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1. INTRODUCTION

Fuel cells are a promising candidate for green mobility due
to their high efficiency, fast refueling, and low emissions,
making them particularly attractive for hybrid electric
vehicles in the transition toward sustainable transporta-
tion. However, one major challenge remaining in deploying
fuel cells for automotive applications is managing their
durability, as the highly dynamic operating conditions
inherent in vehicular use induce and accelerate degrada-
tion. These conditions, characterized by frequent power
demand fluctuations and changes in operating points, age
the fuel cell components, particularly impacting catalyst
and membrane durability (Wallnöfer-Ogris et al., 2024).

In hybrid electric vehicles, the energy management system
(EMS) determines the optimal power split between the fuel
cell and the battery, shaping the power trajectories and
ensuring that the energy demands of the system are met
(Li et al., 2012). The required fuel cell power trajectory
is then forwarded to the system level, where additional
control objectives come into play, including the regulation
of hydrogen and air flow rates and humidification within
the fuel cell. These inputs must be carefully managed
to maintain the necessary conditions for efficient power
generation and to mitigate degradation (Daud et al.,
2017).

Traditional control approaches for fuel cell systems, such
as rule-based or PID control strategies, provide effective
regulation of basic parameters under steady or moderately
dynamic conditions. However, they lack the adaptability
to handle the complex interplay between power demand

and degradation seen in highly dynamic applications (Wu
et al., 2020). Such conventional methods typically address
either efficiency or degradation but struggle to achieve
an optimal balance, highlighting the need for advanced
control methodologies capable of integrating multiple ob-
jectives within a unified framework (Ghasemi et al., 2023).

To tackle this challenge, a health-conscious model predic-
tive controller (MPC) is introduced. The controller uses
a physically-motivated zero-dimensional fuel cell model
including the key degradation mechanisms of the cath-
ode catalyst layer. Due to the lumped formulation, the
model provides the computational efficiency to realize
long prediction horizons while also being real-time ca-
pable. Furthermore, the physical formulation enables an
intuitive weighting between performance, efficiency, and
longevity of the system. The paper is structured as follows:
In Section 2, the needed methodology, namely the MPC
formulation and the model, are described. The results are
shown and discussed in Section 3. Finally, a conclusion and
outlook are given in Section 4.

2. METHODOLOGY OF HEALTH-CONSCIOUS MPC

In a hybrid fuel cell vehicle, the EMS calculates the op-
timal power split between the fuel cell and the battery
(Fig. 1). The power demand is then forwarded to the
subsystems where further control objectives come into
play. Besides providing power, the internal control of the
fuel cell system (Fig. 1, green area) adapts additional in-
puts, including hydrogen and oxygen flow, pressure levels,
humidity, and temperature. To enable this, a model pre-
dictive control algorithm is introduced. Using a physically
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Fig. 1. Power flow and control scheme of fuel cell hybrid vehicles including the introduced MPC. The total
power demand is provided to the energy management system (EMS) (blue), which calculates the optimal power
split between the battery (red) and the fuel cell system (green). These components work together to supply the
required power to the engine and the electric axle (yellow). To effectively manage the fuel cell stack, its internal
control system must consider three key factors: power demand, efficiency, and lifetime. The multivariable problem
is solved in real-time with the introduced health-conscious model predictive controller (MPC), which proactively
adapts the system to realize anticipated power demands and enables a balanced and intuitive trade-off between
performance and longevity.

motivated fuel cell model including the main degrada-
tion mechanisms on the cathode catalyst, the controller
can make health-conscious decisions while also considering
power requirements and cost efficiency. In this section, the
needed methodology for the health-conscious controller is
given, i.e., the physically motivated model is described,
the MPC formulation and cost function are defined, and
three aggregated key performance indices (KPI) to eval-
uate performance, hydrogen usage, and degradation are
derived.

2.1 Real-time capable fuel cell model

A physically-motivated zero-dimensional model based on
Bartlechner et al. (2024) is adapted and extended to
include the main degradation mechanisms of the cath-
ode catalyst as well as the temperature dynamics. The
zero-dimensional formulation of the model assumes ho-
mogenous concentrations of the reactants in the electrode
and thus does not provide any information about local
phenomena or spatial distribution. However, it is compu-
tationally efficient and facilitates real-time applicability.
Furthermore, the physical formulation provides insightful
information about the processes within the cell. The model
is continuously differentiable enabling fast linearization of
the fuel cell model by the use of Jacobians. Thus providing
a suitable trade-off between accuracy, predictive capacity
due to physical formulation and computational efficiency.

The model in Bartlechner et al. (2024), consisting of four
submodels (cathode, anode, membrane, and electrochem-
istry), is extended to include three additional submodels -
namely, the submodel for the temperature dynamics, for
electrochemical carbon corrosion, and for platinum degra-
dation on the cathode side. The submodels are depicted in
Fig. 2. Furthermore the electrochemical model is extended
to include the effects of changing cell temperature on
voltage, and the amount of reactants in the electrodes is
formulated in terms of the amount of substance to reduce
conversion efforts.

The non-linear zero-dimensional fuel cell model can be
written in the input-output form

ẋ = f(x,u,θ), y = g(x,u,θ) (1)

with the state vector x, the input vector u, the output
vector y, the parameter vector θ, the state function vector
f and the output function vector g. The state vector has
25 states, and is defined as

x =[nO2,ca, nN2,ca, nH2O(gas),ca, nH2O(liq),ca, ...

nH2,an, nN2,an, nH2O(gas),an, nH2O(liq),an, ...

aM, T, θC∗ , θC-OH, θPt∗ , θPt-OH, cPt2+ , ...

N1, N2, N3, N4, N5, N6, N7, N8, N9, N10]
T

(2)

with the amount of substance ni,j of the species i ∈
{O2,N2,H2O(gas),H2O(liq),H2} in the electrodes j ∈
{ca, an}, the membrane humidity aM, the cell temperature
T , the surface concentration θk of k ∈ {C∗,C-OH,Pt∗,
Pt-OH}, the Pt2+ concentration in the ionomer cPt2+ , and
the amount of particles Nl in the platinum particle classes
l ∈ {1, 2, ..., 10}. The input vector consists of twelve inputs:

u =[ṅca,dry, ṅan,dry, Tdew,ca, Tdew,an, pin,ca, pin,an, ...

pout,ca, pout,an, Tin,ca, Tin,an, Toutside, Icell]
T (3)

with the dry mole flows nj,dry, the dew point temperatures
Tdew,j , the inlet pin,j and outlet pout,j pressures, the inlet
temperatures Tin,j in the electrodes j ∈ {ca, an}, the
outside temperature Toutside and the cell current Icell. The
model output vector is defined as

y = [P, T, rCO2
,ECSA]T (4)

with the cell power P , the cell temperature T , the CO2

formation rate rCO2 and the electrochemical active surface
area ECSA, whereby the ECSA is defined as the ratio of
platinum surface to platinum mass

ECSA =
APt

mPt
=

4π
∑10

i=1 Nir
2
i

4π
3 ρPt

∑10
i=1 Nir3i

. (5)

Furthermore, degradation is considered by the rates of
degradation

r =[rCO2
, Ṅ1, Ṅ2, ..., Ṅ10]

T. (6)

Cathode, anode, membrane and electrochemical
submodels (Fig. 2, top). The cathode and anode sub-
models are derived from the substance quantity balance

dni,j

dt
= ṅi,j,in − ṅi,j,out + ṅi,M + ṅi,j,R (7)

around the electrodes for the species i in the electrodes
j, whereby the flows in ṅi,j,in and out ṅi,j,out of the gas
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Fig. 2. Schematics of physically motivated fuel cell
model. The (1) cathode and (2) anode submodels
are derived from a material balance around the elec-
trodes. From the (3) membrane submodel the mem-
brane humidity is obtained. The (4) electrochemical
submodel describes the effects of operating conditions
on the cell voltage. The dynamics of the fuel cell
temperature are obtained by the (5) thermal model.
The degradation of the fuel cell is described by the
submodels for (6) carbon corrosion and (7) cathode
platinum degradation.

channels and the transport through the membrane ṅi,M

are considered. Electrochemical reaction and phase change
are combined in the reaction term ṅi,j,R. The gases in the
electrodes are assumed to have ideal gas behavior and are
homogenously mixed within the electrodes. Water phase
change is considered based on the saturation pressure
at the current cell temperature. Water transport via the
membrane by electroosmotic drag and back-diffusion, as
well as nitrogen diffusion, is included. The membrane
humidity

daM
dt

=
1

τM


aca + aan

2
− aM


(8)

is derived from the humidities aj on the anode and
cathode side considering a first-order time delay. The
electrochemical model is based on Kravos et al. (2020),
whereby the non-isothermal formulation is used to include
the effects of changing temperature on the cell voltage.

Thermal submodel (Fig. 2, middle). The dynamics
of the cell temperature are obtained by an energy balance
around the cell

dT

dt
=

1

cP
(Ḣin − Ḣout + Ḣvap + Q̇R + Q̇loss). (9)

with the fitting parameter cP . The convective heat flows
into Ḣin and out Ḣout of the electrodes, the temperature
changes due to the phase change of water Ḣvap, the gener-

ated heat Q̇R due to voltage losses as well as the conductive
heat loss Q̇loss to the environment are considered.

Submodel for cathode carbon corrosion and plat-
inum degradation (Fig. 2, bottom). A simplified
model for carbon corrosion and cathode platinum degra-
dation is derived from Pandy et al. (2013), Schneider et al.
(2019), Kregar et al. (2020) and Kregar et al. (2021). The

model considers carbon support surface oxidation, plat-
inum particle surface oxidation, electrochemical carbon
corrosion, Pt particle detachment and agglomeration, Pt
dissolution and redeposition as well as Pt diffusion into
the membrane. In comparison to Kregar et al. (2020), the
Kelvin shift is averaged based on the particle distribution
for the reactions changing the platinum particle surface
concentration, significantly reducing the number of states.

Platinum and carbon surface oxidation, CO2 formation
and dissolution of Pt2+ ions are described via the reactions

C∗+H2O⇀↽C-OH+H++e− E1=0.20VRHE

C-OH⇀↽C=O+H++e− E2=0.80VRHE

C∗-C-OH+H2O→C∗+CO2+3H++3e− E3=0.95VRHE

Pt∗+H2O⇀↽Pt-OH+H++e− E4=0.70VRHE

Pt-OH⇀↽Pt=O+H++e− E5=0.80VRHE

Pt-OH+C∗-C-OH→C∗+Pt∗+CO2+2H++2e− E6=0.65VRHE

Pt∗⇀↽Pt2++2e− E6=1.188VRHE

(10)
according to Pandy et al. (2013). The distribution of
platinum particles is described by ten particle classes,
whereby the change of particles in each class

dNi

dt
= Ṅi = Ṅdiss,i + Ṅdet,i + Ṅatt,i + Ṅmer,i  

Ṅagg,i

(11)

considers particle dissolution (Ṅdiss,i) due to Ostwald

ripening as well as particle agglomeration (Ṅagg,i) due

to particle detachment (Ṅdet,i), attachment (Ṅatt,i), and

merging (Ṅmer,i) (Kregar et al., 2020).

Linearization and discretization. For the usage of the
non-linear model in the MPC, the non-linear fuel cell
model is successively linearized at timestep k with

ẋ = ẋk +
∂f(x,u,θ)

∂x
|xk,uk,θ  

Ac,k

∆x+
∂f(x,u,θ)

∂u
|xk,uk,θ  

Bc,k

∆u

y =
∂g(x,u,θ)

∂x
|xk,uk,θ  

Cc,k

x+
∂g(x,u,θ)

∂u
|xk,uk,θ  

Dc,k=0

u,

(12)
and discretized according to Böhler et al. (2021). The
discrete state-space model is normalized by the respective
maximum values for the states, inputs, and outputs to en-
hance numerical stability, simplify the choice of weighting
matrices, and ensure consistent magnitudes in the state
matrices.

2.2 Model predictive control algorithm

An MPC formulated in state space (Rawlings et al., 2017)
is implemented. The cost function at timestep k

J = wP

k+Np
j=k

(Pref,j|k − Pj|k)
2 +

nr
i=1

wri

k+Np
j=k

r2i,j|k

+

nu
i=1

w∆ui

k+Nc
j=k

∆u2
i,j|k +

nu
i=1

wui

k+Nc
j=k

u2
i,j|k

+ wI




k−1
j=1

(Pref,j − Pj) +

k+Np
j=k

(Pref,j|k − Pj|k)




2

(13)
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includes costs on the power control error, the rates of
degradation, the rate of input change, the absolute value
of the inputs, as well as the discrete summation of the
power control error weighted by the respective weights wi.
In every timestep k the minimization problem

min
∆u

J(∆xk−1,∆u,yk−1)

s. t. ∆xk = Ad,k−1∆xk−1 +Bd,k−1∆uk−1,

yk = yk−1 +Cd,k−1∆xk,

∆minu ≤ ∆u ≤ ∆maxu,

umin ≤ u ≤ umax

(14)

is solved as a constrained quadratic programming prob-
lem. Not all inputs of the non-linear model are actively
controlled - the uncontrolled inputs are kept constant in
the prediction step. However, the modular implementation
allows for the simple inclusion and exclusion of controlled
and uncontrolled inputs. Furthermore, a move-blocking
strategy is implemented to consider both the fast dynamics
of the internal states and the update rate of the fuel cell
system. The sampling time Ts is set to 0.1 s, the inputs
are held constant for 1 s and the prediction Np and control
horizon Nc are set to 200 samples.

2.3 Definition of key performance indices

To quantify and compare different weightings in the cost
function, three KPIs are defined:

(1) To quantify the fulfillment of the power requirements,

the NRMSE = 1
Pmax

√∑N

i=1
(Pref,i−Pi)2

N is used.

(2) The hydrogen usage is considered by the mean hydro-

gen flow H̄2 = 1
N

∑N
i=1 ṅH2,dry,i.

(3) The overall degradation is considered by the ECSA
loss %ECSA = ECSA0−ECSAN

ECSA0

These KPIs are intended to give a quick and fair compari-
son between different design points and weighting matrices
in the cost function. Especially when assessing efficiency,
further aspects, such as compressor power on the cathode
side, overall pressure level, humidification, and cooling
power of the fuel cell stack, can and should be considered.

3. RESULTS

3.1 Model parameterization and validation

The submodels (1)-(5) are trained on physical measure-
ment data obtained from a single cell tested on the fuel
cell driving load cycle (FC-DLC) (Tsotridis et al., 2015).
The data is taken from Zuo et al. (2021), whereby the
first FC-DLC (20 minutes) is used as training data, and
the subsequent FC-DLC is used as validation data. The
non-linear model is simulated with the same inputs as
the physical system and the the temperature and voltage
responses are compared (Fig. 3). Coefficients of determi-
nation of more than 99% for the power and almost 90% for
the cell temperature with the validation data are obtained.
The parameterization of submodels (6)-(7) is taken from
Pandy et al. (2013) and Kregar et al. (2020).

Fig. 3. Validation of submodels (1)-(5). The simu-
lated power and cell temperature, denoted by the hat
operator, are plotted against the respective measure-
ment data. Similar coefficients of determination are
obtained for training and validation data.

3.2 Performance of MPC for different weighting matrices
and simulation scenarios

The control algorithm and model are implemented in
MATLAB (The MathWorks Inc., 2024) and tested in a
simulation setup. The effect of including a physical degra-
dation model in the low-level fuel cell control is shown
by comparing three design points for the MPC algorithm
(further referred to as the ’MPCs’) with different weight-
ing matrices for the rate of degradation. MPC1 does not
consider degradation and solely tries to match the re-
quired power over time considering the given constraints
(wr = 0). For MPC2 and MPC3, costs for degradation are
included, whereby degradation is associated with higher
costs for MPC3. Equal weighting for the inputs (wu), rate
of change of the inputs (w∆u), the power demand (wP ),
and the sum of the power control error (wI) for all three
design points is chosen for fair comparison.

To showcase the impact of actively controlling and opti-
mizing different input variables, the MPCs are tested in
two scenarios: (A) only the current and the mole flow
into the cathode and anode are actively controlled, and
the other inputs are kept constant; (B) additionally, the

Table 1. KPIs for scenarios A and B
and MPC1-3. Notably, when looking at the
KPIs for power and hydrogen consumption,
scenarios A and B are very similar. However,
by including the control of the inlet dew points
(scenario B), significant improvements can be
achieved in terms of degradation for MPC2-3.

Scenario A B

MPC 1 2 3 1 2 3

NRMSE (%) 2.18 3.25 4.46 2.18 3.24 4.46
H̄2 (102 NLPM) 7.67 9.58 13.14 7.67 9.56 13.04
%ECSA (%) 3.36 2.85 2.46 3.36 2.74 2.12

Increasing performance →
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Fig. 4. Analysis of dynamic behavior of MPCs in scenario B. For large steps in the power reference (detail I),
MPC3 matches the power much slower than the other two MPCs to avoid damaging conditions. For small steps
(detail II, first step), the dynamics of the MPCs are almost identical. MPC3 avoids operating the fuel cell at high
power as well as in idle operation (detail II). With increasing weights on degradation, the hydrogen flow into the
anode increases (middle row), and the humidification of the cathode inlet gas decreases (fourth row). Although

degradation can not fully be avoided, the rate of degradation ∆ECSA
∆t ECSA0

= ECSAk−ECSAk−1

(tk−tk−1) ECSA0
can be reduced (last

row) for MPC2-3.

dew point temperatures at the inlet of the electrodes are
controlled. Both scenarios have a duration of 20 h of
repeating FC-DLC (approx. 60 cycles). Although the FC-
DLC does not fully represent real-world driving conditions,
it imposes a challenging load profile on the fuel cell cover-
ing the whole power operating range. Initialization is equal
across all MPCs and scenarios. In the simulation setup, an
average real-time factor of around 38.64 is achieved. The
scenario includes model linearization, the building of MPC
matrices, handling of constraints, solving of a quadratic
programming problem, data handling as well as the non-
linear simulation of the fuel cell model used to emulate the
physical system behavior.

The KPIs are listed in Table 1. When the objective is to
match the required power (MPC1), the best performance
in terms of power providing is obtained. By adding degra-
dation phenomena in the cost function, the hydrogen usage
and the error on the power demand increase. Notably, by
introducing additional degrees of freedom, e.g. the control
of the inlet dew point temperatures, degradation can fur-
ther be decreased while also reducing hydrogen flow. Thus,

the reduction of degradation can be achieved by adapting
different stressors, which allows for an optimal trade-off
between operating costs, efficiency and the longevity of
the cell. Moreover, the control strategy effectively balances
multiple objectives, optimizing one while minimizing ad-
verse effects on the other. For instance, a 37% reduction
in ECSA degradation requires a 70% increase in hydrogen
flow (MPC3 compared to MPC1, Scenario B). However,
a more moderate hydrogen increase of just 25% can still
achieve an 18% reduction in degradation (MPC2 compared
to MPC1, Scenario B). This further underscores the ad-
vantages of incorporating the nonlinear effects of stressors
on degradation into the optimization process. It has to be
pointed out that although the NRMSE for MPC3 is much
higher than for MPC1, one has to consider that the FC-
DLC does impose steep and challenging power steps on
the system.

Looking at the dynamic behavior of the MPCs in Fig.
4, the following conclusions can be drawn: In general,
higher weightings of degradation lead to slower changes
in the current. High power, steep transients, and idle
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operation are avoided (Fig. 4, left and middle column).
However, for small steps in the power trajectory, all
three MPCs have similar fast responses for the power
(Fig. 4, middle column), suggesting that operation is
adapted dynamically based on how damaging the steps
are to the fuel cell system. Furthermore, the suggested
control strategy can find a trade-off between different
stressors and their impact, i.e., the inlet humidities are
not solely minimized, but a trade-off between degradation,
performance as well and complex interactions between
different stressors are considered (Fig. 4, right column).
By including the effects of degradation in low-level control,
the rate of degradation can be reduced, and thus, system
lifetime is prolonged.

4. CONCLUSION AND OUTLOOK

This paper presented a methodology for a health-conscious
MPC approach to manage fuel cell power while minimiz-
ing degradation during dynamic operation. The proposed
formulation supports real-time implementation, intuitive
balancing of power requirements, hydrogen usage, and
degradation minimization, and provides valuable insights
into the internal processes of the fuel cell. The methodol-
ogy was evaluated through simulations, where the impact
of different weightings was analyzed and compared.

Prospective work will focus on extending the approach
to incorporate additional degradation mechanisms, par-
ticularly membrane degradation. Further validation will
involve testing the algorithm on a more complex, dis-
tributed model to better capture real-world conditions.
Additionally, advanced state observation techniques will
be integrated to ensure practical applicability and robust-
ness in real-world scenarios.
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