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Abstract
Earth observation data should inform decision making, but good decisions can only be 
made if the uncertainties in the data are taken into account. Making sense of uncertainty 
information can be difficult, because  uncertainties represent the statistical spread in the 
observations (e.g., expressed as x ± y ), which does not relate directly to one specific use 
case of the data. Here, we propose a Bayesian framework to transform Earth observation 
product uncertainties into actionable information, i.e., estimates of how confident one can 
be in the occurrence of specific events of interest given the data and their uncertainty. We 
demonstrate this framework using two case examples: (i) monitoring drought severity 
based on soil moisture and (ii) estimating coral bleaching risk based on sea surface tem-
perature. In both cases, we show that ignoring uncertainties can easily lead to misinterpre-
tation of the data, making any decisions based on these data unlikely to be the best course 
of action. The proposed framework is general and can, in principle, be applied to a wide 
range of applications. Doing so requires a careful dialogue between data users, to formu-
late meaningful use cases and decision criteria, and data producers, to provide a rigorous 
description of their data and its uncertainties. The next step would then be to confront the 
uncertainty-informed estimates of event probabilities (created by the framework proposed 
here) with the costs and benefits of possible courses of action in order to make the best 
possible decisions that maximize socioeconomic merit.
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Article Highlights

•	 We present a framework to make sense of Earth observation product uncertainties by 
transforming them into event probabilities

•	 We apply this framework to assess the confidence in statements about drought and 
coral bleaching based on Earth observation data

•	 We demonstrate that transforming uncertainties into normalized levels of confidence 
can help make better decisions

1  Introduction

Earth observation (EO) data products are derived from active and passive satellite instru-
ments observing the land, ocean, ice, and atmosphere across the electromagnetic spectrum 
(Tatem et al. 2008). Inevitably, though, EO products have an associated uncertainty aris-
ing from a number of error sources in the measurement process, including limitations of 
the measurement and calibration process, uncertainties in auxiliary data, approximations 
in the data processing, and inhomogeneities in the observed field. These errors can make 
it difficult to interpret EO products without careful consideration, which can limit trust in 
environmental and socioeconomic decisions based upon such data (Anderson et al. 2017; 
Bulgin et al. 2024).

EO data providers strive to provide reliable uncertainty estimates alongside their prod-
ucts (Ablain et al. 2019; Bulgin et al. 2016a, b; Loew et al. 2017; H-SAF 2018; Ghent et al. 
2019; H-SAF 2022; Dorigo et al. 2023). Different communities have established best prac-
tices for this purpose depending on product error characteristics and reference data avail-
ability (Strahler et al. 2006; Guillevic et al. 2018; Gruber et al. 2020; Montzka et al. 2020; 
Duncanson et al. 2021; Bulgin et al. 2016a; Ablain et al. 2019). Moreover, there has been 
growing effort to reconcile these practices with guidelines developed by the metrological 
community (Merchant et al. 2017; Mittaz et al. 2019; Strobl et al. 2024).

Metrological guidelines are described in the Guide to the Expression of Uncertainty 
in Measurement (GUM; JCGM 2008), which is maintained by the Joint Committee for 
Guides in Metrology of the International Bureau of Weights and Measures. These guide-
lines dictate that all measurements be accompanied by a description of their “uncertainty”, 
which refers to the probability distribution of the measurement errors (JCGM 2012). For 
example, Gaussian-distributed errors may be described by their standard deviation (i.e., 
random uncertainty) and by their mean (i.e., systematic uncertainty). Importantly, meas-
urements ought to be SI-traceable. That is, linked to an SI reference standard through a 
documented, unbroken chain of data transformations, with a quantification of the uncer-
tainties that are introduced at every step of that chain.

While this gold standard approach for characterizing uncertainties can—in theory—pro-
vide a reliable, quantitative description of the stochastic properties of deterministic esti-
mates, the question remains: What shall users of these estimates make of this information? 
How can the information that an estimate of a variable of interest has a value of x ± y 
instead of just x influence any use or decision based on this estimate?

We conjecture that uncertainty estimates are rarely used quantitatively to inform spe-
cific decisions, in part, because x ± y does not answer the more relevant question: How 
much can I trust x, or any use or decision based upon x? For example, to most people it 
is much less relevant that the level of a river is x ± y than whether the river is likely to 
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flood their house. To decision makers, more generally, the importance of data uncertainty 
is how it affects their certainty that decisions based on these data really are the best course 
of action. We therefore propose that, in order to optimally utilize uncertainty estimates 
for decision making, they should first be transformed into a normalized measure of confi-
dence that relates to the intended use of the data. This can be done using Bayes’ rule (Efron 
2013). Bayes’ rule allows us to infer how confident we can be that, say, an event actually 
happened, given our data alongside knowledge about the statistical properties of these data 
and the events in question. While this confidence is, by and large, determined by the uncer-
tainty in the data, it provides a more accessible and comprehensible presentation of the 
information contained in the uncertainty estimates.

In this paper, we first revisit Bayes’ rule in the context of Earth system science. We then 
propose a general framework for using Bayes’ rule to transform EO product uncertainties 
into estimates of confidence that relate to an intended use of EO data. Finally, we demon-
strate the merit of this workflow using two case examples: (i) the monitoring of drought; 
and (ii) the estimation of coral bleaching risk. Throughout this paper, we will use upper-
case letters to refer to random variables and lowercase letters to refer to instances of these 
variables.

2 � Bayes’ Rule

Herein, Bayes’ rule is applied to a class of events, E, and measurements of these events, 
M. E may refer to an Earth system state variable, a categorical class derived from such a 
variable (e.g., drought severity), a flux, or anything else observable directly or indirectly. 
M could refer to direct measurements but also to estimates derived from related measure-
ments or predictions from a numerical model. Both E and M may be continuous, discrete, 
or categorical. For simplicity and without loss of generality, we will, hereinafter, simply 
speak of ‘events’ and ‘measurements’.

Bayes’ rule allows us to consider the measurements M as evidence to improve our prior 
knowledge about the events E. More specifically, it allows us to infer the conditional prob-
ability that E actually happened, given that we measured M, from knowledge of how likely 
it is that E produces a measurement of M and knowledge of the probabilities of E and M 
independent of one another. Mathematically, this is expressed as:

where p(E|M) is the conditional probability of E given M. It is often called the ‘posterior’, 
telling us how likely it is that an event actually occurred after we take our measurements 
into consideration. p(M|E) is the conditional probability of M given E. It is often called 
the ‘likelihood’, describing how likely it is that we obtain a particular measurement, given 
that a certain event has occurred. p(E) is the marginal probability of E, often called the 
‘prior’, referring to our knowledge about the frequency with which an event occurs before 
we measure anything. p(M) is the marginal probability of M, often called ‘evidence’, which 
describes how often we obtain a certain measurement whatever the event.

In the following section, we propose a generic workflow for applying Bayes’ rule to 
Earth system science problems in order to convert uncertainty estimates into normalized 
measures of confidence in statements derived from Earth system science data (i.e., ‘we are 
between 0 and 100% certain that...’).

(1)p(E|M) = p(M|E) p(E)
p(M)
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3 � Proposed Workflow for Bayesian Uncertainty Interpretation

Our proposed workflow comprises 4 steps: 

1.	 Asking the right question, i.e., seeking confidence in what exactly?
2.	 Defining the prior, i.e., the marginal distribution of the events in question, p(E).
3.	 Selecting the error model, i.e., the functional relationship between measurements, 

their errors, and the ‘truth’, which is required to identify the likelihood, p(M|E), and the 
evidence, p(M).

4.	 Computing the posterior, p(E|M), i.e., our final confidence estimates.

The following subsections describe each of these steps in more detail. Afterward, we 
illustrate this workflow with a few examples.

3.1 � Asking the Right Question

Questions in Earth system science usually focus on states or changes of biogeophysi-
cal or biogeochemical variables. We could simply ask how likely it is that a variable of 
interest has exactly the value we measure, but the answer will often be “very unlikely” 
due to noise and bias in the data. More importantly, the exact values of a variable are 
typically less important than how that value relates to ranges and thresholds that would 
trigger certain actions or changes in our beliefs. Uncertainties, then, should inform us 
how justified such an action or change in beliefs actually is.

For example, if we want to know whether an observed state variable exceeds a criti-
cal threshold, a better answer than “soil moisture is 0.07 ± 0.03 m3m−3 ” would be “we 
are 70% confident that soil moisture has dropped below a level at which plants start to 
suffer from water stress”. This tells us directly how urgently we need to irrigate. Other 
examples of more meaningful questions could be: “How certain are we that this was the 
warmest year on record?”, “How many years do we have left—with 95% confidence—
before New York City will fall below sea level?”, or simply “How likely is it that I will 
need an umbrella today?”.

3.2 � Defining the Prior

Bayesian inference starts from prior knowledge about the frequency with which the 
events occur, i.e., the marginal distribution p(E). Suppose E follow a Gaussian distribu-
tion N  with mean � and variance �2 (this could be, for example, sea surface temperature 
anomalies). The prior can then be written as:

Priors of other variables may require more complex representations. Soil moisture, for 
example, usually follows a distribution that is both bounded and skewed or even bimodal, 
and rainfall is often described by a gamma distribution. Note also that good priors can 
be difficult to obtain. In such a case, priors might be conditioned on related proxy vari-
ables (e.g., variables that are easier to observe or for which more observations are readily 

(2)p(E) ∼ N(�, �2
)
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available) and the Bayesian analysis be conducted sequentially. For example, a prior for 
soil moisture could be conditioned on antecedent rainfall and temperature.

3.3 � Selecting the Error Model

To update the prior using information about the measurements of the event and their uncer-
tainty, which is represented by the likelihood p(M|E) and the evidence p(M), we must first 
identify an appropriate error model. The error model describes what kinds of error affect 
these measurements and how they do so.

Errors typically comprise both a systematic and a random component. Moreover, meas-
urements can be subject to drift (e.g., due to instrument aging), which, too, can have a 
systematic and a random component. For example, the error model could assume additive, 
zero-mean Gaussian-distributed random errors with zero- and first-order systematic errors. 
Their impact on a particular measurement M = m of a particular event E = e can be written 
as:

where � denotes a possibly space and/or time-dependent additive systematic error, or bias; 
� denotes a possibly space and/or time-dependent multiplicative systematic error, or scal-
ing; and � denotes zero-mean Gaussian-distributed random error � ∼ N(0, �2

�
) with pos-

sibly space and/or time-dependent random error variance (i.e., uncertainty) �2
�
 . The time 

dependency allows one to account for drift. Since the events E were defined to have mean 
� and variance �2 (see Eq. (2)), the evidence and the likelihood then follow from this error 
model as:

and

, respectively. Note that this is just one possible error model (which is commonly assumed 
for soil moisture datasets, for example). Depending on the data, the appropriate error model 
may be more complex and include also covariance terms or higher-order biases, account 
for different error correlation time and length scales, etc. However, while it is easily possi-
ble to incorporate any form of systematic errors (e.g., additive or multiplicative biases) into 
the error model and thus in the computation of the posterior, it is usually more meaningful 
to correct for these systematic errors—if known—a priori because this increases the confi-
dence one can have in statements derived from the data.

3.4 � Computing the Posterior

How exactly we compute the posterior depends on whether we are interested in (i) the confi-
dence of exact events given exact measurements ( E = e and M = m , respectively); (ii) a range 
of events given a range of measurements ( e1 ≤ E ≤ e2 and m1 ≤ M ≤ m2 , respectively); or 
(iii) any combination of the two. As mentioned in Sect. 3.1, posterior probabilities that exactly 
e happens if exactly m is measured, i.e., p(E = e|M = m) , can become very small. In most 

(3)m = � + �e + �

(4)p(M) ∼ N(�� + �, �2�2
+ �2

�
)

(5)p(M|E = e) ∼ N(�e + �, �2
�
)
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cases, we will therefore be more interested in the posterior probability given some ranges of E 
and/or M and thus have to integrate Bayes rule over these ranges as:

Should one be interested in exact values of E ( e1 = e2 = e ) and/or M ( m1 = m2 = m ), Eq. 
(6) is simplified by removing the appropriate integrals.

3.5 � Practical Considerations

Modeling probability distributions and computing Bayesian posteriors using Eq. (6) can 
become complex and computationally demanding. In practice, the general Bayesian esti-
mation problem is thus often reduced to a simpler problem by placing assumptions on the 
prior distribution, likelihood, and error model. One such special case, which is widely used 
in various fields (Bishop and Nasrabadi 2006; Rencher and Schaalje 2008; Barfoot 2024), 
is that of a Gaussian prior and likelihood with a linear error model (Bishop and Nasrabadi 
2006). In that case, the Bayesian posterior is also Gaussian, and its mean and covariance 
equivalent to a least-squares estimator, which can be calculated more easily, and whose 
results are straightforward to interpret.

In the context of this paper, this is particularly relevant for time series analyses where 
we are interested not in how a single measurement changes, but rather in how the evolution 
of measurements can inform us about an event or its trajectory. For such problems, mod-
eling all involved marginal and joint probabilities of correlated measurements and events—
as would be required to solve Eq. (6)—is difficult for arbitrary distributions. One com-
mon solution is to model time series as stochastic processes with a linear error model and 
Gaussian noise instead (i.e., as Gauss-Markov processes). Latent parameters and their dis-
tributions can then be efficiently estimated using filtering (or smoothing) methods (Särkkä 
et al. 2013) or through a least-squares solution (Barfoot 2024, Ch. 3) as follows.

Suppose we have a series of measurements m⃗ = (m1,… ,mj)
⊺ and associated events 

e⃗ = (e1,… , ei)
⊺ with Gaussian likelihood p(m1,… ,mj, | e1,… , ei) and Gaussian prior 

p(e1,… ei) . Further suppose that the relationship between measurements and events is lin-
ear, i.e., described by the design matrix A in the linear system of equations Ae⃗ = m⃗ , where 
m⃗ includes both measurements and prior information. Under this linear-Gaussian assump-
tion, the Bayesian posterior p(e1,… , ei, |m1,… ,mj) is also Gaussian and its mean ( ⃗𝜇 ) 
and covariance ( Σ ) are given by the maximum a-posteriori estimate, i.e., the least-squares 
solution:

and

respectively, where Q is the error covariance matrix (i.e., representing uncertainties and 
error correlation structures). Together, 𝜇 and Σ fully describe the posterior probability of 
the events given the measurements as:

(6)P(e1 ≤ E ≤ e2 |m1 ≤ M ≤ m2) =

∫ e2
e1

∫ m2

m1
p(M|E) p(E) dMdE

∫ m2

m1
p(M) dM

(7)𝜇 = (ATQ−1A)−1ATQ−1m⃗

(8)Σ = (ATQ−1A)−1,

(9)p(e1,… , ei, |m1,… ,mj) ∼ N(𝜇,Σ)
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Equation (9) provides us with an estimate not only of how confident we can be that an 
individual event happened given an individual measurement—as did Eq. (6)—but of how 
confident we can be that a series of events happened given a series of measurements. This 
could be, for example, our confidence that the duration of heatwaves has increased over 
the last decade due to climate change, i.e., that temperatures exceed a certain threshold for 
increasing amounts of time.

In the following sections, we demonstrate the merit of the proposed Bayesian uncer-
tainty interpretation by applying the proposed workflow described above to two case exam-
ples: (i) assessing the occurrence and magnitude of drought using satellite soil moisture 
retrievals; and (iii) assessing the risk of coral bleaching using sea surface temperature 
estimates.

4 � Case Example: Drought

In this example, we demonstrate how to estimate the confidence of actually experienc-
ing a drought when a given soil moisture dataset suggests so, accounting for the dataset 
uncertainty. To this end, we consider droughts in soil moisture (van Hateren et al. 2021), 
also referred to as agricultural drought, using a definition based on soil moisture anom-
aly percentiles similar to that used by the Copernicus European Drought Observatory 
(https://​edo.​jrc.​ec.​europa.​eu/; last accessed: 11 December 2024; Svoboda et  al. 2016) or 
the United States Drought Monitor (USDM; https://​droug​htmon​itor.​unl.​edu/​About/​About​
theDa​ta/​Droug​htCla​ssifi​cation.​aspx; last accessed: 11 December 2024). More specifically, 
we define drought severity based on how much soil moisture drops below climatologically 
normal conditions, which we estimate from satellite soil moisture products. The specific 
anomaly percentiles we use as drought severity thresholds are shown in Table 1. We will 
not discuss different drought types (e.g., meteorological drought, agricultural drought, etc.) 
or drought indices and their respective advantages or disadvantages any further, because 
this has been addressed exhaustively (e.g., Zargar et al. 2011; Mukherjee et al. 2018) and is 
irrelevant for the purpose of this demonstration.

4.1 � The Question

The two questions that we aim to answer in this example are:

•	 How does the confidence in drought severity estimates derived from satellite soil mois-
ture retrievals change as a function of the uncertainty in these retrievals?

Table 1   Drought severity 
classification based on soil 
moisture anomaly percentiles. 
Class thresholds are slightly 
modified from those used by the 
United States Drought Monitor 
(USDM) to obtain classes with 
equal cumulative probability

Percentile Drought severity

20–30% Slight
12–20% Moderate
7–12% Severe
4–7% Extreme
2–4% Exceptional

https://edo.jrc.ec.europa.eu/
https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx
https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx
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•	 How much confidence can we put into drought severity estimates of two commonly-
used satellite products, from SMOS and ASCAT, in different regions when considering 
their specific uncertainties?

4.2 � The Prior

As mentioned, we define drought by means of soil moisture anomaly percentiles. Anoma-
lies, here, refer to deviations from the mean seasonal cycle, which is here assumed to fol-
low a zero-mean Gaussian distribution. The prior can thus be written as:

where Θ denotes (true) soil moisture anomalies, and �
Θ
 their assumed standard deviation.

4.3 � The Error Model

Satellite soil moisture retrievals as well as retrievals of soil moisture anomalies are usually 
assumed to follow a linear error model with additive and independent zero-mean Gaussian 
random errors (Gruber et al. 2020), like the one we showed in Eq. (3):

where X denotes the satellite soil moisture anomaly retrievals. The evidence and the likeli-
hood thus follow as:

and

respectively.

4.4 � The Posterior

Since we are interested in how likely an observed drought class represents a real drought, 
our posterior needs to calculate the probability that soil moisture is within a certain range, 
given our measurements are in a given range, i.e., p(�min ≤ Θ ≤ �max|Xmin ≤ X ≤ Xmax) . 
However, the probability that a drought is exactly as severe as the satellite suggests is very 
small, so we will, instead, estimate how likely it is that there is any drought at all (i.e., 
at least a slight drought or worse) depending on the observed drought magnitude and the 
uncertainty of the measurement:

where �d
min

 and �d
max

 represent the lower and upper soil moisture boundaries of drought 
class d, respectively, which are given by the class probability thresholds defined in Table 1. 

(10)p(Θ) ∼ N(0, �
Θ
)

(11)X = � + � Θ + �

(12)p(X) ∼ N(0, �2�2
Θ
+ �2

�
)

(13)p(X|Θ = �) ∼ N(� + ��, �2
�
)

(14)P
(
Θ ≤ �slight

max
|�d

min
≤ X ≤ �d

max

)
=

∫ ppf (Θ=�
slight
max )

−∞
∫ ppf (X=�d

max
)

ppf (X=�d
min

)
p(X|Θ) p(Θ) dXdΘ

∫ ppf (X=�d
max

)

ppf (X=�d
min

)
p(X) dX
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ppf (⋅) is the percentile point function, which converts these soil moisture boundaries into 
the correct integration bounds for the associated probability distribution.

4.5 � Results and Discussion

The following results are based on uncertainty estimates for monthly surface soil mois-
ture anomalies from SMOS (Kerr et al. 2010) and ASCAT (Wagner et al. 1999; Naeimi 
et al. 2009) over Europe, obtained from triple collocation analysis (TCA; Stoffelen 1998) 
using the Quality Assurance for Soil Moisture online validation platform (QA4SM; https://​
qa4sm.​eu/; last accessed: 11 December 2024). The SMOS and ASCAT products we use 
are the H-SAF H119 climate data record (H-SAF 2018) and the SMOS Level 2 v700 prod-
uct (ESA 2021). Surface soil moisture simulations from the ERA5 reanalysis (Hersbach 
et  al. 2020) are used to complete the triplet. TCA results and a description of process-
ing parameters (spatial and temporal matching parameters, masking criteria, etc.) can be 
found at https://​doi.​org/​10.​5281/​zenodo.​11282​947 (last accessed: 11 December 2024). 
Regions with insufficient data (e.g., due to dense vegetation or prolonged frozen periods) 
are masked out. Note that TCA provides estimates for both the uncertainty �2

�
 and the sig-

nal variance �2�2
Θ
 , and thus all information necessary to compute the posterior.

4.5.1 � How Does Soil Moisture Retrieval Uncertainty Impact the Confidence in Drought 
Estimates?

Figure 1 aims to answer our first question: “How does the confidence in drought severity 
estimates derived from satellite soil moisture retrievals change as a function of the uncer-
tainty in these retrievals?”. It shows the probability of detecting at least a slight drought 
(Eq. (14)) as a function of the measurement uncertainty—expressed in terms of the signal-
to-noise ratio ( SNR = �2�2

Θ
∕�2

�
)—for various observed drought magnitudes. Note that the 

SNR scales linearly with � . Therefore, � and SNR affect the confidence in drought estimates 
in the same way (Fig. 1; x-axis).

As expected, the greater the observed drought severity or the lower the uncertainty, the 
more confident we can be that there really is at least a slight drought. The vertical lines 
in the figure indicate the points where this confidence exceeds 95%. That is, they show 
the minimum SNR that a product needs to have so that a given drought severity provides 

Fig. 1   Probability of detecting 
at least a slight drought as a 
function of the SNR for different 
observed drought magnitudes

https://qa4sm.eu/
https://qa4sm.eu/
https://doi.org/10.5281/zenodo.11282947
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us with 95% confidence that there is at least a slight drought. This helps us to answer our 
second question.

4.5.2 � How Confident Can We be in Drought Estimates from ASCAT and SMOS?

To answer our second question—How much confidence can we put in the drought severity 
estimates of SMOS and ASCAT considering their specific uncertainties?—Fig. 2 shows, 
at each location of our study domain, how severe of a drought SMOS and ASCAT need to 
observe so that our confidence that there is, in fact, at least a mild drought (as calculated 
before) exceeds 95%.

This shows the regions in which we can be confident that a given sensor detects even 
the slightest droughts, and in which areas drought estimates are not to be trusted even when 
the soil moisture product suggests them to be extreme or even exceptional. This is arguably 
more tangible and readily interpreted than whether soil moisture product uncertainty is, 
e.g., 0.04 m3m−3 or 0.06 m3m−3 . For example, it shows that Spanish authorities could reli-
ably monitor drought using these products, especially SMOS which exhibits lower uncer-
tainties than ASCAT in this region. Germany, in contrast, would benefit from considering 
other (or at least additional) monitoring strategies because both ASCAT and SMOS soil 
moisture retrievals are too uncertain for this purpose.

5 � Case Example: Coral Bleaching

In this example, we address an issue that has been exacerbated over recent years due to ris-
ing sea surface temperatures (SST), which is coral bleaching (Henley et al. 2024). While 
coral bleaching is a result of various complex, interdependent processes such as the amount 
of light, coral species and genetics, bathymetry etc., studies have found that one of the most 
important and robust predictors  for coral bleaching is the existence of prolonged marine 
heat waves (McClanahan et al. 2019). Specifically, there seems to be a significant non-lin-
ear increase in coral bleaching events once extreme SST persists for long periods of time.

The Coral Reef Watch of the National Oceanic and Atmospheric Administra-
tion (NOAA) Satellite and Information Service (https://​coral​reefw​atch.​noaa.​gov/; last 
accessed: 11 December 2024), for instance, uses satellite-derived SST to identify Coral 

Fig. 2   Minimal required drought severity per location as reported by ASCAT (left) and SMOS (right) to 
reach 95% confidence in detection of at least a slight drought. Areas with insufficient input data or unreli-
able uncertainty estimates are masked out

https://coralreefwatch.noaa.gov/
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Bleaching HotSpots. HotSpots are regions where SST is warmer than the highest clima-
tological monthly mean (referred to as the Maximum Monthly Mean, MMM). A value 
of MMM + 1◦ C is used as a threshold to indicate heat stress which, if persisting over 
prolonged periods of time, has been associated with coral bleaching. However, such 
an approach does not take uncertainties in SST observations into account but instead 
merely tests whether or not deterministic SST estimates exceeded a certain threshold for 
a certain amount of time.

In this example, we demonstrate how the uncertainties in SST data can be interpreted 
meaningfully if one were to assess the occurrence of coral bleaching from SST obser-
vations based on the above-mentioned relation. This can transform statements such as 
“there have been conditions that are likely to promote coral bleaching” into statements 
such as “there is an x% probability that there have been conditions that are likely to pro-
mote coral bleaching”. To that end, we use the ESA CCI SST L4 product (Embury et al. 
2024) and focus on the Great Barrier Reef (GBR).

5.1 � The Question

The two specific questions we aim to answer in this example are:

•	 How has the probability of SST conditions fostering coral bleaching changed over 
recent decades?

•	 How likely is it that SST conditions associated with coral bleaching events occur in 
certain years over specific locations within the GBR?

As discussed in Sect. 3.5, these are time series problems that require an investigation of 
multiple, consecutive measurements, i.e., analyses of how likely it is that SST measure-
ments continuously exceeded a certain threshold for a specific amount of time, taking 
into account the uncertainties in the measurements. We will thus model probabilities 
using a least-squares estimator.

5.2 � The Prior

To obtain a prior for SST states that can account for their temporal evolution, we assume 
SST anomalies aT (i.e., the deviations of actual temperature from the climatology) to 
characterize a random walk:

so that

where Ti represents SST states at time i, �Ci represents the climatological increment 
between time steps i + 1 and i, and �2

T
 represents the random variability of SST anomalies 

between consecutive time steps.

(15)Ti+1 = Ti + �Ci + aT , aT ∼ N(0, �2
T
)

(16)p(Ti+1|Ti) ∼ N(Ti + �Ci, �
2
T
)
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5.3 � The Error Model

We assume the measurements Mi of the SST states Ti to follow a linear error model with addi-
tive zero-mean Gaussian noise and negligible bias (Embury et al. 2024):

The likelihood of measurements Mi given temperatures Ti thus follows as:

where �2
M

 is the standard uncertainty (i.e., random error variance) of the measurements. In 
the CCI SST L4 data product we use here, estimates for �2

M
 are provided for each individual 

SST measurement.

5.4 � The Posterior

As discussed in Sect. 3.5, since the prior and likelihood are both Gaussian and the error model 
is linear, the posterior p(T1,… , Tn |M1,… ,Mn) is also Gaussian and its mean and covariance 
can be obtained by solving the equivalent least-squares problem:

Equation (19) is simply the matrix notation expressing our assumed relationship between 
SST states and measurements (see Eqs. (15) and (17)):

A, t⃗  , and m⃗ thus follow as:

with the weight matrix W, defined as W = Q
−

1

2 and Q = diag(�2
M
,… , �2

M
, �2

T
,… , �2

T
) . The 

parameters of the posterior p(T1,… ,Tn |M1,… ,Mn) ∼ N(⃗t,Σ) can then be estimated as:

and

(17)Mi = Ti + �M , �M ∼ N(0, �2
M
)

(18)p(Mi|Ti) ∼ N(Ti, �
2
M
)

(19)|WA t⃗ −Wm⃗|2 → min!

(20)Ti −Mi = �M , �M ∼ N(0, �2
M
)

(21)Ti+1 − Ti − �Ci = aT , aT ∼ N(0, �2
T
)

(22)A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 …

0 1 0 …

0 0 1 …

⋮ ⋮ ⋮ ⋮

−1 1 0 …

0 −1 1 …

⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, t⃗ =

⎛⎜⎜⎝

T1
⋮

Tn

⎞⎟⎟⎠
, and m⃗ =

⎛⎜⎜⎜⎜⎜⎜⎝

M1

⋮

Mn

𝛿C1

⋮

𝛿Cn−1

⎞⎟⎟⎟⎟⎟⎟⎠

(23)t⃗ = (ATQ−1A)−1ATQ−1m⃗

(24)Σ = (ATQ−1A)−1
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Finally, the probability that SST is above Tmax degrees for k consecutive days starting at 
day i can be derived by integrating this posterior density over the hyperrectangle [Tmax,∞]

k 
(i.e., all temperatures at the k consecutive days between Tmax and ∞):

5.5 � Results and Discussion

The following results are based on the ESA CCI SST L4 product (Embury et al. 2024) 
version v3.0.1 (obtained from https://​dx.​doi.​org/​10.​5285/​4a965​4136a​7148e​39b7f​eb56f​
8bb02​d2; last accessed: 11 December 2024) (Good and Embury 2024), which provides 
daily gap-free SST data together with estimates of their standard uncertainty produced 
using a variational data assimilation system. We use these SST analyses and their uncer-
tainty in Eq. (25) to calculate how likely it was when and where that the GBR expe-
rienced conditions that have been associated with an increased occurrence of coral 
bleaching events, that is, temperatures exceeding MMM + 1◦ C for at least 35 consecu-
tive days. For simplicity, we will, hereinafter, refer to such conditions as “coral bleach-
ing conditions” (this corresponds to alert level 1 of the Coral Reef Watch, which assigns 
alert levels from 1 to 5, the latter indicating a risk of near complete mortality). For 
comparison, we also calculate how often the deterministic SST observations exceeded 
the same threshold for the same period of time—as it is usually done—allowing SST 
to drop below the threshold for up to three consecutive days to mitigate the impact of 
noise. MMM was derived for the climatological period 1981–2010. The GBR region 
was extracted through a shape file obtained from https://​www.​marin​eregi​ons.​org/​gazet​
teer.​php?p=​detai​ls&​id=​26847 (last accessed: 11 December 2024).

(25)

P(Tmax < Ti,… , Tmax < Ti+k |M1,… ,Mn) = ∫
[Tmax,∞]k

p(Ti,… , Ti+k |M1,… ,Mn) dT

Fig. 3   Percentage [%] of grid cells that have more than a 10% (blue line) or 50% (orange line) probability 
(Eq. (25)) of having experienced coral bleaching conditions (i.e., temperatures above MMM + 1◦ C for at 
least 35 days) at least once in a given year. For comparison, the green line shows the fraction of grid cells 
where the deterministic SST estimates suggest such conditions (i.e., without considering uncertainties)

https://dx.doi.org/10.5285/4a9654136a7148e39b7feb56f8bb02d2
https://dx.doi.org/10.5285/4a9654136a7148e39b7feb56f8bb02d2
https://www.marineregions.org/gazetteer.php?p=details%20&id=26847
https://www.marineregions.org/gazetteer.php?p=details%20&id=26847
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5.5.1 � How Much Has the Problem of Coral Bleaching Exacerbated Over the Past 
Decades?

Figure 3 aims to answer our first question: “How has the probability of conditions that fos-
ter coral bleaching changed over the past decades?”. It shows the percentage of grid cells 
that are likely (with different degrees of confidence) to have experienced coral bleaching 
conditions at least once in a given year. For comparison, the deterministic estimates that 
do not make use of uncertainty information (i.e., the percentage of grid cells where SST 
analyses exceeded said thresholds at least once in a given year) are also shown.

With some rare exceptions in the summer of 2001/2002, SST data suggest the occur-
rence of critical conditions that could have led to coral bleaching only in the summers of 
2019/2020 and 2023/2024. Importantly, looking at deterministic SST estimates alone can 
lead one to be overconfident about the occurrence of coral bleaching events. In the summer 
2019/2020, for instance, deterministic estimates suggest that about 30% of the GBR have 
experienced coral bleaching conditions. When taking uncertainties in the SST data into 
consideration, however, we learn that for only about 7–8 % of the GBR we can be more 
than 10 % confident in such a statement, and virtually nowhere does the probability of such 
conditions exceed 50 %.

It is important to note that the shown values are the estimated probabilities that actual 
SST did exceed certain thresholds given the SST observations and their uncertainty. 
That is, low values do not indicate a low level of confidence whether the thresholds were 
exceeded, but a high level of confidence that they were not. In other words, when ignor-
ing uncertainties, SST-based estimates of when or where coral bleaching conditions might 
have occurred are often worse than a coin flip would be.

5.5.2 � How Much Does the Likelihood of Coral Bleaching Events Vary Across Years 
and Locations?

Here we aim to answer the second question: “How likely did coral bleaching conditions 
occur over individual locations of the GBR?”. To that end, Fig.  4 shows the maximum 
observed probability of coral bleaching conditions for the two potential incidence summers 
of 2019/2020 and 2023/2024. For comparison, Fig. 4 also shows binary maps of where the 
deterministic SST estimates suggest such conditions in the same years.

As expected from Fig. 3, deterministic estimates suggest coral bleaching conditions in 
many regions where they are actually highly unlikely. To understand the significant over-
estimation of coral bleaching conditions when using deterministic SST estimates alone, 
Fig. 5 shows SST time series and their uncertainty together with the estimated probability 
for coral bleaching conditions at three randomly selected locations with different (maxi-
mum) probabilities of coral bleaching conditions. In all cases, SST time series do not 
exceed MMM  + 1◦ C by a large margin, and their uncertainties seem quite comparable. 
Nevertheless, the estimated probabilities that these time series exceeded MMM + 1◦ C for 
35 days or more are quite different ( ∼0.1, ∼0.4, and ∼0.8). Strikingly, despite having a clear 
visualization of SST estimates and their uncertainty, it is difficult to guess visually even in 
which cases coral bleaching conditions are more likely than not (i.e., above or below 0.5).

This illustrates well how difficult it can be to correctly interpret—or even distinguish—
uncertainty estimates directly. This is, in part, because the usual expression of a one (two) 
error standard deviation range around an estimate does not indicate the range within which 
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the true value lies with a 68% (95%) probability, as is a common misconception akin to the 
misconception of p values and confidence intervals (Greenland et al. 2016). Such a prob-
ability of where the true value is likely to be is arguably more meaningful, and precisely 
the one we estimate here using Bayes’ theorem and integrate to get a holistic assessment of 
the uncertainties of a series of measurements.

Finally, note that the probabilities shown here reflect only our confidence in certain SST 
states and not in the actual occurrence of coral bleaching, which is only to some degree 
predictable from SST data alone (McClanahan et al. 2019). Remember, however, that the 

Fig. 4   Maximum probability that coral bleaching conditions (i.e., temperatures above MMM + 1◦ C for at 
least 35 days) occurred at least once in the summers of 2019/2020 (top left) and 2023/2024 (top right); and 
grid cells where deterministic SST observations exceed these thresholds at least once in the same years 
(bottom left and bottom right, respectively)
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purpose of this example is not to obtain the most reliable estimates of when and where 
coral bleaching occurs, but to demonstrate how data uncertainties can be interpreted mean-
ingfully by converting them into statements about the confidence in certain events given 
some measurements. As this example shows, this arguably leads to better insights than 
using deterministic estimates alone.

6 � Conclusions

Earth observation data should help inform decision making. Good decisions can only be 
made if the uncertainties in the data are taken into account. Data producers thus strive 
to provide reliable uncertainty estimates alongside their products. Data users, however, 
often struggle to make sense of uncertainty information, because it represents the statistical 
spread in the error distribution of the observations (for example, the random error standard 
deviation), which does not relate to any specific use of the data. That is, expressing data 
and their uncertainty as something like “ x ± y ” does not directly answer the really impor-
tant question: How much can I trust x, or any use of or decision based upon x?

In this paper, we propose a framework to convert estimates of EO data uncertainty 
into more meaningful, actionable information. To that end, we use Bayes’ rule to convert 

Fig. 5   SST time series (blue solid line) at three random grid cells of the GBR region shown in Fig. 4. Blue- 
and purple-shaded areas indicate SST ± one and two times their standard uncertainty, respectively. The 
green solid line shows the probability, for each day, that SST exceeded the MMM + 1◦ C threshold (dashed 
line) for that and the subsequent 35 days. The green-shaded area marks the total ( ≥ 35 day) time period dur-
ing which deterministic SST estimates consistently exceeded MMM + 1◦ C (allowing for drops below that 
threshold for up to three days)
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uncertainty estimates into normalized statements about the probability of a given event of 
interest. This can turn statements of the kind: “The state of this variable is x ± y ” into more 
meaningful statements like, “We can be z% certain that this event actually happened.”. We 
demonstrate this framework in two case study examples. In the first example, we use satel-
lite soil moisture retrieval uncertainty to estimate how confident we can be that a certain 
region really is experiencing a drought when the soil moisture retrievals suggest so. In the 
second example, we use the uncertainties in sea surface temperature analyses to estimate 
how confident we can be that extreme temperature conditions prevailed sufficiently long 
that coral bleaching is possible. In both cases, we show that the deterministic (soil moisture 
or sea surface temperature) estimates alone are easily misinterpreted if their uncertainties 
are ignored, which would make any decisions based on these estimates unlikely to be the 
best course of action.

The proposed framework can, in principle, be applied to a wide variety of applications, 
from the design of new satellite missions to environmental action. Turning it into practice, 
however, will require close collaboration between data users, to formulate meaningful use 
cases and decision criteria, and data producers, to provide a rigorous description of the 
data (i.e., estimates about product uncertainties including possible correlation structures, 
reliable priors, an appropriate error model, etc.).

The next step toward meaningful decision making, then, must be to confront event 
probabilities with possible courses of action to estimate their socioeconomic value. For 
example, knowing the probability of crop yield loss due to drought allows one to weigh 
the expected monetary costs of this loss against the costs of irrigation or other mitigation 
measures, including the costs of getting it wrong some of the time. The best decision, then, 
is the one that requires minimum costs for maximum socioeconomic benefit.
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