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 A B S T R A C T

This paper presents the mechatronic design and control of a 3 degree-of-freedom (3-DoF) precision positioning 
system for high-precise optical 3D inline-metrology based on a dual-stage approach. It overcomes limitations 
of common optical 3D measurement systems due to motion blur by precisely positioning measurement systems 
on a metrology platform with respect to a (moving) measurement sample and additionally extends their 
measurement range. A comprehensive mathematical model of the system is derived and simplified to linear 
models suitable for classical linear control design methods. Using a modal analysis approach for system 
decoupling, a decentralized control scheme with individual Single-Input Single-Output controllers is developed 
for precisely controlling the metrology platform position in 3 DoFs. Experimental measurements on the 
prototype system demonstrate a maximum measurement error resulting from the positioning system of down to 
7.5 μm to 12.3 μm (rms) during platform motion of up to 100 mm/s over a large inspection area (0.7 m × 0.5 m), 
as well as 147 nm (rms) error during static positioning.
1. Introduction

Inline measurement systems are essential in today’s industrial man-
ufacturing and production environments, as they enable high precision, 
throughput and continuous quality control [1,2]. Optical 3D mea-
surement systems, such as laser line and structured light sensors, are 
frequently employed in a multitude of industrial applications for this 
purpose [3,4]. However, as production systems advance, these opti-
cal measurement systems increasingly face challenges in meeting the 
required speed and precision demands, with motion blur posing a 
significant constraint on the achievable measurement precision [5]. 
Furthermore, external disturbances like vibrations from the production 
environment pose a significant challenge for measurement systems 
working directly in-line [6].

To address these challenges, vibration-insensitive measurement tech-
niques have been developed, which however cannot fully mitigate 
larger disturbance magnitudes [7]. A promising solution involves the 
precise motion control of the optical measurement system with respect 
to the measurement sample, i.e. actively tracking the sample, allowing 
for highly accurate 3D surface measurements on moving objects [8]. 
By maintaining zero relative motion between sample and measurement 
system, local lab-like conditions can be created. Additionally, the mea-
surement range can be arbitrarily extended within the capabilities of 
the positioning system, which is beneficial, when e.g. moving laser-line 

∗ Correspondence to: Automation and Control Institute, TU Wien, Gußhausstraße 27-29, Vienna, 1040, Austria.
E-mail address: pechgraber@acin.tuwien.ac.at (D. Pechgraber).

sensors across samples to obtain 3D surface measurements [9]. Never-
theless, the measurement precision in the moving direction depends 
heavily on the positioning system, especially considering parasitic 
rotations of the measurement system with respect to the motion plane 
of the sample.

A common approach for precise positioning over long ranges is dual-
stage actuation, which combines two actuation principles [10]. Usually 
a less precise coarse actuator is used for positioning over a long range, 
while a more precise actuator with a small actuation range is mounted 
in series. This approach can be found in a large number of applications, 
ranging from hard-disk drives to wafer scanners [11,12]. For the fine 
actuators often electro-magnetic Lorentz-actuators (LAs) are used, due 
to their favorable properties, such as the linear force to current relation 
and (quasi) zero-stiffness [13,14]. Zero-stiffness refers to a position 
independent actuator force, which inherently isolates the mover from 
disturbing vibrations. This makes them well suited for precision po-
sitioning based on the dual-stage approach, since disturbance forces 
from the coarse actuator are not transmitted to the fine actuator [15]. 
The moving part is usually constrained in the non-actuated degrees 
of freedom (DoFs) by either magnetic levitation or air-bearings [8,16] 
to maintain the zero stiffness property, or by mechanical flexures in 
combination with a high-bandwidth position control loop [15].
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Fig. 1. Principle of a 3D inline-measurement system with moving optical measurement 
systems, tracking measurement samples on the production line. Parasitic motion of the 
metrology platform leads to a lateral measurement error 𝛥𝑦𝑚(𝑥, 𝑡) on the sample.

The contribution of this paper is the mechatronic design as well as 
the mathematical modeling and decoupled control of a 3-DoF precision 
positioning system for 3D inline-metrology applications. The novel 
linear positioning system is based on a dual-stage approach, integrating 
multiple fine actuators on top of a single long-range coarse actuator.

2. System design

At first the requirements and challenges for the target application 
are outlined, as basis for the subsequent system design.

2.1. System requirements and challenges

In Fig.  1 a principle sketch of a 3D inline-measurement system is 
shown, which incorporates a movable metrology platform, carrying 
optical measurement systems. For precise inline-measurement, it is 
necessary to achieve high-precision motion in one translational direc-
tion (𝑦) over a long range, while maintaining a constant and stable 
orientation of the metrology platform with respect to the measurement 
sample [8]. Key challenges arise from unbalanced inertia, where the 
actuation force of the linear positioning system 𝐹𝑎𝑐𝑡 is not aligned with 
the center of mass (CoM) of the platform, leading to parasitic rotations 
and measurement errors 𝛥𝑦𝑚(𝑥, 𝑡) of the sample. Additionally, reaction 
forces from the measurement systems (e.g. scanning systems) and 
external disturbances can induce unwanted parasitic motion, degrad-
ing measurement accuracy. These factors are critical in high-precision 
inline-metrology applications, where measurement accuracies on the 
scale of single microns are desired. The system must therefore actively 
control multiple DoFs with high precision to mitigate these adverse 
effects. To further provide a large inspection area, linear motion ranges 
up to meters are desired. Another key requirement is cost-effectiveness, 
to be also competitive in industrial applications with steadily growing 
precision demands, such that low-cost components are preferred in the 
mechatronic system design.

2.2. System design and integration

Based on the system requirements and challenges, a positioning 
system is designed which is shown in Fig.  2, integrated into an inline-
metrology system.

Core part of the system is the metrology platform incorporating the 
optical measurement systems, which is moved along the 𝑦-direction of 
the inspection area (production line). A standard spindle-drive with a 
stepper motor is used for the coarse positioning, reducing system com-
plexity and costs and providing extendable travel ranges. To overcome 
the low positioning precision of mechanical spindle-drives, a dual-stage 
161 
Fig. 2. General system design: The metrology platform, which holds the optical 
measurement systems, is guided with flexure mounts on linear roller guides. The pusher 
connected to the mechanical spindle-drive controls the platform position in 3DoFs.

approach is applied. Therefore the coils of three cylindrical LAs are 
mounted on the pusher, which is connected to the spindle-drive. The 
magnet parts of the LAs are fixed at the metrology platform, allowing 
the positioning of the platform in 3 DoFs by applying forces from the 
back. It is suspended on the machine frame by linear roller guides 
on either side of the frame. For this reason, disturbing vibrations or 
parasitic motion from the spindle-drive are isolated from the metrology 
platform due to the zero-stiffness property of the LAs.

To counteract manufacturing and mounting tolerances of the linear 
guides, mechanical flexure mounts are designed to enable sufficient 
motion freedom, which allows the LAs to position the metrology plat-
form in constant orientation to the inspection area over the entire 
motion range. The mounts are designed as double parallelogram flexure 
structure (red in Fig.  2), which is also referred to as crab-leg flex-
ure [17]. This structure allows a relatively low stiffness in the actuated 
translational direction 𝑦 and the rotations 𝜃 and 𝜓 , while providing a 
high stiffness in the other directions (𝑥, 𝑧 and 𝜑), restricting movement 
in the non-actuated DoFs.

To accurately position the platform with respect to the measurement 
sample, a separate sensor frame is connected to the machine frame, 
which is considered to have negligible parasitic motion relative to the 
inspection area. Position measurement in the 3 actuated DoFs (𝑦, 𝜃, 𝜓) 
is done via 3 optical position sensors mounted on the sensor frame. 
Additionally, an optical proximity sensor is mounted on the pusher to 
determine the relative position between the coarse positioning unit and 
the platform.

3. Mathematical system model

In this section a detailed mathematical system model of the designed 
system is presented, which serves as the basis for the decoupling of 
the DoFs and the control design in the next sections. It is important 
to note that, in principle, a generic system model could be derived 
based on the system identification presented in Section 4. However, 
an analytical parametric model provides deeper physical insight into 
how each system parameter influences the system dynamics, which 
is particularly valuable when scaling the system or adapting it for 
applications with different geometries or DoFs.

3.1. Equations of motion

The dynamic system model describing the motion of the dual-stage 
actuated metrology platform is derived based on the Euler–Lagrange 
equations [18] 
d
d𝑡
𝜕𝑇
𝜕𝑞̇𝑗

− 𝜕𝑇
𝜕𝑞𝑗

+ 𝜕𝑈
𝜕𝑞𝑗

= 𝑓𝑞,𝑗 , 𝑗 = 1,… , 𝑛, (1)

for the generalized coordinates 𝑞𝑗 , the kinetic energy 𝑇 , the velocity-
independent potential 𝑈 , and the corresponding generalized forces 𝑓 . 
𝑞,𝑗
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Fig. 3. Dimensions of the metrology platform (Front view).

Fig. 4. Sketch of the mechanical system model (top view). The flexure mounts on either 
side are modeled by 3 stiffness coefficients 𝑘1, 𝑘2 and 𝑘3. The metrology platform is 
modeled as rigid body with the mass 𝑚𝑝, the coordinates of the center of mass (𝑥𝑔 , 𝑦𝑔 , 
𝑧𝑔) and inertia matrix 𝐉𝑏𝑠 defined in the body-fixed coordinate frame. The generalized 
coordinates 𝐪 are highlighted in green. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

In Fig.  3, the front view of the platform (without meas. systems) is 
shown with the dimensions relevant for the model derivation. Addi-
tionally, a sketch of the mechanical model is depicted in Fig.  4. It 
is assumed, that the platform acts as a rigid body with constant and 
diagonal inertia matrix 𝐉𝑝𝑝 = diag

(

𝐽𝑥𝑥 , 𝐽𝑦𝑦 , 𝐽𝑧𝑧
)

∈ R3×3 defined in 
the center of mass in the body-fixed coordinate frame. The platform is 
connected to the linear carts of the machine frame (lumped masses 𝑚𝑐) 
by the flexure mounts on either side. Since the aim of the control will 
be to hold the metrology platform in a constant orientation with respect 
to the production line (Fig.  2), only small deformations of the flexure 
mounts are assumed. Therefore they are modeled as 3 independent 
linear springs with translational spring constant 𝑘1 and two rotational 
spring constants 𝑘2 and 𝑘3 with their respective viscous damping coef-
ficients (𝑑1, 𝑑2, 𝑑3) [19]. The fine-positioning of the platform is done by 
controlling the forces in the three LAs at the back of the platform. These 
forces (𝐹𝑎, 𝐹𝑏, 𝐹𝑐) together with (non-linear) friction forces acting on 
the linear carts (𝐹𝑟1, 𝐹𝑟2) are the inputs for the dynamic system model 
and are combined in the force vector 𝐟𝑒 = [

𝐹𝑎 𝐹𝑏 𝐹𝑐 𝐹𝑟1 𝐹𝑟2
]T. 

For the mechanical model in Fig.  4 5 generalized coordinates 

𝐪 =
[

𝑦1 𝑦𝑐1 𝑦2 𝑦𝑐2 𝜃
]T (2)

are defined with 𝑦1 and 𝑦2 being the translational position of the 
horizontal crossbar on either side, 𝑦𝑐1 and 𝑦𝑐2 being the translational 
position of the linear carts and 𝜃 being the rotation around the 𝑥-axis 
of the body-fixed coordinate frame. 

In order to derive the kinetic energy 𝑇 , the potential 𝑈 and the 
generalized forces 𝑓𝑞,𝑗 for each degree of freedom, kinematic transfor-
mations from the body-fixed coordinate frames into the world coordi-
nate frame depending on the generalized coordinates 𝐪 are required. 
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Therefore the transformation 

𝐇𝑖
0 =

[

𝐑𝑖0 𝐝𝑖0
𝟎 1

]

(3)

with the translational displacement 𝐝𝑖0 and the rotation 𝐑𝑖0 between the 
body-fixed 𝑖-coordinate frame and the world coordinate frame (0) is 
introduced, which is used to express rigid body positions in the world 
coordinate frame 

𝐏0 = 𝐇𝑖
0𝐏𝑖 , with 𝐏𝑖 =

[

𝐩𝑖
1

]

. (4)

For the metrology platform the transformation is obtained by 

𝐑𝑝0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos
(

𝑦1−𝑦2
𝐵

)

− sin
(

𝑦1−𝑦2
𝐵

)

0

cos(𝜃) sin
(

𝑦1−𝑦2
𝐵

)

cos(𝜃) cos
(

𝑦1−𝑦2
𝐵

)

− sin(𝜃)

sin(𝜃) sin
(

𝑦1−𝑦2
𝐵

)

sin(𝜃) cos
(

𝑦1−𝑦2
𝐵

)

cos(𝜃)
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐝𝑝0 =
⎡

⎢

⎢

⎣

0
𝑦1
2 + 𝑦2

2
0

⎤

⎥

⎥

⎦

,

(5)

considering standard rotations around the body-fixed 𝑧-axis with the 
angle tan−1

(

𝑦1−𝑦2
𝐵

)

≈ 𝑦1−𝑦2
𝐵  and the 𝑥-axis with 𝜃. The other transfor-

mations include only translations and are given by 

𝐑𝑐10 = 𝐑𝑐20 = 𝐈 , 𝐝𝑐10 =
⎡

⎢

⎢

⎣

𝐵
2
𝑦𝑐1
0

⎤

⎥

⎥

⎦

, and𝐝𝑐20 =
⎡

⎢

⎢

⎣

−𝐵
2

𝑦𝑐2
0

⎤

⎥

⎥

⎦

. (6)

Using the defined homogeneous transformations (4)–(6), the ve-
locities of the centers of gravity can be expressed as function of the 
generalized coordinates by1

𝐫̇0𝑖 = d
d𝑡

(

𝐇𝑖
0𝐫
𝑖
𝑖
)

= 𝐇̇𝑖
0𝐫
𝑖
𝑖 + 𝐇𝑖

0𝐫̇
𝑖
𝑖

⏟⏟⏟
=0

. (7)

Similarly, with the linear operator 𝛤 {∗} applied to ∗∈ R3×3

𝛤 {∗} = diag
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0 0 1
1 0 0
0 1 0

⎤

⎥

⎥

⎦

∗
⎡

⎢

⎢

⎣

0 0 1
1 0 0
0 1 0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

, (8)

the rotation rates 𝝎0
𝑖  of the rigid bodies can be derived with the rotation 

matrices 𝐑𝑖0 by [20] 

𝝎0
𝑖 = 𝛤

{

𝐑̇𝑖0
(

𝐑𝑖0
)T} . (9)

With these formulations the kinetic energy of the system can be ex-
pressed by 

𝑇 = 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑟𝑜𝑡 (10)

with 

𝑇𝑡𝑟𝑎𝑛𝑠 =
∑

𝑖

1
2
𝑚𝑖

(

𝐫̇0𝑖
)T 𝐫̇0𝑖 𝑖 ∈ {𝑝, 𝑐1, 𝑐2} ,

𝑇𝑟𝑜𝑡 =
1
2
(

𝝎0
𝑖
)T 𝐉0𝑝𝝎

0
𝑖 ,

(11)

and the inertia matrix of the metrology platform in the world coordi-
nate frame 

𝐉0𝑝 = 𝐑𝑝0𝐉
𝑝
𝑝
(

𝐑𝑝0
)T . (12)

The potential 𝑈 contains gravitational forces acting on the rigid 
bodies and spring forces related to the flexure mounts on either side. 

1 If vectors 𝐫 are multiplied with 𝐇, they are extended to [𝐫𝑇 1
]𝑇  and the 

resulting 4th vector entry is removed.
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With the gravitational vector 𝐠0 = [

0 0 −𝑔
]T it can be calculated by 

𝑈 = − 𝑚𝑝
(

𝐠0
)T

⋅ 𝐫0𝑝 − 𝑚𝑐
(

𝐠0
)T

⋅ 𝐫0𝑐1 − 𝑚𝑐
(

𝐠0
)T

⋅ 𝐫0𝑐2

+ 1
2
𝑘1

(

𝑦1 − 𝑦𝑐1
)2 + 1

2
𝑘1

(

𝑦2 − 𝑦𝑐2
)2

+ 𝑘2
( 𝑦1 − 𝑦2

𝐵

)2
+ 𝑘3𝜃2 ,

(13)

with the assumption tan−1
(

𝑦1−𝑦2
𝐵

)

≈ 𝑦1−𝑦2
𝐵 , which is justified by the 

small (ideally zero) rotations around the 𝑧-axis. It is to be noted, 
that the z-position of the linear-carts in the world coordinate frame is 
constant and the contribution of the linear carts vanishes in the partial 
derivative in the equations of motion (1).

The external forces 𝐟𝑞 on the right side of (1) are comprised of 
external actuator as well as friction forces 𝐟𝑒𝑞  and dissipative forces 
related to the damping of the flexure mounts 𝐟𝑑𝑞  according to 

𝐟𝑞 = 𝐟𝑒𝑞 + 𝐟𝑑𝑞 . (14)

To calculate the contribution from actuator and friction forces, the force 
attack points and directions have to be defined in the world coordinate 
frame. As the rotations around the body-fixed x-and 𝑧-axis are very 
small during system operation, it is assumed that the VCA-forces only 
have components in global 𝑦-direction of the world coordinate frame. 
The force vectors of the actuator and friction forces are therefore 
defined as 

𝐟0𝑗 =

⎧

⎪

⎨

⎪

⎩

[

0 𝐹𝑗 0
]𝑇
, 𝑗 ∈ {𝑎, 𝑏, 𝑐}

[

0 −𝐹𝑗 0
]𝑇
, 𝑗 ∈ {𝑟1, 𝑟2} .

(15)

The attack points of the forces are defined in the body-fixed frame 

𝐫𝑠𝑎 =
[

𝑎
2 −𝑑 𝑐

]T
, 𝐫𝑠𝑏 =

[

0 −𝑑 𝑏 + 𝑐
]T ,

𝐫𝑠𝑐 =
[

− 𝑎
2 −𝑑 𝑐

]T
, 𝐫𝑠𝑟1 =

[

𝐵
2 0 0

]T
, 𝐫𝑠𝑟2 =

[

−𝐵
2 0 0

]T
.

(16)

The generalized force related to external forces is then calculated by 

𝐟𝑒𝑞 =
∑

𝑗
𝐽𝐪

(

𝐇𝑝
0𝐫
𝑝
𝑗

)

⏟⏞⏟⏞⏟
𝐫0𝑗

T
𝐟0𝑗 𝑗 ∈ {𝑎, 𝑏, 𝑐, 𝑟1, 𝑟2} , (17)

with 𝐽𝐪(∗) being the Jacobian matrix with respect to the generalized 
coordinates 𝐪.

For the force related to damping, the rotation around the global 𝑧-
axis is defined as 𝜓 = 𝑡𝑎𝑛−1

(

𝑦1−𝑦2
𝐵

)

≈ 𝑦1−𝑦2
𝐵 , so the torque related to 

damping in the points 1 and 2 from Fig.  4 is given by 

𝜏1 = 𝜏2 = −𝑑2
𝑦̇1 − 𝑦̇2
𝐵

. (18)

Under the assumption of small rotation angles 𝜓 and symmetrical 
considerations, the resulting damping force components in the points 1 
and 2 are assumed to have only y-components in the global coordinate-
frame given by 

𝐹𝑦1 = −𝐹𝑦2 ≈
𝜏1 + 𝜏2
𝐵∕2

= −4𝑑2
𝑦̇1 − 𝑦̇2
𝐵2

. (19)

The generalized force related to damping follows with 

𝐟𝑑𝑞 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝑑1
(

𝑦̇1 − 𝑦̇𝑐1
)

− 4𝑑2
𝑦̇1−𝑦̇2
𝐵2

𝑑1
(

𝑦̇1 − 𝑦̇𝑐1
)

−𝑑1
(

𝑦̇2 − 𝑦̇𝑐2
)

+ 4𝑑2
𝑦̇1−𝑦̇2
𝐵2

𝑑1
(

𝑦̇2 − 𝑦̇𝑐2
)

−𝑑3𝜃̇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (20)

By substituting (10) and (13), together with their derivatives using 
the chain-rule of differentiation [20], and the generalized forces (14) 
into the Euler–Lagrange equations (1), a set of coupled second-order 
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Fig. 5. Friction force on linear carts based on static Lu-Gre friction model.

differential equations are obtained. The equations can be written in 
matrix form as 
𝐌 (𝐪) 𝐪̈ + 𝐂(𝐪, 𝐪̇)𝐪̇ + 𝐍(𝐪, 𝐪̇) = 𝐟𝑒𝑞 = 𝐖(𝐪)𝐟𝑒 (21)

in which the input forces of the model 𝐟𝑒 are mapped to the generalized 
external forces 𝐟𝑒𝑞  with the matrix 𝐖(𝐪), which is calculated by solving 
(17) for each entry of 𝐟𝑒. The generalized forces related to damping 𝐟𝑑𝑞
are included in the matrix 𝐍.

3.2. Linear cart friction

The definition of the friction forces as part of the external input 
forces 𝐟𝑒 in the general model (21) allows the formulation of a general 
friction model. There exist many different friction models in the litera-
ture that include different physical effects. A commonly used model is 
the dynamical Lu-Gre friction model, which can also describe stick/slip 
motion resulting from the Stribeck effect [21]. For reasons of simplicity, 
a static formulation of the Lu-Gre friction model [21] 

𝐹𝑟 = 𝑟𝑐sgn(𝑣) + 𝑟𝑣𝑣 + (𝑟𝑠 − 𝑟𝑐 ) exp

{

−
(

𝑣
𝑣0

)2
}

sgn(𝑣) (22)

with the linear-cart velocity 𝑣, the Coulomb friction 𝑟𝑐 , viscous friction 
𝑟𝑣, stiction force 𝑟𝑠 and the reference velocity 𝑣0 is used to describe the 
friction force acting on the linear carts. The friction force over linear-
cart velocity is shown in Fig.  5. As the force curve is non-continuous at 
𝑣 = 0, two friction regimes can be defined. For an external linear cart 
force below the stiction force 𝑟𝑠, the cart motion is zero, referred to as 
stiction regime. Consequently, for an external force beyond 𝑟𝑠, the cart 
starts to move, which is referred to as sliding regime.

3.3. Reduced linear models

The general (non-linear) system model is good for approximating 
the real system behavior over the entire motion range, but it is not 
suited for linear control design. Therefore, this section will demonstrate 
that the system’s behavior can be effectively approximated using sim-
plified linear models within the intended operational range. First it is 
to mention, that two linear models are derived, one for each of the 
previously defined friction regimes.

In the stiction regime it is assumed, that the force acting on the 
linear-carts is smaller than the stiction force 𝑟𝑠. Consequently, the 
cart motion is negligible and the condition 𝑦𝑐1 = 𝑦𝑐2 = const. is 
satisfied. Therefore the two generalized coordinates 𝑦𝑐1 and 𝑦𝑐2 and 
their respective equations of motion can be omitted in the system model 
(21). If further only very small and slow rotations of the platform 
around the body-fixed x- and 𝑧-axis are allowed, the terms (𝑦1 − 𝑦2), 
𝜃, (𝑦̇1 − 𝑦2) and 𝜃̇ can be neglected in (21), considering that 𝑦1 − 𝑦2 = 0
and 𝜃 = 0 are conditions for a constant orientation of the measurement 
systems and fixed by the later developed feedback control loop. Under 
these assumption the Coriolis matrix 𝐂(𝐪, 𝐪̇) vanishes entirely, and (21) 
can be reduced to the coupled linear mechanical system 
𝐌 𝐪̈ + 𝐃𝐪̇ +𝐊𝐪 = 𝐖 𝐟𝑒 , (23)
𝑟 𝑟 𝑟 𝑟 𝑟 𝑟
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with the constant mass matrix 𝐌𝑟 ∈ R3×3, damping matrix 𝐷 ∈ R3×3

and stiffness matrix 𝐊 ∈ R3×3 with the reduced coordinates 𝐪𝑟 =
[

𝑦1 𝑦2 𝜃
]𝑇 , the reduced force vector 𝐟𝑒𝑟 =

[

𝐹𝑎 𝐹𝑏 𝐹𝑐
]𝑇  and 

𝐖𝑟 =

⎡

⎢

⎢

⎢

⎣

𝑎+𝐵
2𝐵

1
2

−𝑎+𝐵
2𝐵

−𝑎+𝐵
2𝐵

1
2

𝑎+𝐵
2𝐵

−𝑐 −𝑐 − 𝑏 −𝑐

⎤

⎥

⎥

⎥

⎦

. (24)

In a similar manner the model for the sliding regime of the linear 
carts is derived under the assumption of no relative motion between 
the linear carts and the horizontal cross-bar of the metrology platform. 
This means that the conditions 𝑦1 = 𝑦𝑐1 and 𝑦2 = 𝑦𝑐2 are satisfied, 
which is justified if using a high stiffness 𝑘1 and by the fact, that the 
platform carrying the measurement systems is much heavier than the 
linear carts (𝑚𝑝 ≫ 𝑚𝑐). In this case, the linear carts are moving and 
therefore friction has to be considered. To keep the model linear, the 
viscous friction part 𝑟𝑣 of (22) is considered, whereas the non-linear 
parts are neglected as the later designed position control system deals 
with it. Considering the same simplifications as in the stiction regime 
regarding the platform movement (𝑦1 − 𝑦2 = 0, …), a linear coupled 
mechanical model with the same structure and coordinates as (23) can 
be derived. The mass matrix 𝐌𝑟 =

[

𝐦1 𝐦2 𝐦3
] is the same in both 

cases, but the stiffness and damping matrices change due to the made 
assumptions (e.g. stiffness 𝑘1 vanishes for the sliding regime due to 
𝑦1 = 𝑦𝑐1 and 𝑦2 = 𝑦𝑐2). The system matrices for both regimes are given 
by 

𝐦1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑚𝑝
(

𝐵2+4𝐵𝑥𝑔+4𝑥2𝑔+4𝑦
2
𝑔

)

+4𝐼𝑧𝑧
4𝐵2

𝑚𝑝
(

𝐵2−4𝑥2𝑔−4𝑦
2
𝑔

)

−4𝐼𝑧𝑧
4𝐵2

−𝑚𝑝𝑧𝑔
(

𝐵+2𝑥𝑔
)

2𝐵

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,𝐦2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑚𝑝
(

𝐵2−4𝑥2𝑔−4𝑦
2
𝑔

)

−4𝐼𝑧𝑧
4𝐵2

𝑚𝑝
(

𝐵2−4𝐵𝑥𝑔+4𝑥2𝑔+4𝑦
2
𝑔

)

+4𝐼𝑧𝑧
4𝐵2

−𝑚𝑝𝑧𝑔
(

𝐵−2𝑥𝑔
)

2𝐵

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐦3 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝑚𝑝𝑧𝑔
(

𝐵+2𝑥𝑔
)

2𝐵

−𝑚𝑝𝑧𝑔
(

𝐵−2𝑥𝑔
)

2𝐵

𝑚𝑝
(

𝑦2𝑔 + 𝑧
2
𝑔

)

+ 𝐼𝑥𝑥

⎤

⎥

⎥

⎥

⎥

⎦

,𝐊𝑠𝑙 =

⎡

⎢

⎢

⎢

⎣

2𝑘2
𝐵2 − 2𝑘2

𝐵2
𝑚𝑝𝑥𝑔𝑔
𝐵

− 2𝑘2
𝐵2

2𝑘2
𝐵2 −𝑚𝑝𝑥𝑔𝑔

𝐵
𝑚𝑝𝑥𝑔𝑔
𝐵 −𝑚𝑝𝑥𝑔𝑔

𝐵 −𝑔𝑚𝑝𝑧𝑔 + 2𝑘3

⎤

⎥

⎥

⎥

⎦

,

𝐃𝑠𝑡 =
⎡

⎢

⎢

⎢

⎣

𝑑1 +
4𝑑2
𝐵2 − 4𝑑2

𝐵2 0

− 4𝑑2
𝐵2 𝑑1 +

4𝑑2
𝐵2 0

0 0 𝑑3

⎤

⎥

⎥

⎥

⎦

, 𝐃𝑠𝑙 =
⎡

⎢

⎢

⎢

⎣

𝑟𝑣 +
4𝑑2
𝐵2 − 4𝑑2

𝐵2 0

− 4𝑑2
𝐵2 𝑟𝑣 +

4𝑑2
𝐵2 0

0 0 𝑑3

⎤

⎥

⎥

⎥

⎦

,

𝐊𝑠𝑡 =

⎡

⎢

⎢

⎢

⎣

𝑘1 +
2𝑘2
𝐵2 − 2𝑘2

𝐵2
𝑚𝑝𝑥𝑔𝑔
𝐵

− 2𝑘2
𝐵2 𝑘1 +

2𝑘2
𝐵2 −𝑚𝑝𝑥𝑔𝑔

𝐵
𝑚𝑝𝑥𝑔𝑔
𝐵 −𝑚𝑝𝑥𝑔𝑔

𝐵 2𝑘3 − 𝑔𝑚𝑝𝑧𝑔

⎤

⎥

⎥

⎥

⎦

.

(25)

4. Parameter identification

To develop a control scheme for the system, the parameters of 
the derived model must be determined. The geometric properties, 
including actuator placement and metrology platform dimensions, are 
derived from CAD data and dimensional measurements on the setup, 
and these parameters are fixed for subsequent parameter identification. 
The remaining system parameters, such as masses, inertia matrices, 
stiffness, and damping parameters, are estimated based on CAD data 
and then exactly identified on the experimental setup by a grey-box 
model identification process. This is done by fitting simulated time-
domain trajectories of the model to reference measurements from the 
experimental setup. For the identification the greyest command from
Matlab is used, which employs a subspace Gauss–Newton least-squares 
algorithm [22]. Various input steps on 𝐟𝑒𝑞  are applied to the system 
to excite the platform dynamics with the dynamic coupling between 
the generalized coordinates 𝐪, as shown in Fig.  6. The small arrows in 
the plot indicate, which generalized force is applied respectively. The 
reduced linear model in the stiction regime is used for the parameter 
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Fig. 6. (Top) Input force steps applied to the metrology platform in the stiction regime. 
(Bottom) Representative section of measured platform positions (colored) and simulated 
trajectories of the reduced linear model (gray) with the fitted model parameters. (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

identification and the input forces are chosen, to keep the forces on 
the linear carts below their stiction force. This way, friction effects are 
excluded from the parameter identification process.

In the bottom plot of Fig.  6 a representative section of the plat-
form position measurement is shown, together with the simulated 
trajectories of the model based on the fitted system parameters. The 
response of the reduced linear model matches the measurement very 
well, which justifies the assumptions made during model simplification 
in the previous section. The validation of the model for the sliding 
regime will be demonstrated in the next sections.

5. Control design

Based on the derived linear system models, in this section a decou-
pled motion control scheme is developed to control the 3 DoF of the 
metrology platform.

5.1. System decoupling

The coupled 2nd-order equations of motion (23), (25) are decoupled 
by using a modal analysis approach [23]. This procedure involves 
finding the modal matrix 𝐔, which transforms the coupled differential 
equations of motion into a new set of decoupled equations in new 
principal coordinates 𝝂 = 𝐔−1𝐪𝑟. For undamped systems the solution 
of the generalized eigenvalue problem 
𝜆𝐌𝐮 = 𝐊𝐮 , 𝐔 =

[

𝐮1 𝐮2 … 𝐮𝑛
]

(26)

directly leads to the modal matrix 𝐔, which diagonalizes the 𝐌 and 
𝐊 matrix of the mechanical system [23]. For damped systems, the 
condition 𝐃𝐌−1𝐊 = 𝐊𝐌1𝐃 has to be fulfilled, to simultaneously 
decouple the 𝐃 matrix [24]. Although this is not the case for the derived 
linear models, the approach is still viable, since the developed feedback 
controller can cope with the remaining coupling via the damping 
matrix.

After solving (26) for both linear models and normalizing 𝐔, such 
that 𝐔𝑇𝐌𝑟𝐔 = 𝐈, the equations of motion in the new coordinates 𝝂 are 
written as 
𝐔𝑇𝐌𝑟𝐔
⏟⏞⏟⏞⏟

𝝂̈ + 𝐔𝑇𝐃𝐔
⏟⏟⏟

′

𝝂̇ + 𝐔𝑇𝐊𝐔
⏟⏟⏟
𝐊

𝝂 = 𝐔𝑇𝐖𝑟𝐟𝑒𝑟
⏟⏞⏟⏞⏟

. (27)
𝐌𝑑𝑒𝑐=𝐈 𝐃 𝑑𝑒𝑐 𝐟𝑑𝑒𝑐
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Fig. 7. Dual-stage control concept with decoupling transformation. A cross-fading gain 
𝛾 is used to switch between the stiction and sliding model.

The result are two 3-dimensional mechanical system models for each 
friction regime (sliding, stiction) in the new coordinates 𝝂, with the 
input force vector 𝐟𝑑𝑒𝑐 , the diagonal mass and stiffness matrices (𝐌𝑑𝑒𝑐 , 
𝐊𝑑𝑒𝑐), and the damping matrix 𝐃′.

5.2. Dual-stage control concept

Given the derived system (27), 3 SISO position controller are de-
signed in the frequency domain for the coordinates 𝝂. A block-diagram 
of the implemented control scheme is shown in Fig.  7. The transfer 
matrix 𝐆̃ represents the plant with the LA forces 𝐟𝑒𝑟  as input and 
the generalized coordinates 𝐪𝑟 as output. By applying the mapping 
between generalized forces and LA forces 𝐖−1

𝑟  and the decoupling 
transformation with the modal matrix 𝐔𝑗 with 𝑗 ∈ {𝑠𝑙, 𝑠𝑡}, the gray 
box in the figure represents the decoupled plant 𝐆 from (27).

In the transition between static (stiction regime) and moving plat-
form (sliding regime) and vice-versa, the modal matrix 𝐔 from Fig.  7 
has to be switched from the stiction model to the sliding model, to 
maintain the decoupling between the controlled coordinates. As shown 
in Fig.  7, the transition is done by combining a weighted sum of both 
decoupling matrices with a smooth function 𝛾(𝑡) ∈ [0, 1] [25]. The 
transition function from stiction to sliding is defined as minimum-jerk 
trajectory 

𝛾(𝑡) = 6
( 𝑡
𝑇

)5
− 15

( 𝑡
𝑇

)4
+ 10

( 𝑡
𝑇

)3
, (28)

for 𝑡 ∈ [0, 𝑇 ]. For the transition from sliding to stiction, the roles of 𝛾
and 1 − 𝛾 are exchanged.

The decoupled plant (gray box) is the base for the design of 3 SISO 
PID position controllers. In the implementation on the experimental 
prototype system, the LA forces 𝐟𝑒𝑟  are converted to actuator currents 
with the known actuator force constant 𝑘𝑎 according to 

𝐢𝑣𝑐𝑎 =
1
𝑘𝑎

𝐟𝑣𝑐𝑎 , (29)

and are controlled by underlying PI current-controllers. As the current 
control loops are designed for a bandwidth well above the targeted 
motion control bandwidth (10 kHz), they are treated as unity-gain for 
the position control design.

In order to keep the LAs in their actuation range, the coarse po-
sitioning unit has to follow the metrology platform accordingly [15]. 
As the used stepper motor driver takes the angular velocity 𝜔 of the 
motor as input, a low-bandwidth proportional position controller 𝑃𝑐𝑝 is 
used to keep the 𝑦-distance between pusher and platform constant (see 
Fig.  2). As the movement of the platform is usually known a-priori, it 
is additionally applied to the stepper motor driver in a feed-forward 
manner 

𝜔𝑓𝑓 =
𝑦̇𝑑1 + 𝑦̇𝑑2

2𝑝
, (30)

with 𝑝 being the mechanical spindle pitch.
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5.3. Position control design

The goal of the position controller 𝐂𝑝𝑜𝑠 is to follow with the metrol-
ogy platform a desired motion trajectory, as given by the trajectory 
generator in Fig.  7. Since the desired trajectory is given in the general-
ized coordinates 𝐪𝑑𝑟 , they are transformed to the previously introduced 
modal coordinates 𝝂 with the modal matrix 𝐔. Three PID-position 
controllers are designed with the control output force 𝐟𝑑𝑒𝑐 , which is then 
translated to the actual forces of the LAs (𝐟𝑒𝑟 ). To verify the decoupling 
from Section 5.1 and to enable the control design in the frequency 
domain, the transfer matrix of the decoupled plant (gray box in Fig. 
7) is measured for both derived linear system models. Therefore the 
platform is stabilized with low-bandwidth position controllers and the 
measurement is performed in a closed-loop manner [26]. To enable 
measurements in the sliding regime, the platform is moved with a con-
stant velocity of 10mm∕s by the controllers during each measurement 
run.

The measured bode plot of the MIMO transfer matrix for each 
friction regime is shown in Fig.  8, in which the colored lines rep-
resent the new introduced coordinates 𝝂 = 𝐔−1𝐪𝑟 together with the 
associated motion shape. As expected, each coordinate shows classical 
second-order spring-mass-damper behavior until structural modes of 
the system emerge beyond 150Hz. One exception is 𝐺33 in the sliding 
regime, due to the fact, that the stiffness 𝑘1 disappears in moving 
direction and only the viscous damping of the linear cart friction acts 
against the movement (yellow motion shape in the right plot of Fig.  8).

On top of the measurement the theoretical transfer functions with 
the fitted model parameters from the previous section are plotted 
(dotted lines), which match the measurement very well in both regimes, 
validating the modeling assumptions from Section 3.3. The mismatch 
between model and measurement of 𝐺11 in the sliding regime results 
from the fact, that the additional weight added by the linear carts (𝑚𝑐) 
is neglected in the linear model, which leads to a slightly larger total 
mass and increased moment of inertia 𝐼𝑧𝑧 around the 𝑧-axis (refer to 
Fig.  4) of the platform during sliding. Consequently the mass line is 
shifted down for lower frequencies until the additional weight gets 
decoupled from the motion at approximately 60Hz (red box in Fig. 
8), which also leads to the shift of the resonance frequency. This 
simplification is acceptable, since the position control bandwidth of 
the feedback controller is beyond this decoupling frequency. The gray 
curves in the plot represent the cross-coupling between the coordinates, 
which is introduced by the damping matrices of (25) and deviations 
of the linear model from the real system. Up to approximately 200Hz
the cross-coupling magnitude is below the main-diagonal transfer func-
tions, justifying the implementation of independent SISO controllers for 
each DoF.

Since the mass-line of each main-diagonal transfer function is
aligned due to the normalization 𝐔𝑇𝐌𝑟𝐔 = 𝐈, for each degree of free-
dom the same control parameters can be used. The position controllers 
are implemented as PID-controller with the structure 

𝐶𝑝𝑖𝑑 (𝑠) = 𝑘𝑝 +
𝑘𝐼,𝑝
𝑠

+
𝑘𝑑𝑠

1 + 𝑠𝑇𝑡
, (31)

and tuned to the open-loop cross-over frequency 𝑓𝑐 [14]. To suppress 
unmodeled structural modes at higher frequencies, 14 notch-filters 

𝐶𝑛,𝑖(𝑠) =
𝑠2 + 2𝐷𝑖𝜉𝑖𝜔𝑛,𝑖𝑠 + 𝜔2

𝑛,𝑖

𝑠2 + 2𝜉𝑖𝜔𝑛,𝑖𝑠 + 𝜔2
𝑛,𝑖

, (32)

with the notch-frequency 𝜔𝑛,𝑖, damping coefficient 𝐷𝑖, and notch width 
parameter 𝜉𝑖 are tailored to the measured responses for each regime
[14]. The position controller 𝐂𝑝𝑜𝑠 is then given by 
𝐂𝑝𝑜𝑠(𝑠) = diag

(

𝐶𝑝𝑜𝑠, 𝐶𝑝𝑜𝑠, 𝐶𝑝𝑜𝑠
)

,

𝐶𝑝𝑜𝑠(𝑠) = 𝐶𝑝𝑖𝑑 (𝑠) ⋅
∏

𝑖
𝐶𝑛,𝑖(𝑠) .

(33)

As the difference position between pusher and metrology platform 
is less critical, as long as the LAs are in their operation range, a simple 
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Fig. 8. Measured transfer functions of decoupled system (solid lines) and linear system models with the fitted system parameters (dotted lines) for the stiction regime (left) and 
the sliding regime (right). Additionally the modal shapes for each friction regime are shown, which are associated with the respective decoupled principal coordinates 𝝂 = 𝐔−1𝐪𝑟. 
The transparent lines represent the coupling from one coordinate to another with the respective color. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
Fig. 9. Experimental setup of the 3-DoF positioning system. The metrology platform 
is guided on the machine frame by linear guides and the designed crab-leg flexure 
mounts. It is driven by the LAs on the pusher and the spindle-drive.

proportional controller 𝑃𝑐𝑝 is used to complement the feed-forward of 
the platform-velocity as depicted in Fig.  7. The proportional gain is 
tuned for a desired open-loop crossover frequency 𝑓𝑐,𝑐𝑝.

6. Experimental validation

6.1. Experimental setup

To validate the designed system and control scheme, the positioning 
system from Fig.  2 is built as shown in Fig.  9. The spindle is driven by 
a stepper motor (103-H5210-4200, RTA, IT) with stepper motor driver 
(DM542T, StepperOnline, US). The three LAs (VCAR0087-0062-00A, 
Supt Motion, CN) mounted on the pusher and metrology platform are 
driven by custom made switched current amplifiers [27].

The crab-leg flexure mounts are designed for a sufficient low stiff-
ness in the actuated DoFs to keep the actuators in their force limits, 
while simultaneously restricting the motion in the non-actuated DoFs 
to negligible small values tuned by mechanical FEM simulations. Addi-
tionally mechanical stops are added, to keep the flexures within their 
mechanical stress limits.

Position measurement is done via 3 optical laser interferometers 
(IFM) (IDS3010, AttoCube Systems AG, GER) mounted on the sensor 
frame and by an optical proximity sensor (OPS) (TCND5000, Vishay, 
166 
Table 1
System and control parameters.
 System parameters
 𝑎 172mm 𝑏 167mm 𝑐 119mm  
 𝑑 12mm 𝐵 562mm 𝐵𝑖𝑓𝑚 570mm  
 𝐻𝑖𝑓𝑚 140mm 𝑥𝑔 −3.8mm 𝑦𝑔 −3.4mm  
 𝑧𝑔 148mm 𝑚𝑝 7.9 kg 𝑚𝑐 0.22 kg  
 𝑘1 47 200Nm−1 𝑘2 1700Nm rad−1 𝑘3 92Nm rad−1  
 𝑑1 −4.7N sm−1 𝑑2 0.28Nm s rad−1 𝑑3 1.12Nm s rad−1  
 𝐽𝑥𝑥 0.13 kgm2 𝐽𝑦𝑦 0.41 kgm2 𝐽𝑧𝑧 0.215 kgm2  
 𝑝 10mm 𝑘𝑎 12.7NA−1  
 Position controller 𝐶𝑝𝑖𝑑 , 𝑃𝑐𝑝
 𝑘𝑝 5.6 × 104 𝑘𝐼 1.76 × 106 𝑘𝑑 4.45 × 102  
 𝑇𝑡 4.97 × 10−4 𝑃𝑐𝑝 1.35 × 103  
 Notch-filter coefficients (𝐶𝑛,𝑖(𝑠))
 𝜔𝑛,𝑖

2𝜋
245, 325, 454, 550, 600, 681, 713, 750

 796, 930, 1089, 1245, 1815, 2375
 
𝐷𝑖

0.006, 0.01, 0.1, 0.056, 0.018, 0.032, 0.032, 0.316
 0.1, 0.1, 0.018, 0.032, 0.178, 0.003
 
𝜉𝑖

0.25, 0.13, 0.05, 0.15, 0.2, 0.1, 0.1, 0.08
 0.08, 0.25, 0.15, 0.15, 0.1, 0.8

US) mounted on the pusher. The sensor readout and control system 
is implemented on a rapid prototyping system (MicroLab-Box, dSPACE 
GmbH, GER). The position controller are tuned to an open-loop cross-
over frequency of 𝑓𝑐 = 80Hz to keep the control bandwidth below the 
structural modes occuring beyond 240Hz, as can be seen in Fig.  8. In 
Table  1 the identified system parameters and tuned control parameters 
for the experimental setup are summarized. They are discretized for the 
implementation on the rapid prototyping system with a sampling-rate 
of 10 kHz.

6.2. Measurement errors related to positioning system

For the evaluation of the system, the lateral measurement uncer-
tainty originating from the positioning system is of interest. Therefore, 
the measured position of the metrology platform is used to calculate the 
resulting error 𝛥𝑦𝑚(𝑥, 𝑡), as shown in Fig.  1. By using 𝜓 = tan−1

(

𝑦1−𝑦2
𝐵

)

, 
the measurement error 𝑦𝑚(𝑥, 𝑡) can be expressed by 

𝛥𝑦𝑚(𝑥, 𝑡) =
[

𝑦1 + 𝑦2
2

+ ℎ𝑖 tan (𝜃) + 𝑥 tan (𝜓)
]

− 𝑦𝑑 , (34)

with the coordinates 𝑦1, 𝑦2, 𝜃 and the effective standoff height of 
the measurement systems ℎ . The maximum error along the 𝑥-axis is 
𝑖
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Fig. 10. Fast position changes of the decoupled coordinates 𝝂 in the stiction regime 
(Platform stands still). In the bottom plot a zoomed-in section of the motion error is 
plotted.

calculated for a given inspection width 𝑤𝑖 according to 

𝜖𝑚(𝑡) = max
𝑥

(

𝛥𝑦𝑚(𝑥, 𝑡)
)

, for 𝑥 ∈
[

−
𝑤𝑖
2
,
𝑤𝑖
2

]

. (35)

This represents the worst-case measurement error in 𝑦-direction over 
time at any point on the inspection area. For the subsequent validation 
𝑤𝑖 = 0.6m and ℎ𝑖 = 0.55m are used, which corresponds to the 
working distance and field of view of two commercially available 
3D surface measurement sensors (SC 2500-300, Micro-Epsilon GmbH, 
GER) mounted side by side (Fig.  1) [28].

6.3. Evaluation

The control performance and coordinate decoupling are first eval-
uated in the stiction regime by executing fast position changes in the 
decoupled coordinates 𝝂, as shown in Fig.  10. Therefore the reference 
trajectories, indicated by dotted lines, are applied to the control sys-
tem’s reference input 𝝂𝑑 , with additional feedforward forces based on 
the modeled main-diagonal transfer functions from Fig.  8 added to 
𝐟𝑑𝑒𝑐 . The bottom plot presents a zoomed-in view of the motion errors, 
confirming a maximum error of less than 2.5% of the position end-
value throughout the entire trajectory. As expected from the measured 
transfer functions in Fig.  8 and the fact, that the damping matrix 
of (23) cannot be simultaneously decoupled by the presented modal 
decoupling, some residual coupling between coordinates is observed, 
particularly for 𝜈1 and 𝜈2. However, the implemented decentralized 
control scheme effectively suppresses these coupling effects, keeping 
the induced errors within an acceptable small range.

For the precision evaluation in the sliding regime, the platform is 
moved along the entire range (0...0.7 m) with varying velocities 𝑣. In 
Fig.  11 a motion trajectory with a constant velocity of 𝑣 = 10mm∕s
is shown. For the desired motion profile 𝑦𝑑 (𝑡) a piece-wise polynomial 
function is used, comprised of an acceleration-phase (gray in Fig.  11) 
with a fixed distance of 10mm, followed by the measurement phase 
with constant velocity 𝑣 and a deceleration-phase (gray) for 10mm. 
On the top, the motion trajectory 𝑦𝑑 (𝑡) together with the transitioning 
function 𝛾(𝑡) is visible, which is set for a duration of 𝑇 = 1 s. The 
transition between the stiction and sliding model is started at the start 
of the acceleration and deceleration phase respectively. Additionally to 
the positioning error, the previously defined worst-case measurement 
error in 𝑦-direction 𝜖𝑚(𝑡) is plotted. The resulting worst-case error is 
7.5 μm (rms) in the measurement phase.

Additionally the worst-case deviation for the spindle-drive alone 
(SD) is shown in the third plot (blue curve). Therefore the spindle is 
driven with a constant velocity of 10mm∕s and the metrology platform 
is fixed at the pusher by applying a constant current of −0.8A to all 
three LAs. Due to manufacturing imperfections and mounting toler-
ances of the linear guides the overall error is approximately 1000 μm
167 
Fig. 11. Metrology platform motion errors and resulting measurement error 𝜖𝑚(𝑡)
for 10 mm/s velocity in dual-stage (DS) and spindle-drive mode (SD). Entire range 
(left plots) and zoomed section (right plots). The acceleration and deceleration phase 
(10 mm) are shaded gray.

over the entire range. However, since this overall and slow trend is 
repeatable and could be reduced by adapting the driving speed, the 
error signal is high-pass filtered (𝑓𝑐 = 0.5Hz) to show the higher 
frequent (non-correctable) errors (red curve). With an error of 38 μm
(rms) in the measurement phase, it is still over a factor of 5 worse than 
in DS mode.

In the bottom plot the actuator forces (𝐹𝑎, 𝐹𝑏, 𝐹𝑐) in DS-mode are 
depicted. It is visible, that the LAs correct the slow trend due to man-
ufacturing imperfections and mounting tolerances, to exactly align the 
platform with the sensor frame. The slow force trend is superimposed 
by the high-frequent correction forces of the LAs, which are necessary 
to compensate for disturbing forces acting on the platform. When the 
platform is in idle state, a static measurement uncertainty of 147 nm
(rms) can be achieved. This extremely low error is possible, because 
the spindle-drive does not move in this case, and consequently no dis-
turbing vibrations from the coarse positioning unit can be transmitted 
to the metrology platform via the machine frame.

Additionally to the time-domain, the error 𝜖𝑚(𝑡) is also analyzed in 
the frequency domain for varying velocities 𝑣. The power spectral den-
sity (PSD) and cumulative amplitude spectrum (CAS) over frequency 
for the measurement phase are shown in Fig.  12. From the figure it 
can be seen, that the resulting measurement errors originating from 
the positioning system range from 7.5 μm (rms) for 10mm∕s (Fig.  11) to 
12.3 μm (rms) for 100mm∕s. The main contributors to the errors are in 
the lower frequency range of up to 60Hz. Afterwards only a structural 
mode at 240Hz has a visible impact at higher speeds.

Additionally, the PSD over spatial frequency is shown on the right 
side of Fig.  12, in which errors related to a certain moving distance of 
the platform become independent from the velocity 𝑣. As highlighted 
with the gray area in the bottom right plot, the low-frequent errors 
show a strong spatial periodicity at fractions of the mechanical spindle 
pitch of 10mm. These errors result from disturbance forces originating 
from the stepper motor and the spindle-drive, which are transmitted to 
the metrology platform via the machine frame.
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Fig. 12. Power spectral density (PSD) and cumulative amplitude spectrum (CAS) of 
𝜖𝑚 for varying platform velocities over temporal frequency (left) and spatial frequency 
(right).

In summary, the effectiveness of the implemented control scheme 
for the developed dual-actuated precision positioner is successfully 
demonstrated on the experimental prototype. The experiments show a 
worst-case measurement error in moving direction of down to 7.5 μm
(rms) over the entire range (0.7 m × 0.5 m) during platform motion 
with velocities up to 100mm∕s.

7. Conclusion

This paper presents the design of a 3-DoF precision positioning 
system for high-precision optical 3D inline-metrology based on a dual-
stage approach, which combines a mechanical spindle-drive for large 
range motion with 3 Lorentz-actuators for precise motion control. 
Based on a general non-linear mathematical system model, two simpli-
fied linear models are derived for the stiction and sliding friction regime 
of the system. These models are used to perform systematic decoupling 
of the actuated motion DoFs by modal analysis, enabling motion control 
by 3 SISO PID-controllers. The presented approach is evaluated on an 
experimental multi DoF precision positioning system. By measuring the 
position errors of the metrology platform, a maximum measurement 
error in motion direction of down to 7.5 μm (rms) is demonstrated 
over a large inspection area (0.7 m × 0.5 m) during platform motion 
with speeds up to 100mm∕s. This is a vast improvement compared to 
spindle-drive alone and proves the validity of the approach for the 
use in high-precision inline-metrology applications. Further, a static 
measurement error resulting from the positioning system of 147 nm
(rms) can be achieved for the given measurement configuration.

Future work will focus on further reducing the remaining errors by 
incorporating the strong spatial periodicity at fractions of the spindle 
pitch into the control design, as well as on experiments in combination 
with optical measurement systems mounted on the metrology platform.
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