
Towards Message Brokers for Generative AI: Survey,

Challenges, and Opportunities

ALAA SALEH, Center for Ubiquitous Computing, Oulu, Finland

ROBERTO MORABITO, Department of Communication Systems, Eurecom, Biot, France

SCHAHRAM DUSTDAR, Distributed Systems Group, TU Wien, Vienna, Austria and ICREA, Universitat

Pompeu Fabra Barcelona, Barcelona 08002, Spain

SASU TARKOMA, Department of Computer Science and Engineering, Helsinki, Finland

SUSANNA PIRTTIKANGAS, Center for Ubiquitous Computing, Oulu, Finland

LAURI LOVÉN, Center for Ubiquitous Computing, Oulu, Finland

In today’s digital world, GenAI is becoming increasingly prevalent by enabling unparalleled content genera-

tion capabilities for a wide range of advanced applications. This surge in adoption has sparked a significant

increase in demand for data-centric GenAI models spanning the distributed edge-cloud continuum, placing

increasing demands on communication infrastructures, highlighting the necessity for robust communica-

tion solutions. Central to this need are message brokers, which serve as essential channels for data transfer

within various system components. This survey aims at delving into a comprehensive analysis of traditional

and modern message brokers based on a variety of criteria, highlighting their critical role in enabling efficient

data exchange in distributed AI systems. Furthermore, we explore the intrinsic constraints that the design

and operation of each message broker might impose, highlighting their impact on real-world applicability.

Finally, this study explores the enhancement of message broker mechanisms tailored to GenAI environments.

It considers key factors such as scalability, semantic communication, and distributed inference that can guide

future innovations and infrastructure advancements in the realm of GenAI data communication.

CCS Concepts: • Computing methodologies → Semantic networks; Self-organization; Multi-agent

systems; Intelligent agents; Cooperation and coordination; Information extraction; • Networks → Ap-

plication layer protocols;

Additional Key Words and Phrases: Generative AI, message brokers, publish/subscribe paradigm, brokerless,

edge computing, large language models

This research is supported by the Research Council of Finland (former Academy of Finland) 6G Flagship Program (Grant

Number: 369116), and by Business Finland through the Neural pub/sub research project (diary number 8754/31/2022) and

the Digital Twinning of Personal Area Networks for Optimized Sensing and Communication research project (diary number

8782/31/2022).
Authors’ Contact Information: Alaa Saleh, Center for Ubiquitous Computing, Oulu, Finland; e-mail: alaa.saleh@oulu.fi;

Roberto Morabito, Department of Communication Systems, Eurecom, Biot, France; e-mail: roberto.morabito@eurecom.fr;

Schahram Dustdar, Distributed Systems Group, TU Wien, Vienna, Austria and ICREA, Universitat Pompeu Fabra Barcelona,

Barcelona 08002, Spain; e-mail: dustdar@dsg.tuwien.ac.at; Sasu Tarkoma, Department of Computer Science and Engineer-

ing, Helsinki, Uusimaa, Finland; e-mail: sasu.tarkoma@helsinki.fi; Susanna Pirttikangas, Center for Ubiquitous Computing,

Oulu, Pohjois-Pohjanmaa, Finland; e-mail: susanna.pirttikangas@oulu.fi; Lauri Lovén (corresponding author), Center for

Ubiquitous Computing, Oulu, Pohjois-Pohjanmaa, Finland; e-mail: lauri.loven@oulu.fi.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 0360-0300/2025/09-ART20

https://doi.org/10.1145/3742891

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://orcid.org/0009-0009-6317-2823
https://orcid.org/0000-0002-4240-9934
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0003-4220-3650
https://orcid.org/0000-0003-2428-9948
https://orcid.org/0000-0001-9475-4839
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3742891
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3742891&domain=pdf&date_stamp=2025-09-04


20:2 A. Saleh et al.

ACM Reference Format:

Alaa Saleh, Roberto Morabito, Schahram Dustdar, Sasu Tarkoma, Susanna Pirttikangas, and Lauri Lovén. 2025.

Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities. ACM Comput. Surv. 58,

1, Article 20 (September 2025), 37 pages. https://doi.org/10.1145/3742891

1 Introduction

In the burgeoning field of Generative Artificial Intelligence (GenAI), the computing contin-
uum faces unprecedented challenges in efficiently managing data flows and computational re-
sources. GenAI has predominantly targeted consumer applications, offering applications such as
the ChatGPT [1], a conversational AI agent based on a large language model (LLMs), a type of
machine learning (ML) model with a deep neural network. However, a surge in machine-to-

machine (M2M) use cases, coupled with the increasing possibility of relying more and more on
decentralized, distributed, and edge-based LLMs, beckons a reevaluation of the supporting com-
munication infrastructure. This reevaluation is necessitated by the evolving demands for higher
bandwidth, lower latency, and more robust data processing capabilities that these advanced ap-
plications require [2, 3]. This survey article delves into the role of publish/subscribe (pub/sub)
message broker systems, considering in particular their emerging role for seamless and scalable
data exchange in GenAI applications. We scrutinize contemporary message brokers for their adapt-
ability and efficiency in GenAI contexts, outline existing challenges, and chart promising research
avenues for future development.

In more detail, while the focus of GenAI systems has been on consumer-oriented applications,
there is an increased interest toward M2M use cases. GenAI has been proposed to be used in, for
example, for networking, wireless communication, and compression [4].

As a result, current computing continuum platforms, spanning the networks and computational
resources from user devices to cloud [5, 6], face new challenges. These platforms provide support
AI models, offering interconnect between their data sources and sinks, and optimising their use of
resources in the computing continuum. As GenAI models require and generate ever larger amounts
of data [7], all the while consuming computational resources varying from moderate to massive [5],
the computing continuum must offer a dynamic and scalable communication and computation
substrate to ensure timely data dissemination and efficient use of resources [8, 9].

Pub/sub approach is equally useful alongside other paradigms across the computing continuum
for a wide range of AI applications, including smart cities [10], healthcare [11], and many other
domains. This approach decouples data producers from their consumers, allowing applications
to develop components independently, and enhancing system robustness and adaptability [12].
Furthermore, pub/sub makes system design more flexible by increasing the independence between
system components with a reliable interconnect.

Pub/sub systems are based on the exchange of data between clients (e.g., services or application
components) through a message broker. Publishers submit content to the broker, which then allows
subscribers to access that content without knowing its source [13, 14]. By managing, filtering, and
routing communication between publishers and subscribers, the message broker acts as an interme-
diary layer [15], routing and distributing messages efficiently, accurately, and in a timely manner,
based on the interests expressed by subscribers. Within the brokers, message queues can temporar-
ily store the messages, protecting the system from overflows or outages. Moreover, brokers also
often provide other essential features such as persistent storage, monitoring, and authentication.

As GenAI continues to evolve, parallels can be drawn with the historical trajectory of IoT sys-
tems, where the emergence of robust and adaptive message brokers marked a significant evolution-
ary step. These message brokers became a de facto paradigm, primarily because they addressed

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://doi.org/10.1145/3742891


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:3

critical challenges associated with scalability, real-time data processing, and the integration of het-
erogeneous devices and platforms [16]. Similarly, in the context of GenAI, the anticipation of an
analogous development is not without merit. The complexity and volume of data that GenAI appli-
cations demand, coupled with the necessity for high-quality service monitoring and data exchange
processes, suggest that a transition toward more sophisticated message brokering solutions may
be inevitable. Such solutions would not only have to manage the large data throughput but also
ensure adaptability, reliability, and efficiency in dynamic GenAI ecosystems. Reflecting on the IoT
evolution, the motivations for this shift include the need to support scalable communication, fa-
cilitate interoperability among diverse systems, and uphold stringent Quality of Service (QoS)
standards, which are likely to be paralleled in the GenAI domain [17].

However, it is critical to acknowledge that the evolution toward more sophisticated message
brokering solutions, specifically tailored to accommodate GenAI application needs, does not come
without its challenges.

Bearing all this in mind, the primary contributions of this survey are summarized as follows:

— We provide a comprehensive review of recent message brokers, evaluating the brokers by
their suitability for GenAI systems. We aim at guiding the development of a compatible
brokering framework in consideration of the evolving requirements for GenAI systems in
the future.

— We summarize the challenges of message brokers and highlight the need for a robust and
efficient data communications substrate based on an increase in GenAI applications.

— We discuss central research topics and their potential focus areas for making message bro-
kers suitable for GenAI applications. We also describe promising algorithms for implement-
ing such brokers.

This article’s remaining sections are organized as follows: Section 2 provides a general defini-
tion of pub/sub paradigm and highlights the advantages and disadvantages of both broker-based
and brokerless messaging architectures. Section 3 presents existing message brokers with their
features and cons. Section 4 examines possible ways to make message brokers suitable for GenAI
applications. The article concludes with Section 5.

2 The Pub/Sub Paradigm

Pub/sub is a messaging paradigm where publishers send messages without indicating specific re-
cipients. Remaining oblivious to the original publishers, subscribers receive relevant messages
according to their interests. At its core, pub/sub thus decouples message delivery from the senders
and recipients. This enhances the system’s adaptability and robustness, as it allows publishers
and subscribers to operate independently [12]. Furthermore, subscribers can flexibly choose top-
ics based on their interests, enabling them to find content relevant to their preferences. As a result
of pub/sub, real-time messaging can be sent to a wide range of subscribers, enabling scalable and
timely dissemination of information [14, 18, 19].

As part of the pub/sub communication model, a message broker functions as an intermediary
layer, managing the flow of messages from publishers to subscribers. By ensuring that messages
are accurately routed to subscribers, based on their expressed interests or specific topics, the bro-
ker ensures that messages are received by subscribers precisely as they have been requested. By
providing a layer of abstraction between publishers and subscribers, the broker goes beyond sim-
ply facilitating message transmission. Therefore, neither party needs to be aware of the other’s
operations or presence. A key strength of the broker is its reliability [20], as it has mechanisms for
guaranteeing delivery of messages even when subscribers are temporarily offline or have connec-
tivity difficulties.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:4 A. Saleh et al.

Fig. 1. The Publish/Subscribe paradigm.

Fig. 2. The timeline of message broker evolution from 1990 to the present.

Moreover, message queues are general-purpose components of the broker that temporarily store
messages from publishers until they can be delivered to subscribers as part of the broker pro-
cess [21]. By orchestrating the overall flow of messages, the message broker ensures that the ap-
propriate subscribers receive the messages based on their subscriptions, while a message queue
ensures that these messages are held and dispatched in an orderly manner, ensuring that publish-
ers and subscribers are able to communicate in an asynchronously and decoupled ways as shown
in Figure 1.

2.1 Message Broker Development

Over the past 30 years, message broker technology has evolved and innovated significantly as
shown in Figure 2. With the development of message-oriented middleware (MOM) and the
Java Message Service (JMS), the technology began to gain prominence between 1980 and 1999,
as organizations began to require greater integration and communication [22, 23]. During the
period 2000–2009, the technology underwent significant advancements, influenced by the imple-
mentation of service-oriented architecture (SOA), the increased internet usage, and the emer-
gence of cloud computing [24]. Among these developments was the implementation of web ser-
vices standards and open-source alternatives, laying the foundation for future advances in cloud-
based message brokers. During the following decade, from 2010 to 2019, the technology adapted
to new demands such as real-time data processing, cloud computing, IoT, and microservices archi-
tectures [21]. Increasing demands for Internet of Things and real-time data processing have led to
the rise of containerization platforms such as Docker and Kubernetes.

With the advent of cloud-native architectures, microservices, edge computing, and IoT demands,
message broker technology continued to evolve unabated between 2020 and 2023 [25]. The integra-
tion of AI and ML was particularly important for optimizing message routing, anomaly detection,
and auto-scaling, addressing the complexities of growing data volumes. In the future, message
broker technology will continue to evolve, leveraging advances in computing and communication.
As 5G/6G technologies advance, cross-platform interoperability, and decentralized architectures

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:5

are developed, a number of trends are set to shape its future. These include edge computing,
quantum computing, enhanced security, serverless architectures, and advancements in the 5G/6G
technologies.

2.2 Broker vs. Brokerless Messaging Architecture

A broker is the main unit for managing and monitoring data of pub/sub systems [13], offering
scalability, balanced load distribution, and optimal resource utilization, among others. Additionally,
the message broker ensures that messages are reliably transmitted, preventing any loss of data.

Despite their benefits, certain challenges accompany message brokers, particularly concerning
scalability and efficiency. As data volume grows, brokers face increased complexity, undermining
scalability – a common issue also observed in brokerless pub/sub systems known for their sim-
plicity, quick access, and improved efficiency. In such systems, publishers and subscribers interact
directly, making discovery, management, and availability crucial factors. However, the absence of
a central unit for overseeing message flows complicates supervision and control. Furthermore, this
setup does not inherently guarantee reliable message delivery [26].

3 Survey of Message Brokers

In the past decade, numerous message brokers have been developed both in proprietary and open-
source sectors. Each broker possesses unique features and pitfalls, influenced by their respective
vendors and intended applications. This section focuses on the most commonly used message
brokers, with their features and challenges. To clarify the methodology used for the comparative
analysis, we utilized data sourced from the official websites of the brokers under study. This data
included technical documentation, feature descriptions, code explanations, and vendor-provided
whitepapers. The comparative analysis framework is structured in Tables 1 to 4. We categorize
these message brokers based on their open-source availability and the priority-based delivery of
messages (built-in priority-support) that ensures messages are delivered in priority order, with
high-priority messages processed first.

3.1 Open Source Message Brokers

We found 30 message brokers that were available as open source. Out of these, 17 supported pri-
ority messages, while 13 did not. Each is discussed in more detail in below subsections.

3.1.1 Priority Support. Apache ActiveMQ [27] is a Java-based message broker licensed under
the Apache 2.0 license. Through the use of double layers of SSL/TLS security layers, it provides
dual security levels. A distribution of Apache ActiveMQ provided by FuseSource, Fuse Message

Broker [28] supports J2EE integration capabilities such as Java Database Connectivity (JDBC),
J2EE Connector Architecture (J2CA), and Enterprise JavaBeans (EJB). Apache Qpid [29], on
the other hand, provides cloud-based messaging capabilities and supports queuing for structured
message exchange, making it essential for distributed applications.

RabbitMQ [30] was developed by Rabbit Technologies Ltd in 2006 using the Erlang programming
language and released under the Mozilla Public License. It supports multiple protocols, including
AMQP, STOMP, and MQTT. HornetQ [31], a Java application based on JBoss, provides a distributed
messaging platform for enterprise-level applications using STOMP and AMQP protocols.

Red Hat AMQ [32] is a messaging protocol based on Java for large-scale Internet business
applications with no administrative costs, installation, or configuration required. Celery [33] is
written in Python and supports multiple message brokers, including RabbitMQ and Redis. Us-
ing JMS API, JBoss Messaging [34] is a messaging broker provided by JBoss, a division of Red

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:6 A. Saleh et al.

Table 1. A Summary of Open Source and Priority-supporting Message Brokers

M
e
ss

a
g

e

B
ro

k
e
rs

a
n

d
Q

u
e
u

e
s

C
lu

st
e
ri

n
g

S
u

p
p

o
rt

M
o

n
it

o
ri

n
g

S
u

p
p

o
rt

P
u

b
/S

u
b

S
u

p
p

o
rt

P
a

ra
ll

e
l

P
ro

ce
ss

in
g

P
u

ll
a

n
d

P
u

sh
S

u
p

p
o

rt

R
e
li

a
b

le
D

e
li

v
e
ry

P
e
rs

is
te

n
t

A
u

th
e
n

ti
ca

ti
o

n

S
ca

la
b

le

D
is

tr
ib

u
te

d

F
a

u
lt

T
o

le
ra

n
ce

S
h

o
rt

co
m

in
g

s

F
e
a

tu
re

s

Apache ActiveMQ [27] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Message delivery guarantees are limited [27].
Memory per queue is limited, the default number
of messages is 400 [27].
Installation is complex [27].
Scaling is challenging [27].

Multi-protocols and multi-languages support [27].
Efficient management and resource allocation [27].
Supports flow control and message expiration [27].
Provides message groups as well as virtual and combined queues [27].
Works on small and medium-scale applications [27].

Fuse Message Broker [28] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓ Limited monitoring tools[73].

Written in Java [73].
Supports JMS 1.1 and J2EE 1.4 integration-related components [73].
Supports loosely couple applications [73].
Supports multi-languages including C/C++, Java, .NET, Ruby, Perl,
PHP, Pike,and Python [73].
Supports message compression [73].

Apache Qpid [29] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Compatibility issues between versions [29].
Message size is limited to 100MB for AMQP
protocols 0-8, 0-9, or 0-91 [29]

Implements AMQP Protocol [29].
Easy to use [74].
Detects failures and assigns messages to different brokers [29].
Low latency [29].
Supports multiple authentication schemes [29].
Active connections can be limited to protect client processes
from malicious activity [29].

RabbitMQ [30] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Written in Erlang, which is unfamiliar to many
developers [30].
Queues with large numbers of messages are memory-
intensive and strain brokers [30].
Redundant message broker communication [14].
Clustering has few features and is complicated [30].
Message size is limited to 512MB [14, 30].

Runs on all major operating systems [30].
Has good documentation [30].
Works with C, C++, .NET, and Python [30].
Supports asynchronous cluster-to-cluster message routing [75].
Supports multiple messaging protocols [30].
Offers several built-in exchange types [30].
Supports flow control for balancing workloads and avoiding rapid
messages flooding [30].

HornetQ [31] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Data loss may occur [14].
Delay may occur with large messages (up to 100KB)
due to split message into multiple packages [76].

Supports AMQP and STOMP protocols [77].
Provides better performance and stability when combined with
ActiveMQ [14].

Red Hat AMQ [32] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Queue access is limited by special characters [78].
Non-persistent messages are lost when brokers
stop [78].

Enables real-time integration [32].
Supports multi-message patterns for real-time messaging [32].
Supports multi-languages, including Java, C, C++, Python, Ruby,
and .Net [32].
Supports mission-critical applications [32].

Celery [33] ✓ ✓ ✓ ✓ Push ✓ ✓ ✗ ✓ ✓ ✓

Compatibility and integration with other brokers
can be complicated [33].
Overall complexity [33].
Monitoring and management are challenging [33].
Number of connections is limited by 10 connections [33].

Enables operations to manage and maintain distributed task queues
,such as starting, stopping, and restarting worker processes [33].
Functions as a task queue [33].
Focuses on real-time processing [33].
Supports task scheduling [33].
Supports multi-message brokers [33].
Integrates with multi-web frameworks [33].
Supports automatic retry in the event of connection loss or
failure [33].

JBoss Messaging [34] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓
Delay may occur with large messages (up to 100KB) due
to split message into multiple packages[79].

Supports AMQP, MQTT, STOMP message protocols [79].
Supports transactions [79].
Provides management processes related to deployments, configuration,
and access control [79].
Easy integration with other JBoss and Java EE components [79].

OpenMQ [35] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Setup is complex [35].
High Latency [14].

Loosely-coupled architecture [35].

Beanstalk [36] ✓ ✓ ✗ ✓ Pull ✓ ✓ ✗ ✓ ✗ ✗
Lacks authentication [36].
Message size is limited to 64 KB [80].

Unprocessed messages are automatically returned to the queue [80].
Supports Ruby, Rails, Java, JavaScript, Haskell, and PHP [81].

Gearman [37] ✓ ✓ ✗ ✓ Both ✗ ✓ ✗ ✓ ✓ ✓

Does not have authentication and SSL support [37].
Manual configuration [37].
Monitoring tools are limited [37].

Used by LiveJournal, Yahoo!, and Digg [37].
Multi-languages support [37].
No single point of failure [37].
No limits on message size [37].
Supports load balancing [37].

Enduro/X [38] ✓ ✓ ✓ ✓ Both ✓ ✓ ✗ ✓ ✓ ✓

Message size is limited to max 10 MB [82].
Buffer size is limited to max 64KB [82].
Cluster nodes number is limited to max 32 nodes [82].
Resource managers numbers with single transaction
are limited to max 32 [82].
Versions compatibility depends on the date of
release [38].
Limitations on availability of the operations that can be
executed within the callback [82].

Distributed transaction processing [82].
Works on multi-platforms [38].

WSO2 [39] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Heap memory size allocation is limited to max
4GB [83].

Supports widely used protocols such as HTTP/S, JMS, VFS, UDP,
TCP, MQTT, MSMQ, and MailTo [84].
Supports message filtering [85].
Integrates easily with other WSO2 products and third-party
systems [39].

HiveMQ [40] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Number of characters broker accepts in an Client ID is
limited between 1 and 65535 [86].
Number of characters broker accepts in a topic string is
limited between 1 and 65535 [86].
Resource intensive for maintenance [86].

Is a client-based MQTT broker for M2M communication [40].
Suitable for mission-critical applications [40].
Supports real-time monitoring of device data and integration with
existing systems [40].

Redis [41] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Uses a memory dump which leads to slow
performance [41].
Has only basic security options [87].

Supports multiple data types [41].
In-memory data storage [41].

EMQX [42] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓ Setup, configuration and management are complex [88].
Supports MQTT bridging [42].
Supports data integration [42].

Apache Pulsar [43] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Complex configuration and deployment [43].
Complex architecture, based on four components (Pulsar
servers, Apache BookKeeper, Apache ZooKeeper, and the
RocksDB database) that need to be configured and
managed [43].

Supports event streaming [43].
An index-based storage system [43].
Low latency [43].
Supports messaging, streaming, and queuing [43].

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:7

Table 2. A Summary of Open Source and Non-priority-supporting Message Brokers
M

e
ss

a
g

e

B
ro

k
e
rs

a
n

d
Q

u
e
u

e
s

C
lu

st
e
ri

n
g

S
u

p
p

o
rt

M
o

n
it

o
ri

n
g

S
u

p
p

o
rt

P
u

b
/S

u
b

S
u

p
p

o
rt

P
a

ra
ll

e
l

P
ro

ce
ss

in
g

P
u

ll
a

n
d

P
u

sh
S

u
p

p
o

rt

R
e
li

a
b

le
D

e
li

v
e
ry

P
e
rs

is
te

n
t

A
u

th
e
n

ti
ca

ti
o

n

S
ca

la
b

le

D
is

tr
ib

u
te

d

F
a

u
lt

T
o

le
ra

n
ce

S
h

o
rt

co
m

in
g

s

F
e
a

tu
re

s

Apache Kafka [44] ✓ ✓ ✓ ✓ Pull ✓ ✓ ✓ ✓ ✓ ✓

Resource intensive [44].
Provides a data backlog [44].
Complex [44].

Supports topic (log) compaction and distributed event streaming [44].
Supports data integration [44].
Language support [44].
Supports multiple data formats [44].
Supports permanent storage and the management of data flow and
consumer groups [44].
Supports replication and partitioning of data [44].
Supports deployment in different environments [44].

Apache RocketMQ [45] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Message size is limited to max 4MB [45].
Message sending retries is limited to max 3 times [45].

Supports message broadcasting, tracking, filtering, and retrying [45].
Low latency [45].
Maintains the order of messages [45].
Supports multi-protocols [45].
Supports multiple programming languages [45].

Eclipse Mosquitto [46] ✗ ✓ ✓ ✗ Both ✓ ✓ ✓ ✓ ✓ ✓

Limited security [46].
No built-in clustering [89].
Unsuitable for large-scale deployments [89].
Deployment is challenging in a cloud environment [89].
Message size is limited to max 256MB [46].

Low resource usage [90].
QoS support [46].
Topic-based message filtering [46].
Supports logging and debugging [46].
Supports functioning as a bridge [46].
Supports dynamic restart configuration [46].
Suitable for low-power machines [90].

ZeroMQ [47] ✓ ✓ ✓ ✓ Both ✓ ✗ ✓ ✓ ✓ ✓

High load of local control modules [14].
Fails to manage relationships between all network
components [14].
Limited security [91].
Scaling is challenging [92].
Delivery is not guaranteed [92].

Brokerless messaging platform [47].
Multi-languages and platforms support [47].
Carries messages across IPC, TCP, TPIC, and multicast [47].
Low latency [47].

Apache NiFi [48] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Data extraction is difficult when a node is
separated from a cluster [48].
Under certain conditions, data is automatically
deleted [48].
Complex configuration [48].

Provides a data flow framework [48].
Provides data compression using a user-specified algorithm to reduce
data size [48].
Prevents data loss by controlling data flow and stopping the
production of more data than a queue can handle [48].
Supports buffering of all queued data [48].
Integrates and processes multiple data sources [48].

Ably Realtime [49] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Caps the number of channels per connection [49].
Peak connections number limited between 200 and
240 [49].
Message size limited to 16KB [49].
Number of queues limited to 5 [49].
Queue length limited to 10,000 [49].

Addresses challenging real-time requirements [49].
Supports streaming data [49].
Supports multiple protocols [49].

Apache SamZa [50] ✓ ✓ ✓ ✓ Pull ✓ ✓ ✗ ✓ ✓ ✓

Only supports JVM languages [93].
Configuration is complex [50].
Resources intensive with large data volumes [94].

Stream processing framework [50].
Supports message storage, routing, and processing management [50].
Supports at-least once data processing [50].
Real-time data processing with low latency [50].
Easy to integrate [50].

VerneMQ [51] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Lack of security [14].
Clustering architecture is unproofed [95].
Limited enterprise features [95].
Not under active development [95].
Limited support for MQTT integration [95].
Lacks management and monitoring features [95].
No cloud-based service [51].

Master-less clustered messaging protocol [51].
Supports flow control [14].
Low latency [51].

NServiceBus [52] ✓ ✓ ✓ ✓ - ✓ ✓ ✗ ✓ ✓ ✓

Scalability is limited due to use centralized
resource [96].
Monitoring tools are limited [97].
Debugging is complex with huge stream of
messages [96].

Ensures message processing [52].
Supports transactions and recovery is built-in [96].
Messages can be retried at regular intervals [96].

Kestrel [53] ✗ ✓ ✗ ✓ Pull ✓ ✓ ✗ ✗ ✗ ✗

Low support of security [53].
Low clustering capabilities [53].
Memory size is limited to max 128MB [53].
Number of items in the queue is limited to 500 [53].
Data size of each item in the queue is limited to max
32bytes [98].

Written in Scala [53].
Each server handles ordered MQs, with no cross
communication, resulting in a cluster of k-ordered queues [53].

NSQ [54] ✓ ✓ ✓ ✓ Push ✓ ✓ ✗ ✓ ✓ ✓

Data loss with server crash [54].
Messages are unordered [54].
Limited persistence [54].
No message recovery [54].
Lacks replication [54].
Messages are delivered at least once, which may
duplicate messages [54].

Load-balanced message delivery [54].
Efficient handling of high-volumeand real-time data streams [54].

NATS [55] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓ Message size is limited to max 64MB [99].

Suitable for real-time communication [99].
Easy to use [99].
Minimal resource consumption [99].
Offers persistence with "at-least-once" and "exactly-once" [99].

KubeMQ [56] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Unsuitable to all use cases due to it’s designed for
dynamic microservice environments [100].

Builds a hybrid infrastructure across clouds, on-prem, and at the
edge to allow microservices from multi-environments to
communicate [56].
Support for pub/sub, microservices, multistage pipeline,
and tasks queue use cases [56].
Runs in Kubernetes and connects natively to the K8S
cloud-native ecosystem [56].
Simple deployment in Kubernetes [56].
Easy to use [56].
Low latency [56].

Hat for facilitating communication between different components or applications in a distributed
system.

OpenMQ [35] is implemented in Java and was developed by Oracle as an open source protocol.
Beanstalk [36] creates queues automatically with pure Python. Gearman [37] is an optimized server

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:8 A. Saleh et al.

Table 3. Summary of Proprietary and Priority-supporting Message Brokers

M
e
ss

a
g

e

B
ro

k
e
rs

a
n

d
Q

u
e
u

e
s

C
lu

st
e
ri

n
g

S
u

p
p

o
rt

M
o

n
it

o
ri

n
g

S
u

p
p

o
rt

P
u

b
/S

u
b

S
u

p
p

o
rt

P
a

ra
ll

e
l

P
ro

ce
ss

in
g

P
u

ll
a

n
d

P
u

sh
S

u
p

p
o

rt

R
e
li

a
b

le
D

e
li

v
e
ry

P
e
rs

is
te

n
t

A
u

th
e
n

ti
ca

ti
o

n

S
ca

la
b

le

D
is

tr
ib

u
te

d

F
a

u
lt

T
o

le
ra

n
ce

S
h

o
rt

co
m

in
g

s

F
e
a

tu
re

s

IBM MQ [57] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

High costs [101].
Problems with message prioritization due to unordered way
of allocating messages [102].
Does not always integrate with the newest forms of
messaging [102].
Messages are unordered [102].

QoS support [103].
Provides robust monitoring and tracing of all
messages [103].
Controls undelivered messages [103].
Multi-APIs support [103].
Allows applications to be decoupled [103].
Easy to deploy on various platforms [103].

Amazon SQS [58] ✗ ✓ ✓ ✓ Pull ✓ ✓ ✓ ✓ ✓ ✓

High scale-up cost [58].
Message size is limited between 1KB and 256 KB [104].
Message ordering is not guaranteed [58].
Message retention before deletion is limited between 1 minute
and 14 days [58].

Cloud-based web service [58].
Supports decoupling microservices, distributed
systems, and serverless applications [58].
Transmits, stores, and receives messages across
software components using SQS at any volume [58].
Messages are delivered at least once [58].

Microsoft MQ (MSMQ) [59] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

May experience resource failure [59].
Limitation on message size [59].
Drops all MSMQ messages if the appropriate server is not
deployed [105].
Open queue failure error prevents data transfer [105].

Multi-protocols support [59].
Tracks and deletes expired messages [59].
Manages distributed brokers [59].
Supports remote access [59].
Effective routing [59].
Provides guaranteed message delivery [59].
Provides a store and forward mechanism [59].
Supports transactions [59].

Oracle GlassFish Server

Message Queue [106]
✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Resource intensive as the number of messages increases [106].
High latency as connections number to the broker
increases [106].
Size of message is limited to max 70MB [106].

Supports transactions [106].
Supports JMS 1.1, STOMP, and HTTP
protocols[106].
Well-known standards-based messaging
support [106].

TIBCO

Enterprise

Message Service [62]
✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Excludes fault tolerance of the server [107].
Recourse intensive as message size increased up to 512MB [108].

Supports load balancing [107].
Manages the real-time flow of information [62].
Supports multiple message protocols and
technologies [107].
Easy integration with TIBCO eFTL™ software
expands broker to web and mobile
applications [62].
Loosely coupled design [62].
Supports integration for heterogeneous
platforms [62].

TIBCO Rendezvous [61] ✗ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Expensive [109].
Queue size limited to max 500 [110].

Supports C, C++, Java , and .NET programming
language [111].
Easy to use and setup [111].
Has a distributed architecture to eliminate
failure [111].

Anypoint MQ [63] ✓ ✓ ✓ ✓ Pull ✓ ✓ ✓ ✓ ✓ ✓

Expensive [112].
Payload size is limited to max 10 MB [63].
Converts the payload format, leading to an increase in
payload size. [63].

Supports data integration [112].
Stores messages in a queue [63].
Provides intelligent message routing [63].

Azure Service Bus [64] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Is a cloud-only service [64].
Message size is limited between 256 KB and 100 MB [64].
Number of queues is to max 10,000 [113].
Number of subscriptions per topic is limited to max 2,000 [64].

Provides duplicate detection, duplicate
messages will not be stored in the queue [64].
Guarantees ordering [113].
Offers scheduling [114, 115].
Integrates well with other Azure products [115].
Supports multi-protocols [64].
Provides delivery guarantee (at-least-once,
at-most-once) [113].

SAP NW PI [65] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Message size is limited to max 350 MB [116].
Performance is directly affected by the message size [116].

Supports various integration patterns [65].
Supports message transformation [65].

Solace PubSub [66] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Message size is limited to 64 MB [117].
Broker connections is limited to max 1000, some functions
are not available with the default 100 connections [117].
Guaranteed messaging is not supported over connections [117].

Provides dynamic message routing [118].
High availability and high-performance [118].
Provides distributed tracing [66].
Event-driven architecture [118].
Supports multi-protocols [118].

written in C/C++ with a simple interface that provides low application overhead. Enduro/X [38]
is written in C and offers native APIs for C/C++. For enhanced interprocess communication, it
utilizes in-memory POSIX kernel queues. As part of the WSO2 Integration platform, WSO2 Message

Broker [39] is a message-based communication component.
HiveMQ [40] is compatible with MQTTv3.1 and all subsequent versions. The Eclipse Public

License (EPL) and Eclipse Distribution License (EDL) cover this implementation. Redis [41]
is BSD-licensed, used by companies such as Uber, Instagram, and AirBNB for caching and mes-
saging queues. With 100 million concurrent connections per cluster and sub-millisecond latency,
EMQX [42] can efficiently and reliably connect massive amounts of IoT devices. EMQX nodes can
be bridged by other MQTT servers and cloud services to send messages across platforms. Addi-
tionally, it deploys and operates on all public cloud platforms. Apache Pulsar [43] is an open-source
distributed messaging system developed as a queuing system, but it recently added event stream-
ing features. It combines many Kafka and RabbitMQ features.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:9

Table 4. Summary of Proprietary and Non-priority-supporting Message Brokers

M
e
ss

a
g

e

B
ro

k
e
rs

a
n

d
Q

u
e
u

e
s

C
lu

st
e
ri

n
g

S
u

p
p

o
rt

M
o

n
it

o
ri

n
g

S
u

p
p

o
rt

P
u

b
/S

u
b

S
u

p
p

o
rt

P
a

ra
ll

e
l

P
ro

ce
ss

in
g

P
u

ll
a

n
d

P
u

sh
S

u
p

p
o

rt

R
e
li

a
b

le
D

e
li

v
e
ry

P
e
rs

is
te

n
t

A
u

th
e
n

ti
ca

ti
o

n

S
ca

la
b

le

D
is

tr
ib

u
te

d

F
a

u
lt

T
o

le
ra

n
ce

S
h

o
rt

co
m

in
g

s

F
e
a

tu
re

s

Google Cloud

Pub/Sub [67]
✗ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Unsuitable for large-scale deployments
due to limitations on resources [67].
Message size is limited to max 10MB [67].

Provides real-time stream analytic [67].
Handles the underlying infrastructure,
including provisioning servers, monitoring,
scaling, backups, and security updates [119].
Provides service maintenance feature that suitable
for Google’s most fundamental products to serve
all customers effectively [67].
Provides system maintenance feature to detect
any issues with releases by continuously-running
tests it is before used by customers and by
monitoring [67].
Integrates with other Google Cloud services [67].
Supports automatic retries and message
ordering [67].

Azure Storage Queue [71] ✗ ✓ ✓ ✓ Pull ✓ ✓ ✓ ✓ ✓ ✓
Orders messages randomly [113].
Message size is limited to max 64 KB [71].

Maximum number of queues is unlimited [113].
Activity monitoring support [71].
Supports storing large numbers of messages [71].
Messages are delivered at-least-once [113].
Does not provide duplicate detection [113].

Amazon MQ [68] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Number of broker connections
is limited to 1,000, or 100 for micro
brokers [120].

Supports Standard Java Message Service (JMS)
features [120].
Performs maintenance to the hardware,
operating system,and the engine software
a message broker [120].
Integrates with other AWS services and
applications [68].
Supports distributed transactions [120].
Multi-protocols support [120].

Intel MPI Library [69] ✓ ✓ ✗ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Expensive [121].
Compatibility issues with some
systems [69, 122].
Other processor architectures are not
supported [69].

Uses OpenFabrics Interface (OFI) to handle all
communications [69].
Establishes the connection only when needed,
which reduces the memory footprint [69].
Chooses the fastest transport available [69].
Supports multi-cloud platforms [69].
Supports multi-cluster interconnects [69].

Amazon Kinesis [70] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Permission issues [123].
Costly as data volume increases [70].
Data payload size is limited to max
1MB), data read rate to to 1MB/s,
and number of consumers for each
data stream to max 20 [124].
Operations are rate-limited [124].
Limitation on number of data
streams [124].
Each record is added to a buffer with a
deadline [124].

Provides buffering and processing of real-time
data streaming [70].
Serverless streaming data service [70].
Provides reliable data processing and delivery with
checkpointing and error-handling [70, 125].
Offers monitoring and management [70].
Offers various developer tools [70].

IronMQ [72] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Expensive [126].
Limited control [127].

Meets the needs of both small businesses and large
enterprises [127].
Supports multiple programming languages [127].
Uses REST API [72].
Easy to install [127].
Handles load buffering, synchronicity, and database
offloading issues [127].
No limitation on the number of queues [72].

3.1.2 No Priority Support. Apache Kafka [44] was developed by LinkedIn as a distributed
streaming platform, supporting multiple data formats, including JSON, Avro, and XML. Further-
more, Java, Python, and Go are the official client libraries and several cloud platforms are supported,
including Amazon Web Services, Microsoft Azure, and Google Cloud Platform. It provides a vari-
ety of tools for managing and monitoring Kafka clusters, such as Kafka Manager, Kafka Monitor,
and Kafka Connect.

Apache RocketMQ [45] is a cloud-native platform that operates across distributed systems, facili-
tating real-time data processing. With support for versions 5.0, 3.1.1, and 3.1, Eclipse Mosquitto [46]
implements the MQTT protocol. ZeroMQ [47] is supported by a large and active open source com-
munity, and utilizes a broker-less pub/sub pattern.

Apache NiFi [48], developed by the Apache Software Foundation, automates data exchange
between software systems, and facilitates the conversion of data formats in real-time. Ably

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:10 A. Saleh et al.

Realtime [49] is built on Ably’s Data Stream Network, which includes a cloud network and real-
time messaging fabric. Additionally, over 40 Client Library SDKs are available, as well as native
support for six real-time protocols. Apache SamZa [50] is a streaming framework based on Apache
Kafka and Apache Hadoop developed by LinkedIn and now part of the Apache Software Founda-
tion. It processes real-time data streams generated by Apache Kafka, Amazon Kinesis, and Azure
Event Hub.

VerneMQ [51] was launched in 2014 by Erlio GmbH. It supports MQTT messages in LevelDB,
and uses a clustering architecture based on Plumtree, however, it isn’t actively developed and lacks
features. NServiceBus [52] is designed with simplicity. With a number of retry strategies, a message
which fails processing can automatically be forwarded to an error queue for manual investigation.
Kestrel [53] is a JVM-based distributed message queue inspired by Blaine Cook’s “Starling”.

In NSQ [54], distributed and decentralized topologies are promoted, allowing fault tolerance and
high availability as well as reliable delivery by replicating every message across multiple nodes
within the cluster. NATS [55] was originally released in 2011 and was written in Go. KubeMQ [56]
is a modern and innovative message queue and broker that facilitates communication across cloud
platforms, on-premise environments, and edge deployments.

3.2 Proprietary Message Brokers

We found 16 proprietary message brokers, out of which 10 supported priority messages while 6
did not. Each is discussed in more detail in below subsections.

3.2.1 Priority Support. IBM MQ [57] supports data exchange between applications, systems,
services, and files via messaging queues, serving as a crucial communication layer for message flow
management. It offers flexibility in deployment options, whether in virtual machines or containers,
including Docker, Kubernetes/Cri-O, and Red Hat OpenShift. Moreover, it is ideal for applications
demanding high reliability and zero message loss. Amazon Simple Queue Service [58] is operated
by Amazon, so it can handle a lot of traffic with providing authentication using the Amazon API
key and secret. However, requests are sent to the SQS web service via HTTP, which is susceptible
to latency issues.

Microsoft Message Queue [59] is a messaging infrastructure created by Microsoft and built into
the Windows Operating System. It serves as a queue manager and allows two or more applications
to communicate without immediately knowing each other’s responses.

As a Java-based message broker, Oracle GlassFish Server Message Queue [60] provides message
brokering services to popular message queue systems such as AQ, IBM MQ Series, and TIBCO
Rendezvous. It provides a consistent, open, JMS-compliant API for these message queuing systems.
Additionally, OMB supports both durable and non-durable subscribers, as well as the JMS standard
pub/sub, topic-based routing.

TIBCO Rendezvous [61] is a peer-to-peer architecture for high-speed data distribution. TIBCO

Enterprise Message Service [62] is a message oriented middleware that supports a wide range of
message protocols and technologies, including the JMS standard using Java and J2EE, Microsoft
.NET, TIBCO FTL, TIBCO Rendezvous and C and COBOL on the Mainframe. Besides supporting
up to 10 MB payloads in XML, JSON, CSV, HTML, and plain text formats, Anypoint MQ [63] also
has easy connectivity to Mule applications or non-Mule applications.

Azure Service Bus [64] from Microsoft is a cloud-based message broker that only supports AMQP
and STOMP protocols. As a fundamental part of SAP NW PI [65] architecture, an Integration
Broker facilitates communication between different enterprise applications, both SAP-based and
non-SAP.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:11

Solace Message Broker [66], also known as Solace PubSub+, is an advanced event broker that fa-
cilitates the efficient exchange of information between applications, IoT devices, and users through
several messaging paradigms, including pub/sub, queue, request/reply, and streaming.

3.2.2 No Priority Support. Google Cloud Pub/Sub [67] is a messaging service offered by Google
Cloud. In addition to native integration with other Google Cloud services, including Cloud Func-
tions, Dataflow, and BigQuer, as well as a variety of development tools like Cloud Shell, Cloud Code,
and Cloud Build, it supports real-time data processing for ML applications with Google Cloud AI
Platform and other ML services. Aside from the Stackdriver Logging and Stackdriver Monitoring
tools, it also provides SDKs for Java, Python, Node.js, and Go.

Amazon MQ [68] developed for ActiveMQ based on Java with support for MQTT, AMQP,
STOMP, and WebSocket. Intel MPI Library [69] provides a cloud support for Amazon Web Ser-
vices, Microsoft Azure, and Google Cloud Platform. Amazon Kinesis [70] is a real-time stream-
ing data service with a scalable and durable architecture that can capture and store GBs or
TBs of data per second from multiple sources for up to 24 hours. It provides various developer
tools and integrations with AWS services, such as SDKs, templates, and integrations with AWS
CloudFormation.

Azure Storage Queue [71] provides cloud messaging that enhances communication in the cloud,
on desktops, on-premises, and on mobile devices. IronMQ [72] runs on public clouds as well as
on-premise with providing client libraries in a wide variety of programming languages, including
Python, Ruby, Java, PHP, and NET.

3.3 Summary on Message Brokers

Message brokers play a major role in streamlining communication between distributed systems by
ensuring messages are properly routed. As highlighted in Tables 1 to 4, key strengths of message
brokers include reliability, achieved through guaranteed message delivery that ensures no data loss
during transmission, and flexibility, provided by pub/sub mechanisms that decouple publishers and
subscribers. Additionally, they often provide mechanisms for message persistence so that they do
not lose a single message in the event of a system failure. Their support for multiple messaging
patterns, many different protocols, programming languages, and data styles, meets the needs of
various types of communication. Moreover, many brokers come with an array of features. These
features are critical elements, each contributing significantly to creating a robust message broker
capable of managing communications in complex systems, ensuring efficiency. Further details of
these features are provided below.

— Clustering support [27] enables scaling the message service to accommodate more clients or
connections, effectively handling large message volumes and numerous clients.

— Monitoring [128] tools are crucial for tracking a message broker’s performance and health,
allowing for proactive management, early problem detection, and reliable operation.

— Pub/sub support [103] enables separation of publishers from subscribers, increasing system
flexibility.

— Parallel processing support [44] allows the message broker to handle multiple messages si-
multaneously, improving throughput and efficiency.

— Pull and push support [44] allow flexible and timely message delivery.
— Reliable delivery support [129] ensures messages are not lost during transit, typically through

acknowledgments, retries, or temporary storage until successful delivery.
— Persistence support [130] safeguards messages against loss during broker restarts or storage

message failures.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:12 A. Saleh et al.

— Authentication support [130] is vital for permitting only authorized users and systems to
publish or subscribe to messages, especially in systems dealing with sensitive data.

— Scalability [131] refers to a message broker’s ability to handle increasing loads from a large
number of concurrently connected clients.

— Message brokers can operate in distributed environments [103], allowing them to work on
multiple devices or locations, optimizing workload distribution.

— Fault tolerance support [103] enables the message broker to recover from failures and con-
tinue operating smoothly.

The evolution of message brokers as illustrated in Tables 1 to 4 highlights significant advance-
ments in their features and capabilities, driven by advancements in computing architectures, ap-
plication demands, and integration with emerging technologies. In the early stages, clustering
support was either absent or limited, posing challenges to scalability. This prompted brokers such
as Apache Kafka and Intel MPI Library to provide robust clustering capabilities, enabling horizon-
tal scaling and efficient multi-cluster interconnects to handle large message volumes effectively.
Initially, monitoring tools were sparse and often relied on third-party integrations. Today, plat-
forms like Google Cloud Pub/Sub and IBM MQ offer integrated monitoring features, facilitating
proactive issue detection and performance optimization.

Current systems have moved beyond basic routing to support advanced topic-based filtering,
as seen in Eclipse Mosquitto, and support multiple protocols and programming languages, such as
Apache ActiveMQ. Reliable delivery mechanisms have also evolved from minimal guarantees like
“at-most-once” delivery to robust mechanisms “at-least-once” delivery through acknowledgments,
retries, and persistent queues, as exemplified by NATS, Azure Service Bus, and Azure Storage
Queue. Furthermore, fault tolerance has seen significant progress, with features such as automatic
retries helping to prevent data loss and downtime, as demonstrated by Celery and Google Cloud
Pub/Sub.

With these capabilities, they are able to serve as the backbone for a wide variety of event-driven
architectures and asynchronous communication patterns by serving as the basis for these archi-
tectures. Each feature reflects a critical capability necessary for brokers to meet the demands of
modern, dynamic, and data-intensive applications, like GenAI applications. For example, these ap-
plications require several operational requirements, including scalability to meet dynamic demand,
efficient data exchange management, real-time responsiveness, reliability, and robust security.

With scaling support, message brokers can distribute workloads across multiple nodes efficiently
and meet GenAI applications’ growing demands. Additionally, pub/sub support capabilities en-
able seamless asynchronous communication between multiple components in distributed environ-
ments. The message broker with parallel processing capabilities can efficiently handle multiple
messages simultaneously, enabling high throughput and low latency (real-time responsiveness),
which are key to GenAI applications’ real-time requirements. Additionally, push and pull support
ensures timely processing of high-priority or time-sensitive data while facilitating efficient data
stream management.

The message broker equipped with monitoring tools is crucial, since real-time monitoring
allows for detection and seamless recovery of issues such as latency, bottlenecks, and failures
before they affect system performance. This capability improves reliability, for example latency-
sensitive GenAI tasks, such as real-time translation and conversational AI. GenAI applications
also require guaranteed delivery mechanisms, such as acknowledgments and retries, to ensure
the integrity of critical data. This is particularly important in scenarios where data loss can lead
to system failure. Also, the sensitive nature of GenAI systems’ data-such as personal or medical
information-demands robust authentication mechanisms to prevent unauthorized access and
ensure data security.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:13

Despite their inherent strength, message brokers have several limitations that can impact their
performance. Among these limitations, for instance, message size, message sending retries, se-
curity features, queue length, monitoring tools, memory size limitations and the number of al-
lowable broker connections. These limitations further highlight the challenges associated with
these systems. For instance, brokers face in complex setup processes and real-time processing
demands, such as latency issues. Additionally, maintenance, monitoring, integration, large-scale
deployments, and management can pose significant difficulties that contribute to considerable re-
source consumption.

Furthermore, the limited ability of some brokers to handle large volumes of data require the use
of methods such as GenAI tools to enhance their capabilities and meet the growing processing and
performance demands of GenAI applications. These applications require a dynamic and adaptive
communication infrastructure capable of efficiently managing large-scale data generation. In the
following section, we will explore the role of GenAI models in enhancing message brokers, the
contribution of message brokers to GenAI, and advanced techniques designed to optimize their
functionality within the GenAI context.

4 Message Brokers and GenAI

The exploration of pub/sub communication patterns from the perspective of GenAI opens up a
vision for the future, suggesting a range of benefits that could potentially enhance content de-
livery, personalization, and user engagement. Leveraging AI models such as GPT-3 [132] and its
successors holds the promise of delivering customized content in real-time, tailored to the unique
preferences of individual subscribers. This could be achieved by automatically generating human-
like text that aligns with each subscriber’s interests [7]. While the full realization of these benefits
remains a subject for further research and development, the integration of advanced AI technolo-
gies with pub/sub systems offers a promising opportunities into the possibilities for more dynamic
and personalized communication strategies. In this and following sections, we will attempt to shed
light on this vision with practical examples and discuss how emerging enabling technologies can
play a key role in this respect.

Language-based GenAI systems offers the capability to process subscriber queries and feedback
efficiently using natural language understanding. These systems can power chatbots and virtual
assistants, enabling users to communicate both interactively and intelligently with each other. Fur-
thermore, their ability to summarize content, translate it into different languages, and moderate
it significantly enhances the quality and accessibility of information [133]. Consequently, such
systems enable the design of proactive information delivery mechanisms, including automated re-
porting, anomaly detection, and predictive analysis [134–136]. For instance, LLMs can learn from
historical data and trends to autonomously analyze security logs and reports, generating compre-
hensive summaries that detail threat sources and attack paths while providing early warnings
about potential threats [137, 138]. Additionally, within network environments, LLMs can predict
peak usage periods by analyzing historical trends in user activity, workload demands, and perfor-
mance metrics, allowing for proactive scaling of computing resources [139]. With these capabilities,
LLMs can contribute to reliability and resource optimization.

These advancements in language processing and interaction capabilities signify a critical oppor-
tunity in the evolution of computing architectures, especially as we address the rising processing
and performance demands of GenAI applications. The complexity and sophistication of these ap-
plications necessitate a robust architectural framework that is not only capable of supporting the
intricate dynamics of GenAI operations but also adaptable to the novel types of data generated by
GenAI applications. This architecture should be specifically tailored to leverage the unique advan-
tages that GenAI offers, such as enhanced content personalization and user engagement, while still

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:14 A. Saleh et al.

Fig. 3. The overall architecture of a GenAI agent, with possible integration points with message brokers.

aligning with traditional scenarios where message broker technologies are pivotal. For instance,
the architecture can integrate LLMs and Large Multi-modal Models (LMMs) to enhance the ca-
pabilities of actuators and sensors, enabling them to extract more semantic information from data
and identify combinational patterns among them [140]. This approach ensures that the system
can dynamically adapt and respond to the evolving landscape of GenAI-driven communication,
making it possible to abstract richer, more meaningful insights and foster synergistic interactions
within the pub/sub ecosystem.

In this regards, central to our discussion is the conceptualization of the GenAI agent model, which
exemplifies the architecture required to harness the full potential of GenAI applications Figure 3.
This model, segmented into environment interaction, perception, decision-making, and actuation

components, serves as the backbone for integrating GenAI capabilities with pub/sub systems. It
encapsulates the essence of GenAI’s interaction with its surroundings, leveraging advanced com-
putational engines like LLMs for processing and decision-making tasks.

The perception component perceives the environment through observations. It is equipped
with sensing elements which may include physical sensors to gather diverse data from the sur-
rounding environment, software-based tools, or both, along with a message broker designed to fa-
cilitate communication between these elements. These physical sensors can capture multi-modal
observations, including visual, auditory, and textual data, as well as other modalities that can help
the GenAI agent to understand its situation. The software-based tools such as LLMs, interface with
abstract data streams. They read, analyze, and transform the gathered data into a comprehensible
format for the agent’s brain. These tools includes such as Multimodal-GPT [141], Flamingo [142],
HuggingGPT [143], AudioGPT [144], GPT-4 [145], Visual ChatGPT [146], and so on. Using sen-
sors with LLMs enhances their capability to understand and react to changes in the environment,
leading to more effective decision-making in dynamic situations.

The agent’s decision-making component, or brain, executes memorizing, thinking, analyz-
ing and decision-making tasks, supporting long and short-term memory, knowledge, and plan-
ning [147]. Short-term memory records recent tasks and actions, while long-term memory acts
as an external database, enhancing the agent’s ability to recall past conversations and pertinent
details. Utilizing subgoal decomposition [148] and a chain-of-thought approach [149], the agent
breaks down large tasks into multiple manageable subgoals that are processed by a group of LLMs
models. Through self-critics and reflection [150, 151], the agent can learn from its errors, enhanc-
ing its capabilities iteratively.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:15

Table 5. GenAI for Message Broker

Issues Impact on Message Broker GenAI Solution Challenge

Routing

and

Filtering

and

Matching

- Accurate routing decisions for efficient
message delivery.
- High accuracy for filtering and matching
of messages.

- Prediction of routing decisions to avoid busy routes
- Filtering of messages according to specific criteria.
- High matching accuracy by analyzing the content of
messages

- Handling large-scale dynamic message flow.
- Maintaining low latency for real-time systems.

Load

Balancing

- Bottlenecks due to uneven workload
distribution.
- Coordination across multiple nodes.

- Proactive distribution of workloads or services
across various nodes.
- Minimizing access times.

- Adapting to fluctuating workloads.
- Ensuring fair distribution of computational
resources.

Failure

- Downtime impacts system reliability
and user trust.
- Potential for failures in distributed systems.

- Increasing system reliability and reducing downtime.
- Identify patterns that may induce errors or security
breaches.
- Automatic corrective measures.

- Predicting failures in highly dynamic and
unpredictable environments.
- Addressing failures before they impact
other systems.
- Ensuring system recovery.

Scalability

- Systems must handle growing data flow while
maintaining efficiency.
- Poor scalability leads to service degradation.

- Determining the optimal times for scaling resources.
- Ensure efficient operation under varying loads.
- Efficient resources utilization.

- Balancing cost-efficiency with performance.

Continuous

Improvment

- Continuous adaptation to evolving
requirements.
- Learning from system interactions to
improve over time.

- Learning from ongoing interactions.
- Improving system performance over time.

- Integrating learning mechanisms without
disrupting ongoing operations.

Table 6. GenAI on Message Broker

Issues Impact on GenAI Message Broker Solution Challenge

Scalability
High volume of data streams across
distributed systems impacts flexibility.

- Dynamic load balancing
- Horizontal scaling
- Decoupling.

Ever-growing data volumes and connections
overwhelm traditional brokers.

Fault

Tolerance

Message loss during failures impacts
reliability.

- Persistent message storage
- Acknowledgments
- Retries.

Complexity, especially in resource-constrained
environments.

Low Latency
Delays disrupt real-time applications
like chatbots.

- Optimized routing
- Real-time queuing mechanisms.

Advanced methodologies (e.g., distilled models,
computing and networking-aware orchestration,
resource management techniques).

Heterogeneity
Difficulty integrating various
sub-components.

- Seamless interoperability
- Balanced offloading of tasks.

Ensuring consistent communication between
heterogeneous components.

Dynamic

Workloads

Resource bottlenecks due to
unpredictable spikes.

- Manage the real-time data streams
efficiently.

GenAI workloads are unpredictable and
vary significantly over time.

Energy

Efficiency

High energy consumption due to
large-scale workloads.

- Energy-efficient message routing
- Optimized resource utilization.

Balancing performance and energy efficiency
in large-scale deployments.

Ethical

and Privacy

Inaccurate or misleading outputs can
disrupt critical applications.

- Monitor and detect anomalies.
Real-time validation, continuous monitoring,
robust security measures, fine-tuning.

The agent uses actual physical actuators, LLMs-based tools, or both to execute tasks in the
actuation component. These elements allow agents to interact with and respond to their envi-
ronments. The LLMs-based tools include text generation through text-based tools such as Chat-
GPT [152]. Moreover, agents’ workspaces have been expanded with embodied actions to support
their integration and interaction with the physical world. LM-Nav [153] analyzes input commands
and the environment, aiming at identifying the optimal walk based on a topological graph that is
constructed internally. EmbodiedGPT [154] enables robots to comprehend and perform motion
sequences in physical settings through multimodal visual understanding. Using these non-textual
output tools extend the functionality of language models and agent scenarios.

Crucially, GenAI agents are also able to generate novel tools. With frameworks like CRE-
ATOR [155], agents can generate executable programs or merge existing tools into more robust
ones. Furthermore, with frameworks such as Self-Debugging [156], agents can iteratively improve
the quality of the generated tools, autonomously learning from past experience, self-correcting
and adapting, enhancing their tool-generation capabilities.

Following milestone studies in edge intelligence [157–159], the interaction between brokers
and GenAI can be separated into two different categories: the benefits that GenAI can bring to
message brokers, as well as the benefits that message brokers can provide to GenAI, are illustrated
in Tables 5 and 6.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:16 A. Saleh et al.

Fig. 4. GenAI for Message Brokers in a Smart City Context. This diagram illustrates how GenAI modules
enhance traditional AI capabilities within a message broker system deployed in a smart city infrastructure.
The integration enables more intelligent routing decisions, semantic error detection, and adaptive resource
scaling by leveraging real-time sensor data, user feedback, and predictive insights.

4.1 GenAI for Message Brokers

GenAI has the potential to complement and enhance the intelligence and efficiency of message
brokers, particularly by supporting the prediction of routing decisions to avoid busy routes. LLM
can analyze network status, traffic, routing data to evaluate network performance [135]. Based on
this information, LLMs can automatically adjust routing strategies and allocate traffic to optimal
paths, reducing latency. For instance, during times of network congestion, LLM can dynamically
reroute some traffic to less congested paths, reducing latency and enhancing service quality [139].

Furthermore, GenAI’s ability to identify patterns that may induce errors [135, 160–162] offers
a promising avenue for augmenting message brokers with automatic corrective measures, poten-
tially increasing system reliability and reducing downtime. GenAI’s could assist in proactively dis-
tributing workloads or services across multiple nodes and determining the optimal time for scaling
computing resources by analyzing historical usage patterns, workload demands, and performance
metrics [139]. This potentially can minimize access times and enhance the efficient utilization of
resources.

By leveraging GenAI’s advanced capabilities in understanding, interpreting, and generating
text [163], there is an opportunity to improve topic matching accuracy by analyzing the content of
messages, enhancing the precision with which messages are delivered to their intended recipients.
Additionally, GenAI’s capacity for learning from ongoing interactions and its explainability could
create a continuous feedback loop [164] that, when used alongside existing machine learning mod-
els, refines system performance over time. Table 5 highlights the integration of GenAI in message
broker systems and addresses key issues, their impact of message broker systems, the GenAI so-
lutions that can be applied to enhance traditional AI capabilities within a message broker system,
and the associated challenges.

To concretely illustrate the enhancements that GenAI brings to message brokers, we present a
representative use-case scenario involving a smart city infrastructure. Consider an IoT ecosystem
with a message broker responsible for managing communications between thousands of devices
across a smart city infrastructure. This scenario is visualized in Figure 4, which illustrates how a
message broker facilitates communication between IoT devices, AI modules, and system operators.
Traditional AI modules within the broker analyze sensor data to facilitate basic routing and load
balancing. However, with the integration of GenAI, the system gains a significantly broader and
deeper analytical capability–in particular, the ability to process and interpret large volumes of un-
structured log data and textual feedback from devices and users in real-time, which traditional AI
modules are not typically equipped to handle. For instance, GenAI models, trained on large and

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:17

diverse datasets, can analyze historical trends and real-time environmental signals to predict traffic
congestion on network pathways [165]. This semantic-level understanding and forecasting abil-
ity enables the message broker to dynamically reroute data flows, reducing latency and avoiding
congested network nodes in ways that go beyond traditional rule-based or statistical methods. In
this respect, and still referring to the example shown in Figure 4, GenAI modules–such as LLMs or
foundation models fine-tuned for system log understanding–can interpret user feedback and error
reports, detect semantic anomalies, and suggest proactive corrective actions [136–138]. These mod-
ules complement traditional AI by handling more abstract and unstructured data inputs [166, 167],
ultimately enabling more adaptive and context-aware broker decisions.

Moreover, GenAI’s pattern recognition capabilities [168] extend to identifying subtle signs of
potential system failures or security breaches before they escalate. By analyzing error logs and
user reports, GenAI can pinpoint anomalies that traditional systems might overlook, enabling
preemptive maintenance and strengthening the network’s security layout.

In the context of resource scaling, LLMs can be used for time series analysis [169, 170] to in-
tercept trends in data traffic and device engagement to forecast demand spikes [171, 172]. This
foresight enables the system to scale resources up or down efficiently, ensuring optimal perfor-
mance without wastage of bandwidth or computing power. The continuous learning aspect of
GenAI [173], fueled by an ongoing feedback loop, ensures that the message broker’s performance
and decision-making processes improve over time, adapting to the evolving needs of the smart
city infrastructure.

To conclude, we reaffirm that the integration of GenAI into message brokers opens new possibil-
ities for enhancing both the intelligence and adaptability of broker systems. As showcased through
the smart city example, GenAI modules can help overcome some of the limitations that are inher-
ent to traditional AI approaches, especially when dealing with unstructured inputs and dynamic
environments. Overall, this approach aims at enabling brokers to support more context-aware
decision-making, thereby improving service quality in complex, heterogeneous, and large-scale
deployments.

4.2 GenAI on Message Brokers

GenAI introduces unparalleled content generation capabilities for advanced applications across
diverse domains [7]. Future GenAI systems are expected to experience a data explosion due to
the integration of multimodal systems [174]. This heterogeneous data explosion will span across a
distributed edge-cloud continuum, placing increasing demands on current communication infras-
tructures [7].

As GenAI applications scale, managing large datasets across edge, fog, and cloud layers will re-
quire optimized distribution strategies that minimize inference latency [17]. Additionally, coordi-
nating and managing the distributed inference process across distributed nodes is crucial for ensur-
ing responsiveness in reactive applications [17], while also ensuring the integrity of AI-generated
content. This requires communication infrastructure that can meet the requirements of GenAI
applications. Table 6 highlights the critical issues affecting GenAI, emphasizes the importance of
message brokers in addressing these issues, and outlines the associated challenges.

Message brokers, leveraging asynchronous communication capabilities [103], can operate to
enhance GenAI task processing efficiency. This approach facilitates interactions that do not ne-
cessitate real-time communication, streamlining the processing of real-time data streams. By de-
coupling the sending and receiving processes, message brokers can offer a flexible and scalable
solution for managing the complex data workflows associated with GenAI applications.

Central to message brokers is their robust mechanism to prevent message loss [130], which is
key in conserving computational resources and safeguarding critical data for GenAI applications.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:18 A. Saleh et al.

These systems are equipped with tools designed to monitor and regulate message flow effectively.
This functionality is fundamental in preserving the performance and operational integrity of
GenAI by ensuring that data is processed efficiently and reliably, mitigating the risk of bottlenecks
and data overflow.

Furthermore, message brokers facilitate service decoupling [103], enabling GenAI to manage
growing workloads more effectively. The broker’s ability to distribute tasks to different nodes
allows GenAI to achieve a balanced load distribution [103], with different components running on
different nodes. This is particularly important for GenAI deployments in the computing continuum,
providing them with access to local environments with limited computational capacity. In such
cases, a message broker can act as an intermediary, bridging sensors with the perception module
and conveying actions to the actuators and responses to the user [3, 17].

Within the critical brain component, message brokers play a vital role in linking various sub-
components, each offering distinct features or possessing heterogeneous computational resources
and functionalities. By promoting interoperability and collaboration among diverse LLMs agents
that contribute to decision-making, message brokers can significantly boost the performance of
agents on complex tasks. This collaborative framework also facilitates the balanced offloading of
tasks, optimizing the utilization of computing, communication, and storage resources across the
network.
This highlights using agent frameworks such as AutoGen [175] and LangChain [176]. These frame-
works enable building autonomous LLM agents configured to perform diverse tasks while collab-
orating within a coordination layer with minimal human intervention. These entities have the
ability to integrate with external data sources, such as APIs and knowledge bases, enhancing their
capability to access, process, and utilize information dynamically.
Incorporating message brokers within the coordination layer contribute to manage the flow of
information between agents, as well as enable decoupling of LLM agents (producers and con-
sumers), allowing LLM agents and external tools or APIs to independently publish or consume
messages without direct interdependencies. Additionally, message brokers ability to support the
integration of agents or tools is beneficial in enabling parallel processing for complex workflows in-
volving multiple agents. Furthermore, the asynchronous communication is essential for managing
tasks with varying execution times or priorities, ensuring the system responsiveness. Message bro-
kers can manage retries, storage, and error handling, ensuring the stability and reliability of these
frameworks.
For instance, integrating Kafka within the AutoGen framework [177] established a responsive in-
frastructure that efficiently routed multimedia data to subscribing agents or tools based on topics.
This integration allowed the system to manage multiple data streams and distribute them among
agents without bottlenecks, enabling seamless interaction between LLM agents and external data
sources.

However, integrating GenAI into message broker requires careful planning and customization
to mitigate the risks of biased, misleading, or delayed outcomes. Addressing hallucination prob-
lems [178], inference latency [7], privacy [134], and ethical considerations [179] is paramount to
align GenAI implementations with specific system objectives [134]. For further details, as illus-
trated in the Table 6, one prominent challenge is model hallucination, where the AI generates
inaccurate content [178]. This issue can significantly impact message brokers by propagating mis-
information, thereby lack of user trust. Enhancing message broker through implementing robust
validation mechanisms to verify model outputs and fine-tuning the model with domain-specific
data is essential strategies to address this issue [180].

Another key concern is inference latency, which refers to the delay between a request to the
model and the generation of its response. High latency disrupts time-sensitive applications, such

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:19

as real-time communication, creating bottlenecks and reducing the overall throughput of the mes-
sage broker. Consequently, message brokers must adopt advanced methodologies to manage the
extensive data volumes generated and consumed by GenAI applications effectively and minimize
computational demands in this context [181]. As example for these methodologies, implement-
ing computing- and networking-aware orchestration, resource management techniques [182], and
deploying lightweight versions of the model or small language models, such as distilled models.
These methodologies are not only essential for enhancing connectivity but also play a crucial role
in reducing the computational demands and latency that are often associated with GenAI tasks.
Additionally, ethical and privacy concerns present significant challenges, as GenAI may generate
biased, harmful, or malicious content, compromising user trust [134, 179]. Addressing these issues
requires integration broker with continuous monitoring, robust security measures [183].

In practical terms, there are several technical aspects contribute to enhancing the suitability of
message brokers for GenAI applications. Among these technical aspects are model compression
and model training acceleration strategies. The integration of these strategies within message bro-
ker can significantly mitigate GenAI’s computational requirements and delays, addressing one
of the major challenges in deploying these advanced systems efficiently. Furthermore, message
broker with intelligent resource management algorithm can distribute workloads based on each
node’s capacity significantly, enhancing the performance of the distributed system and ensuring
optimal utilization of computational and storage resources while maintaining smooth operation,
even under varying loads.

Embedding semantic communication techniques within message brokers may contribute in
management and real-time analysis of vast data volumes generated by GenAI applications. This
include integrate techniques to transform GenAI input and output data into priority-based smart
data, facilitating more timely and effective processing. Embedding a prioritization mechanism sim-
ilar to the QoS levels defined in MQTT [184] serves as a suitable approach, ensuring that critical
tasks are processed with the urgency they require. This adaptation enhances the responsiveness
of GenAI systems by ensuring that high-priority data is attended to promptly, mirroring the effi-
ciency and reliability seen in established communication protocols.

Additionally, integrate techniques to select the right models and their continuous adaptation
in response to evolving data landscapes. This is crucial for maintaining the accuracy and rel-
evance of GenAI outputs. In this context, incorporating methods for model fine-tuning [185],
continual and in-context learning within message brokers can enable dynamic adjustments to
the models based on real-time data, ensuring that the GenAI system remains effective and
up-to-date. This requirement underscores the necessity for message brokers to support not
just the routing and handling of messages, but also the intelligent adaptation of GenAI mod-
els to changing conditions, thereby maximizing the potential of GenAI applications in diverse
environments.

In this respect, embedding a continuous monitoring system within the message broker to
promptly detect anomalies and data loss becomes fundamental. This system enables corrections
and adaptations in real-time, fostering the necessary model adaptation and ensuring that the
GenAI systems remain both robust and responsive to the dynamic nature of real-world data and
application demands.

We have outlined several key aspects on how message brokers can facilitate the integration and
management of GenAI applications within various domains. For instance, Figure 5 demonstrates
a practical application in smart manufacturing, where a message broker orchestrates the flow of
multimodal data to both GenAI and traditional ML models. This setup enhances real-time decision-
making and operational efficiency, showcasing the dynamic capabilities of message brokers in
supporting advanced analytics.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:20 A. Saleh et al.

Fig. 5. Message brokers for GenAI. This diagram illustrates a smart manufacturing system where a message
broker facilitates the flow of multimodal data from sensors and cameras to a GenAI model and a traditional
ML model. The GenAI model performs comprehensive analysis by combining diverse data types, while the
ML model focuses on predictive maintenance tasks.

As we noticed, the integration message broker within GenAI require advanced message broker
that leverage distributed architectures to schedule tasks, ensure scalability, and maintain correct-
ness in dynamic environments. However, the central challenge is the broker’s need to adopt new
methods and techniques to address scalability, semantic communication, and distributed infer-
ence challenges. In the following sections, we will further discuss advanced methods designed to
enhance the functionality of message brokers within the GenAI context, overcoming deployment
challenges [3, 17]. By tackling these issues, we aim for the seamless integration and optimal perfor-
mance of GenAI applications. This exploration will include discussions on how specific platforms
and frameworks can be leveraged to enable our envisioned approach with insights into the integra-
tion of existing and advanced methods and techniques within specific brokers, highlighting their
potential adaptations in the analyzed context.

4.3 Semantic Communication

Effective management and real-time analysis of vast data volumes are crucial for the development
of GenAI applications. This necessitates a flexible system capable of accommodating a variety of
data types with precision. Traditional message broker systems, while efficient in basic data rout-
ing, often struggle to cope with the complexity and volume of data typical in GenAI environments,
limiting their effectiveness in scenarios requiring nuanced understanding and processing of data
content. To address these limitations and reduce the strain on communication networks, embed-
ding efficient communication mechanisms, such as semantic communication [186, 187], within
message brokers is essential. This integration, particularly leveraging the capabilities of LLMs,
can enable intelligent, automated feature selection that aligns with subscriber needs, enhancing
the broker’s ability to manage data-rich content more effectively [188]. While this approach may
not directly minimize latency due to the inference time required by LLMs, it significantly improves
the efficiency of data search, match, and mapping processes, thereby optimizing overall system
performance in handling and distributing relevant information.

Following this, message brokers equipped with dynamic prioritization capabilities can intelli-
gently identify and route high-priority messages by incorporating semantic communication tech-
nology. This prioritization allows for the handling of messages based not just on the criteria within
the message header, but also on the content itself, enhancing the relevance and timeliness of infor-
mation delivery. Although integrating semantic communication with a broker introduces demands
for high scalability, processing power, and memory to manage large datasets effectively, it is a
crucial step toward mitigating network congestion and optimizing the use of network resources.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:21

Fig. 6. GenAI-enabled and Semantic Communication. This diagram illustrates a traffic management system
where a message broker, enhanced with semantic processing and LLMs capabilities, prioritizes and analyzes
traffic data and emergency alerts.

Moreover, this sophisticated processing capability must be balanced with robust security features
to ensure sensitive data is handled securely, highlighting the need for a comprehensive approach
to upgrade message broker systems for the GenAI era.

In delay-sensitive applications like healthcare, this integration is vital to assigning priorities
based on its deep understanding of data patterns and sensitivities and its subscribers’ specific
needs. For example, in the healthcare scenario, GenAI can analyze large amounts of medical data to
identify urgent cases, alerting healthcare professionals of critical patient needs or alarming health
trends [189]. In a similar fashion, the effective synergy of LLMs with semantic processing capabili-
ties within message brokers can also be observed in smart city traffic management (Figure 6). Here,
the combination of semantic tags from emergency vehicles and real-time traffic sensor data, when
processed through an advanced LLM, enables the system to prioritize and analyze critical infor-
mation promptly. This GenAI-enhanced approach not only interprets the urgency and context of
incoming data but also predicts and optimizes traffic flow in response to dynamic urban conditions.
By doing so, it ensures that emergency responses are effective, minimizing delays and improving
public safety. Building upon the foundation laid by traditional ML techniques, GenAI complements
these approaches by incorporating advanced natural language understanding and context-aware
processing capabilities. This allows for a more peculiar analysis and interpretation of complex data
sets, enhancing the system’s ability to make informed decisions rapidly and accurately.

For instance, embedding semantic ontology model in Apache Kafka [190] can enhance its rout-
ing and delivery capabilities, enabling the broker to understand the meaning and context of each
message. Additionally, Eclipse Mosquitto [46], with its support for topic-based message filtering,
can be enhanced through semantic communication by embedding ontologies, semantic tags, or
metadata [191] within topics. This enhancement can enable intelligent and context-aware filter-
ing, allowing the broker to understand and process messages based on their meaning and rele-
vance. Solace PubSub provides dynamic message routing [118], which can be further enhanced by
embedding semantic communication. By incorporating semantic annotations into messages, the
system can enable context-aware routing, ensuring that messages are directed to the most rele-
vant subscribers based on their content, meaning, or priority, improving the efficiency of message
delivery.

Furthermore, Apache RocketMQ, with its support for message broadcasting and filtering [45],
has the potential to offer advanced message routing and filtering capabilities by leveraging Nat-

ural Language Processing (NLP) for interpreting messages’ semantic content, allowing for
context-sensitive handling [17]. Finally, Anypoint MQ’s intelligent routing [63] can be enhanced
by integrating a knowledge graph that represents relationships between entities such as topics and
subscriptions [192]. This integration enables dynamic routing decisions based on both content and
context.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:22 A. Saleh et al.

However, implementing this approach presents several challenges. Some semantic communi-
cation techniques are computationally intensive to meet real-time inference demands [193]. This
highlight the need for novel, distributed, and intelligent resource management methods to enable
real-time responsiveness in various applications. Additionally, semantic communication mecha-
nisms enhance the broker’s ability to process and interpret content contextually, enabling selec-
tive filtering of sensitive data before transmission. Nevertheless, processing sensitive data requires
robust security measures to ensure its protection during processing and transmission while main-
taining user trust.

4.4 Dynamic Data and Model Management

GenAI-based applications require a data and model management system that not only simplifies
the construction of AI models but also optimizes efficiency and effectiveness. Such a system should
minimize the need for human intervention in selecting ML models, enhancing real-time respon-
siveness with high model’s accuracy, and improving real-time inference capabilities when inte-
grated with message brokers. LLMs can expedite the model selection process and boost the de-
ployment efficiency and precision of AI solutions [194, 195]. Moreover, integrating GenAI models
with message brokers involves managing and directing the related data flows.

For instance, Apache Pulsar [43] with its distributed streaming capabilities, can be enhanced by
integrating it with LLMs to enable autoscaling for efficiently managing large datasets required for
training and inference in GenAI applications.

GenAI models, such as LLMs, frequently process sensitive or personal data, robust security
measures are critical. For example, Google Cloud Pub/Sub [67] incorporates multiple integrated
security measures to protect confidential data being transmitted, including authentication,
encryption using Google-managed keys, and advanced Data Encryption Key (DEK) technol-
ogy [67]. However, the security of the broker can be further enhanced by employing GenAI
tools to enhance security protocols and improve the automation of key cybersecurity pro-
cesses [134, 196]. These improvements may include automated reporting, threat intelligence anal-
ysis, and malware detection [196], ensuring further resilience of Google Cloud Pub/Sub security
framework.

Amazon Kinesis [70] provides data transmission capabilities through synchronous data repli-
cation, checkpointing mechanisms, and error-handling strategies [70, 125]. However, to further
enhance its reliability in GenAI applications, several improvements can be introduced, such as
the integration of AI-driven anomaly detection to proactively identify and mitigate transmission
failures. Additionally, implementing self-healing mechanisms can enable automatic detection and
rerouting of failed data streams. These improvement would make Amazon Kinesis more robust
solution for real-time data transmission for GenAI applications.

Further, Apache Kafka’s [44] robust architecture, equipped with a stream processing feature
enables it to efficiently handle parallel processing tasks for GenAI applications. However, it can be
improved by integrating with predictive analytics and AI-driven methods for dynamically scaling
brokers, efficiently partitioning topics, and determining the optimal number of partitions.

Since processing GenAI models is computationally intensive, with large amounts of real-time
data, it needs to be scalable and distributed to cope with the varying workloads. Running these
models locally on edge devices is often impractical due to hardware limitations. This challenge
is particularly significant in real-time applications where high-performance inference is essential.
Such integration also must also consider the handling of streaming data.

Moreover, this integration requires seamless coordination between clients and brokers to ex-
change information, such as model architectures. Furthermore, Efficient and intelligent coordina-
tion is essential to prevent delays or data mismatches. Misalignment in understanding the model’s

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:23

structure between the client and broker can lead to incorrect deployments, repeated requests, or
errors, which can degrade the system’s performance and reliability.

4.5 Training Acceleration

The training of GenAI models requires a significant amount of computation and time. By incor-
porating training acceleration methods [197] into a message broker system, training time can be
reduced, computational resources saved, and models deployed more rapidly. Message brokers play
a pivotal role in this process by enabling the distribution of training tasks across multiple nodes,
which allows for parallel processing of data and computations. This parallelization accelerates the
training process by breaking down complex tasks into smaller, manageable units that can be pro-
cessed simultaneously, reducing the overall time required to train and deploy large GenAI models.
It also facilitates faster and more efficient inference for LLMs. Moreover, message brokers moni-
tors resource utilization and reallocates tasks dynamically in real-time to balance computational
demands across nodes.

The most common technique of training acceleration is sequence parallelism (SP), in which
the prompt sequence is divided into smaller sub-sequences and processed in parallel [198, 199].
Another method involves selective activation re-computation, in which only the necessary parts
of the GenAI model are recalculated during training, rather than the entire model [200]. A fine-
tuning technique involves adjusting the parameters of an existing model rather than training a
new one from scratch. As a result, training data and computations can be reduced [201].

Furthermore, tensor parallelism works by splitting the model across multiple GPUs and process-
ing different parts of the model in parallel [202]. The mixed-precision training technique is one of
the most effective ways to enable fast and efficient LLM inference on GPUs [203]. In this technique,
the amount of memory required during training is reduced by using lower-precision data types.

The interaction between GenAI training systems and message brokers can significantly accel-
erate the training process by utilizing distributed computing and dynamic resource management.
However, this approach faces challenges related to load balancing, data dependencies, and hard-
ware compatibility. In a distributed training, tasks must be distributed across multiple and heteroge-
neous nodes and dynamically reallocating tasks to maximize resource utilization [204]. Intelligent
task scheduling algorithms are essential to dynamically distribute tasks while accounting for node
capabilities and workload balance.

In addition, training GenAI models often involves handling large datasets that are divided into
chunks and distributed across nodes. These chunks may have dependencies that need to be main-
tained to ensure accurate model training [198, 199]. Message brokers need robust mechanisms to
track and manage data dependencies, ensuring proper sequencing and maintaining data integrity
to prevent errors caused by incomplete data handling.

For instance, Apache ActiveMQ provides efficient management and resource allocation capa-
bilities [27], which can be enhanced through LLMs to analyze historical usage patterns and pre-
dict optimal task distribution dynamically. Similarly, Google Cloud Pub/Sub [67] ensures scalable
and reliable message delivery [119], a capability that can be further augmented by LLMs to pre-
dict workload fluctuations and proactively scale resources, ensuring optimal performance during
large-scale model training and inference. Moreover, Apache RocketMQ offers capabilities for main-
taining message order and supporting message tracking [45], which are essential for tracking and
maintaining the dependencies among distributed data chunks during GenAI model training. En-
suring the correct sequencing of these chunks is critical to maintaining data integrity and pre-
venting errors that arise from incomplete data processing. To further enhance these capabilities,
LLM-powered mechanisms can be integrated to intelligently manage sequencing and real-time
data integrity validation, ensuring accurate model training.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:24 A. Saleh et al.

4.6 Dynamic Model Compression

Integrating GenAI models within message brokers can enhance analytical and predictive capabil-
ities in event processing (routing, filtering, matching, and prioritizing) based on learned patterns
and context in real-time, enabling faster decision-making. However, resource-constrained environ-
ments demand efficient resource utilization and low-latency responses. Integrating GenAI models
on resource-constrained nodes in the computing continuum often requires model compression,
especially with high-dimensional models, strenuous computational tasks, and low latency require-
ments [4]. In this context, lightweight versions of GenAI models can improve functionality and
performance effectively while minimizing computational requirements [205]. Their ability to be
deployed on edge devices reduces energy consumption can make them suitable for real-time appli-
cations and improving user experience in interactive systems [206, 207]. Achieving this involves
adopting innovative model compression techniques in message broker.

Message brokers can provide essential capabilities such as scheduling and distributing com-
pression tasks across multiple nodes, enabling parallel processing. This is particularly benefi-
cial for handling computationally intensive compression methods that may not be suitable for
resource-limited devices. By offloading and distributing these tasks efficiently, message brokers
optimize resource utilization while ensuring minimal latency. Moreover, brokers continuously
monitor the performance of compressed models to ensure consistent reliability and accuracy in
responses.

Among the compression strategies, pruning is prominent, involving the removal of superflu-
ous elements from a model to decrease its size and complexity [208] without a significant loss
in performance. For GenAI models, this can involve techniques such as removing weights with
smaller gradients or magnitudes, reducing parameters, and other optimization methods [209, 210].
Another technique is Knowledge Distillation, where a smaller “student” model learns to replicate
the functionality of a larger “teacher” model [211–213]. This technique can reduce GenAI models
into smaller, distilled versions, enhancing the performance of the student model and increasing
inference speed [214, 215].

Furthermore, quantization methods are utilized to reduce the precision of model parameters, sig-
nificantly lowering memory usage and computational needs substantially. This leads to a smaller
model size with faster inference speeds [216]. Another technique is low-rank factorization, which
simplifies weight matrices with lower-rank approximations to reduce model size and computa-
tional demands [217].

However, this integration introduces challenges, particularly related to computational intensity
and coordination. Techniques such as pruning, quantization, and knowledge distillation are com-
putationally demanding [218]. Performing these processes locally on resource-limited devices is
often impractical due to constraints in processing power, memory, and storage. Additionally, this
process becomes increasingly complex when multiple clients with diverse requirements interact
with the broker simultaneously. These challenges highlight the need for novel, distributed, and
intelligent resource management methods.

For instance, Celery with its support for task scheduling [33], can be enhanced to optimize
compression task distribution across multiple nodes. By implementing an adaptive scheduling
mechanism that dynamically considers resource availability and workload, Celery can optimize
compression performance in real-time. Similarly, Azure Storage Queue with its activity monitor-
ing support [71], can be enhanced through AI-based predictive analytics for monitoring the perfor-
mance of compressed models and detect any change in the accuracy. IronMQ [72] provides support
for workload offloading issues [127]. This capability can be further enhanced by integrating LLMs
tools to proactively analyze workloads and determine which tasks should be offloaded, ensuring
distribution of computationally intensive processes.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:25

4.7 Dynamic Orchestration

The integration of brokers with GenAI requires effective resource management to address the sub-
stantial computational demands of GenAI models, which can significantly influence the broker’s
operational efficiency. The broker must allocate and manage resources such as CPU, memory, and
storage to handle computational requirements. GenAI models can be computationally intensive
during inference or when processing large volumes of real-time events. To mitigate potential bottle-
necks, brokers must ensure an even distribution of computational tasks across available nodes [3].
Furthermore, GenAI-enabled brokers can intelligently and dynamically allocate resources based
on workload demands and the priority of critical GenAI-related tasks, thereby enhancing system
responsiveness. However, the process of efficient resource usage and allocation requires parallel
processing capability.

Some brokers are equipped with features that can be optimized to support GenAI tasks, signifi-
cantly improving their efficiency in resource management. For instance, Celery provides capabil-
ities for managing, maintaining, and scheduling distributed tasks across multiple nodes, thereby
enhancing the efficiency of GenAI agents [33]. To further optimize its functionality for GenAI
workloads, Celery can be enhanced with AI-driven dynamic task scheduling. This approach would
enable intelligent workload distribution based on real-time system performance metrics, includ-
ing GPU/TPU availability, memory utilization, and computational demand. Apache ActiveMQ pro-
vides efficient resource allocation [27]. Thus, optimizing Apache ActiveMQ through mechanisms
such as the elastic scaling method could be critical to providing intelligent resource allocation to
ensure balanced workloads across different nodes. Amazon SQS provides a reliable queue service
for handling messages that facilitates microservices and distributed systems decoupling [58]. Incor-
porating ML techniques for intelligent workload distribution across multiple queues can optimize
resource allocation and reduce bottlenecks in large-scale GenAI pipelines.

Further, the robust architecture of Apache Kafka, which uses clusters of brokers to handle data
distribution and partition topics for scalability, makes it excellent for supporting distributed event
streaming [44]. To further enhance its performance, AI-driven algorithms can be integrated to dy-
namically adjust partitioning strategies based on real-time workload distribution. This approach
would improve resource utilization and make Kafka more efficient for high-performance GenAI ap-
plications. Additionally, Azure Service Bus provides advanced scheduling features and message or-
chestration in distributed environments [114, 115]. These functionalities can be further optimized
to support GenAI workloads by integrating AI-driven task scheduling that intelligently prioritizes
GenAI workloads and allocates computational resources based on real-time system performance.

However, the integration of brokers with GenAI requires effective resource management to ad-
dress the substantial computational demands of GenAI models. Therefore, there is need for novel,
highly distributed, efficient, and secure resource orchestration methods to support the integration
of GenAI within brokers. Such methods must employ advanced algorithms capable of dynami-
cally monitoring, allocating, and optimizing resource usage, enabling proactive adjustments to
mitigate potential bottlenecks. This may require development of a self-organizing multi-agent sys-
tems that can autonomously adjust their structure in response to changing workloads, along with
semantic-based orchestration techniques for efficient coordination [17]. Furthermore, robust secu-
rity mechanisms are essential to ensure secure resource orchestration, particularly in multi-tenant
environments where multiple clients or applications share resources, to prevent misuse and main-
tain operational integrity.

4.8 AIOps/MLOps and Monitoring

MLOps, merging DevOps principles with ML, is central to the advancement of ML and AI,
streamlining the lifecycle of GenAI models from development to deployment. A critical feature

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:26 A. Saleh et al.

within this field is the monitoring of deployed models, crucial for the uninterrupted and reli-
able operation of message broker systems. This practice enables real-time insights into model
metrics, resource usage, and system irregularities, creating a proactive environment for iden-
tifying and addressing issues promptly. Furthermore, MLOps facilitates the setting up of auto-
mated alerts and triggers, enhancing responsiveness to anomalies and minimizing downtime
[17, 219].

A Continuous Diagnostics and Mitigation (CDM) program plays a vital role in net-
work security by analyzing network behavior and thwarting unauthorized access, thereby en-
abling prompt responses and maintaining network integrity. Beyond autonomous configura-
tion management and monitoring device availability, CDM programs conduct continuous health
assessments of devices and evaluate their environmental footprint. This continuous surveil-
lance helps identify potential threats, bolstering processes to enhance security measures. Fur-
thermore, CDM ensures the protection of sensitive information against unauthorized access or
breaches [9].

KubeMQ, which supports multi-stage pipelines [56], can be enhanced through the integration
of CDM real-time performance monitoring to improve data pipeline management within MLOps
frameworks. Moreover, HiveMQ and Amazon Kinesis can contribute to MLOps integration by
facilitating real-time monitoring and alert systems integration, since they support real-time device
monitoring [40, 70]. By integrating CDM-driven analysis, these brokers can facilitate real-time
anomaly detection and predictive maintenance, ensuring that GenAI workloads remain resilient
and secure.

Finally, tracking GenAI model performance can be effectively enhanced through integration
CDM with IBM MQ, which has robust monitoring and tracing capabilities [57]. Solace PubSub
could potentially assist in identifying and resolving issues related to message routing, delivery, and
processing [118]. Integrating CDM can further enhance these functionalities, facilitating control
and modeling activities in MLOps environments.

However, frameworks such as MLOps and CDM with are resource-hungry [219]. Integrating
them with message brokers requires careful consideration of, for example, the computation ca-
pacity available locally, as well as the distribution of the related tasks, to avoid the starvation
of regular operations. This requires striking an optimal balance between monitoring and regular
tasks to gain performance optimization, lower cost, and energy efficiency. Additionally, distributed
architectures and parallel processing are essential to manage high-intensity tasks effectively and
in a timely manner.

4.9 Summary of Message Broker Enhancement Methods

While we have thoroughly explored the possible interplay between existing message broker
technologies and their specific features to meet GenAI requirements, it is important to empha-
size that our assessment of the suitability of a certain technology for specific tasks is indica-
tive of their potential in the given context. Selecting any technology must be informed by a
comprehensive analysis of the application and infrastructure topology requirements, data han-
dling needs, and the particular features of these tools that align with the envisioned objectives.
Adopting this approach can guarantee that the chosen solution not only fulfills immediate op-
erational demands but also possesses the necessary scalability and flexibility for future growth
and increased complexity. This consideration is crucial as we move toward the conclusion of our
discussion, underscoring the importance of strategic technology selection in the dynamic land-
scape of GenAI-enhanced communication systems. The challenges, opportunities, and our strate-
gic view on utilizing these technologies, along with the related subsections, are summarized in
Table 7.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:27

Table 7. Opportunities and Challenges for Enhancing Message Brokers’ Functionality within GenAI

Opportunities

Corresp-

ondong

Section
Challenges

Semantic Communication to reduce communication
networks strain and streamline the data-rich content
transmission.

Section 4.3
Computationally intensive to do locally.
Processing sensitive data requires robust security measures.

Dynamic Data and Model Management to minimize
the need for human intervention in selecting ML models
and enhance real-time responsiveness accuracy.

Section 4.4
Computationally intensive to do locally.
May require coordination between clients and broker to exchange
information on, e.g., model architectures.

Training Acceleration to reduce training time, save
computational resources, and rapidly deploy models.

Section 4.5
Requires ability to manage load balancing and data dependencies.
Compatibility with hardware configuration.

Dynamic Model Compression to save resources and
improve response time.

Section 4.6

Computationally intensive to do locally.
May require Coordination between clients and broker to exchange
information on, e.g., model architectures.

Dynamic Orchestration to optimize use
of resources.

Section 4.7
Requires novel, highly distributed, efficient, and secure resource
orchestration methods.

AIOps/MLOps and Monitoring to enhance responsiveness
to anomalies and minimize downtime.

Section 4.8
Computationally intensive to do locally.
Efficient and dynamic prioritization between monitoring and
regular tasks.

4.10 Sustainability Considerations for GenAI in Message Broker Systems

Before concluding this article, it is important to discuss a critical and increasingly visible con-
cern: the environmental impact of GenAI. The training of LLMs, which serve as the foundation for
many GenAI systems, demands significant computational resources and energy. For example, the
training of Meta’s LLaMA models required over two thousand GPUs running for several months,
consuming an estimated 2.6 million kWh of electricity and emitting more than 1,000 tonnes of CO2

equivalent–comparable to the annual footprint of dozens of individuals [220]. Such figures under-
score the substantial carbon footprint associated with foundation model development, particularly
as models scale toward hundreds of billions of parameters [221].

In light of this, the integration of GenAI into message broker systems should not disregard
sustainability. Instead of relying solely on large, general-purpose models, future research and sys-
tem design should increasingly consider smaller, task-specific language models that are fine-tuned
opportunistically for dedicated broker functionalities–such as semantic topic matching, prioritiza-
tion, anomaly detection, or adaptive routing [222, 223]. These lightweight models require fewer
resources to train and deploy [215], but can also offer faster inference and reduced latency, which
is particularly important in real-time messaging infrastructures.

Complementing this model-level optimization, message brokers themselves can play an instru-
mental role in orchestrating GenAI workloads more sustainably. As intermediaries in distributed
systems, brokers are well-positioned to support resource-aware scheduling, energy-efficient rout-
ing, and selective activation of GenAI modules. For instance, brokers could choose when to
trigger a lightweight local model–for example, a specialized LLM fine-tuned for semantic topic
classification or anomaly detection–versus delegating more complex or ambiguous tasks to a
centralized, general-purpose LLM. This selective invocation and dynamic inference offloading
can reduce redundant computation and help ensure that high-energy GenAI operations are re-
served for the most impactful use cases, such as multi-modal reasoning or open-ended instruction
following.

Such strategies align with broader trends toward energy transparency and sustainability in AI,
where leading organizations have begun reporting the environmental footprint of their models
and advocating for lifecycle-aware metrics [224–226].

In summary, addressing sustainability in GenAI-enabled message brokering systems requires
both architectural and operational awareness. On one hand, deploying smaller, specialized models
tailored to broker-specific tasks can help reduce training and inference costs. On the other,

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.



20:28 A. Saleh et al.

intelligent brokers can act as orchestrators of sustainable AI usage, ensuring that GenAI resources
are leveraged effectively, efficiently, and responsibly.

5 Conclusion

In this article, we have provided a comprehensive overview of contemporary message brokers, de-
lineating their features, capabilities, and limitations with an eye toward their application within
GenAI frameworks. Our analysis spanned a broad spectrum of criteria and we delved into the
inherent limitations of existing message brokers when confronted with the demands of GenAI ap-
plications, prompting a reflection on the essential attributes of an ideal message broker framework
designed to seamlessly integrate with GenAI technologies. In addressing these challenges, we an-
alyzed several requirements to be satisfied in order to bolstering the efficacy of message brokers
in facilitating the rapid evolution and deployment of GenAI applications.

Through a comprehensive analysis of the current state, challenges, and forward-looking strate-
gies for message brokers, this study lays the groundwork for the development of more adapt-
able and efficient GenAI-enabled communication systems. Such systems are envisioned to not
only distribute data with increasing efficiency but also to ensure the delivery of high-quality ser-
vice, manage resources with greater intelligence, and satisfy the increasing demands of GenAI
applications.

Finally, our exploration underscores the critical need for message brokers to evolve in tandem
with technological advancements and GenAI requirements. By identifying opportunities for im-
provement, this article aims at boosting further research and development efforts focused on cre-
ating message broker frameworks that are not only robust and scalable but also closely aligned to
the peculiarities of GenAI-driven data communication.

References

[1] OpenAI. ChatGPT. Retrieved June 10, 2025 from https://chat.openai.com/. ([n. d.]).

[2] Yifei Shen, Jiawei Shao, Xinjie Zhang, Zehong Lin, Hao Pan, Dongsheng Li, Jun Zhang, and Khaled B. Letaief. 2024.

Large language models empowered autonomous edge AI for connected intelligence. IEEE Communications Magazine

62, 10 (2024), 140–146. DOI:10.1109/MCOM.001.2300550

[3] Sasu Tarkoma, Roberto Morabito, and Jaakko Sauvola. 2023. AI-native interconnect framework for integration of

large language model technologies in 6G systems. arXiv:2311.05842 [cs.NI] https://arxiv.org/abs/2311.05842

[4] Lina Bariah, Qiyang Zhao, Hang Zou, Yu Tian, Faouzi Bader, and Merouane Debbah. 2024. Large generative

AI models for telecom: The next big thing? IEEE Communications Magazine 62, 11 (2024), 84–90. DOI:10.1109/

MCOM.001.2300364

[5] Henna Kokkonen, Lauri Lovén, Naser Hossein Motlagh, Abhishek Kumar, Juha Partala, Tri Nguyen, Víctor

Casamayor Pujol, Panos Kostakos, Teemu Leppänen, Alfonso González-Gil, Ester Sola, Iñigo Angulo, Madhusanka

Liyanage, Mehdi Bennis, Sasu Tarkoma, Schahram Dustdar, Susanna Pirttikangas, and Jukka Riekki. 2023. Auton-

omy and intelligence in the computing continuum: challenges, enablers, and future directions for orchestration.

arXiv:2205.01423 [cs.MA] https://arxiv.org/abs/2205.01423

[6] Naser Hossein Motlagh, Lauri Lovén, Jacky Cao, Xiaoli Liu, Petteri Nurmi, Schahram Dustdar, Sasu Tarkoma, and

Xiang Su. 2022. Edge computing: The computing infrastructure for the smart megacities of the future. Computer 55,

12 (2022), 54–64.

[7] Yun-Cheng Wang, Jintang Xue, Chengwei Wei, and C. C. Jay Kuo. 2023. An overview on generative AI at scale

with edge.cloud computing. IEEE Open Journal of the Communications Society 4 (2023), 2952–2971. DOI:10.1109/

OJCOMS.2023.3320646

[8] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Kumar Donta. 2022. On distributed computing continuum

systems. IEEE Transactions on Knowledge and Data Engineering 35, 4 (2022), 4092–4105.

[9] Praveen Kumar Donta, Ilir Murturi, Victor Casamayor Pujol, Boris Sedlak, and Schahram Dustdar. 2023. Exploring

the potential of distributed computing continuum systems. Computers 12, 10 (2023). DOI:10.3390/computers12100198

[10] Fulya Ozturk and Ayse Meliha Ozdemir. 2019. Content-based publish/subscribe communication model between IoT

devices in smart city environment. In Proceedings of the 2019 7th International Istanbul Smart Grids and Cities Congress

and Fair. 189–193. DOI:http://doi.org//10.1109/SGCF.2019.8782370

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://chat.openai.com/
https://doi.org/10.1109/MCOM.001.2300550
https://arxiv.org/abs/2311.05842
https://doi.org/10.1109/MCOM.001.2300364
https://arxiv.org/abs/2205.01423
https://doi.org/10.1109/OJCOMS.2023.3320646
https://doi.org/10.3390/computers12100198
http://doi.org//10.1109/SGCF.2019.8782370


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:29

[11] Rakshit Wadhwa, Apurv Mehra, Pushpendra Singh, and Meenu Singh. 2015. A pub/sub based architecture to support

public healthcare data exchange. In Proceedings of the 2015 7th International Conference on Communication Systems

and Networks. 1–6. DOI:http://doi.org//10.1109/COMSNETS.2015.7098706

[12] Patrick Th Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003. The many faces of pub-

lish/subscribe. ACM Computing Surveys 35, 2 (2003), 114–131.

[13] Sasu Tarkoma. 2012. Publish/subscribe Systems: Design and Principles. John Wiley & Sons.

[14] Praveen Kumar Donta, Satish Narayana Srirama, Tarachand Amgoth, and Chandra Sekhara Rao Annavarapu. 2022.

Survey on recent advances in IoT application layer protocols and machine learning scope for research directions.

Digital Communications and Networks 8, 5 (2022), 727–744.

[15] Jonathan Hasenburg, Florian Stanek, Florian Tschorsch, and David Bermbach. 2020. Managing latency and excess

data dissemination in fog-based publish/subscribe systems. In Proceedings of the 2020 IEEE International Conference

on Fog Computing. IEEE, 9–16.

[16] Alessandro E. C. Redondi, Andrés Arcia-Moret, and Pietro Manzoni. 2019. Towards a scaled IoT pub/sub architecture

for 5G networks: The case of multiaccess edge computing. In Proceedings of the 2019 IEEE 5th World Forum on Internet

of Things. IEEE, 436–441.

[17] Lauri Lovén, Roberto Morabito, Abhishek Kumar, Susanna Pirttikangas, Jukka Riekki, and Sasu Tarkoma. 2023. How

can AI be distributed in the computing continuum? Introducing the Neural Pub/Sub Paradigm. arXiv:2309.02058

[cs.NI] https://arxiv.org/abs/2309.02058

[18] Fatima Zahra Chafi, Youssef Fakhri, and Fatima Zahrae Ait Hamou Aadi. 2022. Introduction to Internet of Things’

communication protocols. In Proceedings of the Advanced Intelligent Systems for Sustainable Development. Springer,

142–150.

[19] Vittorio Maniezzo, Marco A. Boschetti, and Pietro Manzoni. 2023. Self-adaptive publish/subscribe network design.

In Proceedings of the Metaheuristics International Conference. Springer, 478–484.

[20] Filipa Pedrosa and Luís Rodrigues. 2021. Reducing the subscription latency in reliable causal publish-subscribe sys-

tems. In Proceedings of the 36th Annual ACM Symposium on Applied Computing. 203–212.

[21] Vineet John and Xia Liu. 2017. A survey of distributed message broker queues. arXiv:1704.00411 [cs.DC] https://

arxiv.org/abs/1704.00411

[22] David S. Linthicum. 2000. Enterprise Application Integration. Addison-Wesley Professional.

[23] Mark Perry, Christophe Delporte, Federico Demi, Animesh Ghosh, and Marc Luong. 2001. MQSeries Publish/subscribe

Applications. IBM Redbooks.

[24] Gregor Hohpe and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging

Solutions. Addison-Wesley Professional.

[25] Kasun Indrasiri and Sriskandarajah Suhothayan. 2021. Design Patterns for Cloud Native Applications. " O’Reilly Media,

Inc.".

[26] Oleg Iakushkin and Valery Grishkin. 2014. Messaging middleware for cloud applications: Extending brokerless ap-

proach. In Proceedings of the 2014 2nd 2014 2nd International Conference on Emission Electronics. IEEE, 1–4.

[27] The Apache Software Foundation. Apache ActiveMQ. Retrieved June 10, 2025 from https://activemq.apache.org/. ([n.

d.]).

[28] Red Hat. Fuse Message Broker. Retrieved June 10, 2025 from https://access.redhat.com/taxonomy/products/fuse-

message-broker. ([n. d.]).

[29] Apache Software Foundation. Apache Qpid. Retrieved June 10, 2025 from https://qpid.apache.org/. ([n. d.]).

[30] Rabbit Technologies. RabbitMQ. Retrieved June 10, 2025 from https://www.rabbitmq.com/. ([n. d.]).

[31] Red Hat. HornetQ. Retrieved June 10, 2025 from https://hornetq.jboss.org/. ([n. d.]).

[32] Inc Red Hat. Red Hat AMQ. Retrieved June 10, 2025 from https://www.redhat.com/en/technologies/jboss-

middleware/amq. ([n. d.]).

[33] Celery software. Celery. Retrieved June 10, 2025 from https://docs.celeryq.dev/. ([n. d.]). Last accessed: August 29,

2025.

[34] Red Hat. JBoss Messaging. Retrieved June 10, 2025 from https://jbossmessaging.jboss.org/. ([n. d.]).

[35] Oracle. OpenMQ. Retrieved June 10, 2025 from https://javaee.github.io/openmq/. ([n. d.]).

[36] Inc Philotic. Beanstalk. Retrieved June 10, 2025 from https://beanstalkd.github.io/. ([n. d.]).

[37] Gearman. Gearman. Retrieved June 10, 2025 from http://gearman.org/. ([n. d.]).

[38] Mavimax. Enduro/X. Retrieved June 10, 2025 from https://www.endurox.org/. ([n. d.]).

[39] Paul Fremantle. WSO2. Retrieved June 10, 2025 from https://wso2.com/. ([n. d.]).

[40] HiveMQ. HiveMQ. Retrieved June 10, 2025 from https://www.hivemq.com/. ([n. d.]).

[41] Redis Labs. Redis. Retrieved June 10, 2025 from https://redis.io/. ([n. d.]).

[42] EMQX Technologies. EMQX. Retrieved June 10, 2025 from https://www.emqx.io/. ([n. d.]).

[43] The Apache Software Foundation. Apache Pulsar. Retrieved June 10, 2025 from https://pulsar.apache.org/. ([n. d.]).

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

http://doi.org//10.1109/COMSNETS.2015.7098706
https://arxiv.org/abs/2309.02058
https://arxiv.org/abs/1704.00411
https://activemq.apache.org/
https://access.redhat.com /taxonomy/products/fuse-message-broker
https://qpid.apache.org/
https://www.rabbitmq.com/
https://hornetq.jboss.org/
https://www.redhat.com/en/technologies/jboss-middleware/amq
https://docs.celeryq.dev/
https://jbossmessaging.jboss.org/
https://javaee.github.io/openmq/
https://beanstalkd.github.io/
http://gearman.org/
https://www.endurox.org/
https://wso2.com/
https://www.hivemq.com/
https://redis.io/
https://www.emqx.io/
https://pulsar.apache.org/


20:30 A. Saleh et al.

[44] Apache Software Foundation. Apache Kafka. Retrieved June 10, 2025 from https://kafka.apache.org/. ([n. d.]).

[45] Alibaba Group. Apache RocketMQ. Retrieved June 10, 2025 from https://rocketmq.apache.org/. ([n. d.]).

[46] Eclipse. Eclipse Mosquitto. Retrieved June 10, 2025 from https://mosquitto.org/. ([n. d.]).

[47] iMatix. Zero MQ. Retrieved June 10, 2025 from https://zeromq.org/. ([n. d.]).

[48] Inc Onyara. Apache NiFi. Retrieved June 10, 2025 from https://nifi.apache.org/. ([n. d.]).

[49] ABLY REALTIME LTD. Ably Realtime. Retrieved June 10, 2025 from https://ably.com/. ([n. d.]).

[50] Apache Software Foundation. Apache SamZa. Retrieved June 10, 2025 from https://samza.apache.org/. ([n. d.]).

[51] VerneMQ. VerneMQ. Retrieved June 10, 2025 from https://vernemq.com/. ([n. d.]).

[52] Particular Software. NServiceBus. Retrieved June 10, 2025 from https://particular.net/nservicebus. ([n. d.]).

[53] Twitter. kestrel. Retrieved June 10, 2025 from https://github.com/twitter-archive/kestrel. ([n. d.]).

[54] Bitly. NSQ. Retrieved June 10, 2025 from https://nsq.io/. ([n. d.]).

[55] Synadia Communications. NATS. Retrieved June 10, 2025 from https://nats.io/. ([n. d.]).

[56] KubeMQ. KubeMQ. Retrieved June 10, 2025 from https://kubemq.io/. ([n. d.]).

[57] IBM. IBM MQ. Retrieved June 10, 2025 from https://www.ibm.com/docs/en/ibm-mq. ([n. d.]).

[58] Amazon Web Services (AWS). Amazon SQS. Retrieved June 10, 2025 from https://aws.amazon.com/sqs/. ([n. d.]).

[59] Microsoft. MSMQ. Retrieved June 10, 2025 from https://learn.microsoft.com/en-us/previous-versions/windows/

desktop/msmq/. ([n. d.]).

[60] Oracle. Oracle Message Broker. Retrieved June 10, 2025 from https://docs.oracle.com/cd/E26576_01/doc.312/e24948.

pdf. ([n. d.]).

[61] TIBCO. TIBCO Rendezvous. Retrieved June 10, 2025 from https://docs.tibco.com/products/tibco-rendezvous-8-6-0.

([n. d.]).

[62] TIBCO. TIBCO Enterprise Message Service™. Retrieved June 10, 2025 from https://www.tibco.com/products/tibco-

enterprise-message-service. ([n. d.]).

[63] MuleSoft. Anypoint MQ. Retrieved June 10, 2025 from https://docs.mulesoft.com/mq/. ([n. d.]).

[64] Microsoft. Azure Service Bus. Retrieved June 10, 2025 from https://learn.microsoft.com/en-us/azure/service-bus-

messaging/. ([n. d.]).

[65] SAP AG. SAP NetWeaver Process Integration. Retrieved June 10, 2025 from https://help.sap.com/docs/. ([n. d.]).

[66] Craig Betts. Solace. Retrieved June 10, 2025 from https://solace.com/. ([n. d.]).

[67] Google. Google Cloud Pub/Sub. Retrieved June 10, 2025 from https://cloud.google.com/pubsub. ([n. d.]).

[68] Amazon Web Services (AWS). Amazon MQ. Retrieved June 10, 2025 from https://aws.amazon.com/amazon-mq/. ([n.

d.]).

[69] Intel. Intel MPI Library. Retrieved June 10, 2025 from https://www.intel.com/content/www/us/en/developer/tools/

oneapi/mpi-library.html. ([n. d.]).

[70] Amazon. Kinesis. Retrieved June 10, 2025 from https://aws.amazon.com/kinesis/. ([n. d.]).

[71] Microsoft. Azure Storage Queue. Retrieved June 10, 2025 from https://learn.microsoft.com/en-us/azure/storage/

queues/. ([n. d.]).

[72] Iron.io. IronMQ. RetrievedJune10,2025fromhttp://www.iron.io/mq. ([n. d.]).

[73] Red Hat. Fuse Message Broker. Retrieved June 10, 2025 from https://docs.huihoo.com/fuse/getting_started.pdf. ([n.

d.]).

[74] Apache Software Foundation. Apache Qpid. Retrieved June 10, 2025 from https://linux.web.cern.ch/mrg/2/

Programming_in_Apache_Qpid/. ([n. d.]).

[75] Rabbit Technologies. RabbitMQ. Retrieved June 10, 2025 from https://blog.rabbitmq.com/posts/2020/07/disaster-

recovery-and-high-availability-101/. ([n. d.]).

[76] Red Hat. HornetQ. Retrieved June 10, 2025 from https://hornetq.sourceforge.net/docs/hornetq-2.1.2.Final/user-

manual/en/html_single/index.html. ([n. d.]).

[77] Red Hat. HornetQ. Retrieved June 10, 2025 from https://docs.redhat.com/en/documentation/red_hat_jboss_

enterprise_application_platform/5/html-single/hornetq_user_guide/index. ([n. d.]).

[78] Inc Red Hat. Red Hat AMQ. Retrieved June 10, 2025 from https://access.redhat.com/documentation/. ([n. d.]).

[79] Red Hat. JBoss Messaging. Retrieved June 10, 2025 from https://docs.jboss.org/jbossmessaging/docs/usermanual-

2.0.0.beta1/html. ([n. d.]).

[80] Inc Philotic. Beanstalk. Retrieved June 10, 2025 from https://raw.githubusercontent.com/beanstalkd/beanstalkd/

master/doc/protocol.txt. ([n. d.]).

[81] Inc Philotic. Beanstalk. Retrieved June 10, 2025 from https://github.com/beanstalkd/beanstalkd/wiki/Client-Libraries.

([n. d.]).

[82] Mavimax. Enduro/X. Retrieved June 10, 2025 from https://github.com/endurox-dev/endurox/blob/master/doc/. ([n.

d.]).

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://kafka.apache.org/
https://rocketmq.apache.org/
https://mosquitto.org/
https://zeromq.org/
https://nifi.apache.org/
https://ably.com/
https://samza.apache.org/
https://vernemq.com/
https://particular.net/nservicebus
https://github.com/twitter-archive/kestrel
https://nsq.io/
https://nats.io/
https://kubemq.io/
https://www.ibm.com/docs/en/ibm-mq
https://aws.amazon.com/sqs/
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/msmq/
https://docs.oracle.com/cd/E26576_01/doc.312/e24948.pdf
https://docs.tibco.com/products/tibco-rendezvous-8-6-0
https://www.tibco.com/products/tibco-enterprise-message-service
https://docs.mulesoft.com/mq/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/
https://help.sap.com/docs/
https://solace.com/
https://cloud.google.com/pubsub
https://aws.amazon.com/amazon-mq/
https://www.intel.com/content/ www/us/en/developer/tools/oneapi/mpi-library.html
https://aws.amazon.com/kinesis/
https://learn.microsoft.com/en-us/azure/storage/queues/
Retrieved June 10, 2025 from http://www.iron.io/mq
https://docs.huihoo.com/fuse/getting_started.pdf
https://linux.web.cern.ch/mrg/2/Programming_in_Apache_Qpid/
https://blog.rabbitmq.com/posts/2020/07/disaster-recovery-and-high-availability-101/
https://hornetq.sourceforge.net/docs/hornetq-2.1.2.Final/user-manual/en/html_single/index.html
https://docs.redhat.com/en/documentation/red_hat_jboss_enterprise_application_platform/5/html-single/hornetq_user_guide/index
https://access.redhat.com/documentation/
https://docs.jboss.org/jbossmessaging/docs/usermanual-2.0.0.beta1/html
https://raw.githubusercontent.com/beanstalkd/beanstalkd/master/doc/protocol.txt
https://github.com/beanstalkd/beanstalkd/wiki/Client-Libraries
https://github.com/endurox-dev/endurox/blob/master/doc/


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:31

[83] Paul Fremantle. WSO2. Retrieved June 10, 2025 from https://ei.docs.wso2.com/en/latest/micro-integrator/setup/

performance_tuning/tuning_jvm_performance/. ([n. d.]).

[84] Paul Fremantle. WSO2. Retrieved June 10, 2025 from https://apim.docs.wso2.com/en/4.1.0/install-and-setup/setup/

mi-setup/transport_configurations/configuring-transports/. ([n. d.]).

[85] Paul Fremantle. WSO2. Retrieved June 10, 2025 from https://ei.docs.wso2.com/en/latest/micro-integrator/references/

mediators/filter-Mediator/. ([n. d.]).

[86] HiveMQ. HiveMQ. Retrieved June 10, 2025 from https://docs.hivemq.com/hivemq/. ([n. d.]).

[87] Redis Labs. Redis. Retrieved June 10, 2025 from https://docs.redis.com/latest/rs/security/. ([n. d.]).

[88] EMQX Technologies. EMQX. Retrieved June 10, 2025 from https://www.emqx.com/en/blog/emqx-vs-mosquitto-

2023-mqtt-broker-comparison. ([n. d.]).

[89] Eclipse. Eclipse Mosquitto. Retrieved June 10, 2025 from https://www.emqx.com/en/blog/mosquitto-mqtt-broker-

pros-cons-tutorial-and-modern-alternatives. ([n. d.]).

[90] Eclipse. Eclipse Mosquitto. Retrieved June 10, 2025 from https://projects.eclipse.org/projects/iot.mosquitto. ([n. d.]).

[91] iMatix. Zero MQ. Retrieved June 10, 2025 from https://www.hivemq.com/article/mqtt-vs-zeromq-for-iot/. ([n. d.]).

[92] iMatix. Zero MQ. RetrievedJune10,2025fromhttp://wiki.zeromq.org/area:faq. ([n. d.]).

[93] Apache Software Foundation. Apache SamZa. Retrieved June 10, 2025 from https://samza.incubator.apache.org/

learn/documentation/0.7.0/comparisons/storm.html. ([n. d.]).

[94] Martin Kleppmann. 2018. Apache Samza. Springer International Publishing, Cham, 1–8. DOI:10.1007/978-3-319-

63962-8_197-2

[95] EMQX Technologies. EMQX. Retrieved June 10, 2025 from https://www.emqx.com/en/blog/emqx-vs-vernemq-2023-

mqtt-broker-comparison. ([n. d.]).

[96] Particular Software. NServiceBus. Retrieved June 10, 2025 from https://docs.particular.net/nservicebus/. ([n. d.]).

[97] Particular Software. NServiceBus. Retrieved June 10, 2025 from https://docs.particular.net/tutorials/monitoring-

setup/. ([n. d.]).

[98] Twitter. kestrel. Retrieved June 10, 2025 from https://github.com/memcached/memcached/blob/master/doc/protocol.

txt. ([n. d.]).

[99] Synadia Communications. NATS. Retrieved June 10, 2025 from https://docs.nats.io/. ([n. d.]).

[100] Berk Ayaz, Nina Slamnik-Kriještorac, and Johann Marquez-Barja. 2022. Data management platform for smart orches-

tration of decentralized and heterogeneous vehicular edge networks. In Proceedings of the 2022 ACM Conference on

Information Technology for Social Good. 118–124.

[101] IBM. IBM MQ. Retrieved June 10, 2025 from https://cloud.ibm.com/catalog/services/mq. ([n. d.]).

[102] Iron.io. IronMQ. Retrieved June 10, 2025 from https://blog.iron.io/ibm-mq-vs-ironmq-pros-cons-and-choosing-an-

mq/#4. ([n. d.]).

[103] IBM. IBM MQ. Retrieved June 10, 2025 from https://www.ibm.com/. ([n. d.]).

[104] Amazon Web Services (AWS). Amazon SQS. Retrieved June 10, 2025 from https://docs.aws.amazon.com/

AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html. ([n. d.]).

[105] Microsoft. MSMQ. Retrieved June 10, 2025 from https://techcommunity.microsoft.com/t5/skype-for-business-blog/

troubleshooting-microsoft-message-queuing-issues-on-microsoft/ba-p/619639. ([n. d.]).

[106] Oracle. Oracle Message Broker. Retrieved June 10, 2025 from https://docs.oracle.com/cd/E18930_01/html/821-2442/

ggrur.html. ([n. d.]).

[107] TIBCO. TIBCO Enterprise Message Service™. Retrieved June 10, 2025 from https://docs.tibco.com/pub/ems/8.6.0/

doc/pdf/TIB_ems_8.6.0_users_guide.pdf. ([n. d.]).

[108] TIBCO. TIBCO Enterprise Message Service™. Retrieved June 10, 2025 from https://support.tibco.com/s/article/Tibco-

KnowledgeArticle-Article-22588. ([n. d.]).

[109] TIBCO. TIBCO Rendezvous. Retrieved June 10, 2025 from https://www.tibco.com/products/tibco-cloud-events/

pricing-plans. ([n. d.]).

[110] TIBCO. TIBCO Rendezvous. Retrieved June 10, 2025 from https://docs.tibco.com/pub/ems/8.6.0/doc/html/GUID-

66774B42-2A5F-4221-864E-3331622E1091.html. ([n. d.]).

[111] TIBCO. TIBCO Rendezvous. Retrieved June 10, 2025 from https://docs.tibco.com/pub/rendezvous/8.6.0/doc/pdf/TIB_

rv_8.6.0_concepts.pdf. ([n. d.]).

[112] MuleSoft. Anypoint MQ. Retrieved June 10, 2025 from https://www.mulesoft.com/. ([n. d.]).

[113] Microsoft. Azure Storage Queue. Retrieved June 10, 2025 from https://learn.microsoft.com/en-us/azure/service-bus-

messaging/service-bus-azure-and-service-bus-queues-compared-contrasted. ([n. d.]).

[114] Microsoft. Azure Service Bus. Retrieved June 10, 2025 from https://learn.microsoft.com/en-us/dotnet/api/azure.

messaging.servicebus.

servicebussender.schedulemessageasync?view=azure-dotnet. ([n. d.]).

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://ei.docs.wso2.com/en/latest/micro-integrator/setup/performance_tuning/tuning_jvm_performance/
https://apim.docs.wso2.com/en/4.1.0/install-and-setup/setup/mi-setup/transport_configurations/configuring-transports/
https://ei.docs.wso2.com/en/latest/micro-integrator/references/mediators/filter-Mediator/
https://docs.hivemq.com/hivemq/
https://docs.redis.com/latest/rs/security/
https://www.emqx.com/en/blog/emqx-vs-mosquitto-2023-mqtt-broker-comparison
https://www.emqx.com/en/blog/mosquitto-mqtt-broker-pros-cons-tutorial-and-modern-alternatives
https://projects.eclipse.org/projects/iot.mosquitto
https://www.hivemq.com/article/mqtt-vs-zeromq-for-iot/
Retrieved June 10, 2025 from http://wiki.zeromq.org/area:faq
https://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/storm.html
https://doi.org/10.1007/978-3-319-63962-8_197-2
https://www.emqx.com/en/blog/emqx-vs-vernemq-2023-mqtt-broker-comparison
https://docs.particular.net/nservicebus/
https://docs.particular.net/tutorials/monitoring-setup/
https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://docs.nats.io/
https://cloud.ibm.com/catalog/services/mq
https://blog.iron.io/ibm-mq-vs-ironmq-pros-cons-and-choosing-an-mq/#4
https://www.ibm.com/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://techcommunity.microsoft.com/t5/skype-for-business-blog/troubleshooting-microsoft-message-queuing-issues-on-microsoft/ba-p/619639
https://docs.oracle.com/cd/E18930_01/html/821-2442/ggrur.html
https://docs.tibco.com/pub/ems/8.6.0/doc/pdf/TIB_ems_8.6.0_users_guide.pdf
https://support.tibco.com/s/article/Tibco-KnowledgeArticle-Article-22588
https://www.tibco.com/products/tibco-cloud-events/pricing-plans
https://docs.tibco.com/pub/ems/8.6.0/doc/html/GUID-66774B42-2A5F-4221-864E-3331622E1091.html
https://docs.tibco.com/pub/rendezvous/8.6.0/doc/pdf/TIB_rv_8.6.0_concepts.pdf
https://www.mulesoft.com/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.
servicebussender.schedulemessageasync?view=azure-dotnet


20:32 A. Saleh et al.

[115] Microsoft. Azure Service Bus. Retrieved June 10, 2025 from https://azure.microsoft.com/en-us/products/service-bus.

([n. d.]).

[116] SAP AG. SAP NetWeaver Process Integration. Retrieved June 10, 2025 from https://blogs.sap.com/2014/04/02/

message-size-as-source-of-performance-bottleneck/. ([n. d.]).

[117] Craig Betts. Solace. Retrieved June 10, 2025 from https://docs.solace.com/. ([n. d.]).

[118] Craig Betts. Solace. Retrieved June 10, 2025 from https://www.solace.dev/. ([n. d.]).

[119] Google. Google Cloud Pub/Sub. Retrieved June 10, 2025 from https://cloudplatform.googleblog.com/2015/04/big-

data-cloud-way.html. ([n. d.]).

[120] Amazon Web Services (AWS). Amazon MQ. Retrieved June 10, 2025 from https://docs.aws.amazon.com/amazon-

mq/latest/. ([n. d.]).

[121] Intel. Intel MPI Library. Retrieved June 10, 2025 from https://texas.gs.shi.com/product/32703496/Intel-MPI-Library-

for-Windows. ([n. d.]).

[122] Intel. Intel MPI Library. Retrieved June 10, 2025 from https://www.intel.com/content/www/us/en/developer/articles/

technical/improve-performance-and-stability-with-intel-mpi-library-on-infiniband.html. ([n. d.]).

[123] Amazon. Kinesis. Retrieved June 10, 2025 from https://repost.aws/knowledge-center/troubleshoot-kinesis-agent-

linux. ([n. d.]).

[124] Amazon. Kinesis. Retrieved June 10, 2025 from https://docs.aws.amazon.com/streams/latest/. ([n. d.]).

[125] Amazon. Kinesis. Retrieved June 10, 2025 from https://docs.aws.amazon.com/kinesisanalytics/latest/dev/error-

handling.html. ([n. d.]).

[126] Iron.io. IronMQ. Retrieved June 10, 2025 from https://try.iron.io/pricing-worker-monthly/. ([n. d.]).

[127] Iron.io. IronMQ. Retrieved June 10, 2025 from https://blog.iron.io/apache-kafka-vs-ironmq-whats-best-for-your-

business/. ([n. d.]).

[128] Oracle. 2017. Open Message Queue: Release 5.1.1. https://javaee.github.io/glassfish/doc/5.0/mq-release-notes.pdf.

Last accessed: June 15, 2025.

[129] Oracle. Oracle Message Broker. Retrieved June 10, 2025 from https://docs.oracle.com/cd/E19316-01/820-6424/aerbz/

index.html. ([n. d.]).

[130] Oracle. Oracle Message Broker. Retrieved June 10, 2025 from https://docs.oracle.com/cd/E19879-01/821-0028/aercs/

index.html. ([n. d.]).

[131] Inc Red Hat. Red Hat AMQ. Retrieved June 10, 2025 from https://access.redhat.com/documentation/en-us/red_hat_

amq/6.1/html/product_introduction/fmbscalable. ([n. d.]).

[132] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Nee-

lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,

Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark

Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-

dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Ad-

vances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H.

Lin (Eds.). Vol. 33. Curran Associates, Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[133] Francisco J. García-Peñalvo and Andrea Vázquez-Ingelmo. 2023. What do we mean by GenAI? A systematic mapping

of the evolution, Trends, and Techniques Involved in Generative AI. Int. J. Interact. Multim. Artif. Intell. 8, 4 (2023), 7.

DOI:10.9781/IJIMAI.2023.07.006

[134] Maanak Gupta, Charankumar Akiri, Kshitiz Aryal, Eli Parker, and Lopamudra Praharaj. 2023. From ChatGPT to

ThreatGPT: Impact of generative AI in cybersecurity and privacy. IEEE Access 11 (2023), 80218–80245. DOI:http:

//doi.org//10.1109/ACCESS.2023.3300381

[135] Khen Bo Kan, Hyunsu Mun, Guohong Cao, and Youngseok Lee. 2024. Mobile-LLaMA: Instruction fine-tuning open-

source LLM for network analysis in 5G Networks. IEEE Network 38, 5 (2024), 76–83. DOI:10.1109/MNET.2024.3421306

[136] Amirhossein Ghaffari, Huong Nguyen, Alaa Saleh, Lauri Lovén, and Ekaterina Gilman. 2024. Traffic accident predic-

tion and warning system: Integration use case. In Proceedings of the 4th Workshop on Knowledge-infused Learning.

OpenReview.

[137] Othmane Friha, Mohamed Amine Ferrag, Burak Kantarci, Burak Cakmak, Arda Ozgun, and Nassira Ghoualmi-Zine.

2024. LLM-Based edge intelligence: A comprehensive survey on architectures, applications, security and trustwor-

thiness. IEEE Open Journal of the Communications Society 5 (2024), 5799–5856. DOI:10.1109/OJCOMS.2024.3456549

[138] Yudong Huang, Hongyang Du, Xinyuan Zhang, Dusit Niyato, Jiawen Kang, Zehui Xiong, Shuo Wang, and Tao Huang.

2025. Large language models for networking: applications, enabling techniques, and challenges. IEEE Network 39, 1

(2025), 235–242. DOI:10.1109/MNET.2024.3435752

[139] Sifan Long, Jingjing Tan, Bomin Mao, Fengxiao Tang, Yangfan Li, Ming Zhao, and Nei Kato. 2025. A survey on

intelligent network operations and performance optimization based on large language models. IEEE Communications

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://azure.microsoft.com/en-us/products/service-bus
https://blogs.sap.com/2014/04/02/message-size-as-source-of-performance-bottleneck/
https://docs.solace.com/
https://www.solace.dev/
https://cloudplatform.googleblog.com/2015/04/big-data-cloud-way.html
https://docs.aws.amazon.com/amazon-mq/latest/
https://texas.gs.shi.com/product/32703496/Intel-MPI-Library-for-Windows
https://www.intel.com/content/www/us/en/developer/articles/technical/improve-performance-and-stability-with-intel-mpi-library-on-infiniband.html
https://repost.aws/knowledge-center/troubleshoot-kinesis-agent-linux
https://docs.aws.amazon.com/streams/latest/
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/error-handling.html
https://try.iron.io/pricing-worker-monthly/
https://blog.iron.io/apache-kafka-vs-ironmq-whats-best-for-your-business/
https://javaee.github.io/glassfish/doc/5.0/mq-release-notes.pdf
https://docs.oracle.com/cd/E19316-01/820-6424/aerbz/index.html
https://docs.oracle.com/cd/E19879-01/821-0028/aercs/index.html
https://access.redhat.com/documentation/en-us/red_hat_amq/6.1/html/product_introduction/fmbscalable
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.9781/IJIMAI.2023.07.006
http://doi.org//10.1109/ACCESS.2023.3300381
https://doi.org/10.1109/MNET.2024.3421306
https://doi.org/10.1109/OJCOMS.2024.3456549
https://doi.org/10.1109/MNET.2024.3435752


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:33

Surveys Tutorials (2025), 1–1. DOI:10.1109/COMST.2025.3526606

[140] Shengzhe Xu, Christo Kurisummoottil Thomas, Omar Hashash, Nikhil Muralidhar, Walid Saad, and Naren Ramakr-

ishnan. 2024. Large multi-modal models (LMMs) as universal foundation models for AI-Native wireless systems. IEEE

Network 38, 5 (2024), 10–20. DOI:10.1109/MNET.2024.3427313

[141] Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu, Wenwei Zhang, Ping

Luo, and Kai Chen. 2023. MultiModal-GPT: A vision and language model for dialogue with humans. arXiv:2305.04790

[cs.CV] https://arxiv.org/abs/2305.04790

[142] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Men-

sch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong,

Sina Samangooei, Marianne Monteiro, Jacob L. Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sa-

hand Sharifzadeh, Mikoł aj Bińkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan.

2022. Flamingo: A visual language model for few-shot learning. In Advances in Neural Information Processing Sys-

tems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.). Vol. 35. Curran Associates,

Inc., 23716–23736. https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-

Paper-Conference.pdf

[143] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. 2023. HuggingGPT: Solv-

ing AI tasks with ChatGPT and its friends in hugging face. In Advances in Neural Information Processing Systems,

A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.). Vol. 36. Curran Associates, Inc.,

38154–38180. https://proceedings.neurips.cc/paper_files/paper/2023/file/77c33e6a367922d003ff102ffb92b658-Paper-

Conference.pdf

[144] Rongjie Huang, Mingze Li, Dongchao Yang, Jiatong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu, Zhiqing Hong,

Jiawei Huang, Jinglin Liu, Yi Ren, Yuexian Zou, Zhou Zhao, and Shinji Watanabe. 2024. AudioGPT: Understanding

and generating speech, Music, Sound, and Talking Head. Proceedings of the AAAI Conference on Artificial Intelligence

38, 21 (Mar. 2024), 23802–23804. DOI:10.1609/aaai.v38i21.30570

[145] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774

[146] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. 2023. Visual ChatGPT:

Talking, Drawing and Editing with Visual Foundation Models. arXiv:2303.04671 [cs.CV] https://arxiv.org/abs/2303.

04671

[147] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin,

Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng

Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan

Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui. 2025. The rise and potential of large language model based agents:

A survey. Science China Information Sciences 68, 2 (2025), 121101. https://doi.org/10.1007/s11432-024-4222-0

[148] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen,

Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. 2024. A survey on large language model based au-

tonomous agents. Frontiers of Computer Science 18, 6 (March 2024). DOI:10.1007/s11704-024-40231-1

[149] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V. Le, and

Denny Zhou. 2022. Chain-of-Thought prompting elicits reasoning in large language models. In Advances in

Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh

(Eds.). Vol. 35. Curran Associates, Inc., 24824–24837. https://proceedings.neurips.cc/paper_files/paper/2022/file/

9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

[150] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 2023. React: Syner-

gizing reasoning and acting in language models. In 2023 11th International Conference on Learning Representations

ICLR 2023.

[151] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R. Narasimhan, and Shunyu Yao. 2023. Reflexion: Lan-

guage agents with verbal reinforcement learning. In Proceedings of the 37th Conference on Neural Information Pro-

cessing Systems.

[152] openai. ChatGPT. Retrieved June 10, 2025 from https://chat.openai.com/. ([n. d.]).

[153] Dhruv Shah, Błażej Osiński, Brian Ichter, and Sergey Levine. 2023. LM-Nav: Robotic navigation with large pre-trained

models of language, vision, and action. In Proceedings of The 6th Conference on Robot Learning (Proceedings of Machine

Learning Research, Vol. 205), Karen Liu, Dana Kulic, and Jeff Ichnowski (Eds.). PMLR, 492–504. https://proceedings.

mlr.press/v205/shah23b.html

[154] Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng Dai, Yu Qiao,

and Ping Luo. 2023. EmbodiedGPT: Vision-language pre-training via embodied chain of thought. In Advances in

Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine

(Eds.). Vol. 36. Curran Associates, Inc., 25081–25094. https://proceedings.neurips.cc/paper_files/paper/2023/file/

4ec43957eda1126ad4887995d05fae3b-Paper-Conference.pdf

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://doi.org/10.1109/COMST.2025.3526606
https://doi.org/10.1109/MNET.2024.3427313
https://arxiv.org/abs/2305.04790
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/77c33e6a367922d003ff102ffb92b658-Paper-Conference.pdf
https://doi.org/10.1609/aaai.v38i21.30570
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.04671
https://doi.org/10.1007/s11432-024-4222-0
https://doi.org/10.1007/s11704-024-40231-1
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://chat.openai.com/
https://proceedings.mlr.press/v205/shah23b.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/4ec43957eda1126ad4887995d05fae3b-Paper-Conference.pdf


20:34 A. Saleh et al.

[155] Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. 2023. CREATOR: Tool creation for disentangling

abstract and concrete reasoning of large language models. In Findings of the Association for Computational Linguis-

tics: EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics,

Singapore, 6922–6939. DOI:10.18653/v1/2023.findings-emnlp.462

[156] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2024. Teaching large language models to self-debug.

In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-

Review.net. https://openreview.net/forum?id=KuPixIqPiq

[157] Jihong Park, Sumudu Samarakoon, Mehdi Bennis, and Mérouane Debbah. 2019. Wireless network intelligence at the

edge. Proc. IEEE 107, 11 (2019), 2204–2239.

[158] Lauri Lovén, Teemu Leppänen, Ella Peltonen, Juha Partala, Erkki Harjula, Pawani Porambage, Mika Ylianttila, and

Jukka Riekki. 2019. EdgeAI: A vision for distributed, edge-native artificial intelligence in future 6G networks. 1st 6G

Wireless Summit, March 24-26, 2019 Levi, Finland (2019). 1–2.

[159] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dustdar, and Albert Y. Zomaya. 2020. Edge

intelligence: The confluence of edge computing and artificial intelligence. IEEE Internet of Things Journal 7, 8 (2020),

7457–7469.

[160] Philipp Schoenegger, Peter S. Park, Ezra Karger, Sean Trott, and Philip E. Tetlock. 2025. AI-Augmented Predictions:

LLM assistants improve human forecasting accuracy. ACM Trans. Interact. Intell. Syst. 15, 1, Article 4 (Feb. 2025),

25 pages. DOI:10.1145/3707649

[161] Laifa Tao, Haifei Liu, Guoao Ning, Wenyan Cao, Bohao Huang, and Chen Lu. 2025. LLM-based framework for bearing

fault diagnosis. Mechanical Systems and Signal Processing 224 (2025), 112127. DOI:10.1016/j.ymssp.2024.112127

[162] Adewumi Emmanuel Ojuolape and Shanfeng Hu. 2024. Explainable fault diagnosis of control systems using large

language models. In Proceedings of the 2024 IEEE Conference on Control Technology and Applications. IEEE, 491–498.

[163] Thomas K. F. Chiu. 2024. The impact of Generative AI (GenAI) on practices, policies and research direc-

tion in education: A case of ChatGPT and Midjourney. Interact. Learn. Environ. 32, 10 (2024), 6187–6203.

DOI:10.1080/10494820.2023.2253861

[164] OpenAI. GPT-4 System Card. Retrieved June 10, 2025 from https://cdn.openai.com/papers/gpt-4-system-card.pdf.

([n. d.]).

[165] Abdulkadir Celik and Ahmed M Eltawil. 2024. At the dawn of generative AI era: A tutorial-cum-survey on

new frontiers in 6G wireless intelligence. IEEE Open Journal of the Communications Society 5 (2024), 2433–2489.

DOI:10.1109/OJCOMS.2024.3362271

[166] Aishwarya Vijayan. 2023. A prompt engineering approach for structured data extraction from unstructured text

using conversational llms. In Proceedings of the 2023 6th International Conference on Algorithms, Computing and

Artificial Intelligence. 183–189.

[167] Jeevana Priya Inala, Chenglong Wang, Steven Drucker, Gonzalo Ramos, Victor Dibia, Nathalie Riche, Dave Brown,

Dan Marshall, and Jianfeng Gao. 2024. Data Analysis in the Era of Generative AI. arXiv:2409.18475 [cs.AI] https:

//arxiv.org/abs/2409.18475

[168] Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang, Haifeng Chen,

Xiaoli Li, Shirui Pan, Vincent S. Tseng, Yu Zheng, Lei Chen, and Hui Xiong. 2023. Large models for time series and

spatio-temporal data: A survey and outlook. arXiv:2310.10196 [cs.LG] https://arxiv.org/abs/2310.10196

[169] Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. 2025. LLM4TS: Aligning pre-trained LLMs

as data-efficient time-series forecasters. ACM Trans. Intell. Syst. Technol. 16, 3, Article 60 (April 2025), 20 pages.

DOI:10.1145/3719207

[170] Juan Morales-García, Antonio Llanes, Francisco Arcas-Túnez, and Fernando Terroso-Sáenz. 2024. Developing

time series forecasting models with generative large language models. ACM Trans. Intell. Syst. Technol. (2024).

DOI:10.1145/3663485. Just Accepted.

[171] Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K. Gupta, and Jingbo Shang. 2024. Large language models for time

series: a survey. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (Jeju, Korea)

(IJCAI’24). Article 921, 9 pages. DOI:10.24963/ijcai.2024/921

[172] Hao Xue and Flora D. Salim. 2024. PromptCast: A new prompt-based learning paradigm for time series forecasting.

IEEE Transactions on Knowledge and Data Engineering 36, 11 (2024), 6851–6864. DOI:10.1109/TKDE.2023.3342137

[173] Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. 2025. Towards lifelong learning of large language

models: A survey. ACM Computing Surveys 57, 8 (2025), 35 pages. DOI:http://doi.org//10.1145/3716629

[174] Uday Kamath, Kevin Keenan, Garrett Somers, and Sarah Sorenson. 2024. Multimodal LLMs. In Proceedings of the

Large Language Models: A Deep Dive: Bridging Theory and Practice. Springer, 375–421.

[175] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun

Zhang, Jiale Liu, et al. AutoGen: Enabling next-gen LLM applications via multi-agent conversation. In Proceedings of

the ICLR 2024 Workshop on Large Language Model Agents.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://openreview.net/forum?id=KuPixIqPiq
https://doi.org/10.1145/3707649
https://doi.org/10.1016/j.ymssp.2024.112127
https://doi.org/10.1080/10494820.2023.2253861
https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://doi.org/10.1109/OJCOMS.2024.3362271
https://arxiv.org/abs/2409.18475
https://arxiv.org/abs/2310.10196
https://doi.org/10.1145/3719207
https://doi.org/10.1145/3663485
https://doi.org/10.24963/ijcai.2024/921
https://doi.org/10.1109/TKDE.2023.3342137
http://doi.org//10.1145/3716629


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:35

[176] LangChain. 2025. LangChain Web Site. (2025). Retrieved January 03, 2025 from https://www.langchain.com

[177] Talha Zeeshan, Abhishek Kumar, Susanna Pirttikangas, and Sasu Tarkoma. 2025. Large language model based multi-

agent system augmented complex event processing pipeline for internet of multimedia things. arXiv:2501.00906

[cs.MA] https://arxiv.org/abs/2501.00906

[178] Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A survey of hallucination in large foundation models.

arXiv:2309.05922 [cs.AI] https://arxiv.org/abs/2309.05922

[179] Junseong Bang, Byung-Tak Lee, and Pangun Park. 2023. Examination of ethical principles for LLM-based recommen-

dations in conversational AI. In Proceedings of the 2023 International Conference on Platform Technology and Service .

IEEE, 109–113.

[180] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng,

Xiaocheng Feng, Bing Qin, and Ting Liu. 2025. A survey on hallucination in large language models: Principles, taxon-

omy, challenges, and open questions. ACM Trans. Inf. Syst. 43, 2, Article 42 (Jan. 2025), 55 pages. DOI:10.1145/3703155

[181] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang, Zhihang Yuan,

Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong, and Yu Wang. 2024. A survey on efficient

inference for large language models. arXiv:2404.14294 [cs.CL] https://arxiv.org/abs/2404.14294

[182] Mengwei Xu, Dongqi Cai, Wangsong Yin, Shangguang Wang, Xin Jin, and Xuanzhe Liu. 2025. Resource-efficient

algorithms and systems of foundation models: A survey. ACM Computing Surveys 57, 5 (2025), 39 pages. DOI:http:

//doi.org//10.1145/3706418

[183] Mohammad Rubyet Islam. 2024. Generative AI, Cybersecurity, and Ethics. John Wiley & Sons.

[184] Nitin Naik. 2017. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Pro-

ceedings of the 2017 IEEE International Systems Engineering Symposium. IEEE, 1–7.

[185] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, Eneko Agirre,

Ilana Heintz, and Dan Roth. 2023. Recent advances in natural language processing via large pre-trained language

models: A survey. Computing Surveys 56, 2 (2023), 1–40.

[186] Le Xia, Yao Sun, Chengsi Liang, Lei Zhang, Muhammad Ali Imran, and Dusit Niyato. 2025. Generative AI for se-

mantic communication: Architecture, challenges, and outlook. IEEE Wireless Communications 32, 1 (2025), 132–140.

DOI:10.1109/MWC.003.2300351

[187] Peiwen Jiang, Chao-Kai Wen, Xinping Yi, Xiao Li, Shi Jin, and Jun Zhang. 2024. Semantic communications us-

ing foundation models: Design approaches and open issues. IEEE Wireless Communications 31, 3 (2024), 76–84.

DOI:10.1109/MWC.002.2300460

[188] Praveen Kumar Donta, Boris Sedlak, Victor Casamayor Pujol, and Schahram Dustdar. 2023. Governance and sustain-

ability of distributed continuum systems: A big data approach. Journal of Big Data 10, 1 (2023), 1–31.

[189] David Oniani, Jordan Hilsman, Yifan Peng, Ronald K. Poropatich, Jeremy C. Pamplin, Gary L. Legault, and Yanshan

Wang. 2023. Adopting and expanding ethical principles for generative artificial intelligence from military to health-

care. NPJ Digital Medicine 6, 1 (2023), 225. https://doi.org/10.1038/s41746-023-00965-x

[190] Shorouk Alaa El Din Talha. 2020. A semantic based annotation technique for the internet of things. In Proceedings

of the 2020 the 3rd International Conference on Computing and Big Data. 42–47.

[191] John F. Sowa. 2000. Ontology, metadata, and semiotics. In Proceedings of the International Conference on Conceptual

Structures. Springer, 55–81.

[192] Jiachen Chen, Haoyuan Xu, Yanyong Zhang, and Dipankar Raychaudhuri. 2017. Graph-pubsub: An efficient pub/sub

architecture with graph-based information relationship. In Proceedings of the 5th ACM/IEEE Workshop on Hot Topics

in Web Systems and Technologies. 1–6.

[193] Wanting Yang, Zi Qin Liew, Wei Yang Bryan Lim, Zehui Xiong, Dusit Niyato, Xuefen Chi, Xianbin Cao, and Khaled B.

Letaief. 2022. Semantic communication meets edge intelligence. IEEE Wireless Communications 29, 5 (2022), 28–35.

[194] Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. 2024. MLCopilot: Unleashing the power of large

language models in solving machine learning tasks. In Proceedings of the 18th Conference of the European Chapter of

the Association for Computational Linguistics (Volume 1: Long Papers). 2931–2959. https://aclanthology.org/2024.eacl-

long.179/

[195] Yifei Shen, Jiawei Shao, Xinjie Zhang, Zehong Lin, Hao Pan, Dongsheng Li, Jun Zhang, and Khaled B. Letaief. 2024.

Large language models empowered autonomous edge AI for connected intelligence. IEEE Communications Magazine

62, 10 (2024), 140–146. DOI:10.1109/MCOM.001.2300550

[196] Yagmur Yigit, William J. Buchanan, Madjid G. Tehrani, and Leandros Maglaras. 2024. Review of generative AI meth-

ods in cybersecurity. arXiv:2403.08701 [cs.CR] https://arxiv.org/abs/2403.08701

[197] Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang Liu, Boxiang Wang, and Yang You.

2023. Colossal-ai: A unified deep learning system for large-scale parallel training. In Proceedings of the 52nd Interna-

tional Conference on Parallel Processing. 766–775.

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://www.langchain.com
https://arxiv.org/abs/2501.00906
https://arxiv.org/abs/2309.05922
https:/doi.org/10.1145/3703155
https://arxiv.org/abs/2404.14294
http://doi.org//10.1145/3706418
https://doi.org/10.1109/MWC.003.2300351
https://doi.org/10.1109/MWC.002.2300460
https://doi.org/10.1038/s41746-023-00965-x
https://aclanthology.org/2024.eacl-long.179/
https://doi.org/10.1109/MCOM.001.2300550
https://arxiv.org/abs/2403.08701


20:36 A. Saleh et al.

[198] Zeyu Zhang and Haiying Shen. 2024. CSPS: A communication-efficient sequence-parallelism based serving system

for transformer based models with long prompts. arXiv:2409.15104v1 [cs.DC] https://arxiv.org/abs/2409.15104v1

[199] Jiarui Fang and Shangchun Zhao. 2024. USP: A unified sequence parallelism approach for long context generative

AI. arXiv:2405.07719 [cs.LG] https://arxiv.org/abs/2405.07719

[200] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad Shoeybi,

and Bryan Catanzaro. 2023. Reducing activation recomputation in large transformer models. In Proceedings of Ma-

chine Learning and Systems, D. Song, M. Carbin, and T. Chen (Eds.). Vol. 5. Curan, 341–353. https://proceedings.mlsys.

org/paper_files/paper/2023/file/80083951326cf5b35e5100260d64ed81-Paper-mlsys2023.pdf

[201] Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, Aafaq Khan, and Arsalan Shahid. 2024. The ultimate guide

to fine-tuning LLMs from basics to breakthroughs: An exhaustive review of technologies, research, best practices,

applied research Challenges and Opportunities. arXiv:2408.13296 [cs.LG] https://arxiv.org/abs/2408.13296

[202] Kazuki Fujii, Kohei Watanabe, and Rio Yokota. 2024. Accelerating large language model training with 4D parallelism

and memory consumption estimator. arXiv:2411.06465 [cs.LG] https://arxiv.org/abs/2411.06465

[203] Jinhao Li, Jiaming Xu, Shiyao Li, Shan Huang, Jun Liu, Yaoxiu Lian, and Guohao Dai. 2024. Fast and efficient 2-bit

LLM inference on GPU: 2/4/16-bit in a weight matrix with asynchronous dequantization. arXiv:2311.16442 [cs.LG]

https://arxiv.org/abs/2311.16442

[204] Fei Yang, Shuang Peng, Ning Sun, Fangyu Wang, Yuanyuan Wang, Fu Wu, Jiezhong Qiu, and Aimin Pan. 2024.

Holmes: Towards distributed training across clusters with heterogeneous nic environment. In Proceedings of the 53rd

International Conference on Parallel Processing. 514–523.

[205] Sai Krishna Revanth Vuruma, Ashley Margetts, Jianhai Su, Faez Ahmed, and Biplav Srivastava. 2024. From cloud to

edge: Rethinking generative AI for low-resource design Cchallenges. arXiv:2402.12702 [cs.AI] https://arxiv.org/abs/

2402.12702

[206] Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu, Tzuhao Mo, Qiuhao Lu, Wanjing Wang, Rui Li, Junjie Xu,

Xianfeng Tang, Qi He, Yao Ma, Ming Huang, and Suhang Wang. 2024. A comprehensive survey of small language

models in the era of large language models: Techniques, Enhancements, Applications, Collaboration with LLMs, and

Trustworthiness. arXiv:2411.03350 [cs.CL] https://arxiv.org/abs/2411.03350

[207] Savitha Viswanadh Kandala, Pramuka Medaranga, and Ambuj Varshney. 2024. TinyLLM: A framework for training

and deploying language models at the edge computers. arXiv:2412.15304 [cs.LG] https://arxiv.org/abs/2412.15304

[208] Yuang Jiang, Shiqiang Wang, Víctor Valls, Bong Jun Ko, Wei Han Lee, Kin K. Leung, and Leandros Tassiulas. 2023.

Model pruning enables efficient federated learning on edge devices. IEEE Transactions on Neural Networks and Learn-

ing Systems 34, 12 (2023), 10374–10386. DOI:10.1109/TNNLS.2022.3166101

[209] Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. 2024. A simple and effective pruning approach for large

language models. In The Twelfth International Conference on Learning Representations ICLR 2024, Vienna, Austria,

May 7-11, 2024. OpenReview.net. https://openreview.net/forum?id=PxoFut3dWW

[210] Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. LLM-Pruner: On the structural pruning of large language

models. In Advances in Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko, M.

Hardt, and S. Levine (Eds.). Vol. 36. Curran Associates, Inc., 21702–21720. https://proceedings.neurips.cc/paper_files/

paper/2023/file/44956951349095f74492a5471128a7e0-Paper-Conference.pdf

[211] Chuanpeng Yang, Yao Zhu, Wang Lu, Yidong Wang, Qian Chen, Chenlong Gao, Bingjie Yan, and Yiqiang Chen. 2024.

Survey on knowledge distillation for large language models: Methods, evaluation, and application. ACM Trans. Intell.

Syst. Technol. (2024). DOI:10.1145/3699518

[212] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. 2024. A survey on model compression for large language

models. Transactions of the Association for Computational Linguistics 12 (2024), 1556–1577. DOI:10.1162/tacl_a_00704

arXiv:https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00704/2482209/tacl_a_00704.pdf

[213] Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression via distillation and quantization. In

6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,

Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=S1XolQbRW

[214] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024. MiniLLM: Knowledge distillation of large language mod-

els. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.

OpenReview.net. https://openreview.net/forum?id=5h0qf7IBZZ

[215] Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay Krishna, Chen-

Yu Lee, and Tomas Pfister. 2023. Distilling step-by-step! Outperforming larger language models with less training

data and smaller model sizes. In Findings of the Association for Computational Linguistics: ACL 2023, Anna Rogers,

Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational Linguistics, Toronto, Canada, 8003–

8017. DOI:10.18653/v1/2023.findings-acl.507

[216] Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi, Raghu-

raman Krishnamoorthi, and Vikas Chandra. 2024. LLM-QAT: Data-free quantization aware training for large

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://arxiv.org/abs/2409.15104v1
https://arxiv.org/abs/2405.07719
https://proceedings.mlsys.org/paper_files/paper/2023/file/80083951326cf5b35e5100260d64ed81-Paper-mlsys2023.pdf
https://arxiv.org/abs/2408.13296
https://arxiv.org/abs/2411.06465
https://arxiv.org/abs/2311.16442
https://arxiv.org/abs/2402.12702
https://arxiv.org/abs/2411.03350
https://arxiv.org/abs/2412.15304
https://doi.org/10.1109/TNNLS.2022.3166101
https://openreview.net/forum?id=PxoFut3dWW
https://proceedings.neurips.cc/paper_files/paper/2023/file/44956951349095f74492a5471128a7e0-Paper-Conference.pdf
https://doi.org/10.1145/3699518
https://doi.org/10.1162/tacl_a_00704
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00704/2482209/tacl_a_00704.pdf
https://openreview.net/forum?id=S1XolQbRW
https://openreview.net/forum?id=5h0qf7IBZZ
https://doi.org/10.18653/v1/2023.findings-acl.507


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities 20:37

language models. In Findings of the Association for Computational Linguistics: ACL 2024, Lun-Wei Ku, Andre

Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics, Bangkok, Thailand, 467–484.

DOI:10.18653/v1/2024.findings-acl.26

[217] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. 2022. Language model compression

with weighted low-rank factorization. In The Tenth International Conference on Learning Representations, ICLR 2022,

Virtual Event, April 25-29, 2022. OpenReview.net. https://openreview.net/forum?id=uPv9Y3gmAI5

[218] Arnav Chavan, Raghav Magazine, Shubham Kushwaha, Mérouane Debbah, and Deepak Gupta. 2024. Faster and

lighter LLMs: A survey on current challenges and way forward. In Proceedings of the Thirty-Third International Joint

Conference on Artificial Intelligence (Jeju, Korea) (IJCAI’24). Article 883, 9 pages. DOI:10.24963/ijcai.2024/883

[219] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. 2023. Machine learning operations (MLOps): Overview,

Definition, and Architecture. IEEE Access 11 (2023), 31866–31879. DOI:10.1109/ACCESS.2023.3262138

[220] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,

Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,

Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,

Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian

Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-

ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin

Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael

Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin

Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,

Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open foundation and fine-tuned chat models.

arXiv:2307.09288 [cs.CL] https://arxiv.org/abs/2307.09288

[221] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. 2023. Estimating the carbon footprint of bloom,

a 176b parameter language model. Journal of Machine Learning Research 24, 253 (2023), 1–15.

[222] Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yuyao Zhang, Peitian Zhang, Yutao Zhu, and Zhicheng Dou. 2025. From matching to

generation: A survey on generative information retrieval. ACM Trans. Inf. Syst. 43, 3, Article 83 (May 2025), 62 pages.

DOI:10.1145/3722552

[223] Qiong Wu, Zhaoxi Ke, Yiyi Zhou, Xiaoshuai Sun, and Rongrong Ji. 2025. Routing experts: Learning to route dynamic

experts in existing multi-modal large language models. In The Thirteenth International Conference on Learning Rep-

resentations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net. https://openreview.net/forum?id=vtT09dYPGI

[224] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud

Texier, and Jeff Dean. 2021. Carbon emissions and large neural network training. arXiv:2104.10350 [cs.LG] https:

//arxiv.org/abs/2104.10350

[225] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy Schwartz, Emma Strubell, Alexandra Sasha

Luccioni, Noah A. Smith, Nicole DeCario, and Will Buchanan. 2022. Measuring the carbon intensity of AI in cloud

instances. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency. 1877–1894.

[226] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona

Aga, Jinshi Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido,

David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi

Jain, Mike Rabbat, and Kim Hazelwood. 2022. Sustainable AI: Environmental implications, challenges and opportu-

nities. In Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and C. Wu (Eds.). Vol. 4. 795–813.

https://proceedings.mlsys.org/paper_files/paper/2022/file/462211f67c7d858f663355eff93b745e-Paper.pdf

Received 8 March 2024; revised 25 March 2025; accepted 31 May 2025

ACM Comput. Surv., Vol. 58, No. 1, Article 20. Publication date: September 2025.

https://doi.org/10.18653/v1/2024.findings-acl.26
https://openreview.net/forum?id=uPv9Y3gmAI5
https://doi.org/10.24963/ijcai.2024/883
https://doi.org/10.1109/ACCESS.2023.3262138
https://arxiv.org/abs/2307.09288
https://doi.org/10.1145/3722552
https://openreview.net/forum?id=vtT09dYPGI
https://arxiv.org/abs/2104.10350
https://proceedings.mlsys.org/paper_files/paper/2022/file/462211f67c7d858f663355eff93b745e-Paper.pdf

	1 Introduction
	2 The Pub/Sub Paradigm
	2.1 Message Broker Development
	2.2 Broker vs. Brokerless Messaging Architecture

	3 Survey of Message Brokers
	3.1 Open Source Message Brokers
	3.2 Proprietary Message Brokers
	3.3 Summary on Message Brokers

	4 Message Brokers and GenAI
	4.1 GenAI for Message Brokers
	4.2 GenAI on Message Brokers
	4.3 Semantic Communication
	4.4 Dynamic Data and Model Management
	4.5 Training Acceleration
	4.6 Dynamic Model Compression
	4.7 Dynamic Orchestration
	4.8 AIOps/MLOps and Monitoring
	4.9 Summary of Message Broker Enhancement Methods
	4.10 Sustainability Considerations for GenAI in Message Broker Systems

	5 Conclusion
	References

