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ABSTRACT
mpisee is a lightweight profiling tool designed to track MPI communication operations per communicator, providing fine-grained
insights into MPI applications that use communicators to partition MPI communication. While existing profiling tools offer
valuable information, they may limit detailed analysis and optimization for such MPI applications, as they do not associate
MPI communication with their communicator. Additionally, mpisee categorizes MPI communication operations based on mes-
sage size, offering more granular information. It uses an SQLite database to efficiently store the profiling data, enabling users
to analyze the application’s profile from various perspectives, focusing on specific MPI ranks, operations, and more. Our anal-
ysis shows that mpisee incurs less than 5% overhead, performing on par with other state-of-the-art profilers. We demon-
strate mpisee ’s effectiveness by profiling and analyzing an FFT application, revealing potential performance bottlenecks
related to the MPI_Alltoallv collective operation on small communicators and insights not available by other profilers.
Leveraging this detailed information, we improved the application’s overall performance by selecting different algorithms for
MPI_Alltoallv and measuring their performance on different communicators with mpisee. This study illustrates mpisee ’s
utility and highlights the significant advantages of a communicator-centric approach in MPI profiling.

1 | Introduction

Optimizing the performance of applications is a key chal-
lenge in High-Perfomance Computing (HPC) where even
minor inefficiencies can lead to significant slowdowns, espe-
cially as applications scale across thousands of processing
nodes. Achieving high performance in these complex envi-
ronments requires detailed profiling, analysis, and fine-tuning
of communication patterns between processes. The Message
Passing Interface (MPI) is the dominant programming model
for enabling parallelism across multiple compute nodes, mak-
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ing it indispensable in HPC [1]. MPI provides a robust set of
communication operations that facilitate data exchange and
synchronization among parallel processes. This work focuses
on the profiling of MPI applications as a less intrusive and more
practical approach to performance analysis, especially at a large
scale.

An essential abstraction of MPI is the communicator, which is a
distributed object that comprises an ordered set of processes and
defines a communication context in which the participating pro-
cesses can exchange messages [2]. All communication operations
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in MPI, whether point-to-point, collective, or one-sided, rely on
communicators.

MPI communicators can also control the process-to-core map-
ping via the virtual topology mechanism. A virtual topology
allows the communicator to store a logical arrangement of pro-
cesses determined by the algorithm and the geometry of the
problem. For instance, in stencil computations on structured
grids, where each element’s value depends on its immediate
neighbors, a Cartesian virtual topology models the grid struc-
ture within MPI, assigning each process a position within the
virtual grid. The MPI library can reorder MPI ranks within the
Cartesian communicator to improve process-to-core mapping,
minimizing communication overhead and improving application
performance [3–5].

A particular use case of communicators is problem decomposi-
tion, a fundamental technique where a computational problem is
divided into smaller subproblems that can be solved concurrently
by different processes in a distributed system. This approach dis-
tributes work across multiple processors, exploiting parallelism,
and can enhance the efficiency of large-scale computations. Com-
municators structure communication within these subproblems
by creating process groups linked to specific parts of the problem.
Molecular dynamics applications, including GROMACS [6], use
such techniques to structure communication, as do computa-
tional fluid dynamics simulators (e.g., OpenFOAM [7]) and par-
allel FFT libraries [8].

Figure 1 illustrates the concept of problem decomposition, show-
ing an example of an MPI application with eight processes that
are grouped into smaller groups using communicators. Figure 1a
shows that all eight processes are grouped into two communi-
cators, and Figure 1b shows a different communication struc-
ture with four smaller communicators, each containing two
processes. These communicators define distinct communication
groups, enabling structured communication within each group,
such as performing specific collective communication calls like
MPI_Allreduce, MPI_Bcast, and others, reducing unneces-
sary message exchange between unrelated processes.

A similar approach is followed by Träff and Hunold [9], who
use communicators to decompose MPI collectives and structure
them to exploit multi-lane communication. Their method groups
processes into multiple small communicators to parallelize com-
munication tasks and use multiple communication paths. In this
way, they maximize the network bandwidth and reduce the com-
munication time by reducing contention.

Despite the central role of communicators, state-of-the-art
MPI profiling tools, to the best of our knowledge, are
communicator-oblivious. They maintain a global view and
profile MPI applications on a per-process basis, disregarding
the applications’ communicators for performing MPI operations.
This means that they do not track MPI communicators and do not
associate MPI communication operations with them. Tracking
communicators is challenging for external profiling tools because
while communicators themselves are exposed to the profiler, the
identification mechanism that the MPI library uses is not. There-
fore, profiling tools aiming to keep track of MPI communicators
must address this problem outside the MPI library.

1.1 | Motivation

To illustrate the limitations of communicator-oblivious pro-
filing, we use a sample application, shown in Listing 1.
This application creates two subcommunicators by splitting
MPI_COMM_WORLD, each containing half of the processes
from MPI_COMM_WORLD. The application performs 30 calls to
MPI_Allreduce in MPI_COMM_WORLD and 100 additional
calls in each subcommunicator. We executed this application
with 1024 processes and profiled it using Score-P [10] and mpiP
[11], which are well-established communicator-oblivious pro-
filing tools. The profiles generated by these tools are shown
in Figure 2.

LISTING 1 | Sample MPI application that creates two communica-
tors by splitting MPI_COMM_WORLD and performing MPI_Allreduce in
them.

#define WORLD_ALLREDUCES 30
#define COMM_ALLREDUCES 100
#define ALLREDUCECOUNT 1000

MPI_Comm rootcomm;
int rank, size;
// Perform allreduce on MPI_COMM_WORLD
for (int i = 0; i < WORLD_ALLREDUCES; i++) {

MPI_Allreduce(send_buffer, recv_buffer,
ALLREDUCECOUNT, MPI_INT, MPI_SUM,
MPI_COMM_WORLD);

}
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_split(MPI_COMM_WORLD, rank > (size/2 -

1), rank, &rootcomm);
// Perform allreduce on the new communicator
for (int i = 0; i < COMM_ALLREDUCES; i++) {

MPI_Allreduce(send_buffer, recv_buffer,
ALLREDUCECOUNT, MPI_INT, MPI_SUM, rootcomm

);
}

FIGURE 1 | An example of organizing eight processes of an MPI application into different communication groups using communicators. (a) Two
communicators, each defining a group of four processes, (b) Four communicators, each defining a group of two processes.
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FIGURE 2 | Communicator-oblivious profiles of the sample MPI application by Score-P and mpiP profilers. (a) The Score-P profile showing aggre-
gated data for MPI operations, (b) A subset of the mpiP profile categorizing MPI_Allreduce calls by callsite.

The profile generated by Score-P, as depicted in Figure 2a,
indicates a total of 133,120 calls to MPI_Allreduce, with
a cumulative execution time of 9213 s. This result occurs
because Score-P aggregates the number of calls across all
processes and communicators, yielding the breakdown:
30 calls∕process × 1024 processes∕communicator × 1 communicator +
100 calls∕process × 512 processes∕communicator × 2 communicators =
133, 120 calls. However, this profile completely overlooks the
existence of the subcommunicators created during execution.

In contrast, the subset of the mpiP profile, shown in Figure 2b,
associates MPI_Allreduce with two communicator sizes
(512–1023 and 1024–2047), as seen in the Aggregate Collective
Time section. However, this profile is still limited, as it fails to
differentiate between the two distinct communicators of size 512,
created byMPI_Comm_split. The Aggregate Time section offers
slightly more detail, categorizing the MPI_Allreduce calls
by call site, which helps us understand that there are two
distinct calls to MPI_Allreduce. Specifically, it shows that
MPI_Allreduce at Site 2 takes significantly longer than the
one at Site 1. Summing the time of MPI_Allreduce at these
two call sites, we get 7730 s + 1880 s = 9610 s, which is close to
the MPI_Allreduce time from Score-P. While knowledge of
the source code allows us to infer that the calls at Site 2 occur in
split communicators, the profile does not reveal in which of the
two split communicators these calls took place. The mpiP profile
shows per-process information, which is extensive and therefore,
it is not included in its entirety here.

Such communicator-oblivious profiles do not allow us to dis-
tinguish the performance of MPI_Allreduce across different
communicators, making it difficult to accurately assess its
specific impact on each communicator. Without this distinc-
tion, we cannot clearly understand the impact of targeted
optimizations for specific communicators or communicator
sizes. For example, while we can select different algorithms for
MPI_Allreduce based on the size of the communicator, we
cannot evaluate how these choices affect the performance of
individual communicators. We can observe the overall result in
the total execution time, but we cannot determine the specific
contribution of each communicator to that result. This limits our
ability to fine-tune performance and effectively address potential
bottlenecks.

1.2 | Contributions

To address these limitations, we introducempisee, a lightweight
MPI profiler that implements a communicator-centric paradigm
in MPI profiling.1 Unlike traditional approaches that aggregate
global data, mpisee tracks MPI calls per communicator, provid-
ing a detailed characterization of MPI communication, including
time spent, number of calls, and the volume of data transferred
for each MPI function within individual communicators. Addi-
tionally, mpisee categorizes MPI communication calls based on
their buffer size. To efficiently store and manage profiling data,
we leverage the SQLite library [12], enabling flexible querying
and analysis of results.

3 of 21

 15320634, 2025, 15-17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70158 by T

echnische U
niversitaet W

ien, W
iley O

nline L
ibrary on [02/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Our evaluation of mpisee provides a comprehensive overhead
analysis, rigorously measuring and characterizing the overhead
introduced by mpisee compared to state-of-the-art profiling
tools rather than just baseline runs. Additionally, we demon-
strate mpisee ’s capabilities by analyzing the performance of
an MPI application that uses a real-world FFT library, revealing
performance bottlenecks that traditional profiling methods over-
look. We show that insights from mpisee ’s profiles can guide
targeted optimizations, enhancing application performance.
Finally, this paper goes beyond introducing mpisee ; it show-
cases the implementation of a communicator-centric paradigm
in MPI profiling. While mpisee embodies our approach, this
paradigm can be integrated into existing MPI profilers.

2 | Related Work

Our research focuses on tools for performance analysis of
MPI-based applications, which we categorize into profiling and
tracing tools. Profiling tools aggregate data per event to provide
a summarized view of application behavior. In contrast, trac-
ing tools provide a more fine-grained perspective by recording
each event’s start and end timestamps. While tracing tools offer
a plethora of features, including the ability to replay execution
traces, and can be applied to a broader range of applications
beyond MPI, they typically incur higher overheads than profiling
tools.

mpiP [11] and IPM [13] are MPI profilers that share many simi-
larities with mpisee. Both tools rely on PMPI, the profiling inter-
face of MPI [2, Section 15.2], and they report the accumulated
time spent in different MPI communication operations. mpiP
presents profiling statistics per call site, a point in the program
where the MPI call is performed. In this way, it distinguishes the
MPI calls per call site. IPM categorizes the MPI calls per buffer
size, e.g., it distinguishes between a call to MPI_Bcast with 30
bytes to another call with 500 bytes. IPM does not distinguish the
MPI calls per communicator, whereas mpiP maintains informa-
tion on the communicator size but does not distinguish between
different communicators. For example, two calls of the same
MPI operation on different communicators of the same size are
aggregated. Finally, both mpiP and IPM use a text file as output,
which can be inefficient for large profiles.

Score-P [10] is a versatile tool that supports various programming
models beyond MPI, such as OpenMP and CUDA. It employs
compile-time instrumentation and has two modes of operation:
Profiling and tracing. In profiling mode, it uses the PMPI interface
to record timing statistics of MPI operations, similar to mpisee.
In tracing mode, it records the start and end times of MPI events
and functions, offering a more fine-grained analysis. Addition-
ally, it supports automatic instrumentation and can track events
using a sampling approach. It supports output in OTF2, CUBE4,
and TAU formats for interfacing with performance analysis tools
such as Scalasca [14] and TAU [15].

Vampir [16] is a commercial performance visualization tool
that can process and analyze traces, particularly those recorded
in OTF and OTF2 formats (such as the ones generated by
Score-P). Vampir provides extensive filtering capabilities, includ-
ing filtering operations by communicator, which enables a form

of communicator-centric performance analysis. However, this
approach differs from mpisee in that it operates on full traces
rather than aggregated profiles, requiring potentially larger stor-
age overhead and post-processing time.

HPCToolkit [17], like Score-P, supports various programming
models and can do profiling and tracing. It uses a sampling-based
approach to create program traces and record performance data.
HPCToolkit does not depend on the PMPI interface. Instead, it
relies on call stack unwinding. It provides a graphical user inter-
face (GUI) to present the performance data, primarily offering
code-centric views and enabling users to assess the performance
variability across processes and threads.

Scalatrace [18] and Pilgrim [19] are MPI tracers focusing on
reducing the size of recorded traces, as traces tend to become
exceedingly large. ScalaTrace uses a two-step compression
scheme, distinguishing between intra- and inter-node compres-
sion. Intra-node compression is performed during MPI program
execution, where each process compresses its local trace data.
Subsequently, these compressed local traces are merged into a
global profile, leveraging pattern recognition to exploit repetitive
sequences for further inter-node compression. Pilgrim uses
lossless compression by building a context-free grammar during
the program’s execution. It stores the MPI calls and their param-
eters in a signature table to be used as terminal symbols in the
grammar.

In most MPI libraries, communicators are internally identified by
a unique integer context ID that is consistent across all processes
in the communicator’s group. More specifically, the context ID
is the same on all processes that are part of the communicator
and is unique among all communicators on a given process [20].
Context IDs ensure that communication operations match only
within the same communicator.

The work of Gropp and Thakur [20] addresses the problem of
identifying the MPI communicators within the MPI library. More
specifically, their work focuses on the generation of context IDs to
identify communicators in multithreaded MPI environments. The
challenge in multithreaded MPI environments is to avoid dead-
locks and race conditions when multiple threads simultaneously
attempt to generate new context IDs. The authors address this by
developing an algorithm that coordinates the generation process
across threads. Their algorithm uses a shared bitmask and thread
locks to ensure thread-safe and efficient context ID generation,
preventing deadlocks and unnecessary repetitions.

Profiling tools that aim to track MPI communicators require an
external tracking or naming scheme, as the MPI library does
not expose its internal context IDs of communicators to profil-
ers. Solving this problem was a key focus in the development of
mpisee and other profiling tools.

Geimer et al. [21] address the communicator tracking problem
outside MPI. In their scheme, when a communicator is cre-
ated, the process 0 in a communicator maintains a state vari-
able to count the number of communicator calls up to this point.
Then, it broadcasts this count along with the global MPI rank
of the process ranked 0 in the newly created communicator
and increases its counter value after the broadcast. This strategy
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FIGURE 3 | An overview of the architecture of mpisee, depicting how mpisee interacts with the user application and the MPI library and the
SQLite library to create the profile database.

ensures that all processes within the communicator have the
necessary information for later unification. At the end of the mea-
surement, these two numbers are used to create a global identifier
for each communicator. Each communicator is assigned a global
identifier sequentially, starting with those defined by rank 0. An
exclusive prefix reduction calculates the total number of com-
municators defined by all preceding ranks, which is then shared
across processes to adjust local identifiers into globally unique
ones. The total number of communicators and their participant
ranks are determined, ensuring that each communicator has a
unique, globally consistent identifier.

This work significantly extends our previous implementa-
tion [22], which had fundamental limitations: First, it required
collective calls within newly created communicators, which
were incompatible with the semantics of MPI_Comm_idup and
MPI_Comm_create_group. Second, it represented communi-
cator names as strings, leading to memory usage proportional
to the depth of nested communicator creation calls. The current
implementation resolves these issues by adopting a scheme that
maintains partial communicator information, ensuring semantic
correctness and constant memory usage regardless of the nest-
ing depth. Furthermore, we added support for MPI one-sided
operations and neighborhood collectives, and extended support
for Fortran programs that use MPI_IN_PLACE, MPI_BOTTOM,
MPI_STATUSES_IGNORE, MPI_STATUS_IGNORE, and MPI_
UNWEIGHTED. In addition, we introduce several new features,
such as the categorization of MPI communication by buffer size
and SQLite database integration for efficient storage and analysis
(replacing the previous CSV format).

In this paper, we explain the new features, present a com-
prehensive overhead analysis, including a comparison to two
other state-of-the-art profiling tools, and demonstrate mpisee ’s
practical utility by profiling an FFT application, revealing per-
formance bottlenecks that traditional profiling methods could
overlook.

3 | Methods and Implementation

We use the standard profiling interface of MPI called PMPI to
implement mpisee. PMPI provides an alternative entry point to

each MPI function using the PMPI_ prefix [2, Section 15.2]. This
allows mpisee to intercept and wrap MPI calls from the user pro-
gram, collecting necessary information before and after executing
the underlying PMPI call. Notably,mpisee does not require com-
piler instrumentation and can be loaded at runtime using the
LD_PRELOAD environment variable without recompilation.

Figure 3 shows an overview of the architecture of mpisee.
The mpisee profiling infrastructure resides between the user
application and the MPI library. Therefore, when the user
application calls MPI functions, mpisee intercepts these func-
tion calls via its function wrappers. This allows mpisee to gather
profiling information before and after invoking the correspond-
ing PMPI function to execute the actual MPI operation. Upon
intercepting the MPI_Finalize, it outputs the profiling infor-
mation into an SQLite database file on disk. The SQLite file
database can be further analyzed by our external tool called
mpisee-through.

This section discusses the implementation details of mpisee in
the following order: Initialization, communicator creation,
MPI communication operations profiling, finalization, and
SQLite library integration. Finally, we present mpisee-
through, our data analysis tool. Nevertheless, before going into
the implementation details, we first discuss how mpisee keeps
track of the MPI communicators using a communicator naming
scheme.

3.1 | Naming Scheme for MPI Communicators

The unique feature of mpisee is that it associates
MPI communication operations with communicators while
providing the user with a global view of the MPI application. The
fundamental challenge in achieving this is the lack of a native,
globally consistent way to identify or name communicators
across all processes. While each process can identify a commu-
nicator using its local handle, these handles are process-specific
and cannot be directly compared or correlated across processes.
A unified representation is essential to accurately attribute
MPI communication events to each communicator, requiring
processes to agree upon this unified representation. However,
introducing synchronization within communicator creation
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TABLE 1 | Unique characters used by mpisee to identify different MPI communicator creation functions.

Ch. Communicator creator Ch. Communicator creator Ch. Communicator creator

a MPI_Cart_create g MPI_Dist_graph_create r MPI_Graph_create

b MPI_Cart_sub j MPI_Dist_graph_create_adjacent s MPI_Comm_split

c MPI_Comm_create i MPI_Comm_idup t MPI_Comm_split_type

d MPI_Comm_dup o MPI_Comm_idup_with_info u MPI_Comm_create_group

calls would violate their semantics for some MPI functions, e.g.,
MPI_Comm_idup is not a blocking call. The dynamic creation
and destruction of communicators during execution further
complicates maintaining a consistent global view. To address
these challenges, mpisee generates consistent communicator
names across processes, merging partial data into a unified global
view during MPI_Finalize.

Since MPI processes can participate in multiple communicators,
we uniquely identify each process-communicator pair with a
two-tuple key:

1. The global MPI rank of the process ranked 0 in the newly
created communicator and

2. A local counter of communicator creation calls made by this
process.

The names are not globally consistent before MPI_Finalize,
because each process only maintains the local count of com-
municator creation calls for each communicator it participates
in. The names will be made globally consistent by synchro-
nizing the local two-tuple keys for every communicator during
MPI_Finalize. To achieve this, in each communicator, pro-
cess 0 broadcasts its local two-tuple key to the other members
of this communicator. Synchronization is important because the
process with global rank 0 gathers all profiling data from each
process at the end to create the profile database. Therefore, com-
municators must be consistently named before being received
by process 0. For readability, the names also include a charac-
ter identifying the communicator’s creation call, which is shown
in Table 1.

Figure 4 illustrates this scheme in the context of the MPI_
Comm_split function, which can create multiple new commu-
nicators based on the color value provided. This example uses
four MPI processes ranked from 0 to 3. The left side of the Figure
shows how each process manages its two-tuple keys using the
local communicator creation counters and the global MPI rank.
The right side depicts how each process maintains the profile data
of MPI for each communicator it participates in.

When MPI_Init is called, it creates the MPI_COMM_
WORLD communicator, and each process creates a tuple named
W, as shown on the left side of Figure 4. Then, process 0 in the
communicator records the value of the local communicator
creation call counter for this communicator, which is 0, in tuple
W. The counter is then incremented to 1. On the right side, we
notice that each process creates a local profile, denoted as P*W0,
for this communicator to record MPI operations.

WhenMPI_Comm_split is called, it creates two new communi-
cators, grouping rank 0 with rank 1 and rank 2 with rank 3. Each
process records both the character S for MPI_Comm_split and
the counter of the local communicator creation calls, the lat-
ter being 1 at this point. Then, as shown on the right side,
each process creates another local profile P*S1 (separate from
P*W0) for this communicator. Notice that, initially, the two
new communicators created by MPI_Comm_split are tem-
porarily named the same way by all processes. This naming
is resolved in the next step, when the keys are synchronized
and unified.

Processes synchronize and unify their two-tuple keys after
MPI_Finalize. For each communicator, the process 0
broadcasts its two-tuple key to all other processes within the
communicator. Once all processes in a communicator receive
the two-tuple key, they rename the local profiling data accord-
ingly. For example, processes 0 and 1, which participate in the
same sub-communicator from MPI_Comm_split, rename their
local profile from P*S1 to P*S0.1, while processes 2 and 3 rename
P*S1 to P*S2.1. Finally, process 0 in MPI_COMM_WORLD gathers
all the local profiles and combines them communicator-wise
(e.g., all P*S2.1 are combined to form PS2.1) to create a global
view of the application.

The above naming scheme enables mpisee to accurately track
the MPI communicators and categorize MPI communication per
communicator. The following sections describe how we imple-
ment this naming scheme in mpisee.

3.2 | Initialization

mpisee initializes its internal data structures and state by inter-
cepting MPI_Init. When intercepting the MPI_Init function,
mpisee calls the corresponding PMPI function to initialize
MPI and then performs its initialization as shown in Listing 2.
First, it creates two attribute keys: One key to store (and
retrieve) the communicator data and another for the oper-
ation data map within the communicator object, which is
explained in more detail in the following section. We create
these attribute keys using the MPI_Comm_create_keyval.
In this way, they are managed by the MPI library, ensuring the
appropriate application of user-defined copy and delete functions
during communicator lifecycle events such as duplication and
destruction.

We use different keys for communicator and operation data
because the operation data is accessed much more frequently
than the communicator data. The communicator data are
accessed only during the creation and deallocation of the com-
municator and once during MPI_Finalize. In contrast, the
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FIGURE 4 | An example of the mpisee communicator naming scheme using MPI_Comm_split with four processes. The figure depicts how
processes manage their two-tuple keys on the left and the communicator profiling data on the right. We use different shades of grey to denote global
(dark) and local (light) information.

operation data are accessed every time an operation occurs
in the communicator. By separating these keys, we avoid
unnecessary data retrieval each time the operation data is
accessed. These keys are stored in a global table, shown in
Listing 3, Line 23.

After creating the keys, the MPI_Init wrapper function
calls the comm_prof_init function, which allocates and
attaches the profiling objects to the communicator object of
MPI_COMM_WORLD. We explain this function in the following
section, which discusses the creation and deallocation of the
communicator.

3.3 | Communicator Creation

With the initialization complete, mpisee can now start track-
ing the MPI communicators that are created throughout
the application’s execution. During communicator creation,
mpisee allocates and initializes the necessary profiling objects
to maintain the profiling information within each communica-
tor. It leverages the MPI attribute caching mechanism [2, Section
7.4] to attach the profiling objects to a communicator object. This
enables fast storage and retrieval of profiling data directly linked
to these communicators [23].
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LISTING 2 | The MPI_Init wrapper: Creates two keys for communi-
cator and operation data and calls the communicator profiling function.

int MPI_Init(int *argc, char ***argv) {
PMPI_Init(argc, argv); // Call the original
MPI_Init

// Create the key for communicator data
MPI_Comm_create_keyval(MPI_COMM_DUP_FN,
MPI_COMM_NULL_DELETE_FN, &keys[0],NULL);

// Create the key for the operation data map
MPI_Comm_create_keyval(MPI_COMM_DUP_FN,
MPI_COMM_NULL_DELETE_FN, &keys[1],NULL);

comm_prof_init(MPI_COMM_WORLD,’W’); //
Initialize the communicator profiling
objects
// Rest of the MPI_Init code

}

LISTING 3 | The necessary data types and global data structures
maintained by mpisee.
1 // Communicator data stored in communicators and

used for naming in the end
2 typedef struct communicator_data {
3 int size;
4 int comms;
5 char id;
6 } comm_data;
7
8 // MPI operation data maintained within the map
9 typedef struct operation_data {

10 double time;
11 int num_messages;
12 uint64_t volume;
13 }op_data;
14
15 // Operation data map stored in communicators
16 typedef struct operation_data_map {
17 std::unordered_map<int, op_data> map;
18 }op_data_map;
19
20 int local_cid = 0; // Local communicator call

counter
21
22 // Global table to store and retrieve keys for

communicator and operation data
23 int keys[2]; // keys[0] for communicator data
24 // keys[1] for MPI operation data
25
26 // Global table to reference communicators
27 std::vector<MPI_Comm> comms_table;
28
29 // Global table to associate request objects

with communicators
30 std::unordered_map<MPI_Request, MPI_Comm>

requests_map;

mpisee maintains two types of objects within each commu-
nicator: The communicator data and the operation data map.
We show these data types in Listing 3. The communicator data
contains the communicator size, the number of communicator
calls by the time this communicator was created, and a character
denoting the type of communicator creation call. This informa-
tion is crucial for our communicator tracking scheme to name
the communicators during MPI_Finalize. The operation data
map (shown in Listing 3, Line 16) maintains the actual profil-
ing data for MPI operations within this communicator; the time,
number of calls, and volume (Line 9). The key to the opera-
tion data map is created by combining the enumerated type
of the MPI operation with its message size. We implemented
the operation data map using the std::unordered_map
from the C++ Standard Library because it is a dynamic

LISTING 4 | Communicator profiling initialization function: Creates
the data objects for profiling MPI calls within the communicator.

void comm_prof_init(MPI_Comm comm,char id){
comm_data *commdata;
op_data_map *opdata_map;

commdata = new comm_data(); // Allocate the
communicator data object

opdata_map = new op_data_map(); // Allocate
the operation data map object

// Assign the communicator data
commdata->comms = local_cid++; // Record and
increase the communicator call counter

commdata->id = id;
PMPI_Comm_size(comm, &commdata->size); //
Record the communicator size

PMPI_Comm_set_attr(comm, keys[0], commdata);
// Attach the communicator data attribute

to communicator using keys[0]
PMPI_Comm_set_attr(comm, keys[1], opdata_map
); // Attach the operation data attribute to
communicator using keys[1]

comms_table.push_back(comm); // Record the
communicator in the table

}

data structure that provides flexibility in efficiently handling
varying amounts of profiling data. It also offers an aver-
age (1) time complexity, ensuring efficient insertion and
retrieval operations while avoiding dependence on external
libraries.

Communicator creation is handled by comm_prof_init,
shown in Listing 4. This function takes the newly created com-
municator object and a character ID as input and allocates
two profiling objects: One for communicator data and another
that contains a map of the operation data. It assigns the val-
ues to the necessary communicator data: Communicator size,
the number of communicator calls by the time this communi-
cator was created, and a character denoting the type of com-
municator creation call. It attaches the communicator data to
the communicator object using the attribute caching function
PMPI_Comm_set_attr and the key with index 0 from the keys
table (see Listing 3, Line 23). The operation data is attached using
the key with index 1. Finally, it adds a reference of the com-
municator to the comms_table. We chose an std::vector
to implement the comms_table since it offers amortized (1)
complexity for appending elements, which can be frequent as
they occur during communicator creation. Lookup operations for
data in this table, with searches of complexity(𝑛), are infrequent
since they are performed during MPI_Comm_free and MPI_
Finalize.

3.4 | Profiling MPI Communication Operations

Once communicators are created and properly tracked,
mpisee can start profiling the MPI communication events
that occur within these communicators. MPI communication
operations enable point-to-point, collective, and one-sided com-
munication. These are the functions that mpisee primarily
profiles. To profile these operations, mpisee employs function
wrappers that perform the following actions:

8 of 21 Concurrency and Computation: Practice and Experience, 2025
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1. PMPI: Call the corresponding PMPI function.

2. Measurement: Measure the elapsed time of the
PMPI function.

3. Data retrieval: Retrieve the operation data map asso-
ciated with the communicator by calling PMPI_
Comm_get_attr.

4. Key generation: Generate the key for the map from the
MPI function and the send buffer size.

5. Data update: Update the data for volume, number of calls,
and time spent in this MPI function on the map.

mpisee categorizes and presents statistics of MPI calls based
on send buffer size ranges, referred to as buckets. Each
bucket represents a specific range of buffer sizes, for example,
0–100 B, 101–500 B, etc. For each MPI communication opera-
tion, mpisee collects statistics within each bucket and stores
them within the operation data map (see Listing 3). Those
MPI operation data include the time spent, the number of calls
that occurred, and the total volume within that buffer range,
as shown in Listing 3, Line 9. The volume is represented as∑𝑛

𝑖=0𝑆(𝑚𝑖), where𝑆(𝑚𝑖) is the size of the send buffer of the 𝑖th call
of this MPI function. The user can configure the number of buck-
ets and their corresponding ranges when building mpisee. The
key to the map is generated by combining the enumerated type
corresponding to the MPI function and the size of the send buffer.
The data values are initialized if the key does not exist in the map.

Vector operations: The first bucket is always chosen for MPI [v,w]
operations. The [v,w] notation in MPI refers to vector operations
designed to handle non-contiguous and varying data distribu-
tions across different processes. For instance, vector operations
such as MPI_Scatterv and MPI_Allgatherv allow sending
or receiving variable data per process, accommodating applica-
tions with non-uniform data distribution. Similarly, operations
like MPI_Alltoallw manage scenarios where data types and
distributions vary.

Categorizing all MPI [v,w] operations in a single bucket, regard-
less of buffer size, addresses their inherently variable nature. This
approach ensures consistency in profiling by preventing discrep-
ancies that could arise if the same function call is categorized
differently when called with varying buffer sizes by different pro-
cesses. As these operations are not categorized by buffer range,
measuring their total volume is essential to accurately capture
the overall generated traffic, thereby providing a clearer insight
into network load and potential bottlenecks.

Communicator-less operations: Certain MPI functions, such as
MPI_Wait and MPI_Test, operate on MPI_Request objects
rather than communicators. This presents a challenge to our
implementation since MPI does not enable attribute caching
in MPI_Request objects, a feature we have advocated for
in our previous work [23]. To address this limitation, we
associate the MPI_Request with the communicator before
they are called. We establish this association in the function
wrappers of the non-blocking MPI communication functions
such as MPI_Isend, MPI_Irecv, etc. We implement this
by using an std::unordered_map data structure from the

C++ Standard Library, which maps the MPI_Request (key)
to the MPI_Comm (value). Subsequently, when a function such
as MPI_Wait is called, the wrapper uses the request as a key
to find the communicator and call the profiling function, which
will update the number of calls, the time spent in those calls, but
will not record additional volume as it is already recorded in the
respective non-blocking call (e.g., MPI_Isend, MPI_Irecv,
etc.) that created the request. MPI operations that use arrays of
requests (e.g., MPI_Waitall or MPI_Testall ) report a single
completion time regardless of the communicators involved with
each request. This provides no information about individual
request completion times, making it impossible to attribute
the total measured time to the respective communicators in a
precise manner. To work around this limitation, we consider
two scenarios: If all requests belong to the same communicator,
mpisee assigns this completion time to that communica-
tor. Otherwise, mpisee assigns the completion time to a special
“dummy” communicator marked with an asterisk, namely*0.0.
The total time accumulated by this dummy communicator is then
reported separately in the final profiling summary. It is important
to note that the applications benchmarked in this study do not
use mixed-communicator request arrays in these MPI calls.

One-sided operations: These pose a similar challenge as the
MPI_Wait and MPI_Test for our implementation, as they
operate on MPI_Win instead of communicators. We asso-
ciate the MPI_Win with the MPI_Comm using the window
caching mechanism, similar to the communicator creation. More
specifically, we wrap the window creation functions, such as
MPI_Win_create, and callMPI_Win_set_attr to assign the
communicator object as an attribute to the newly created win-
dow. Therefore, when one-sided communication operations such
as MPI_Put or synchronization such as MPI_Win_fence are
called, we retrieve the communicator from the window using
MPI_Win_get_attr and call the profiling function.

3.5 | Communicator Deallocation

When communicators are deallocated, mpisee ensures that the
associated profiling data is preserved. MPI_Comm_free marks
the communicator object for deallocation. This poses a problem
for mpisee as it stores its profiling data as attributes to the
communicator object. To address this, before deallocating the
communicator, we create a pair consisting of its profiling data
and its associated MPI_Group. We store these pairs in a global
freelist, which we implement using std::vector for the same
reasons as the comms_table. Finally, we use these pairs of
MPI_Group and profiling data to re-create the communicators
with their corresponding data during MPI_Finalize. In this
way, we do not perform a collective operation to name the com-
municator within MPI_Comm_free. Therefore, we preserve its
semantics as a local operation as defined in the MPI standard [2,
Section 7.4.3].

3.6 | Finalization

After capturing detailed profiling data during the application’s
execution, mpisee must properly finalize this data and store it
on disk so that it is accessible for post-execution analysis. The
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function wrapper of MPI_Finalize performs the following
operations:

1. Re-create the deallocated Communicators: Ensures
that the communicators marked for deallocation by
MPI_Comm_free are available for the subsequent naming
process.

2. Create communicator names: Assigns globally consistent
and unique names to all communicators across processes.

3. Gather profiling data: From all processes to process with
rank 0 in MPI_COMM_WORLD.

4. SQLite database file creation: Write profile data into a file for
further analysis.

The profiler re-creates communicators deallocated by
MPI_Comm_free using their corresponding MPI_Group.
Each process will call MPI_Comm_create_group using the
MPI_Group from the freelist (see communicator deallocation)
to create the communicator. It then stores the profiling data
to the corresponding communicator and a reference to the
newly created communicator in the comms_table, as shown
in Listing 4. This simplifies the communicator naming process,
which requires traversing the comms_table as we explain in
the next step.

Listing 5 illustrates the communicator naming process during
MPI_Finalize. This loop traverses the comms_table, which
contains references to all created communicators. The process
ranked 0 in each communicator broadcasts the two integers nec-
essary for creating the name to all other communicator processes.
Each process uses this information to generate a consistent com-
municator name by calling write_comm_name. Finally, the
root process inMPI_COMM_WORLD gathers all profiling data from
the other processes and creates the SQLite database file on disk.

mpisee stores the profiling data in an SQLite database with
tables for metadata, mapping information, and detailed profiling
metrics. The metadata table contains the application’s input argu-
ments, the profiling date, the MPI library and mpisee version,

LISTING 5 | Communicator name creation during MPI_Finalize. All
processes in each communicator agree on a common name.

for(i = 0; i < comms_table.size(); ++i) {
// Retrieve the communicator’s profiling
data
PMPI_Comm_get_attr(comms_table[i],
namekey(),

&com_info, &flag);
buf[0] = rank; // Global rank in
MPI_COMM_WORLD
buf[1] = com_info->comms; // Local
communicator counter
/*
* Process that is ranked 0 in each
communicator
* broadcasts its two identifiers in the
communicator.
* Therefore, all processes in the
communicator are synchronized.
*/

PMPI_Bcast(buf, 2, MPI_INT, 0, comms_table[i
]); // Broadcast the two-tuple key in the
communicator
write_comm_name(&comm_info, buf[0], buf[1]);

}

FIGURE 5 | The relation database schema of mpisee depicting the
main tables of the SQLite database.

and the build date. We show the relational database schema in
Figure 5. The SQLite database maintains four tables:

• Communicators: Stores the name and size of communica-
tors, providing a central reference for profiling data.

• Mappings: Stores the MPI ranks as keys and the correspond-
ing compute node names they are mapped into.

• Operations: Stores the names of the MPI operations that were
executed by the application.

• Data: The core table storing individual profiling records. It
links communication metrics to communicators, operations,
and mappings.

To reduce redundancy, MPI operation names are stored in a sep-
arate table, each assigned a unique ID. The comms table reduces
redundancy in the main data table by storing communicator
names and sizes once, allowing data records to reference them
by ID. These tables are created after process 0 has gathered all
profiling data from other processes.

We use a single transaction for multiple INSERT statements to
insert data into each table efficiently. Thus, instead of insert-
ing rows individually, we batch these operations, simultaneously
writing larger chunks of data to the database. This approach
significantly reduces disk writes and journaling operations per-
formed by the SQLite library, which are essential for maintaining
data integrity and consistency during transactions.

3.7 | The Data Analysis Tool: mpisee-through

To analyze the profiling data captured by mpisee in the
SQLite database, we developed a portable data analysis tool
called mpisee-through. It uses the SQLite3 Python API and
can perform several queries on the output SQLite database
to provide multiple perspectives of the application’s profile.
mpisee-through provides pre-built queries that users can
customize through simple command-line arguments. With
mpisee-through, the users can do the following: Filter and
sort results based on MPI operations, communicators, buffer

10 of 21 Concurrency and Computation: Practice and Experience, 2025
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FIGURE 6 | A subset of the default view that mpisee-through produces by analyzing an mpisee profile.

sizes, time ranges, or MPI rank; choose between terminal output
or CSV export for further processing; and run analyses locally or
remotely, requiring only a Python environment.

Figure 6 shows the default view of mpisee-through of
an mpisee profile that contains three main sections: The
first section is the metadata, which includes information
on the MPI library, arguments used to run the application,
mpisee version and build, and profile date. The second section
is the overall statistics, providing an overview of the following:
The (net) execution time, which is the total time spent execut-
ing instructions after initializing mpisee (excluding the time in
MPI_Finalize ). The MPI time, which is the total time spent
purely in MPI functions (excluding the time MPI_Finalize ),
and their corresponding ratio. The third is the profiling data
section, which displays data per communicator for each combi-
nation of MPI operation and buffer size range. For each communi-
cator, mpisee-through displays two types of aggregated data:
Communicator-specific metrics and MPI operation statistics.

• Communicator-Specific Metrics: (1) Name and Size: The
communicator’s name and the number of participating pro-
cesses. (2) Global Ranks of Processes: The global MPI ranks
of processes that participate in the communicator. (3) Total
Volume: The summary of the size of all messages sent by all
operations performed by all processes in this communicator.

• MPI Operation Statistics: (1) Operation Name: Identify the
specific MPI call. (2) Buffer Size Range: Indicates the range
of message sizes for which these statistics apply. (3) Number
of Calls: The number of calls of this MPI operation within
the specified range of buffer size. (4) Maximum and Aver-
age Time: The maximum and average time of calls of this
MPI operation within the specified buffer size range among

all processes within this communicator. (5) Total Volume
Sent: The summary of message sizes sent by all processes
calling this MPI operation within the specified buffer size
range and this communicator (see Section 3.4).

The default view of mpisee-through aggregates data among
all processes within each communicator. The number of calls for
point-to-point operations (such as MPI_Send ) is the summary
of calls among all processes within the specified buffer range.
This summary is divided by the number of processes partici-
pating in collective operations. Therefore, Figure 6 shows that
there is 1 call to MPI_Init and 16 calls to MPI_Allgather
with 1024 processes. The volume summarizes the sizes of all
messages sent by all processes when calling this MPI operation
within the specified buffer range:

∑𝑝

𝑗=0
∑𝑛

𝑖=0𝑆(𝑚
𝑗

𝑖
), where 𝑆(𝑚𝑗

𝑖
)

is the size of the send buffer of the 𝑖th call of 𝑗th process.
mpisee-through offers more options for data analysis, such
as showing the data of user-specific MPI ranks instead of aggre-
gating. It can also filter point-to-point or collective MPI operations
and specific buffer ranges.

Per-communicator and per-bucket analysis allow users to see
how different buffer sizes impact the performance of their
MPI application within specific communicators. This insight
helps users identify trends, patterns, and potential performance
bottlenecks related to buffer sizes, which is valuable for code
optimization.

4 | Evaluation

After detailing the design and implementation of mpisee, we
now evaluate its performance and demonstrate the value of
the insights it provides. The evaluation consists of three parts:
First, we analyze the overhead caused by mpisee on a set of

11 of 21

 15320634, 2025, 15-17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70158 by T

echnische U
niversitaet W

ien, W
iley O

nline L
ibrary on [02/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MPI applications and compare it to other profiling tools. Sec-
ond, we demonstrate the advantages of communicator-centric
over a communicator-oblivious profiling approach by using the
sample MPI application presented in Listing 1. Third, we demon-
strate the usefulness of communicator-centric information by
profiling an FFT MPI application, identifying potential perfor-
mance bottlenecks and then using this information to improve
its overall performance by selecting different algorithms for
MPI_Alltoallv.

We conducted our experiments on the Discoverer
Supercomputer,2, which is an HPC system with a total of 1128
compute nodes. Each compute node in our partition is equipped
with two AMD EPYC 7H12 64-Core processors and 256 GB of
DDR4 RAM. The nodes are connected through an NVIDIA
ConnectX-6 InfiniBand with up to 200 Gbit/s throughput. The
machines run Red Hat Enterprise Linux 8 OS, and we used the
Open MPI 4.1.6 library.

4.1 | Overhead Analysis

To assess mpisee ’s impact on application performance, we
conducted an overhead analysis using a set of benchmark
MPI applications from the ECP Proxy Applications Suite.3 Proxy
applications are relatively small, simplified codes designed
to capture fundamental aspects of larger, real-world applica-
tions [24]. We focused on eight applications in total, seven
from release 5.0 of the ECP Proxy Applications Suite and one
application (SNAP) from release 6.0, which we show in Table 2.

Following Sultana et al. [25], we excluded Ember, miniQMC,
XSBench, and MACSio due to minimal MPI usage or I/O focus.
XSBench performs only a barrier and a reduction at the end to
aggregate results, and miniQMC performs only MPI_Reduce.
Ember is a structural simulation toolkit that is intentionally
simplified without any calculations, control flow, etc. We also
excluded MACSio as in our previous study since it focuses on
I/O operations [26]. This means that these applications would
not frequently invoke the profilers’ code, making them uninfor-
mative for demonstrating the overhead of profiling tools. We also
include SNAP from the release 6.0 as it creates Cartesian com-
municators, making it suitable to assess the overhead associated
with mpisee ’s handling of communicators.

We compare the overhead of mpisee to Score-P v8.4 and mpiP
v3.5. We chose these two profilers out of three (Score-P, mpiP,
and IPM ) we discussed in Section 2 for the following reasons:
Score-P is one of the most well-maintained and popular profil-
ing tools. mpiP provides callsite information and also information
on MPI communicator sizes, which can be compared to mpisee.
We did not include IPM because it is not actively maintained and
therefore is not suitable for our study. We use the MPI profiling
functionality of Score-P and instrument the applications with
–nocompiler and –noopenmp.

To accurately measure the overhead introduced by profiling an
MPI application, we adopt the method established in our previous
study [26]. This method characterizes three types of overhead:

• Wrap: Time before entering MPI_Init and after exiting
MPI_Finalize.

• Hook: Time spent in MPI_Init and MPI_
Finalize functions.

• Net: Time after exiting MPI_Init and before entering
MPI_Finalize.

Net MPI overhead is the most critical as it can distort the
application’s profile. Hook and wrap MPI overheads are not dis-
torting and, therefore, less critical. The sum of these times equals
the application’s overall execution time. To measure these over-
heads, we use the same method as in our previous work [26].
We wrap calls to MPI_Init and MPI_Finalize with custom
functions, TIME_MPI_Init and TIME_MPI_Finalize. This
requires a minor source code modification, replacing the orig-
inal MPI init and finalize functions. The new functions record
the timestamps before entering and after exiting MPI_Init and
MPI_Finalize using the POSIX function clock_gettime.
We adopt this method because MPI_Wtime is unavailable before
the MPI environment is initialized. This way, we can measure the
hook and net times. To measure the wrap time, we record the
time spent in an srun or mpirun call, which reflects the actual
execution time of the application.

Figure 7 shows the three overheads (net, wrap, and hook)
introduced by mpisee, Score-P, and mpiP for the eight ECP
Proxy Applications. We record the times among five runs using
1024 processes distributed across 8 nodes with 128 processes
per node.

We notice that all three profilers exhibit negligible wrap over-
head. Score-P introduces the highest overhead among all
profilers because it writes its output during the wrap phase, after
MPI_Finalize. The maximum wrap overhead introduced by
Score-P is for SNAP (5.3%). In the cases of mpiP and mpisee,
the maximum wrap times are 0.3% and 0.1%, respectively, also
in the SNAP application. Generally, the highest type of overhead
is the hook time. Specifically, we see that mpiP has the highest
hook time due to writing the output during MPI_Finalize in
plain text format, which leads to increased write times. The hook
overhead is particularly noticeable in SWFFT (32.9%), mini-
AMR (18.6%), miniVite (36.9%), and SNAP (35.1%). Although
mpisee also writes the output during this phase, the hook over-
head is generally negligible except for Nekbone (4.6%), which cre-
ates more than a hundred communicators, increasing the amount
of data to be written. Finally, the net overhead across all appli-
cations is very low, usually under 1%, with some exceptions like
MiniAMR (up to 3.2% with mpiP ) and Nekbone (up to 2.7% with
Score-P ).

TABLE 2 | The ECP Proxy Applications are used for the overhead analysis of mpisee, Score-P, and mpiP profilers.

Application name sw4lite SWFFT AMG miniAMR ExaMiniMD Nekbone miniVite SNAP

Commit Hash 06b888c 203c595f 3ada8a1 ff07856 3264e29 8b0cdf1 2324e20 e7ab43d

12 of 21 Concurrency and Computation: Practice and Experience, 2025
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https://github.com/lanl/SNAP/commit/e7ab43dfb0c16419d9a42d756141d5957ac526fc


FIGURE 7 | Overheads (wrap/hook/net) when profiling with mpisee, Score-P, and mpiP across 8 ECP Proxy Applications. On top of each bar, we
show the total overhead in percentage and absolute values. We use averages from five runs, each with 8 × 128 MPI processes on Discoverer. Color coding
indicates overhead type.

TABLE 3 | A comparison of the profile sizes (in kB) of the eight ECP Proxy Applications produced by the mpisee, Score-P, and mpiP profilers. The
number of communicators additional to MPI_COMM_WORLD (if any) is shown in parentheses. Run were performed with 1024 processes on Discoverer.

ECP proxy application (number of
communicators in addition to MPI_COMM_WORLD )

Profiler sw4lite (1) SWFFT (5) AMG (1) miniAMR (2046) ExaMiniMD Nekbone (102) miniVite SNAP (66)

mpisee 264 328 876 500 688 34,000 588 448
Score-P 936 1200 1400 852 788 996 1000 1016
mpiP 7500 14,000 4500 13,000 7400 5800 17,000 4400

This analysis shows that mpisee introduces negligible overhead
for all the three overhead types we defined (wrap, hook, net)
compared to two state-of-the-art profilers. More importantly, it
introduces minimal net overhead, meaning it does not distort the
application’s execution, while providing communicator-centric
information.

Besides the overhead analysis, we also compare the sizes of the
profiles produced by mpisee, Score-P, and mpiP. We recognize
that the profilers maintain different data, making a direct com-
parison difficult. However, profile size impacts storage and anal-
ysis time, making it essential to estimate.

Table 3 presents the profile sizes produced by mpisee, Score-P,
and mpiP for the ECP Proxy Applications running with 1024
processes. We show the number of communicators created by
each application in parentheses next to its name. Overall, mpiP
generates the largest profiles, whereas mpisee produces the
smallest profiles, except for Nekbone, which is the largest at
34 MB. This is attributed to three reasons: First, we execute
Nekbone with 1024 processes. Second, each process creates
102 communicators (in addition to MPI_COMM_WORLD ) by
calling MPI_Comm_dup on MPI_COMM_WORLD. Third, each
communicator is involved in 4 to 5 different MPI functions, thus,
4.5 events on average. We can estimate the size of each event
from the data table in Figure 5 to be around 72 B. Therefore, the
size of the Nekbone profile from mpisee, as shown in Table 3

is approximately: 1024 processes × 103 communicators∕process ×
4.5 events∕communicator × 72 B∕event = 34, 172, 928 B ≈ 34 MB. Nek-
bone demonstrates a significant profile size, highlighting how
applications that frequently create new communicators and
perform numerous MPI operations within them can cause the
memory and storage requirements of mpisee to grow linearly.

In contrast, miniAMR, which creates even more communica-
tors, has a small database because it creates smaller communi-
cators (of sizes 1, 2, 8, and 16) and performs only a single MPI
call within them. The same applies to SNAP, which creates 66
communicators of size 32 and performs mainly three operations
in them (MPI_Isend, MPI_Recv, and MPI_Waitall ), with
no MPI communication on MPI_COMM_WORLD. Therefore, the
approximate size of the output database of SNAP is: 32 × 66 ×
3 × 72 B = 456, 192 B ≈ 450 kB. In summary, thempiseeprofile
size increases proportionally to the number of communicators,
their size, and the number of MPI communication events within
each communicator.

Despite Nekbone’s large profile size, mpiseewrites it faster than
mpiP, as shown in Figure 7. This demonstrates the efficiency
of the SQLite library used by mpisee compared to the plain
text format used by mpiP. Additionally, mpisee maintains
detailed communicator data and buffer size informa-
tion for MPI calls while keeping the profile size relatively
small.
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FIGURE 8 | The communicator-centric profile of the sample MPI application by mpisee, offering statistics in different communicators.

These results highlight that mpisee incurs a minor net over-
head, thereby not distorting the application’s performance.
mpisee ’s overhead is on par with other state-of-the-art profiling
tools. It maintains a relatively small profile size while providing
additional information on MPI communicators, which is unavail-
able from the other tools.

4.2 | Advantages of Communicator-Centric
Profiling

Having established mpisee’s minimal overhead, we now
turn to its unique advantages in analyzing MPI applications
through its communicator-centric approach. Figure 8 shows the
mpisee profile of the sample MPI application Listing 1, which
we previously profiled with Score-P and mpiP in Figure 2.
In contrast to the previous profiles, the mpisee profile
reveals that these calls occur in three distinct communica-
tors. Specifically, the profile by mpisee shows that there are
30 calls to MPI_Allreduce in MPI_COMM_WORLD (W0.0)
and 100 in each of the other two communicators named
s0.1 and s1.1. W0.0 is of size 1024 and the other two
communicators are of size 512 each. In the mpisee profile,
we see the range of the message sizes and the maximum
and average time of each of the MPI_Allreduce calls in
each communicator. This demonstrates that mpisee offers
more detailed data as it separates communication per
communicator.

More importantly, mpisee offers additional insights into the
application. The mpisee profile shows that the calls to
MPI_Allreduce in the smaller communicators have an aver-
age duration of around 7 s, which is significantly higher than
MPI_Allreduce calls in MPI_COMM_WORLD. This distinc-
tion can be crucial for understanding performance bottle-
necks and identifying optimization opportunities, especially
where multiple communicators exhibit such varied behavior.
This information can guide us to focus on optimizing the
calls to MPI_Allreduce (e.g., via algorithm selection) in
the smaller communicators, which can have a much higher
impact on the execution time of the application than those in
MPI_COMM_WORLD. We demonstrate such a use case in the fol-
lowing sections.

4.3 | Analyzing and Tuning an FFT Application
With Mpisee

We conducted a case study on an FFT application to illus-
trate these advantages further. The following section demon-
strates how mpisee provided crucial insights for optimizing the
application’s performance.

More specifically, the FFT application utilizes the fftMPI library4

developed by Sandia National Laboratories. The fftMPI library
computes 3D and 2D FFTs in parallel as sets of 1D FFTs in each
dimension of the FFT grid, interleaved with MPI communication
to move data between processors. The FFT application uses
the fftMPI library to compute 3D FFTs of size 2048 × 1024 ×
1024, which we run on the Discoverer Supercomputer using 8
compute nodes and 128 processes per node for a total of 1024
processes.

Figure 9 shows the maximum time spent by all processes on the
MPI operations in the top 20 communicators (out of the 100 the
application creates) in terms of time spent. The 𝑥-axis shows the
communicators with their corresponding sizes in parentheses,
while different colors depict different MPI operations.

We observe that the application spends most of its time per-
forming MPI_Send in the MPI_COMM_WORLD communicator
(W0.0(1024)), along with other operations such as
MPI_Allreduce, MPI_Waitany, and MPI_Reduce. Also,
it spends significant time performing MPI_Alltoallv in
many sub-communicators of size 16. We do not categorize the
MPI_Alltoallv by buffer size, hence the buffer size range 0
to 128. However, mpisee records the total volume of the send
buffers for all MPI operations, which can help us estimate the
buffer sizes.

To estimate the average buffer size of these MPI_
Alltoallv calls, we focus on communicators of size 16
and 64. Figure 10 presents detailed statistics by mpisee for
communicators c36.4, c9.4, c128.3, and 192.3, which are
of size 16 and 64, respectively. For the communicators of size
16, the Volume column shows that all 16 processes in each of
these two communicators send 1.2 GB of data through 24 calls
to MPI_Alltoallv. This results in an average buffer size of
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FIGURE 9 | An mpisee profile of the FFT application depicting the maximum time spent on MPI calls of in 20 communicators; 8 × 128 processes
on Discoverer Supercomputer using Open MPI 4.1.6.

FIGURE 10 | mpisee profile statistics of communicators of sizes 16 and 64 of the FFT application as produced by mpisee-through. The specific
communicators c9.4, c36.4, c128.3, and c192.3 are shown. We use different colors to highlight data of different communicator sizes.

32 MB per MPI_Alltoallv call for each process. Notably, the
average buffer size per MPI_Alltoallv call for each process in
communicators of size 64 is also 32 MB.

The Max Time column reveals that the maximum time spent
by processes in communicators of size 16 is approximately 9.5 s,
whereas the time spent in communicators of size 64 (c128.3 and
192.3) is significantly lower, at around 3.7 s. This discrepancy
indicates a potential bottleneck, as MPI_Alltoallv appears to
be slower in the smaller communicators of size 16, despite the
same number of calls and identical buffer sizes. The longer times
in smaller communicators may stem from inefficiencies in data
transfer management, which requires further analysis.

4.3.1 | Tuning by Selecting Different Algorithms
for MPI_Alltoallv

Based on the findings from our analysis, we implemented tar-
geted optimizations to enhance performance. Our analysis so
far has indicated a potential bottleneck in the performance of
MPI_Alltoallv. We now focus on communicators of size 16
and 64, selecting different algorithms for MPI_Alltoallv to
improve its performance within these communicators.

By default, Open MPI employs an internal logic to select algo-
rithms for collective operations based on parameters such as
the message size and the number of processes. It also allows
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TABLE 4 | Execution and MPI time of the FFT application by mpisee, combining the pairwise and linear algorithms for MPI_Alltoallv for
communicators of size 16 and 64; using the average of ten runs, 8 × 128 processes on Discoverer, Open MPI 4.1.6.

Algorithm
(com. size 16)

Algorithm
(com. size 64) Notation

Execution
time (s)

MPI
time (s)

Linear Pairwise Linear16+Pairwise64 60.67 31.93
Linear Linear Linear16+Linear64 60.01 31.33
Pairwise Linear Pairwise16+Linear64 58.89 30.17
Pairwise Pairwise Pairwise16+Pairwise64 57.32 28.66

the user to override this logic and set the algorithm for spe-
cific collectives at runtime by setting a specific environment vari-
ables through the Modular Component Architecture (MCA).5
Open MPI 4.1.6 offers two algorithms for MPI_Alltoallv,
pairwise and linear. For MPI_Alltoallv, the decision between
these two algorithms is based only on the communicator size.

In this experiment, we tune the FFT application by combining
the linear and pairwise algorithms for MPI_Alltoallv with
the two communicator sizes, 16 and 64. Therefore, there are four
possible combinations of these two algorithms and two commu-
nicator sizes, which we show in Table 4. The first combination
follows the internal selection logic of Open MPI 4.1.6 ; it selects
the linear algorithm for communicators of size 16 and the pair-
wise algorithm for communicators of size 64. For convenience,
we use the notation shown in Table 4 to denote each combination.

We conducted ten runs for each algorithm combination
and used mpisee to obtain the average execution and
MPI times. We present these results in Table 4. By compar-
ing the MPI and execution times, we notice that reducing
the MPI time directly influences the application’s execution
time. The lowest execution and MPI times are attributed
to the combination Pairwise16+Pairwise64 showing a 6%
reduction in execution time and a 11.4% reduction in MPI
time compared to the Linear16+Pairwise64, which corre-
sponds to the default logic of Open MPI 4.1.6. We notice that
Pairwise16+Linear64 also shows reduced execution and MPI
time, whereas Linear16+Linear64 does not show notable differ-
ences compared to Linear16+Pairwise64. Therefore, we might
infer that, for this application, the pairwise algorithm is bene-
ficial for the performance of MPI_Alltoallv when used in
communicators of size 16. While the differences in execution
times are generally small, they were consistent across multiple
runs and not attributable to system fluctuations.

In this experiment, we targeted MPI_Alltoallv, which was
identified as a potential bottleneck from our prior analysis
with mpisee. We used four combinations of linear and pair-
wise algorithms for MPI_Alltoallv to improve its perfor-
mance. The lowest execution and MPI times are attributed
to Pairwise16+Pairwise64, with Pairwise16+Linear64 exhibiting
similar results but to a lesser degree. From these results, we might
infer that the pairwise algorithm benefits communicators of size
16. However, we require a communicator-centric analysis, show-
ing the performance per communicator of MPI_Alltoallv to
confirm this and demonstrate the exact impact on its perfor-
mance. A more detailed and communicator-centric analysis is
also required to explain the performance of Linear16+Linear64,

which appears to have almost no difference compared to
Linear16+Pairwise64, although it uses a different algorithm for
communicators of size 64.

4.3.2 | Analyzing the Performance of Different
MPI_Alltoallv Algorithms

In our previous experiment, we improved the perfor-
mance of the FFT application using different algorithms
for MPI_Alltoallv. Now, we analyze these results with
mpisee in a communicator-centric way. Our goal is to pinpoint
the effects of the algorithm combinations on the performance
of MPI_Alltoallv for communicators of size 16 and 64.
Finally, we compare our communicator-centric analysis to a
communicator-oblivious analysis with mpiP.

Communicator-centric analysis: Figure 11 shows the results of
this analysis in two parts. The left part of Figure 11 shows the
time of MPI_Alltoallv in communicators of size 16, while
the right part shows the time MPI_Alltoallv in communica-
tors of size 64. The 𝑥-axis shows the four algorithm combina-
tions, and the 𝑦-axis represents the time of MPI_Alltoallv.
For each of the ten runs, we recorded the maximum time of
MPI_Alltoallv across all processes.

First, we observe that the time spent in communicators of size 16
is double that of communicators of size 64. Therefore, reducing
the time of MPI_Alltoallv in communicators of size 16 will
significantly impact the MPI time.

Focusing on the right part of Figure 11, we observe that
the pairwise algorithm combinations outperform those
that use the linear for communicators of size 64. Here,
Pairwise16+Pairwise64 and Linear16+Pairwise64 have sim-
ilar performance, with Pairwise16+Pairwise64 being more
consistent. On the left part, we notice that Pairwise16+
Pairwise64 outperforms all other combinations. Specifically,
it reduces the time of MPI_Alltoallv by 2.5 s compared
to Linear16+Pairwise64. In general, the combinations that
use the pairwise algorithm in communicators of 64 perform
better than those that use the linear one. However, there
are differences between those that use the same algorithm:
Linear16+Linear64 performs better than Linear16+Pairwise64,
although both use the linear algorithm in communicators of size
16. We observe the same effect for Pairwise16+Pairwise64 and
Pairwise16+Linear64.

This effect can be explained by the influence that the algorithm
used in one communicator has on the performance of
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FIGURE 11 | Time spent in MPI_Alltoallv in communicators of size 16 (on the left), and size 64 (on the right) of the FFT application using
different algorithms of MPI_Alltoallv as profiled by mpisee. Showing the maximum time of MPI_Alltoallv across all processes for each of the
ten runs; 8 × 128 processes on Discoverer, Open MPI 4.1.6.

MPI_Alltoallv in other communicators. Specifically, the
algorithm applied to MPI_Alltoallv in communicators of
size 16 can impact the process arrival patterns in subsequent calls
to MPI_Alltoallv in communicators of size 64. The term pro-
cess arrival pattern refers to the timing when different processes
arrive at an MPI collective operation [27]. A balanced process
arrival pattern, where processes arrive at the collective operation
site roughly simultaneously, leads to better performance. In
contrast, an imbalanced arrival pattern, where processes arrive
at different times, can degrade performance. Thus, the choice
of algorithm for communicators of size 16 can create either
balanced or imbalanced arrival patterns, thereby influencing the
efficiency of subsequent MPI_Alltoallv calls in communi-
cators of size 64. A detailed analysis of the arrival patterns is an
extensive and complex subject that is beyond the scope of this
article.

These results provide us with new insights into these algo-
rithms’ performance. We can clearly see that Pairwise16+
Pairwise64 outperforms all others for both types of communi-
cators. We can now pinpoint the improvement in MPI time of
Pairwise16+Pairwise64 over Linear16+Pairwise64: Our previous
results showed that Pairwise16+Pairwise64 improves the MPI
time over Linear16+Pairwise64 by 3.2 s. This analysis shows that
Pairwise16+Pairwise64 improves the MPI_Alltoallv time
over Linear16+Pairwise64 in communicators of size 16 by 2.5 s,
while they perform similarly on communicators of size 64. There-
fore, we can attribute this improvement in MPI to the perfor-
mance of communicators of size 16. Moreover, as we saw earlier,
Linear16+Linear64 and Linear16+Pairwise64 performed simi-
larly. This analysis provides more insights into these results,
showing that Linear16+Linear64 performs better in commu-
nicators of 16 but worse on communicators of size 64 than
Linear16+Pairwise64. Therefore, although they both use the

same algorithm in communicators of size 16, using a different
algorithm in communicators of size 64 may also influence those
of size 16. This shows that for an accurate analysis, it is essential
to consider both communicator sizes.

Communicator-oblivious analysis with mpiP : Figure 12
shows a subset of the profile produced by mpiP. The Aggregate
Time section shows the most time-consuming MPI operations,
which are similar to what Figure 9 shows. However, the
MPI operations are not associated with any communicators. The
Aggregate Collective Time section includes only data from the
MPI_COMM_WORLD, omitting information for other communi-
cators or information on MPI_Alltoallv. The Callsite Time
statistics section is more detailed, showing the number of calls
and the maximum, mean, and minimum time for each pro-
cess. The App% and MPI% columns show the time ratio for this
call to the overall application time for each MPI rank. Here,
we focus on the statistics for MPI_Alltoallv. Similarly, the
MPI% shows the ratio of time for this call to the overall MPI
time for each rank. The final line aggregates the statistics for
MPI_Alltoallv across all processes.

Since MPI_Alltoallv information is not associated with
any communicators, it obscures the performance varia-
tions observed across different communicators, which our
communicator-centric analysis has shown to be critical for
algorithm selection. For example, we cannot determine if the
default algorithm performs worse on communicators of size 16
than the linear algorithm, but better on communicators of size
64. Knowing the performance differences at the communicator
level is crucial for optimizing MPI applications because different
parts of an application might use communicators of varying sizes
and characteristics. By understanding which algorithms perform
best for specific communicators, we can make decisions about
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FIGURE 12 | A subset of the profile of the FFT application by mpiP that was used for our analysis.

FIGURE 13 | Correlations between MPI_Alltoallv in different communicators (left) and MPI_Send (right) to the overall execution time of
the FFT application. Ten runs for each of the four configurations, each dot represents a different run, and we use different colors to denote different
configurations. We use the Interquartile Range (IQR) method for detecting outliers; 8 × 128 processes on Discoverer, Open MPI 4.1.6. (a) Time spent in
MPI_Alltoallv in communicators size 16 and 64, (b) Time spent in MPI_Send in MPI_COMM_WORLD.

which algorithms to use in different parts of their application,
guiding targeted optimization efforts. Such a level of detail is not
available in communicator-oblivious profiling.

Correlating the time of MPI_Alltoallv to the execution time of
FFT: Based on these observations, we hypothesize that the max-
imum time spent in MPI_Alltoallv in sub-communicators of
sizes 16 and 64 directly correlates to the overall execution time.
To test this hypothesis, we use the results of our previous exper-
iment (10 runs for each of the four configurations) and calculate
the Pearson correlation coefficient between execution time and
the maximum time spent in communicators of sizes 16 and 64

performing MPI_Alltoallv. We used the Interquartile Range
(IQR) method to detect outliers. We compare it to the maximum
time spent performing MPI_Send on MPI_COMM_WORLD, the
most time-consuming operation, as seen in Figure 9. To calcu-
late the time, we get the maximum time spent on each com-
municator across all processes for each run and then calculate
the average of all runs. In Figure 13a, the correlation coeffi-
cient of 0.92 between the overall execution time and the time
of MPI_Alltoallv in small communicators. Similarly, there is
an apparent correlation between the overall execution time and
the time spent in MPI_Send in MPI_COMM_WORLD, as shown in
Figure 13b.
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FIGURE 14 | Correlations between MPI_Alltoallv (left), MPI_Send (middle), and MPI_Barrier (right) to the overall execution time of the
FFT application when using an MPI_Barrier before MPI_Send. Ten runs for each of the four configurations, each dot represents a different run,
and we use different colors to denote different configurations. We use the Interquartile Range (IQR) method for detecting outliers; 8 × 128 processes on
Discoverer, Open MPI 4.1.6. (a) Time of MPI_Alltoallv, (b) Time of MPI_Send, and (c) Time of MPI_Barrier.

To further investigate the nature of this relationship, we added
an MPI_Barrier before MPI_Send operations, and show the
correlation of MPI_Alltoallv, MPI_Send, and the newly
added MPI_Barrier in Figure 14. We observe two impor-
tant differences: First, the overall execution time increases in
Figure 14 compared to Figure 13, especially for those that use
the Linear algorithm in communicators of size 64. This results
in Linear16+Pairwise64 outperforming both Linear16+Linear64
and Pairwise16+Linear64. We also observe the same for the
performance of MPI_Alltoallv. The Linear algorithm seems
to perform better for larger communicators only when pro-
cesses are skewed. When forced to synchronize via the barrier,
its performance advantage disappears due to network con-
tention. Second, the most important observation in Figure 14
is that MPI_Send time and execution time are uncorrelated.
In Figure 13b, the time of MPI_Send —as reported by the
profiler—consisted of both the waiting time for the send opera-
tion to start and the actual time for sending data. In constrast, in
Figure 14, the barrier synchronizes the processes, removing the
process skew, and reducing the waiting time within MPI_Send.
This indicates that the choice of the MPI_Alltoallv algorithm
does not improve data transfer speeds of MPI_Send but
instead reduces the waiting time within MPI_Send. Addi-
tionally, Figure 14a shows that the high correlation between
MPI_Alltoallv and the execution time persists, confirming
that MPI_Alltoallv ’s performance directly impacts execu-
tion time. However, Figure 14b,c indicate that MPI_Send ’s
apparent correlation was a consequence of process skew caused
by MPI_Alltoallv.

As a closing remark, this analysis of MPI_Alltoallv is only
possible because mpisee is able to report the accumulated times
per communicator, which in turn allows us to tune the algorithm
selection for specific communicator sizes.

4.4 | Other Use Cases of Mpisee

Beyond the use cases of mpisee presented here, mpisee has
been utilized in other research as well, offering insights on
different MPI applications. In our previous work [22] we used

mpisee to examine the traffic and time spent in different com-
municators of SPLATT and GROMACS applications. We also
used the profiling information provided by mpisee to improve
the performance of MPI_Alltoallv in different communica-
tors of SPLATT. More specifically, we altered the decision logic
of Open MPI for MPI_Alltoallv for communicators of size
256 resulting in significant performance improvements for the
application, especially when running with 1024 processes.

Swartvagher et al. [28], employed mpisee to profile
the traffic and time spent by different MPI operations in
MPI communicators. They implement a mixed-radix decompo-
sition to rename MPI ranks, creating multiple communicators.
The authors used microbenchmarks and theSPLATT application
to assess the performance of their method. Through mpisee,
they analyzed communicator sizes and time spent within them,
confirming that the performance improvements in SPLATTwere
directly attributed to the reduced communication time caused
by the improved process mapping.

5 | Conclusions

Existing MPI profiling tools offer valuable insights into
application performance, but they do not associate MPI
communication operations with their communicators. This
can hinder the detailed analysis and optimization efforts
of MPI applications that utilize multiple communicators. To
address this issue, we developed mpisee, a profiling tool that
implements a communicator-centric approach, which records
the MPI communicators and associates MPI communication
operations with their respective communicators. This approach
provides the users with deeper insights into the communi-
cation patterns of their MPI applications, facilitating targeted
optimizations and ultimately improving the performance of
MPI applications in HPC environments.

In our detailed analysis of mpisee ’s overhead, we used eight
MPI applications commonly from the ECP Proxy Apps Suite and
compared mpisee ’s overhead to two other well-known profiling

19 of 21

 15320634, 2025, 15-17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70158 by T

echnische U
niversitaet W

ien, W
iley O

nline L
ibrary on [02/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



tools. We characterized three different types of overhead. Our
results show that mpisee incurs less than 1% net MPI overhead,
which is the lowest compared to the other two profilers, ensur-
ing minimal disruption to the application’s runtime behavior. The
total overhead added by mpisee remains less than 5%. Addition-
ally, thanks to the use of the SQLite library, the size of the profile
database of mpisee, except Nekbone, is smaller compared to the
other profilers for these applications while maintaining commu-
nicator information. The large profile size observed for Nekbone
exemplifies a scenario where applications that create communi-
cators repeatedly and perform numerous MPI operations within
them can lead to linearly growing memory and storage require-
ments in mpisee. Future optimizations could include mecha-
nisms to identify and compress repetitive communicator patterns
to mitigate such issues.

We used mpisee to analyze and tune an MPI application
which uses a real-world parallel FFT library. Our initial
analysis revealed hidden performance issues related to
MPI_Alltoallv for specific communicator sizes. There-
fore, we targeted MPI_Alltoallv for optimization by using
different algorithms to improve its performance. Through
our communicator-centric analysis, we observed the perfor-
mance of MPI_Alltoallv for each communicator size.
This detailed view allowed us to understand the various algo-
rithms’ performance impact, which was not possible with
communicator-oblivious profiling. By understanding which
algorithms perform best for specific communicator sizes, we
can make informed decisions and tune the application, thereby
speeding up specific parts.

While mpisee provides detailed per-communicator profiling,
there are opportunities for further enhancements. One promis-
ing direction is to profile MPI datatypes, analyzing their usage
patterns and potential for optimization. Additionally, incorporat-
ing the profiling of persistent communication, while challenging
due to its complex semantics, could offer further insights into
application behavior.

In conclusion, mpisee is a valuable addition to the MPI profiling
toolkit, offering a communicator-centric approach and providing
information that is not available through other profiling tools.
Furthermore, this paper introduces more than mpisee as a
tool; it showcases the implementation of a communicator-centric
paradigm in MPI profiling. While mpisee implements this idea,
this paradigm can also be incorporated into existing MPI profilers,
demonstrating its broader applicability and potential to enhance
MPI profiling and analysis across different profiling tools in HPC.
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