stabilizable stoi-
chiometries [89], as illustrated in Fig. 2.3.

For instance, orthorhombic and cubic phases have been observed in some TMB2 com-
pounds, such as MnB2, where non-hexagonal polymorphs emerge. These phases, while
often metastable, tend to revert to the hexagonal structure under standard conditions.
Their similarity to other phases makes them challenging to detect, often leading to
ambiguity in phase characterization. High-pressure phases are another possibility, where
extreme pressures can induce structural changes in transition metal diborides. Theoreti-
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Fig. 2.3: Phase stability of W-B systems from Ref. [89], as predicted via 0 K DFT
calculations of formation enthalpies: (Left) Enthalpies of formation for the W–B
system, predicted using variable-composition evolutionary computations. Each square
represents an individual structure, with the most stable ground-state phases (solid
circles) connected to form the convex hull. (Right) A detailed convex hull plot, showing
the formation enthalpy as a function of composition for selected tungsten borides. The
plot includes all the lowest-enthalpy ground-state phases located on the convex hull,
providing a clear visualization of the energetically favorable phases.

cal predictions for compounds like TiB2 and ScB2 suggest transitions into high-pressure
polymorphs [90], though experimental validation remains elusive due to the complexities
of high-pressure synthesis and detection. Many TMB2 compounds, particularly those
in Group-V and Group-VI, exhibit boron-deficient (substoichiometric) phases, often
arising from the inherent difficulty in controlling stoichiometry during synthesis [91].
Boron vacancies within the crystal lattice introduce defects that significantly impact
mechanical, electrical, and thermal properties. These vacancies disrupt the metallic
and covalent bonding networks, influencing phase stability, electrical conductivity, and
thermal behavior. In some cases, TMB2 compounds may also form boron-rich (over-
stoichiometric) phases, especially during high-temperature processing [92–94]. Excess
boron can precipitate as secondary phases, such as elemental boron or boron-rich com-
pounds (e.g., B6, B12), which increase hardness but may reduce toughness. Additionally,
overstoichiometric boron can complicate sintering processes, making it more difficult to
achieve dense, defect-free materials. These phases can form thin amorphous layers at
grain boundaries, which are typically undetectable by standard diffraction techniques [91,
95]. However, it can be observed and quantified using neutron diffraction or transmission
electron microscopy (TEM) [96], as demonstrated in Fig. 2.4, where the tissue phase in
TiB4.42 is identified using high-resolution TEM (HR-TEM).

The phase behavior and mechanical response of TMB2 becomes increasingly complex
when combined with other diborides or/and compounds, or subjected to extreme condi-
tions. Group-IV TMB2:s generally retain their α phase over a wide temperature range.
However, under specific conditions—such as alloying—these materials can exhibit the
formation of solid-solution or grain-boundary [97]. In contrast, Group-V and Group-VI
display more complex phase behaviors at high temperatures. For example, at elevated
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Fig. 2.4: High-resolution transmission electron microscopy (HR-TEM) top view
analysis of a TiB4.42 thin film, revealing interatomic length scales from
Ref. [96]. The dashed lines in panel (a) delineate specific nano-columns separated
by boron-rich tissue phases. A magnified view of the selected area indicated by the
dashed square in (a) is presented in (a-i), showcasing an ideally oriented [0001] column,
with visible boron hexagons representing the basal B plane of the hexagonal TiB2
crystal lattice (α phase). Measurements indicate an interatomic nearest B-B distance
of 1.8 Å. The blue shaded area highlights an approximately 2 nm thick tissue phase
(TP) separating the columns. Panel (b) depicts a α-TiB2 atomic model while Ti in blue
and B in green. Panel (c) presents the TiB2 supercell with B-B distances delineated.

temperatures, WB2 can undergo a transformation to another hexagonal phase, which
reduced its hardness [98]. Additionally, phase transitions induced by temperature or
pressure can also lead to drastic improvement in electrical behavior. For instance, certain
materials like NbB2 exhibit superconductivity at low temperatures [99, 100], with the
transition to insulating or semiconducting states under specific conditions. Alloying dibo-
rides (e.g., ZrB2-HfB2 systems) can also facilitate the formation of solid solutions with
enhanced properties [101]. These solid solutions are often thermodynamically stable at
elevated temperatures, but they can undergo phase separation under specific conditions.
For example, TaB2 may decompose into various diborides or metal-rich phases, with
the specific phase stability being influenced by the alloying elements and processing
conditions, as disscused in [Publication V] with an example of AlB2-TaB2.

As discussed above, the synthesis and application of TMB2 involve a complex interplay
of chemistry and defects that significantly influence the resulting phase and properties of
the material. However, traditional characterization methods often struggle to detect these
variations in experiments and properly control the composition, making it challenging to
observe comprehensive phase-dependent behavior. As such, a deeper investigation into
the phase stability and transformation processes is essential for optimizing the design
and performance of diboride materials. On this purpose, the impact of phase transitions
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Fig. 2.5: Stress-strain curves during (0001)[1210] shear deformation of TiB2 are
presented for different phases:(a) α, (b) ω, and (c) γ (recall Fig. 2.1, the stacking
marked here are according to metallic sublattice, same for the next figure). The
simulations conducted using different sizes of supercell at 300 K, and provide insight
into the transition from atomic scale (≈103 atoms) to nanoscale (≈105 atoms). All the
data are derived from this study, for computational details see the Section 3.

on mechanical properties is further discussed in [Publication II] , which explores the
relationship between phase stability, microstructural changes, and performance metrics,
as illustrated in Fig. 2.5, the complete ω → α phase transition occurs during shear
deformation in TiB2. In contrast, Fig. 2.6 depicts a partial α → ω transition in WB2
under similar conditions. These two examples highlight the significant impact of phase
transitions on room-tenperature shear strength; specifically, the full transition in TiB2
leads to a more pronounced reduction in mechanical performance compared to the partial
transition observed in WB2. Furthermore, while the decline in shear strength values
does not exhibit significant changes with increasing size, the underlying phenomena
associated with these properties do vary across atomic to nano scale.

Fig. 2.6: Stress-strain curves during (0001)[1210] shear deformation of WB2 are
presented for different phases:(a) α, (b) ω, and (c) γ (recall Fig. 2.1). The
simulations conducted using different sizes of supercell at 300 K, and provide insight
into the transition from atomic scale (≈103 atoms) to nanoscale (≈105 atoms). All the
data are derived from this study, for computational details see the Section 3.
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Chapter 3

Computational methodology

This section outlines the methodology for constructing accurate machine learning in-
teratomic potentials (MLIPs) tailored to the selected materials. The process begins
with equilibrium structure calculations at finite temperatures using ab initio molecular
dynamics (AIMD), followed by training MLIPs within the moment tensor potential
(MTP) formalism using the AIMD-generated data. The procedures for generating the
training dataset, detailing the training workflow, and validating the developed MLIPs
to ensure their reliability and applicability are presented.

3.1 Ab initio calculations

The ab initio calculations in this study serve as both the training data for developing
MLIPs and the reference standard for their validation, playing a critical role in the
overall process. The accuracy and precision of these calculations directly influence the
performance of the target machine learning-assisted molecular dynamics simulations (ML-
MD). Initially, equilibrium structures of the selected materials are determined through
a two-step process combining isobaric-isothermal and canonical ensembles. Subsequently,
step-wise deformation and extreme loading simulations are conducted using only the
canonical ensemble. Finally, static calculations for surface energy and point defect energy
are performed with the same level of accuracy, ensuring consistency and enabling the
evaluation of the transferability of the developed MLIPs.

Finite-temperature Born-Oppenheimer ab initio molecular dynamics (AIMD) simu-
lations and first-principles calculations were conducted using VASP [102], employing
the projector augmented wave (PAW) [103] method and the Perdew-Burke-Ernzerhof
exchange-correlation functional revised for solids (PBEsol) [104]. All simulations were
performed with a plane-wave cut-off energy of 300 eV, as the AIMD simulations utilized
Γ-point sampling of the reciprocal space, while a k-mesh of 60 in each direction for
first-principles calculations. It is important to note that the pseudopotentials employed
in this study use minimal valence electrons and show good agreement with prior theore-
tical studies (as exhibited in [Publication I] ). However, for accurate calculations of
electronic, phonon, or magnetic properties, the choice of pseudopotential requires careful
testing to ensure accuracy and reliability.

For the equilibration of here-studied TMB2, a two-step process was followed: (i)
a 10 ps AIMD isobaric-isothermal (NpT) simulation using the Parrinello-Rahman
barostat [105] and Langevin thermostat, and (ii) subsequent AIMD runs of 2 ps for
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Fig. 3.1: Example of convergence evaluation during an AIMD simulation: The volume,
total energy, and temperature evolution with an (a,b) NpT ensemble, using a
720-atom (left) WB2 and (right) ReB2 supercell and temperature of 300 K, respectively.
Total energy variation during a (c,d) subsequent NVT simulation with time-averaged
lattice parameters—calculated based on the NpT data after the red vertical line
(converged). Specifically, equilibration is reached after 5 ps: steady trends in property
vs. time. Thus, lattice parameter a is calculated as time-averages after 3 ps till the end
of the simulation. All the data are derived from this study, for computational details
see the text in this section.

300 K and 4 ps for 1200 K in the canonical (NVT) ensemble, using the time-averaged
lattice parameters obtained from the NpT simulation (see Fig. 3.1 with example of
ω-WB2 and γ-ReB2). For both tensile and shear deformation simulations, a 2%
strain increment was applied, followed by a 2.7 ps NVT simulation at each strain step
to ensure equilibration before proceeding to the next increment. The extreme load for
tensile deformation corresponds to a 150% elongation along the deformation direction,
while for shear deformation, it corresponds to a 60% displacement along the fixed
direction. The purpose of conducting simulations under extreme load conditions is to
generate additional atomic environments describing the onset of void formation and
fracture. These representations are crucial for diborides capable of redistributing stress
more plastically–such as WB2, with a higher valence electron concentration than TiB2–
favoring bond rearrangements or local transformations to other polymorphs. For more
ductile materials, these conditions may offer limited additional insight over step-wise
tests, requiring adjusted load levels for effective training data. Static 0K calculations
were performed using a smaller TMB2 supercell (between 50-80 atoms). The supercell
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was fully relaxed at 0 K (in terms of lattice constants and atomic positions) until forces
on atoms were below 10−5 eV/Å and total energy was converged until 0.01 eV/supercell.

3.2 Training workflow for machine-learning interatomic potentials

This section presents a detailed strategy for training MLIPs tailored to ceramic systems,
with a focus on binary diboride ceramics as an example. By outlining the key steps
in the training process, it provides a comprehensive guide for developing accurate and
transferable MLIPs that can be applied to a range of ceramic systems in case-dependent
simulations. The developed training procedure is described below and depicted in
Fig. 3.2.

Fig. 3.2: Schematic visualization of general training procedure, validation, and up-
fitting. For the validation part, there’s an example of stress/strain curves of TiB2 while
uniaxial step-wise tensile deformation, in which the results of AIMD and ML-MD
exhibite excellent agreement. This result are derived from this study, for details see
the text in this section.

In this study, ab initio training data are generated using finite-temperature AIMD
simulations, which typically produce a large number of highly correlated configurations.
Here, a configuration refers to a structure characterized by ab initio total energy, atomic
forces, and the six components of the stress tensor. To prevent over-representation
of similar configurations, the MLIP training process begins with a small subset of
AIMD configurations and employs the MLIP’s uncertainty estimation, quantified by the
extrapolation/Maxvol grade [106] (γ), to iteratively expand the training set. This process
continues until all AIMD configurations are accurately represented. The Maxvol grade,
mathematically formalized in Refs. [106–108], measures the degree of extrapolation
in MLIP predictions for energy, forces, and stresses. Specifically, γ ≤ 1 indicates
interpolation, while γ > 1 reflects extrapolation. Building on the work of Shapeev and
co-workers [68], who define γ ≤ 2 as accurate extrapolation, a threshold value of γthr = 2
is adopted in this workflow as the criterion for concluding the training loop.
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In greater detail, fitting/up-fitting process involves training the MTP to reproduce
the high-fidelity reference data obtained from ab initio calculations, serves as critical
bridges between an untrained or insufficiently trained MLIP and a fully developed, relia-
ble MLIP. This is achieved by minimizing the errors between the MTP’s predictions and
the reference values for energies, atomic forces, and stress tensors. The initial training
dataset (TSi), capturing configurations representative of the system’s equilibrium and
slightly perturbed states. The resulting potential is validated against an independently
and randomly selected validation set (VS) to assess its accuracy within the interpola-
tion domain of the sampled configuration space. Active learning complements this by
iteratively improving the model’s robustness. It begins with the MTP (IPi) estimating
an extrapolation grade (γ) for each configuration in LS, quantifying the degree to which
a configuration lies outside the training data’s interpolation region. Configurations with
high γ values, indicative of extrapolation, are flagged for further exploration. For these
configurations, will be incorporated into the next training dataset (TSi+1). The MTP is
then retrained as IPi+1, gradually reducing its extrapolation errors.

A detailed example involving TiB2 and other ceramics is thoroughly discussed in
[Publication I] .

Algorithm 1 MLIP training

(1) Generate a pool of AIMD configurations.
(2) Divide the pool into an initial training set (TS0), a learning set (LS), and a validation set

(VS) by randomly selecting 0.5%, 79.5%, and 20% of non-overlapping configurations.
(3) Fit an initial MLIP (MLIP0, trained on TS0). If γ of all configuration in the LS and VS

is below γthr = 2, exit. Else, build TS1 by adding (maximum 15) highly extrapolative
configurations from the LS to TS0 and fit a new MLIP (MLIP1, trained on TS1).

(4) While γ of all configurations in the LS and VS is above γthr = 2, build TSi by adding
(maximum 15) highly extrapolative configurations from the LS to TSi−1, and fit a new
MLIP (MLIPi, trained on TSi).

Technical comments on above procedure:
• MLIP0 in the step (3) is trained from an untrained MTP. MLIPi in step (4) is

fitted from MLIPi−1 if maximum γ in the (i − 1)th iteration is below 1000.
• The VS is not used for training but only as a reference.
• Besides γ, quality of the fit at each iteration i in (4) is monitored through errors

of energies, forces and stresses (quantified by common regression model evaluation
metrics, MAE, RMSE, R2, see e.g. Refs. [109–111]) for the TSi (fitting errors) and
the VS (validation errors) 1.

As the core principles underlying the training process – including the systematic
generation of high-quality training data, the iterative selection of configurations based
on extrapolation uncertainties, and the progressive refinement of the model—are widely
applicable across different formalisms, the training workflow outlined in this section,
although developed using the MTP formalism, is expected to be transferable to other

1One may use fitting and validation errors as additional criterion (besides γthr) for exiting the training loop.
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machine learning frameworks. In particular, those that incorporate a similar definition
of extrapolation control, such as the Atomic Cluster Expansion (ACE) method, thereby
broadening its applicability to different classes of materials and simulation conditions.

3.3 Molecular dynamics simulation

After developing MLIPs, the next step is to perform ML-MD simulations. Initially, the
MLIP is validated by setting up a finite-temperature MD simulation that closely mirrors
the conditions of the original AIMD calculations, essentially replicating the settings used
in the training set. However, it is important to note that exact equivalence between MD
and AIMD settings is not achievable, particularly in dynamic simulations. The relevant
thresholds for acceptable differences between the two approaches are also provided. Once
validated, the MLIP is scaled to nanoscale systems, and methodologies for evaluating
the stability and feasibility of large-scale simulations are introduced to ensure model
reliability throughout the simulations.

ML-MD calculations were carried out using the LAMMPS code [112], interfaced with
the MLIP-2 package [113], which enables simulations with MTP-type potentials. The
computational setup for the atomic-scale ML-MD simulations (validation tests) was
made equivalent to the AIMD tests described previously, in terms of simulation duration
and ensemble type. Specifically, the simulations were performed using the same supercell
size and orientation as those in the AIMD calculations.

Fig. 3.3a-d shows stress/strain curves obtained from room-temperature AIMD and ML-
MD tensile tests, where TMB2 supercells (TM = Ti, Ta, W, Re, containing approximately
103 atoms and with dimensions around ≈ 1.53 nm3) are loaded in the [0001] direction.
The excellent quantitative agreement between the AIMD and ML-MD results confirms
the reliability of the developed MLIPs, as deformation and mechanical failure phenomena
match closely (Fig. 3.3-Snapshot). Specifically, the time-averaged stresses in ML-MD
deviate from AIMD values by 0.07–1.94 GPa, resulting in a statistical error with
RMSE ≈ 1.02 GPa and R2 ≈ 0.9997. It is important to note that a small difference
(≤0.04) in the yield point between the two methods does not indicate a loss of agreement.
As the applied stress approaches the material’s strength, the system is near failure, and
the dynamic nature of the simulation introduces randomness in this process. Repeated
AIMD and ML-MD simulations would yield nearly overlapping average results for
strength and yield point. The fracture point during [0001] deformation is excluded from
the analysis, as the stress component in AIMD does not drop to zero due to long-range
electrostatic effects that are not accounted for in the ML-MD simulations.

Nanoscale ML-MD tests were conducted using supercells containing over 104 atoms.
Before simulating mechanical deformation, the supercells were equilibrated for 5 ps at
the targeted temperature using the isobaric-isothermal (NpT) ensemble coupled to the
Nosé-Hoover thermostat, with a 1 fs time step. Tensile loading was applied by deforming
the supercell at each time step with a constant strain rate of 0.5 m/s, while accounting
for lateral contraction (Poisson’s effect) through the NpT thermostat. Building on the
atomistic validation results, Fig. 3.4 illustrates the size effect across both atomistic
and nanoscale regimes, demonstrated with TiB2 under continuous tensile deformation
along the [0001] direction. At the nanoscale, the size effect continues to influence the
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Fig. 3.3: Example of validating the developed MLIPs:. Comparison of stress–strain
responses (a–d), deformation mechanisms, and fracture initiation (e–h) during step-
wise tensile test subject to [0001] per AIMD (blue) and ML-MD (red) of (a) α-TiB2,
(b) α-TaB2, (c) ω-WB2, and (d) γ-ReB2, respectively. All the data are derived from
this study, for computational details see the text in this section.
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failure mechanism, although the maximum tensile strength shows only a slight variation.
Additionally, not all developed MLIPs are capable of performing nanoscale simulations.
MLIPs that produce stable configurations far beyond the yield point over extended
timescales, along with reliable extrapolation grade values, are considered viable. In
contrast, those that fail to progress beyond yielding are deemed unviable., as exhibited
in [Publication I] . For cases involving phase transformations – such as those induced
by shear deformation, as demonstrated in [Publication II] – which are inherently
more complex to model and pose greater challenges for MLIP training, the current
viability criteria may require re-evaluation. However, since tensile deformation is the
most fundamental and straightforward deformation test, it is always preferable to
first confirm the availability of the MLIP through tensile tests before proceeding with
more complicated simulations. This offers a robust foundation for further investigations,
such as the pre-cracked model used to simulate fracture toughness, as presented in
[Publication III] .

Fig. 3.4: Example of size effect in nanoscale via ML-MD in α-TiB2 under [0001] tensile
deformation, with Poisson’s contraction applied on lateral sides. (a) At a 5 nm3 scale,
failure occurs primarily along a single fracture surface; (b) At a 15 nm3 scale, failure
extends across multiple sites throughout the structure, indicating a distributed fracture
pattern. All the data are derived from this study, for computational details see the
text in this section.
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Chapter 4

Data processing and analysis

Using the ab initio and machine-learning-assisted molecular dynamics (ML-MD) simula-
tions, this chapter deals with the data processing and analysis methodologies employed
to extract key materials properties for Group-IV-VII diborides. The machine-learning
interatomic potentials (MLIPs), developed and validated through the methods outlined
in previous chapters, enable accurate calculations of lattice parameters and phase sta-
bility under deformation at finete-temperature. The focus here is to demonstrate the
procedures for deriving relevant material properties, such as theoretical strength and
elastic modulus, while also performing a quantitative structural analysis of nanoscale
supercells, are crucial for understanding their mechanical response at atomic scale.

4.1 Structural stability

Structural stability can be assessed using both static and dynamic calculations. Each
method offers distinct insights into the behavior of a material under different conditions,
with the static calculations focusing on ground-state properties, and dynamic simulations
capturing finite-temperature effects.

In static calculations, a material’s structural stability is typically verified through
phonon spectrum analysis. The absence of imaginary frequencies across the Brillouin
zone is considered a key indicator that the structure is dynamically stable at zero Kelvin.
This criterion ensures that the atomic arrangement does not spontaneously distort or
collapse into a lower symmetry phase. Moreover, among the stable phases, the one
with the lowest total energy is defined as the “ground-state” structure. This aspect of
the results has been previously investigated, demonstrating the strong stability of both
phases in the TMB2 [114] compounds discussed here as shown in Fig. 4.1.

In finite-temperature AIMD calculation, the stability of a structure can be evaluated
through three main criteria. First, after the simulation reaches equilibrium, the material
must retain its crystallographic phase without any signs of distortion or amorphization.
Simultaneously, the phonon spectrum should exhibit no negative frequencies. Second,
both energy and force fluctuations during the simulation should converge to a stable
pattern, indicating that the system has reached thermal equilibrium. An example of
this stabilization is shown in Fig. 4.2, where fluctuations in energy and force flatten
over time. Third, elastic constants can also be used as an additional measure of
stability, by satisfying the Born stability criteria. For example, cubic crystals must
satisfy conditions [115] such as C11 > 0, C44 > 0, and C11 − C12 > 0. These conditions
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Fig. 4.1: Static stability tests from Ref. [114] for TMB2 (TM are Group-IV-VII transition
metals). (a) Total energy difference, with various stackings compared to the reference
AAAA (α) stacking. The data points in-between stackings AAAA, BAAA, BABA (γ),
and ABBA (ω) correspond to step-wise shifts of the respective metallic plane(s) as
schematically shown below the x-axis. (b) Mechanical and dynamical stability of TMB
structures with AAAA, BAAA, BABA, and ABBA stacking sequences, respectively.

ensure that the material is resistant to shearing and volume changes, thereby confirming
its mechanical robustness.

For hexagonal phases, the evaluation of structural stability using elastic constants
follows specific criteria tailored to the crystal symmetry, as it is characterized by a six-
fold rotational axis, have a unique set of elastic constants due to their symmetry [116].
Hexagonal systems are described by five independent elastic constants: C11, C12, C13,
C33, and C44. Their mechanical stability conditions are expressed as [116, 117]:

• C11 > 0: The stability against longitudinal compression or extension along the
a-axis.

• C33 > 0: The stability against longitudinal compression or extension along the
c-axis.

• C44 > 0: The the material can resist shear deformation in the basal plane.
• C11 − C12 > 0: To ensure stability against shear in the a-plane.
• (C11 +C12)C33 > 2C2

13: To ensure mechanical stability against coupled deformations
involving the a- and c-axis.
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The full comparison of elastic constants for all here-studied materials are exhibited in
[Publication II] . If any of these conditions are violated, the material is mechanically
unstable and could undergo spontaneous deformation or collapse under stress.

Fig. 4.2: Evaluation of structural stability in AIMD simulations, demonstrated by
TaB2. (a) Converged atomic stacking and lattice parameters (Å). (b) Convergence of
temperature (K) and total energy (eV) as a function of simulation time (fs).

4.2 Mechanical properties

Calculating mechanical properties can be approached through two main methods: one
based on elastic constants and another based on phenomenological models.

The mechanical properties are directly derived from the elastic constants, which can
be used to calculate important mechanical properties such as bulk modulus, shear
modulus, Young’s modulus, and Poisson’s ratio. For hexagonal systems, the Voigt and
Reuss approximations are commonly used to estimate the average modulus. For bulk
modulus B, the Voigt average assumes uniform compression, while the Reuss average
assumes uniform stress. The Voigt bulk modulus BV [118] for a hexagonal system is a
measure of the material’s resistance to uniform compression and is given by

BV = 2 (C11 + C12) + 4C13 + C33

9 , (4.1)

The Reuss average bulk modulus, BR, is given by:

BR = 1
2S11 + 2S12 + 4S13 + S33

, (4.2)
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where Sij are the components of the elastic compliance matrix, which is the inverse of
the stiffness matrix defined by the elastic constants. The polycrystalline bulk modulus
(B) represents the effective modulus for the aggregate material. Since real materials often
exhibit behavior between uniform strain and uniform stress conditions, B is typically
calculated as the average of BV and BR

1:

B = BV + BR

2 , (4.3)

The shear modulus G reflects the material’s resistance to shear deformation and can
be calculated from the elastic constants. The Voigt average shear modulus, GV , assumes
uniform strain, is given by

GV = 1
30 (7C11 − 5C12 + 12C44 + 2C33 − 4C13) , (4.4)

The Reuss average shear modulus, GR, assumes uniform stress, is given by

GR =
(︃

4 (S11 − S12) + 3S33 + 4S44

5

)︃−1

, (4.5)

Similarly, the polycrystalline shear modulus (Hill shear modulus), G, is given by

G = GV + GR

2 , (4.6)

Young’s modulus E and Poisson’s ratio ν can also be derived from the elastic constants
in similar forms 2

E = EV + ER

2 , (4.7)

ν = νV + νR

2 , (4.8)

Furthermore, another common approach is using micro-mechanical testing or phenome-
nological models to estimate properties such as hardness, tensile strength, and fracture
toughness, as we discussed in [Publication I] , [Publication III] (with theoretical
methods), and [Publication V] (with experimental methods). A detailed summary
of the mechanical properties of TMB2 compounds (where the transition metals (TM)
belong to Group-IV-VI of the periodic table) is presented in Tab. 1.

At the end, by following Ref. [119], pre-cracked models are built and generated for
calculating critical stress intensity under Mode-I (KI C) by molecular statics calculation,
in which the value based on empirical equation KI = σf

√
a – where σf is the applied

stress required to propagate a crack and
√

a is the square root of the crack length, as
presented in detail in [Publication III] .

1Since BV represents the stiffest response and BR the softest response, the ranking among these values should
be: BR ≤ B ≤ BV

2* The Voigt Young’s modulus: EV = 9BV GV
3BV +GV

, the Reuss Young’s modulus: ER = 9BRGR
3BR+GR

** The Voigt Poisson’s ratio: νV = 3BV −2GV
2(3BV +GV ) , the Reuss Poisson’s ratio: νR = 3BR−2GR

2(3BR+GR) .
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4.3 Phase identification

For common phases, such as fcc, bcc, and hcp structures, phase identification is typically
straightforward and can be efficiently performed using a combination of methods. Soft-
ware packages like Ovito [120] and Atomman [121] are widely utilized in computational
materials science for visualizing and analyzing atomic structures. They use techniques
such as common neighbor analysis (CNA), Voronoi analysis, and polyhedral template
matching to classify atoms based on their local environment, which works well for
these standard crystal structures. For instance, as shown in Fig. 4.3, the original cubic
zincblende (B3) phase is clearly identified with a specific quantitative ratio (highlighted
in red). During tensile deformation, the emergence of the hexagonal wurtzite (B4) phase
(marked in purple) can be directly detected, signifying a phase transformation under
mechanical stress. This transition from the B3 to B4 phase highlights the material’s
structural response to deformation.

However, these methods have limitations when it comes to identifying more complex
phases, especially those involving irregular stacking sequences, disordered structures,
or multi-element systems with non-standard atomic arrangements. Such phases often
deviate from the ideal atomic configurations that these algorithms are optimized to
recognize. As a result, these tools may struggle to accurately differentiate between
complex phases or capture fine structural details, e.g., the gray part in Fig. 4.3, which
is marked as “unknown”.

Fig. 4.3: Phase identification using standard tools in the OVITO package, as illus-
trated by AlN/TiN superlattices with MD snapshots, from Ref. [33] (SLs)
with Λ = {1.25, 2.5, 5, 10} nm under [110] tensile strain. The red-purple-grey color
scheme represents regions where the B3 (red), B4 (purple), or other (grey) structural
types are stabilized, as determined using the OVITO package.

To accurately study the phase transitions during deformation in the hexagonal phases
under investigation, two methods were developed to detect these changes: bond analysis
and Steinhardt parameter [122] calculations, as shown in [Publication II] .

The bond length and angle evaluations (as shown in Fig. 4.4b with pie chart) focus on
the nearest-neighbor B–B bonds within a 2 Å cutoff radius, chosen from the [a/

√
3, a]

interval to capture all the TMB2 phases examined. This approach ensures that each
boron atom is considered 3-coordinated. The analysis classifies boron layers as “flat”
based on bond angles of (120 ± 5)◦, a range determined from the standard deviation
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(≈ 11◦ for all TM elements) calculated from AIMD equilibration at room temperature
under the NVT ensemble. For “puckered” layers, the bond angles differ depending on the
specific TM element. Any angles falling outside these specified ranges were categorized
as “other”, indicating potential structural deviations.

Fig. 4.4: Structural analysis and phase identification of nano-sized supercells (here
≈ 53 nm3) using here-developed methods, as exemplified by TiB2: both
transforming to their energetically preferred phase upon shearing of the
less favorable (ω resp. α) polymorph. (a) References for the α, ω and γ stackings
(based on room-temperature equilibrated ab initio-scale supercells) using (a-1) angular
descriptors (nearest-neighbor B–B atoms) and (a-2) Steinhardt parameters, namely,
the q4 vs. q6 plots. The ranges of qis are always the same, (0.2, 0.8)). (b) Structural
analysis of (b-1) α-TiB2 and (b-2) ω-TiB2 subject to room-temperature (0001)[1210]
shear deformation, in equilibrium and after yielding. All the data are derived from
this study, for computational details see the Section 3.

For the Steinhardt parameter (as shown in Fig. 4.4b with scatter patterns) calculations,
the PYSCAL [123] package was utilized. The Steinhardt parameters are particularly
useful for distinguishing complex crystal structures, were averaged using Voronoi-weighted
values, which provide more nuanced insights into the local environment [124]. Specifically,
10 Steinhardt parameters (q3, q4, . . . , q12) were calculated for each atom, with the focus
on the boron sublattice. Although the individual parameter values (ranging from 0 to
0.6) did not clearly differentiate between the diboride polymorphs, pairwise combinations
of the parameters (qi vs. qj, where i, j ∈ [3, 12] and i ̸= j) revealed distinct patterns.
Extensive testing showed that q3 vs. q4 plots were most effective [124] in estimating the
phase composition of nanoscale supercells.
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Chapter 5

Contribution to the field

Results of my doctoral research are presented in manuscripts published in international
peer-reviewed journals. The list below includes all my publications in chronological order ,
while working on computational materials science and solid state physics. The most
important studies—selected for this thesis, with me as first author or co-author —
are briefly summarised in the upcoming paragraphs. The first-author publications,
representing my main contributions , will be discussed in detail in the remainder of
this chapter.

1. S. Lin, C. Shen, H. Zhang. Electric-field-tunable thermal conductivity in anti-
ferroelectric materials. Materials Today Physics, 32, 100998, 2023.
https://doi.org/10.1016/j.mtphys.2023.100998

2. J. Yue, Y. Liu, W. Ren, S. Lin, C. Shen, H.K. Singh, T. Cui, T. Tadano,
H. Zhang. Role of atypical temperature-responsive lattice thermal transport on the
thermoelectric properties of antiperovskites Mg3XN (X = P, As, Sb, Bi). Materials
Today Physics, 41, 101340, 2023.
https://doi.org/10.1016/j.mtphys.2024.101340

3. S. Lin, J. Yue, W. Ren, C. Shen, H. Zhang. Strong anharmonicity and medium-
temperature thermoelectric efficiency in antiperovskite Ca3XN (X = P, As, Sb, Bi)
compounds. Journal of Materials Chemistry A, 12 (30), 19567-19579, 2024.
https://doi.org/10.1039/D4TA02118E

4. S. Lin, L. Casillas-Trujillo, F. Tasnádi, L. Hultman, P.H. Mayrhofer, D.G. Sangio-
vanni, N. Koutná. Machine-learning potentials for nanoscale simulations of tensile
deformation and fracture in ceramics. npj. Computational Materials, 10, 67, 2024.
[Selected: Publication I]
https://doi.org/10.1038/s41524-024-01252-3

5. T. Stasiak, S. Debnárová, S. Lin, N. Koutná, Z. Czigány, K. Balázsi, V. Buršíková,
P.Vašina, P.Souček. Synthesis and characterization of ceramic high entropy carbide
thin films from the Cr-Hf-Mo-Ta-W refractory metal system. Surface and Coatings
Technology, 485, 130839, 2024. [Selected: Publication IV]
https://doi.org/10.1016/j.surfcoat.2024.130839

6. C. Hu, S. Lin, M. Podsednik, S. Mráz, T. Wojcik, A. Limbeck, N. Koutná,
P.H. Mayrhofer. Influence of co-sputtering AlB2 to TaB2 on stoichiometry of non-
reactively sputtered boride thin films. Materials Research Letters, 12(8), 561-570,
2024.
[Selected: Publication V]
https://doi.org/10.1080/21663831.2024.2357700
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7. N. Koutná, S. Lin, L. Hultman, D.G. Sangiovanni, P.H. Mayrhofer. Machine-
learning potentials for structurally and chemically complex MAB phases: strain
hardening and ripplocation-mediated plasticity. Materials & Design, 114307, 2025.
[Selected: Publication VI]
https://doi.org/10.1016/j.matdes.2025.114307

8. S. Lin, D. Holec, D.G. Sangiovanni, T. Leiner, L. Hultman, P.H. Mayrhofer,
N. Koutná. Shear-activated phase transformations of diborides via machine-learning
potential molecular dynamics. Under Review in Acta Materialia.
[Selected: Publication II]
https://doi.org/10.48550/arXiv.2503.18171

9. S. Lin, Z. Chen, R. Janknecht, Z. Zhang, L. Hultman, P.H. Mayrhofer, N. Koutná,
D.G. Sangiovanni. Machine-learning potentials predict orientation- and mode-
dependent fracture in refractory diborides. Under Review in Acta Materialia.
[Selected: Publication III]
https://doi.org/10.48550/arXiv.2503.18171

Here I briefly summarise main findings of the publications used for this thesis and
give a comment on my own contribution.

Publication I - Main Contribution

S.Lin, L.Casillas-Trujillo, F.Tasnádi, L.Hultman, P.H.Mayrhofer, D.G.Sangiovanni,
N.Koutná. npj. Computational Materials, 10, 67, 2024 .

We studied machine-learning interatomic potentials (MLIPs) for simulating the me-
chanical response of TiB2 monocrystals up to failure. Our MLIP accurately replicates
ab initio stresses and fracture mechanisms during room-temperature uniaxial tensile
deformation. For larger-scale tensile tests, we performed MLIP up-fitting with additional
ab initio configurations to analyze trends in strength, toughness, and crack initiation
under various loading conditions. While our MLIP has limitations in modeling different
lattice structures and Ti/B stoichiometries, our training procedure is applicable to
other ceramic systems, successfully developing MLIPs for TaB2, WB2, ReB2, TiN, and
Ti2AlB2.
My contribution: Methodology, Investigation, Analysis, Visualization, Original Draft

Publication II - Main Contribution

S.Lin, D.Holec, D.G.Sangiovanni, T.Leiner, L.Hultman, P.H.Mayrhofer, N.Koutná.
Under review in Acta Materialia.

We studied the layered transition metal diborides (TMB2) and their three structural
polymorphs to explore the potential for phase-transformation plasticity under mecha-
nical shear strain, addressing their inherent brittleness. By training machine-learning
interatomic potentials (MLIPs) for TMB2, we validated their predictive capabilities
against ab initio data, focusing on structural and elastic properties as well as phase
transformations. Nanoscale molecular dynamics simulations helped evaluate theoretical
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shear strengths and their temperature dependence. Our analysis revealed that specific
shear directions activate transformations between metastable and preferred phases, with
the preferred phase of ReB2 demonstrating unique temperature response.
My contribution: Methodology, Investigation, Analysis, Visualization, Original Draft

Publication III - Main Contribution

S.Lin, Z.Chen, R.Janknecht, Z.Zhang, L.Hultman, P.H.Mayrhofer, N.Koutná, D.G.Sangiovanni.
Under review in Acta Materialia.

We studied fracture toughness (KIc) and strength (σf) in ceramic diborides TMB2
(TM = Ti, Zr, Hf) using machine-learning interatomic potentials (MLIPs) trained on
ab initio fracture data. Simulations of pre-cracked single crystals under K-controlled
loading revealed straight transgranular crack extension in Mode-I, with extrapolated
properties of KIc ≈ 1.7–2.9 MPa·√m and σf ≈ 1.6–2.4 GPa. For TiB2, mixed-mode
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Machine-learning potentials for nanoscale simulations of tensile
deformation and fracture in ceramics
Keywords: Machine learning interatomic potentials, diborides, thin film materials

Abstract

Machine-learning interatomic potentials (MLIPs) offer a powerful avenue for simulations
beyond length and timescales of ab initio methods. Their development for investigation
of mechanical properties and fracture, however, is far from trivial since extended defects—
governing plasticity and crack nucleation in most materials—are too large to be included
in the training set. Using TiB2 as a model ceramic material, we propose a training
strategy for MLIPs suitable to simulate mechanical response of monocrystals until failure.
Our MLIP accurately reproduces ab initio stresses and fracture mechanisms during
room-temperature uniaxial tensile deformation of TiB2 at the atomic scale (≈ 103 atoms).
More realistic tensile tests (low strain rate, Poisson’s contraction) at the nanoscale
(≈ 104–106 atoms) require MLIP up-fitting, i.e. learning from additional ab initio
configurations. Consequently, we elucidate trends in theoretical strength, toughness, and
crack initiation patterns under different loading directions. As our MLIP is specifically
trained to modelling tensile deformation, we discuss its limitations for description of
different loading conditions and lattice structures with various Ti/B stoichiometries.
Finally, we show that our MLIP-training procedure is applicable to diverse ceramic
systems. This is demonstrated by developing MLIPs which are subsequently validated
by simulations of uniaxial strain and fracture in TaB2, WB2, ReB2, TiN, and Ti2AlB2.

Introduction

Simulations of materials’ mechanical response—including (i) intrinsic strength and
toughness, (ii) nucleation of extended defects (e.g., dislocations, stacking faults, cracks)
and their implications for (iii) plasticity and fracture mechanisms —require length and
time scales beyond limits of ab initio methods (≈ 103 atoms, ≪ns)[1–4]. The go-to
approach in most cases would be classical Molecular Dynamics (MD), allowing to access
atomistic pathways for deformation and fracture in nanoscale systems (≈ 106 atoms) and
“realistic” operation conditions (e.g., ultra-high temperatures, times up to µs). However,
a severe problem of MD is that the necessary interatomic potentials do not exist for
most engineering materials or are limited in accuracy and transferability with respect
to temperatures, phases, and defective structures (see e.g. Refs. [5–7]).

A powerful avenue for MD simulations on multiple time and length scales with near
ab initio accuracy is the application of machine learning interatomic potentials [8, 9]
(MLIPs), in case of no ambiguity just “potentials”). MLIPs learn the atomic energy
(or other atomic properties like forces) from a descriptor that characterizes local ato-
mic environments in an ab initio training set[10]. Compared to conventional ab initio
calculations, MD with MLIPs can achieve a speed up of as much as 5 orders of magni-
tude[11, 12]. Previous studies showed examples of MLIPs’ transferability with respect
to defects (e.g., grain boundaries [13], dislocation structures [14, 15]) and phases [16,
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17] (e.g., Ni-Mo phase diagram illustrating superior performance of a MLIP over a
classical potential [18]). Recently, Tasnádi et al. [19] have demonstrated high accuracy
of MLIP-predicted elastic constants for TiAlN ceramics, hence, have set the stage for
MLIP development beyond linear elastic regime.

Based on the parametrization of local structural properties, MLIPs can be fitted
employing different formalisms: spectral neighbor analysis potentials (SNAP) [20], neural
networks potentials (NNP) [21], Gaussian approximation potentials (GAP) [22], moment
tensor potentials (MTP) [23], linearized interatomic potentials [24], or atom cluster
expansion (ACE) potentials [10]. Benchmarks for some of these parametrizations have
been published in case of carbon [25] or graphene [26], but are missing for chemically
complex materials.

Fundamental challenges related to MLIP developments include (i) efficient training
dataset generation, (ii) training strategies for simulations beyond length scales feasible
for ab initio methods, and (iii) assessing the MLIPs’ reliability over different length
scales. Point (ii) closely relates to successively improving the MLIP’s predictive power
by up-fitting/active learning[27]. Here an important concept is the extrapolation/Maxvol
grade (γ [28]) expressing the extent of MLIP’s extrapolation on any structure containing
given chemical elements (irrespective of the phase and stoichiometry). Readily available
in current ACE and MTP implementations[29–31], γ allows selecting sufficiently “new”
environments to expand the training set. Besides γ, other methods used for selecting
configurations are stratified sampling or random selection (for detailed discussion of
pros and cons see Refs. [32–35]). Besides identifying new environments, γ can serve to
indicate the MLIP’s reliability during MD simulations. This is particularly advantageous
at scales where the direct validation by ab initio calculations is not possible.

Our work pursues the development of MLIPs suitable to simulate atomic-to-nanoscale
deformation of ceramics, providing both methodological and materials science discussion.
The model material, TiB2, is a widely studied system, representative of ultra-high
temperature ceramics (UHTCs). Exhibiting high hardness and resistance to corrosion,
abrasive and erosive wear [36, 37], UHTCs are suitable to protect tools and machining
components under extreme operation conditions [38–41]. TiB2, which crystallizes in the
AlB2-type phase [42–44] (α, P6/mmm), exemplifies outstanding mechanical properties [45,
46] of UTHCs. It exhibits high hardness of 41–53 GPa[47–49], has a melting point
of 3500 K [50] and mature synthesis technologies [51, 52]. Insights into mechanical
behaviour of TiB2 and other diborides have been offered by ab initio calculations [53–55]
and recently also by molecular dynamics with classical empirical potentials (TiB2[56,
57], ZrB2[58], HfB2[59]). To date, however, no MLIP capable of predicting mechanical
response of UTHCs until fracture has been reported.

Using the MTP formalism, we propose a general training strategy for development
of MLIPs targeted to model tensile deformation and fracture of single-crystal ceramics
at finite temperatures. The extrapolation grade, γ, is exploited to iteratively improve
our MLIP and also as a mean of validation. Specifically, γ values calculated during
MD tensile tests are discussed alongside with statistical errors of relevant physical
observables, such as time-averaged stresses derived from equivalent ab initio molecular
dynamics (AIMD) simulations. The newly-developed MLIP allows to describe tensile
deformation in TiB2 supercells with ≈ 103–106 atoms, thus also providing a basis for
analyzing size effects on mechanical properties and fracture patterns. Furthermore, we
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test transferability of our MLIP to other loading conditions and phases, as well as
applicability of our general training strategy to other ceramics, exemplified by TaB2,
WB2, ReB2, TiN, and Ti2AlB2.

Methods

Ab initio calculations

Zero Kelvin ab initio calculations as well as finite-temperature Born-Oppenheimer ab
initio molecular dynamics (AIMD) were carried out using VASP [60] together with
the projector augmented wave (PAW) [61] method and the Perdew-Burke-Ernzerhof
exchange-correlation functional revised for solids (PBEsol) [62]. All AIMD calculations
employed plane-wave cut-off energies of 300 eV and Γ-point sampling of the reciprocal
space.

Supercells. The model of TiB2 was based on the AlB2-type structure (P6/mmm). The
720-atom (240 Ti+480 B) supercell—used to generate the training/learning/validation
dataset—had size of ≈ (1.5 × 1.6 × 2.6) nm3, with x, y, z axes chosen to satisfy
the following crystallographic relationships: x ‖ [1010], y ‖ [1210], z ‖ [0001]. Similar
supercells—with 720 atoms (240 M+480 B)—were used in Section 6 for TaB2, WB2,
and ReB2, where the latter two are in the ω and γ phase[63], respectively. Cubic (fcc,
Fm3m) TiN[64] was modelled in a 360-atom (180 Ti+180 N) supercell, with x, y, and
z axes aligned with the [100], [010], and [001] directions. The orthorhombic (Cmcm)
Ti2AlB2[65] was modelled in a 720-atom supercell (288 Ti+144 Al+288 B), oriented in
the same way as the TiN supercell.

Equilibration of TiB2 at 300 and 1200 K was performed in 2 steps: (i) 10 ps
AIMD isobaric-isothermal (NPT) simulation with Parrinello-Rahman barostat [66] and
Langevin thermostat, and (ii) a 2 ps for 300 K, 4 ps for 1200 K AIMD run within
the canonical (NVT) ensemble based on Nosé-Hoover thermostat, using time-averaged
lattice parameters from the NPT simulation. TaB2, WB2, ReB2, TiN, and Ti2AlB2 were
equilibrated at 300 K using the same approach.

Computational setup for simulations of TiB2’s [0001], [1010], and [1210] tensile
deformation and (0001)[1210], (1010)[1210], and (1010)[0001] shear deformation
(all with Γ point sampling) followed Refs. [64, 67, 68]. Specifically, the equilibrated
supercell was elongated or sheared in the desired direction using strain increments
of 2%. Poisson’s contraction effects were not considered in AIMD simulations. The
supercells are equilibrated for 3 ps at each deformation step. Stress tensor components
were calculated as averages of the final 0.5 ps. The same approach was used to simulate
tensile deformation in TaB2, WB2, ReB2, TiN, and Ti2AlB2.

Room-temperature elastic constants, Cij, of TiB2 were evaluated following
Ref. [69], based on a second-order polynomial fit of the [0001], [1010], and [1210] stress/s-
train data (C11, C12, C13, C33) and of the (0001)[1210], (1010)[1210], and (1010)[0001]
shear stress/strain data (C44), considering strains between 0 and 4%.

Simulations of TiB2’s room-temperature volumetric compression were carried out
for a 720-atom TiB2 supercell maintained at 300 K (for 2 ps) within the NVT ensemble.
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The surface energies were calculated at zero Kelvin using a 60-atom TiB2 supercell
(with a 3 × 3 × 1 k-mesh and cut-off energy of 300 eV) together with a 10 Å vacuum
layer. The supercells were fully relaxed until forces on atoms were below 10−2 eV Å−1

and the total energy was converged with accuracy of 10−5 eV per supercell. Other
ground-state and higher-energy structures from the Ti–B phase diagram (Ti2B,
Ti3B4, TiB, TiB12, etc.) were fully relaxed at 0 K starting from lattice parameters and
atomic positions from the Materials Project [70].

Development of machine-learning interatomic potentials (MLIPs)

We used the moment tensor potential (MTP) formalism, as implemented in the mlip-2
package [71]. Training data generation and general workflow are detailed in the Section
1 and Fig.1. Training/learning/validation sets included only equilibrated configurations:
the initial part (5%) of NVT runs was discarded.

MLIPs were fitted based on the 16g MTPs (referring to the highest degree of
polynomial-like basis functions in the analytic description of the MTP [23]), using
the Broyden-Fletcher-Goldfarb-Shanno method [72] with 1500 iterations and 1.0, 0.01
and 0.01 weights for total energy, stresses and forces in the loss functional. A cutoff
radius of 5.5 Åwas employed, similar to other recent MLIP studies [19, 73]. Tests using
larger cutoffs, 7.4 and 10.0 Å did not show notable changes in accuracy. Expansion of
a training set by selection of configurations from a learning set (LS), was done using
the select add command of the mlip-2 package. Specifically, all configurations in the
LS were ordered by their extrapolation grade (γ[28]) and maximum 15 from the upper
20% was selected to expand the training set.

Details of MLIPs developed in this work (summarized in Fig. 1c) are given below.
MLIP-[0001], (MLIP-[1010], and MLIP-[1210]): trained on AIMD snapshots of TiB2
subject to room-temperature tensile loading in the [0001] ([1010], [1210]) direction.
See Section 1 and 2. MLIP-[1]: up-fitting MLIP-[0001], learning from the final TSs
of MLIP-[1010] and MLIP-[1210]. See Section 3. MLIP-[2] and MLIP-[3]: up-fitting
MLIP-[1], learning from AIMD snapshots of TiB2 equilibrated at 1200 K (MLIP-
[2]), and sequentially elongated in the [0001] direction until cleavage (MLIP-[3]).
See Section 3. MLIP-[4]: up-fitting MLIP-[1], learning from AIMD snapshots of
TiB2 elongated by 150% in the [0001] direction, initializing atoms at ideal lattice
sites and equilibrating at 300 and 1200 K under fixed volume and shape. See
Section 3–5.

Molecular dynamics with MLIPs (ML-MD)

ML-MD calculations were performed with the LAMMPS code [74] interfaced with
mlip-2 package [71], which allows using MTP-type MLIPs (specified in the pair_style
command). Additionally, the active learning state file (state.als, for details see the
mlip-2 documentation1) was used to output the extrapolation grade, γ, values during
the simulations.

1https://gitlab.com/ashapeev/mlip-2-paper-supp-info
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Computational setup of atomic scale ML-MD tensile and shear tests (at 300 or
1200 K) was equivalent to AIMD. Stress tensor components and elastic constants were
calculated in the same way as described above in case of AIMD.

Nanoscale ML-MD tensile tests at 300 or 1200 K used supercells with 12,960 atoms
(S1); 141,120 atoms (S2); 230,400 atoms (S3); and 432,000 atoms (S4); with dimensions
of about (1.5×1.6×2.6) nm3, (4.6×4.7×5.1) nm3, (10.6×11.0×10.3) nm3, (12.1×12.6×
12.9) nm3, and (15.2 × 15.8 × 15.4) nm3, respectively. Prior to simulating mechanical
deformation, the supercells were equilibrated for 5 ps at the target temperature using
the isobaric-isothermal (NPT) ensemble coupled to the Nosé-Hoover thermostat with a
1 fs time step. Tensile loading was simulated by deforming the supercell with a constant
strain rate (50 Ås−1), accounting for lateral contraction (Poisson’s effect) in the NPT
ensemble.

Atomic scale volumetric compression simulations used supercell sizes and defor-
mation approach equivalent to what described above for AIMD. Surface structures
and other Ti–B phases were fully relaxed at 0 K using conjugate gradient energy
minimization in molecular statics (MS).

Visualization and structural analysis

The OVITO package [75] allowed us to visualize and analyze selected AIMD and ML-
MD trajectories. In particular, we looked at (i) Radial pair distribution functions (with
a cut-off radius of 5.5 Å), (ii) Elastic strain maps and (iii) Atomic strain maps (with
cut-off radius of ± 0.1 Å). For details see the OVITO documentation.

Results and discussion

We aim to develop MLIPs targeted to simulations of tensile deformation in TiB2.
Although the mechanical properties of ceramics are typically assessed by nanoindenation,
microcantilever bending, or micropillar compression experiments, MD simulations of
tensile loading can be directly compared to results of ab initio calculations. We simulate
deformation along low-index [0001], [1010], and [1210] directions that are parallel or
normal to the typical growth direction of hexagonal transition metal diborides[36] and
have been considered in previous ab initio studies of surface energies and mechanical
properties[55].

1 Training procedure and fitting initial MLIPs

Our general training procedure is described below (Procedure 2) and schematically
depicted in Fig. 1a (for further details, see the Methods). Throughout this work,
training configurations (i.e., structures labelled by ab initio total energies, forces acting
on each ion, and six stress tensor components) are generated by finite-temperature AIMD
calculations. To avoid over-representation, a training set is initialized by a small fraction
of randomly selected AIMD snapshots and iteratively expanded using the concept of
the extrapolation grade[28], γ.
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The extrapolation grade γ ∈ R+ (see equations 9–1 in Ref. [28]) expresses the
degree of extrapolation when MLIP predicts atomic properties of a certain configuration.
Specifically, γ ≤ 1 means interpolation and γ > 1 extrapolation. Hence, the higher
the γ, the larger is the uncertainty on predicted energies, forces, and stresses [28]. In
practice, one sets an extrapolation threshold (γthr). Configurations with γ > γthr are
added to the training set to improve transferability of the potential. Procedure 2 uses
γthr = 2, motivated by our tests2 as well as by previous work by the MTP developers[77]
and by one of us[12] showing that such value corresponds to accurate extrapolation[77]
(near-interpolation[12]).

Algorithm 2 MLIP training

(1) Generate a pool of AIMD configurations.
(2) Divide the pool into an initial training set (TS0), a learning set (LS), and a validation set

(VS) by randomly selecting 0.5%, 79.5%, and 20% of non-overlapping configurations.
(3) Fit an initial MLIP (MLIP0, trained on TS0). If γ of all configurations in the LS and VS is

below γthr = 2, exit. Else, build TS1 by adding maximum 10% of configurations from the
LS to TS0, selected by the Maxvol algorithm [28] based on their extrapolation grade. Fit a
new MLIP (MLIP1, trained on TS1).

(4) While γ of all configurations in the LS and VS is above γthr = 2, build TSi by adding
maximum 10% of configurations from the LS to TSi−1, selected by the Maxvol algorithm
based on their extrapolation grade. Fit a new MLIP (MLIPi, trained on TSi).

Employing Procedure 2 and the MTP formalism, we fit three MLIPs: MLIP-[0001],
MLIP-[1010], and MLIP-[1210]. The training uses snapshots from room-temperature
AIMD simulations for a 720-atom TiB2 supercell, uniaxially elongated in the [0001],
[1010], and [1210] crystallographic direction, respectively, with a strain step of 2% (for
details of AIMD simulations, see the Methods). The entire pool of AIMD data consists
of ≈ 120, 000 configurations, where each loading condition ([0001], [1010], and [1210])
represents ≈ 1/3.

The final training sets (the last TSi in the step (4) of Procedure 2) of MLIP-[0001],
MLIP-[1010], and MLIP-[1210] contain 181, 155, and 180 configurations, respectively.
The fitting and validation errors, quantified through the residual mean square error
(RMSE[76]), of total energies, forces, and stresses do not exceed 2.6 meV atom−1,
0.11 eV Å−1, and 0.30 GPa, respectively. As follows from Procedure 2, γ < γthr = 2 for
all configurations in the learning set.

2 MLIPs’ validation against atomic scale tensile tests

Following evaluation of the fitting and validation errors (Section 1), further validation
steps consist in using the above developed MLIPs to run MD simulations (ML-MD) of
TiB2 subject to tensile deformation.

2In particular, during each iteration (i) in the step (4) of Procedure 2, the maximum γ is correlated with errors
of energies, forces and stresses (quantified via common regression model evaluation metrics, MAE, RMSE, R2,
see e.g. Ref. [76]) for the TSi (fitting errors) and the VS (validation errors). With γthr = 2, we are limited
mainly by the accuracy of the underlying ab initio training data.
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Fig. 1: Our MLIP training strategy. Schematic visualization of (a) our general training procedure (Proce-
dure 2, Section 1), and (b) up-fitting (Section 2, 3), both applicable to any MLIP formalism with the
extrapolation/Maxvol grade (γ) quantification, particularly MTP (used in this work) and ACE. (c) An
overview of the here-developed MLIPs: MLIP-[0001], MLIP-[1010], MLIP-[1210] (applicable for atomic
scale tensile loading, Sections 1 and 2); MLIP-[1], MLIP-[2], MLIP-[3] (intermediate MLIPs produced by
up-fitting, Section 3); and MLIP-[4] (applicable for both atomic and nanoscale tensile loading, Section
3–5). Details of the training datasets are given in the corresponding sections and additionally summarized
in the Methods under “Development of machine-learning interatomic potentials”. both

During ML-MD, the MLIP’s reliability is assessed via:
(i) Comparison with AIMD predictions of physical, mechanical properties, and frac-

ture mechanisms. In particular, we monitor time-averaged stresses, theoretical
strength and toughness, and cleavage on different crystallographic planes.

(ii) The extrapolation grade. At each ML-MD time step, we calculate γ of the corre-
sponding configuration. Values exceeding reliable extrapolation signalise that the
MLIP requires up-fitting (i.e., expanding the TS by additional configurations and
going back to step (4) of Procedure 2; see Fig. 1b,c).
As suggested by MTP developers[77], we consider γreliable ≤ 10 as reliable extra-
polation. Such choice allows us to develop MLIPs with accuracy similar to the
underlying ab initio training set.

Fig. 2a depicts stress/strain curves derived from room-temperature AIMD and ML-MD
tensile tests, in which TiB2 supercell (≈ 103 atoms, ≈ 1.53 nm3) is loaded in the [0001],
[1010], and [1210] direction, respectively. Each deformation is simulated with a MLIP
trained to the respective loading condition. Excellent quantitative agreement between
AIMD and ML-MD results indicates reliability of our MLIPs. Specifically, time-averaged
stresses in ML-MD differ from AIMD values by 0.07–1.94 GPa, yielding statistical errors
RMSE ≈ 1.02 GPa, R2 ≈ 0.9997. Stresses normal to the loaded direction—not vanishing
due to the omission of Poisson’s effect in both AIMD and ML-MD simulations—are also
used for assessing MLIPs’ reliability. After fracture, the [0001] stress component recorded
in AIMD does not drop to zero. The effect is due to long-range electrostatic effects,
which are absent in ML-MD. The extrapolation grade during all ML-MD simulations
remains low (γ ≤ 5 < γreliable), thus suggesting reliable extrapolation.
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Fig. 2: Validation of the here-developed MLIPs (MLIP-[0001], MLIP-[1010], and MLIP-[1210]) against
atomic scale room-temperature AIMD tensile tests. (a) Comparison of AIMD (dash-dotted
line) and ML-MD (solid line) stress/strain curves for TiB2 subject to [0001], [1010], and [1210] tensile
deformation at 300 K, using a 720-atom supercell with dimensions of ≈ (1.52 × 1.58 × 2.57) nm3. Only
the stress component in the loaded direction is plotted. (b, c) Snapshots of the fracture point in AIMD
(b-1, b-2, b-3) and ML-MD (c-1, c-2, c-3). (d) Illustration of fracture surfaces (see alsoRef. [78]).

The calculated stress/strain curves allow us to evaluate TiB2’s theoretical tensile
strength and toughness along different crystal directions. We report results of the
ultimate tensile strength, which corresponds to the global stress maximum during the
tensile test [68]. We define the tensile toughness as the integrated stress/strain area. The
property describes the ability of an initially defect-free material at absorbing mechanical
energy until failure.

The theoretical tensile strengths of TiB2 obtained by ML-MD are 63.7, 55.0, and
52.7 GPa for the [1210], [1010], and [0001] directions, respectively. These differ from
AIMD values by maximum 0.8 GPa (0.99%). The ML-MD predicted toughness along
[1210], [1010], and [0001] reaches 4.3, 3.1, and 4.3 GPa, respectively, differing from
AIMD values by maximum 0.029 GPa (0.67%). Note, however, that theoretical tensile
strength and toughness are affected by the supercell size. Strength and toughness values
saturate over nm lengthscales (see following sections).

AIMD and ML-MD tensile-testing of TiB2 reveal very similar fracture mechanisms
(Fig. 2b–c). Specifically, the fracture surface formed during [0001] deformation almost
perfectly aligns with (0001) basal planes (Fig. 2-(b-1),(c-1),d). Tensile loading along
the[1010] direction opens a void diagonally across Ti/B2 layers (Fig. 2-(b-2),(c-2)).
The fracture surface is parallel to the second order pyramidal planes of the {1122}
family (Fig. 2d). For the [1210] loading condition, fracture planes are approximately
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parallel to the {1010} prismatic planes (Fig. 2-(b-3),(c-3),d). The TiB2 fracture planes
predicted in our simulations are consistent with experimentally-characterized slip planes
in single-crystal TiB2 [51, 79].

3 MLIPs’ up-fitting for nanoscale tensile tests

As discussed in the previous section, MLIP-[0001], MLIP-[1010], and MLIP-[1210] provide
reliable description of TiB2’s response to uniaxial tensile loading at the atomic scale.
This is indicated by low extrapolation grades (γ ≤ 5 < γreliable) as well as stress/strain
curves and fracture mechanisms in agreement with AIMD results.

As a next step, we carry out tensile tests at the nanoscale. Methodological differences
between atomic and nanoscale simulations are listed below.

• Atomic scale tensile tests (presented in the previous section) employ 720-atom
supercells with dimensions of ≈ (1.5 × 1.6 × 2.6) nm3. Strain is incremented at
steps of 2% with fixed lattice vectors normal to the loaded direction.

• Nanoscale tensile tests employ supercells with four different sizes: S1 (12,960
at.), S2 (141,120 at.), S3 (230,400 at.), and S4 (432,000 at.), where S1 ≈ 53 nm3

and S4 ≈ 153 nm3. These simulations impose a continuous and homogeneous
increase in strain (rate 50 Ås−1) and account for Poisson’s contraction.

Employing MLIP-[0001], MLIP-[1010], and MLIP-[1210] for room-temperature nanos-
cale tensile tests results in unphysical dynamics (losing atoms) and rapidly increasing
extrapolation grades (γ ≫ 103 ≫ γreliable) when approaching the fracture point. This
indicates that deformation is controlled by formation of extended crystallographic defects,
which are absent in atomic scale simulations. Thus, to enable description of TiB2’s
fracture at the nanoscale, our MLIPs require up-fitting (Fig. 1b). Generally, this is a
non-trivial task[80, 81], since structures causing large γ cannot be directly treated by
ab initio calculations.

Below, we describe up-fitting steps leading to MLIP-[4] (schematically depicted in
Fig. 1c). We shall see that MLIP-[4] enables reliable simulations of TiB2 tensile defor-
mation at the nanoscale.

• We produce MLIP-[1] by up-fitting MLIP-[0001], where the LS is expanded by final
TSs of MLIP-[1010] and MLIP-[1210]. MLIP-[1] accurately simulates atomic scale
tensile properties, but does not well describe nanoscale deformation and fracture
in TiB2 (γ ≫ γreliable).

• We up-fit MLIP-[1] using three different LSs, producing MLIP-[2], MLIP-[3], and
MLIP-[4]. MLIP-[2] and MLIP-[3] learn from AIMD snapshots of TiB2 equilibrated
at 1200 K (MLIP-[2]), and sequentially elongated in the [0001] direction until
cleavage (MLIP-[3]). MLIP-[4] learns from AIMD snapshots of TiB2 elongated by
150% in the [0001] direction, initializing atoms at ideal lattice sites and equilibrating
at 300 and 1200 K under fixed volume and shape. Such large strain quickly
induces fracture, thus providing additional information for training MLIP on highly
deformed lattice environments and surface properties.
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Tab. 1: Validation of the here-developed MLIP (MLIP-[1]) against theoretical and experimental
(exp.) room-temperature elastic constants, Cij . The Cij values for TiB2 (in GPa, at temperature
T (K)) are shown together with the polycrystalline bulk modulus, B (in GPa), shear modulus, G
(in GPa), Young’s modulus, E (in GPa), and Poisson’s ratio, ν, compared to reference ab initio and
experimental (exp.) data. Ref. [82] and Ref. [83] is for TiB2 single and polycrystal, respectively. AIMD
and ML-MD elastic constants were evaluated following Ref. [69], based on a second-order polynomial
fit of the [0001], [1010], and [1210] stress/strain data (C11, C12, C13, C33) and of the (0001)[1210],
(1010)[1210], and (1010)[0001] shear stress/strain data (C44), assuming strains up to 4%. For details
see the Methodology section. Note that values from Ref. [84] were based on 0 K ab initio calculations
coupled to phonon-theory assessments of thermal expansion.

Nr. of atoms T C11 C33 C44 C12 C13 E B G ν Source
DFT 192 300 640 446 251 62 91 574 244 260 0.106 Ref. [84]

AIMD 720 300 588 430 252 79 111 547 244 243 0.126 This work
ML-MD 720 300 588 409 261 85 98 554 236 246 0.113 This work

Exp. - 300 660 432 260 48 93 565 244 266 0.099 Ref.[82]
Exp. - 300 588 503 238 72 84 575 249 255 0.114 Ref. [83]

MLIP-[2], MLIP-[3], and MLIP-[4] all provide results in agreement with AIMD tensile
tests at the atomic scale (γ ≤ 5 < γreliable). Fracture mechanisms and elastic constants
are also correctly reproduced. At the nanoscale, MLIP-[2] and MLIP-[3] exhibit lower
γ than MLIP-[1]. However, the sought improvement (γ ≤ γreliable) is achieved only
by MLIP-[4], which will be used to carry out nanoscale ML-MD simulations of TiB2
deformation.

The reliability of MLIP-[4] is indicated by low γ values, realistic description of
structural changes during nanoscale tensile tests (see following section), and excellent
agreement with ab initio and experimental values of TiB2 lattice parameters (Tab. 2).

Tab. 2: Validation of the here-developed MLIP (MLIP-[4], equivalent results are produced by intermediate
MLIP-[1–3]) against theoretical and experimental (exp.) lattice constants. The a and c values
for TiB2 (in Å) are shown at temperature T (K). Experimental values, Ref. [85] and Refs. [86, 87], are
for TiB2 powder and thin films, respectively.

Nr. of atoms T a c Source
DFT 720 0 3.027 3.213 This work

ML-MD 720 0 3.027 3.213 This work
AIMD 720 300 3.035 3.218 This work

ML-MD 720 300 3.036 3.218 This work
ML-MD (13–430)·103 300 3.036 3.217 This work

Exp. - 300 3.032 3.229 Ref. [85]
Exp. - 300 3.029 3.229 Ref. [86]
Exp. - 300 3.021 3.230 Ref. [87]

AIMD 720 1200 3.056 3.249 This work
ML-MD 720 1200 3.056 3.249 This work
ML-MD (13–430)·103 1200 3.047 3.239 This work

To explain why MLIP-[4] enables nanoscale tensile tests, one needs to analyse the
corresponding training set, TS(MLIP-[4]). In Fig.3, we visualize selected characteristics
of TS(MLIP-[4]) in comparison to the training set of MLIP-[1], TS(MLIP-[1]), where
the latter is not applicable to simulate TiB2’s fracture at the nanoscale. The radial
distribution function (RDF, Fig.3a) and bond angle distribution analysis suggest minor
geometrical differences between structures contained in TS(MLIP-[1]) and TS(MLIP-[4]).
Their total energy and stress distribution, however, differ significantly (Fig.3b). In
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particular, TS(MLIP-[4]) contains atomic configurations with higher total energy and
higher total energy in combination with higher stress in principal crystallographic axes,
which are missing in TS(MLIP-[1]). An illustration of structures from the two training
sets is given in Fig.3c. The chosen snapshots indicate that TS(MLIP-[4]) provides a
variety of atomic environments relevant for simulations of non-stoichiometry, locally
amorphous regions, and surfaces, which are likely to be helpful also for nanoscale
simulations.

Fig. 3: Qualitative differences between configurations in the training sets (TSs) of the here-developed
MLIPs suitable only for the atomic scale ML-MD tensile tests (MLIP-[1]) or for both atomic
and nanoscale ML-MD tensile tests (MLIP-[4]). (a) Radial distribution function (RDF, with 5.5 Å
cutoff) for B–B, Ti–B, and Ti–Ti bonds (integrated over all configurations). (b) Stress components
(in-plane and in the loaded direction) vs. total energy of all configurations in the training set. (c)
Snapshots of representative structures from the two training sets.

4 Size effects in tensile response of TiB2

Equipped with the above developed MLIP-[4], in this section we discuss TiB2’s response
to room-temperature uniaxial tensile loading from atomic to nanoscale. Recall that an
important difference between our atomic and nanoscale tensile tests is that the former
disregard Poisson’s contraction.
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The stress/strain curves calculated by ML-MD at room temperature are depicted in
Fig. 4. For strains below ≈ 10%, the tensile stresses computed for each loading direction
remain unaltered by an increase in supercell sizes from ≈ 103 to 106 atoms. Such overlap
indicates consistency in elastic constants derived from atomic and nanoscale models.
As already seen in atomic scale simulations, the basal plane is elastically isotropic,
which is shown by the same initial slope of stress/strain curves for [1210] and [1010]
elongation and in line with experimental reports for hexagonal crystals [88]. Due to
Poisson’s contraction, however, differences in stress/strain curves emerge beyond the
linear-elastic regime. A shrinkage of the lattice parameters normal to the applied tensile
strain yields Poisson’s ratio (ν ≈ 0.127 3) consistent with the value obtained from elastic
constants (ν ≈ 0.113, see Tab. 1). Approaching the fracture point, differences between
TiB2’s tensile behavior at atomic and nanoscale become more apparent. For example,
while atomic-scale simulations indicate that the [0001] direction is the softest, tensile
tests at the nanoscale show that [1010] elongation returns the lowest strength value
(Tab. 3). Even more pronounced size effects are expected for ceramics which exhibit
plastic behavior upon tensile loading.

The TiB2’s theoretical strength and toughness calculated during nanoscale simulations
at room temperature remain essentially unchanged for supercell sizes increasing from
≈ 53 nm3 to ≈ 153 nm3 (see S1–S4 results in Tab. 3). Specifically, the [1210] direction
exhibits the highest tensile strength (≈ 56 GPa), followed by the [0001] direction
(≈ 54 GPa), and the [1010] direction (≈ 51 GPa). The [0001] direction exhibits the
highest toughness (≈ 4.80 GPa), followed by the [1210] direction (≈ 3.37 GPa), and the
[1010] direction (≈ 2.78 GPa).

Fig. 4: Comparison of AIMD and ML-MD stress/strain curves calculated for TiB2 at room
temperature. The ML-MD tensile stresses, obtained using MLIP-[4], are plotted as a function of TiB2
elongation parallel to (a) [0001], (b) [1010], and (c) [1210] directions. The orange diamonds correspond
to atomic scale ML-MD simulations (720 at.), while the solid lines correspond to nanoscale ML-MD
simulations (12,960–430,000 at.), as defined at the beginning of this section. Note that the theoretical
strength of defect-free crystal models represents an ideal upper bound of strength attainable in actual
ceramics. Much lower stresses are expectable in experiments due to, e.g., nanostructural defects.

Besides characterizing directional dependence of tensile strength and toughness in
dislocation-free monocrystals, ML-MD nanoscale simulations also provide insights into
crack nucleation and growth mechanisms. These are illustrated by Fig. 5, Fig. 6, and
Fig. 7. Results of ML-MD atomic scale simulations are included for comparison.

3The Poisson’s contraction was calculated as ν = − dεcompressed
dεelongated

, where the dεcompressed (dεelongated ) is the lattice
parameter shrinkage (increment) orthogonal (parallel) to the loading direction. The presented value is an
average of Poisson’s ratios for both in-plane directions.
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Tab. 3: Size and temperature effects on mechanical properties of TiB2. The directional response to
strain is assessed for supercells with sizes ranging from the atomic to the nanoscale. The mechanical
properties of TiB2 are extracted from ML-MD stress/strain data in Fig. 4.

Nr. of atoms T (K) Dimensions (nm) Strength (GPa) Toughness (GPa) Fracture strain (%)
a b c [0001] [1010] [1210] [0001] [1010] [1210] [0001] [1010] [1210]

720 300 1.51 1.58 2.57 52.72 55.01 63.69 4.33 3.11 4.32 22.0 16.0 18.0
12,960 (S1) 300 4.55 4.73 5.15 53.71 51.36 56.40 4.83 2.77 3.38 26.4 14.3 16.8
141,120 (S2) 300 10.63 11.05 10.30 53.69 51.44 56.41 4.81 2.78 3.37 26.4 14.3 16.8
230,400 (S3) 300 12.14 12.63 12.87 53.71 51.43 56.38 4.82 2.78 3.37 26.3 14.3 16.8
432,000 (S4) 300 15.18 15.79 15.45 53.67 51.47 56.42 4.80 2.78 3.37 26.2 14.2 16.8

720 1200 1.53 1.59 2.60 43.87 45.21 51.34 3.27 2.29 3.07 20.0 16.0 16.0
432,000 (S4) 1200 15.26 15.86 15.52 43.27 41.30 44.67 3.45 1.96 2.32 21.6 12.8 14.1

During atomic-scale simulations of [0001] elongation, all atoms in TiB2 vibrate close to
their ideal lattice sites until a sudden brittle cleavage induces formation of two surfaces
almost perfectly parallel with (0001) basal planes (Fig. 5, row 1). At the nanoscale,
fracture is initiated by opening of voids accompanied by local necking which produces
lattice re-orientations (Fig. 5, row 2 and 3). Rapid void coalescence and fraying of
ligaments results in corrugated fractured surfaces, predominantly with (0001) orientation.
Following the stress release, inner parts of the crystal relax back to the ideal TiB2
lattice sites.

The S1 supercell yields in only one region (Fig. 5, row 2). The larger S2, S3, and
S4 supercells do not fracture in two pieces but nucleate cracks with size of few nm.
For S4 supercells, the phenomenon is depicted in Fig. 5, row 3. The fractured surfaces
do not align only with the basal planes but also with the {1011} first order pyramidal
planes (see notation in Fig. 2d). Volumetric strain analysis (Fig. 5d,e) highlights locally
increased tensile strain concentration surrounding small voids (see TiB2 slice at ≈ 27%
strain) due to decreased interplanar spacings between Ti and B layers (predominantly
due to [0001] compression) above and below the voids. The large size of S4 models
allows cracks to propagate along different directions, thus offering a detailed view of
fracture patterns.

For the [1010] tensile test, size effects in fracture mechanisms are compared in Fig. 6.
At the atomic scale, two voids open diagonally across Ti/B layers (Fig. 6, row 1). At
the nanoscale, we observe nucleation of V-shaped cracks, as illustrated for the S1 and
the S4 supercell (Fig. 6, row 2 and 3, and panels c, d), where S4 additionally reveals
lattice rotation near the V-shaped defects. We infer that loading in the direction of
strong covalent B–B bonds most often induces crack deflection and fracture at {1122}
family of surfaces parallel to the second order pyramidal planes.

Changing to the [1210] tensile deformation, atomic scale simulations predict fracture
along {1010} prismatic planes (Fig. 7, row 1). This is underpinned also by nanoscale ML-
MD (Fig. 7, row 2 and 3), suggesting that crack growth often occurs both orthogonally
and diagonally across Ti/B layers (see the dashed line with arrow in Fig. 7e).

A direct comparison between experimental and ML-MD results of TiB2 mechanical
properties and preferred fracture planes would require synthesis and tensile testing of
TiB2 monocrystals. Unfortunately, TiB2 ceramics are typically synthesized as thin films
on substrates, which renders measurements of tensile strength essentially unfeasible.
Nevertheless, as mentioned above, the fracture planes observed in ML-MD simulations
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Fig. 5: Representative ML-MD snapshots of TiB2 strained along [0001] at 300K. Upper (x-1), middle
(x-2), and lower (x-3) panels show results of simulations over different lengthscales. Key deformation
stages: (a) bond elongation in the loaded direction, (b) onset of crack nucleation, and (c) fracture.
Thin slices of the nanoscale (d) S1 and (e) S4 supercells color-coded based on volumetric strain (using the
corresponding equilibrium structure as reference). Red (blue) regions denote high tensile (compressive)
strain.
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Fig. 6: Representative ML-MD snapshots of TiB2 strained along [1010] at 300K. Upper (x-1), middle
(x-2), and lower (x-3) panels show results of simulations over different lengthscales. Key deformation
stages: (a) bond elongation in the loaded direction, (b) onset of crack nucleation, and (c) fracture.
Thin slices of the nanoscale (d) S1 and (e) S4 supercells color-coded based on volumetric strain (using the
corresponding equilibrium structure as reference). Red (blue) regions denote high tensile (compressive)
strain.
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are consistent with slip systems known to operate in TiB2 at room temperature [51,
79]. It is also worth noting that the high hardness measured for [0001]-textured TiB2
thin films, 41–53 GPa [47–49], is consistent with large strength values predicted for
TiB2 by atomistic simulations.

In general, the fracture strength measured for hard ceramics is one-to-two orders
of magnitude lower than the theoretical strength. The discrepancy is due to prema-
ture cracking initiated at native structural defects in actual materials. For example,
microcantilever bending experiments conducted on hard polycrystalline Ti-Al-N evi-
dence intergranular fracture, which severely limits the material strength to values below
10 GPa[89]; much smaller than corresponding theoretical strength results [64]. Neverthe-
less, prior to crack growth, the tensile stress accumulated at structural flaws of ceramics
can locally reach several tens of GPa [90]. This reconciles stress states predicted by
atomistic simulations with real mechanical-testing experiments. Likewise, the elongation
withstood by defect-free ceramic models during tensile testing simulations is indicative
of strain locally produced (nm lengthscale) in specimens subject to load (see fracture
strains in Fig. 4).

5 Other loading conditions and MLIP’s transferability

Our MLIP (MLIP-[4]) has been specifically developed and optimized to target atomic to
nanoscale simulations of TiB2 subject uniaxial tensile loading until fracture. Examination
of the underlying training set (Fig. 3c) indicated a variety of atomic environments
including, e.g., different Ti/B stoichiometries, locally amorphous regions, or surface
structures. In this section, we discuss the MLIP’s transferability to description of loading
conditions, phases, and chemical environments for which it has not been explicitly trained
on. In most cases, we conclude that up-fitting is necessary to guarantee quantitative
agreement with ab initio results.

Accuracy of the predicted observables (e.g. shear strengths or surface energies) is
presented in the context of extrapolations grades, allowing to identify types of configu-
rations beneficial for further up-fitting, thus, broadening the MLIP’s applicability.

• High-temperature tensile deformation of TiB2. Since TiB2 is an UHTC (see
the Introduction), modelling its mechanical behaviour at elevated temperature is
of high practical relevance. Here we choose 1200 K which is close to the highest
anti-oxidation temperature of TiB and TiC reported experimentally [91].
Atomic scale [0001], [1010], and [1210] tensile tests at 1200 K show excellent quan-
titative agreement with AIMD simulations at the same temperature. Specifically,
differences from AIMD-calculated stresses are 0.01–3.54 GPa, resulting in statistical
errors RMSE ≈ 1.85 GPa, R2 ≈ 0.9997. Extrapolations grades indicate reliable
extrapolation (γ ≤ 7 < γreliable).
TiB2’s theoretical tensile strength at 1200 K decreases by about 17–19% compared
to 300 K. For tensile toughness, our simulations predict ≈ 25% decrease. Fracture
mechanisms remain qualitatively unchanged with respect to 300 K.

• Room-temperature shear deformation of TiB2. Simulations of shear deformati-
on provide useful insights for understanding of how dislocations nucleate and move
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Fig. 7: Representative ML-MD snapshots of TiB2 strained along [1210] at 300K. Upper (x-1), middle
(x-2), and lower (x-3) panels show results of simulations over different lengthscales. Key deformation
stages: (a) bond elongation in the loaded direction, (b) onset of crack nucleation, and (c) fracture.
Thin slices of the nanoscale (d) S1 and (e) S4 supercells color-coded based on volumetric strain (using the
corresponding equilibrium structure as reference). Red (blue) regions denote high tensile (compressive)
strain.
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in generally brittle UHTCs[92, 93]. Furthermore, as diborides typically crystallize
in layered structures (α, γ, ω), which correspond to different stacking of transition
metal planes, shear deformation may induce plastic deformation via faulting, twin-
ning, and phase transformation [63]. Based on experimental characterization of
room-temperature slip in single-crystal TiB2 [51, 79], we simulate shear deformation
along (0001)[1210], (1010)[1210], and (1010)[0001] slip systems.
Stress evolution during atomic scale ML-MD shear deformation (Fig. 8a) agrees
well with equivalent AIMD simulations. This is particularly the case for strains
below ≈ 20%, where stresses differ from AIMD values by 0.01–5.08 GPa (yielding
statistical errors RMSE ≈ 3.72 GPa, R2 ≈ 0.9993) and γ is close to reliable
extrapolation (γ < 14). This is a good result, if one considers that the training
set did not contain sheared configurations. Shear strains above ≈ 20% induce
notably larger discrepancies in stresses (differing from AIMD by 5.4–8.5 GPa) and
increased γ (γ ≤ 26). The main reason is that lattice slip—responsible for a partial
stress release during shearing—does not occur at the same strain step.
The shear strengths predicted by ML-MD for (0001)[1210], (1010)[1210], and
(1010)[0001] deformation, (49, 57, and 51 GPa), are ≈ 8% lower than AIMD values
(58, 72, and 68 GPa). Nevertheless, shear-induced structural changes observed
during ML-MD correctly reproduce AIMD results (Fig. 8b,c,d).
When subject to (0001)[1210] shearing, TiB2 undergoes slip on the basal plane.
The mechanism – activated for (0001)[1210] shear strain of ≈ 24% – restores atoms
to their ideal lattice sites (Fig. 8b). (1010)[1210] shearing induces plastic flow on
both (1210)[1010] and (1010)[1210] slip systems. The mechanisms are activated at
strains near 30% and 50% (Fig. 8c). Both are accompanied by displacements of
Ti and B atoms from ideal TiB2 lattice sites. Similar to the results in (Fig. 8c),
shearing along (1010)[0001] activates different slip systems (Fig. 8d). TiB2(0001)
lattice layers glide along [1010] at ≈ 30% strain. A further increase in strain to
≈ 50% induces glide of (1010) planes along the [0001] direction. The latter process
results in significant displacements of B atoms and formation of stacking faults, as
indicated by horizontal green lines in Fig. 8d (panels on the right).
The excellent agreement between ML-MD and AIMD stress/strain curves within
the elastic shear response, accompanied by reasonably good agreement near TiB2
yielding, suggests that up-fitting our MLIP[4] to accurately model shear deformation
would benefit from adding configurations near TiB2’s shear instabilities to the
training set.

• Room-temperature volumetric compression of TiB2. Training on snapshots
of compressed structures may be important not only for simulations of e.g. uniaxial
compression or nanoindentation, but also in order to correctly account for Poisson’s
contraction during tensile deformation. For TiB2, the relatively low Poisson’s
ratio (Tab. 1) is manifested by a rather small lateral shrinkage of the supercell
during nanoscale tensile testing simulations. Here we simulate severe volumetric
compression of TiB2 at room temperature. All lattice vectors are compressed by
up to 12% to show rapidly growing γ values and suggest how to improve MLIP
reliability by up-fitting.
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Fig. 8: Illustration of simulations to which the here-developed MLIP (MLIP-4) is transferable
(a–d) or for which it requires up-fitting (e–f). (a) Comparison of AIMD (dash-dotted line) and
ML-MD (solid line) stress/strain curves for TiB2 subject to (0001)[1210], (1010)[1210], and (1010)[0001]
room-temperature atomic-scale shear deformation. (b, c, d) Representative snapshots at strain steps
marked by shaded rectangles in (a). The dashed lines in (b, c, d) guide the eye for slip directions
described in the text. (e) Differences in ML-MD and AIMD stresses (σ(M L−M D) − σ(AI M D)), resolved
in the basal plane and [0001] direction (σx,y and σz) of TiB2 subject to room-temperature volumetric
compression, plotted as a function of the compression percentage. (f) Blue and red data points indicate
maximum extrapolation grades returned by MLIP-[4] and its up-fitted version, MLIP-[4]P lus, during
TiB2 compression.
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As shown in Fig. 8-e,f, compression-induced stresses along main crystallographic
directions are indeed extremely large. In AIMD, they exceed 50 GPa for a 5%
compression and reach ≈ 150 GPa for a 10% compression. Our MLIP yields
satisfactory agreement with AIMD for volumetric compression of 1–2%, with stress
tensor components differing from ab initio values by less than 1.83 GPa (9.57%)
and γ indicating reliable extrapolation (γ ≤ 10 = γreliable). A further increase in
compression to 10%, however, causes increasing deviations from AIMD stresses
and γ ≈ 102–103.
We illustrate the effect of up-fitting by producing a new MLIP (MLIP-[4]P l us)
which learns from AIMD snapshots of 10% volumetrically-compressed TiB2 (added
to the LS of MLIP-[4]). This not only greatly improves accuracy for the 10%
compression (stress differences are maximum 0.79 GPa (0.48%) and γ ≤ 2) but
also within the entire tested compression range (see red data points in Fig. 8-e,f).

• Surface energies of TiB2.
Although our training set did not contain ideal surfaces, environments describing
TiB2’s fracture may facilitate reasonable predictions for energies of low-index
surfaces. To test this hypothesis, we evaluate the energies of formation, Esurf, of
(0001), (1210), and (1010) surfaces, i.e. orthogonal to simulated tensile loading
directions (Section 2–4).
The MLIP-predicted Esurf are consistent with equivalently produced ab initio values
(Tab. 4). The differences are relatively small: 0.03 J m−2 (1.40%) for Esurf(0001),
0.04 J m−2 (1.68%) for Esurf(1210)), and 0.13 J m−2 (5.75%) for Esurf(1010), as
underlined also by low extrapolation grades (γ < γreliable). ML-MS and DFT
calculations of the present work indicate that the TiB2(1210) surface is energetically
more stable than the basal plane. This is surprising, given that formation of (1210)
surfaces requires breaking strong, covalent B-B bonds. That the basal plane of
TiB2 is not the one with lowest energy has also been indicated by previous DFT
tudies[94, 95]. Nevertheless, MLIP up-fitting on higher-accuracy DFT data would
be needed to verify the relationship among TiB2 surface energies.

• Off-stoichiometric TiB2 structures and other phases. Our MLIP was trained
to snapshots of TiB2 (AlB2-type phase, P6/mmm) with a perfect stoichiometry
(speaking of the entire supercell). Visualization of the training set (Fig. 3c),
however, indicates presence of atomic environments with various Ti-to-B ratios as
well as bond lengths and angles different from those in TiB2. This may be useful
for simulations of e.g. vacancy-containing TiB2 structures commonly reported by
synthesis [36] or other phases in the Ti–B phase diagram [96].
To investigate transferability to other phases, we use MS calculations to find the
ground-state of known phases from the Ti–B phase diagram [70, 96]: Ti2B (tetra-
gonal, I4/mcm), Ti3B4 (orthorhombic, Immm), and TiB (orthorhombic Pnma)4.
Additionally, we equilibrate the TiB2 phase with Ti, B, or combined Ti and B
vacancies: Ti36B71, Ti35B72, and Ti35B70. For all calculations, extrapolation grades
(γ ≈ 102–104) are far beyond reliable extrapolation. In terms of total energies

4The supercell sizes are always ≈ 700 atoms, i.e. comparable to that used for TiB2.
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(Etot), and lattice parameters (a, b, c), the largest deviation from ab initio values
is exhibited by Ti3B4 (10% and 2.5% differences on Etot and c, respectively).

Tab. 4: Transferability of the here-developed MLIP (MLIP-[4]) in molecular statics (MS) calculations
of surface energies, Esurf (J m−2), for low-index surfaces of TiB2. Our calculations consider
stoichiometric TiB2 surfaces, i.e. with 1:2 Ti-to-B ratio.

Surface Esurf Source
ML-MS (0001) 3.80 This work

DFT (0001) 3.80 This work
DFT (0001) 4.50–4.72 Ref. [97]
DFT (0001) 4.22–4.24 Ref. [94]
DFT (0001) 4.14 Ref. [98]
DFT (0001) ≈ 4.20 Ref. [95]

ML-MS (1010) 3.98 This work
DFT (1010) 4.12 This work
DFT (1010) ≈ 4.10 Ref. [95]

ML-MS (1210) 3.42 This work
DFT (1210) 3.57 This work
DFT (1210) 4.20–4.83 Ref. [94]
DFT (1210) ≈ 4.02 Ref. [95]

Simulations of other stoichiometries and phases therefore require up-fitting (not
necessarily due to poor accuracy but especially due to high uncertainty, γ ≫
γreliable). To illustrate the up-fitting effect, MLIP-[4] learns from additional ab initio
snapshots: from 0 K equilibration of a 780-atom Ti3B4 supercell. Prior to up-fitting,
equilibration of Ti3B4 yields γ ≥ 104. Afterwards, γ ≤ 5 < γreliable and Etot, a and
c deviate from ab initio values by 4.18%, 0.07%, and 0.73%.

6 Viability of our training strategy for modelling tensile deformation in other
ceramics

To illustrate general applicability of the here-proposed training strategy, we develop
MLIPs for 5 other ceramic systems. Once more, we emphasize that the developed MLIPs
are primarily targeted to simulations of uniaxial tensile loading at room temperature.
The chosen materials are

hexagonal α-TaB2 [63], which serves as example of changing the transition metal
while keeping the same crystal structure, hexagonal ω-WB2 [63] and γ-ReB2[63],
i.e., examples of changing the transition metal as well as the phase, cubic NaCl-type
TiN [64], which serves as example of ceramic system with different non-metal species,
different lattice symmetry, and bonding character that is less covalent but more
ionic and metallic than TiB2 and diborides in general, orthorhombic, nanolaminated
Ti2AlB2 (a MAB phase [65]), which is example of ternary system with different
crystal structure and mixture of ceramic-like and metallic-like bonding.

Training data generation, up-fitting, and validation follow steps carried out for TiB2
in Sections 1–3. Again, the validation consists in (i) evaluating fitting and validation
errors with respect to the training set and a meaningful validation set, (ii) comparing
the predicted physical properties with equivalently calculated ab initio values, and (iii)
monitoring the extrapolation grade during ML-MD simulations.
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Fitting and validation errors of energies, forces, and stresses (RMSE < 3 meV atom
−1, < 0.15 eV Å−1, and < 0.25 GPa, respectively) are similar to those evaluated for
TiB2 in Section 1 and close to the accuracy of the AIMD training set. Extrapolation
grades for all configurations in the validation set are below the accurate extrapolation
threshold (γ < 2).

Fig. 9 exemplifies validation of ML-MD tensile-stress/elongation curves against corre-
sponding atomic-scale AIMD results. The intention is to demonstrate applicability of our
training approach to different ceramic systems. Hence, we omit discussion of deformation
and fracture mechanisms which, however, are consistent with AIMD results. The time-
averaged stresses recorded during ML-MD tensile tests differ from the corresponding
AIMD values by 0–3.3 GPa, yielding statistical errors RMSE≈ 2.0 GPa, R2 ≈ 0.99.
The discrepancy is partly due to stochastic stress fluctuations, which may also onset
fracture at slightly different strains in independent MD runs (compare ML-MD and
AIMD results for TaB2, ReB2, and TiN in Fig. 9). Previous molecular dynamics tensile-
testing investigations demonstrated that the statistical uncertainties on TiN elongation
at fracture are comparable to the strain increment[90].

Fig. 9: Generality of our MLIP training strategy for ceramic materials, (a) α-TaB2, (b) ω-WB2,
(c) γ-ReB2, (d) NaCl-type TiN, and (e) the orthorhombic Ti2AlB2 MAB phase, as illustrated by
stress/strain curves for room-temperature uniaxial tensile deformation. Specifically, the [0001]
and the [001] loading directions are chosen as representative examples for hexagonal systems (TaB2,
WB2, ReB2) and for the cubic and the orthorhombic systems (TiN, Ti2AlB2), respectively. The supercell
sizes and computational setup are equivalent to the atomic scale tensile tests for TiB2, defined by the
first bullet point in Section 3. Note that the stress values should not be over-interpreted, as they were
obtained for atomic scale supercells (to make a fair comparison with ab initio data) and—in case of
negligible size effects—are the ideal upper bounds attainable by a perfect single crystal.

The theoretical tensile strengths of TaB2, WB2, ReB2, TiN, and Ti2AlB2 predicted
by ML-MD are 40.3, 50.8, 76.2, 36.7 and 16.5 GPa, respectively. These values differ
from those obtained via AIMD by maximum 8%. The corresponding ML-MD and
AIMD tensile toughness values deviate by maximum 5%. Extrapolation grades during all
ML-MD simulations indicate reliable extrapolation (γ ≤ 5 < γreliable ≈ 10) and remain
of similar magnitude also during ML-MD tensile tests on supercells with S1-size (see
second bullet point in Section 3).

The results in Fig. 9 suggest general applicability of our approach for development of
MLIPs able to describe tensile deformation and fracture in hard ceramics. Specifically, our
MLIPs correctly reproduce AIMD results of stress/strain curves and fracture mechanisms
in different ceramic systems subject to tensile deformation. Extrapolation grades during
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all ML-MD tensile tests (both atomic and nanoscale) are of similar magnitude as for
TiB2, hence indicating reliable extrapolation and realistic deformation and fracture
processes.

7 Summary and Outlook

We proposed a strategy for the development of MLIPs specifically trained to description
of deformation and fracture in tensile-loaded ceramic monocrystals. TiB2 served as
a model ceramic system. Training data generation, fitting, and validation procedure
were performed within the moment tensor potential (MTP) formalism. MLIP-based
molecular dynamics tensile-testing investigations have been carried out from the atomic
scale (≈ 103 atoms) to the nanoscale (≈ 104–106 atoms). Furthermore, we discussed the
MLIP’s transferability to, e.g., description of TiB2 subject to different loading conditions
or different Ti-B phases, as well as the viability of the here-proposed training strategy
for developing MLIPs of other ceramics.

Key findings are summarized below.
MLIP development:

MLIPs for simulations of tensile deformation until fracture can be trained following
the scheme in Fig. 1, based on snapshots from finite-temperature AIMD simulations
of sequentially elongated single-crystal models with sizes of ≈ 103 atoms. An
analogous training approach may be applicable to other loading conditions (e.g.
shearing) and ceramics in different stoichiometries and crystalline phases (e.g.
diborides, nitrides, MAB phases). The applicability of MLIPs to description of
tensile deformation and Poisson’s contraction at the nanoscale requires up-fitting.
This is due to, e.g., nucleation of extended defects being hindered by the small size
of AIMD supercells used for generation of training sets. We propose to generate
additional ab initio data by room-temperature and elevated-temperature (1200 K)
AIMD: imposing a large strain along one lattice vector, initializing atoms at ideal
lattice sites, and equilibrating the supercell under fixed volume and shape. MLIPs
fitted to room-temperature tensile dataset may be transferable to simulate other
loading conditions; here we show examples of high-temperature tensile deformation
and room-temperature shear deformation at the atomic scale. Contrarily, up-fitting
is certainly required for simulations of volumetric compression, other phases and
stoichiometries.

Predictions for TiB2:
Our calculations indicate elastic isotropy of TiB2’s basal plane at 300 and 1200 K.
The directional dependence of mechanical properties in (initially) dislocation-free
supercells qualitatively changes from the atomic to the nanoscale. However, all
predicted properties rapidly saturate for supercell sizes increasing from ≈ 104 to
≈ 106 atoms. At 300 K, theoretical tensile strengths during [0001], [1010], and
[1210] deformation reach 51–56 GPa. Nanoscale MD simulations provide insights
into crack nucleation and growth mechanisms. Subject to [0001] tensile loading,
Ti/B2 layer delamination induces opening of nm-sized voids which rapidly coalesce,
inducing formation of few-nm-size cracks inside the material. Fracture surfaces
align predominantly with basal planes, {0001}, and first order pyramidal planes,
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{1011}. Considering deformation within the basal plane, [1010] tensile test (i.e.
loading in the direction of strong B–B bonds), most often induces crack deflection,
formation of V-shaped defects, and fracture at {1122} family of surfaces. Contrarily,
the [1210] tensile deformation induces fracture at {1010} prismatic planes.

The example of TiB2 together with additional ML-MD tensile tests done on other
ceramics (TaB2, WB2, ReB2, TiN, Ti2AlB2) indicate the viability of the here-proposed
MLIP training strategy. Our approach may be extendable also to other MLIP formalisms.
The predictions of nanoscale deformation and fracture in TiB2 presented in this work
may aid interpretation of future mechanical-testing experiments. Several previous studies
have already demonstrated the importance of MD simulations for elucidating microscopy
observations Refs. [99–101]. Follow-up work could focus on MLIP up-fitting for modelling
more complex problems as, e.g., Mode-I loading of native flaws and nanosized cracks.
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Shear-activated phase transformations of diborides via machine-
learning potential molecular dynamics
Keywords: Machine learning interatomic potentials, molecular dynamics, diborides,
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Abstract

The layered character of transition metal diborides (TMB2:s)—with three structure poly-
morphs representing different stackings of the metallic sublattice—evokes the possibility
of activating phase-transformation plasticity via mechanical shear strain. This is critical
to overcome the most severe limitation of TMB2:s: their brittleness. To understand
finite-temperature mechanical response of the α, ω, and γ polymorphs at the atomic
scale, we train machine-learning interatomic potentials (MLIPs) for TMB2:s, TM=(Ti,
Ta, W, Re). Validation against ab initio data set supports the MLIPs’ capability to
predict structural and elastic properties, as well as shear-induced slipping and phase
transformations. Nanoscale molecular dynamics simulations (> 104 atoms; ≈ 53 nm3)
allow evaluating theoretical shear strengths attainable in single-crystal TMB2:s and
their temperature evolution from 300 up to 1200 K. Quantitative structural analysis via
angular and bond-order Steinhardt parameter descriptors shows that (0001)[1210] and
(0001)[1010] shearing activates transformations between the (energetically) metastable
and the preferred phase of TiB2, TaB2, and WB2. These transformations can be pro-
moted by additional tensile or compressive strain along the [0001] axis. The preferred
phase of ReB2 shows negative thermal expansion and an unprecedented shear-induced
plasticity mechanism: metallic/boron layer interpenetration and uniform lattice rotation.

Introduction

Renowned for their exceptional hardness [1, 2], high melting points [3], corrosion and
erosion resistance, as well as excellent thermal and electrical conductivity [4], transition
metal diborides (TMB2:s) are crucial for various industrial applications requiring to
withstand extreme conditions, such as high temperatures and/or severe mechanical
loads [5, 6]. As most hard ceramics, TMB2:s are severely limited by their brittleness,
which may cause easy crack nucleation and/or propagation of pre-existed cracks. Thus,
understanding mechanical response of diborides, in particular, loading conditions that
facilitate plastic deformation, is of fundamental as well as of practical importance. Plasti-
city can be promoted in various ways, including alloying, nanostructural or superlattice
design [7, 8]. Motivated by the striking structural similarity of diboride polymorphs, this
work focuses on intrinsic plasticity mechanisms, namely, stress-activated transformation
plasticity.

The possibility of transformation plasticity in TMB2:s is evoked by their layered
hexagonal structures—the α phase (space group (s.g.), P6/mmm), the ω and γ phase
(s.g. P63/mmc) [9, 10]—representing different stackings of the TM sublattice, which may
be interchangeable subject to mechanical loading. According to density functional theory
(DFT) predictions [11], group 4–5 transition metals diborides energetically favor the α
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phase, while those in group 6 favor the α and ω phase, and in group 7 favor the γ phase.
There are, however, some inconsistencies in the literature regarding stable and metastable
TMB2:s, such as WB2 being quite sensitive to the synthesis conditions [7, 12–14] which
may promote formation of phases far from the thermodynamic equilibrium. Other factors
affecting the phase preference of TMB2:s are (i) the B sub/over-stoichiometry [15, 16]
(often attributed to the presence of B vacancies [17, 18] or the B tissue phase along
grain boundaries [19]), and (ii) the energetic proximity of some stackings (e.g., the α
and ω stacking of TaB2, or the ω and γ stacking of WB2 [11]). Additional uncertainty
on stable and metastable phases stems from the non-trivial distinction between the
diboride phase polymorphs via X-ray diffraction or electron microscopy [20].

With only few experimental reports [12, 21], strain-activated phase transformations of
TMB2:s are a nearly untouched topic. Necessary investigations require fine control over
the synthesis and micromechanical testing conditions as well as careful high-resolution
transmission electron microscopy (HR-TEM) analysis. Atomistic simulations may guide
these challenging experiments, offering access to properties of ideal single-crystals and
well-defined loading conditions. While DFT studies indicated phase transformations in
TMB2:s [11, 22, 23], calculations based on molecular dynamics (MD) simulations at
finite temperature have been rare due to the lack of reliable force fields [24–26] or their
limitations in achieving quantum-level accuracy. Despite rapid advancement of machine-
learning interatomic potentials [27, 28] (MLIPs) and their impressive capabilities—
including DFT-level of accuracy with up to 105 higher computational efficiency [29,
30], and systematic improveability via active learning [31]—MLIP training is non-trivial
even for binary systems [32–34]. Only few MLIPs are available for ceramics [35, 36] and
their applications beyond DFT length scales are sparse [37, 38]. The complex atomic
interactions involved in phase transformations pose yet another obstacle [39–41].

Our study exploits machine-learning potential molecular dynamics (ML-MD) to reveal
phase transformations of TMB2:s subject to shear deformation. TiB2, TaB2, WB2, and
ReB2 are chosen to exemplify group 4, 5, 6, and 7 TMB2:s, energetically favoring the α
phase (TiB2, TaB2), ω phase (WB2), and γ phase (ReB2). The MLIPs are trained in the
moment tensor potential (MTP) formalism [42] and validated against relevant ab initio
MD data, including the extrapolation grade (MV [43]) analysis. Subsequently, the α, γ,
and ω phase are equilibrated at 300 K for each TMB2, TM = (Ti, Ta, W, Re), using
supercells with ≈ 15 · 103 atoms. Stress/strain curves derived from (0001)[1210] shear
simulations allow predicting (temperature-dependent) trends in the shear strengths and
identifying diborides with shear-activated stacking changes. These changes are traced
not only by visual inspection but also through quantitative analysis using angular and
bond-order parameter descriptors of local atomic environments.

Our study showcases the capabilities of MLIPs in quantifying mechanical properties
of structurally complex materials and predicting their structural evolution under experi-
mentally relevant loading conditions. Key findings include ω → α transformation in TiB2
and TaB2, α → ω transformation in WB2, and anomalous behavior of ReB2 exhibiting
negative thermal expansion and homogeneous lattice rotation subject to shearing.
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Methods

Ab initio molecular dynamics calculations

Finite-temperature Born-Oppenheimer ab initio molecular dynamics (ab initio MD) were
carried out using VASP [44] together with the projector augmented wave (PAW) [45]
method and the Perdew-Burke-Ernzerhof exchange-correlation functional revised for
solids (PBEsol) [46]. The plane-wave cut-off energies of 300 eV and Γ-point sampling of
the reciprocal space were employed.

Structural models of TMB2s, TM=(Ti,Ta,W,Re), considered the α, γ, and ω po-
lymorphs, i.e., were based on the AlB2-type (P6/mmm), ReB2-type (P63mmc), and
WB2-type (P63mmc) phase [11]. Their hexagonal unit cells were orthogonalized to satisfy
following crystallographic relationships: x ‖ [1010], y ‖ [1210], z ‖ [0001]. All ab initio
MD calculations were carried out in 720-atom supercells (240 TM+480 B), having
dimensions of ≈ (1.5 × 1.6 × 2.6) nm3. The supercells (3 for each TM) were equilibrated
at desired temperature (300 K, in some cases also 1200 K) in 2 steps: during (i) a 10 ps
isobaric-isothermal (NpT) simulation with Parrinello-Rahman barostat [47] and Langevin
thermostat, and, subsequently, (ii) a 2–4 ps simulation with the canonical (NVT) ensem-
ble based on Nosé-Hoover thermostat, using time-averaged lattice parameters from (i).
Computational setup for shearing along the (1010)[1210], (0001)[1210], and (1010)[0001]
slip systems followed Refs. [48–50], in particular, using 2% strain increment and 2.7 ps
relaxation at each strain. Stress tensor components were calculated by averaging data
from the last 0.5 ps.

Room-temperature elastic constants, Cij, were evaluated following Ref. [51], i.e.,
based on a second-order polynomial fit of stress/strain data from the [0001], [1010],
and [1210] tensile simulations (used to derive C11, C12, C13, C33), and the (0001)[1210],
(1010)[1210] and (1010)[0001] shear simulations (used to derive C44), considering strains
between 0 and 4%. This is consistent with our previous work [36], concerning Cij of
α-TiB2.

Development and validation of machine-learning interatomic potentials (MLIPs)

We used the moment tensor potential (MTP) formalism, as implemented in the mlip-2
package [31]. Training data generation and training workflow involved multiple active
learning loops, detailed in our previous work, see Ref. [36]-Fig.1. In short, each loop
consisted of: (1) fitting a MLIP; (2) comparing the extrapolation grade, MV [43],
against a learning set, LS; (3) expanding the training set by extrapolative (M V ≥ 2)
configurations from the LS (using the MaxVol algorithm [43] via the select add
command of mlip-2); (4) repeating from step (1) until accurate extrapolation (MV< 2)
is reached for all configuration in the LS. MLIPs were fitted based on 16g MTPs (referring
to the highest degree of polynomial-like basis functions in the analytic description of
the MTP [42]), using the Broyden-Fletcher-Goldfarb-Shanno method [52] with 1500
iterations, as well as weight of 1.0, 0.01 and 0.01 for total energy, stresses and forces in
the loss functional. The cutoff radius of 5.5 Å was used, similar to other recent MLIP
studies [53, 54] and motivated our previous tests for α-TiB2 [36]. Validation set contained
20 % of all our ab initio MD data. The detailed validation strategy follows our previous
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study [36]. Tab. S1 reports the detailed RMSE values for energy, forces, and stress of
the final training set. Fig. S1 shows the direct validation against physical phenomena
and statistical trends derived from our ab initio data for all here-studied materials,
while Fig. S2 provides parity plots illustrating direct data comparison using TiB2 as an
example. Accuracy of our MLIPs is consistent with accuracy of the underlying ab initio
training dataset and meets standards of previous MLIP benchmarking studies [55].

Molecular dynamics with MLIPs (ML-MD)

ML-MD calculations were performed with the LAMMPS code [56] interfaced with the
mlip-2 package [31], which allows using MTP-type MLIPs (specified in the pair_style
command). Further, the active learning state file (state.als) was used to output the
extrapolation grade, MV [43], during the simulations (note that our previous work uses
γ instead of MV, which is not convenient here, as γ is one of the three investigated
stackings).

To provide a fair comparison with our ab initio MD data, computational setup of
equilibration, shear, and tensile tests at the atomic scale was always the most equivalent
to the respective ab initio MD simulations, including evaluation of time-averaged stresses
and elastic constants calculations. For more realistic simulations beyond ab initio length
scales, we used supercells with 12,960 atoms and dimensions of about 53 nm3. Prior to
simulating shear deformation, the supercells were equilibrated for 5 ps at the targeted
temperature using the isobaric-isothermal (NpT) ensemble, combining with the Nosé-
Hoover thermostat with a 1 fs time step. The supercells were deformed at a constant
strain rate (0.5 m s−1, similar to typical values used in MD mechanical tests [57]).

Structural analysis and phase identification

The OVITO package [58] allowed visualizing MD trajectories and analyzing the volume-
tric strain distribution (using cut-off radius of ± 0.1 Å). Due to structural complexity
of the investigated diboride polymorphs, OVITO modifiers or other conventional tools of
structure identification could not be employed. Instead, we used (i) angular distribution
analysis, and (ii) Steinhardt bond-orientational order parameters [59]. We acknowledge
that despite both provide a strong indication of the phase constitution, neither is
completely unambiguous.

The bond analysis considered the nearest-neighbor B–B bonds within the 2 Å cutoff
radius (selected from the [a/

√
3, a] interval to encompass all the investigated TMB2:s),

in which each B was 3-coordinated. The angles (120 ± 5)◦ served to classify B layers
as “flat”, where the range was chosen based on the standard deviation (≈ 11◦ for all
TM elements) from room-temperature ab initio MD NVT equilibration. For “puckered”
layers, a slightly different range of angles was used depending on the TM; e.g. (106±6)◦

for γ-ReB2 or (111 ± 5)◦ for ω-WB2 (note that in case of partial overlap between the
intervals used to classify “flat” and “puckered”, each was expanded by 1◦). Other angles
were evaluated as “other”.

Calculations of Steinhardt parameters were carried out using the PYSCAL packa-
ge [60]. Specifically, the values were obtained by averaging the Voronoi-weighted Stein-
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hardt parameters, more suitable to distinguish between complex crystal structures [60,
61]. For each atom (here we only analyze the B sublattice), PYSCAL allows calculating
10 Steinhardt parameters; q3, q4, . . . , q12. While the actual values (ranging from 0 to 0.6)
did not allow straightforwardly distinguishing between the diboride polymorphs, their
pairwise combinations (qi vs. qj, where i, j ∈ [3, 12] and i ̸= j) did. Based on extensive
testing, we selected the q3 vs. q4 plots to estimate the phase constitution in nanoscale
supercells. Similar testing using Steinhardt parameters for the TM sublattice indicated
less pronounced differences between the 3 polymorphs and the main text therefore only
presents results for B layers.

Results and Discussion

1 Phase stability of TMB2:s (TM=Ti, Ta, W, Re) and proof-of-concept shear tests
at ab initio length scales

First we predict room-temperature phase stability, structural parameters, and elastic
constants of the model TMB2:s (TM=Ti, Ta, W, Re) in the α, γ, and ω stacking. To
support the hypothesis on strain-activated stacking changes, we present proof-of-concept
shear tests at DFT-accessible length scales reveling ω → α transition in TiB2. All
predictions are obtained using the here-developed MLIPs (for details of the training
and validation procedure, see the Methods) and shown consistent with analogical ab
initio molecular dynamics (ab initio MD) simulations.

As depicted in Fig. 1a, the three polymorph structures differ not only by the stacking
of the TM sublattice (α-AAAA, ω-ABBA, γ-ABAB), but also by the puckering of
honeycomb-patterned B layers. Namely, all B layers are flat and puckered in the α
and γ stacking, respectively, while they are periodically flat/puckered in the ω stacking.
Room-temperature equilibration of the model TMB2:s (TM=Ti, Ta, W, Re) in each
polymorph structure shows that TiB2 and TaB2 energetically favor the α phase, WB2
favors the ω phase, and ReB2 favors the γ phase (Fig. 1b). This phase preference
perfectly agrees with our room-temperature ab initio MD calculations, yielding 0.001–
0.002 eV/at. and 0–0.004 Å difference from the corresponding MLIP-obtained potential
energy and lattice parameter values, respectively. All properties are calculated as time
averages. The same phase preference has been also indicated at 0 K by previous ab
initio studies [11, 62, 63].

Depicted in Fig. 1b (room-temperature ML-MD results), ω-TiB2 and γ-TiB2 exhi-
bit 0.31 and 0.61 eV/at. potential energy, EP , difference from the preferred α-TiB2,
respectively. Therefore, these phases are energetically unfavorable (and experimentally
unreported). TaB2 exhibits the same EP order, α < ω < γ, with smaller energetic
differences from the α structure: 0.09 eV/at. (ω-TaB2) and 0.20 eV/at. (γ-TaB2). Expe-
rimental studies have shown formation of α-TaB2 [7, 17] and, in one case, indicated
presence of the (metastable) ω-TaB2 [64]. WB2 exhibits different order of potential
energy, ω < γ < α, and even lower EP differences between the three polymorphs than
TaB2: 0.02 eV/at. (γ-WB2) and 0.14 eV/at. (α-WB2). Despite only ω and α polymorphs
have been reported [7, 12–14], the energetic proximity of the γ phase suggests that also
γ-WB2 could form. ReB2 shows yet another order of energy, γ < ω < α, and increased
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Fig. 1: Structure polymorphs of TMB2:s, their room-temperature stability for TM=(Ti, Ta, W,
Re), and proof-of-concept shear tests showing ω → α transition in TiB2. (a) Visualization of
the α (AAAA stacking), ω (ABBA stacking), and γ (ABAB stacking) polymorphs in the (1210) and
(1010) plane view. The smaller–grey (larger–colored) spheres represent B (TM) atoms. (b) Potential
energy, EP , difference between each polymorph (α, ω, γ) and the lowest-energy (ground-state) polymorph
from room-temperature ML-MD equlibration (720-atom supercells). The zero EP difference shows that
TiB2 and TaB2 favor the α phase, WB2 favors the ω phase, and ReB2 favors the γ phase. The results
are consistent with ab initio MD data. Diborides that locally diverged from their ideal lattice sites
during ab initio MD equilibration (but remained nearly perfect in ML-MD) are marked by star. (c)
Proof-of-concept room-temperature shear simulations for α-TiB2 and ω-TiB2 (for technical details see
the Methods), showing consistency between ab initio MD and ML-MD data in terms of stress and
structure evolution; note the ω → α transformation in ω-TiB2. The shear strain is applied along the
(0001)[1010] slip system and the corresponding time-averaged stress tensor component (xz) is plotted in
the left panel. Local structural snapshots are shown on the right, together with the R2 error and the
residual mean square error, RMSE, of MLIP-predicted stresses (compared with ab initio MD) and the
MLIP’s extrapolation grade during the simulation, indicating reliable extrapolation.

EP differences compared to TaB2 and WB2: 0.16 eV/at. (ω-ReB2) and 0.29 eV/at.
(α-ReB2). Despite lack of experimental information for metastable diboride phases at
ambient conditions—and this concerns not only ReB2, but also other TMB2:s—they
may locally nucleate during micromechanical testing. Note that metastable ceramics
with energetic differences from the preferred phase as high as 0.2 eV/at. have been
realized experimentally [65, 66].

According to our ML-MD calculations, all the here-investigated TMB2:s are mecha-
nically and dynamically stable at 300 K. Mechanical stability [67] is deduced from
elastic constants, Cij, calculations (the values are given in Tab. 1). Finite-temperature
dynamical stability is indicated by time-averaged atomic positions at ideal lattice sites,

87



CHAPTER 5. CONTRIBUTION TO THE FIELD

at variance with (local) lattice distortions towards different polymorph structures being a
sign of instability. We acknowledge that dynamical stability assessment is not completely
unambiguous and may be sensitive to size effects and chosen simulation parameters.
Besides equilibrating all diborides with ML-MD, we also set similar ab initio MD calcula-
tions (using the same 720-atom supercells). These suggest metastability/near-instability
of α-ReB2, γ-TaB2, and γ-TiB2 (marked by ∗ in Fig. 1b), exhibiting (locally) more
pronounced deviations from the ideal lattice sites. In previous 0 K DFT calculations,
only α-WB2 and α-ReB2 presented dynamical instabilities [11, 68] which, according
to our predictions, diminish or fully disappear with temperature (possibly also due to
presence of anion vacancies, as suggested by Hahn et al. [20]).

Tab. 1 lists lattice parameters (a, c) and elastic properties (Cij and related observables,
such as the Young’s moduli) of the investigated TMB2:s. Validation of MLIP-predicted
values against those from analogical ab initio MD calculations reveals good quantitative
agreement, with deviations of < 0.9% and < 8.0% in terms of lattice parameters
and elastic constants, respectively. The MLIPs’ reliability is further underpinned by
consistency with other DFT and experimental values from literature. The exception is α-
ReB2 showing discrepancies even between DFT-calculated lattice and elastic constants[69,
70], with our room-temperature Cij data falling in-between the range of DFT-predicted
Cij . This may further highlight the suggested (near-) instability of α-ReB2 and, possibly,
a stabilizing role of temperature.

Next, we take TiB2—a well-known hard coating material [5, 83, 84]—as a model
example for proof-of-concept simulations of (room-temperature) shear deformation.
Recalling Fig. 1a, we intuitively expect that changes between the α, ω, and γ stacking can
be mediated by tilting the [0001]‖ z axis (aligned with the typical growth direction [1])
towards the basal plane (xy), i.e., by shearing along the (0001)[1210] or (0001)[1010]
slip system. As the basal plane of TMB2:s is isotropic [9], we arbitrarily select the
former (the latter is discussed in the upcoming sections). The corresponding stress/strain
curves (Fig. 1c) reveal qualitatively different shear response of the preferred α-TiB2
and the metastable ω-TiB2. While the α stacking reaches the maximum shear stress
(≈ 58 GPa) at 24% strain, the ω stacking exhibits its peak (7.9 GPa) significantly
earlier, at 6% strain. In case of α-TiB2, the stress drop after reaching the maximum
(yield point) is associated with layer slipping and restoring nearly ideal α lattice sites.
Contrarily, ω-TiB2 undergoes a transformation towards the α phase (bottom row in
Fig. 1c showing a magnification of the 720-atom TiB2 supercell). As we simulate ideal
shear, i.e. a volume-conserving transformation, the ω → α transformation results in
α-TiB2 with “incorrect” lattice parameters (of ω-TiB2). Intuitively, loading conditions
that allow volume relaxation are likely to lower the energetic costs of the transformation,
as discussed later.

The stresses and strains withstood by single-crystal models during ab initio MD
simulation (Fig. 1c) are typically one to two orders of magnitude larger than actual
mechanical-test results due to absence of structural imperfections. What we emphasise,
however, is the quantitative agreement between ab initio MD and ML-MD time-averaged
data, and the fact that both capture the ω → α transformation. A comparison of ab
initio MD and ML-MD predicted stresses during shear deformation of α-TiB2 returns an
R2 of 0.999 and a residual mean square error (RMSE) of 0.5 GPa. The corresponding
values recorded by shear simulations of ω-TiB2 are 0.99 and 0.8 GPa. Analysis of
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TMB2 Method T a c C11 C33 C44 C12 C13 E B G ν Ref.
α-TiB2 ML-MD 300 3.04 3.22 588 409 261 85 98 554 236 246 0.113 This work

ab initio MD 300 3.03 3.23 588 430 252 79 111 547 244 243 0.126 This work
Exp. 300 3.04 3.24 588 503 238 72 84 575 249 255 0.114 Ref. [71]
Exp. 300 / / 660 432 260 48 93 565 244 266 0.099 Ref. [72]

ω-TiB2 ML-MD 300 3.01 14.25 352 251 151 36 135 326 184 135 0.204 This work
ab initio MD 300 3.01 14.27 326 239 127 52 116 285 162 118 0.207 This work

DFT 0 / / / / / / / 228 232 153 0.230I Ref. [73]
γ-TiB2 ML-MD 300 2.96 7.87 399 442 122 171 164 343 248 135 0.268 This work

DFT 0 3.03 7.16 492 426 62 75 83 322 210 130 0.244 I IRef.[11]

α-TaB2 ML-MD 300 3.10 3.33 512 370 230 69 135 466 223 202 0.141 This work
ab initio MD 300 3.09 3.33 510 392 252 72 125 486 221 214 0.134 This work

Exp. 300 3.09 3.24 / / / / / 551 228 / / Ref. [74]
Exp. 300 3.10 3.17I / / / / / 402 / / / Ref. [75]
DFT 0 3.09 3.36 591 468 288 166 175 573I 297I 243I 0.178I Ref. [76]

ω-TaB2 ML-MD 300 3.05 14.60 646 373 212 113 181 520 285 217 0.196 This work
ab initio MD 300 3.06 14.58 620 360 208 105 170 504 272 212 0.190 This work

DFT 0 3.05 14.64 / / / / / / 293 237 0.181I Ref. [77]
γ-TaB2 ML-MD 300 2.93 8.09 450 434 144 139 139 396 241 161 0.226 This work

DFT 0 3.04 7.58 544 571 114 129 109 432 261 176 0.225 I IRef.[11]
α-WB2 ML-MD 300 3.05 3.35 528 385 95 181 238 344 305 131 0.312 This work

ab initio MD 300 3.02 3.37 531 383 72 195 232 316 305 119 0.327 This work
DFT 0 3.03 3.38 593 335 122 124 238 359I 284I 139I 0.289I Ref. [78]
DFT 0 3.05 3.31 589 420 95 184 235 350 320 133 0.318 Ref. [79]

ω-WB2 ML-MD 300 3.02 14.04 560 590 218 138 147 517 272 218 0.183 This work
ab initio MD 300 3.02 14.06 552 597 230 120 172 522 278 220 0.187 This work

DFT 0 3.02 14.05 565 670 227 163 185 531I 301I 229I 0.206I Ref. [78]
DFT 0 3.04 13.84 570 672 202 145 200 512 320 208 0.233 Ref. [79]
Exp. 300 2.99 13.91 / / / / / 504 349 200 0.259 Ref. [80]
Exp. 300 3.02 14.03 / / / / / 477 / / / Ref. [16]

γ-WB2 ML-MD 300 2.92 7.74 538 815 302 117 69 620 264 280 0.108 This work
ab initio MD 300 2.94 7.73 525 817 320 115 69 623 260 283 0.101 This work

DFT 0 2.93 7.75 / / / / / / 319 277 0.163I Ref. [77]
DFT 0 2.93 7.75 594 953 282 168 105 625 318 266 0.172 Ref. [62]

α-ReB2 ML-MD 300 3.04 3.13 909 496 111 329 262 514 421 198 0.30 This work
(Pressured) DFT 0 2.58 2.97 1178 1042 210 414 409 829 650 321 0.29 Ref.[69]

(Unpressured) DFT 0 2.91 3.45 678 603 -18 214 173 Mechanically unstable Ref.[70]
ω-ReB2 ML-MD 300 2.98 13.87 579 654 223 247 262 535 371 212 0.260 This work

ab initio MD 300 3.00 13.90 560 631 212 236 270 511 366 201 0.267 This work
DFT 0 2.98 14.10 / / / / / / 335 197 0.254I Ref. [77]

γ-ReB2 ML-MD 300 2.90 7.51 562 971 263 164 120 601 300 258 0.166 This work
ab initio MD 300 2.92 7.50 586 960 267 175 139 608 311 259 0.174 This work

Exp. 300 / / 674 1023 269 192 185 661 383 273 0.210 Ref. [81]
Exp. 300 2.90 7.48 / / / / / / 360 / / Ref. [82]
DFT 0 2.88 7.41 668 1063 273 137 147 682 355 289 0.179 Ref. [79]
DFT 0 2.91 7.51 / / / / / / 344 286 0.175I Ref. [77]

I : Calculated based on the reference data; I I : Original data from corresponding authors
Tab. 1: Room-temperature lattice parameters and elastic constants of the here-studied TMB2:s

derived from ML-MD and reference ab initio MD simulations, compared with literature
values (DFT, and experiments, shown as Exp.). Lattice parameters (a, c in Å) and elastic
constants (Cij , in GPa; for computational details see the Methods) at the temperature T (in K),
presented together with the polycrystalline bulk modulus, B (in GPa), shear modulus, G (in GPa),
Young’s modulus, E (in GPa), and Poisson’s ratio, ν.
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the MLIP’s extrapolation (quantified by the extrapolation grade, MV [43], the middle
panel in Fig. 1c) shows close similarity of local atomic environments at each time step
of the shear simulation with those in the training set. The low MV values indicate
near-extrapolation, i.e., do not trigger further active learning (for in-depth discussion
of MV and how it allows assessing reliability of ML-MD calculations, see our previous
work [36]).

The same simulation setup as for TiB2 is used to model room-temperature (1010)[1210]
shear deformation of TaB2, WB2, and ReB2. Without over-stating the actual results,
we highlight the consistency between ab initio MD and ML-MD data. The analysis of 9
shear tests (each producing 10,000–20,000 ML-MD configurations to be validated against
ab initio MD data) yields acceptably low stress errors, R2=0.98–0.999 and RMSE= 0–
1.3 GPa. Furthermore, all shear-induced changes in stacking sequence predicted by ab
initio MD (ω → α transition for TM=(Ti, Ta), α → ω transition TM=W; marked by
arrows in Fig. 1b) are qualitatively reproduced in ML-MD runs. These preliminary
calculations (Fig. 1 and Tab. 1) therefore support the reliability of our MLIPs and the
possibility of shear-activated phase transformations in TMB2.

2 Shear strength and transformability of TMB2:s at the nanoscale

The here-developed MLIPs are employed for more realistic shear simulations, where
deformation is incremented at a lower rate in large (nanosized) supercells. These allow
quantitative predictions of theoretical shear strength attainable in ideal single-crystal
TMB2:s (TM=Ti, Ta, W, Re) as well as atomic level understanding of shear-induced
phase transformations (or/and nucleation of other defects), which may have been size-
constrained in shear tests at ab initio length scales.

Based on our testing, a ≈ 15, 000-atom supercell (≈53 nm3) is chosen to simulate
room-temperature (0001)[1210] shear response of TMB2:s (TM=Ti, Ta, W, Re) with
the α, ω, and γ structure. Fig. 2a depicts stress/strain curves derived from shear tests
for TiB2 serving to evaluate the theoretical shear strength, σmax, of each structure
polymorph (α, ω, γ) and the corresponding slip/transformation strain, ε(σmax). In
Fig. 2b we plot σmax and ε(σmax) values obtained for all TMB2:s. Considering the most
energetically favorable polymorph of each diboride (red-highlighted symbols in Fig. 2b),
the order of shear strength is TiB2 >TaB2 >ReB2 >WB2, where TaB2 and ReB2 reach
comparable σmax. The same trend is predicted also for ε(σmax).

TiB2 exhibits the largest differences between shear response of the 3 polymorph
structures (the largest shaded triangle in Fig. 2b). Namely, σmax of the ω and γ phase
decreases by > 70% (the corresponding ε(σmax) diminishes by about 50%) compared
with the preferred α-TiB2. TaB2 mirrors the trend predicted for TiB2, however, with
smaller differences between σmax and ε(σmax) of the 3 stackings. Recall that also the
predicted stability order was the same, with smaller energetic differences in case of
TM=Ta (Fig. 1b). WB2 presents even smaller differences between shear response of the
3 stackings (Fig. 2b) which may further complicate their experimental identification..
Specifically, σmax of the preferred ω and the metastable α and γ phase nearly overlap,
and are reached at essentially the same ε(σmax) for ω and α (4% below ε(σmax) of
γ-WB2). The ω and α polymorphs of ReB2 yield nearly identical σmax and ε(σmax),
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Fig. 2: Trends in room-temperature shear strength and slip/transformation strain of TMB2:s
(TM=Ti, Ta, W, Re) with the α, ω, and γ structure. The data is derived from ML-MD (0001)[1210]
shear simulations using ≈ 15, 000-atom supercells. (a) Stress/strain curves for α-, ω-, and γ-TiB2. The
dashed arrow-headed lines mark the theoretical shear strength, σmax (the maximum stress withstood
during the shear test), and the corresponding shear strain, ε(σmax), also referred to as slip/transformation
strain (corresponding to a stress release via slipping or some structural transformation). The blue-shaded
region guides the eye for shear toughness (the energy density absorbed by the material until reaching
σmax). (b) The σmax and ε(σmax) values for all TMB2:s (grey–TiB2; turquoise–TaB2; blue–WB2; yellow–
ReB2). The square-, triangle, and diamond-shaped symbols denote the α, ω, and γ-stacking. The
preferred phase is highlighted in red: α for TM=(Ti, Ta), ω for TM=W, and γ for TM=Re. Stress/strain
curves for TM=(Ta, W, Re)—from which σmax and ε(σmax) values were derived, similarly to panel (a).
Temperature dependence of σmax for the here-studied TMB2:s in the (c) α, (e) ω, and (d) γ
structure, simulated in the same supercells (≈15,000 atoms, equibrated at the respective temperature)
as those used at room-temperature shear. Results for TM=(Ti, Ta, W, Re) are depicted in gray, teal,
blue, and orange, respectively.

overshadowed by the preferred γ-ReB2 which combines high shear strength and toughness
(the integral below the stress/strain curve until ε(σmax)). Additional investigations will
be needed to verify dynamical stability of α-ReB2 as well as γ-TiB2, γ-TaB2 (Section
1).

Fig. 2(c-e) reveal the shear strength evolution of TMB2:s with temperature, considering
the 300 to 1200 K range (motivated by validation against ab initio MD data and
relevant atomic environments in the training set). The most significant σmax decrease,
by ≈ 34.3%, is predicted for the α phase of ReB2, followed by TiB2 and TaB2 with
≈ 20.0%. Notably, the shear strength of WB2 appears nearly unaffected by temperature.
This is demonstrated, for example, by a decrease in strength of the α phase of less than
1% at 1200 K. With the exception of WB2, the rate at which σmax diminishes upon
temperature increase is quite similar among the studied diborides and is consistent with
predictions for other ceramic materials [85].

Tab. 2 illustrates size effects in room-temperature shear response of TMB2:s comparing
data from nanoscale simulations with those at ab initio accessible scales. While σmax
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≈1,000-atom supercell (ab initio length scales) ≈15,000-atom supercell (beyond ab initio length scales)
Phase σmax ε(σmax) Stress release mechanism σmax ε(σmax) Stress release mechanism

α 50.0 22.9 Slip within α 50.2 23.4 Slip within α

TiB2 ω 12.6 11.2 Transformation → α 12.3 11.6 Transformation → α

γ 14.6 16.3 Slip within γ 13.8 16.0 Slip within γ; Local amorphous
α 44.5 20.6 Slip within α 44.8 20.7 Slip within α

TaB2 ω 19.9 12.8 Transformation → α 19.6 13.1 Transformation→ α

γ 24.0 17.5 Slip within γ 24.1 17.1 Slip within γ; Local amorphous
α 20.9 15.8 Slip within α 21.4 16.2 Local transformation → ω

WB2 ω 25.4 15.4 Slip within ω 25.0 16.1 Slip within ω

γ 30.1 19.6 Slip within γ 29.9 19.6 Slip within γ; Local amorphous
α 26.9 12.8 Slip within α 28.6 14.0 Slip within α; Local amorphous

ReB2 ω 26.1 14.2 Local transformation → γ 26.2 14.2 Local transformation → γ

γ 36.1 20.0 Slip within γ 36.4 20.2 Slip within γ; Local amorphous

Tab. 2: Size effects in room-temperature shear properties of TMB2:s (TM=Ti, Ta, W, Re) derived
from (0001)[1210] ML-MD shear simulations. Shear strengths, σmax (in GPa), the corresponding
slip/transformation strains, ε(σmax) (in %), and stress release mechanisms were evaluated using ≈ 1, 000-
atom and ≈ 15, 000-atom supercells, respectively. The preferred phase of the respective TM is underlined:
α for TM=(Ti, Ta), ω for TM=W, γ for TM=Re. Note that stress release mechanisms observed at the
nanoscale have been simplified (omitting growth of certain defects) and their in-depth discussion is
presented in Section 3.

and ε(σmax) show minor differences, structural changes associated with the shear stress
drop are size-dependent. This is apparent through visual investigation of ML-MD videos
from shear simulations, hinting at different extent of phase transformations. In Tab. 2,
we summarize the observed stress release mechanisms, naming them as “slip” (leading
to the recovery of nearly ideal lattice sites), “transformation” (local or full change of
the stacking sequence), and “amorphization” (intermixing of some TM and B layers
forming seemingly amorphous regions). Simulations with Å-scale supercells (left part
of Tab. 2) reveal phase transformations in the (metastable) ω stacking of TiB2, TaB2,
and ReB2, while all other TMB2 release shear stress by slip, fully restoring their ideal
(initial) lattice sites.

At the nanoscale (right part of Tab. 2, the preferred α-TiB2, α-TaB2, ω-WB2, and γ-
ReB2 also release shear stress via slipping, however, exhibit local relaxations beyond the
ideal stacking sequences (γ-ReB2 even locally amorphizes). Larger lattice distortions and
local amorphization following lattice slip are observed also for the metastable γ stacking
of TiB2, TaB2, WB2, as well as the α stacking of ReB2. Nucleation of additional defects
accompanies also strain-activated phase transformations, predicted upon shearing the ω
phase of TiB2, TaB2, and ReB2. Additionally, a (local) α → ω phase transformation
is revealed for WB2 (Tab. 2), which has not been captured by supercells with Å-scale
sizes. Note that these stress release mechanisms at the nanoscale have been simplified
and their in-depth discussion is presented in the following section.

3 Structural analysis and specifics of each material system

Phase transformations at the nanoscale
To show the presence of a particular diboride polymorph beyond atomic length scales,
we perform quantitative structural analysis via descriptors of local atomic environments.
This includes evaluation of Steinhardt bond-orientational order parameters [59], qi, based
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on spherical harmonics and applicable to characterize crystals with arbitrary symmetry,
liquids, or other complex structural motifs including defects [86, 87]. In our work,
Steinhardt parameter calculations are complemented by angular analysis—based on the
angular distribution within B layers—and visual inspection of ML-MD trajectories. For
technical details see the Methods.

Fig. 3a shows fingerprints of each polymorph structure in the (a-1) angular and (a-2)
Steinhardt parameter formalism. The B sublattice (first nearest-neighbor B atoms) in
the α phase exhibits 120◦ angles, whereas the γ stacking is characterized by 111◦ angles.
The ω stacking (alternating flat and puckered B sheets) equally represents both 120◦ and
111◦ angles. In terms of Steinhardt parameters, our testing reveals that the (presented)
q4 vs. q6 plots provide the clearest distinction of the investigated diborides, consistently
with previous studies using the same qi combination for structure identification [88–91].

Fig. 3b–c illustrate the usage of the above descriptors, taking TiB2 and WB2 as
examples. These two diborides are sheared starting either from (i) their energetically
most favorable stackings, α-TiB2 and ω-WB2 (Fig. 3b), or from (ii) their metastable
structure, ω-TiB2 and α-WB2 (Fig. 3c). For the corresponding stress/strain curves, please
see Fig. 2a (TiB2). Our structural analysis is performed for underformed structures and
post-yielding. The diborides in which equilibration initiated from the ideal α (ω) lattice
sites indeed closely resemble the α (ω) structure. This is shown by the close overlap
between the actual and the reference q4 vs. q6 Steinhardt parameter pattern, where each
B atom provides the shortest Euclidean distance, to the [q4, q6] of the corresponding B
in the ideal α and ω phase, respectively (quantified by the “similarity percentage” in
the vertical bars–left side of the q4 vs. q6 plots). This result is underpinned also by the
B–B bond angle distribution. Specifically, > 94% B–B angles in the α-TiB2 and α-WB2
are ≈ 120◦, as expectable for the α phase, while both ≈ 111◦ and ≈ 120◦ angles are
equally represented in the ω-TiB2 and ω-WB2.

Beyond the yield point, α-TiB2 (Fig. 3b-1) and ω-WB2 (Fig. 3b-2) restore their
nearly ideal structure. In case of ω-WB2, the small changes in the Steinhardt parameter
pattern and the bond angle distribution may be indicative of local distortions and atomic
displacements that are slightly more significant in relative comparison with α-TiB2. Both
the angular and Steinhardt parameter descriptors, however, clearly capture structural
changes caused by shearing of the metastable ω-TiB2 (Fig. 3c-1) and α-WB2 (Fig. 3c-2).
For the former, the corresponding Steinhardt parameters exhibit a close overlap with
those of the ideal α-TiB2 (with similarity above 80%, see the mostly blue vertical bar
in Fig. 3c-1). This ia also underpinned by the fact that > 93% of bond angles within
the B network is 120◦, as characteristic for the α structure. In case of α-WB2, the
opposite transition, α → ω, occurs, however, not throughout the entire supercell (the
percentage of ω structure is > 50% based on Steinhardt parameter descriptors). This
is clear also from visual inspection of ML-MD videos and quantitatively supported by
angular analysis (the right part of Fig. 3c-2), showing that ≈ 64% of B layers remain
flat (with 120◦ angles), whereas ≈ 34% change to puckered (with 111◦ angles).

Bond angle distribution and Steinhardt parameter analysis is performed also for the
other two material systems, TaB2 and ReB2. The results of TaB2 (Fig. S6) resemble
those for the above discussed TiB2, which can be rationalized by the same energetic
preference for the α, ω, and γ stacking (recall Fig. 1b). Unlike ω-TiB2, ω-TaB2 presents
> 50% of flat layers already in equilibrium (at 300 K), suggesting that the ideal ω
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Fig. 3: Structural analysis of nano-sized supercells (here ≈ 53 nm3) exemplified for TiB2 and WB2:
both transforming to their energetically preferred phase upon shearing of the less favorable
(ω resp. α) polymorph. (a) References for the α, ω and γ stackings (based on room-temperature
equilibrated ab initio-scale supercells) using (a-1) angular descriptors (nearest-neighbor B–B atoms) and
(a-2) Steinhardt parameters, namely, the q4 vs. q6 plots. The ranges of qis are always the same, (0.2, 0.8)).
(b) Structural analysis of (b-1) α-TiB2 and (b-2) ω WB2 subject to room-temperature (0001)[1210]
shear deformation, specifically, in equilibrium and after reaching the ultimate shear strength. (c) The
same analysis of (c-1) ω-TiB2 and (b-2) α WB2. In all q4 vs. q6 plots, the grey points mark values for
the investigated supercell, while the colored points mark the ideal reference structure, according to (a-2).
The similarity with reference patterns is evaluated in the vertical bars, based on the shortest distance
(in a Euclidean sense) between [q4, q6] of each B atom and that of the corresponding B in the reference
(ideal) stacking, indicating, e.g., that 20% of the B sublattice is the most similar to the α phase and
80% is the most similar to the ω phase. (d) Irreversibility of the phase transformation, exemplified by
shear tests for ω-TiB2, illustrated via the evolution of the σxz, σz z stress tensor component, and the Etot

(eV/at.), in which the original deformation is marked with dashed line, as the backward deformation
with solid line.

stacking sequence is not perfectly replicated throughout the supercell. This may be
interpreted as the ω → α transition in TaB2 is possible already at very small strains,
likely related to the relatively small energetic difference between the α and ω stacking.
Applying the (0001)[1210] shear strain induces the ω → α transition, consistently with
atomic scale simulations (Section 5). Compared to TiB2, however, there is a larger
fraction of the B sublattice (≈ 13%; in contrast with ≈ 2% for TiB2 in Fig. 3c-1) being
neither perfectly flat nor puckered, but generally distorted.

Results for ReB2 (Fig. S7) indicate structural changes in all phase polymorphs. Shear-
induced plasticity is also observed in the preferred γ structure. These changes, however,
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do not necessarily include phase transformations, but rather local amorphization and
nucleation of other defects, as discussed in the following sections. Shearing of α-ReB2
leaves most of the layers flat (α-like), ≈ 7% puckered, and ≈ 21% distorted. For
ω-ReB2 and γ-ReB2, the fraction of distorted B layers—after reaching the ultimate
shear strength—increases to ≈ 27% and ≈ 30%, respectively. With all B sheets initially
puckered in γ-ReB2, ≈ 22% become flat subject to shearing. This is due to the onset of
(local) amorphization.

As diboride ceramics are regarded as brittle, they typically fracture before yielding.
Some yielding can be observed in compression, but upon bending or tension, yielding
is rarely detected. [1]. In this study, periodic boundary conditions are applied during
shearing; however, no fracture is observed, even upon increasing the shear strain to twice
as large. Natural questions are (i) whether shearing far beyond the yield point (e.g.,
twice as large or even larger strains) can trigger phase transformation, and (ii) whether
these phase transformations are reversible. In both cases, our simulations indicate against.
Specifically, further strain increase leads to sequential slipping, as illustrated for TiB2
(Fig. 3d), TaB2 and WB2. The reverse transformation—via the opposite (negative) εxz

shear strain—would mean relaxing the stress component along the [0001] direction
(σz z stress), while, at the same time, increasing the potential energy, as we would
transform towards the energetically less favorable stacking. What we observe when
applying the opposite shear strain (Fig. 3d), however, is the total energy decrease (and
σz z increase), as the energetically preferred stacking sequence resembles even closer to
the ideal equilibrium structure (the only significantly non-zero stress is along [0001]).
Phase transformations under different shear or mixed tensile/compressive/she-
ar conditions

Besides (0001)[1210] shear deformation, we additionally simulate (room-temperature)
shearing along other low-index slip systems: (0001)[1010] and (1210)[1010]. For small
strain (linear elastic regime), the (0001)[1210] and (0001)[1010] shear response is es-
sentially the same, due to elastic isotropy of the basal plane of hexagonal lattices.
This extends even until the yield point. In particular, the predicted (0001)[1210] and
(0001)[1010] shear strengths are very similar (comparing the same TM elements and
stacking sequences) and all deformation mechanisms as slipping and phase transformati-
ons remain qualitatively unchanged.

Due to differences in structural parameters of the 3 polymorphs structures, the fixed
volume constraint in our shear simulations (simple shear [92]) may hinder the onset of
phase transformations and/or limit them to a small region in the supercell. As shown
in Tab. 1, these volumetric differences are mainly contributed by the c ‖ [0001] lattice
constant. Thus, shear-activated phase transformations may be further promoted when
coupled with uniaxial (tensile/compressive) strain along the [0001] axis.

Imposing an initial uniaxial strain to simulation supercells allow us mimicking the ef-
fects of residual tensile/compressive stresses in diboride coatings subjected to mechanical
load during shear deformation. For example, previous mechanical testing experiments
demonstrated a monotonic increase in fracture toughness for nitride coatings with in-
creasingly high residual compressive stresses [93]. Here, we select TiB2 and WB2 to
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demonstrate the effect of uniaxial (tensile/compressive) strain on shear-mediated phase
transformations.

Starting with TiB2 (Fig. 4; the simulated structures are shown in Fig. 4a), we analyse
the evolution of the σxz, σxx, σy y, and σz z stress tensor components during (1010)[1210]
shear deformation (σxz is the dominant stress tensor element). Compared with the
rather low basal-plane stresses (Fig. 4b: σxx=0–9.2 GPa, σy y=0–2.2 GPa), the stress
along the [0001] axis changes significantly. In particular, a gradual decrease down to
≈ −33 GPa (compressive stress) is observed for α-TiB2, while an abrupt increase up
to ≈ 19 GPa (tensile stress) is exhibited by ω-TiB2 (Fig. 4c). Recall that the α-TiB2
does not phase-transform but recovers nearly ideal α structure after slipping (Fig. 3b-1),
as mirrored by the σz z stress component relaxing back to ≈ 0 GPa (Fig. 4c, green)
and also by the potential energy, EP , decrease towards the value of the ideal α-TiB2
(Fig. 4d, green). Contrarily, the ω → α transition in ω-TiB2 (recall Fig. 3c-1) increases
σz z almost step-wise (Fig. 4c, blue), as the (transformed) ω-TiB2 is under [0001] tension.

Fig. 4: The effect of uniaxial (tensile) strain on shear-activated transformations of TiB2 at 300 K.
(a) Visualization of the α, ω, [0001]-strained α, and γ phase of TiB2. (b) Evolution of the σxz, σxx,
σy y, and (c) σz z stress tensor components during (0001)[1210] shearing at 300 K, correlated also with
changes in (d) the potential energy, EP. All data is derived from simulations with nano-sized supercells
(here ≈ 53 nm3). (e) Volumetric strain, 𝜖V , evolution at selected stages of shearing deformation.

Applying shear deformation to a pre-strained α-TiB2—with all interlayer spacing
equivalent to the ω stacking (Fig. 4a, middle)—decreases the shear strength (Fig. 4b)
and, ultimately, nullifies the σz z strain. The EP evolution is similar to the unstained
α-TiB2, only shifted towards higher values (compare green and purple lines in Fig. 4c).
Importantly, the pre-strain does not suffice to activate the α → ω transition, which
we suggest is very unlikely to be observed in experiments. Additional simulations
(not shown) reveal that the shear strain activating the ω → α transition of ω-TiB2
decreases if the supercell lattice parameter is imposed equal to that of the α polymorph.
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Qualitatively, the same results are predicted also for TaB2, underpinning its similarity
with TiB2.

Fig. 4e depicts the volumetric strain, εV, distribution in TiB2 at key stages of shearing.
Two qualitatively different scenarios are predicted. (i) εV remains essentially unchanged
(εV ≈ 0) and then highly localized in the layer undergoing the (0001)[1210] slip; the case
of α-TiB2 (Fig. 4e-1) and the strained α-TiB2 (Fig. 4e-2). (ii) εV increases uniformly
throughout the supercell until the phase transformation; the case of ω-TiB2 (Fig. 4e-2).
The difference in the εV distribution after the yield point is highlighted in Fig.4e-4,
depicting also the (0001) cleavage observed upon shearing the pre-strained α-TiB2. We
suggest that despite TiB2’s high [0001] tensile strength (53 GPa [36]), the combination
of large shear and medium tensile strain promotes Ti/B layer cleavage (i.e., along the
low-energy (0001) surface).

Fig. 5 depicts analysis of WB2. This material energetically favors the ω stacking (recall
Fig. 1), but can be equilibrated also in the α and γ structure. Similar to TiB2, the basal
plane of WB2 exhibits a rather small stress increase (σxx=0–4.97 GPa, σy y=0–2.14 GPa)
during shear deformation, irrespective of whether the initial stacking sequence is α, γ,
or ω (Fig. 5b). Besides σxz (the main shear stress component), the only non-zero stress
tensor element is again σz z, i.e. aligned with the [0001] direction. The energetically
preferred ω-WB2 behaves qualitatively similar as the energetically preferred α-TiB2
(α-TaB2). Specifically, shearing induces a gradual decrease of σz z (Fig. 5c, blue) which,
following the lattice slip, relaxes back towards ≈ 0 GPa, mirrored by the potential
energy decrease after slipping (Fig. 5d, blue).

Shearing of the metastable α-WB2 mediates local α → ω transformation (see Fig. 3c-
2). The corresponding σz z (Fig. 5c, green) indicates increasing compressive stress along
the [0001] axis until reaching the ultimate shear strength. When α-WB2 is pre-strained
to match lattice parameters of the ω structure (schematically depicted in Fig. 5a), the
shear strain necessary for the α → ω transformation decreases (and a larger fraction of
the lattice transforms). Additional calculations reveal that similar conditions of residual
strain are not sufficient to induce the γ → ω transformation. Therefore, while we
provide strong indications for observing the α → ω transformations in WB2, ω → α or
γ → ω stacking changes are unlikely to occur. Recall that both the ω and α phase have
been synthesized [7, 14], where the latter was B-substoichiometric [94]. In view of our
predictions, achieving close-to-stoichiometric (1:2) W:B ratios may be a suitable route
to promote transformation plasticity upon loading.

Volumetric strain analysis for WB2 (Fig. 5e) reveals similar trends as those observed
in TiB2. Specifically, the preferred ω-WB2 (Fig. 5e-2), showing no phase transformation,
exhibits highly localized volumetric strain just within the layers that slip. The metastable
α-WB2, locally transforming to ω, exhibits high εV within the layers that transform
(Fig. 5e-1). Contrarily, a nearly homogeneous volumetric strain distribution is predicted
in the α-WB2 initially strained to lattice parameter of the preferred ω-WB2 and,
consequently, the α → ω transition occurs throughout the entire lattice after yielding
(Fig. 5e-3). A side view ([1210]) of each structure’s final configuration is presented in
Fig. 5e-4 for TiB2.
Shear-mediated lattice rotation in ReB2
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Fig. 5: The effect of uniaxial (tensile) strain on shear-activated transformations of WB2 at 300 K.
(a) Visualization of the α, ω, [0001]-strained α, and γ phase of TiB2. (b) Evolution of the σxz, σxx,
σy y, and (c) σz z stress tensor components during (0001)[1210] shearing at 300 K, correlated also with
changes in (d) the potential energy, EP. All data is derived from simulations with nano-sized supercells
(here ≈ 53 nm3). (e) Volumetric strain, 𝜖V , evolution at selected stages of shearing deformation.

The mechanical behavior of ReB2 appears anomalous in relation to what seen for other
TMB2:s. Our results indicate negative thermal expansion in the energetically favored
gamma phase of ReB2. The structure shrinks by ≈4.3% with temperature increasing
from 300 to 1200 K. The ω-ReB2 exhibits, instead, anisotropic expansion/contraction
upon heating to 1200 K. Its a(c) lattice parameters decrease(increase) by ≈2.2%(≈14%).
This is at variance with TMB2:s (TM=Ti, Ta, W) yielding a small (positive) thermal
expansion, < 1.0% at 1200 K (slightly larger, 1.18% in a and 1.42% in c, in case of
ω-TiB2). The values are summarized and visualized for γ-WB2 and γ-ReB2 in (Fig. 6a).

Furthermore, despite γ is the preferred stacking of ReB2, this diboride does not
relieve stress during (0001)[1210] slip. Instead, at the yield point, γ-ReB2 undergoes
intragrain rotation assisted by (0001)[1210] and (1210)[0001] slip, that is, both along and
orthogonal to the basal plane. This is illustrated in (Fig. 6b), contrasting the volumetric
strain distribution during shearing of the γ-WB2 and γ-ReB2. High volumetric strain is
localized normal to the metal/boron sheets in the case of ReB2 (Fig. 6b-2), showing their
mutual shift along the [0001] axis, followed by interpenetration, and nearly homogeneous
rotation of the lattice, in contrast with structural changes observed in γ-WB2 (Fig. 6b-1)
as well as other diborides. Simulations for various supercell sizes reveal that this effect
is present already in ≈ 8, 000-atom supercells, and also subject to shearing along the
(0001)[1010] slip system.

Shear-induced layer interpenetration and lattice rotation in γ-ReB2 become even more
apparent with increasing temperature, as we illustrate by shear tests at 1200 K. While
more in-depth analysis would be necessary to understand this behavior, indications are
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Fig. 6: Anomalous (negative) thermal expansion and shear response of γ-ReB2, contrasted with
γ-WB2. (a) Changes in structural parameters of (a-1) γ-WB2 and (a-2) γ-ReB2 from 300 to 1200 K.
(b) Volumetric strain evolution in (b-1) γ-WB2 and (b-2) γ-ReB2 subject to shear deformation along
the (0001)[1210] slip system at 300 K (RT) and 1200 K (HT).

given by the elastic constants. Specifically, the C33 is significantly larger than C11 for
both γ-WB2 and ReB2 (Tab. 1). This disparity induces a diagonal distortion, causing
elongation along the z-axis rather than the basal plane. This effect is particularly
pronounced in γ-ReB2, while an out-of-plane mismatch occurs (i.e., additional stresses
along z-axis). Another factor may be that lattice rotation in combination with local
amorphization allows readjusting the [0001] interplanar spacings which, as we know
from the negative thermal expansion, decrease with temperature.
Discussion and design suggestions

Our ML-MD simulations revealed phase transformation in TiB2 and TaB2 (ω → α
phase), as well as in WB2 (α → ω phase), activated by shearing along the (0001)[1210]
and (0001)[1010] slip systems at room and higher temperatures. The activation shear
strain ranged between 11 and 16.2%, further decreasing when combined with compressive
(TiB2 and TaB2) or tensile (WB2) strain along the [0001] axis. Such strain conditions
may arise even prior to controlled mechanical tests during layer-by-layer deposition, via
the superlattice architecture (template effect), or alloying. Our calculations indicate
that TiB2, TaB2, and WB2 exhibit similar thermal expansion coefficients over a wide
temperature range, suggesting their compatibility for integrated structural applications.

Simulations in ideally stoichiometric single crystals allow isolating the intrinsic driving
force for transformation plasticity. In practice, however, formation of diboride polymophs
and transformations between them will be heavily influenced by synthesis-related factors—
e.g., off-stoichiometry, polycrystallinity, as well as deposition-induced artifacts [15, 17].

99



CHAPTER 5. CONTRIBUTION TO THE FIELD

Follow-up modeling endeavors should therefore focus on addressing the impact of
typical crystallographic defects, starting from the simplest and commonly reported case
of B vacancies. Already training sets of our MLIPs contained atomic environments
representative of stacking faults, voids, and other defects nucleating in the presence of
mechanical strain, thus, provide a solid starting point for active learning on various
vacancy-containing structures.

With both α and ω phases experimentally reported [7, 12, 13], WB2 is a particularly
interesting system and showing whether (near) ideal 1:2 W-to-B stoichiometry is crucial
to control the predicted α → ω transition is an important step motivating future expe-
riments. Another exciting research direction is transformation-induced superconductivity,
motivated by recent findings for WB2 (compression-induced superconductivity explained
via nucleation of stacking faults and twins [12, 95]) and MoB2 (with pressure-induced
phase transition directly related to emergence of superconductivity [96]).

Conclusions

Shear-activated transformation plasticity of transition metal diborides was investiga-
ted via machine-learning potential molecular dynamics (ML-MD) simulations, pointing
towards WB2 as a particularly promising system that allows switching between the
experimentally known α and ω polymorphs. Our approach—including quantitative struc-
tural analysis in nanoscale-sized supercells—allowed understanding stacking changes in
TMB2:s with atomic-scale resolution, under well-defined loading conditions (considering
effects of additional uniaxial tensile/compressive strain), and excluding other defects
that may nucleate depending on the synthesis conditions and complicate comparison of
various TMB2:s.

We choose TM=(Ti, Ta, W, Re) to represent group 4–7 transition metal diborides
and trained four MLIPs using the MTP formalism and our previously proposed training
and validation workflow [36]. Validation against finite-temperature ab initio molecular
dynamics data together with extrapolation grade analyses supported the credibility of our
MLIPs and their capability to predict shear-induced phase transformations. Considering
all TMB2:s in the α, ω, and γ polymorph structures, room-temperature ab initio MD
and ML-MD equilibration showed that α is the preferred stacking for TM=(Ti, Ta), ω
for TM=W, and γ for TM=Re. Besides mechanical stability of all TMB2:s (derived from
the calculated room-temperature elastic constants), also their dynamical stability was
suggested. Only the cases of α-ReB2, γ-TiB2, and γ-TaB2—exhibiting (local) relaxations
beyond the ideal lattice sites—will require further dynamical stability verification.

Nanoscale room-temperature (0001)[1210] shear simulations (≈ 53 nm3 samples) revea-
led that the order of theoretical shear strength—considering the energetically preferred
polymorphs—is TiB2 >TaB2 >ReB2 >WB2. TiB2 exhibited the vastest difference in
shear strength of the polymorph structures, while WB2 showed the highest similarity.
According to structural analyses (via bond angle distribution and Steinhardt bond-
orientational order descriptors of local atomic environments), the energetically preferred
polymorphs—α-TiB2, α-TaB2, and ω-WB2—release the accumulated shear stress via
(0001)[1210] slip, restoring nearly ideal lattice sites. For ReB2, the preferred γ polymorph
activated metal/boron layer interpenetration followed by homogeneous lattice rotation,
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with other anomalous aspect being its negative thermal expansion. Shear-induced ω → α
and α → ω transformation was shown for TM=(Ti, Ta) and TM=W, respectively.
These transformations were promoted via additional compressive (for TM=(Ti, Ta)) or
tensile (for TM=W) strain along the [0001] axis, decreasing the necessary transformation
strain and increasing the fraction of the transformed lattice. Essentially the same shear
strengths and stress release via slipping or phase transformations were predicted for
shearing along the (0001)[1210] and the (0001)[1010] slip system.

Our work underscores the capability of MLIPs to predict transformation plasticity at
scales accessible to electron microscopy and strain conditions locally resembling those
during the growth or micromechanical testing. While observing the ω → α transformation
in TiB2 and TaB2 may require very specific conditions (due to the energetic costs of the
ω stacking), we suggest that α → ω transformations in WB2 are accessible to experiment.
Further, our findings suggest that the shear transformation plasticity in hard diborides
can be tuned through the alloying of various TMB2:s, indicating a potential avenue for
future research.
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Machine-learning potentials predict orientation- and mode-dependent
fracture in refractory diborides
Keywords: Transition metal diborides; Machine-Learning interatomic potentials; Frac-
ture toughness; Molecular statics

Abstract

Fracture toughness (KIc) and fracture strength (σf) are key criteria in the selection
and design of reliable ceramics. However, their experimental characterization remains
challenging–especially for ceramic thin films, where size and interfacial effects hinder
accurate and reproducible measurements. Here, machine-learning interatomic potentials
(MLIPs) trained on ab initio datasets of single crystal models deformed up to frac-
ture are used to characterize transgranular cleavage in pre-cracked ceramic diboride
TMB2 (TM = Ti, Zr, Hf) lattices through stress intensity factor (K)-controlled loading.
Mode-I simulations performed across distinct crack geometries show that fracture is
primarily driven by straight crack extension along the original plane. The corresponding
macroscale fracture-initiation properties (KIc ≈ 1.7–2.9 MPa·√m, σf ≈ 1.6–2.4 GPa) are
extrapolated using established scaling laws. Considering TiB2 as a representative system,
additional simulations explore loading conditions ranging from pure Mode-I (opening)
to Mode-II (sliding). TiB2 models containing prismatic cracks exhibit their lowest frac-
ture resistance under mixed-mode conditions, where the crack deflects onto pyramidal
planes–as confirmed by nanoindentation tests on TiB2(0001) thin films. This study
establishes K-controlled, MLIP-based simulations as predictive tools for orientation-
and mode-dependent fracture in ceramics. The approach is readily extendable to finite
temperatures for evaluating fracture behavior under conditions relevant to refractory
applications.

Introduction

Fracture mechanics roots in Griffith’s work during the 1920s [1]. Griffith recognized that
hard yet brittle materials, such as glass, fracture at stresses far below their theoretical
strength due to microstructural imperfections. These flaws act as stress concentrators
that facilitate crack initiation. He also demonstrated that crack propagation occurs when
the elastic strain energy released during crack extension exceeds the energy required to
form new crack surfaces.

Three decades later, Irwin [2] extended Griffith’s energy-based criterion by incor-
porating dissipative, non-linear processes such as plastic deformation in metals. He
introduced the concept of stress intensity factor, K, to quantify near-tip stress field in
linear elastic materials. Irwin also classified fracture into three distinct modes – Mode I
(opening), Mode II (sliding), and Mode III (tearing) – each governed by a corresponding
critical stress intensity factor: KIc, KIIc, and KIIIc.

The critical stress intensity factor KIc is recognized as the practically most significant.
The term KIc is often referred to as the material’s fracture toughness, since fracture
in solids generally initiates at structural flaws under tension. The KIc is a property
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measured through standardized tests (see, e.g., Refs. [3–7]), which involve introducing
a crack into a sample and applying a controlled load or displacement to determine
the conditions leading to fracture. However, the reproducibility of KIc measurements
depends strongly on microstructural features, including crystallographic defect density
[8–14].

Traditional fracture toughness tests are limited in resolving nanoscale mechanisms
responsible for fracture initiation. These limitations become especially pronounced in
thin-film materials, where small dimensions and substrate effects complicate measu-
rements [15]. Thus, advancing the fundamental understanding of fracture requires
complementing mechanical tests with state-of-the-art in-situ imaging [16, 17]. In this
context, atomistic simulations play a vital role by providing direct insights into fracture
initiation mechanisms and enabling accurate characterization of fracture properties at
atomic scale.

Machine-learning interatomic potentials (MLIPs) can offer detailed atomic-scale under-
standing of materials’ fracture initiation and accurate evaluation of fracture properties.
Although the reliability of MLIP-based simulations depends on the quality of the under-
lying ab initio training data [18–22], MLIPs are systematically improvable force fields
[23, 24] [25–27] that can achieve accuracy comparable to density functional theory
(DFT), but with up to five orders of magnitude greater computational efficiency. We
have recently proposed an MLIP training workflow and a validation standard [28] aimed
at reproducing the elastic and plastic properties of bulk ceramic lattices – specifically,
systems free of extended crystallographic defects in their unstrained state – as predic-
ted by ab initio molecular dynamics (AIMD). Using MLIP-based molecular dynamics
simulations, we investigated how theoretical strength varies with supercell size, as well
as the anisotropy of slip and fracture behavior under tensile and shear loading at both
room and elevated temperatures. The training and validation strategy presented in
Refs. [28–30] lay the foundations to this work.

Here, we use MLIPs in K-controlled-loading simulations to investigate the mechanical
properties and fracture paths in defective (pre-cracked) Group-IV transition-metal di-
borides, TMB2:s (TM=Ti, Zr, Hf). As most ceramics, TMB2:s are prone to fracture
without yielding, but exhibit ultra-high thermal stability [31], exceptionally high hard-
ness [32], corrosion resistance, and excellent thermal and electrical conductivity [33].
Unlike other hard ceramic protective coatings (e.g. nitrides and carbides) for which the
fracture properties have been characterized relatively thoroughly [34–39], information
on the toughness and strength available in the literature for TMB2:s is sparse [40–42].
An experimental characterization of the fracture resistance of diboride films is further
complicated by largely varying degrees of stoichiometry (TMB1.53–2.72) which, together
with a typically high density of crystallographic defects [43, 44], constitutes an ad-
ditional hurdle to understanding the structure/property relationship in this class of
materials [45]. The limitations of the experiments provide further motivation to use
MLIPs to characterize fracture initiation in diboride systems.
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Methods

Ab initio calculations

Finite-temperature Born-Oppenheimer ab initio molecular dynamics (AIMD) calculations
were carried out using VASP [46] together with the projector augmented wave (PAW) [47]
method and the Perdew-Burke-Ernzerhof exchange-correlation functional revised for
solids (PBEsol) [48]. The plane-wave cut-off energies of 300 eV and Γ-point sampling of
the reciprocal space were employed.

Structural models of TMB2:s, TM=(Ti, Zr, Hf) were based on the α polymorph,
adopting AlB2-type (P6/mmm) phase [49, 50]. The hexagonal unit cells were orthogona-
lized using the following crystallographic orientations: x ‖ [1010], y ‖ [1210], z ‖ [0001].
All AIMD calculations were conducted using 720-atom supercells (240 TM+480 B) with
dimensions of ≈ (1.5 × 1.6 × 2.6) nm3. The supercells were equilibrated at target tempe-
rature (300 K and 1200 K) through a two-step process: (i) a 10 ps isobaric-isothermal
(NpT) equilibration simulation using the Parrinello-Rahman barostat [51] and the Lan-
gevin thermostat; (ii) a 2–4 ps simulation with the canonical (NVT) ensemble based on
Nosé-Hoover thermostat, imposing the time-averaged lattice parameters obtained from
the equilibration stage (i).

Room-temperature elastic constants, Cij , were determined following Ref. [52], i.e.,
obtained from a second-order polynomial fit of stress/strain data from the [0001], [1010],
and [1210] tensile simulations (used to derive C11, C12, C13, C33), and the (0001)[1210],
(1010)[1210] and (1010)[0001] shear simulations (used to derive C44). Strains ranging
from 0 to 4% were considered. Stress tensor components were calculated by averaging
data over the final 0.5 ps of each simulation. Zero Kelvin elastic constants were also
calculated using the stress-strain method, with the same energy convergence criteria
as the AIMD simulations but smaller strain (≤ 1%). The methodology is consistent
with our previous work [28] on α-TiB2. The surface energies were calculated at zero
Kelvin using 60-atom TMB2 supercells (3 × 3 × 1 k-mesh and cut-off energy of 300 eV)
together with a 12 Å vacuum layer.

Molecular statics/dynamics with MLIPs (ML-MS/MD)

ML-MS calculations were conducted using the LAMMPS code [53] interfaced with the
mlip-2 package [27] enabling the usage of MTP-type MLIPs. Active learning has been
performed using the concept of extrapolation grade, MV [54], which also served to assess
the reliability during MD simulations with the trained MLIPs. For MLIP validation
purposes, we performed MD simulations of uniaxial deformation and calculated elastic
constants. Computational setup for equilibration and tensile tests at the atomic scale was
designed to closely match the corresponding AIMD simulations. For zero-Kelvin elastic
constant validation, to minimize variables and maintain accuracy, we conducted MD
calculations at 10 K instead of using MS simulations. The zero-Kelvin surface energies
were validated using ML-MS with 12 Å vacuum, the same as in DFT calculations.

K-controlled MS simulations were utilized to evaluate the effective resistance
to brittle cleavage, using cracked-plate models of sizes reaching ≈ 106 atoms (A =
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L2 ≈ 2502nm2, where A is the plate area and L is the lateral size). Theory and
methods followed Refs. [55–58]. We employed square TMB2 plates (with area of L2)
with all the possible geometries for both Mode-I and Mode-II loadings, i.e., (0001)[1010]
(Nr.1), (0001)[1210] (Nr.2), (1210)[1010] (Nr.3), (1210)[0001] (Nr.4), (1010)[0001] (Nr.5),
(1010)[1210] (Nr.6). The supercells were periodic along the crack-front direction with
thickness of approximately 0.5 nm.

Atoms in the frame region centered at the crack tip are incrementally displaced by
applying increasing values of the stress intensity factors KI , KI I , and Kmix, using a
step size of 0.02 MPa·√m. For mixed-mode loading, the components are calculated as
follows:

Kmix =
√︁

K2
I + K2

I I , (1.a)

KI = Kmix · a√
a2 + b2

, (1.b)

KI I = Kmix · b√
a2 + b2

, (1.c)

where a and b represent the prescribed Mode-I and Mode-II percentages, such that
a + b = 100.

All, except frame atoms, were relaxed with the conjugate-gradient algorithm at each
K increment, with tolerances set to 10−14 for the relative change in energy and 10−14

eV/Å for forces. The simulations were carried out with atomically sharp cracks (deleting
half monolayer), where interactions between atoms on opposite sides of the crack plane
were screened over ≈ 1 nm. Additionally, the cracked plates are constructed with an
equal number of atomic layers above and below the crack plane.

The Griffith fracture toughness, KG
I c, was derived from [59]:

KG
Ic =

[︁
2Eunrel

surf Λ−1
22

]︁1/2
, (5.2)

where Eunr el
sur f represents the unrelaxed surface energy and Λ̄ is the Stroh energy tensor,

calculated from the elastic tensor.

Experimental methods

A TiB2.04 coating with near 1:2 stoichiometry and approximately 2 µm thickness
was provided for analysis. The coating was deposited using an in-house DC balanced
magnetron sputtering system, employing a 6-inch, powder-metallurgically produced
TiB2/C (99/1 wt.%) target (>99.6% purity). The complete deposition procedure is
detailed in Ref. [45]. Nanoindentation tests were performed using an CSIRO UMIS
indenter equipped with a cube-corner diamond tip to induce controlled cracking. A total
of 17 indents were applied at peak loads (Fm) ranging from 50 to 450 mN. The tests
followed a force-controlled loading-unloading cycle. A cross-sectional TEM lamella was
extracted from a radial crack tip using a Thermo Scientific Scios 2 DualBeam FIB-SEM
system. Following a conventional FIB milling and lift-out procedure as presented in
Ref. [60], an 8 µm thick tungsten protection layer was deposited over the region of
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interest to prevent milling damage. Initially, a 2 µm thick cross-sectional lamella was
prepared, which was then refined by sequential ion milling steps to approximately 100
nm. Final cleaning steps at 2 kV and 27 pA, followed by Ar ion milling at 0.5 kV
using a Gatan PIPS II system, further reduced the thickness to <75 nm, allowing
high-resolution TEM analysis.

The cross-sectional transmission electron microscopy (TEM) specimens were prepared
using an FEI Quanta 200 3D DBFIB. A 200 kV field emission TEM (JEOL 2100F)
equipped with an image-side spherical aberration (CS)-corrector was used in the high-
resolution TEM (HRTEM) study, demonstrating a resolution of 1.2 Å at 200 kV. The
aberration coefficient was set close to zero, under which the HRTEM images were taken
under slightly over-focus conditions (close to the Scherzer defocus). A CCD Orius camera
is used to record HRTEM images, where image sizes are 2048 pixels × 1336 pixels.
The strain fields in TiB2 were calculated based on the CS-corrected HRTEM images
by the geometric phase analysis (GPA) method. According to the GPA algorithm, the
displacement fields can be obtained by selecting two non-collinear Bragg vectors in the
power spectrum generated from a HRTEM image.

Results and discussion

1 MLIP validation and theoretical strengths of defect-free crystals

Tab. 1: MLIP validation. Comparison between ML-MS and DFT results for diboride lattice constants (a, c),
elastic constants (Cij), polycrystalline moduli (Young’s modulus, E, bulk modulus, B, shear modulus,
G), and relaxed surface energies Esurf on (0001), (1010), and (1210) lattice planes. Literature DFT
values are also included.

TMB2 Lattice constants (Å) Elastic constants (GPa) Surface energy (J/m2) Reference
a c C11 C33 C44 C12 C13 E B G (0001) (1010) (1210)

3.027 3.213 654 464 259 76 115 580 263 256 3.80 3.98 3.42 This work (DFT)
3.030 3.204 636 441 272 61 92 576 242 261 3.80 4.12 3.57 This work (ML-MS)

TiB2 3.029 3.219 656 461 259 65 98 582I 253I 261I / / / Ref. [61]
/ / 660 464 255 60 96 583I 250 258 4.20I I 4.10I I / Ref. [62]

3.029 3.219 / / / / / / / / 4.21 4.19 / Ref. [63]
3.180 3.545 539 422 270 52 109 523 226 235 3.86 4.54 3.83 This work (DFT)
3.167 3.531 551 427 248 54 118 517 234 228 3.61 4.38 3.57 This work (ML-MS)

ZrB2 3.168 3.536 555 436 254 62 119 524 238 231 / / / Ref. [61]
/ / 539 420 238 60 116 502I 231 218 3.85I I 4.45I I / Ref. [62]

3.168 3.536 / / / / / / / / 3.91 4.33 / Ref. [64]
3.149 3.480 602 432 309 57 105 580 238 266 3.88 4.53 4.07 This work (DFT)
3.127 3.473 604 473 271 70 137 565 263 248 3.53 4.51 3.83 This work (ML-MS)

HfB2 3.165 3.512 584 457 257 98 135 544 253 238 / / / Ref. [61]
/ / 588 448 248 89 138 533I 260 227 3.80I I 4.35I I / Ref. [62]

3.163 3.515 602 452 258 78 137 550 260 239 / / / Ref. [65]

I : Calculated based on the reference data.
I I : Value extracted from a figure.

Our MLIPs, based on the moment tensor potential (MTP) framework [27], are trained
on ab initio molecular dynamics (AIMD) data for transition metal diborides subjected to
deformation up to fracture, as well as configurations under extreme loading conditions.
All Group-IV diborides (TiB2, ZrB2, HfB2) crystallize in the hexagonal α/AlB2-type
phase [50]. Training and validation errors, quantified by the residual mean square error
(RMSE), remain below 8 meV/atom for energies, 0.24 eV/Å for forces, and 0.6 GPa for
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stresses. Before applying these MLIPs to simulations of defective diboride crystals under
load, their reliability is demonstrated through direct comparison with DFT results and
AIMD-based tensile tests.

Tab. 1 presents the results obtained by MLIP-based molecular statics simulations
and DFT calculations from this and previous studies. Although our MLIPs are trained
mainly on AIMD data collected at finite temperature, they reproduce 0 K DFT lattice
parameters (a, c), elastic constants (Cij), and surface energies (Esurf) satisfactorily well.
Note that static DFT and AIMD calculations of this work are carried out using the same
accuracy parameters (see the Methods). The deviations in lattice parameters are below
0.7%, while the C11, C33, and C44 elastic constants, as well as the polycrystalline bulk
(B), shear (G) and Young’s moduli (E) differ by less than 10% from the corresponding
DFT values. For Ci ̸=j elastic constants, the deviations are generally below 20%. With
regard to surface energies, the differences between MLIP and static DFT values are
lower than 6.5%.

Fig. 1: Uniaxial tensile simulations at 300 K using MLIP-based molecular dynamics (ML-MD). (a)
Maximum stress (theoretical tensile strength) sustained by TMB2:s, (TM=Ti, Zr, Hf) during uniaxial
tensile deformation along [0001] (square), [1010] (vertical hexagon), and [1210] (horizontal hexagon)
directions. (b) Cleavage fracture after reaching the maximum stress point, with plane identification.
The image on the right in (a) shows a diboride hexagonal lattice structure in the α-phase, including
orthogonal crystal axes. The shadowed boron hexagonal layer is aligned with the basal plane.

In addition to reproducing elastic properties, our MLIPs describe materials’ behaviors
under stress conditions that induce structural instabilities. Specifically, the potentials
were trained on AIMD data of supercells subjected to uniaxial tension up to cleavage
and to shear strain up to activation of lattice slip at finite temperatures, together with
configurations under extreme loading conditions. Thus, the training sets encompass
diborides under tensile strain along various crystallographic directions and shear defor-
mation along distinct slip systems. Training and extensive validation of the TiB2-MLIP
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is detailed in Refs. [28, 29]. Importantly, the ability of the MLIP to model tensile and
shear deformation in large single-crystal supercells – beyond the feasible size limits of
DFT calculations – has been assessed using the concept of the extrapolation grade
(γ [54]), which is commonly employed in active learning to identify extrapolative atomic
environments. More precisely, γ quantifies the similarity between local atomic environ-
ments that emerge during nanoscale simulations and those represented in the training
set. A high extrapolation grade indicates significant deviation from the training data
and corresponds to greater uncertainty in the predicted energies and forces.

Since the newly trained MLIPs for HfB2 and ZrB2 follow the same training protocol
previously established for TiB2, [28, 29] we do not repeat all validation steps here.
Overall, the results obtained using our force fields closely reproduce the properties of the
underlying AIMD training configurations. These include cleavage mechanisms on various
low-index planes, which are particularly relevant for the crack propagation simulations
presented in this study.

We begin by analyzing the results of MLIP-based molecular dynamics (MLIP-MD)
simulations performed on small ( ∼103 atoms), initially defect-free, single-crystal diboride
supercells subjected to tensile strain at room temperature. While these simulations are
primarily intended to capture temperature-dependent elastic responses (e.g., Ref. [52])
and ideal fracture properties – such as the theoretical strength and intrinsic toughness
of a perfect crystal (e.g., Ref. [66]) – they also allow for the rapid identification and
clear visualization of energetically preferred fracture planes. In addition, they can
signal whether the crystal has an inherent tendency to undergo stress-induced lattice
transformations, which may enhance toughness and delay fracture initiation. [66, 67]. As
shown in our earlier studies on TiB2 [28], the crack orientation observed under uniform
tensile strain of pristine lattices remain qualitatively unchanged with increasing supercell
size, despite the appearance of lattice distortions in larger systems. This supports the
use of small, computationally efficient models to explore the intrinsic fracture extension
planes of ideal crystals in different loading orientations.

Fig. 1 summarizes the theoretical tensile strength and the corresponding fracture
strain of diborides elongated parallel to [0001], [1010], [1210] crystallographic directions.
The results reveal a pronounced anisotropy in the mechanical response: while the elastic
response of hexagonal lattices is isotropic within the basal plane, the tensile strength and
fracture strain vary significantly with loading orientation. Among the studied materials,
TiB2 consistently exhibits the highest theoretical strength, followed by HfB2 and ZrB2
(Fig. 1-(b)). All systems withstand the largest strain along the [0001] axis.

As shown in Fig. 1-(b), fracture occurs through brittle cleavage along basal, prismatic,
or pyramidal planes, depending on the direction of applied tension. While the active
cleavage plane changes with orientation, the fracture mechanisms remain consistent
across the three diborides. Interestingly, in some cases the fracture planes are not
orthogonal to the loading axis, but instead align with first-order pyramidal planes
such as (101̄1). This result is somewhat unexpected, but could be explained based on
energetic arguments (differences in surface energies) or shear stress accumulation during
tension.

Fracture along first-order pyramidal planes of hexagonal crystals has been predicted
in theoretical studies based on surface energy, interplanar spacing, and elastic modulus.
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For example, previous analyses identified these planes as energetically favorable cleavage
paths under specific stress orientations – particularly in hcp titanium and magnesium [68].
Experimental studies further support this view, having observed crack propagation along
(101̄1)-type planes in single-crystal Ti and Mg [69, 70]. Our MLIP-MD simulations are
consistent with these findings: in addition to fracture along low-index cleavage planes, we
observe skewed crack paths that align with first-order pyramidal planes. This suggests
that crystallographic anisotropy in AlB2-type diborides can promote cleavage along
inclined planes, even under nominally uniaxial tension.

Although these results provide valuable insight into the intrinsic fracture behavior of
ideal, defect-free crystals, they should be interpreted with caution. The small size of
the simulation cells and the absence of native extended defects – common in sputter-
deposited diborides – limit the reliability of the predicted crack paths. A more physically
representative description of fracture initiation is offered by nanoscale simulations based
on K-controlled loading of defective lattices (see below).

2 Mode-I loading of TMB2:s

Fig. 2: Cracked-plate lattice geometries of hexagonal α-structured diborides considered in this
work. (a) (0001) crack surface with [1010] (Nr.1) and [1210] (Nr.2) crack-front directions. (b) (1210)
crack surface with [1010] (Nr.3) and [0001] (Nr.4) crack-front directions. (c) (1010) crack surface with
[0001] (Nr.5) and [1210] (Nr.6) crack-front directions.

The mechanical properties of diborides are calculated via K-controlled loading (molecu-
lar statics at 0 K) of lattice models containing an atomically sharp crack (cracked-plate
models). In these simulations, the stress-intensity factor KI is incrementally increa-
sed to identify the conditions corresponding to the onset of crack extension [56, 58].
Calculations are repeated for varying plate areas A, enabling extrapolation of the
fracture-initiation toughness and fracture-initiation strength to the macroscale limit
using established scaling relations [58]. Here, both properties are extracted from the
tensile stress versus stress-intensity curve at the value of KI corresponding to the
rupture of the first chemical bond at the crack tip.

To systematically investigate fracture behavior in hexagonal α-structured TMB2, we
consider six low-index crack configurations, denoted as (hk l m)[h′k′l′m′], where the first
set indicates the crack plane and the second the crack-front direction (Fig. 2). Among
these, the (1210)[1010] and (1010)[1210] orientations (Nr.3 and Nr.6), in which fracture
initiates perpendicular to (0001) basal plane, are particularly relevant for comparison
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with experiments. This is because the [0001] direction corresponds to the typical growth
orientation of TMB2 thin films, making these geometries representative of loading
conditions encountered in experimental toughness assessments (e.g., by nanoindentation).

Fig. 3 illustrates the evolution of volumetric strain and bond-breaking events during
Mode-I loading for each crack geometry, showing atomic configurations at increasing
KI : before crack extension, at the onset of propagation, and well beyond it. In all
cases, stress concentrates at the crack tip as KI approaches the critical value KI c,
triggering fracture. On the (0001) plane (Fig. 3a,b), cracks initiate via rupture of TM–B
bonds, while on the (12̄10) and (101̄0) planes (Fig. 3c-f), fracture begins with B–B
bond breaking. Most commonly, fracture initiation is marked by the breaking of a single
bond, although multiple bond ruptures are observed in some cases, as in model Nr.3.
In certain configurations, crack advance is delayed by crack trapping – a phenomenon
arising from the discreteness of atomic bonding, which can locally stabilize the crack
tip over a finite loading interval before mechanical instability sets in [71].

Following crack initiation, the crack propagation behavior varies by geometry. Some
cracks extend smoothly along the original cleavage plane (e.g., Nr.1, Nr.3, Nr.4), while
others follow more complex trajectories, such as zigzag growth (Nr.2, Nr.5) or oblique
deflection across crystallographic planes (Nr.6). These patterns underscore the importance
of lattice anisotropy and local bonding topology in guiding fracture evolution, as
discussed in detail below.

Fig. 4 compares the extrapolated fracture toughness K∞
I c (Fig. 4a) and maximum

fracture strength σ∞
max (Fig. 4b) for Group-IV TMB2 systems across all six geometries.

These values are obtained through inverse polynomial extrapolation to infinite plate
area, following the procedure in Ref. [58]. HfB2 generally exhibits the highest K∞

I c , near
2.8 MPa·√m, except in geometry Nr.3, where TiB2 shows a higher toughness (2.24
vs. 2.01 MPa·√m). ZrB2 typically shows the lowest values (1.8 MPa·√m), except in
Nr.1, where it marginally exceeds TiB2. Maximum strengths σ∞

max are comparable across
materials (2.0 GPa), with the exception of geometry Nr.4, where TiB2 sustains higher
stress prior to fracturing. Importantly, while toughness and strength vary with plate
size – a fundamental reason for performing K-controlled simulations, which require
sufficiently large plate areas to avoid biasing crack-tip phenomena – the underlying
fracture mechanisms remain qualitatively unchanged for a given crack geometry across
all materials (Fig. 4c). This size invariance supports the validity of using the fracture
properties of finite-size models to extrapolate macroscale fracture properties.

It is instructive to compare the extrapolated toughness values obtained from atomistic
simulations (K∞

I c ) with the corresponding Griffith-model estimates (KG
I c), as the ratio

K∞
I c /KG

I c provides a meaningful metric of intrinsic brittleness or plasticity-mediated
toughening. Griffith predictions are derived from unrelaxed surface energies and zero-
Kelvin elastic constants (Tab. 1) [57, 58, 72]. A ratio near unity reflects ideally brittle
behavior, while significantly higher values indicate enhanced toughness due to plastic
deformation at the crack tip. For instance, ratios approaching three have been reported
for high-Al-content Ti1−xAlxN [58], where atomistic simulations reveal crack-tip plasticity.
In contrast, the near one-to-one correspondence observed here for TMB2 (Tab. 2)
reflects their intrinsically brittle nature, consistent with other brittle ceramics such as
TiN(001), where K∞

I c ≈ KG
I c and no plasticity is observed for atomically sharp cracks [58].

Nevertheless, deviations between K∞
I c and KG

I c – typically within 0.5–20%, but reaching
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up to 30% for HfB2 geometries Nr.1 and Nr.2 – underscore the limitations of the
Griffith model. Such differences may arise not only from atomistic-scale phenomena like
lattice trapping, bond discreteness, and local stress localization [57], but also from crack
path deflection, as observed in TiN(111) reorienting onto lower-energy (001) planes
(Fig. 8a in Ref. [58]). Unlike Griffith’s assumption of linear elasticity and straight-through
propagation along the initial cleavage plane, K-controlled atomistic simulations resolve
these non-ideal behaviors directly, making them essential for accurate predictions of
fracture in brittle ceramics.

Fig. 3: Bond breakage and volumetric strain distribution in cracked plate models subjected to
Mode-I loading as a function of the stress intensity factor. Atomic configurations just before,
shortly after, and well above KI c for different crack geometries: (a, b) (0001), (c, d) (1210), and (e, f)
(1010) planes. The simulation snapshots illustrate volumetric strain distributions in blue/red color scale.

Fig. 4: Comparison of extrapolated Mode-I fracture toughness K∞
I c (a) and fracture strength

σ∞
max (b) for TiB2 (teal), ZrB2 (orange), and HfB2 (red), across all six crack geometries.

The geometry indices N r.1–N r.6 are also colored in teal–orange–red, consistent with
Fig. 2. Note that all crack geometries are modeled for all three materials. (c) Illustration
of the influence of the plate area on the calculated fracture toughness (case of TiB2
with crack geometry N r.1). Note that the fracture mechanism remains qualitatively
unchanged with increasing size of the supercell.
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Tab. 2: Macroscale Mode-I fracture initiation toughness (K∞
I c ), Griffith fracture toughness (KG

I c),
and fracture strengths (σ∞

max). The K∞
I c , σ∞

max, and their standard deviations are extrapolated at
the infinite size limit by fitting the KI c and σmax values calculated for finite plate areas (see constitutive
scaling laws established in Ref. [58]). The KG

I c is derived from the unrelaxed surface energy (Eunr el
sur f )

and elastic tensor computed by ML-MS.

Geometry TiB2 ZrB2 HfB2
K∞

I c (MPa·√m) KG
I c (MPa·√m) σ∞

max (GPa) K∞
I c (MPa·√m) KG

I c (MPa·√m) σ∞
max (GPa) K∞

I c (MPa·√m) KG
I c (MPa·√m) σ∞

max (GPa)
(0001)[1010] (N r.1) 1.81 ± 0.03 2.02 2.00 ± 0.77 2.03 ± 0.04 1.86 1.83 ± 0.65 2.75 ± 0.02 1.93 2.02 ± 0.64
(0001)[1210] (N r.2) 2.35 ± 0.03 2.20 1.97 ± 0.49 2.08 ± 0.02 1.98 1.89 ± 0.22 2.89 ± 0.02 2.05 2.04 ± 0.31

(0001) Eunr el
sur f : 4.02 (J/m2) Eunr el

sur f : 3.68 (J/m2) Eunr el
sur f : 3.61 (J/m2)

(1210)[1010] (N r.3) 2.24 ± 0.02 2.37 2.24 ± 0.63 1.74 ± 0.02 2.18 2.21 ± 0.68 2.01 ± 0.02 2.20 2.27 ± 0.61
(1210)[0001] (N r.4) 1.88 ± 0.02 2.29 2.22 ± 0.67 1.84 ± 0.02 2.15 1.75 ± 0.29 2.25 ± 0.05 2.18 1.61 ± 0.54

(1210) Eunr el
sur f : 4.36 (J/m2) Eunr el

sur f : 4.33 (J/m2) Eunr el
sur f : 4.07 (J/m2)

(1010)[0001] (N r.5) 2.25 ± 0.02 2.24 2.26 ± 0.69 1.74 ± 0.02 2.04 2.21 ± 0.68 2.74 ± 0.03 2.22 2.36 ± 0.47
(1010)[1210] (N r.6) 2.24 ± 0.02 2.16 1.97 ± 0.60 1.93 ± 0.02 2.01 2.11 ± 0.33 2.25 ± 0.02 2.20 2.26 ± 0.34

(1010) Eunr el
sur f : 3.88 (J/m2) Eunr el

sur f : 3.81 (J/m2) Eunr el
sur f : 4.15 (J/m2)

Fig. 5 compares post-initiation fracture behavior in TiB2, ZrB2, and HfB2 for three
representative geometries under Mode-I loading: (0001)[101̄0] (Nr.1), (12̄10)[101̄0] (Nr.3),
and (101̄0)[112̄0] (Nr.6). Each subpanel displays the atomic configuration at the onset
of crack propagation (KI c) and the resulting fracture morphology (crack wake) at
KI ≫ KI c. In all cases, fracture initiates through rupture of TM–B or B–B bonds
(Fig. 3), but the subsequent crack paths vary by material and geometry.

In diborides with native cracks on the (0001) and (12̄10) surfaces, Mode-I loading
results in crack propagation that remains confined to the original cleavage plane (see
Fig. 5a and Fig. 5b). The surface energy differences reported in Tab. 1 offer a plausible
explanation for this behavior. Across all diboride systems, the ML-MS surface energies
of the (0001) and (12̄10) planes are similar to each other and consistently lower than
that of the (101̄0) surface. As a result, there is no strong energetic driving force to
redirect the crack away from its initial orientation in these configurations.

More surprising material-specific behaviors emerge in Fig. 5c, where native cracks are
positioned on the (101̄0) planes – identified as the highest-energy cleavage planes among
those considered (Tab. 1). In ZrB2 and HfB2 (Fig. 5c-2 and c-3), these cracks readily
deflect onto inclined (11̄01) planes during Mode-I loading. The phenomenon is reminiscent
of what is observed in TiN, where cracks on high-energy (111) surfaces extend onto
lower-energy (001) planes (see Fig. 8a in Ref. [58]). Although surface energies for first-
order pyramidal (11̄01) planes are not available, the observed deflections suggest that
these planes are energetically more favorable than (101̄0) in ZrB2 and HfB2. Additional
support comes from tensile simulations on small defect-free cells (Fig. 1c), which show
oblique fracture paths – indicating an intrinsic tendency for crack redirection onto
inclined planes that are presumably lower in energy. By contrast, in TiB2 (Fig. 5c-1),
the crack propagates stably along the (101̄0) plane without deviation. This suggests
that any potential energetic advantage associated with switching to a pyramidal plane
is not sufficient to activate deflection – possibly due to competing crystallographic or
mechanical constraints that favor continuation along the original cleavage plane.

In summary, although energetic arguments provide valuable guidance for interpreting
fracture patterns, the examples shown in Fig. 5c highlight the inherent complexity of
fracture phenomena. These cases illustrate how cleavage energetics and crystallographic
constraints interact in a material-specific manner and underscore the need for direct
atomistic simulations to fully resolve the evolution of crack paths.
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Fig. 5: Fracture mechanisms in Group-IV TMB2 compounds following crack initiation (KI ≳ KI c).
Simulation snapshots are shown for one representative example per crack geometry: (a) (0001)[1010]
(Nr. 1), (b) (1210)[1010] (Nr. 3), and (c) (1010)[1210] (Nr. 6). Each panel compares TiB2 (*-1), ZrB2 (*-2),
and HfB2 (*-3) under pure Mode-I loading (the stress intensities KI are expressed in MPa·√m). Each
subpanel illustrates crack extension due to stress intensities well above KI c (KI ≳ KI c + 0.5 MPa

√
m),

whereas the insets show magnifications of atomic configurations immediately after reaching KI c. Cracks
are seen to either propagate along the initial plane or deflect depending on material and orientation. TM
atoms (Ti, Zr, Hf) are depicted in dark gray; B atoms in light blue. The selected plate models have an
area of L2 = 30 nm × 30 nm = 900 nm2.

To assess the relevance of our simulation results, we now compare them with experi-
mental measurements of fracture toughness for TiB2, ZrB2, and HfB2. Reported values
range between 1.8–6.8 MPa·√m for TiB2 [73–75], 2.2–5.0 MPa·√m for ZrB2 [40, 41,
76], and 2.8–7.2 MPa·√m for HfB2 [77, 78]. The calculated toughness values fall within
these experimental ranges (see Fig. 4 and Tab. 2), but direct comparison is complicated
by the broad scatter in reported data. This variability arises from differences in sample
preparation, microstructural characteristics (e.g., porosity, grain boundary density and
grain sizes, and residual stresses), and the specific mechanical testing methods used.
Furthermore, many experimental configurations involve mixed-mode loading – typically
a combination of Mode-I and Mode-II – rather than ideal Mode-I conditions [79]. The
role of mixed-mode effects is examined in the following section.
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Fig. 6: Fracture mechanisms under mixed Mode-I/Mode-II loading, as exemplified by TiB2 in
the (1210)[1010] (Nr. 3) crack geometry. (a) Critical stress intensity values Kc (red) as a function
of Mode-I contribution, decomposed into KI (teal) and KI I (orange) components. (b) Maps of atomic
displacement deviations from the corresponding linear-elastic solutions at a stress intensity Kmix ≈
Kc − 0.02 MPa

√
m, visualizing the effect of mixed-mode loading on lattice distortion. (c) Volumetric

strain patterns near the crack tip under pure Mode-I and mixed-mode conditions, showing fracture
behavior at Kmix ≈ Kc + 0.02 MPa

√
m. (d) Summary of fracture mechanisms as a function of Mode-I

content: from basal cleavage under pure Mode-II, to (0001) and (1212) plane fracture under mixed
loading, to fully prismatic cleavage under pure Mode-I. Crystallographic directions [0001], [1010], and
[1210] are color-coded for reference. The stress intensity factors in (b) and (c), are expressed in MPa·√m.

3 Mixed Mode-I and Mode-II loading: example of TiB2

Achieving a purely Mode-I fracture in mechanical testing experiments is uncommon due
to material heterogeneity, sample geometry, or the specific loading configuration [80–
82]. Even minor misalignments, combined with microstructural features such as grain
boundaries or phase interfaces, can introduce shear components that promote mixed-
mode fracture [83–85]. In this section, we examine mixed Mode-I and Mode-II crack
opening, using TiB2 as a representative system. Two crack geometries are considered for
the main discussion: (1210)[1010] (Nr. 3) and (1010)[1210] (Nr. 6). Additionally, results
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Fig. 7: Fracture mechanisms under mixed Mode-I/Mode-II loading, as exemplified by TiB2 in
the (1010)[1210] (N r.6) crack geometry. (a) Critical stress intensity values Kc (red) as a function
of Mode-I contribution, decomposed into KI (teal) and KI I (orange) components. (b) Maps of atomic
displacement deviations from the corresponding linear-elastic solutions at a stress intensity Kmix ≈
Kc − 0.02 MPa

√
m, visualizing the effect of mixed-mode loading on lattice distortion. (c) Volumetric

strain patterns near the crack tip under pure Mode-I and mixed-mode conditions, showing fracture
behavior at Kmix ≈ Kc + 0.02 MPa

√
m. (d) Summary of fracture paths as a function of Mode-I content

demonstrating four different mechanisms and three distinct fracture planes with varying ratios. Note
that fracture at 20-50% Mode-I loading initiates with lattice slip along the basal plane. Crystallographic
directions [0001], [1010], and [1210] are color-coded for reference. The stress intensity factors in (b) and
(c), are expressed in MPa·√m.

for mixed loading obtained for the (1010)[0001] (Nr. 5) and (12̄10)[0001] (Nr. 4) cracked
plate models are briefly described below.

Fracture under mixed Mode-I and Mode-II loading can be described using energy-
based criteria that account for the full crack-tip stress field. A well-known example
is the strain energy density criterion by Sih and MacDonald [86], which evaluates
the angular distribution of energy around the crack tip to predict both initiation and
propagation direction. While rigorous, this approach requires evaluating the spatial
dependence of stresses near the tip and is therefore complex to apply. Here, we adopt
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a common approximation in linear elastic fracture mechanics, taking the total driving
force for crack growth as Kmix =

√︁
K2

I + K2
I I (see, e.g., Eq. 15 in Ref. [87] and Eq. 7a

in Ref. [88]). That is, Kmix is the norm of a vector with orthogonal components KI

and KI I . This definition provides a practical estimate of the overall stress intensity and
enables consistent comparisons across different mixed-mode loading cases.

To analyze the influence of mixed Mode-I/Mode-II loading on fracture mechanisms
in TiB2, we begin with simulations using the (1210)[1010] cracked-plate model (Nr. 3).
In this configuration, the relative contribution of Mode-I is varied in increments of
10% from pure Mode-II (0%) to pure Mode-I (100%) (Fig. 6a). At each step, the
corresponding components KI and KI I are computed according to Eqs. (1.a)–(1.c) (see
Methods section), while Kmix is incremented in steps of 0.02 MPa·√m.

Fig. 6a shows that the critical stress-intensity value for fracture initiation Kmix
c

(hereafter abbreviated as Kc) generally increases with higher Mode-I contributions,
rising from KI I c = 1.92 MPa·√m for pure Mode-II to KI c = 2.22 MPa·√m for pure
Mode-I. Interestingly, a slight drop in Kc is observed near the 20% Mode-I / 80% Mode-
II ratio, where the toughness reaches a local minimum of 1.84 MPa·√m. This suggests
that the (1210)[1010] crack geometry in TiB2 is most susceptible to fracture under
predominantly shear-dominated loading conditions with a modest tensile component.
Fig. 6b displays the deviation in atomic displacements from the linear-elastic solution
(see Ref. [56] for technical details) at load levels near Kc, capturing the evolution of
the stress field. Distinct fracture responses emerge depending on the balance between
shear and tensile loading.

As shown in Figs. 6c and 6d, crack propagation transitions through four different
mechanisms depending on the mode ratio. Under pure Mode-I loading, the crack
propagates predominantly along the original (1210) fracture plane. As the Mode-I
fraction decreases to intermediate levels, deflection occurs onto either the (1212) or
(0001) planes. In particular, at 70% Mode-I content, the crack path shifts entirely to
the (1212) plane, marking a transition that begins with the activation of pyramidal slip
and subsequently evolves into full oblique fracture. At 60% Mode-I, the crack initially
extends along the (0001) plane before redirecting to (1210). For Mode-I fractions below
50% – including the pure Mode-II case – the structure consistently fractures along
the basal (0001) plane. This behavior closely resembles the crack growth mechanism
observed in the (12̄10)[0001] (Nr. 4) loading geometry.

The (1010)[1210] (Nr. 6) deformation behavior (Fig. 7a) exhibits a more intricate
trend in Kmix

c , including a minimum of 1.88 MPa·√m at 60% Mode-I. The toughness
values for pure Mode-I and Mode-II are relatively similar–KI c = 1.72 MPa·√m and
KI I c = 1.94 MPa·√m, respectively. Fig. 7b, showing the displacement deviation from
the linear-elastic solution, highlights the evolving crack-tip stress fields. Combined with
Figs. 7c and 7d, these results reveal distinct fracture mechanisms as the loading mode
varies.

Under pure Mode-I loading, the native (1010) crack extends in a zigzag fashion along
mirrored diagonal facets, maintaining an overall horizontal trajectory. Between 90% and
60% Mode-I, crack growth transitions to the (1101) plane–consistent with the first-order
pyramidal slip system and the preferred cleavage path in ZrB2 and HfB2 (see Fig. 5c).
As the Mode-I fraction decreases further, between 50% and 10%, fracture begins with
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basal-plane slip followed by crack opening along the (0001) surface. A similar basal-slip
mechanism has been observed in simple-shear simulations of single-crystal TMB2 (TM
= Ti, Ta, W, Re) lattice models [29]. From 10% Mode-I down to pure Mode-II, the
crack opens directly along the (0001) surface, without preceding slip.

The evolution observed in the (1010)[0001] (Nr. 5) configuration follows a more
straightforward pattern. From pure Mode-I down to 90% Mode-I, fracture proceeds
along the (1010) plane, though in a straight rather than zigzag path. At 80–70% Mode-I,
the crack shifts to the (1120) plane, and for all lower Mode-I ratios – including pure
Mode-II – fracture occurs through the (1100) plane. These transitions suggest the
activation of prismatic slip after reaching Kc.

The fracture toughness values for the (1210)[1010] and (1010)[1210] configurations
show only minor differences between KI c and KI I c. As seen in Fig. 6 and Fig. 7, all
four toughness values–corresponding to pure Mode-I and Mode-II loading for both
geometries–cluster around 2 MPa·√m, indicating a consistent resistance to fracture
regardless of loading mode or crack orientation. While this suggests similar macroscopic
toughness under tension and shear, the underlying mechanisms differ markedly and
confirm the strongly brittle nature of TiB2.

Under pure Mode-II loading, one would expect slip to initiate along the original
crack plane–as seen in other hard ceramics. For instance, in TiN, atomistic simulations
reveal that a (110)[010] crack under pure Mode-II activates slip along the {110}⟨11̄0⟩
system, which lies within the original crack surface [57]. In contrast, TiB2 shows no
such response. Rather than slipping, TiB2 cracks along the orthogonal (0001) basal
plane. This highlights TiB2’s low propensity for shear-induced plasticity–even Mode-II
loading is accommodated through brittle cleavage.

4 Experimental testing and verification of fracture simulations

To support the results of our atomistic simulations, we perform cube-corner nanoin-
dentation experiments on TiB2 thin films with near 1:2 Ti-to-B stoichiometry. The
film’s microstructure before and after indentation is characterized using high-resolution
transmission electron microscopy (HRTEM). The as-deposited samples exhibit [0001]
orientation (Fig. 8a), consistent with the typical growth direction of TMB2 thin films.

Cube-corner indentation is known to generate a combination of Mode-I (opening) and
Mode-II (shearing) stresses [89]. Post-mortem HRTEM analysis of the [0001]-oriented
TiB2 films reveals that cracks initiate from the indentation site along a prismatic plane
and subsequently deflect onto an inclined plane at approximately 40◦ (Fig. 8b). This
oblique fracture trajectory suggests that crack propagation occurs under mixed-mode
loading conditions. To interpret this behavior, we compare the experimental observations
with our ML-MS simulations of defective lattices containing native prismatic cracks –
that is, orthogonal to the basal plane – shown in Figs. 6 and 7.

As illustrated in Fig. 5b-1 and Fig. 5c-1, cracks in TiB2 loaded under pure Mode-I
conditions propagate straight along the original prismatic plane–a response inconsistent
with crack deflection observed in the experimental test. In contrast, simulations under
mixed Mode-I/Mode-II loading (Figs. 6 and 7) reveal crack redirection toward inclined
pyramidal planes, especially when the Mode-I contribution lies between 60% and 90%
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Fig. 8: Comparison of simulation and experimental results for TiB2. (a) Atomic structure of TiB2
thin film from HRTEM prior to nanoindentation, compared with the atomistic model used for pre-crack
simulations, with the [0001] direction indicated. The brighter pattern represents two nearest-neighbor
B atoms merging together, while the relatively darker pattern corresponds to Ti atoms. The contrast
reversal of brightness is caused by the thicker TEM sample. (b) HRTEM pattern after cube-corner
nanoindentation, showing angle changes during fracture. The average shear strain, Exy, is highlighted
using the geometric phase analysis (GPA) pattern.

(see Figs. 6d and 7d). In particular, simulations of (1010)[1210] cracked-plate models
under < 40% Mode-II loading component show diagonal crack propagation along the
(1101) plane–closely matching the experimental deflection angle and aligning with the
relatively low energetic cost of pyramidal slip in AlB2-type materials [90, 91].

Additionally, geometric phase analysis (GPA) of the post-mortem microstructure
reveals a local maximum shear strain of approximately 5% near the crack tip, consistent
with a mixed-mode fracture mechanism involving Mode-II contribution. Taken together,
these findings suggest that the experimentally observed crack deflection originates from
mixed-mode loading during nanoindentation and reinforce the relevance of our atomistic
simulations for predicting and interpreting fracture patterns in brittle ceramics.

The fracture toughness measured for the same TiB2 sample by microcantilever ben-
ding yielded a value of 3.08 MPa·√m [45], approximately 40% higher than both the
extrapolated K∞

I c and the Griffith-based estimate KG
I c. This difference likely arises from

several factors. First, the experimental measurement reflects the response of a columnar
polycrystalline matrix, where microstructural features such as grain boundaries and
local residual stresses (up to ≈ 3 GPa compressive residual stress in this series of TiB2
sample [92]) can enhance resistance to crack propagation – effects that are not captured
in our idealized atomistic models. Second, the geometry of a notched microcantilever –
with notch widths on the order of tens of nanometers [45] – differs significantly from
the atomically sharp cracks modeled in simulations. Prior atomistic work on TiN(001)
– a similarly brittle ceramic – showed that fracture toughness increases with notch
width and saturates at a value roughly 20% above the atomically sharp case, once the
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notch spans just a few atomic layers [57]. This suggests that toughness values obtained
from finite-width experimental notches are inherently higher than those predicted for
atomically sharp cracks.

A further contribution to the discrepancy may stem from how fracture initiation
is defined in our simulations. To ensure consistency across all crack geometries and
materials, we identify fracture onset with the rupture of the first chemical bond at
the crack tip. While this criterion is unambiguous and reproducible, it neglects lattice
trapping–where the atomic lattice imposes an energy barrier to crack propagation–
and other atomistic effects that can locally stabilize the crack front and delay its
advance. As a result, the extrapolated K∞

I c values may modestly underestimate the
effective macroscopic toughness, particularly for configurations prone to such trapping
phenomena.

Looking ahead, a key challenge for MLIP-based atomistic modeling is to incorporate
simplified but representative features of real microstructures. These may include com-
mon point defects such as boron or metal vacancies [43, 44], extended planar defects
like anti-phase boundaries [93, 94], or amorphous-like B-rich columns [95]. However,
introducing defects arbitrarily based on stoichiometry is not sufficient. To enable mea-
ningful comparison with experimental data, one must first identify which defect types
and distributions are relevant for the adopted synthesis conditions, and then construct
ad hoc atomistic models that reflect those microstructural features. As emphasized
in Ref. [56], these models must be built with care to avoid unphysical artifacts. For
example, placing a native dislocation too close to the crack plane can significantly alter
the strain field near the crack tip, biasing the computed toughness and limiting the
generality of the results. Ultimately, by combining process-aware defect modeling with
rigorous K-controlled simulations, it may become possible to quantitatively link intrinsic
fracture properties to those measured in structurally complex, real-world TiB2-based
ceramics.

Conclusion

To investigate the intrinsic fracture properties of Group-IV transition metal diborides
(TMB2, TM = Ti, Zr, Hf), we performed K-controlled molecular statics simulations on
pre-cracked lattice models using machine-learning interatomic potentials (MLIPs). The
potentials were validated following a protocol analogous to our previous work [28], ensu-
ring that surface energies, elastic constants, and theoretical tensile strengths reproduce
static DFT and finite-temperature AIMD results.

Our analysis focused on six low-index atomically sharp crack geometries under pure
Mode-I loading: (0001)[1010], (0001)[1210], (1210)[1010], (1210)[0001], (1010)[0001], and
(1010)[1210], where (hklm) denotes the crack surface and [h’k’l’m’] the crack line or
crack front direction. The macroscale fracture toughness K∞

I c and fracture strength σ∞
max

were obtained by extrapolating results from different plate sizes. While all diboride
systems exhibit similar fracture strengths (≈2.0 MPa·√m), the toughness ranked as:
HfB2 (≈2.7 MPa·√m) > TiB2 (≈2.3 MPa·√m) > ZrB2 (≈1.8 MPa·√m), with minor
deviations in two geometries. The predicted values fall within the ranges reported
experimentally: 1.8–6.8 MPa·√m for TiB2 [73–75], 2.2–5.0 MPa·√m for ZrB2 [40, 41,
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76], and 2.8–7.2 MPa·√m for HfB2 [77, 78]. Deviations from experimental values can
be attributed to the absence of microstructural features in simulations (e.g., grain
boundaries, residual stress), wider notches used in experiments [45], and our strict
definition of fracture onset – based on the first bond rupture – which overlooks effects
like lattice trapping that can delay crack advance.

We further explored the influence of mixed Mode-I/Mode-II loading on fracture
resistance Kc and crack path evolution in TiB2, focusing on the (1210)[1010] and
(1010)[1210] geometries. Simulations showed that mixed-mode loading can significantly
alter fracture trajectories and reduce Kc. In particular, Kc minima emerged under
specific shear/tensile combinations, with cracks deflecting toward inclined pyramidal
planes. This behavior was confirmed experimentally by cube-corner nanoindentation on
[0001]-oriented TiB2 thin films, which exhibited oblique crack propagation at ≈ 40◦.
Geometric phase analysis revealed local shear strain of ≈ 5%, consistent with mixed-
mode loading and supporting our atomistic predictions.

Taken together, these results demonstrate that K-controlled ML-MS simulations
offer a predictive, atomistically detailed framework for evaluating fracture properties
in brittle ceramics. By resolving how loading mode, crystallographic orientation, and
local structure influence crack evolution, our approach provides both quantitative and
mechanistic insight. Although finite-temperature effects were not explicitly modeled, the
agreement between ML-MD and AIMD in prior validation supports future extensions of
this framework to dynamic and environment-sensitive fracture phenomena. This paves
the way toward systematic prediction of fracture-related descriptors and mechanisms in
complex ceramic systems.
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Chapter 6

Summary and outlook

Recent studies underscore machine learning interatomic potential (MLIP) as a promising
bridge to combine the accuracy of ab initio methods with the computational efficiency
of molecular dynamics, as empirical interatomic potentials are often material-specific
and have limited applicability. Despite the advantages of MLIPs, a systematic training
strategy for case-specific applications remains underdeveloped. In this thesis, I employed
ab initio molecular dynamics (AIMD) calculations to evaluate the ideal mechanical
properties of transition metal diborides (TMB2) and developed MLIPs within the
moment tensor potential (MTP) framework, using AIMD results as the training set to
enable further nanoscale modeling. Further, TMB2 are promising superhard materials;
however, their brittleness under deformation and the mechanisms behind metastable
phase formation during synthesis remain open questions – well-suited for atomistic
modeling to provide atomic-scale insights and guidance for experimental efforts. The
thesis further overviews the fundamental concepts of first-principles calculation, which
forms the foundation of computational physics and is central to the “ab initio” approach.

The core chapter of this thesis presents my contributions to the field, as supported
by 3 key publications. Additionally, the other studies I (co-)authored indicate that
my scientific work was not strictly limited to MLIP development and transition metal
diborides. Instead, it also encompasses static calculations of defective structures in
Ta-Al-B compounds and high-entropy carbide alloys using density functional theory,
complemented by collaborative experimental work, to validate and predict the change
of stability and structural parameters while considering the effects of imperfect stoi-
chiometry. Key outcomes of my doctoral research include: (i) developing a robust and
transferable MLIP training strategy for case-specific ceramic simulations, achieving high
validation accuracy across diverse loading scenarios; (ii) confirming the exceptional
mechanical properties and high-temperature stability of TMB2, reinforcing its potential
for demanding applications; (iii) predicting phase transformations that may occur among
three typical structural polymorphs of TMB2 under ambient deformation conditions,
offering insights into phase-transition mechanisms in ceramics; (iv) simulating Mode-I
crack opening, which provides a realistic method for obtaining KIc values in complex
ceramics through ML-MD via here-developed MLIP training strategy.

Future work could focus particularly on further structural design of this material, such
as creating superlattices or alloying, to achieve optimal stability, mitigate brittleness,
and prevent phase transformations that are shown to significantly reduce mechanical
properties, especially for TiB2 with highest phase-dependence of shear strength, as
WB2 exhibits the lowest. Experimental validation of the fracture mechanisms could also
provide critical insights, bridging computational predictions with practical applications.
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Prof. Pavel Souček’s group, Masaryk University CZ, 2023

◦ Peer review contributions at international journals
npj. Computational Materials (Springer); Digital Discovery (RSC); Physical Chemistry Chemical Physics (RSC);

Vacuum (Elsevier); Surfaces and Interfaces (Elsevier); Surface & Coatings Technology (Elsevier);

Applied Energy Materials (ACS)

SELECTED PUBLICATIONS (in total 6 first-author and 7 co-author papers, 250+ citations)

◦ MLIP combined MD – Ceramics – Deformation
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