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Abstract
This article is concerned with the development of a theoretical framework of global
measure-valued solutions for a class of hyperbolic–parabolic cross-diffusion systems,
and its application to the convergence analysis of a fully discrete finite-volume scheme.
After introducing an appropriate notion of dissipative measure-valued solutions to the
PDE system, a numerical scheme is proposed which is shown to generate, in the
continuum limit, a dissipative measure-valued solution. The “parabolic density part”
of the limiting measure-valued solution is atomic and converges to its constant state
for long times. Furthermore, it is proved that whenever the PDE system possesses a
strong solution, the convergenceof the approximation schemeholds in the strong sense.
The results are based on Young measure theory and a weak–strong stability estimate
combining Shannon and Rao entropies. The convergence of the numerical scheme
is achieved by means of discrete entropy dissipation inequalities and an artificial
diffusion, which vanishes in the continuum limit.
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1 Introduction

The segregation of multi-species populations can be modeled at a macroscopic level
by cross-diffusion equations. Segregation typically requires the associated diffusion
matrix to have a nontrivial kernel. In this situation, solutions may have spatial discon-
tinuities; see, e.g., [3] for a two-species model. Diffusively regularized segregation
models have been derived, for an arbitrary number of species, from interacting par-
ticle systems in a mean-field-type limit [11]. The class considered here has recently
been found to possess a symmetric hyperbolic–parabolic structure [19]. In this paper,
we establish the global existence of dissipative measure-valued solutions as a limit of
finite-volume approximations, the uniqueness of strong solutions among dissipative
measure-valued solutions, and a result on the long-time asymptotic behavior.

1.1 Equations

The segregation cross-diffusion equations for the vector u = (u1, . . . , un) of the
population densities ui are systems of continuity equations,

∂t ui + div(uivi ) = 0, vi = −∇ pi (u), in �, t > 0, i = 1, . . . , n, (1)

where pi (u) = ∑n
j=1 ai j u j and � ⊂ R

d (d ≥ 1) is a bounded Lipschitz domain,
supplemented with the no-flux boundary and initial conditions

ui∇ pi (u) · ν = 0 on ∂�, t > 0, ui (0) = uini in �, i = 1, . . . , n, (2)

where ν denotes the exterior unit normal vector to ∂�. The variables (ui ) represent,
for instance, densities of animal populations [3], healthy and tumor cell densities [41],
or heights of thin fluid layers [16, 39].

The parameters ai j ≥ 0 are assumed to satisfy the following two conditions: The
matrix A = (ai j ) ∈ R

n×n is semistable, i.e., the real parts of all its eigenvalues are non-
negative, and it satisfies the detailed-balance condition, i.e., there existπ1, . . . , πn > 0
such that

πi ai j = π j a ji for all i, j = 1, . . . , n, i �= j . (3)

These equations can be recognized as the detailed-balance condition for the Markov
chain associated to A, and the vector (πi ) is an invariant measure. Under condi-
tion (3), the change of variables u j �→ π j u j =: ũ j brings the equation in the form
∂t ũi = div(̃ui∇(Bũ)i ), where the matrix B = (ai jπ

−1
j )i j is symmetric and positive

semidefinite. Thus, from now on we consider, without loss of generality, the equations

∂t ui = div(ui∇ pi (u)), pi (u) =
n∑

j=1

bi j u j in �, t > 0, i = 1, . . . , n, (4)

where B = (bi j ) ∈ R
n×n is symmetric positive semidefinite and bi j ≥ 0 for all

i, j = 1, . . . , n.Wenote that if bii = 0 for some i , then b ji = bi j = 0 for j = 1, . . . , n
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due to the positive semidefiniteness of B. Thus, in this case, the dynamics of ui become
trivial and the i th species can be removed from the system. We may therefore further
assume that bii > 0 for all i = 1, . . . , n. If rank B = n and ui > 0 for all i = 1, . . . , n,
equation (4) is parabolic in the sense of Petrovskii, which at the linear level is aminimal
condition for the generation of an analytic semigroup on L p(�) [1]. The existence of
global weak solutions in the case rank B = n was investigated in [34, Theorem 17].
If B has a nontrivial kernel, it is positive definite only on the subspace (ker B)⊥, and
we lose the parabolic structure. This is the situation we are primarily concerned with
in this paper.

1.2 State of the art

Equations (1) with nontrivial kernel of A have been studied in the literature in special
cases. The first work is [3], where the global existence of segregated solutions for two
species in one space dimension with a11 = a12 = 1 and a21 = a22 = k > 0 was
shown. This result relies on a change to mass variables. The analysis was generalized
in [4] to several space dimensions if k = 1. The idea is to introduce new variables
w1 = u1 + u2 and w2 = u1/(u1 + u2). It turns out that w1 solves a porous-medium
equationwith quadratic nonlinearity andw2 solves a transport equation, demonstrating
the hyperbolic–parabolic nature of the system. The same idea was used in [9] for a
related system with general pressures pi and, employing different techniques, in [29]
with pi (u) = (u1 + u2)γ for γ > 1. Notice that the choice k = 1 means that the
corresponding velocity fields vi in (1) are independent of i , so that the motion of the
two species is governed by a single velocity field.

The existence of an infinite family of minimizers of the entropy (or free energy)
functional for different local and nonlocal variants was proved in [7], showing that
both segregation and mixing of species is possible. If the pressure is the variational
derivative of a certain functional, one may formulate (1) for n = 2 as a formal gra-
dient flow. This property has been exploited in [7, 17] to prove the convergence of a
minimizing scheme.

The one-velocity two-species casewas generalized to an arbitrary number of species
in [20], proving the global existence of classical and weak solutions by decomposing
the system into one decoupled porous-medium equation and n−1 transport equations.
This approach was generalized in [19] to the case of multiple velocity fields and
with associated diffusion matrices of arbitrary rank r ∈ {1, . . . , n} to show the local
existence of classical solutions. Segregating solutions for one-velocity multi-species
reactive systems were constructed in [32].

There exist related cross-diffusion models with rank-deficient diffusion matrices in
the literature, for instance the Maxwell–Stefan equations for fluid mixtures [5], where
the diffusion matrix has a one-dimensional kernel. In contrast to the present prob-
lem, the kernel can be removed by taking into account the volume-filling assumption∑n

i=1 ui = 1, which allows one to reduce the system for the densities u1, . . . , un to a
parabolic one for the variables u1, . . . , un−1 via un = 1 − ∑n−1

i=1 ui [35].
The analysis and the convergence of approximation schemes to equations (1) for

general rank-deficient matrices A is challenging, since the decomposition of the
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parabolic and hyperbolic parts is involved. Moreover, in view of the results of [3],
we cannot expect weak solutions in H1(�), and the hyperbolic part makes it diffi-
cult to obtain (entropy) solutions in the distributional sense. In the present paper, we
choose to enlarge the solution space by considering dissipative measure-valued solu-
tions, which allow us to encode information about the oscillation properties of the
approximate solutions.

DiPerna introduced the concept of (entropy) measure-valued solutions to conser-
vation laws [18]. In this framework, solutions are no longer integrable functions but
Young measures (parametrized probability measures), which are able to capture the
limiting behavior of sequences of oscillating functions. This concept is based on an
earlier work by Tartar [46], who characterized weak limits of sequences of bounded
functions. Due to the lack of uniqueness results, the framework of measure-valued
solutions does not allow one to identify the physically relevant solutions, and further
structural conditions on the solutions are necessary.

One idea to resolve this issue is to require an integrated formof the entropy or energy
inequality, which leads to the concept of dissipative solutions. It has been introduced
by P.-L. Lions [40, Sec. 4.4] in the context of the incompressible Euler equations. In
[6] it is shown that dissipative measure-valued solutions to the incompressible Euler
equations enjoy the weak–strong uniqueness property, i.e., the dissipative measure-
valued solution is atomic and coincides with the strong or classical solution of the
same initial-value problem if the latter exists. This idea was further applied to models
from polyconvex elastodynamics [13], to the compressible Euler and Navier–Stokes
equations [23, 30], to hyperbolic–parabolic systems in thermoviscoelasticity [12], and
to various other, mainly fluid mechanical models.

In the present paper, we obtain dissipative measure-valued solutions to (4), (2) by
passing to the limit from discrete finite-volume solutions. We further show that they
enjoy the weak–strong uniqueness property (in the sense of measure-valued–strong
uniqueness), which entails important consequences for the numerical approxima-
tion. Indeed, one may expect that reasonable structure-preserving approximation
schemes generate a dissipative measure-valued solution. If such a measure-valued
solution turns out to be atomic, i.e. taking the form of a Dirac measure at each
point in space-time, Young measure theory implies that the underlying approx-
imate solutions converge in the strong sense. This idea has, for instance, been
exploited in the proof of the convergence of finite-volume-type schemes for the
compressible Navier–Stokes and Euler equations [24, 25]. For a further discus-
sion on the use of measure-valued solutions in the numerical context, we refer to
[26].

The novelty of this paper is the analysis of equations (4) with general rank-deficient
matrices B by combining themeasure-valued framework, entropymethods, and finite-
volume schemes.
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1.3 Key tools, definitions, and overview

The analysis of (4) is based on the observation that the system possesses two Lyapunov
functionals, respectively, the Shannon and Rao entropies

HS(u) =
∫

�

hS(u)dx, hS(u) =
n∑

i=1

(
ui (log ui − 1) + 1

)
, (5)

HR(u) =
∫

�

hR(u)dx, hR(u) = 1

2

n∑

i, j=1

bi j ui u j . (6)

The Shannon (–Boltzmann) entropy is related to the thermodynamic entropy of the
system, while the Rao entropy measures the functional diversity of the species [45].

The functionals have two important properties. First, a computation shows that,
along smooth solutions to (4), (2),

dHS

dt
(u) +

n∑

i, j=1

∫

�

bi j∇ui · ∇u jdx = 0, (7)

dHR

dt
(u) +

n∑

i=1

∫

�

ui |∇ pi (u)|2dx = 0. (8)

Since the matrix B is positive semidefinite, the Shannon entropy dissipation term (the
integral term in (7)) is nonnegative and consequently, t �→ HS(u(t)) is nonincreasing.
The expression pi (u) can be interpreted as the i th partial pressure and −∇ pi (u) as
the i th partial velocity (by Darcy’s law). Thus, we may interpret the Rao entropy
dissipation integral as the total kinetic energy of the system, and t �→ HR(u(t)) is also
nonincreasing.

Second, the Shannon and Rao entropy densities hS and hR are convex, and their
sum hS + hR is strictly convex and has quadratic growth as |u| → ∞, u ∈ (0,∞)n ,
as soon as bi j ≥ 0 and bii > 0 for all i, j = 1, . . . , n. These properties allow us
to derive a weak–strong stability estimate based on the Bregman distance h(u|v) :=
h(u) − h(v) − h′(v) · (u−v) associated with h = hS + hR .

Identities (7)–(8) provide estimates for ui in L∞(0, T ; L2(�)) and for (Bu)i in
L2(0, T ; H1(�)), T > 0. If B is rank-deficient, these bounds do not ensure gradi-
ent estimates for the whole vector u. Notice that the weak convergence for um and
∇ pi (um) = ∇(Bum)i in L2(�× (0, T )), which may be expected for suitable approx-
imating sequences um , does not allow us to identify the weak limit of um,i∇(Bum)i .
This issue is overcome by a suitable concept of dissipative measure-valued solutions.
Let us mention that the estimates coming from (8) lead to a control of um,i∇(Bum)i
in L2(0, T ; L4/3(�)), thus ruling out potential concentrations in this term.

Before giving the definition of the measure-valued solutions, we introduce some
notation. We rewrite equation (4) as

∂t ui = div(ui∇(Bu)i ), i = 1, . . . , n,
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956 K. Hopf, A. Jüngel

and set L := ker B � R
n . Then L⊥ = ran B. Let PL⊥ be the projection onto L⊥ and

set ŝ := PL⊥s for s ∈ R
n . Any vector-valued function u iswritten as u = (u1, . . . , un).

We define R≥ = [0,∞) and let P(W ) be the space of probability measures on

W := R
n≥ × (L⊥)d .

The space L∞
w (� × [0,∞);P(W )) is the set of weakly∗ measurable, essentially

bounded functions of � × [0,∞) taking values in P(W ). We henceforth use the
notation

〈ν, f (s, p)〉 :=
∫

W
f (s, p) dν(s, p) for ν ∈ P(W ), f ∈ C0(W ),

where C0 denotes the space of continuous functions vanishing at infinity. Whenever
the right-hand side is well defined, this notation will also be used for more general
continuous functions f . Finally, we let �T := � × (0, T ) for T > 0.

Definition 1 (Dissipative measure-valued solution) Suppose that uin ∈ L2(�; R
n≥).

We call a parametrized measure

μ ∈ L∞
w (� × [0,∞);P(W ))

with barycenters u := 〈μ, s〉, y := 〈μ, p〉 a dissipative measure-valued solution to
(4), (2) if the following is satisfied for all T > 0:

• Regularity: It holds that

u ∈ L∞(0,∞; L2(�; R
n)), ∂t u ∈ L2(0,∞;W 1,4(�; R

n)∗),
y ∈ L2(�T ; (L⊥)d), y = ∇û.

Moreover, μ acts trivially on the ŝ-component,

〈μ, f (s, p)〉 = 〈μ, f (̂u + PLs, p)〉 (9)

for all f ∈ C0(R
n≥ × (L⊥)d).

• Shannon and Rao entropy inequalities: It holds for a.e. t > 0 that

Hmv
S (u(t)) +

∫ t

0

∫

�

〈μx,τ , |B1/2 p|2〉dxdτ ≤ HS(u
in), (10)

HR(u(t)) +
n∑

i=1

∫ t

0

∫

�

〈
μx,τ , si |(Bp)i |2

〉
dxdτ ≤ HR(uin), (11)

where HS and HR are defined in (5)–(6) and Hmv
S (u(t)) := ∫

�
〈μx,t , hS(s)〉dx .
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• Evolution equation: It holds for all i = 1, . . . , n and φ ∈ C1
c (� × [0, T )) that

∫ T

0

∫

�

ui∂tφdxdt +
∫

�

uini φ(0)dx =
∫ T

0

∫

�

〈μx,t , si (Bp)i 〉 · ∇φdxdt . (12)

It is easy to see that, under the hypotheses of Definition 1, the term 〈μ, si (Bp)i 〉 ∈
L1(�T ) is well defined for all T > 0 (cf. Section 4.5). Moreover, ui = 〈μ, si 〉 ≥ 0.
Property (9) can be extended to a larger class of continuous functions f . In particular,
it holds for all f ∈ C(W ) with f ≥ 0. If rank B = n, property (9) implies that u
fulfills (4), (2) in the usual weak sense, since then PL = 0. We further observe in
the following remark the consistency of Definition 1 with the standard weak solution
concept.

Remark 1 (Consistency of the definition) The definition of dissipative measure-valued
solutions is consistent with the definition of weak solutions. Indeed, any weak solution
u to (4), (2) satisfying the regularity statements of Definition 1 and the Shannon and
Rao entropy inequalities gives rise to a dissipative measure-valued solution μ via
μx,t = δu(x,t) ⊗ δ∇û(x,t). On the other hand, if a dissipative measure-valued solution
μ is trivial in the sense that μx,t = δv(x,t) ⊗ δz(x,t) for certain functions v and z, then
v = 〈μ, s〉 = u and z = 〈μ, p〉 = y = ∇û. We infer that

〈μ, si (Bp)i 〉 = ui (B∇û)i .

In this case, equation (12) reduces to the standard weak formulation of (4) for
the density u and the entropy inequalities (10) and (11) take the usual form of
entropy inequalities forweak solutions.More generally, the conclusion 〈μ, si (Bp)i 〉 =
ui (B∇û)i already holds if, for instance, μ is only atomic in the density component,
i.e. μx,t = δv(x,t) ⊗ νx,t , where ν denotes the parametrized measure generated by
(∇ûm)m with (um)m denoting the approximate sequence.

Our main results can be sketched as follows; we refer to Section 2.5 for the precise
statements.

• Existence of finite-volume approximations: There exists a sequence of approxi-
mate solutions (um), wherem ∈ N indicates the fineness of themesh, to an implicit
Euler finite-volume scheme. The numerical scheme preserves the structure of the
equations, namely nonnegativity, conservation of mass, and entropy dissipation;
see Theorem 4.

• Existence of global dissipative measure-valued solutions: Any Young measure μ

generated by (um) is a dissipative measure-valued solution to (4), (2) in the sense
of Definition 1; see Theorem 5. For this result, we need to include some artificial
diffusion in the scheme, which vanishes in the limit m → ∞.

• Weak–strong uniqueness: If v is a positive classical solution to (4), (2) with initial
datum v(0) = uin and μ is a dissipative measure-valued solution to (4), (2), then
μx,t = δv(x,t) ⊗ δ∇v̂(x,t) for a.e. (x, t) ∈ �T ; see Theorem 7.

• Long-time behavior: The density û(t) := 〈μ·,t , ŝ〉 converges strongly in the L2(�)

normas t → ∞ to a function û∗ ∈ L2(�; [0,∞)n) satisfying
∫
�
û∗dx = ∫

�
uindx

and ∇(Bû∗) = 0 in �; see Theorem 9.
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If equations (4), (2) admit a classical solution, theweak–strong uniqueness property
implies that the sequence of finite-volume solutions converges, in the strong L1-sense,
to this classical solution on the lifespan of the latter; see Corollary 8.

We stress the fact that, while the existence of solutions is proved via a finite-volume
scheme, theweak–stronguniqueness and long-timebehavior results are independent of
the numerical scheme. In this regard, the discrete numerical approximation serves as a
tool for the existence analysis, even though the mere existence of dissipative measure-
valued solutions may more readily be obtained via approximation by a regularized
continuous system.

The paper is organized as follows. We introduce the numerical scheme and the
precise statements of the theorems in Sect. 2. The four theorems are proved in Sects.
3, 4, 5, 6 and we conclude in Appendix A with some auxiliary lemmas.

2 Numerical scheme andmain results

First, we introduce the notation necessary to formulate our numerical method. Then
we state the numerical scheme and the main results.

2.1 Spatial domain andmesh

Let d ≥ 2 and let� ⊂ R
d be a bounded polygonal domain (or polyhedral if d ≥ 3).We

associate to this domain an admissible mesh, given by (i) a family T of open polygonal
(or polyhedral) control volumes, which are also called cells, (ii) a family E of edges
(or faces if d ≥ 3), and (iii) a family of points (xK )K∈T associated to the control
volumes and satisfying [22, Definition 9.1]. This definition implies that the straight
line xK xL between two centers of neighboring cells is orthogonal to the edge (or face)
σ = K |L between two cells. For instance, Voronoï meshes satisfy this condition [22,
Example 9.2]. The size of the mesh is given by �x = maxK∈T diam(K ). The family
of edges E is assumed to consist of interior edges Eint satisfying σ ⊂ � and boundary
edges σ ∈ Eext satisfying σ ⊂ ∂�. For a given K ∈ T , EK denotes the set of edges
of K , splitting into EK = Eint,K ∪ Eext,K . For any σ ∈ E , there exists at least one cell
K ∈ T such that σ ∈ EK .

We need a regularity assumption on the families of meshes we admit. For given
σ ∈ E , we define the distance

dσ =
{
d(xK , xL) if σ = K |L ∈ Eint,K ,

d(xK , σ ) if σ ∈ Eext,K ,

where d is the Euclidean distance in R
d , and the transmissibility coefficient

τσ = m̃(σ )

dσ

, (13)
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where m̃(σ ) denotes the (d−1)-dimensional Hausdorff measure of σ . We suppose the
following mesh regularity condition for any admissible family of meshes {T }: There
exists a fixed ζ > 0, independent of T , such that for all K ∈ T and σ ∈ EK ,

d(xK , σ ) ≥ ζdσ . (14)

This condition means that the family of meshes {T } is (locally) quasi-uniform. We
also use the geometric property

∑

σ∈Eint,K
m̃(σ )d(xK , σ ) ≤ dm(K ) for any K ∈ T , (15)

wherem denotes the d-dimensional Lebesgue measure. Inequalities (14) and (15) are
needed, for instance, to derive a uniform bound for the discrete time derivative of the
approximate solution; see Lemma 13.

2.2 Function spaces

Let T > 0, N ∈ N and introduce the time step size �t = T /N and the time
steps tk = k�t for k = 0, . . . , N . We denote by D the space-time discretization of
�T = � × (0, T ) determined by the mesh T and by the values (�t, N ).

The space of piecewise constant functions is defined by

VT =
{

v : � → R : ∃(vK )K∈T ⊂ R, v(x) =
∑

K∈T
vK 1K (x)

}

,

where 1K is the characteristic function on K . To define a norm on this space, we define
for v ∈ VT , K ∈ T , and σ ∈ EK ,

vK ,σ =
{

vL if σ = K |L ∈ Eint,K ,

vK if σ ∈ Eext,K ,
DK ,σ v := vK ,σ − vK , Dσ v := |DK ,σ v|.

Let 1 ≤ q < ∞ and v ∈ VT . The discrete W 1,q(�) norm on VT is given by

‖v‖1,q,T = (‖v‖q0,q,T + |v|q1,q,T
)1/q

, where

‖v‖q0,q,T =
∑

K∈T
m(K )|vK |q , |v|q1,q,T =

∑

σ∈E
m̃(σ )dσ

∣
∣
∣
∣
Dσ v

dσ

∣
∣
∣
∣

q

,

where v ∈ VT . If v = (v1, . . . , vn) ∈ V n
T is a vector-valued function, we write for

notational convenience

‖v‖1,q,T =
n∑

i=1

‖vi‖1,q,T .
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We associate to the discrete W 1,q norm a dual norm with respect to the L2 inner
product:

‖v‖−1,q,T = sup

{ ∫

�

vwdx : w ∈ VT , ‖w‖1,q,T = 1

}

.

Then the following property holds:

∣
∣
∣
∣

∫

�

vwdx

∣
∣
∣
∣ ≤ ‖v‖−1,q,T ‖w‖1,q,T for all v,w ∈ VT , 1 < p < ∞.

Finally, we introduce the space VT ,�t of piecewise constant functions with values
in VT ,

VT ,�t =
{

v : � × [0, T ] → R : ∃(vk)k=1,...,N ⊂ VT , v(x, t) =
N∑

k=1

vk(x)1(tk−1,tk ](t)
}

,

equipped with the discrete L2(0, T ; H1(�)) norm

(
N∑

k=1

�t‖vk‖21,2,T
)1/2

for all v ∈ VT ,�t .

2.3 Discrete gradient

The discrete gradient is defined on a dual mesh. For this, we define the cell TK ,σ of
the dual mesh for K ∈ T and σ ∈ EK :

• Diamond: Let σ = K |L ∈ Eint,K . Then TK ,σ is that cell whose vertices are given
by xK , xL , and the end points of the edge σ .

• Triangle: Let σ ∈ Eext,K . Then TK ,σ is that cell whose vertices are given by xK
and the end points of the edge σ .

The union of all diamonds and triangles TK ,σ equals the domain � (up to a set of
measure zero). The property that the straight line xK xL between two neighboring
centers of cells is orthogonal to the edge σ = K |L implies that

m̃(σ ) d(xK , xL) = d m(TK ,σ ) for all σ = K |L ∈ Eint.

The approximate gradient of v ∈ VT ,�t is then defined by

∇Dv(x, t) = m̃(σ )

m(TK ,σ )
DK ,σ (vk)νK ,σ for x ∈ TK ,σ , t ∈ (tk−1, tk],

where νK ,σ is the unit vector that is normal to σ and points outwards of K .
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2.4 Numerical scheme

The initial functions are approximated by u0 ∈ V n
T defined via

u0i,K = 1

m(K )

∫

K
uini (x)dx for all K ∈ T , i = 1, . . . , n. (16)

Let uk−1 = (uk−1
1 , . . . , uk−1

n ) ∈ V n
T be given. Then the values uki,K for all K ∈ T and

i = 1, . . . , n are determined by the implicit Euler finite-volume scheme

m(K )
uki,K − uk−1

i,K

�t
+

∑

σ∈EK

Fk
i,K ,σ = 0, (17)

Fk
i,K ,σ = −τσu

k
i,σDK ,σ pi (u

k) − ηατσDK ,σu
k
i , (18)

where η = max{�x,�t}, 0 < α < 2, and τσ is given by (13). The mobility uki,σ is
defined for σ ∈ E by the upwind scheme

uki,σ =
{
uki,K ,σ if DK ,σ pi (uk) ≥ 0,

uki,K if DK ,σ pi (uk) < 0.
(19)

Theupwind approximation allowsus to derive the discrete Shannon entropy inequality;
see Remark 2. We may also use a logarithmic mean function; see Remark 3.

We have added some artificial diffusion in the numerical flux Fk
i,K ,σ , which van-

ishes in the limit η → 0. The term is needed to show the convergence of the scheme.
In particular, it provides an η-dependent bound for the full gradient, compensating the
incomplete gradient estimate. Note that the artificial diffusion is not needed to prove
the existence of discrete solutions, and we may set η = 0 in this case. Artificial diffu-
sion/viscosity is used in numerical approximations of the Euler equations to stabilize
the scheme; see, e.g., [25, (3.8)].

The numerical fluxes Fk
i,K ,σ are consistent approximations of the exact fluxes

through the edges, since Fi,K ,σ + Fi,L,σ = 0 for all edges σ = K |L and
Fi,K ,σ = 0 for all Eext,K . The following discrete integration-by-parts formula holds
for v = (vK ) ∈ VT :

∑

K∈T

∑

σ∈EK

Fi,K ,σ vK = −
∑

σ∈Eint
Fi,K ,σDK ,σ v. (20)

Notice that the terms Fi,K ,σDK ,σ v on the right-hand side only depend on σ , but not
on the specific control volume K satisfying σ ∈ EK . Hence, to evaluate the sum on
the right, we may pick for each σ any K with σ ∈ EK as long as we keep K fixed.

Remark 2 (Discrete gradient-flow property for upwind scheme) The upwind approx-
imation implies a discrete gradient-flow property. Indeed, we first observe that the
concavity of the logarithm gives
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962 K. Hopf, A. Jüngel

b(log a − log b) ≤ a − b ≤ a(log a − log b) for all a, b > 0.

Combined with definition (19) of uki,σ , this leads for u
k
i,K > 0 and uki,L > 0 to

uki,σ (pi (u
k
L)− pi (u

k
K ))(log uki,L − log uki,K ) ≥ (pi (u

k
L)− pi (u

k
K ))(uki,L −uki,K ) (21)

and therefore, by discrete integration by parts (20),

n∑

i=1

∑

K∈T

∑

σ∈EK

Fk
i,K ,σ log uki,K

= −
n∑

i=1

∑

σ∈Eint
τσu

k
i,σDK ,σ pi (u

k)DK ,σ log uki

− ηα
n∑

i=1

∑

σ∈Eint
τσDK ,σ u

k
i DK ,σ log uki

≤ −
n∑

i=1

∑

σ∈Eint
τσbi jDK ,σu

k
jDK ,σu

k
i , (22)

where we used the monotonicity of the logarithm implying that DK ,σuki DK ,σ log uki ≥
0. The right-hand side of (22) is nonpositive due to the positive semidefiniteness of
B = (bi j ). We deduce from this inequality the discrete entropy inequality (25).

Remark 3 (Discrete gradient flowproperty for logarithmicmean)Wemay alternatively
define uki,σ via the logarithmic mean

uki,σ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uki,L − uki,K
log uki,L − log uki,K

if uki,K �= uki,L and uki,K > 0, uki,L > 0,

uki,K if uki,K = uki,L > 0,

0 else.

(23)

We remark that the artificial diffusion in the numerical flux (18) allows us to show that
uki,K is positive for all K ∈ T (see Sect. 3.5) such that uki,σ (for σ = K |L) is always
defined by one of the first two cases. Definition (23) also leads to a discrete gradient-
flow property. Indeed, observing that uki,σDK ,σ log uki = DK ,σuki andmultiplying (18)

by log uki,K and summing over all i = 1, . . . , n, K ∈ T , and σ ∈ EK , we see that (22)
holds too. Notice that (21) becomes an equality in this case.

Finally, we observe that themobility satisfies in both cases the following properties:

uki,σ ≤ max{uki,K , uki,L }, |uki,σ − uki,K | ≤ |uki,K − uki,L | for σ = K |L. (24)
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2.5 Main results

We impose the following hypotheses.

(H1) Data: � ⊂ R
d is a bounded polygonal (or polyhedral if d ≥ 3) domain, T > 0,

and uin ∈ L2(�; R
n≥) such that ‖uin‖L1(�) > 0. We set �T = � × (0, T ).

(H2) Discretization: D is an admissible discretization of �T satisfying (14).
(H3) Diffusion coefficients: B = (bi j ) ∈ R

n×n≥ is symmetric positive semidefinite
with rank B ∈ {1, . . . , n} and bii > 0 for i = 1, . . . , n.

Note that since B is positive semidefinite, its square root B1/2 exists and zT Bz =
|B1/2z|2 for z ∈ R

n . Moreover, with λ > 0 being the smallest positive eigenvalue of
B1/2, we have |B1/2z| ≥ λ|̂z| (cf. Lemma 16).

Theorem 4 Let Hypotheses (H1)–(H3) hold, k ∈ N, η ≥ 0, and let uk−1 ∈ V n
T be

given. Then there exists a solution uk = (uk1, . . . , u
k
n) ∈ V n

T to scheme (16)–(18)
satisfying uki,K > 0 for i = 1, . . . , n, K ∈ T . Inductively, let u j ∈ V n

T , j = 1, . . . , k,

be the solution to scheme (16)–(18) with uk−1 replaced by u j−1. Then {u j } obey the
discrete entropy inequalities

HS(u
k) +

k∑

j=1

�t |B1/2u j |21,2,T + 4ηα
k∑

j=1

�t
n∑

i=1

|(u j
i )

1/2|21,2,T ≤ HS(u
0), (25)

HR(uk) +
k∑

j=1

�t
n∑

i=1

∑

σ∈E
τσu

j
i,σ |Dσ (Bu j )i |2 ≤ HR(u0). (26)

Moreover, HR(uk) ≤ HR(uk−1).

The existence of finite-volume solutions to (16)–(18) was shown in [36] by using
the Rao entropy only, but the proof needs matrices B with full rank. We can avoid this
condition since we exploit the estimates coming from the Shannon entropy. Theorem
4 is proved by adding a discrete version of the regularizing term ε(−�wi +wi ), where
wi = log ui are the entropic variables [27, 33, 38], and a topological degree argument,
similar as in [36]. Uniform estimates from the Shannon entropy inequality (25) allow
us to perform the de-regularizing limit ε → 0. Observe that the theorem is valid for
η = 0, i.e., no artificial diffusion is needed here.

Theorem 4 and the subsequent results also hold for domains � ⊂ R
d with curved

(Lipschitz) boundary. Indeed, one may triangulate � in such a way that the control
volumes have a curved boundary [42], or one may cover � by additional cells and
estimate the integral error; we refer to Remark 14 for details.

For the convergence result, we introduce a family (Dm)m∈N of admissible space-
time discretizations of �T indexed by the size ηm = max{�xm,�tm} of the mesh,
where �xm = maxK∈Tm diam(K ) and �tm is the time step size of the mesh Dm ,
satisfying ηm → 0 as m → ∞. We denote by Tm the corresponding meshes of � and
set ∇m := ∇Dm .
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Theorem 5 (Convergence of the scheme) Let Hypotheses (H1)–(H3) hold, and let
(Dm) be a family of admissible meshes satisfying (14) uniformly in m ∈ N. Let (um)

be a sequence of finite-volume solutions to (16)–(18) with η = ηm > 0, constructed
in Theorem 4. Then, up to a subsequence, (um,∇mûm) generates a Young measure μ

which is a dissipative measure-valued solution to (4), (2) in the sense of Definition 1.
Moreover, the function t �→ HR(u(t)) is nonincreasing.

The strategy of the proof of Theorem 5 is as follows. The estimates from the discrete
entropy inequalities and a uniform bound for the discrete time derivative of um allow
us to apply the compactness result of [28] to conclude the strong convergence of (a
subsequence of) ûm in L2(�T ) asm → ∞. Moreover, (um) and∇m(Bûm) are weakly
converging in L2(�T ). Clearly, these convergences are too weak to conclude the
convergence of the nonlinear flux (18). However, the sequence (um,∇mûm) generates
a parametrized measure μ [44, Chap. 6] such that 〈μ, si (Bp)i 〉 is the distributional
limit of um,i,σ ∇m(Bûm)i . Moreover, because of the strong convergence of (̂um), we
can separate this part, leading to (9).

Remark 6 (Full-rank approximation) Let� ⊂ R
d be a bounded Lipschitz domain. An

alternative to the finite-volume approach is to consider a suitable full-rank symmetric
positive definite regularization (Bρ) ∈ R

n×n of B with limρ→0 Bρ = B, and to
approximate (4) by

∂t ui = div(ui∇(Bρu)i ), i = 1, . . . , n. (27)

After an appropriate additional regularization, it is possible to apply the entropymethod
of [33, Sec. 4.4] (using the Rao entropy structure) and to establish the existence of a
nonnegative weak solution to (27), (2) that satisfies both the Rao and Shannon entropy
inequalities with B replaced by Bρ . The dissipative measure-valued solution to (4),
(2) is then obtained in the limit ρ → 0.

The statement of Theorem 5 is rather weak, since the Young measure may not
be unique. However, we can prove a weak–strong uniqueness result. According to
Remark 14, we can assume in the following that � is a general bounded domain with
Lipschitz boundary.

Theorem 7 (Weak–strong uniqueness) Let � ⊂ R
d be a bounded Lipschitz domain.

Let v ∈ C1(� × [0, T ]; R
n≥) be a positive solution to (4), (2) (in the weak sense) with

initial datum v(0) = uin > 0, and let μ be a dissipative measure-valued solution to
(4), (2). Then

μx,t = δv(x,t) ⊗ δ∇v̂(x,t) for a.e. (x, t) ∈ � × (0, T ).

The assertion is deduced from a stability estimate based on the Bregman distance
h(u|v) := h(u) − h(v) − h′(v) · (u−v) associated with the convex function h :=
hS+hR , which has to be adapted to themeasure-valued framework. Loosely speaking,
we consider the sum HS(u|v) + HR(u|v), where
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Hk(u|v) =
n∑

i=1

∫

�

(
hk(u) − hk(v) − h′

k(v) · (u − v)
)
dx, k = S, R,

and compute its time derivative along solutions to (4). Certain error terms arising in
this computation need to be estimated above by C

∫
�
h(u|v)dx . For this step and in

the absence of L∞(�)-bounds on the densities ui , we take advantage of the better
coercivity properties at infinity of the Rao entropy.

As a consequence of Theorem 7, the finite-volume solution converges strongly to
the classical solution if the latter exists.

Corollary 8 Let u ∈ C1(� × [0, T ]; R
n≥) be a positive solution to (4), (2). Let (um)

be a sequence of finite-volume solutions to (16), (18) with η = ηm > 0. Then, as
m → ∞,

(um,∇mûm) → (u,∇û) strongly in L p(�T )

for all p ∈ [1, 2) and all T > 0.

Indeed, the weak–strong uniqueness implies that the Young measure generated by
(um, ∇mûm) coincides at each point (x, t) with the Dirac measure concentrated at
the smooth solution. Since |(um,∇mûm)|p ⊂ L1(�T ) is equi-integrable for every
p ∈ [1, 2), the assertion in Corollary 8 thus follows from classical Young measure
theory (cf. e.g. [44, Theorem 6.12]).

It is shown in [19, Theorem 2.6] for � = T
d (with periodic boundary conditions)

that problem (4), (2) possesses a positive classical solution on a short time interval if
the initial data are positive and smooth. The main results in the present paper should
equally be valid in the periodic setting.

If B has a non-trivial kernel, steady states to (4), (2) are not necessarily constant in
space and for any fixed mass vector m ∈ (0,∞)n , there exist infinitely many steady
states. Given such m, we define the space of steady states as

Sm =
{

v ∈ L2(�; R
n≥) :

∫

�

v dx = m and ∇(Bv) = 0 in �

}

.

Theorem 9 (Long-time behavior) Let μ be a dissipative measure-valued solution to
(4), (2). Let u = 〈μ, s〉 and set m := ∫

�
uindx. Then Sm ⊂ L∞(�; R

n≥) and there
exists u∗ ∈ Sm such that, as t → ∞,

û(t) → û∗ strongly in L2(�; R
n≥),

where û∗ = PL⊥u∗. We recall that PL⊥ is the projection onto L⊥ = ran B.

For theproof ofTheorem9,weargue as follows.The fact that
∫ ∞
0 ‖∇(B1/2û)‖2

L2(�)
dt

is finite implies the existence of a sequence tk → ∞ such that k �→ (B1/2u)(tk) con-
verges strongly in L2(�) to B1/2u∗ as k → ∞, where u∗ ∈ Sm. The monotonicity
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of t �→ HR(u(t)|u∗) then shows that B1/2û(t) converges and consequently, û(t) con-
verges to û∗ for all sequences t → ∞. Such reasoning is classical in degenerate cases,
where entropy–entropy dissipation estimates are not available; see for instance [8, 31].

3 Discrete problem

In this section, we prove Theorem 4. The existence proof uses a discrete analog of
the entropy method for cross-diffusion systems [33]. We first introduce a regularized
numerical scheme involving an approximation parameter ε > 0, prove the existence
of a solution to this scheme and suitable estimates coming from the Shannon entropy
inequality, and apply a topological degree argument. The uniform estimates allow us
to perform the limit ε → 0.

3.1 Definition and continuity of the fixed-point operator

Let uk−1 ∈ V n
T be given and let R > 0, δ > 0. We set

ZR = {
w = (w1, . . . , wn) ∈ V n

T : ‖w‖1,2,T < R for i = 1, . . . , n
}

and define the mapping F : ZR → R
θn by F(w) = wε, where θ = #T and wε =

(wε
1, . . . , w

ε
n) is the solution to the linear regularized problem

ε

(

−
∑

σ∈EK

τσDK ,σ wε
i + m(K )wε

i,K

)

= −
(
m(K )

�t
(ui,K − uk−1

i,K ) +
∑

σ∈EK

Fi,K ,σ

)

,

(28)
where ui,K := exp(wi,K ) and Fi,K ,σ is defined as in (18) with uki,K replaced by ui,K .

To show that F is well defined, we write (28) as

Mwε = v, where v = (vi,K )i=1,...,n, K∈T ,

vi,K = m(K )

�t
(ui,K − uk−1

i,K ) +
∑

σ∈EK

Fi,K ,σ ,
(29)

and M = diag(M ′, . . . , M ′) ∈ R
θn×θn is a block diagonal matrix with M ′ ∈ R

θ×θ ,
which has the entries

M ′
K ,K = −εm(K ) − ε

∑

σ∈EK

τσ , M ′
K ,L =

{
ετσ if K ∩ L �= ∅, σ = K |L,

0 if K ∩ L = ∅.

Therefore, the system Mwε = v can be decomposed into the independent subsystems
M ′wε

i = vi for i = 1, . . . , n. Since M ′ is strictly diagonally dominant, these subsys-
tems possess a unique solution wε

i . Then wε = (wε
1, . . . , w

ε
n) is the unique solution

to (29). Thus, the mapping F is well defined.
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Next, we prove that F is continuous.Wemultiply (28) for some fixed i ∈ {1, . . . , n}
by wε

i,K and sum over all i = 1, . . . , n and K ∈ T :

− ε

n∑

i=1

∑

K∈T

∑

σ∈EK

τσ (DK ,σ wε
i )w

ε
i,K + ε

n∑

i=1

∑

K∈T
m(K )(wε

i,K )2

= −
n∑

i=1

∑

K∈T

m(K )

�t
(ui,K − uk−1

i,K )wε
i,K −

n∑

i=1

∑

K∈T

∑

σ∈EK

Fi,K ,σ wε
i,K .

(30)

Using discrete integration by parts analogous to (20), we can rewrite the left-hand side
as

− ε

n∑

i=1

∑

K∈T

∑

σ∈EK

τσ (DK ,σ wε
i )w

ε
i,K + ε

n∑

i=1

∑

K∈T
m(K )(wε

i,K )2

= ε

n∑

i=1

∑

σ∈Eint
τσ (DK ,σ wε

i )
2 + ε

n∑

i=1

∑

K∈T
m(K )(wε

i,K )2 = ε

n∑

i=1

‖wε
i ‖21,2,T .

We turn to the terms on the right-hand side of (30). By definition, we have
‖wi‖1,2,T < R and consequently ‖wi‖0,∞,T ≤ C(R, T ) and ‖ui‖1,2,T ≤ C(R, T )

(since the problem is finite-dimensional). This shows that

−
n∑

i=1

∑

K∈T

m(K )

�t
(ui,K − uk−1

i,K )wε
i,K ≤ 1

�t

n∑

i=1

‖ui − uk−1
i ‖0,2,T ‖wε

i ‖0,2,T

≤ C(R, T ,�t)
n∑

i=1

‖wε
i ‖1,2,T .

Finally, using definition (18) of the flux and discrete integration by parts,

−
n∑

i=1

∑

K∈T

∑

σ∈EK

Fi,K ,σ wε
i,K =

n∑

i=1

∑

K∈T

∑

σ∈EK

τσ

( n∑

j=1

bi j ui,σ (DK ,σ u j ) + ηαDK ,σ ui

)

wε
i,K

= −
n∑

i=1

∑

σ∈Eint

τσ

( n∑

j=1

bi j ui,σ (DK ,σ u j )(DK ,σ wε
i ) + ηα(DK ,σ ui )(DK ,σ wε

i )

)

≤ max
σ∈E ‖ui,σ ‖0,∞,T

n∑

i, j=1

bi j |u j |1,2,T |wε
i |1,2,T + ηα

n∑

i=1

|ui |1,2,T |wε
i |1,2,T

≤ C(R, T )‖wε
i ‖1,2,T .

For the last inequality,we used the fact that ui,σ depends on ui,K and ui,L forσ = K |L ,
and their discrete L∞(�) norms can be bounded by the discrete L∞(�) norm of wi ,
which in turn can be estimated by C(T )‖wi‖0,∞,T ≤ C(R, T ).

Inserting these estimates into (30) and dividing by ‖wε
i ‖1,2,T if ‖wε

i ‖1,2,T > 0, it
follows that ε‖wε

i ‖1,2,T ≤ C(R, T ,�t). This bound allows us to verify the continuity
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of F . Indeed, let w� → w as � → ∞ and set wε,� = F(w�). Then (wε,�)�∈N is
uniformly bounded in the discrete H1(�) norm. Therefore, there exists a subsequence,
which is not relabeled, such that wε,� → wε as � → ∞. Passing to the limit � → ∞
in scheme (28), we see that wε is a solution to the scheme and wε = F(w). Since the
solution to the linear scheme (28) is unique, the entire sequence (wε,�)�∈N converges
to wε, which shows the continuity of F .

3.2 Existence of a fixed point

We will now show that the map F admits a fixed point by using a topological degree
argument.We prove that deg(I−F, ZR, 0) = 1, where deg is the Brouwer topological
degree [14, Chap. 1]. Since deg is invariant by homotopy, it is sufficient to verify that
any solution (wε, ρ) ∈ Z R ×[0, 1] to the fixed-point equationwε = ρF(wε) satisfies
(wε, ρ) /∈ ∂ZR × [0, 1] for sufficiently large values of R > 0. Let (wε, ρ) be a fixed
point. The case ρ = 0 being clear, we assume that ρ �= 0. Then wε

i solves

ε

(

−
∑

σ∈EK

τσDK ,σ wε
i + m(K )wε

i,K

)

= −ρ

(
m(K )

�t
(uε

i,K − uk−1
i,K ) +

∑

σ∈EK

Fε
i,K ,σ

)

(31)
for i = 1, . . . , n and K ∈ T , where uε

i,K = exp(wε
i,K ) and Fε

i,K ,σ is defined as in

(18) with uki,K replaced by uε
i,K . The following inequality is the key argument.

Lemma 10 (Discrete Shannon entropy inequality) Let wε be a solution to (31) and
uε
i := exp(wε

i ). Then

ρHS(u
ε) + ε�t

n∑

i=1

‖wε
i ‖21,2,T + ρ�t

n∑

i, j=1

∑

σ∈Eint
τσbi jDK ,σu

ε
i DK ,σu

ε
j

+ 4ρηα�t
n∑

i=1

|(uε
i )

1/2|21,2,T ≤ ρHS(u
k−1).

(32)

Proof We multiply (31) by �twε
i,K , sum over i = 1, . . . , n and K ∈ T , and use

discrete integration by parts (cf. (20)). Then ε�t
∑n

i=1 ‖wε
i ‖21,2,T = I1 + I2 + I3,

where

I1 = −ρ

n∑

i=1

∑

K∈T
m(K )(uε

i,K − uk−1
i,K )wε

i,K ,

I2 = −ρ�t
n∑

i=1

∑

σ∈Eint
τσu

ε
i,σDK ,σ pi (u

ε)DK ,σ wε
i,K ,

I3 = −ρηα�t
n∑

i=1

∑

σ∈Eint
τσDK ,σu

ε
iDK ,σ wε

i,K .
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The definition uε
i,K = exp(wε

i,K ) and the convexity of the Shannon entropy imply
that

I1 = −ρ

n∑

i=1

∑

K∈T
m(K )(uε

i,K − uk−1
i,K ) log uε

i,K ≤ −ρ
(
HS(u

ε) − HS(u
k−1)

)
.

For I2, we rely on inequality (21):

I2 = −ρ�t
n∑

i=1

∑

σ=K |L∈Eint
τσu

ε
i,σ (pi (u

ε
L) − pi (u

ε
K ))(log uε

i,L − log uε
i,K )

≤ −ρ�t
n∑

i, j=1

∑

σ=K |L∈Eint
τσbi j (u

ε
j,L − uε

j,K )(uε
i,L − uε

i,K )

= −ρ�t
n∑

i, j=1

∑

σ=K |L∈Eint
τσbi jDK ,σu

ε
iDK ,σ u

ε
j .

Finally, using the elementary inequality (a − b)(log a − log b) ≥ 4(
√
a − √

b)2,

I3 = −ρηα�t
n∑

i=1

∑

σ=K |L∈Eint
τσ (uε

i,L − uε
i,K )(log uε

i,L − log uε
i,K )

≤ −4ρηα�t
n∑

i=1

∑

σ=K |L∈Eint
τσ

(
(uε

i,L )1/2 − (uε
i,K )1/2

)2 = −4ρηα�t
n∑

i=1

|(uε
i )
1/2|21,2,T .

Combining these estimates finishes the proof of Lemma 10. ��
We now complete the topological degree argument. Lemma 10 implies that

ε�t
n∑

i=1

‖wε
i ‖21,2,T ≤ ρHS(u

k−1) ≤ HS(u
k−1).

With the choice R := (ε�t)−1/2HS(uk−1)1/2+1 we find thatwε /∈ ∂ZR and deg(I −
F, ZR, 0) = 1. We conclude that F possesses a fixed point.

3.3 Limit ε → 0

By Lemma 10, there exists C > 0, independent of ε, such that

C
n∑

i=1

∑

K∈T
m(K )(uε

i,K − 1) ≤ HS(u
ε) ≤ HS(u

k−1).

This gives a uniform discrete L1(�) bound for uε
i . There exists a subsequence (not

relabeled) such that uε
i,K → ui,K as ε → 0 for all i = 1, . . . , n and K ∈ T . Moreover,
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the discrete H1(�) bound for
√

εwε
i implies that εwε

i,K → 0 for i = 1, . . . , n and

K ∈ T . Then the limit ε → 0 in (31) yields the existence of a solution uk :=
(ui,K )i=1,...,n, K∈T to (17). Observing that

n∑

i, j=1

∑

σ∈E
τσbi jDK ,σu

ε
iDK ,σu

ε
j =

∑

σ∈E
τσ (DK ,σu

ε)T B(DK ,σu
ε)

≥
∑

σ∈E
τσ |B1/2DK ,σu

ε|2 = |B1/2uε|21,2,T ,

the same limit in the regularized entropy inequality (32) directly leads to the discrete
entropy inequality (25).

3.4 Discrete Rao entropy inequality

To verify (26), we multiply (17) by �tpi (ukK ), sum over i = 1, . . . , n and K ∈ T ,
and use discrete integration by parts:

n∑

i=1

∑

K∈T
m(K )(uki,K − uk−1

i,K )pi (u
k
K )

= �t
n∑

i=1

∑

K∈T

∑

σ∈EK

τσ

(
uki,σDK ,σ pi (u

k) + ηαDK ,σu
k
i

)
pi (u

k
K )

= −�t
n∑

i=1

∑

σ∈Eint
τσu

k
i,σ (Dσ pi (u

k))2 − ηα�t
n∑

i, j=1

∑

σ∈Eint
τσbi jDK ,σu

k
i DK ,σu

k
j

= −�t
n∑

i=1

∑

σ∈Eint
τσu

k
i,σ (Dσ pi (u

k))2 − ηα�t
n∑

i=1

|(B1/2uk)i |21,2,T .

By the definition of pi (uk) and the symmetry and positive semidefiniteness of B, the
left-hand side becomes

n∑

i=1

∑

K∈T
m(K )(uki,K − uk−1

i,K )pi (u
k
K )

=
n∑

i, j=1

∑

K∈T
m(K )bi j (u

k
i,K − uk−1

i,K )ukj,K

= 1

2

n∑

i, j=1

∑

K∈T
m(K )bi j

(
uki,K u

k
j,K − uk−1

i,K uk−1
j,K + (uki,K − uk−1

i,K )(ukj,K − uk−1
j,K )

)

≥ HR(uk) − HR(uk−1).
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We infer the monotonicity of k �→ HR(uk). After summation over k = 1, . . . , j and
a renaming of the indices k and j , this shows (26) and thus completes the proof of
Theorem 4.

3.5 Positivity

Thanks to the artificial diffusion, the discrete solution uki,K is positive for i = 1, . . . , n
and K ∈ T . Indeed, let i ∈ {1, . . . , n} be fixed and assume that there exists K ∈ T
such that uki,K = 0. We infer from I3 in Section 3.2 that

ηα(uε
i,L − uε

i,K )(log uε
i,L − log uε

i,K ) ≤ C(�t, u0),

where L ∈ K is a neighboring cell of K . If uki,L > 0, the limit ε → 0 in the previous

estimate leads to a contradiction since log uε
i,K diverges. Therefore, uki,L = 0. Let

L ′ ∈ T be a neighboring cell of L . Arguing in a similar way as before, it follows
that uki,L ′ = 0. Repeating this argument for all cells in T , we find that uki,K = 0

for all K ∈ T . This implies that
∑

K∈T m(K )uki,K = 0 and, by mass conservation,
∑

K∈T m(K )u0i,K = 0, which contradicts the positivity of the L1(�) norm of u0 in
Hypothesis (H1).

4 Convergence

In this section, we prove Theorem 5, that is, we show the asserted convergence of the
numerical scheme. Uniform estimates are derived from the entropy inequalities (25)
and (26). Lemma 16 in the appendix shows that |̂uk | ≤ λ−1|B1/2uk |, where we recall
that ûk = PL⊥uk . Thus, we obtain a uniform estimate for ûk in the seminorm | · |1,2,T .
Moreover, since bii > 0 and bi j ≥ 0 for all i, j (cf. Hypothesis (H3)), estimate (26)
provides a uniform bound for uk in the discrete L2(�) norm. Hence, there exists a
constant C > 0 which is independent of η = max{�x,�t} such that

NT∑

k=1

�t
(‖ûk‖21,2,T + ‖B1/2uk‖21,2,T

) + ηα

NT∑

k=1

�t |(uk)1/2|21,2,T ≤ C, (33)

max
k=1,...,NT

‖uk‖0,2,T +
k∑

j=1

�t
n∑

i=1

∑

σ∈Eint
τσu

j
i,σ |Dσ (Bu j )i |2 ≤ C . (34)

4.1 Compactness properties

We first prove a full gradient bound with a negative power of η on the right-hand side.
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Lemma 11 There exists C = C(ζ ) > 0 independent of η such that

N∑

k=1

�t |uki |21,4/3,T ≤ Cη−α,

N∑

k=1

�t |uki |21,1,T ≤ Cη−α.

Proof By the mesh regularity (14) and property (15),

∑

σ∈EK

m̃(σ )dσ

m(K )
≤

∑

σ∈EK

m̃(σ )d(xK , σ )

ζm(K )
≤ d

ζ
. (35)

This yields, using Hölder’s inequality and the L2(�) bound (34) for uki ,

|uki |4/31,4/3,T =
∑

σ∈Eint
m̃(σ )dσ

∣
∣
∣
∣
uki,L − uki,K

dσ

∣
∣
∣
∣

4/3

=
∑

σ∈Eint
m̃(σ )d−1/3

σ

∣
∣(uki,L)1/2 − (uki,K )1/2

∣
∣4/3

∣
∣(uki,L)1/2 + (uki,K )1/2

∣
∣4/3

≤
( ∑

σ∈Eint
m̃(σ )d−1

σ

(
(uki,L)1/2 − (uki,K )1/2

)2
)2/3

×
( ∑

σ∈Eint
m̃(σ )dσ

(
(uki,L)1/2 + (uki,K )1/2

)4
)1/3

≤ C |(uki )1/2|4/31,2,T

( ∑

K∈T
m(K )(uki,K )2

∑

σ∈EK

m̃(σ )dσ

m(K )

)1/3

≤ C(ζ )|(uki )1/2|4/31,2,T ‖uki ‖2/30,2,T .

Taking the exponent 3/2, multiplying by �t , and summing over k = 1, . . . , N proves
the first inequality. The second inequality follows along the same lines (or by Hölder’s
inequality). ��
Lemma 12 There exists C = C(ζ ) > 0 independent of η such that

N∑

k=1

�t‖uki,σ (B∇Dûk)i‖20,4/3,T ≤ C .

Proof We infer from the definition of the discrete gradient and Hölder’s inequality
that

‖uki,σ (B∇D ûk)i‖4/30,4/3,T

=
∑

K∈T

∑

σ∈Eint,K
m(TK ,σ )(uki,σ )4/3

∣
∣
∣
∣

m̃(σ )

m(TK ,σ )
DK ,σ (Bûk)i

∣
∣
∣
∣

4/3
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=
∑

K∈T

∑

σ∈Eint,K
m(TK ,σ )1/3(uki,σ )2/3

m̃(σ )4/3

m(TK ,σ )2/3

∣
∣(uki,σ )1/2DK ,σ (Bûk)i

∣
∣4/3

≤
( ∑

K∈T

∑

σ∈Eint,K
m(TK ,σ )(uki,σ )2

)1/3( ∑

K∈T

∑

σ∈Eint,K

m̃(σ )2

m(TK ,σ )
uki,σ

∣
∣DK ,σ (Bûk)i

∣
∣2

)2/3
.

(36)

Because of m(TK ,σ ) = m̃(σ )dσ /d for σ ∈ Eint,K , mesh regularity (14), and property
(15), we find for the first factor that

∑

K∈T

∑

σ∈Eint,K
m(TK ,σ )(uki,σ )2 ≤ C(ζ )

∑

K∈T

( ∑

σ∈Eint,K
m̃(σ )d(xK , σ )

)

(uki,K )2

≤ C(ζ )
∑

K∈T
m(K )(uki,K )2 = C(ζ )‖ui‖20,2,T , (37)

where we also used (24). The second factor on the right-hand side of (36) becomes

∑

K∈T

∑

σ∈Eint,K

m̃(σ )2

m(TK ,σ )
uki,σ

∣
∣DK ,σ (Bûk)i

∣
∣2 = d

∑

K∈T

∑

σ∈Eint,K
τσu

k
i,σ

∣
∣DK ,σ (Bûk)i

∣
∣2.

We take (36) to the power 3/2, multiply by �t , and sum over k = 1, . . . , N :

N∑

k=1

�t‖uki,σ (B∇Dûk)i‖20,4/3,T

≤ C max
k=1,...,N

‖uki ‖20,2,T
N∑

k=1

�t
∑

σ∈Eint
τσu

k
i,σ |Dσ (Bûk)i |2 ≤ C,

where the uniform bound follows from (34). ��
For the compactness argument, we need an estimate for the discrete time derivative,

which is defined by

∂�t
t vk = vk − vk−1

�t
for v ∈ VT ,�t , k = 1, . . . , N .

Lemma 13 (Discrete time derivative) There exists a constant C = C(ζ ) > 0 indepen-
dent of η such that

N∑

k=1

�t‖∂�t
t uk‖2−1,4,T ≤ C .

123



974 K. Hopf, A. Jüngel

Proof Let φ ∈ VT be such that ‖φ‖1,4,T = 1. We multiply (17) by φK , sum over
K ∈ T , apply discrete integration by parts, and use Hölder’s inequality:

∣
∣
∣
∣

∑

K∈T

m(K )

�t
(uki,K − uk−1

i,K )φK

∣
∣
∣
∣

=
∣
∣
∣
∣ −

∑

σ∈Eint
τσu

k
i,σDK ,σ pi (u

k)DK ,σ φ − ηα
∑

σ∈Eint
τσDK ,σu

k
i DK ,σ φ

∣
∣
∣
∣

≤ C‖uki,σ (B∇Dûk)i‖0,4/3,T |φ|1,4,T + ηα|uki |1,4/3,T |φ|1,4,T .

Then we infer from Lemmas 11 and 12 that

N∑

k=1

�t

∥
∥
∥
∥
uki − uk−1

i

�t

∥
∥
∥
∥

2

−1,4,T
≤ C(ζ ) + C(ζ )ηα,

which concludes the proof. ��
The solution uk ∈ VT to (17) refers to a fixed mesh. For each m ∈ N let Tm

be a spatial mesh of size �xm such that the family {Tm}m∈N satisfies the regularity
property (14) for a fixed ζ > 0 that is independent of m. For a time step size �tm ,
denote by Dm the space-time mesh determined by (Tm,�tm). Let �xm and �tm be
chosen in such a way that the mesh size ηm = max{�xm,�tm} of Dm converges to
zero as m → ∞, and set Nm = T /�tm . Let um = (um,1, . . . , um,n) be defined as
the piecewise constant function um(x, t) = ukK for (x, t) ∈ K × [tk−1, tk), where
uk is a solution to (17) on the mesh Dm , K ∈ Tm , and k = 1, . . . , Nm , and set
u0m = (u0m,i )

n
i=1, where u0m,i (x) := u0i,K (x) for x ∈ K . Notice that u0m → uin in

L2(�) as m → ∞. Furthermore, we introduce the function um,σ := (um,i,σ )ni=1
defined by um,i,σ (x, t) = uki,σ for (x, t) ∈ TK ,σ × [tk−1, tk), where K ∈ Tm , σ ∈ Em ,
and k = 1, . . . , Nm . This function is piecewise constant on the dual mesh.

Let φ ∈ VTm be such that ‖φ‖1,4,Tm = 1 and let ûm = PL⊥um . We write (Pi j ) for
the matrix associated to PL⊥ . Then

∣
∣
∣
∣

∑

K∈Tm
m(K )∂

�tm
t ûm,i |KφK

∣
∣
∣
∣ =

∣
∣
∣
∣

∑

K∈Tm

n∑

j=1

m(K )

�tm
Pi j (u

k
j,K − uk−1

j,K )φK

∣
∣
∣
∣

≤ C‖∂�tm
t ukm‖−1,4,T ‖φ‖1,4,Tm ≤ C .

Together with estimate (33), this implies that

Nm∑

k=1

�tm‖∂�tm
t ûkm‖2−1,4,Tm ≤ C,

Nm∑

k=1

�tm‖ûkm‖21,2,Tm ≤ C .

It is shown in [37, Sec. 6.1] that the discrete norms ‖ · ‖1,2,Tm and ‖ · ‖−1,4,Tm satisfy
the assumptions of the compactness result in [28, Theorem 3.4], which we recall
in Appendix B for convenience. More precisely, by Proposition 18, there exists a
subsequence, which is not relabeled, such that ûm → v strongly in L2(�T ) asm → ∞
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for some v ∈ L2(�T ). Moreover, up to a subsequence, we have um⇀u weakly in
L2(�T ) and consequently ûm = PL⊥um⇀PL⊥u = û weakly in L2(�T ). This shows
that û = v.

Estimate (33) implies that ym := ∇mûm is uniformly bounded in L2(�T ). Hence,
there exists a subsequence (not relabeled) such that ym⇀y weakly in L2(�T ). We
conclude as in [10, Lemma 4.4] that y = ∇û. We summarize:

um⇀u, ym⇀y = ∇û weakly in L2(�T ). (38)

These convergence results are not sufficient to pass to the limit in the term
um,i,σ ∇m(Bum)i . The idea is to embed the problem in the larger space of Young mea-
sures. Let P(W ) be the space of probability measures on W := R

n≥ × (L⊥)d . Since
the sequences (um) and (ym) are bounded in L2(�T ), there exists a subsequence (not
relabeled) and a parametrized probability measure μ = (μx,t ) ∈ L∞

w (�T ;P(W ))

such that the following holds (cf. [2], [44, Theorem 6.2]): If f ∈ C(W ) and if the
sequence ( f (um, ym)) is equi-integrable, then its weak limit, which we denote by
f (um, ym), exists and satisfies

f (um, ym)(x, t) = 〈μx,t , f (s, p)〉 for a.e. (x, t) ∈ �T .

In the above reasoning T ∈ (0,∞) was arbitrary. Hence, a diagonal argument allows
us to choose μ independent of T ∈ (0,∞) such that μ ∈ L∞

w (� × (0,∞);P(W ))

and the weak convergences (38) hold for all T > 0. As a consequence,

u = 〈μ, s〉, û = 〈μ, ŝ〉, y = 〈μ, p〉 a.e. in � × (0,∞),

where ŝ = PL⊥s.

4.2 Convergence of the scheme

We show that μ is a dissipative measure-valued solution in the sense of Definition 1
satisfying (9). The proof adapts the strategy of [10] to the present situation, where only
a weaker form of convergence is known to hold. Let T ∈ (0,∞), let i ∈ {1, . . . , n},
ψ ∈ C∞

0 (� × [0, T )), and let ηm = max{�xm,�tm} be small enough such that
supp(ψ) ⊂ {x ∈ � : d(x, ∂�) > ηm} × [0, T ). We introduce

Fm
10 = −

∫ T

0

∫

�

um,i∂tψdxdt −
∫

�

u0m,i (x)ψ(x, 0)dx,

Fm
20 =

∫ T

0

∫

�

um,i,σ ∇m(Bûm)i · ∇ψdxdt .

The convergence results established above imply that, as m → ∞,

Fm
10 → −

∫ T

0

∫

�

ui∂tψdxdt −
∫

�

uini (x)ψ(x, 0)dx .
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The limit in Fm
20 is more involved. First, Lemma 12 implies that the term

um,i,σ (B∇mûm)i is weakly relatively compact in L1(�T ) and thus weakly convergent
in L1(�T ) along a subsequence. Second, we assert that

um,σ − um → 0 in L1(�T ) as m → ∞. (39)

We proceed as in [43, Section 4.2], but since we cannot control the full gradient, we
need to rely on the artificial diffusion. It follows from m(TK ,σ ) = d2σ τσ /d that

‖ukm,i,σ − ukm,i‖0,1,Tm ≤ C
∑

K∈Tm

∑

σ∈Eint,K
m(TK ,σ )|ukm,i,σ − ukm,i,K |

≤ C
∑

K∈Tm

∑

σ∈Eint,K
m(TK ,σ )|ukm,i,L − ukm,i,K |

≤ C
∑

σ=K |L∈Eint
m(TK ,σ )|ukm,i,L − ukm,i,K |

≤ C
∑

σ=K |L∈Eint
d2σ τσ |ukm,i,L − ukm,i,K | ≤ Cηm |ukm,i |1,1,Tm ,

where the constant C > 0 may change from line to line. We take the square, multiply
by �tm , sum over k = 1, . . . , Nm , and use Lemma 11:

Nm∑

k=1

�tm‖ukm,i,σ − ukm,i‖20,1,Tm ≤ Cη2−α
m .

As m → +∞, the right-hand side goes to zero provided that α < 2. Hence,
um − um,σ → 0 strongly in L2(0, T ; L1(�)), which implies (39). We note that,
by interpolation, the strong convergence (39) together with the fact that the sequence
(um − um,σ )m is uniformly bounded in L2(�T ) implies that

um − um,σ → 0 strongly in L p(�T ) for every p < 2.

We now assert that, as a consequence of (39), the sequence (um,σ ,∇mûm) gen-
erates the same Young measure μ as (um,∇mûm) (after possibly passing to another
subsequence). Indeed, since μ is uniquely determined by its action on C0-functions,
to verify the assertion, it suffices to show that

lim
m→∞

∫

�T

(
f (um,σ ,∇mûm) − f (um,∇mûm)

)
φdxdt = 0

for all f ∈ C0(W ) and φ ∈ L1(�T ). This follows from (39) and the dominated
convergence theorem, because functions f ∈ C0(W ) are uniformly continuous. Since
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um,i,σ (B∇mûm)i is weakly convergent in L1(�T ), we thus infer that

um,i,σ (B∇mûm)i (x, t) =
∫

W
si (Bp)idμx,t (s, p) = 〈μx,t , si (Bp)i 〉.

We conclude that

Fm
20 →

∫ T

0

∫

�

〈μx,t , si (Bp)i 〉dxdt .

Let ψk
K = ψ(xK , tk) and multiply (17) by �tmψk−1

K and sum over K ∈ Tm ,
k = 1, . . . , Nm . This gives Fm

1 + Fm
2 + Fm

3 = 0, where

Fm
1 =

Nm∑

k=1

∑

K∈Tm
m(K )(uki,K − uk−1

i,K )ψk−1
K ,

Fm
2 = −

Nm∑

k=1

�tm
∑

K∈Tm

∑

σ∈Eint,K
τσu

k
i,σDK ,σ (Buk)iψ

k−1
K ,

Fm
3 = −ηα

m

Nm∑

k=1

�tm
∑

K∈Tm

∑

σ∈Eint,K
τσDK ,σu

k
i ψ

k−1
K .

We infer from the Cauchy–Schwarz inequality and Lemma 11 that

|Fm
3 | ≤ ηα

m

( Nm∑

k=1

�tm |uki |21,4/3,Tm
)1/2( Nm∑

k=1

�tm |ψk−1|21,4,Tm
)1/2

≤ Cη
α/2
m → 0

as m → ∞. We claim that Fm
j0 − Fm

j → 0 for j = 1, 2.
For the limit of Fm

10 − Fm
1 , we use as in the proof of [10, Theorem 5.2] discrete

integration by parts in time:

Fm
1 = −

Nm∑

k=1

∑

K∈Tm
m(K )uki,K (ψk

K − ψk−1
K ) −

∑

K∈Tm
m(K )u0i,Kψ0

K

= −
Nm∑

k=1

∑

K∈Tm

∫ tk

tk−1

∫

K
uki,K ∂tψ(xK , t)dxdt −

∑

K∈Tm

∫

K
u0i,Kψ(xK , 0)dx,

Fm
10 = −

Nm∑

k=1

∑

K∈Tm

∫ tk

tk−1

∫

K
uki,K ∂tψ(x, t)dxdt −

∑

K∈Tm

∫

K
u0i,Kψ(x, 0)dx .
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It follows from the regularity of ψ that

|Fm
10 − Fm

1 | ≤ C(�T )‖uki ‖L∞(0,T ;L2(�))‖ψ‖C2(�T )�tm → 0 as m → ∞.

We deduce from the definition of the discrete gradient that

Fm
20 =

Nm∑

k=1

∫ tk−1

tk

∑

σ∈Eint

m̃(σ )

m(TK ,σ )
uki,σDK ,σ (Bûm)i

∫

TK ,σ

∇ψ · νK ,σdxdt,

Fm
2 =

Nm∑

k=1

∫ tk−1

tk

∑

σ∈Eint

m̃(σ )

dσ

uki,σDK ,σ (Bûm)iDK ,σ ψk−1dt .

This gives

|Fm
20 − Fm

2 | ≤
Nm∑

k=1

∑

σ∈Eint
m̃(σ )uki,σ |DK ,σ (Bûkm)i |

×
∣
∣
∣
∣

∫ tk

tk−1

(
DK ,σ ψk−1

dσ

− 1

m(TK ,σ )

∫

TK ,σ

∇ψ · νK ,σdx

)

dt

∣
∣
∣
∣.

By the proof of Theorem 5.1 in [10], there exists C > 0, independent of ηm , such that

∣
∣
∣
∣

∫ tk

tk−1

(
DK ,σ ψk−1

dσ

− 1

m(TK ,σ )

∫

TK ,σ

∇ψ · νK ,σdx

)

dt

∣
∣
∣
∣ ≤ C�tmηm,

which shows, using the Cauchy–Schwarz inequality, that

|Fm
20 − Fm

2 | ≤ Cηm

Nm∑

k=1

�tm
∑

σ∈Eint
m̃(σ )uki,σ |Dσ (Bûm)i |

≤ Cηm

Nm∑

k=1

�tm |(Bukm)i |1,2,Tm
( ∑

K∈Tm

∑

σ∈Eint,K
m̃(σ )dσ (uki,σ )2

)1/2

.

We conclude from the Cauchy–Schwarz inequality, estimate (37), and the uniform
bounds (33)–(34) that

|Fm
20 − Fm

2 | ≤ C(ζ )ηm

( Nm∑

k=1

�tm |(Buk)i |21,2,Tm
)1/2( Nm∑

k=1

�tm‖uki ‖20,2,Tm
)1/2

≤ C(ζ )ηm → 0 as m → ∞.

We deduce that Fm
10 + Fm

20 → 0 as m → ∞. Then, because of Fm
1 + Fm

2 + Fm
3 = 0,

Fm
10 + Fm

20 = (Fm
10 − Fm

1 ) + (Fm
20 − Fm

2 ) − Fm
3 → 0 as m → ∞,
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which proves that ui satisfies

∫ T

0

∫

�

ui∂tψdxdt +
∫

�

uini ψ(0)dx =
∫ T

0

∫

�

〈μx,t , si (Bp)i 〉 · ∇ψdxdt .

Hence, in the sense of distributions,

∂t ui = div〈μ, si (Bp)i 〉, ui (0) = uini , i = 1, . . . , n. (40)

4.3 Entropy inequalities

Weverify the entropy inequalities (10) and (11). The definition of u0m and the regularity
uin ∈ L2(�) imply the strong convergence u0m → uin in L2(�) as m → ∞.

Re Shannon: Since (um)m is bounded in L2(�T ), the sequence (hS(um))m ⊂
L1(�T ) is equi-integrable. After passing to a subsequence, we can therefore assume
that (hS(um))m is weakly convergent in L1(�T ), which implies that for a.e. (x, t) ∈
�T ,

〈μx,t , hS(s)〉 = hS(um)(x, t).

The dual mesh allows us to rewrite the Shannon entropy dissipation in (25) as

k∑

j=1

�tm |B1/2u j
m |21,2,Tm =

∫ tk

0

∫

�

|∇m(B1/2um)|2dxdτ.

Given 0 < δ � 1, let m be large enough such that �tm < δ. Then (25) entails for all
t ∈ [δ, T ] that

HS(um(t)) +
∫ t−δ

0

∫

�

|∇m(B1/2um)|2dxdτ ≤ HS(u
0
m). (41)

Next, let ξ ∈ C1
c ([0, T ); R≥)with ξ(0) = 1 and ξ ′ ≤ 0.Wemultiply the last inequality

by the nonnegative function −ξ ′(t) and integrate over t ∈ [δ, T ] :
∫ T

δ

∫

�

(−ξ ′(t))hS(um(t))dxdt +
∫ T

δ

(−ξ ′(t))
∫ t−δ

0

∫

�

|∇m(B1/2ûm)|2dxdτdt
≤ ξ(δ) HS(u

0
m).

We take the lim infm→∞ in the above inequality, where we invoke [44, Theorem 6.11]
for the second term on the left-hand side. This yields

∫ T

δ

(−ξ ′(t))
∫

�

〈μx,t , hS(s)〉dxdt +
∫ T

δ

(−ξ ′(t))
∫ t−δ

0

∫

�

〈μx,τ , |B1/2 p|2〉dxdτdt
≤ ξ(δ)HS(u

in).
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As δ ↓ 0, we infer

∫ T

0
(−ξ ′(t))

∫

�

〈μx,t , hS(s)〉dxdt +
∫ T

0
(−ξ ′(t))

∫ t

0

∫

�

〈μx,τ , |B1/2 p|2〉dxdτdt
≤ HS(u

in).

This is true for all ξ ∈ C1
c ([0, T ); R≥) with ξ(0) = 1 and ξ ′ ≤ 0. We then choose

ξ = ξ� with (ξ�)� a suitable approximation of the Heaviside-type function 1[0,t0] and
let � → ∞ to deduce (10) at time t = t0 for a.e. t0 ∈ (0, T ].

Re Rao: Next, we verify (11) and the time monotonicity of HR(u). Since (̂um)

converges strongly to û in L2(�T ), we find that

HR(u(t)) = 1

2

∫

�

|B1/2û(t)|2dx = 1

2
lim

m→∞
∑

K∈Tm
m(K )|B1/2ûm(t)|2

= lim
m→∞ HR(um(t)).

Together with the non-increase of [0,∞) � t �→ HR(um(t)) (cf. Theorem 4), this
implies that the mapping t �→ HR(u(t)) is nonincreasing. It remains to show (11). To
this end, we let 0 < δ � 1 and take m large enough so that �tm < δ. Then it follows
from the discrete Rao entropy inequality (26) that

HR(um(t)) +
n∑

i=1

∫ t−δ

0

∫

�

um,i,σ |(B∇mûm)i |2dxdτ ≤ HR(u0m).

To estimate below the lim infm→∞ of the second term on the left-hand side, we recall
that μ is also the Young measure associated with (um,σ ,∇mûm). We therefore infer
from [44, Theorem 6.11] for every i ∈ {1, . . . , n}

∫ t−δ

0

∫

�

〈μx,τ , si |(Bp)i |2〉dxdτ ≤ lim inf
m→∞

∫ t−δ

0

∫

�

um,i,σ |(B∇mûm)i |2dxdτ.

Thus, in the limit m → ∞ we deduce

HR(u(t)) +
n∑

i=1

∫ t−δ

0

∫

�

〈μx,τ , si |(Bp)i |2〉dxdτ ≤ HR(uin),

and sending δ ↓ 0 we obtain (11).

4.4 Separation of the ŝ-component

For simplicity, we only prove identity (9) in the case where f = f (s) ∈ C0(R
n≥). Let

g(s1, s2) = f (s1 + s2), defined on the convex set

Q = {(s1, s2) ∈ L⊥ × L : s1 + s2 ∈ R
n≥}.
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Since the sequence (̂um) converges strongly in L2(�T ), the Young measure μ̃, gen-
erated by (PL⊥um, PLum), has the form μ̃x,t = δû(x,t) ⊗ νx,t , where ν = (νx,t ) is
the Young measure generated by the sequence (PLum) [44, Prop. 6.13]. Hence, by
construction of μ and μ̃,

∫

R
n≥
f (s)dμx,t (s) =

∫

Q
g(s1, s2)dμ̃x,t (s1, s2) =

∫

Q
g(̂u(x, t), s2)dμ̃x,t (s1, s2)

=
∫

Q
f (̂u(x, t) + s2)dμ̃x,t (s1, s2).

It follows that 〈μx,t , f (s)〉 = 〈μ̃x,t , f (̂u(x, t) + s2)〉 for all f = f (s) ∈ C0(R
n≥) and

a.a. (x, t).

4.5 Time regularity

The time regularity for the density part u = 〈μ, s〉 of the barycenter ofμ follows from
the continuity equation (40). To see this, we first note that due to bii > 0, bi j ≥ 0,
and property (9),

〈

μx,t ,

n∑

i=1

s2i

〉

≤ C
〈
μx,t , |B1/2̂s|2〉 = C |B1/2û(x, t)|2 = ChR(u(x, t)) (42)

for a.e. (x, t) ∈ � × (0,∞). Then we use Jensen’s inequality to estimate for i =
1, . . . , n,

‖〈μ, si (Bp)i 〉‖2L2(0,∞;L4/3(�))
≤

∫ ∞

0

( ∫

�

〈μx,t , |si (Bp)i |4/3〉dx
)3/2

dt

≤
∫ ∞

0

( ∫

�

〈μx,t , s
2
i 〉1/3〈μx,t , si |(Bp)i |2〉2/3dx

)3/2

dt

≤
∫ ∞

0

( ∫

�

〈μx,t , s
2
i 〉dx

)1/2 ∫

�

〈μx,t , si |(Bp)i |2〉dxdt

≤
(

ess sup0<t<∞
∫

�

〈μx,t , s
2
i 〉dx

)1/2(∫ ∞

0

∫

�

〈μx,t , si |(Bp)i |2〉dxdt
)

,

where Hölder’s inequality was applied several times. It therefore follows from (40)
that

‖∂t ui‖L2(0,∞;W 1,4(�)∗) ≤ ‖〈μ, si (Bp)i 〉‖L2(0,∞;L4/3(�)) ≤ CHR(uin),

where the last step also uses (11) and (42). This finishes the proof of Theorem 5.

Remark 14 (Curved domains) We claim that Theorems 4 and 5 also hold for curved
Lipschitz domains � ⊂ R

d . The triangulation then contains control volumes with
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Fig. 1 Triangulation of a curved
domain

curved segments that are part of ∂�. The analysis of this section is still possible, since
we consider no-flux boundary conditions and no boundary values need to be defined.
The analysis has to be adapted in two points. First, the convergence of the scheme is
typically proved on polygonal meshes and the error between the curved cell and the
polygonal cell (which is of order (�x)d+1) needs to be taken into account. Second,
as the compactness of the approximate sequence has been established for polygonal
domains [28], the error between the approximate sequence and its extension by zero
to the polygonal domain has to be estimated. In two space dimensions, it is of order
�x ; see [42, Prop. 4.14] for details. The drawback of this approach is that one has to
perform numerical integrations over the curved elements, which may be cumbersome
in particular in three space dimensions.

Here we report on the simple approach of [21]. The idea is to cover� by additional
control volumes and to estimate the integral error. To simplify the presentation, let
� ⊂ R

2 and let T be a sufficiently fine triangulation of � into triangles. To each cell
with two vertices on ∂�, we add the reflected triangle to the triangulation such that
� ⊂ ∪K∈T ∗K , where T ∗ consists of all cells K ∈ T and the associated reflected
cells Kr with nonempty intersection with �; see Figure 1. Denoting by ωr = Kr ∩ �

if Kr ∩ � �= ∅ and ωc = K \ � if Kr ∩ � = ∅, the domain splits into

� = �h ∪ �r \ �c :=
( ⋃

K∈T
K

)

∪
(⋃

ωr

ωr

)

\
( ⋃

ωc

ωc

)

.

We can perform the numerical analysis on VT ∗ as in Sections 3 and 4. For the conver-
gence of the scheme, we need to show that the difference of the integrals over �h and
� vanishes when ηm → 0. The difference consists of two contributions: the integral
over �r and the integral over �c. We illustrate the convergence for the integral

∣
∣
∣
∣

∫

�r

um,i,σ ∇m(Bûm)i · ∇ψdx

∣
∣
∣
∣

≤ C
∑

ωr

m(ωr )‖um,i,σ ‖0,∞,ωr ‖∇m(Bûm)i‖0,∞,ωr ,
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where ψ is a smooth test function. By the inverse inequality [15, Section 21.1]

‖v‖0,∞,ωr ≤ ‖v‖0,∞,Kr ≤ C(�x)−d/2‖v‖0,2,Kr ,

the bound m(ωr ) ≤ C(�x)d+1 (which is valid under certain regularity conditions on
the mesh), and the Cauchy–Schwarz inequality, we have

∣
∣
∣
∣

∫

�r

um,i,σ ∇m(Bûm)i · ∇ψdx

∣
∣
∣
∣

≤ C�x

( ∑

Kr

‖um,i,σ ‖20,2,Kr

)1/2( ∑

Kr

‖∇m(Bûm)i‖20,2,Kr

)1/2

≤ C�x → 0 as η → 0,

taking into account the uniform bounds from (25) and (26). In a similar way, the
integral over �c tends to zero as η → 0.

5 Stability

In this section, we prove Theorem 7. Let μ be a dissipative measure-valued solution
and let v ∈ C1(�T ) be a positive solution of (4), (2).We introduce the relative Shannon
and Rao entropies by, respectively,

Hmv
S (u(t)|v(t)) =

n∑

i=1

∫

�

(〈μx,t , h(si )〉 − h(vi (x, t)) − h′(vi (x, t)) · (ui − vi )(x, t)
)
dx,

=
∫

�

n∑

i=1

(〈μx,t , si log si 〉 − ui log vi − (ui − vi )
)
dx ≥ 0,

HR(u(t)|v(t)) = 1

2

∫

�
|B1/2(u − v)(x, t)|2dx ≥ 0,

where h(z) = z(log z−1)+1 for z ≥ 0. We further define the usual relative Shannon
entropy HS(u|v) = ∫

�

∑n
i=1

(
ui log ui − ui log vi − (ui − vi )

)
dx . Furthermore, we

set

Hmv
rel (u|v) = Hmv

S (u|v) + HR(u|v),

Hrel(u|v) = HS(u|v) + HR(u|v).

We first compute the relative entropy inequalities.

Lemma 15 (Relative entropy inequalities) Suppose that � has a Lipschitz boundary.
Let μ be a dissipative measure-valued solution, u := 〈μ, s〉, and let v ∈ C1(�T ) be a
positive solution to (4), (2) for t ∈ (0, T ) (in the weak sense). Then, for a.e. t ∈ (0, T ),
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Hmv
S (u(t)|v(t)) +

∫ t

0

∫

�

〈
μx,τ , |B1/2(p − ∇v)|2〉dxdτ

+
∫ t

0

∫

�

〈

μx,τ ,

n∑

i=1

(vi − si )∇ log vi · (B(p − ∇v))i

〉

dxdτ ≤ HS(u
in|v(0)),

(43)

HR(u(t)|v(t)) +
∫ t

0

∫

�

n∑

i=1

〈μx,τ , si |(B(p − ∇v))i |2〉dxdτ

+
∫ t

0

∫

�

〈

μx,τ ,

n∑

i=1

(si − vi )∇(Bv)i · (B(p − ∇v))i

〉

dxdτ ≤ HR(uin|v(0)).

(44)

Proof It follows from (12) that for all i = 1, . . . , n and φ ∈ L2(0, T ;W 1,4(�))

∫ T

0
(∂t ui , φ)W 1,4(�)∗dt = −

∫ T

0

∫

�

〈μx,t , si (Bp)i 〉 · ∇φdxdt, (45)

where (·, ·)W 1,4(�)∗ denotes the duality pairing between W 1,4(�)∗ and W 1,4(�).
Re Shannon: The solution property and positivity of v imply that for every ψ ∈

C1(�T ; R
n),

−
n∑

i=1

∫

�

(∂t log vi )ψidx =
∫

�

n∑

i=1

vi∇(Bv)i · ∇
(

ψi

vi

)

dx

=
∫

�

∇v : ∇(Bψ̂)dx −
n∑

i=1

∫

�

∇(Bv)i · (∇ log vi )ψidx .

Let t ∈ (0, T ) be arbitrary. An integration over τ ∈ (0, t) and an approximation
argument imply that for all ψ ∈ L2(�T ; R

n) with ∇Bψ̂ ∈ L2(�T ),

−
n∑

i=1

∫ t

0

∫

�

(∂t log vi )ψidxdτ =
∫ t

0

∫

�

∇v : ∇Bψ̂dxdτ

−
n∑

i=1

∫ t

0

∫

�

∇(Bv)i · (∇ log vi ) ψidxdτ.

The choice ψ = u = 〈μ, s〉 and the property ∇Bû = B〈μ, p〉 = 〈μ, Bp〉 lead to

−
n∑

i=1

∫ t

0

∫

�
(∂t log vi )uidxdτ

=
∫ t

0

∫

�
∇v : ∇Bûdxdτ −

n∑

i=1

∫ t

0

∫

�
∇(Bv)i · (∇ log vi )uidxdτ
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=
∫ t

0

∫

�
〈μx,τ , B1/2∇v : B1/2 p〉dxdτ −

n∑

i=1

∫ t

0

∫

�
〈μx,τ , si∇ log vi · ∇(Bv)i 〉dxdτ.

Next, we use φi = 1[0,t] log vi as a test function in the weak formulation (45), multiply
by −1, and sum over i = 1, . . . , n:

−
n∑

i=1

∫ t

0
(∂t ui , log vi )W 1,4(�)∗dτ =

n∑

i=1

∫ t

0

∫

�

〈μx,τ , si (Bp)i 〉 · ∇ log vidxdτ.

We add the previous two equations:

−
∫ t

0

d

dt

∫

�

n∑

i=1

(log vi )uidxdτ =
∫ t

0

∫

�
〈μx,τ , B1/2∇v : B1/2 p〉dxdτ

+
∫ t

0

∫

�
〈μx,τ ,

n∑

i=1

si∇ log vi · (B(p − ∇v))i 〉dxdτ.

Combined with the identity

∫ t

0

∫

�

〈μx,τ , B
1/2∇v : B1/2 p〉dxdτ −

∫ t

0

∫

�

〈μx,τ , |B1/2∇v|2〉dxdτ

−
∫ t

0

∫

�

〈

μx,τ ,

n∑

i=1

vi∇ log vi · (B(p − ∇v))i

〉

dxdτ = 0,

the Shannon entropy inequality (10), and mass conservation (d/dt)
∫
�

vi dx = 0, this
gives (43).

Re Rao: Since vi∇(Bv)i ∈ L2(�T ), we can test the equation for v with 1[0,t] B(v−
u) ∈ L2(0, T ; H1(�)). This yields

∫ t

0

∫

�

∂tv
T B(v − u)dxdτ = −

∫ t

0

∫

�

n∑

i=1

vi∇(Bv)i · ∇(B(v − u))idxdτ.

Next, we choose φ = 1[0,t](Bv)i in equation (45) for u and sum over i = 1, . . . , n:

−
∫ t

0
(∂t u, Bv)W 1,4(�)∗dτ =

∫ t

0

∫

�

n∑

i=1

〈μx,τ , si (Bp)i 〉 · (B∇v)idxdτ.

Adding to these identities the Rao entropy inequality (11) and rearranging terms gives

1

2

∫ t

0

d

dt

∫

�

(u − v)T B(u − v)dxdτ

≤ −
∫ t

0

∫

�

n∑

i=1

〈μx,τ , si |(B(p − ∇v))i |2〉dxdτ
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−
∫ t

0

∫

�

n∑

i=1

〈μx,τ , (si − vi )(B∇v)i · (B(p − ∇v))idxdτ,

which implies (44), concluding the proof. ��
We proceed with the proof of Theorem 7. To this end, we estimate the last integrals

on the left-hand sides of (43) and (44). We infer from Young’s inequality that

∣
∣
∣
∣

n∑

i=1

(vi − si )∇ log vi · (B(p − ∇v))i

∣
∣
∣
∣

≤ 1

4
|B1/2(p − ∇v)|2 + C

n∑

i=1

|∇ log vi |2(si − vi )
2

≤ 1

4
|B1/2(p − ∇v)|2 + C |s − v|2, (46)

∣
∣
∣
∣

n∑

i=1

(si − vi )∇(Bv)i · (B(p − ∇v))i

∣
∣
∣
∣

≤ 1

4
|B1/2(p − ∇v)|2 + C

n∑

i=1

|∇(Bv)i |2(si − vi )
2

≤ 1

4
|B1/2(p − ∇v)|2 + C |s − v|2, (47)

where C > 0 depends on the L∞(�T ) norms of |∇ log vi | and ∇(Bv)i . Thus, adding
the relative entropy inequalities (43) and (44), the first terms on the right-hand sides
of (46) and (47) can be absorbed by the left-hand side of (43) such that

Hmv
rel (u(t)|v(t)) +

∫ t

0

∫

�

〈

μx,τ ,
1

2
|B1/2(p − ∇v)|2

〉

dxdτ

≤ C
∫ t

0

∫

�

〈μx,τ , |s − v|2〉dxdτ + Hrel(u
in|v(0)).

(48)

By property (9), we have |B1/2(u − v)|2 = |B1/2(̂u − v)|2 = 〈μ, |B1/2(s − v)|2〉.
Thus, the coercivity estimate from Lemma 17 in Appendix A implies that

∫

�

〈μx,t , |s − v(x, t)|2〉dx ≤ CHmv
rel (u(t)|v(t)).

We insert this bound into (48) and invoke Gronwall’s inequality to deduce that

Hmv
rel (u(t)|v(t)) +

∫ t

0

∫

�

〈

μx,τ ,
1

2
|B1/2(p − ∇v̂(x, τ ))|2

〉

dxdτ

≤ eCt Hrel(u
in|v(0)) = 0,
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where the last equality follows from v(0) = uin. Hence, μx,t = δv(x,t) ⊗ δ∇v̂(x,t) for
a.e. (x, t) ∈ � × (0, T ), which finishes the proof of Theorem 7.

6 Long-time asymptotics

In this section, we prove Theorem 9. First, we verify that Sm ⊂ L∞(�). Indeed, if
v ∈ Sm, the vector Bv is constant and

∫
�
Bvdx = Bm, which implies that Bv =

(Bm)/|�|. Since the entries of B and the components of v are nonnegative, vi ≤
(Bm)i/(bii |�|) for all i = 1, . . . , n. This proves the claim.

The entropy inequalities (10)–(11) and the bound |〈μ, B1/2 p〉|2 ≤ 〈μ, |B1/2 p|2〉,
which follows from Jensen’s inequality, show that

∫ ∞

0
‖∇(B1/2u)‖2L2(�)

dt < ∞, sup
0<t<∞

‖u(t)‖L2(�) < ∞.

Thus, there exists a sequence (tk) ⊂ (0,∞) with tk → ∞ such that u(tk)⇀u∗
weakly in L2(�) and B1/2u(tk) → B1/2u∗ strongly in L2(�) as k → ∞. Since∫
�
u(tk)dx = m and the sequence (∇(B1/2u(tk))) converges to zero in the L2(�)

norm, we find that
∫
�
u∗dx = m and ∇(B1/2u∗) = 0. This implies that u∗ ∈ Sm.

Moreover, we deduce from the strong convergence that

lim
k→∞ HR(u(tk)|u∗) = 1

2
lim
k→∞ ‖B1/2(u(tk) − u∗)‖2L2(�)

= 0.

We assert that t �→ HR(u(t)|u∗) is nonincreasing for a.e. t > 0. Indeed, we know
fromSection 4.3 that t �→ HR(u(t)) is nonincreasing. Furthermore, since

∫
�
u(t)dx =

∫
�
u∗dx and Bu∗ is a constant vector, we have

∫
�
u(t)T Bu∗dx = ∫

�
u(s)T Bu∗dx

for all s, t ≥ 0. Hence, for t ≥ s,

HR(u(t)|u∗) = HR(u(t)) + HR(u∗) −
∫

�

u(t)T Bu∗dx

≤ HR(u(s)) + HR(u∗) −
∫

�

u(s)T Bu∗dx = HR(u(s)|u∗),

proving the claim.
We conclude that HR(u(t)|u∗) ≤ HR(u(tk)|u∗) → 0 for t ≥ tk → ∞. It follows

from the positive definiteness of B1/2 on L⊥ that

‖û(t) − û∗‖L2(�) ≤ C‖B1/2(̂u(t) − û∗)‖L2(�) ≤ 2HR(u(t)|u∗) → 0

as t → ∞. This finishes the proof of Theorem 9.
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Appendix A: Auxiliary results

Let the matrix B = (bi j ) ∈ R
n×n be symmetric positive semidefinite. Then the square

root of B exists and zT Bz = |B1/2z|2 for z ∈ R
n . Let PL and PL⊥ be the projection

matrices onto L = ker B = ker B1/2 �= {0} and L⊥ = ran B, respectively.

Lemma 16 Let λ > 0 be the smallest positive eigenvalue of B1/2. Then

|PL⊥ z| ≤ λ−1|B1/2z| for z ∈ R
n .

Proof Let z ∈ R
n and ẑ = PL⊥ z. By definition of λ, |B1/2̂z| ≥ λ|̂z|. Then the

conclusion follows from B1/2̂z = B1/2z − B1/2PLz = B1/2z. ��
We introduce the relative entropy densities

hS(u|v) =
n∑

i=1

(
h(ui ) − h(vi ) − h′(vi )(ui − vi )

=
n∑

i=1

(

ui log
ui
vi

− (ui − vi )

)

,

hR(u|v) = 1

2
(u − v)T B(u − v) = 1

2
|B1/2(u − v)|2, u, v ∈ [0,∞)n,

where h(z) = z(log z − 1) + 1. We denote by ‖A‖2 the norm of A induced by the
Euclidean norm | · | in R

n .

Lemma 17 (Coercivity) Let a0 = 1
2 mini∈{1,...,n} bii > 0, a1 = ‖B‖2, and let K ≥ 1.

Then there exists a constant c∗ > 0, only depending on a0, a1/a0, and M, such that
for all u, v ∈ R

n≥ with 0 < |v| ≤ M,

hS(u|v) + hR(u|v) ≥ c∗|u − v|2.

Proof By assumption, we have 1
2u

T Bu ≥ 1
2

∑n
i=1 bii u

2
i ≥ a0|u|2 for all u ∈ R

n≥. If
(a0/2)|u| ≥ a1|v| then

hR(u|v) = 1

2
uT Bv − vT Bu + 1

2
vT Bv ≥ a0|u|2 − a1|u||v| + a0|v|2

≥ a0|u|2 − a0
2

|u|2 + a0|v|2 = a0
2

|u|2 + a0|v|2 ≥ a0
3

|u − v|2.

Next let (a0/2)|u| < a1|v|. We find for f (z) = z log z that

ui log
ui
vi

− (ui − vi ) = f (ui ) − f (vi ) − f ′(vi )(ui − vi )

= (ui − vi )

∫ 1

0

(
f ′(s(ui − vi ) + vi ) − f ′(vi )

)∣
∣θ
s=0dθ
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= (ui − vi )
2
∫ 1

0

∫ θ

0
f ′′(s(ui − vi ) + vi )dsdθ.

Then we infer from |ui/vi | < 2a1/a0 that

f ′′(s(ui − vi ) + vi ) = 1

vi (s(ui/vi − 1) + 1)
>

1

M(s(2a1/a0 − 1) + 1)

and consequently,

ui log
ui
vi

− (ui − vi ) ≥ (ui − vi )
2

M

∫ 1

0

∫ θ

0

dsdθ

s(2a1/a0 − 1) + 1
,

which shows that hS(u|v) ≥ c1|u − v|2, where

c1 = 1

M
min

i=1,...,n

∫ 1

0

∫ θ

0

dsdθ

s(2a1/a0 − 1) + 1
.

Putting these estimates together and observing that hS(u|v) ≥ 0, hR(u|v) ≥ 0, we
conclude the proof with c∗ = min{a0/3, c1}. ��

Appendix B: A discrete Aubin–Lions compactness result

We here summarize the compactness result [28, Theorem 3.4], which is a basic ingre-
dient in the proof of the convergence of our numerical approximation scheme (cf.
Section 4). We focus on the specific functional setting that is needed for our purpose.
In this setting, the proof of [28, Theorem 3.4] relies on the following two key prop-
erties, whose validity has been verified in the proof of Proposition 9 of [36, Section
6.1]:

(P1) Let (vm)m be a sequence of functions with vm ∈ VTm for all m and such that
supm ‖vm‖1,2,Tm < ∞. Then there exists a function v ∈ L2(�) such that, along
a subsequence, vm → v in L2(�).

(P2) If vm → v in L2(�) and ‖vm‖−1,4,Tm → 0, then v ≡ 0.

Recall that, for a given spatial mesh T and a time step size �t , the discrete function
spaces VT and VT ,�t were defined in Section 2.2. Thanks to (P1) and (P2), the specific
version of Theorem 3.4 in [28], which we rely upon, can be stated as follows.

Proposition 18 (Corollary of Theorem 3.4 in [28]) Let (̂um)m be a sequence of func-
tions such that ûm ∈ VTm ,�tm for all m ∈ N. Suppose that there exists a finite constant
C > 0 such that for all m ∈ N,

Nm∑

k=1

�tm‖ûkm‖21,2,Tm +
Nm∑

k=1

�tm‖∂�tm
t ûkm‖2−1,4,Tm ≤ C .

Then there exists v ∈ L2(0, T ; L2(�)) such that, after passing to a subsequence,
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ûm → v in L2(0, T ; L2(�)) as m → ∞.

The key point which this result addresses, as compared to more classical versions of
the Aubin–Lions lemma, is its ability to handle a dependency of the spatial norms on
the parameter m itself.
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