®

Check for
updates

Exploring Mapping Strategies
for Co-allocated HPC Applications

Toannis Vardas®)®, Sascha Hunold®, Philippe Swartvagher®,
and Jesper Larsson Traff

TU Wien, 1040 Vienna, Austria

{vardas,hunold, swartvagher,traff}@par.tuwien.ac.at

Abstract. In modern HPC systems with deep hierarchical architec-
tures, large-scale applications often struggle to efficiently utilize the
abundant cores due to the saturation of resources such as memory.
Co-allocating multiple applications to share compute nodes can miti-
gate these issues and increase system throughput. However, co-allocation
may harm the performance of individual applications due to resource
contention. Past research suggests that topology-aware mappings can
improve the performance of parallel applications that do not share
resources. In this work, we implement application-oblivious, topology-
aware process-to-core mappings via different core enumerations that sup-
port the co-allocation of parallel applications. We show that these map-
pings have a significant impact on the available memory bandwidth. We
explore how these process-to-core mappings can affect the individual
application duration as well as the makespan of job schedules when they
are combined with co-allocation. Our main objective is to assess whether
co-allocation with a topology-aware mapping can be a viable alternative
to the exclusive node allocation policies that are currently common in
HPC clusters.

Keywords: High Performance Computing - Parallel Computing -
Performance Optimization + Process Mapping + Co-allocation

1 Introduction

HPC systems are typical multi-user systems, where users submit batch jobs that
request compute resources for a specified amount of time. Many CPU-based
supercomputers are composed of compute nodes that feature a large number of
cores. Parallel applications that run on these compute nodes cannot always effi-
ciently use all allocated cores as some resources become saturated at high core
counts, such as the memory or I/O bandwidth [3]. Under these circumstances,
HPC systems strive to maintain a high job throughput and low makespan while
also keeping the job duration short to meet users’ needs. Therefore, two impor-
tant metrics for HPC systems are: (1) the makespan which is the time differ-
ence between the start and finish of a sequence of jobs and, (2) the individual

The original version of this chapter was previously published without open access. A
correction to this chapter is available at
https://doi.org/10.1007,/978-3-031-48803-0 41

© The Author(s) 2024, corrected publication 2024

D. Zeinalipour et al. (Eds.): Euro-Par 2023 Workshops, LNCS 14352, pp. 271-276, 2024.
https://doi.org/10.1007/978-3-031-48803-0 31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48803-0_31&domain=pdf
http://orcid.org/0000-0001-5461-556X
http://orcid.org/0000-0002-5280-3855
http://orcid.org/0000-0003-3786-7364
http://orcid.org/0000-0002-4864-9226
https://doi.org/10.1007/978-3-031-48803-0_41
https://doi.org/10.1007/978-3-031-48803-0_31

272 I. Vardas et al.

job duration. Co-allocating multiple applications to share the compute nodes
can reduce the makespan of a job schedule. Even though previous research has
shown promising results for co-scheduling [2,3], it is rarely used in production
systems for multi-node CPU applications. A drawback of co-allocation is that it
can increase the duration of jobs [1] if jobs conflict over shared resources such
as the L3 cache, memory controllers, or the network interface.

To address this issue, applying efficient process mappings can improve the
performance of applications by reducing their communication time [4]. Mapping
is the assignment of processes of a parallel application to the processing units
(cores) of the system. Due to the deeper memory hierarchies, the higher core-
density nodes, and the increased number of compute nodes of HPC systems,
the mapping of parallel applications can significantly affect their performance.
Most works that improve the mapping of applications are not concerned with
co-allocated applications, and they often require an extra profiling run, which
renders them impractical for production systems [5].

In the present work, we explore different process-to-core mappings for co-
allocated applications similar to the work of Breslow et al. [2], which proposes a
method for co-allocating applications called job striping. With job striping, two
jobs share a set of nodes where half of the cores of each node run one job and
the other half run the other. In our work, we go beyond job striping by devising
several topology-aware and application-oblivious process-to-core mappings using
different enumerations of the compute cores for co-allocated applications. We
analyze the effects of our mapping strategies and show that they affect the
available memory bandwidth of a parallel application. In our evaluation, we
employ typical HPC applications to explore the impact of mapping and co-
allocation. We compare our strategies combined with an allocation policy that
is common in HPC systems.

2 Experimental Environment and Methods

As an example of an HPC system with a deep resource hierarchy, we use the
Vienna Scientific Cluster 5 (VSC-5). Each of its 770 compute nodes consists of
two packages (sockets), and each socket has an AMD EPYCT™ 7713 processor
with 64 cores. Figure 1a depicts the hierarchical topology of one VSC-5 compute
node, showing the four levels of hierarchy, which are: (1) compute node, (2)
package, (3) NUMA node, and (4) the core. Each package has four NUMA nodes
and each NUMA node comprises 16 cores. Each compute node has 512 GiB of
RAM and eight memory channels per socket (2 per NUMA node). This deep
and complex hierarchy motivates us to explore various mapping strategies that
leverage the resources of such hierarchies differently. Our strategies take into
account three levels of the node’s hierarchy: the package, the NUMA node, and
the core. In multi-node scenarios, we make three assumptions: (1) the scheduler
distributes an equal number of processes to each node; (2) each compute node
is shared between applications; and (3) the mapping is replicated to each node.

We produce different process-to-core mappings by varying core enumerations.
With n! possible enumerations of n elements, directly exploring all of them is

Exploring Mapping Strategies for Co-allocated HPC Applications 273

I Compute Node 162.3 FPG4 /sec (Maximum)
Package Package 100 ; ’
NUMA Node NUMA Node
[oTaT2T3Tals e[7]|||[eaTes]e6]67]68]69]70]71]
s o TaoTar 2 [[ae s || || 2o e s e o s oo .
NUMA Node NUMA Node 3
=
[26 272820 20 21 22 23] |f || [so 81 [82] 83| 84| 85 [86] 87] =
24| 25| 26| 27| 28 | 29 | 30| 31 || || (28 [89 [s0 [o152 [03[o4 o5] © 1
NUMA Node NUMA Node
32]33 [3a] 35 36 [37] 38 [39 || || (e T o7 T o8 [oo oo ot oz o
Voo a1 [a2 [42 [aa [a5 [a6 [7] ‘_H—*—*—H—Hm 3 I T P))
NUMA Node NUMA Node ;
s T s0 51 [s2 [53 [t 5] | | (e e e e [] ot o i m o
56 (57| 58|59 60(6162]63 120|121]122] 123] 124] 125 126 127 : :
|| FLOPs/Byte
(a) Hierarchical view of the archi- (b) Roofline models: DRAM lines show the
tecture of a VSC-5 compute node available bandwidth with different mappings

Fig. 1. Overview of a single VSC-5 compute node: (a) Hierarchical view of the archi-
tecture, and (b) the Roofline models of eight processes.

impractical. Our mappings leverage the machine’s hierarchical topology to nar-
row this search space. We represent core enumerations in a mixed-radix numeri-
cal system, based on an ordered set of the hierarchy h = {2, 4,16}, which denotes
two sockets, four NUMA nodes per socket, and 16 cores per NUMA node. First,
we decompose the core IDs into digit sets using Algorithm 1. These sets of dig-
its are the indices to the different levels defined by the hierarchy. Second, we
compute the new core IDs via Algorithm 2, employing the decomposed digits
from Algorithm 1, hierarchy h, and order o of hierarchy. The order o denotes the
sequence of hierarchy levels considered by Algorithm 2. Using order o = {0, 1, 2},
we produce the enumeration in Fig. la. By permuting o, we produce different
mappings, e.g., o = {2, 1,0} enumerates the core IDs as {0, 64, 16, 80, ...}, that is,
we first cyclically assign processes between packages and then cyclically assign
processes between NUMA nodes. Since this hierarchy has three levels, o is a set
of three elements, therefore, six permutations and thus six different mappings
are possible. We focus on four out of six mappings, which differ significantly in
terms of bandwidth.

Algorithm 1. Decompose core ID Algorithm 2. Compute core ID

Input: h: hierarchy, ¢d: core id Input: h: hierarchy, d: digits, o: order
Output: d: decomposed digits Output: nid: new core id

1 d«|] 1: nid — 0,s — 1

2: for ¢ < 0 to length(h) — 1 do 2: for ¢ < 0 to length(h) — 1 do

3: d[i] < id mod hl[i] 3: nid «— nid +d[o[i]] X s

4: id < id // h[i] > Integer division 4: s« s x hlo[i]]

5: end for 5: end for

Figure2 shows the mappings of four co-allocated MPI applications using
orders {0,1,2},{1,2,0},{2,1,0}, and {0, 2, 1}, where each application is allotted
32 cores in a VSC-5 compute node. We name the mappings after the orders that
they are derived from. From Fig.2, we notice that different applications use

274 I. Vardas et al.

different resources: For example, when applications are mapped with {1, 2, 0}
the processes are placed in one NUMA node per package, whereas with {0, 2,
1} they are placed in two NUMA nodes per package.

Compute Node Compute Node

B || E EEEEEEER || e
EESSSESE]| | SSSSSSES| EEEEEEE || EEEEEEEE
EEEE || e EEEEEEE ||| B
EEFEEEEER || . EEEEEEES | S

(a) mapping {0,1,2}

Compute Node

(b) mapping {1,2,0}

Compute Node

SESSSEEE|

EESESESE|

SESSSEEE|

EESESESE|

EA
e
EFEA
e

|

[

EE======

B

B

BT

(c) mapping {0,2,1} (d) mapping {2,1,0}

Fig. 2. Process-to-core mappings of four co-allocated MPI applications each with 32
processes sharing one compute node. Different colors denote cores that are allotted to
different applications.

Figure 1b illustrates the distinct memory bandwidths offered by the four map-
pings, each with eight processes. The arithmetic intensity is on the x-axis and the
performance on the y-axis. We notice that mapping {2, 1, 0} yields a maximum
bandwidth of 304 GB/s, in contrast to {0, 1, 2} at 39 GB/s. Consequently, an
application with 1 FLOP /Byte arithmetic intensity, for example, can attain 162
GFLOPS and 39 GFLOPS at the respective bandwidths. Moreover, our map-
pings influence the resource contention of co-allocated applications by affecting
their shared resources. The least amount of shared resources between applica-
tions is achieved by the {0, 1, 2} mapping in Fig. 2a, whereas Fig. 2d shows that
more resources are shared with {2, 1, 0} mapping. We categorize mappings {0,
1, 2} and {1, 2, 0} as compact, whereas, {2, 1, 0} and {0, 2, 1} are categorized
as spread.

3 Evaluation and Results

We conducted our experiments on the VSC-5 using a typical HPC work-
load of eight MPI applications: LAMMPS, CG from NAS Parallel Bench-
marks, GROMACS, FFT, and four ECP Proxy applications, all compiled with
Open MPI 4.1.3. In the first scenario, we measure the impact of the mappings

Exploring Mapping Strategies for Co-allocated HPC Applications 275

AMG FFT LAMMPS [l miniVite
B cc M crovacs [l miniAMR swilite

200 A

501 10, “ 200“
I 29 3' I 00933 : sozu“
26 I I I
01

7‘; 20) 0\ 01 \\x N “\
o &\‘? Jatedih: \0}(\\@ A4 - el &0 \?@\c 5\0‘2 el \\ \fdc\\l\

.40,
‘So\u\&\ o \ol‘“

Allocatmn and Mapplng Strategy

Fig. 3. The impact of mapping and co-allocation on performance, applications run
with 8 x 16 processes, either in isolation or co-allocation with four mappings.

on the application performance when run either in isolation or co-allocation.
Figure 3 shows the duration of each application running with 8 nodes and 16
processes per node in either co-allocation or isolation mode using all four dif-
ferent mappings. In co-allocated runs, all eight applications run concurrently
and share a different part of the nodes, similar to Fig. 2. In isolated runs, appli-
cations run exclusively on compute nodes while using the same mapping as
with co-allocation. We notice that spread mappings improve the performance of
most applications in this set. However, there is no mapping that benefits every
application. We also notice that the negative impact of co-allocation on appli-
cations with compact mappings is lower than that of spread. This is because
with spread mapping more resources are shared, which can increase resource
contention. Finally, spread mappings, show better performance, outweighing the
negative effect of co-allocation in this application set. In the second scenario,
we focus on the makespan and the sum of job durations. We compare our map-
ping methods with co-allocation against the common allocation and mapping
policy of Slurm on VSC-5, which performs an exclusive allocation with round-
robin mapping, denoted as exclusive.RR. When applying the exclusive.RR
strategy, one node is exclusively allotted to each application, where it runs with
128 cores with a round-robin mapping. We show these results in Fig. 4, where
we observe that our mapping strategies outperform the exclusive.RR for most
applications. Mappings {2, 1, 0} and {0, 2, 1} show the best performance in
terms of makespan. Strategy colocated{2,1,0%} offers an improvement of 2.4x
and 1.4x over exclusive.RR in terms of makespan and the sum of job durations,
respectively.

276 I. Vardas et al.

| AMG FFT [LAMMPS [miniVite
B cc M GROMACS M miniAMR swAlite

1501

100+

g 69
49 46 0153 652 51
i |
0-

\ommd{o (,\ cated {120 (oloc cated {02 C\ (M,d{‘zﬂ} Fxc \ub\\tﬁ

Time |s]

[N
o
L

Co

Allocation and Mapping Strategy

Fig.4. Comparison between our mapping strategies with co-allocation against
exclusive.RR where each application runs in one node exclusively.

4 Conclusion

We have explored the effects and benefits of different process-to-core mappings
coupled with co-allocation. We have devised application-oblivious and topology-
aware process-to-core mapping strategies using different core enumerations. Our
preliminary results show that co-allocation coupled with spread mappings can
improve both individual job performance and makespan for workloads consist-
ing of eight HPC applications compared to the exclusive allocation. We plan to
implement more dynamic mappings using additional HPC applications and sce-
narios with diverse numbers of processes, and perform experiments on additional
HPC systems with different architectures.

Acknowledgements. This work was partially supported by the Austrian Science
Fund (FWF): project P 31763-N31 and project P 33884-N.

References

1. de Blanche, A., Lundqvist, T.: Terrible twins: a simple scheme to avoid bad co-
schedules. In: Proceedings of the 1st COSH Workshop, pp. 25-30 (2016)

2. Breslow, A.D., et al.: The case for colocation of high performance computing work-
loads. Concurr. Comput.: Pract. Exper. 232-251 (2016)

3. Frank, A., Siif§, T., Brinkmann, A.: Effects and benefits of node sharing strategies
in HPC batch systems. In: IEEE IPDPS, pp. 43-53 (2019)

4. von Kirchbach, K., Lehr, M., Hunold, S., Schulz, C., Traff, J.L.: Efficient process-
to-node mapping algorithms for stencil computations. In: CLUSTER (2020)

5. Vardas, 1., Hunold, S., Ajanohoun, J.I., Traff, J.L.: mpisee: MPI profiling for com-
munication and communicator structure. In: IEEE IPDPSW, pp. 520-529 (2022)

	Exploring Mapping Strategies for Co-allocated HPC Applications
	1 Introduction
	2 Experimental Environment and Methods
	3 Evaluation and Results
	4 Conclusion
	References

