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In these days the angel of topology and the devil of abstract algebra fight 
for the soul of every individual discipline of mathematics.

H. WEYL

Historically, architecture was part of mathematics, and in many periods 
of the past, the two disciplines were indistinguishable. In the ancient 
world, mathematicians were architects, whose constructions—the 
pyramids, ziggurats, temples, stadia, and irrigation projects—we marvel 
at today.

N. A. SALINGAROS
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Foreword:  
Nature in Nuptials, Orphean Quests  

and the Portico of the Arts

by Vera Bühlmann 

The rose is without “why”; it flowers because it flowers.
ANGELUS SILESIUS

Do you want the flower to open only once? The unveiling of the opening 
would then belong to you. The beauty or truth of the opening would be 
your discovery. Proposed and exposed in one definitive blossoming. The 
nightly closing of the flower, its folding back into itself would not take 
place.

L. IRIGARAY, ELEMENTAL PASSIONS (1980)

Mathematical Thinking, An Involution for Architects (2025), these 
are lecture notes composed by Elias Zafiris who has been teaching 
our architecture theory students in mathematical thinking for 
years now. Students are often puzzled by what they are shown 
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in his classes: it is not about solving a problem, it is about becoming 
friends with an obstacle, he likes to say, and it is about figuring out how 
to tune better with what appears to block the way. This goes without 
compromising either the ratiocination1 nor a personal and wholis-
tic world approach. Mathematical thinking is embodied thinking, and 
yes, the ideas it articulates are timeless. This is not a logical contradic-
tion—it is a miracle! Zafiris will exclaim. A theorem (any theorem) 
is inexhaustible in its capacity—and yet it can be “discovered”. 
Who would have said the last word on Thales’s or Pythagoras’s 
theorems, or those associated with Gauß, Riemann, or Grothend-
jik? We can speak of a theorem as “remarkable” and “noticeable” 
in an evaluative sense, of course. But we can do so also in a very 
practical sense, expressing astonishment that such witnessing is 
possible and evidenced, that theorems can be taken note of, and 
that these notes can be shared, circulated in communication, and 
help others to begin “witnessing” too. 

*
A theorem, to Elias Zafiris, is a surging well, mathematics the art 
of a cornucopian minimalism. Its discovery and its appreciation 
involves inventiveness, interrogative cunning, generational re-
spect and attentive witnessing for which it takes the humbleness 
of thinking not in one’s personal name, but anonymously.

Mathematical theorems bound and tile an impredicative 
domain of iconicity, they install an inside-outside distinction to 
which it is categorical. In the more recent logics (of roughly the 
past one hundred years) we have tended to overpaint in continu-
ous white color, so to speak, this discretionary, colorful and mosaic 

1  We use the notion of “ratiocination” to indicate that a theorisation involves rationali-
sation, in the circular and recursive sense that also the rationalisation already involves 
a theorisation.
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nature that is in constellatory play on the inner firmament of the 
starry skies which we can study when performing abstractions. 
One writes in architectonic orthography, ways or styles of spell-
ing that articulate words of witnessing in the notational codes of 
cryptographic syntaxis. One relates to this domain of iconicity 
through vision, but the images are neither properly representa-
tions nor icons. They are suggestive of being iconic. They affect the 
one who enters their spell(ing), but inversely to the singularising 
address that is peculiar to an icon. The iconicity at stake here is 
visionary in that its ideations are composed of what Elias Zafiris 
calls “schematic tilings”. While an icon lets one know you have 
been meant, it is you that is being addressed here, the schematically 
patterned “appearances” on the other hand let us know: it does not 
matter that you are you. What appears to you here can be contemplated 
by anyone at all. They also caution whoever contemplates them by 
whisphering: don’t think that you have seen it, gotten it all; surrender 
to the absurd depth in the presence of this experience by facing up to it. 

Mathematical thinking is anonymous, but it is active and 
embodied; miraculous or not, there is an irreducible aspect of 
experience that propels and triggers its vivacity. Ideas of mathesic 
iconicity are aesthetic and motivic, they are ideas that “comport” 
themselves in things that embody them. They grasp how for ex-
ample the universal reign of gravity all throughout the natural 
world is receptive to being “charmed” in a great variety of inter-
plays—arches embody such “enticements” of physical “sympa-
thies” perhaps more than anything else. It is such anonymous em-
bodiments of ideas that are remembered or forgotten, respected 
or belittled by the arts in general—ideas in a mathesic iconicity for 
which it matters not who one is, individually, when one contem-
plates them; this is in inverse fashion to what religious icons are 
appraised for. But here too, there is appreciation for a quickness 
to thought, an autonomy even for which it is not a contradiction 
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to say that it needs figuring out. This is an artistic and a realist 
stance. Thoughts and ideas are what they are, but they are always 
also subject to formation. Their clarity is incandescent as well as 
caustic, it is not something self-evident. This is the realism of a 
mechanic. It is a realism that embraces this quickness as it may 
begin to take root and inhabit the mind. 

*
The notion of the schema plays a role in such mathesic iconic-
ity with respect to how such embodied ideas have history and 
maintain kinship relations. It is in schemata that they mingle 
and “socialise,” so to speak. Things interiorate schemata in their 
embodiments, and an embodied idea engenders others. There 
is an objective display of ideas in the skills and knowing-how to 
handle things—schemata are objectively transcendental in their 
performed rationcinations, in their intelligibility. They are how 
embodied ideas of mathesic iconicity participate in a generational 
dynamics. The ordering-play of this dynamics happens in circles, 
its swells and ebbs in phases, with rhythms and intellectual force. 
It manifests in periods, but the periods are “leaky”. The orderings 
that are displayed in the compositions of notational markings per-
colate through one another more like chords do in music than how 
letters line up in syntax. Generational ordering-plays do not pro-
ceed by linear unfolding or graphic fixation into representative 
images—they are instrumental for theoretic formation, but they 
are not “theories”. Any architectonic articulation that involves 
mathesic iconicity is endowed with inclinations, characterised 
by declination and demarcated by indexical prepositions, voice, 
tempi. The anonymous and objective display of ideas constitutes 
syntaxis as an action word, a verb that “happens” like the weather 
does between orthography and grammar: architectonic articula-
tion involves syntaxis as an action word. 
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 The dynamics sought when thinking about how mathemati-
cal ideas are born and prosper and age (even though they are mo-
tivic and timeless) is not only one of intergenerationality, it is also 
one of “respect”. Respect emphasises the vernacular and moral 
aspects that are irreducible. Respect does not reduce to the attri-
bution of epistemological values and social protocols. The kind 
of respect that is being communicated, shared and exchanged 
through mathesic iconicity is a veritable physics of respect. It is mor-
al and yet it follows an autonomy, i.e. as optics and physics of light.

*
Intergenerational respect lets one rarely think straight. It urges 
the study of obstacles, as Zafiris does in these lecture notes. If 
the study of problems comes with a certain conquest mentality, 
the study of obstacles comes with a stance of what I want to call 
considerate resignation.2 Resignation is addressed here in its power 
to intervene and “lend” time where a course of events appears 
to speed up, to escalate. It does not amount to surrendering to 
impotency, as is often the case when we speak of resignation as a 
mental state rather than as an active gesturing. For a geographer 
too, it is not about the conquest of territories when he sets out to 
draw maps. His is a holisitc approach to the world, his aspiration is 
to embrace the whole world in every one of his maps. Resignation 
is the gesture that alone can give adequacy to such aspiration. A 
stance of considerate resignation then is one where one embraces ob-
stacles like the geographer is to embrace the whole world, namely 
with “arched arms, with elbows that are not rigid” and “fingers 

2  I translate hereby the proposal by Franco Farinelli, a geographer who thinks of resignation 
as a gesturing rather than as a mental state. This invites to think of resignation spatially. Cf. 
Franco Farinelli, The Blinding of Polyphemus, Geography and the Models of the World, Seagull 
Books, New York 2018 [2003].
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that point forwards to continue along the axis of the forearm”3. 
The cultivation of intergenerational respect too asks for such a 
reaching out, in difference and embrace.

If we consider the casting of such stances as taking part in 
what we call mathematical thinking, then there is an atomist 
physics of respect intrinsic to mathematical thinking. Abstrac-
tion opens up into domains that are metaphysical. The practice 
of intergenerational respect as an atomist physics keeps suspend-
ed a categorical separation between that which can be thought 
and demarcated (annotated), and that which is thinkable in an 
absolute sense; the power of considerate resignation is a power 
only when kept on hold, remaining undecided with respect to 
the scales in which to get familiar with the obstacle. With this 
categorical separation, mathematical thinking can accommodate 
cyclicity, it can form by recursion through involutions and evolu-
tions. Through stances of considerate resignation mathematical 
thinking distinguishes itself intrinsically, even though it is an 
anonymous mode of thought. 

Mathesic iconicity lives from the pantomime-like aspiration 
to embrace the whole world. This is the desire of mathematical 
thinking in the portico of the arts, this is what propels an obsta-
cle-oriented stance instead of an object-centric or problem-centric 
one. It is hence not concepts (in German Begriffe) that are sought, 
inferentially formed and achieved without a getting intimate with 
what they are to keep contained. What mathematical thinking 
seeks to achieve in the portico of the arts is to mobilise negatives as 
forms; to cast moulds that facilitate the display and displacement, 
the transposition and translation of ideas across and through the 
formality of its conceptions.

3  Ibid.
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*
Mathematical thinking then does not compete with philosophy, 
it cohabits with it. There is a place where philosophy is at home 
with it, we could say. In the optical physics of intergenerational 
respect, this place is a universal house of cosmic decorum. Here, 
philosophy is both at once at its acutest and at its most moderate 
capacities. That is to say, it resigns from its office but not from its 
practice. Mathematical thinking helps philosophy to remember 
the crucial role of respect for such a place which it shares with all 
forms of embodied thought—the universal house is a “home” that 
is not properly human. It accommodates a universal oikos that is 
larger than what it can “picture”. 

For philosophy at home with itself like this, concerns with 
form and formality are not a question of choice between elements 
(form) or atoms (matter), as the discursive positions of epistemol-
ogy versus positive natural science would like to make us think. 
Rather, such concern revolves around how they both are capable 
of co-accommodating each other. It would then be a question 
of how the partitif (the notational means of discretion, logically 
speaking: axiomatics as a discipline) exists within the impartitif (a 
predicative domain of impartiality, logically speaking: existence 
or universality). The ethical “choice” ultimately is not an act of 
decision at all, but one of figuring out a stance that manifests ex-
terior to one’s own act of assuming it—stances as negative forms 
or plastic moulds to grow into. Such casting of stances manifests 
in the mathematics with which one articulates the situation that 
asks for a ratiocination in logoi (in words and graphism). 

In the sense of a cosmic decorum, such a universal home is a 
place where it would be proper (house rule) for any of thought’s 
individuated instances to dwell not by claiming a “proper” place 
but one where they can temporarily resign from their political and 
economical affairs—this would be philosophy as an involved and 
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situative as well as abstract and rational life form. With a home 
place where philosophy itself is not fully in charge, philosophy 
would be capable of teaching artistically and architectonically, not 
only reflectively or dogmatically. Such teaching, one can imagine, 
would be guided by the following recursive rapport: mathemat-
ical thinking proceeds methodically, and it always entails phil-
osophical stances; philosophical thinking on the other hand is 
embodied, and it always entails mathematical casts. Like this, 
architectonics would put in place a self-governing principle (and 
its mechanics) of common moderateness. 

*
With editing these lecture notes as one of the first volumes in 
the Meridian Architectonics Books Series, our ambition is also to 
reconnect with what Elias Zafiris has placed as a kind of chord in 
the beginning of the book:

Historically, architecture was part of mathematics, and in many 
periods of the past, the two disciplines were indistinguishable. In 
the ancient world, mathematicians were architects, whose construc-
tions—the pyramids, ziggurats, temples, stadia, and irrigation pro-
jects—we marvel at today.4

There is a sense of datedness to a statement like this. But why is 
it, that this sounds out of time to our ears? Was not the passion 
of the modernists also what we are talking about here, namely 
to relate art, including architecture, more strongly with math-
ematics? What especially the Bauhaus movement sought was 
arguably not a “home” place for architecture and design, but pri-
marily a place among and amidst the institutionalised power of 

4  Nikos A. Salingaros, “Architecture, Patterns, and Mathematics”, in Nexus Network Journal, 
1(1): 75–86, 1999.
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the sciences. Mathematics counted to them as that which can 
endow things with universality. But it had been assumed as a 
gratuitous guarantee, a back up for the outlook upon how the arts 
could work together with the sciences in building a global culture. 
The Bauhaus movement’s ambition was to offer a non-suspicious 
(modern, neutral) catalog of architectural elements. Those ele-
ments were to be systematised through technical and economical 
standards rather than through decorum orders of style and canons 
of well-proportioning. 

Erwin Panofsky, the art historian, has captured already in 
the 1930s a certain spirit of resentment against the association 
of mathematics with decorum through the question of propor-
tion. It is a resentment that perhaps prevails even more so today 
than it did then: 

Considerations about questions of proportion are usually received 
with scepticism but without any particular interest. Neither is sur-
prising. The mistrust is based on the observation that research into 
proportions in particular is all too often subject to the temptation 
to read something out of things that it has put into them itself; the 
indifference is explained by the modern subjectivist view that an 
artistic achievement is something irrational. A modern viewer, with 
his still essentially romantic conception of art, finds it downright 
embarrassing, or at least uninteresting, when the historian tells him 
that this or that representation is based on a rational law of proportion 
or even a certain geometric scheme.5

Endowed with a certain licentiousness of how the irrational can-
not-but-will-have-to-be accommodated within the rational, the 
promise was as grand as it was forceful: it absolved the individual 

5  Erwin Panofsky, “Die Entwicklung der Proportionslehre als Abbild der Stilentwicklung”, 
Monatshefte für Kunstwissenschaft, November 1921/22, Vol.14, Nr. 2, Deutscher Kunstverlag 
GmbH, 188–219. Here and in the following my own translation.
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from taking an ethical stance as a person while it promised that 
as standards, such mathematised and catalogued “elements” of 
architecture were to be continually refined and optimised not 
only collectively, but formostly also pragmatically. The role of 
mathematics in such a pragmatic program was meant as one capa-
ble of reconnecting knowledge practices with an unbiased neutral 
mindset. As an aspirtion, Umberto Eco has gently but also wittily 
portrayed this in an essay that made a strong case for a necessary 
critique of such “mass culture”. Eco portrayed the driving mo-
mentum as the split mindset of being apocalyptic and integrat-
ed.6 In it, Eco aptly captured the twisted gesture that animates 
such a notion of pragmatic and moral moderateness—with its 
mass-culture confidence in personally riskless generosity in ques-
tions of morality. There was an implicit certainty at work here, 
believing that nobody in her or his “right” mind could question 
the sense (and that is, the direction) of such collective movement 
forwards—at least when matters of public concern are at stake, so 
this certainty suggests, one ought to be able to count on everyone 
thinking “reasonably”. 

This indeed is also what inspired Panofsky when he thought 
to focus anew on the canons of proportioning. He writes:

Nevertheless, it is by no means unrewarding for scientific research 
in the arts (provided that it confines itself entirely to the established 
facts and is prepared to work with meagre rather than dubious ma-
terial) to concern itself with the history of proportion studies […].7

There is a clear conspiracy with the modernist spirit Panofsky 
had addressed initially in his text (the sense of embarrassment 

6  Umberto Eco, Apocalittici e integrati: comunicazioni di massa e teorie della cultura di massa, 
Bompiani, Milano 1964.

7  Ibid.
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or at least boredom when mathematical precision in art is be-
ing emphasised), as he promises a reward: “It is not unrewarding 
[my emphasis] to attend to”, as he says. It is not unrewarding be-
cause contemplating the “grip” that held the study of propor-
tion through historical developments, this will strengthen also 
Panofsky’s modernist spirit; it will make it stronger not weaker. 
He elaborates thus:

If we seek to recognise the various systems of proportion of which we 
are aware, not by their appearance but by their meaning, i.e. if we con-
sider not the solution given in them but rather the question contained 
in them, they will reveal themselves to us as expressions of the same 
artistic volition [das Kunstwollen] that was realised in the buildings, 
sculptures and paintings of the same period or by the same master: 
the history of the theory of proportion is the image of the history of 
style, and given the unambiguity with which we can communicate 
with each other in the mathematical field, it may even be regarded 
as an image that often surpasses its archetype in clarity. One could 
argue that the theory of proportion expresses the volition of art [das 
Kunstwollen], which is often not easy to conceptualise, in a clearer or 
at least more definable form than the works of art.8

The emphasis is exactly on such “unambiguity with which we 
can communicate with each other in the mathematical field” that 
excludes intergenerational respect in the atomist manner of a 
physics of light.9 It propagates an attention to mathematical ideas 
not as embodied thought, animated by an own and ultimately 

8  Ibid.

9  Panofsky’s “strategy” here (to hide an “agenda” behind the “plainness” of mathematical 
unambiguity) is—in miniature gesture perhaps, but nevertheless in essence—not unlike 
that which happens on broadest scale today in the rule and reign of algorithms, which inev-
itably hide and embody social and moral bias and administrative agendas that are likely to 
introduce great unfairness and injustice, cf. Cathy O’Neil, Weapons of Math Destruction. How 
Big Data Increases Inequality and Threatens Democracy, Crown, New York 2016.
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miraculous “quickness” as it had intimately affected the mechané 
tradition (ars/techné) in pre-modern institutionalisations of scien-
zia. Instead, the open and opening interplay of such quickness was 
to be fixed and bound up in new (modern) authoritative representa-
tions. History as practice in the service of the modernist aspira-
tions was to authorise depictions of the collective “Kunstwollen”, 
as the terminology popular at the time phrased its attention to 
the anonymous quickness that animates the lifes and deaths of 
mathematical ideas through time. 

In order to grasp the restrictive agenda at work here, we should 
remember that around the same time other great minds like Al-
fred Einstein or earlier in the eighteenth century also Imma-
nuel Kant were not shy in publicly marvelling why it is—as if 
miraculously so—that one can apparently understand the world 
through mathematics. With it, one can master processes reliably, 
repetitively, concerning things as different as the course of the 
stars, the velocity of rocks or projectiles or the damming of water 
masses, the circulation of money and the expectations of regional 
shortages in supplies and even the dis/pleasing effects of sounds 
in music or of shapes in volumes or placements of colours on can-
vases, or the casting of figures in sculpture. 

Why indeed is it, that mathematics seems needed whenever 
it is about recognising things aptly? 

*
In recent decades, voices of such marvelling have largely silenced. 
While the application of mathematical thinking gives great sta-
bility, thinking about the status of mathematics with respect to 
our thinking does not. Rationalists and empiricists hold very 
different views in this matter—views which nourish the love and 
conviction that scientists feel for science; over this matter, storms 
are stirred in the hearts of beliefs most intimate to the soul. This is 
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iconically captured with the second motive that Elias Zafiris has 
placed as a motivic key to his lecure notes. It is a famous citation by 
the mathematician Hermann Weyl, one of the greatest polymaths 
in the 20th century, who observed plainly: 

In these days the angel of topology and the devil of abstract algebra 

fight for the soul of every individual discipline of mathematics.10

Among the modern conquest of the global scale through networks 
of logistics, not only individual persons were imagined to live in a 
continuous fight for their souls (the ancient quest for living an eth-
ical life) but also the different disciplines of the sciences. Among 
them are even those to which we usually (and a bit thoughtlessly) 
refer to as if there were ‘one’ in the sense of a systematic order, 
namely the disciplines of mathematics themselves. 

As much as 20th century philosophy (of mathematics, tech-
nology and communication/computation) passionately engages 
in fights for one over the other, calculus over geometry (or the 
reverse), algebra over logics (or the reverse), Elias Zafiris’ approach 
presented here in these lecture notes is not continuing this strug-
gle.11 To him, mathematics, like music or architecture, does not 
represent anything—it does not represent, neither nature nor 
mind, neither word nor idea nor things or events. But it indispen-
sible for the display (Darstellung in German) of their representa-
tion; it is indispensible for giving attention and taking notice of 
all of the above in the first place. This is also why we speak alle-
gorically of the place where the different disciplines distinguish 
themselves through mingling and collaborating and joining forces 

10  Hermann Weyl, “Invariants”, Duke Mathematical Journal, 5(3): 489–502, 1939.

11  His approach is elaborated elsewhere more fully and discursively: Natural Communication. 
The Obstacle-Embracing Art of Abstract Gnomonics, Birkhäuser, Vienna 2021.
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with one another neither as competitive fields of expertise nor as a 
common domain of inter- or transdisciplinarity, but more specif-
ically as the portico of the arts—a place of anonymous display and 
disinterested study, a place of outlook and encounter that neither 
belongs properly to the orders of the house (oikos, economy) nor 
those of the institutions (the public and the sacred), but more like 
a mingling place or foyer prior ot any of these orders—vibrant 
with outlooks beyond the familiar and pulsating with unsettled 
and exuberant forefeeling and foresight that keep reserved about 
turning into forecasts and predictions. They are embodied acts 
of abstraction and intellection that attend to the whole world 
in summational manners, collecting themselves and keeping 
composed in maintaining vivid Lichtblickbeziehungen rather than 
choosing a “focus”, targeting a direction; Lichtblickbeziehungen is a 
poetic German word that circumscribes something like rapports of 
radiance and brightness, logistic “traffic” relations of crossing sight 
with appearance, active gaze with lightrays. Can we reconnect 
with the generalist tradition of “studies” as known from natural 
philosophy and the architectonics of “arts” that are as “fine” as they 
are “mechanical”, arts that are liberal, frei in German? 

Zafiris rejects the often predominant aversion against tau-
tology (a logos that refers to itself ) and instead urges us to learn 
inventing cosmic scales for tempering such self-referential cir-
cuitry: Like music as music, mathematics as mathematics can be 
experienced in distinctive ways through a physics of respect that 
studies intergenerational convivality: one cannot but cohabit in 
abstractions when keen on figuring out how to embody a thinking 
that is not one’s own, that comes from elsewhere and that begins 
to make sense and take hold only when engaging with it affirma-
tively. The portico of the arts is a generic place, but it is a place that 
celebrates universality and distinctiveness. It is is full of stasis and 
motion. A dynamics of considerate resignation accommodates 
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and houses plays of recognition in this portico—a dynamics like 
that of the global climate which accommodates and houses the 
local weathers.

Such a notion of abstraction does not seek to realize them, 
nor to build foundations for some of them, rather it collects in its 
un-achievable summations the un-fathomable depth of reality. 
The domain of abstraction is absurd but it is also cornucopian—if 
one does not fix it to any one ideal reference in particular. If math-
ematics itself gathers, collects and organizes different disciplines 
in its organon (its body, its instrument of pulsation as Zafiris calls 
it), then this organon must not only host and co-accommodate 
different coding instruments that “sound the same breath” math-
ematically—instruments like rhetorics, poetics, or architecture; 
it also owes its own living breath at least partly to the wholistic 
interplay between them. 

The predominant question then is this: How to think of such 
active summation, the abounding totality and the fertile absolute-
ness of mathematics’s cornucopian Organon? Art has always been 
more unsettling than just the expression of aesthetic sentiments 
of individual persons—like science and like technology, art pro-
vides mirrors in time and acts as catalyser for inquiring quests into 
the not firmly settled and known. The arts and the sciences have 
roots in the same grounds: they share the thrust to explore the 
unfamiliar and to transgress established borders, to shift bound-
aries and challenge us to view the world as a whole anew such as 
to accommodate the ceaseless surging of unheard possibilities.

*
We are well used to thinking that rhetorics, and to a certain degree 
even poetics, work with mathematical thinking insofar as the 
certain mechanisms that objectify and teach their crafts involve, 
like all mechanisms do, a certain “mechanics”, i.e. mathematics. To 
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consider that same relation also inversely in the other direction, 
this feels much more unsettling. And yet it is what Elias Zafiris 
proposes: not only does figurative, metaphoric speech involve a 
certain kind of mathematical thinking; but mathematical think-
ing in reverse involves acts of figurative, metaphoric thought. 
He follows the natural philosophy commitment that embraces 
the stance of the “mechanic”, literally the one who is commit-
ted to truth but who also thinks resourcefully when searching 
it (mechané once meant “resourceful” in Greek). The stance of the 
mechanic will take pride in knowing as precisely as it can where 
the boundaries of its empowerment are; this stance humbly trusts 
experience above all else—it stands for an embodied way of know-
ing with accomplishedness what it can dare to take up as a challenge. 
The stance of the mechanic involves an embodied Können, as the 
German language puts it. Like any skill that needs to be acquired 
through exercise, instruction and experience, such interiorised 
Können is only partially formalisable. That is because all formal-
isation (in this proposed place of a portico of the arts) proceeds 
by analogous reasoning in the service of invariances that cannot 
fully be positivised, that are ultimately bound to remain cryptic. 
Respectfully to this, analogous reasoning weighs actively in each 
instanc how to proportion things. It maintains a vernacular but 
cosmic approach to schemata that make cases and mediate be-
tween them. It is in this sense that Zafiris speaks of schematic logoi.

*
To say that an equation, a theorem, a proof, a system (which all 
accommodate a certain “mechanics”) in turn “work” only because 
they employ vessels of transport (metaphora) and vessels of collection 
(amphora), this introduces conditions of possibility to notational 
devices of demonstration. This is very significant, because it mul-
tiplies domains of objectivity. The challenge to proportion what 
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is only like makes a three-body problem out of an analog polarity 
(adding the means or scale employed for its rationalisation as a 
transparent yet constitutive “third”).12 And this is because in a 
three-body problem objects keep balance in a tripod way. Such 
active weighing activates or animates objective thought with a 
transcendental motion, and while this motion is what notational 
means capture, it ultimately remains elusive in the full quickness 
by which this motion is animated and propelled. With regard to 
language we may be less uncomfortable in seeing it this way—
words are “spirited”, in usage and communication they hardly 
stay put entirely in the confines of semantic definitions. This 
motion, to Zafiris, manifests actively (yet never immediately) not 
only in language but in any act of coding: notational devices of 
demonstration (equations, proofs, demonstrations etc.) work only 
because they involve a transformation of transposed schemata of 
sense making. Inspired by Proclus’s commentary on Plato’s Time-
aus, Zafiris speaks therefore of such formal vessels (of transport, or 
collection) as schematic logoi. Viewed in this way, the metaphoric 
trans-positioning of sense is no less substantial for the logics of an 
articulation than that triggered by figurative speech, speech that 
displays itself in analogies, metaphors, metonymies.

*
If one makes peace with these proposals, even if only for the du-
ration of an encounter with a certain face, in which mathematics 
introduces itself here, then one can concede: Mathematics may be 

12  The domain in which one proceeds by analogy and in the stance of a mechanic opens 
up through inflation, so to speak, as an expanse that results from a point that pulsates, that 
fills and empties. We can think of it perhaps as libration points (also called Lagrange points), 
which refer to rare places in the outerspace where two large masses, like the sun and the 
moon, are in such constellation that the gravitational forces act upon each other constantly 
so as to cancel each other out. “Libration” comes from Latin “librare” and means “to keep 
balance”. Cf. https://en.wikipedia.org/wiki/Lagrange_point (accessed November 13, 2024)
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entirely abstract, unaccountable in where it results in or originates 
from; but like a “living” (spoken) language, it is to be respected as 
a living “thing”. There are letters spelled out and cast into words, 
yes, but there is also breath circulating and articulated through 
mathematical thinking as there is breath circulating and articu-
lated through words.13 

This is not only to say that mathematical thinking is like a 
thinking in words—it also says that thinking in words is like 
thinking in mathematics. There is no hierarchy between the two 
poles of such principle likeness. Ineradicably there is the presence 
of an absence in all notations in code—we will discuss a proposal 
by Luce Irigaray of how to include mourning as a second princi-
ple alongside to that of likeness in a moment. For if it is code that 
constitutes the notations in play, then the relation of likeness 
plays in a formal but also cryptographic domain of conveying ways 
of addressing as much as in the proposed address (the attribution 
of name and proper place in a larger ordering) itself. Code hence 
works logistically and tautologically—notations of mathematics 
and of language mingle together like the elements do in nature. 
They render multiple embodiments of custom and discipline both 
same and distinctive. It is not despite but because notations in code 
involve circularity that code can be resourceful in what it unrav-
els: code, like all mechanisms, renders things apparently present. 
Such rendering is a two way relation: forth and back, inside-out and 
outside-in, involving the motions of evolution and of involution. 

A stasis (a resting pose, a stand-still, a well-achieved propor-
tioning of multiple involved factors) is never simply a given for the 
one who articulates in such cryptographic coding. Cryptography 
in the portico of the arts is what the pantomime does: there are 

13  Cf. my elaborations in Vera Bühlmann, Information and Mathematics in the Philosophy of 
Michel Serres, Bloomsbury Academic, London 2020.
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“sources” but no “source text” that would exists apart from the 
copious attention given to the world at large and kept in notations 
that want to teach and convey anonymously what has been found 
through personal achievement. 

To the mechanically-philosophically reasoning mind, this is 
no news. Mechanics involves an ethical stance, the zero point as 
a fulcrum for architectonic coding helps to balance schemata in 
constellations. Like this, one can appreciate that mathematics 
literally means “all that pertains to learning”, from mathemata, 
Greek for “what can be learnt”. Code provides a fulcrum, a conver-
sion-point between what can be said and pointed out (indexed) in 
speech or graphisms and what can be shown and contemplated, 
demonstrated, in acts of mathesic iconicity. 

*
But whence-from comes code, one might ask? Zafiris shares a be-
lief in ancient wisdom at this point. Notations in code gather what 
is not contained intrinsically to their notation. They gather things 
into an interplay by marking up, by indicating extrinsically to the 
things themselves how they may be put into more or less har-
monic constellations. Notations can do this in manners that feel 
forceful or even forced, or with ease and lightness of touch, to the 
degree that they render themselves almost transparent. Notations 
can stir up things as much as they can harmonise the world—they 
can bring things in consonance or dissonance, they can find eu-
phonies (what sounds pleasing) or they can result in noise. 

Through the eminent role played by notations in both mathe-
matics and philosophy, there is an overall concern with how things 
are not immediately graspable, accessible. It is why natural philos-
ophy has always placed mechanics at its center. In antiquity (and 
also still throughout Renaissance) this was characteristic of an 
epistemic and mental stance that people used to call architectonics. 
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Achitectonics centers around optics as a particular branch of me-
chanics—the study of the behaviour and the properties of light.14 
We can think of the relation between natural philosophy and 
architectonics like that between categories and metaphysics: cat-
egories indicate marks of distinction that are (to be) universally 
valid, and whose arrangement into a coherent whole (a system)
is to achieved by metaphysics; architectonics indicates marks of 
distinction that are to be valid with respect to a plurality of scales 
that may not be commensurate with one another immediately 
neither locally nor globally—scales for which notations matter, 
scales with respect to what we have called a fulcrum provided by 
code. Mechanics quite literally acts rhetorically from this point 
of view, and sometimes even poetically: it is capable to translate 
the complexity of motions from one constellatory interplay to 
another. Such translation needs to be invented. But such inven-
tion involves less an act of authoring than one of discovering and 
demonstrating. The centrality of mechanics—literally a mode 
of thought that proceeds resourcefully, never strictly necessary 
in any one path (method) opted for—results from this capacity 
to translate physical motions by encrypting and deciphering 
them notationally, such as to act together in a great variety of 
constellations. This is where mechanics and rhetorics are kin 
to each other: rhetorics too works with a mechanics, as much as 
mechanics works with a rhetorics. 

Certain approaches to metaphysics, especially in the mod-
ern traditions, have distinguished themselves from the natural 
philosophy “trunk” through eclipsing the constitutional role of 
code, schemata, and technical notions for the way they convey 
signification (meaning and sense making) in their teachings. 

14  Johann Heinrich Lambert, Anlage zur Architectonic, oder Theorie des Einfachen und des Ersten 
in der philosophischen und mathematischen Erkenntniß, Hartknoch, Riga 1771.
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Architectonics in the natural philosophy tradition works with 
metaphysical gestures; it involves irreducibly an embodied mode 
of thought. It is an embodied mode not despite but because of 
the constitutional role played by mathematics for it. For natural 
philosophy stances, the (metaphysical) categories and their (me-
tanomic) architectonics15 are not motionless frames extrinsic to 
natural things themselves, supposed to be holding them together 
and putting them into place. Categories and their architectonics 
are instead interiorised as an organon—a framing or skeleton. 
They can be inhabited projectively and anonymously by anyone 
through mastering the dispositional play they facilitate, like a 
mechanism can be acquired projectively and anonymously by 
anyone. But like in the case of artistic instruments, the scopes of 
potential are rendered determinable while remaining indefinite: 
no artist ever exhausts the full potential of an instrument. For em-
bodied thought, mechanics involves an artistic kind of discipline.

*
No scale, no mechanics of a fulcrum, works in the vacuum as a 
play of two, between binary dualities. Scales are embodied. This 
domain of conveying insights that is established by notation-
al code results from how such embodiments of schematic logoi 
encrypt and decipher motions in their gestures of thinking, when 
they “prepare” those motions and “hand them over” for mechan-
ical translation work. 

15  Michel Serres has pointed out the necessity to double the “meta” for such architectonic 
axiology. Ancient librarians gave the title Metaphysics to the books of Aristotle that followed 
or preceded the latter’s book titled Physics, he elaborates and continues: “it would have been 
a fitting addition to this happy inspiration if they had called Metanomics the possible books 
that could have followed those on the constitution of Athens, on ethics or rhetoric,” in short 
“on those formidable rudiments of what went to the humanities”. Cf. Michel Serres, Branches, 
A Philosophy of Time, Event and Advent, trans. Randolph Burks, Bloomsbury, London 2019, 48.
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We can think of the two poles of a scale (positive, negative) 
hence as living in a larger domain. Both of them co-constitute 
it while this domain still transcends each of them alone, in re-
spectfully different ways—Zafiris calls this the domain informatics. 
It is where one deals with notations, ciphering, and coding. His 
lecture notes do not promise to provide foundations that would 
work uniformally, but it does offer a stabilisation device: a tripod. 
A three legged stool. It is the most stable construction princi-
ple for chairs to sit on, to provide for taking a break, for finding 
some rest. Designers and engineers know this this characteristic 
metaphorics well when they entrust so many of their calcula-
tions to the Dreibein-Logik supported mechanically by the mobile 
platform on a well-joint plane of stasis, a Stativ in German, or in 
English a tripod stand. Not only material calculations work with 
their support, also conceptual and immaterial ones do—among 
the idioms of engineers there is an entire vernacular vocabulary 
that speaks of space as “snuggling” with respect to tripodic logics 
in differential geometry, as Schmiegeraum in German; space as it 
“nestles” itself respective to certain scalar orderings of embodied 
spatial articulations. 

Zafiris commits himself to the natural philosophy tradition 
when he proposes to put an epistemic tripod in place, to find some 
Muße—laxness, receptiveness for inspirations—while contem-
plating intensely the architectonic interrelations between math-
ematics, philosophy, and informatics. It is indeed a “euphonic” 
association that Zafiris proposes here. It locates resting places 
on various degrees of height in abstraction. When attempting to 
grasp something holistically (in depth, by attempting to sound 
something more fully) one cannot but learn to inhabit and become 
familiar with such abstract places. Such resting places, they are 
places of considerate resignation where philosophy is at home; 
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they are places where room for intergenerational respect is made, 
reserved, and kept common (inappropriable).

But one should not forget that this promise of an epistemic 
resting place depends upon a pact between the one who issues the 
foresight, who fabricates the forecast of a promise and the one who 
picks it up and seeks to accommodate herself within it: if writ-
ing in the stance of providing lecture notes through encryption 
involves such a making of a promise, then reading those lecture 
notes involves a certain conspiration with the composer—like a 
musician who relies on the scores of a composer when interpreting 
a work of composition. In order to learn from the notes, the reader 
must actively decipher what is gathered and arranged for demon-
stration by them. The notes index and talk of something that has 
an existence autonomous from the one who makes annotations 
(code gathers things extrinsic to what is contained in its particu-
lar notation). Such cryptography works like the deciphering of 
the Rosetta Stone which was at the same time the reconstructive 
encryption of the hieroglyph script: it involves intertextuality 
and mechanics of translation across documents. In the case of 
mathematics, such “intertextuality” involves also “documents” in 
various “media” (embodiments). It involves assuming a resignation 
stance that embraces the absence of the sought reference text in 
any plain, immediately evident or apparently naked presence. 
In other words: the tripod will only provide a resting place if the 
reader finds in it the place to actively cultivate respect. Whenever 
one gets dizzy and confused at the edges of how two of the do-
mains relate (mathematics, architectonics, informatics), one can 
find stability by turning to the third. Neither one of them can do 
without the others, none of them can, hence, dominate the others.

 *
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With the address of this treatise to architects, who is meant are 
not specifically students or professionals of architecture. The 
invitation is to explore anew the relation between arts and mathe-
matics as irreducible and integral to science at large. But why does 
Elias Zafiris propagate such exploration as an “involution” stance? 
Attending to mathematics as a praxis of thought involves a (trans)
formation that happens inwardly. While unfolding its insights 
outwardly into more generally valid applications, Zafiris lecture 
notes also ask of the reader to explore an interiority to thought 
itself while doing so. In this, it resembles what is often called “de-
sign thinking”. The latter too brings our attention to a certain kind 
of material agency of things, a kind of interiority of objects that 
manifests itself in their inclinations, tempers, circumstantialities. 
But unlike design thinking, which tends to proceed empirically 
and economically, the mathematical thinking at stake here pro-
ceeds more along the paths of the rationalists: it’s explorations 
dive inwardly into what Zafiris calls “the depths and heights of 
abstractions”. 

How do they differ? Abstractive thought takes artefacts not 
as solutions to problems. Rather it wants to celebrate the enthu-
siasm for the ordinary and common that is necessary to view 
any one artefact in particular as “remarkable” in the first place. It 
appears to be drawn to destabilise what feels most secure, but this 
is not out of a revolutionary commitment. Rather, what is most 
ordinary—almost transparent and unnoticable—is studied as 
instances of greatest unlikeliness. Wherever a problem seems to 
present itself, abstractive thought takes the problem into sight as 
an obstacle and relates to it as a means to defamiliarise mentally 
with the landscape in which the problem appears to present itself 
as a problem. Hence the emotion of wondering is key for abstrac-
tion, but this wonder is not that of a principle sceptic; it is also 
not that of the cautious methodist—it is no methodical doubt 
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for which doubt were to play on the scale of moral consciousness. 
Rather, it is something like an existentialist spiritual stance, the 
stance of someone who seeks to transcend the composed self not 
by longing for the extraordinary, hoped to be found in a beyond 
to “this” place.16 It is the stance of someone who ponders the ap-
parently self-evident in its depths. Abstractive thought then is 
thinking about the ordinary—beyond a principle distinction 
between artificial and natural—as resulting from “making kin”, 
as Donna Haraway says with respect to animals and all kinds 
of beings other-than-human.17 But this making-kin involves an 
alienation of the self that involves generic recollection, it cannot 
be a giving-up of the self into a common will or something such. 
It involves assuming a stance of resignation such as to think ho-
lisitically. Abstraction involves gestures of disarming, a putting 
oneself at risk. This is how I understand Elias Zafiris’s call for an 
involution: an inevitable willingness to recompose through pro-
cesses of interiorization that involve both a faith and a forgetting. 
It is similar to how learning a novel bodily skill—like swimming, 
gymnastics, riding a bike, or even playing ball do. One needs, in 
short, a willingness to mingle with the world.

*
Mathematical comprehension is being explained, at least since 
Plato, with a forgetting called anamnesis: when we learn, in this 
strict sense of thinking mathematically, it is because we actually 
recollect what each and anyone of us implicitly already knows but 
has “forgotten” when being born. Recollection and remembering 

16  Wherever ‘this’ place would be for the reader; the preposition is here used as an indexical, 
not demonstrative preposition.

17  Donna J. Haraway, Staying with the Trouble: Making Kin in the Chthulucene, Duke University 
Press, Durham USA 2016.
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on the scales of an individual’s historical identity cannot be ad-
dressed in the same way. The respective philosophical and ethical 
implications of such forgetting and remembering are radically 
different. With respect to anamnesis, learning has to do with this 
disarming gesture of involution, with the willingness to mingle 
with the world, a readiness for inward recomposition und a kind 
of self-recognition that forms instrinsically, calibrated with the 
cultivation of intergenerational respect. With regard to remem-
bering, on the other hand, learning has most often to do with the 
opposite, it involves defensive and aggressive gestures that seek 
recognition from the outside, with the intent to ward inner re-
composition und recognition off.

*
This role of forgetting that is to be recollected through mathemat-
ics—it involves a notion of witnessing that is related to the kind of 
pact elaborated earlier, between the one who “talks” in code about 
something whose existence remains autonomous from how it is 
talked about. Evocation of the world as cosmos arguably know 
about this pact—what a cosmographer seek is attempting to create 
“world models that account for the maximum of phenomena”, as 
Zafiris puts it. The notion of cosmos not only addresses the world 
as an animate being with a receptive interiority (a soul), it also 
conveys that “the cosmos” only shows itself in decorums, that is 
with adornment and in the coatings of a certain “cosmetics”. 

With the notion of the cosmos, mathematics can be regarded 
as something vibrant, quick and alive. We are more used to attrib-
ute this to language perhaps, at least in the common sense rela-
tion maintained by anyone who loves literature or witty dialogs, 
songs and lyrics; anyone who makes promises shares power and 
builds lifes upon an oath—not only marriage, but professional 
oaths too; anyone who admires or is scandalised by the rhetorical 
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skills at work in the speeches of some, and the healing power that 
“having words” can unfold—for coping with what traumatises 
when feeling the pain of wanting to do something but not knowing 
how to (for example, or also to adequately remember someone 
who has passed). 

What one can learn generally from the cosmographer then is 
that the recollection in anamnesis is to be grasped best by a kind of 
mechanics, involving a play of signification but not exhausting its 
meaning in any such plays in particular. In physics too, we are well 
used that mechanics brings about paradigms that pertain to dif-
ferent elemental scalarities: such as wind or water or fire or air, as 
in times before the unification of their Stofflichkeit into a notion of 
uniform matter via the calculus of forces and the thnking of ener-
gy primarily in terms of resources. But even now, the mechanics of 
heat in thermodynamics is called a mechanics, as the one of light 
in optics is in nuclear and quantum physics. They are and are not, 
strictly speaking “one”—similar perhaps to how certain feminists 
emphasise an ethics of difference rather than a moral discourse 
on the universal nature of humankind, when they maintain that 
the “sex” indeed is natural and universal, but not “one”. 

*
Luce Irigaray is a philosopher who thinks of the world in this 
manner as a cosmic home—the cosmos is a home as the place of 
co-habitation, where relations are elemental and constitutive 
but also rapportive, not hierarchically fixed, as she develops it 
in her book Elemental Passions (2000). Elemental interplays in-
volves the soul, passions as much as formality—to the degree 
that home to Irigaray is where relations are not settled orderly in 
customs and habits but need to be actively “maintained” in how 
they can accommodate everything that enters from the outside. 
Her ideas involve a cosmic notion of elements that recollects their 
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meteorological aspects. It propels a thinking of elemental relations 
as relations of being wedded, relations that consummate marital 
acts in an unending cosmic marriage between heaven and earth. 
Through acts of elemental passion the cosmos communicates it-
self in miniature throughout all the “homes” inhabited by beings. 

Marriage is a pact that was not reserved for the arrangements 
for two persons to share a life together; it was evoked in a broad 
sense for Festtage at large, ceremonial days. It denotes relations 
that are enacted again and again when the marital acts (think of 
a poetic extension here, a notion of sexual intercourse that is not 
reduced to reproduction) are consummated—to consummate, this 
means literally “to complete, perfect, carried to the utmost extent 
or degree,” from Latin consummatus “perfected, complete”, past 
participle of consummare for “to sum up, complete”, from con for 
“together, with” + summa for “sum, total”, in turn from summus for 
“highest”. Irigaray writes: 

The home—the couple or family—should be a locus for the singular 
and universal for both sexes, as should the life of a citizen as well. This 
means that the order of cultural identity, not only natural identity, 
must exist within the couple, the family, the state. Without a cultural 
identity suited to the natural identity of each sex, nature and the uni-
versal are parted, like heaven and earth; within an infinite distance 
between them, they marry no more.18

What can such proposed spiritualisation of the body as body and 
the earth as earth mean, how to think of it? Let us listen again to 
how Irigaray puts it:

[…] the body is cultivated to become both more spiritual and more 
carnal at the same time. A range of movements and nutritional 
practices, attentiveness to breath in respiration, respect for the 

18  Luce Irigaray, I love to You— Sketch of a Felicity within History, Routledge, London 1996, 23.
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rhythms of day and night, for the seasons and years as the calendar 
of the flesh, for the world and for History, the training of the sens-
es for accurate, rewarding and concentrated perception—all these 
gradually bring the body to rebirth, to give birth to itself, carnally 
and spiritually, at each moment of every day. 19

The universal then provides for the possibility for an intimacy 
rather than enforcing estrangement: 

By training the senses in concentration we can integrate multi-
plicity and remedy the fragmentation associated with singulari-
ty and the distraction of desiring all that is perceived, encoun-
tered, or produced.20

The poetic question—the epic, comic and tragic, not the Trauer-
spiel21 one—that pertains to relational ontologies is how can there 
be association without one part appropriating the encountered 
other, without a resulting reduction to sameness (and silencing 
or suppressing otherness). Irigaray developed an elemental-exis-
tentialist philosophy in response to this question where she rec-
ognises the logos of likeness as a codified principle in the form of a 
mechanism of association. But she counters this mechanism with 
a second one, that of mourning, and posits both in the framework 
of analogous proportioning. For mourning, the universal consists 
not in submission to death (as it does in the mechanics of likeness, 
where “nothing that is alive is not subject to death. For Irigaray, 
relations invovle death in how they are constitutive for life; they 
need to be contracted in an ethical dimension of pact. It is about 

19  Ibid.

20  Ibid.

21  Cf. Walter Benjamin, “Erkenntniskritische Vorrede” in Ursprung des deutschen Trauerspiels, 
Suhrkamp, Frankfurt a. Main 1993 [1925].
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striving for fulfilment of life through accommodating with how 
the universal involves death.

For Irigaray, the poles of such mechanics of association are 
cosmic notions of She and He (at stake here are not the social roles 
of the biological sexes, but metaphysical difference as it is at work 
in a sexed nature of Being. By doing this—by mechanising the 
incommensurable instead of moralising it—she can propose this 
second mechanism next to the one that has foregrounded likeness 
(and hence the reign of He): The mechanics of mourning applies to 
She, that of likeness to He. Both are equally existential, there can-
not be an order between the two—this is why the “home” needs 
to be a cosmic house built such as to accommodate “a maximum of 
phenomena”. Such mechanics of mourning concerns coping with 
the absence of what is lost, cannot be retrieved, has died. There 
can be association through shared respect for the mourning of 
the other, just as there can be through shared respect for aspects 
of likeness between one another. 

Irigaray speaks of a kind of gaze that is not an inattentive nor 
a predatory gaze (in her example that of gazing at a flower), nor 
the decline of the speculative into flesh. She sees in this gazing an 
act in both material and spiritual contemplation, the furnishing 
of thought with “an already sublimated energy”.22 What does one 
apprehend from such gazing? The flower can actually provide us 
with a model, Irigaray elaborates:

Between us, we can train ourselves to be both contemplative regard 
and the beauty appropriate to our matter, the spiritual and carnal 
fulfilment of the forms of our body. Pursuing this simultaneously 
natural and spiritual meditation… I’d say that a flower usually has a 
pleasant scent. It sways with the wind, without rigidity. It also evolves 
within itself; it grows, blossoms, grows back. Some of them, those I 

22  Irigaray, 1996, 24.
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find most engaging, open with the rising sun and close up with the 
evening. There are flowers for every season. The most hardy among 
them, those least cultivated by man, come froth while preserving 
their roots; they are constantly moving between the appearance of 
their forms and the earths resources. They survive bad weather and 
winters. These are the ones, perhaps, that might best serve us as a 
spiritual model.23 

For understanding the role of such models, important is also a 
saying by Angelus Silesius—namely that “The rose is without 
‘why’; it flowers because it flowers”. It is in response to this famous 
saying that Irigaray asks in suggestive and metaphorical manner: 

Do you want the flower to open only once? The unveiling of the open-
ing would then belong to you. The beauty or truth of the opening 
would be your discovery. Proposed and exposed in one definitive 
blossoming. The nightly closing of the flower, its folding back into 
itself would not take place.24

How to study something lovingly, such as not to appropriate its 
fragility and beauty? Such self-less and attentive gaze that marvels 
at the world is what can be trained by mathematical thinking 
and the anamnesis it performs. It is not the gaze of the analytical 
detective who is inevitably guided by a mission—because there is 
crime that has to be “made right”. The power of ratiocination here is 
dedicated to cosmic modelling that could accommodate, through 
abstractive reductions that involve a certain spiritualisation of the 
body, a maximum of phenomena and experiences. 

*
Attending to the universal with such gaze involves an attention 
that starts out from listening, not from imagining. Another con-

23  Ibid.

24  Luce Irigaray, Elemental Passions, Routledge, London 1999 [1980].
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temporary philosopher, Michel Serres, therefore proposes to think 
of it through the mythical figure of Orpheus, who delves into the 
lands of the dead in search for the woman he loves.25 In Serres’s 
tale, Orpheus can train himself with the help of nine Muses, 
daughters of Mother Memory. She is portrayed as “an old witch, 
evil and brilliant, full of knowledge and resentment”26, gifted and 
cursed at the same time because being unable to forget, she is in-
capable of recollection. Her malice comes from a tormented body, 
bursting with the mere aggregates of disparate collections. She 
tries to gather all the memories of the world, “namely, stars and 
crystals; and the memories of bodies and living things, namely, 
folds and fossils; and finally, the memories of societies, namely, 
lies and archives”27, but since there is no plainness to memory, 
memories cannot exhaustively capture the fullness of events. 
Hence the absence of consonance and symphony among the dis-
parate collections which she picks up. It is only by her giftedness 
for witchcraft that she brings “order” to the noisy sounds of the 
prophetic voices. 

Young Orpheus travels the Mediterranean, in Serres’s tale. He 
encounters the Sibyls, Bacchantes and Pythia and asks himself: 
why all this noise? He sets out to interrogate the oracles about 
the reason of their noisy spectacle. But he does not try to read 
their messages well, he does not try to decipher their meaning. 
He asks not the oracles but himself for the reason of the noise; 
it is a turning inwards that moves cyclically and is broken up 
with interceptions, in response to Orpheus’ listening to what 
the oracles’s prophetic speech says rhythmically. Orpheus listens 

25  Michel Serres, Musique, Le Pommier, Paris 2011. Here and in the following my 
own translation.

26  Ibid., 14.

27  Ibid.
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to the motions embodied by the syllables, those units of poetic 
meter, wherein voices and silences are in play together, where 
the voiced vowels hold back or run forth or ahead to furnish and 
prepare accommodation places for the silent consonants to arrive 
and present themselves into a versed or phrased accentuation of 
a composition. All the while he attends to the overall motion that 
comprehends them all. Orpheus shares no common language with 
the prophetic oracles, he interrogates them through gesturing. 
There is a faith he follows hereby. It is that the orphic voices do not 
want to explain and conspire with him, but to instruct him how 
to “act” in “witnessing”—how to attend to and take note of what 
is not him. Serres writes:

If you want to learn to speak, or later even find your profession in it 
as an actor, lawyer, teacher or speaker; if you desire to sing, to carry 
your voice out of your body to fill a room up to the opposite wall; if you 
wish to bring forth from your throat a vibrating column, like a blaze 
of haunting sound and vocal dexterity, know that even before speech 
carries a meaning and even before song elicits a feeling, the voice 
comes from the body, from its stance, from its base, from its upright 
posture, from its centre of gravity, from the animal connectedness 
with the earth through the ground contact of the soles of the feet, 
the firm anchoring of the toes with deep roots; that every life-giving 
source flows from the chthonic stream, ascending the bones and 
muscles, legs, buttocks, abdomen, mediastinum to the shoulder gir-
dle; that your voice will speak, will signify, if its deep inspiration is 
grounded in this grounding.28 

What then is Orpheus attentive to, what does he listen to when 
he interrogates the prophetic women through his gesturing for 
the reason of their noisy spectacle? Silence, Serres maintains. Lis-
tening in search for the musicality of these voices, his faith is that 
there must be tunings between them and the universal nature of 

28  Serres, Musique, 10.
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this ceaselessly originary and “chthonic stream” of messages—
tunings that make themselves (re)markable through undoing 
loudness, through producing silence. 

Such silence is perhaps what Irigaray has in mind for the me-
chanics we associated with mourning. Like this, music is the 
mediator between mathematics and the study of nature. Music 
is an art in this canonic sense not because it can bring forth and 
perform harmonious compositions, but because it is capable of 
harmonising the noisy world through silent notations and scales 
in an indefinite amount of compositional plays. What does one 
hear behind those languages of the sciences if they speak math-
ematically, and if mathematics does not represent anything in 
particular? Let us turn to Serres once more:

I will tell you, exactly what the Sibyls have taught you: the stochastic 
noise of the world and—you don’t know it yet—its music sum. Like 
Aphrodite, mother of all beauty, born from foam and surf, rises sud-
denly from the chaotic sea of noise: music. It smoothes out the thorns 
and integrates the signals. The grand récit flows in a grand rhapsody.29 

The music sum, what a word! What kind of summation, what kind 
of arithmetics are we talking about here? That of information, 
Serres maintains. Information encodes sequences of composi-
tions numerically, forgetting all about the euphonic wholeness 
of any composition in particular. They are remembered through 
rhapsodic speech that conveys the gestures through which one 
can learn to listen for the presenting of silences. There is then a 
mechanics of rhapsodic speech—it entails embodying a cosmic 
maximum of moves, stances, motions, that allow for tunings with 
the maximum of experiences which a cosmic model is capable of 
preserving. Science remembers herself in rhapsody which Michel 

29  Serres, Musique, 10.
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Serres calls Le Grand Récit. Different than memory who cannot 
forget, science does forget. The numerical encodings embody such 
forgetting. Science needs to forget, this is its relation to the uni-
versal—without which there would be only history, no cosmos; 
only gravity and no grace. 

*
Such an approach to science (as a rhapsody, as a Récit) involves 
a kind of transcendental communication not unlike what we 
perhaps more privately engage in in prayers, but as a collective or 
communal “communication”30—a narrative, a recounting and 
accounting, a story telling, legends and history all at once. This 
is why the Grand Récit as an anonymous rhapsode, embodied by 
science, requires what has been called a quantum literacy31 to tune 
with the enthusiastic speech for which—like for the prophetic 
talk of the Sibyls, Bacchantes and Pythia—the full presence of 
the sounding word matters only insofar as it gives cues of how to 
listen for silence. Listening for silences amidst the rhythms of the 
spoken syllables, this is how to sound the truth of an epiphania, the 
appearance of phenomena for experience. Such phenomena can 
be witnessed only, with no full identification of the events, nor 
one’s role in them. Such witnessing itself is acting, in recognising 
the absence of truth in whatever it is one remembers from the 

30  Cf. also Paul Ricoeur, Temps et Récit I-III, Éditions du Seuil, Paris 1985.

31  Cf. Felicity Colman, Vera Bühlmann, Iris van der Tuin, Aislinn O’Donnell, Ethics of Coding: 
A Report on the Algorithmic Condition, EU Horizon 2020 Project 732407 (2018); Vera Bühlmann, 
Felicity Colman, Iris van der Tuin, “Introduction to New Materialist Genealogies: New Mate-
rialisms, Novel Mentalities, Quantum Literacy”, in the minnesota review, issue 88, 2022; Vera 
Bühlmann, Felicity Colman, Iris van der Tuin, “Introduction: New Materialisms: Quantum 
Ideation across Dissonance” in Felicity Colman and Iris van der Tuin (Eds.), Methods and 
Genealogies of New Materialisms, Edinburgh University Press, Edinburgh 2023; Vera Bühl-
mann, “Quantum Literacy” in Mathematics and Information in the Philosophy of Michel Serres, 
Bloomsbury, London 2020.
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experience. Orphean recollection can be shared only in motions 
that cannot be conceived, only marked upon by notations and in 
consensual abstinence from seeking to identify semantic rep-
resentations of meaning and sense. Consensus by such “canonic” 
sharing of recollective motions that sing rhapsodically of a physics 
for which sound, voice, language, sense emerge out of noise—the 
chthonic stream that is the source of life, and whose quantum 
eventualities celebrate the inconclusive Hochzeit of the elements 
in every act of connaissance: literally the being-born together.

The first muses are not language muses, like in the classical 
Trivium (Grammar, Rhetorics and Dialectics). The first muses 
for such Orphean quests are musical muses. As the daughters of 
Memory they know how to incorporate language. The forgetting 
in this anamnesis is not the default that comes with having a 
body (when being born), it comes with acquiring a body (through 
learning to think). Thought’s relation to the universal is a spirit-
ualised but also an embodied relation, like we saw with Irigaray. 
It is a body that weds Heaven and Earth in its love for life and in 
its strive for fulfilment that travels through silence and absence, 
the lands of the dead. Musical summation means to consummate 
relations—striving for all poles to flower, to bloom for no reason 
but that it is capable of blooming. 

This trivium here, hence, is dedicated not to language but 
to Pantomime, the miming of everything (pan). Pantomime is 
silently eloquent. Such a trivium teaches (re)collective thinking 
in embodied modes, in modes that are to be capable of forgetting 
in all the senses (directions) that language is capable of establish-
ing: The body of the Pantomime is a restless body that needs to 
actively comprehend, accommodate and interiorise all it attends 
to. As an art, she is to embody memory in the silent talks of the 
quadrivium rhapsodies.  
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The first of the muses who teaches Orpheus in her art is 
Polyhymnia. She holds keys to such scientific wisdom in that she 
knows how to sing silently the song of songs. Imitation as pan-
tomime, the miming of all as an art, takes no privileged object, 
no “object of desire” to identify and melt with. Like the young 
Orpheus does instinctively, Polyhymnia can teach how to inter-
rogate the clamouring presences through gestures.

The quiet, supple, feline, studious first muse, fascinated by imitation, 
begins the work of the nine sisters by first of all inventing rhythm, 
whose repetitions can only line up and whose thrusts only begin 
again and whose beats only continue ... when they take place in a pres-
ence, in the face, in a specular image. Reflection, then doubling. Fac-
ing everything, Polyhymnia’s body duplicates people and everything 
else, imitates them or, better still, becomes all the things of the world: 
on the lookout for signs it can reproduce. Simulation in space produc-
es simultaneity in duration. The first brings the second with it and 
immediately displaces it. First two gestures in the same bar, then one 
and the same gesture in two bars. Double, imitate; double, repeat; one 
foot, then two feet. Then for successful imitation: start again from 
the beginning. Imitate, then reproduce. Placed vis-à-vis everything, 
Polyhymnia’s body polycopies beings and others, counterfeits, better 
still, becomes all things of the World: watches for signs in order to 
reproduce them.32

Polyhymnia says nothing, yet carries everything—in rhythms. 
Her moved interiority finds expression through the second muse, 
Terpsichore, who delights herself in dance.

Trained by the rhythm, the second muse starts dancing just as 
smoothly and nimbly. She no longer reproduces something like her 
sister, but discovers and invents the body, humanises it. In dance, she 
throws herself into unimaginable, unexpected and new positions, 
movements, contortions, tensions, leaps and gestures that neither 

32  Serres, Musique, 22.



38

walking, running, hunting, nor any other vital function would re-
quire. By freeing life from its native prison, Terpsichore creates a life 
even fuller and more colourful than the courtship dance of titmice, 
the round dance of bees, or the vagabonding of whales in the ocean 
depths sending out calls of attraction. Yes, the dance collects a bundle, 
a repertoire, a reservoir of bodily forms.33

These bodily forms may be of no immediate use, but they bring 
plasticity and resilience. Terpsichore’s body knows how to 
adapt, because 

the choreography teaches her an almost universal sum of hundreds 
of figures and thousands of movements, because it gives her a new 
human body—white, like the sum of human gestures and white, like 
the sum of all colours.34

To spiritualise one’s body as body, this means for us, being hu-
mans, to acquire a human body. With the first two muses, the hu-
man body is a white trove of motions. They do not invent motion 
and emotion, but they interiorise and embody the anamnesic 
acquisition of them. Polyhymnia mimes and traces le Grand Récit 
of the world by inventing rhythm, and Terpsichore transcends the 
human body and continues its hominescence. Both is not possi-
ble without interiorizing and then exteriorising the laws of the 
universe – mechanics, light, gravity, consonance and dissonance, 
but first of all, one’s own pulse. Rhythm cuts but it also connects, 
a cadence interrupts but through doing that, it also provides flow, 
as Serres puts it: both muses hear time and render it back. Divided in 
rhythmical elements, minutes and seconds, hours and days, cen-
turies and millennia, time flows like a river and unravels itself: 
this is how rhythm smoothes the thorns of noise and clamour. 
Discontinuously and yet continuously, the two first muses inter-

33  Ibid., 24.

34  Ibid.
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twine tact and bond. They throw themselves a million times back 
into chaos, they expose themselves to it and bring back rich stocks 
of useless treasures which will impact the evolutionary course.

Serres’s tale goes on with seven further muses, but for our 
context here, Elias Zafiris’ lecture notes on mathematical thinking 
and what they convey, these first two muses are more relevant. 
They speak of encountering obstacles through Orphean quests 
– they too seek to be accommodative to a maximum of expe-
riences and phenomena. They present a body of thinking that 
can be acquired by anyone. But since the body of thinking they 
manifests is such a rich organon that has learnt literally from the 
sum of existent physics, what one needs to “forget” is also a lot. 

*
Perhaps it is not a bad disposition to be rather a novice with re-
spect to logarithms, groups, functions and functors, symmetries 
and homologies, harmonics, optics and so on if one is to make 
the most of this course –in that case, one can learn not in order 
to master, but such as to then spiritualise what one has learnt by 
forgetting its “sense” and “semantics”, its ordered models that—let 
us remember how we started out—have thrown mathematical 
thinking as an art into antagonisms of missionary hatred and 
unreasonably passionate hopes and expectations. What the stu-
dent of this treatise can learn, perhaps, is forgetting the hostility 
and agonism in favour of a notion of “mathematical communica-
tion” where human bodies of thinking can build homes in Luce 
Irigaray’s sense—homes where cohabitation is characterised by 
striving not to consume, but to consummate the fabrics of relations 
that make a home a home. It involves a mathematical stance that is 
like the bodies of the two muses: it is not to be applied and useful 
immediately. A rich treasure of motions, moves, tensions, stances 
etc. which one has some familiarity with—as allies to make kin 
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in an ethics of difference that agrees to seek the consummation –
perfection, completion, accomplishment in the sense of affirming 
a spiritual marriage, a conscious awareness to live in co-depend-
ency and a pact not to proceed by dominance and suppression. 

Models of cosmic architectonics provide homes for Nature in 
Nuptials, places of convivial celebrations where thinking is a feast 
that consists in exhausting oneself on striving not to consume any 
of the abundant dishes one finds set on the table. Mathematical 
thinking, in the beautiful legends and tracts delivered here by 
Elias Zafiris, forms a constitutive component of such convivality.

Vera Bühlmann, 
Buti (Italy), Summer 2024
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	 1.	   
Wondering and Wandering  

around the Vortex 

Abstraction and Diachronicity

The two most predominant characteristics of mathematical 
thinking are abstraction and diachronic validity. By the former 
we understand a process of percolation, which allows the filtering 
out of all irrelevant details pertaining to a particular problem, so 
that the invariants are eventually revealed. It is precisely the latter 
that enunciate the diachronic validity of mathematical thinking.

What is peculiar with mathematical thinking is that it is not 
based on a sequential concatenation of facts proved in the past for 
its evolution. Rather, what proves always to be of the ultimate value 
is the method to conceive of and establish theorems in the context 
of certain axiomatic frameworks, which are themselves variable.

This immediately annihilates the persistent illusion that 
mathematical thinking is about assemblages of theorems be-
coming more and more complex on the basis of some formal 
axiomatic background. At the same time, the emphasis on the 
method guided by abstraction, unveils the fact that the thinking 
in mathematics cannot be separated in any possible way from its 
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bonding with philosophical ideas permeating the conceptions of 
its objects together with the architectonics of relations weaving 
these objects consistently.

The intricacy and beauty of mathematical thinking can be 
appreciated in its universality only by studying the works of the 
great mathematicians and figuring out their elaborate patterns 
of navigating in the unknown, as well as the connectivity among 
all these different patterns. Then, what is actually emerging is a 
panorama of spectra elucidating under similar or different hy-
potheses a vast array of obstacles.

All these spectra cannot be assembled together spatially, but 
they can harmonize non-locally in historical time giving rise to 
a symphony. This symphony is enacted by all angles of mean-
ing, or all senses of orientation and circulation around obstacles 
that make up these spectra. In turn, the above is precisely what 
characterizes a method to obtain a spectrum. It is not accidental 
that the great mathematical master Archimedes called his most 
important work “The Method”.

Simultaneously, this constitutes the division between pure 
and applied mathematics superfluous and against the essence of 
mathematical thinking. Ironically, this is considered as an impor-
tant methodological division, although it is against the principles 
of mathematical thinking. Rather, a dangerous form of exploita-
tion views the organism of mathematical thinking as a dead body 
to be dissected for the promised value of its parts in pre-targeted 
problem-solving in the so called applied sciences. Unfortunately, 
this attitude leads with precision to mathematical illiteracy and 
a certain form of fear for mathematics.

According to Nicholas Bourbaki, a collective pseudonym for a 
group of renowned French mathematicians focussing especially 
on the articulation of mathematical structure:
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“From the axiomatic point of view, mathematics appears thus 
as a storehouse of abstract forms—the mathematical structures; 
and it so happens-without our knowing why-that certain aspects 
of empirical reality fit themselves into these forms, as if through 
a kind of pre-adaptation. Of course, it cannot be denied that most 
of these forms had originally a very definite intuitive content; but, 
it is exactly by deliberately throwing out this content, that it has 
been possible to give these forms all the power which they were 
capable of displaying and to prepare them for new interpretations 
and for the development of their full power.

It is only in this sense of the word “form” that one can call 
the axiomatic method a “formalism”. The unity which it gives to 
mathematics is not the armor of formal logic, the unity of a lifeless 
skeleton; it is the nutritive fluid of an organism at the height of its 
development, the supple and fertile research instrument to which 
all the great mathematical thinkers since Gauss have contribut-
ed, all those who, in the words of Lejeune-Dirichlet, have always 
labored to “substitute ideas for calculations”.

Bridges in Time: Metaphora and  
Modular Substitution

The primordial act of the human mind under the influence of the 
senses is the act of wondering. “Wonder is the only beginning of 
philosophy”, Plato has Socrates say at 155d of the “Theaetetus”. 
And at 982b of the “Metaphysics” Aristotle says, “it is owing to 
their wonder that men both now begin and at first began to phi-
losophize”.“Wonder”, called “thaumazein” in Ancient Greek, is 
intricate, since it both opens up our senses wide, and simultane-
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ously plunges us into the dark, into the directly inaccessible, or 
even inconceivable.

The primal realization following the act of wondering is that a 
certain architectonics of relations, bearing the power to eventual-
ly give rise to a “theoria”, stabilized diachronically out of envision-
ing, experimenting, and essentially, communicating with Nature 
(Physis), is indispensable in all cases, where a direct accessibility to 
sharply distinguishable domains of objects, and their behaviour, 
is not feasible, due to obstacles of any particular type.

The most characteristic of these cases pertains to objects of 
a different scale, like the microcosmic, or the macroscopic one, 
evading direct observability and individuality. Out of these do-
mains, objects manifest in foamy or cloudy patterns, and they are 
characterized by plasticity, emergent properties, and generically 
probabilistic attributes.

The fundamental idea that marked the beginning of Natural 
Philosophy in general, and Mathematical Thinking in particular, 
pertains precisely to the architectonic modelling of not directly 
accessible, or broadly-speaking, obstacle-laden domains.

In a nutshell, it is the following: Instead of addressing them 
in terms of absolute constituents bearing pre-defined properties, 
adjoin to them other adequately-understood or directly accessible 
domains, which can provide pointers and open up communica-
tion channels with the former ones. (Figure 1.1)

The architectonics of adjoining should not be ad-hoc and 
should not depend on artificial choices, but it should always fol-
low from a “Logos”, meaning the elaborate articulation of a “why” 
question according to a cause of Nature that can be communicated 
through a spectrum of recognizable distinctions. Such a spectrum 
enunciates a rhetorical topos that communication takes place.

In this manner, the architectonics of adjoining gives rise to a 
process of modular substitution of the inaccessible domain by the 



45

accessible spectrum. The suitability of the spectrum is deter-
mined by its capability of modulation by the fluid architecture of 
the enacted rhetorical topos. The depth of the spectrum, its res-
olution capacity and adaptability under modulation, qualify and 
quantify the objective chance of congruence or consonance with 
the directly inaccessible domain.

This process of modular substitution, carried through conju-
gation by means of the pertinent architectonics of adjoining, has 
been expressed by the philosophical term “analogia” in the an-
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cient literature, the seeds of which mark the beginning of abstract 
mathematical thinking. This takes place, both in the context of 
music involving the acoustic harmonics of sound by Pythagoras, 
and in the context of visual light-geometry involving the shadows 
by Thales and Anaximander.

In the first case, the architectonics of adjoining amounts to 
the plucking of a vibrating string on a resonator, giving rise to the 
“monochord”, whence in the second case, it amounts to the ad-
junction of a sundial on a stick placed orthogonally to the ground 
surface, giving rise to the “gnomon”. The abstractions achieved by 
both of these methods is remarkable, in terms of their ingenui-
ty, universality, and diachronic stability. The term “method” in 
mathematical thinking should not be confused by what currently 
is called “methodology”.

For instance, the modern conception and elaboration of meas-
urement in quantum mechanics, would not be possible without 
the inter-temporal bond among harmonics, geometry, and spec-
troscopy under variable modulations of the pertinent architec-
tonic scaffolding. A method, in the Archimedean elaborate sense 
of the term, which marks the genesis of mechanics, calculus, and 
computing, is symphonic, and thus, effective of congruence with 
the directly inexplicable, if it accomplishes a metaphor of struc-
ture from the former to another spectrally accessible domain 
where it becomes explicable. We prefer to employ the ancient 
term “metaphora” instead of metaphor, since the latter is currently 
loaded with such a broad and multi-faceted linguistic connotation 
that is not congruent to the original term.

The metaphora of structure may be thought of as a circulation 
around the obstacle that undermines the means of direct acces-
sibility to a domain. Circulation is the essence of the rhetorical 
topos opened up as a place of communication between the former 
obstacle-laden domain and the spectrum devised for its explica-
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tion. Circulation around the obstacle without stasis eludes the 
concept of information. It is only stasis that allows in-formation 
to appear spectrally as “anadyomene”, that is, emerge via another 
spectrally qualified domain evading the directly inexplicable one.

This is the old, but diachronic, mo-
tif of in-formation as anadyomene 
stochastically from the foam, person-
ified by Goddess Aphrodite, in the 
poetry of Hesiodus and Homer. It is 
the same motif that resonated in the 
mind of the young mathematician 
Galois to resolve once and for all the 
problem of solvability of polynomial 
equations, through a metaphora that 
opened up and revealed the spectrum 
of equivalences under the action of 
permutations, the crucial move to 
conceptualize roots of equations 
structurally and invariantly through 
the notion of a group, which traces the 
origin of abstract algebra.

FIGURE 1.3

Venus rising from  
the sea (‘Venus  
Anadyomene’)

(‘The Birth of Aphrodite’, 
George Cruikshank, 
1860, Cruikshank 
collection)
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Mathematical thinking is non-linear because it has the capa-
bility of building bridges among events independently of their 
temporal distance. These bridges induce a connectivity in time, 
which is beyond the linear sequential ordering of events in terms 
of their chronology.

The Threefold:  
Philosophy—Mathematics—Architectonics

The gnosis (knowledge) in each of these three domains can only 
be evaluated and refined if each one of them is enunciated and 
evaluated in the context of the other two.

These three domains are con-
tinuously influencing each other, 
in the sense that there exists a con-
tinuous feedback loop that pertains 
and runs through these three sub-
jects of gnosis.

The underlying reason is that 
in the domains of Nature and Life, 
where they are applied, there is in-
trinsic objective indistinguishabil-

ity, giving rise to uncertainty and probabilistics. Equivalently, 
uncertainty is not an artifact on knowledge that you do not have 
due to subjective ignorance. Consequently, dualistic true-false 
distinctions do not operate under conditions of objective indis-
tinctness. The threefold is conceptually the way out of dualism on 
a par with the opening up of a communication domain.

FIGURE 1.6
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Domain of Communication

If you consider any two of the three available domains of the 
threefold Philosophy/Mathematics/Architectonics as different 
layers or levels, the third domain acts as a bridge between the 
other two. Bridges are always bidirectional, such that a domain of 
communication opens up. What is bounded by the bridges is a 
rhetorical topos where communication takes place.

FIGURE 1.7
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The Central Obstacle—The Inconceivable

In the center of the communication topos is the directly inacces-
sible, the inconceivable. The inconceivable exerts an attraction 
when you wonder about something out of pure curiosity.

Wondering in admiration for what cannot be accessed or con-
ceived directly is the precondition for creativity as well as for any 
type of original thinking. The attraction exerted transforms won-
dering to wandering. Circulation initiates around the 
inconceivable.
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Utopia—Doxa—Paradox

The purpose of the circulation around the inconceivable is to 
convert the inconceivable into an utopia. The transition from the 
inconceivable to utopia requires the making of a viable hypoth-
esis. Mathematical Thinking always starts with the making of a 
viable hypothesis, called doxa. What is called paradox, literally 
means “para doxa”, that is, parallel to doxa.

What is parallel to doxa is the inconceivable. Paradox is the 
name given to the inconceivable, when instead of starting from 
wondering and wandering to circulate the inconceivable, we at-
tempt to reach it in a linear way that is not distinguishing between 
different levels.

THE INCONCEIVABLE

FIGURE 1.10
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Logos—Utopia—Praxis

Logos in the ancient Greek language pertains to wondering about 
the cause of the inconceivable. When the inconceivable becomes 
an utopia through doxa, logos obtains the connotation of speech, 
that is, of spoken language where a rhetorical topos for commu-
nication may open up, so that Philosophy by means of dialogos 
can be practiced.

This is possible only if an arche is specified, both in the sense 
of a starting point, and in the sense of bridging bidirectional-
ly the initial inconceivable logos with the pertinent hypothe-
sis. Wandering around the inconceivable, that is, circulating in 
terms of dialogos, becomes effective when a metaphora is accom-
plished that transforms the utopia to praxis. Praxis embraces the 
initial obstacle of the inconceivable, and makes logos conceivable 
through analogia.

Arche—Architectonics—Architecture

The root of the terms Architecture and Architectonics is Arche 
which denotes the principle of beginning in both of the senses 
attributed above. Architectonics is what makes communication 
possible through metaphora. In Mathematical Thinking, archi-
tectonics determines both the starting point and the encoding/
decoding bridges from a problem located in an obstacle-laden 
domain to another obstacle-free spectral domain under a vi-
able hypothesis.

The resolution of the problem requires that a metaphora takes 
place between these two domains communicating architectoni-
cally to each other via the bridges. The circulation bounds the 
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topos of communication between the directly inaccessible, or 
initially inconceivable, and the spectrum obtained under the 
hypothesis. The topos of communication bounds a geometric 
space opened up in this manner, whose geometric imprint gives 
rise to architecture. In mathematics, this corresponds to the archi
tecture of the theoria (theory).

Abduction—Induction—Deduction

In the above transcription, the viable hypotheses become the ax-
ioms of the theory, whence the evaluated hypotheses give rise to 
theorems. The theorems constitute the praxis of the theory. The 
evaluation always requires a spectrum. The inverse architectonic 
bridge from an evaluated hypothesis to a theorem, that is the com-
pletion of the praxis of the metaphora, is synthetic. The validity 
of a theorem requires a corresponding proof based on the axioms.

Although the proof is usually presented deductively, as the 
most economic manner of demonstrating the validity of a the-
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orem under the axioms, the conception and formulation of the 
theorem rarely follows a strict deductive pathway. Since metaph-
ora is the method of praxis, the conception is either synthetically 
abductive or inductive, and only in quite simple cases deductive.

Dissociation—Metaphora—Association

Metaphora in mathematical thinking involves at least two differ-
ent domains and the architectonics of encoding/decoding bridges 
bringing these domain into a topos of communication.

A counter-intuitive aspect of metaphora is that in order to 
grasp something on the higher level, where some obstacle resides, 
it is necessary to dissociate from this level, that is, the context of 
the obstacle. The encoding architectonic bridge directs away from 
this level into another level that is either obstacle-free or more 
tractable. Thus, instead of moving horizontally towards the ob-
stacle, we move vertically away from it, in order to be able to start 
the circulation that encompasses the metaphora. Only when a 
spectrum is eventually retained as an encoding of the obsta-
cle-laden domain, it becomes possible to start reverting back to-
wards that domain by decoding the evaluated hypotheses.
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Abstraction—Percolation—Invariance

The method of resolving a problem in a domain by means of 
metaphora through another domain in communication with the 
former is inseparable from what abstraction really is in mathe-
matical thinking. The important insight in this respect is that 
the resolution of the problem rests on figuring out the invariant 
characteristic inherited on this domain by the obstacle underly-
ing the problem.

Concisely put, figuring out the invariants and modelling them 
in terms of an algebraic structure (a group, or a module defined 
over some ring of scalars) is the essence of every metaphora irre-
spectively of its depth in terms of more and more refined resolu-
tion spectra. As soon as the invariants are unveiled at some spec-
tral level in communication with the level of the original problem, 
they are adequate to determine completely the resolution of this 
problem by circulation.
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This fact constitutes all other details and descriptions or com-
plications expressed at the same level where the obstacle resides, 
essentially irrelevant to the resolution of the problem. At best, 
they serve at a phenomenological level, but they are not capable 
of reaching the root without encoding/decoding and partitioning 
until the invariants become manifest in the spectra.

Therefore, without metaphora and modular substitution via 
the spectra, all these details and phenomenological descriptions, 
instead of assisting and guiding the resolution of the problem, 
they obstruct it, because they hide, overcrowd, and do not allow 
the natural emergence of the invariants as expected by natural 
communication. This is precisely the objective of abstraction, to 
filter out all the irrelevant and obstructing details, so that the 
invariants can emerge spectrally. We call the emergence of invar-
iants under filtering out all irrelevant details percolation.

In this manner, abstraction operates 
as follows architectonically: Instead of 
focussing on individual cases residing 
in particular contexts the aim is to find 
out criteria of equivalence grouping to-
gether a lot of these individual cases in 
equivalence classes.

This is like zooming out of the context of an individual case, 
which in turn, becomes modularly substituted by a whole equiv-
alence class of cases under the adopted criteria. Such an equiva-
lence class may be considered as a block of a partition spectrum 
obtained by turning our focus from the particular to everything 
else that is spectrally equivalent to it, and not to the general. In 
this sense, abstraction is different from generalization.

This becomes more clear, if we proceed to the next objective 
of abstraction, which operates by zooming in again as follows: 
After, the grouping together of individual cases under variable, 

FIGURE 1.15
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but controllable, criteria of equivalence, abstraction aims to in-
stantiate an optimal terminus (local or even global—depending 
on the complexity of the problem) of resolution. The economy of 
this terminus rests on the idea that everything more refined than 
this terminus is not only irrelevant to figuring out what remains 
spectrally invariant, but instead it obfuscates this task.

In this way, abstraction operates 
by setting up a sieve whose openings 
are variable, depending on the crite-
ria of equivalence, with the purpose 
to filter out eventually everything 
else except the invariants pertaining 
to a problem. In order that the sieve 
captures the invariants, an optimal 
terminus of resolution is required so that percolation becomes 
effective, which is the most difficult aspect of abstraction.

Therefore, the notion of a terminus cannot be abstract itself, 
but it has to be concrete. In a nutshell, abstraction works with 
concrete universals and participation. It is precisely these termini 
that give rise to the algebraic ciphers that the encoding/decoding 
bridges utilize through metaphora and modular substitution. 
These ciphers specify the criteria of structural identity, which 
is characterized in this manner algebraically by its neutrality to 
variation due to the encapsulation of an invariant character.

Stability in Vorticity: Static Tripod

In the cultural discourse, mathematical thinking as pertaining 
to metaphora for the circulation around obstacles, symbols play 
the major role for the exemplification of architectonic encoding/

FIGURE 1.16

Sieve of a fibration
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decoding bridges from one domain to another. In particular, ar-
tifacts bear symbolic meaning, which is very interesting 
to articulate.

We will consider the Static Tripod of the 
Oracle at Delphi. It consisted of three pillars 
that exposed themselves as three intertwined 
snakes. The bodies of the snakes where hid-
den underground.

Whence each pillar corresponds to a circle, 
the tripod is composed of three components 
which are intertwined in a specific way. More 
concretely, the connectivity of the tripod is such 
that none of the three components is directly 
linked with any of the other two. The connec-
tivity is such that the linkage of any two of them 
takes place through the third, and such that if 
any of the components is removed the other 
two fall apart.

In other words, the stability of the tripod is 
not due to the direct linkage of the three components taken in 
pairs, but in contrast, owes to the indirect linkage of any two of 
them through the third. Therefore, the stability of the Delphic 
tripod refers to the stability of a rhetorical topos that is gained in 
time if any of these components manifests architectonically as a 
bidirectional bridge for the indirect linkage, and thus, metaphora 
between the other two.

The topos bounded by the bidirectional bridges when any two 
of the components are indirectly linked through metaphora by 
the third delineate a state of stasis of the configuration. The whole 
configuration is intrinsically dynamic, since any of the compo-
nents is capable of serving bridges for a metaphora between the 
other two. Thus, the whole is innately in a state of homeorhesis.

FIGURE 1.17

Static tripod

(Elias Zafiris,  
2024, CC BY-SA)
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Whenever a topos is bounded where mataphora takes place—
through the bridges afforded by any of the components for the 
linkage of the other two—we are in a state of homeostasis. The 
homeotic aspect refers to the fact that any of the three compo-
nents can afford bridges and thus initiate a metaphora.

The notion of stasis originates 
from harmonics. A state of stasis is 
precisely what distinguishes the har-
monic frequencies in an acoustic flow. 
We conjecture that this is how the use 
of the vowels has been conceived in 
the ancient Greek language. Vowels 
are the states of stasis in speech, so 
that consonants can sound together 
in harmonic symphony.

FIGURE 1.18

Homeostasis  
and metaphora
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	 2.	   
Mathematical Weaving  

of the Cosmos

Congruence and Invariance

The diachronic character, intricacy, and value of mathemat-
ical thinking, especially in correlation with its communicative 
articulation, requires a substantially more rich thinking about 
the notion of time, not only pertaining to the linear ordering of 
events, but bearing the capacity to unravel the fibers of the weave 
making up a good mathematical theory, by which we mean what 
gives the character of abstraction, as well as the character of the 
historically diachronic and persistent to such a theory.

A characteristic instance is Gödel’s first incompleteness the-
orem, which can be summarized in the assertion that if a formal 
system containing arithmetic is consistent, then it contains un-
decidable propositions, namely statements whose truth or falsity 
cannot be expressed within the language of this formal system.

Although Gödel’s theorem bears the tag of a “metamathe-
matical proposition”, the inertia against incorporating any viable 
temporal notion in the so called foundations by certain schools of 
purists has been so prevailing that the “meta” characterization is 
devoid of any temporal connotation despite the meaning of this 
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term, which, as a consequence, is interpreted at a purely formal 
skeletal logical level. From our perspective, this is a case par excel-
lence of the conflation and confusion between Logos and Formal 
Logic in the continuity of Mathematical Thinking.

Instead of abolishing time completely from Mathematical 
Thinking, it is worth exploring the implications of a richer con-
ception of time in relation to the genesis and growth of mathemat-
ical concepts. This is a fundamental aspect of the body of Mathe-
matical Thinking that constitutes its integrity, its communicative 
capability, and its overall functionality as a living temporal entity, 
thus, certainly not as a formal skeleton.

The objective is to comprehend the conditions of partial con-
gruence among abstractions and modular substitutions due to 
different types of obstacles in the course of unfolding of histor-
ical time, irrespectively of the temporal distance among events, 
which is actually the decisive factor for both, the qualification of 
diachronic validity, and the success of abstract thinking.

This richer conception of time is always implicit in the meta-
phora of structure from some domain to another one via the ar-
chitectonics of the process of circulation around the pertinent 
obstacle, and in essence pertains to the distinguishable harmonics 
of the “Logos”, the characteristic frequencies of resonance in the 
topos where communication takes place. It is these directly elu-
sive harmonics extending much beyond the acoustic range that 
engulf the invariants.

The unveiling of the invariants, literally making them appear 
in light, called “epiphaneia”, in its philosophical and technical 
meaning as a spectrum of distinguishable appearances following 
the analysis of distinctions incident to the architectonics of ad-
joining and modular substitution, requires for its articulation a 
canon of transcription to the visual domain of color, called “chro-
ma”. The “canonics” of this metaphora requires tempering within 
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uniformly-partitioned chromatic intervals, underlying in turn 
the notion of a uniform probability distribution in relation to a 
directly inaccessible domain, which is the cornerstone of stochas-
tics. In this way, a spectrum is subordinate to a specific partition, 
although the invariants are independent of the partition employed.

In general, the role of a partition 
spectrum is the instantiation of dis-
tinct blocks or cells consisting of 
equivalent elements with respect to 
some relation. The notion of an ele-
ment is not that of a constituent part, 
but it refers to the observable dis-
tinction that is capable of imprinting 
on the concomitant spectrum. Each 
block of a partition consists of all those 
elements imprinting the same dis-
tinction, being thus equivalent to each 
other, and therefore indistinguishable 
from the perspective of the imprint-
ed distinctions.

The artifact of a partition spectrum is that it provides the 
means to reduce the complexity of an obstacle-laden domain 
through an analysis pertaining only to a finite, or countably in-
finite, number of blocks. Each block, since it contains indistin-
guishable elements, requires a single representative to be grasped. 
Every other element equivalent to this representative will be 
surely located within the same block of the partition.

An economy principle is at work here, which is operationally 
reductive, but not reductionistic, since it gives rise to a managea-
ble quotient, preserving all the distinctions afforded by the spec-
trum. This is the conceptual core of the modularity characteristic 

FIGURE 2.2
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Shutterstock, 2015)
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of a partition spectrum. Of course, the actual utility of a spectrum 
rests on its resolution capacity in relation to the invariants.

Recall that the invariants of the ob-
stacle-laden domain are independent of 
the partition spectrum devised for its 
articulation, but simultaneously, a par-
tition spectrum offers indirectly and 
metaphorically through communication 
the only possible way to gain access and 
grasp these invariants.

This makes the notion of a uniform partition, equipartition, 
and uniform distribution, especially important in the unveiling 
of the invariants. A uniform distribution amounts to a well-de-
fined condition of neutrality at this level, pertaining essentially 
to averages. The idea is that in the absence of an obstacle of any 
particular type everything would behave uniformly, setting in 
this manner the standards of comparison and congruence that 
are not existent ab initio.

The specification of the appro-
priate means suitable to a directly 
inaccessible domain amounts to the 
metronomy applied to this domain. 
It is the metronomy that underlies 
the architectonic techne of adjunc-
tion and conjugation giving rise to 
the modular technics of a tempered 
distribution over a spectrum. Con-

cisely put, the technics of weaving a grid in relation to a partition 
spectrum is the explication of the underlying metronomy in the 
presence of obstacles.

For example, the deviation of the spectrum of black-body radi-
ation from the average expected according to the standard of equi-

FIGURE 2.3
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partition—known as the ultraviolet catastrophe—led Max Planck 
to the hypothesis that energy should be quantized, a hypothesis 
that pertains to the metronomy of energy in terms of harmonic 
frequencies, which marks the beginning of quantum mechanics.

Therefore, we should follow the thread that qualifies an ob-
stacle as a source of invariance. Invariance can be operationally 
recognized only through action directed initially away from the 
level or context of the obstacle.

The purpose of action is to initiate a stream flow that is capable 
of retracting the inaccessibility or obstruction imposed by the 
obstacle to some generic situation at another level through which 
a passage becomes viable, and then re-direct the flow back toward 
the initial level, so that the obstacle can be embraced.

Embracing an obstacle successfully always leaves a residue, to 
be thought of in terms of “countable quanta” emerging through 
periodicity. These quanta are spectral quantities, entering into 
rhythmic arrangements within regular temporal cycles, thought 
of as harmonic frequencies. Most important, these quanta encode 
the invariance of the obstacle they refer to with respect to all 
possible embracing circular flows initiated by temporal actions.

FIGURE 2.5
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 Architectonics of  
Natural Communication

The method proposed by the model of “Natural Communica-
tion”, which is used to explicate mathematical thinking, is imple-
mented briefly as follows:

We consider a problem in the context of a domain whose ob-
jects and relations are directly inaccessible. We may think of this 
domain as a particular level in a universe accommodating other 
possible levels as well. First, we move out of the context of the 
problem, formulated at the level of the inaccessible domain, by ad-
joining to it architectonically another accessible domain, through 
which a partition spectrum can be built regarding the former 
under some viable hypotheses.

In order to accomplish this, we have to set-up an encoding 
bridge from the level of the inaccessible domain to the level of the 
accessible domain, such that a partial or local congruence can be 
established between these two domains entering into communi-
cation. The partition spectrum is the outcome of this congruence 
and amounts to the evaluation of the hypotheses.

The process is completed by setting up an inverse decoding 
bridge from the level of the accessible domain back to the level of 
the directly inaccessible one. 
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In this way, the available means and knowledge pertaining to 
the accessible domain can be lifted at the initial context of the 
problem. This process accomplishes a metaphora, which is usual-
ly pertaining to structure. Therefore, the problem can be effec-
tively resolved in the context of its initial formulation by the em-
bracing of the obstacle it engulfs via the communication channels 
opened up through the encoding/decoding bridges with 
the other domain.

Metaphora can be iterated through the adjunction of more 
than one controllable domains adjoined in succession to the in-
accessible domain. Therefore, the circulation achieved through 
metaphora is capable of resolving the problem spectrally under 
the adjunction of one or more levels in communication via the 
bridges. Finally, the resolution of the initial problem translates to 
the qualification and quantification of the invariants associated 
with the obstacle imposing direct inaccessibility, expressed in 
terms of the congruence relations of the spectra.

FIGURE 2.7

Iteration of  
a metaphora
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Since the central issue is the notion of an obstacle, and the 
metaphora devised to circulate around it via different domains 
capable of entering into communication and establish congruence 
relations with the domain where this obstacle is located, the no-
tion of a rigid and absolute foundation for all mathematical objects 
is not applicable.

Instead, what is crucial always is the conception and effec-
tuation of an architectonic scaffolding that is potentially able to 
bridge bidirectionally, bound, and bond together these domains 
so that the metaphora can be performed successfully unveiling 
the invariants that underpin the congruences. The invariants hold 
the mnemosyne (living memory) of the embraced obstacle in the 
body of mathematical thinking.

The synthesis of the invariants is not dependent on the 
sequential ordering of events, that is, it is not dependent on their 
chronological ordering. Rather, it requires tempering, balancing 
through the means, and a critical temporal state of attunement, 
what was called Kairos in the ancient literature.

From this viewpoint, the metaphora enacting the circulation 
through another spectral domain may be though of as a motif that 
can be iterated, and as such, it guides mathematical thinking by 
opening up more and more elaborate communication channels, 
depending on the ingenuity of the architectonics. Due to tem-
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pering and attunement, the motif energetically transforms to a 
motivic key that bears the capacity to unravel the invariants.

Harmonic Analysis and Synthesis

Harmonics originates from the domain of music, poetry, and 
spoken language. In mathematical thinking it is the field called 
Harmonic Analysis and Synthesis. Harmonics does not pertain 
to the domain of space, but it pertains to the domain of time that 
lies beyond the sequential ordering of events.

Analysis in space requires fragmentation into parts, which 
can be subject to geometric transformation in space, and then 
assembled appropriately together. In contrast, harmonics does 
not require any fragmentation into separate spatial parts. It per-
tains to different wholes and examines how these wholes may be 
bridged together in time by entering into a rhythm.

The crucial aspect of time that is targeted by Harmonics is 
the aspect of periodicity, and the fact that different wholes dis-
play different frequencies in their periodic behavior. Frequency 
quantifies how fast or how slow periodicity takes place in time. 
Harmonic synthesis studies how wholes with different frequen-
cies may be cast together into a rhythm.

The domain of frequency is complementary to the domain 
of ordering in time. Different wholes may vibrate in different 
characteristic frequencies or exhibit periodic patterns unfolding 
in different characteristic speeds. The basic principle underlying 
a characteristic frequency is that it is invariant with respect to 
ordering in time.

This means that exact information pertaining to time in its 
ordered aspect bears zero information pertaining to time in its 



70

periodic/frequential aspect, and conversely. Usually, the first is 
identified with the domain of time, since the notion of ordering 
in time is the prevailing one in the current scientific thinking, 
whereas the second one is identified with the domain of frequen-
cy. The essence is that time in its ordered aspect is inversely cor-
related to time in its periodic/frequential aspect.

This is a fundamental notion 
whose recurring traces are intact in 
the history of mathematical think-
ing from the Pythagorean theory of 
music and the Hipparchus/Ptolemy 
theory of astronomy, to the Fou-
rier theory of heat and vibrations, 
the theory of signals, and modern 
quantum mechanics.

We may provisionally use the term 
uncertainty principle to refer to the 
correlation between these two aspects 
of time. Only within continuous spans 
in the ordering domain does it become 
possible to gain partial access to the 
frequency domain through tempering 
and probability theory. Inversely, only 
within continuous spans in the fre-
quency domain via modulation does it 
become possible to gain partial access 
to the ordering domain.

A characteristic frequency in its role as an invariant of a whole 
is always hidden from direct access, although it may perceived 
sensorially within certain ranges. In this manner, a characteris-
tic frequency is the outcome of percolation, it emerges through 
filtering out and resonating with it.

FIGURE 2.9

Non-local  
bridge in time

(Touch up by  
Elias Zafiris based  

on Figure 2.1, 2024,  
CC BY-SA)

FIGURE 2.10

Ordering and 
periodicity
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The term resonance pertains to harmonic synchronization 
independent of its ordering in time.

 It is what allows different wholes bearing different character-
istic frequencies to enter into a rhythmic arrangement jointly, that 
is, to synchronize harmonically together in a circulation without 
losing their invariant characteristic.

Harmonic synchronization is a cycle of symphony of different 
periodic wholes in consonance when communicating to each 
other. It opens up the domain of living and tempering time in 
complementary relation to the domain of ordering time.

In this domain, the wholes in a cycle of symphony co-partic-
ipate with their own characteristic frequencies, without mixing, 
but in consonance. This is only possible if any single whole func-
tions as a bidirectional bridge of synchronization in time between 
any two of the others. As a consequence, if any whole of this cyclic 
constellation is removed or dissociated, then the cycle itself falls 
apart and dissonance prevails.

CONSONANCE

RYTHM

FIGURE 2.11

Cycle of symphony 
through a rhythm

FIGURE 2.12

A whole functioning 
as a bidirectional 
bridge of 
synchronization 
between two other 
wholes
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It is incorrect to think of a literal transcription of cycles of 
symphony in spatial terms. Philosophically, it is a category mis-
take between the distinct domains of harmonics and geometry. 
If, for instance, we think of harmonic frequencies and consonanc-
es produced by musical instruments in an orchestra that can be 
perceived in the acoustic range of frequencies, the ear can hear 
not only the compound tone, but it can separate all the different 
characteristic frequencies sounding together in consonance.

 Thus, it hears each one of them as 
emerging from a different whole sep-
arately, but it also hears the compound 
consonant tone simultaneously, per-
forming in this sense both harmonic 
analysis and harmonic synthesis. This 
is not the case pertaining to the per-
ception of the eye.

At a first stage, we may think of geometry in visual and spatial 
terms, so that geometry refers to the forms stabilized through 
time in space under the action of light. Note that these forms are 
not necessarily rigid, they may be transient and fluid as well.

We do not think of a geometric object as something that 
is illuminated in light, but as an obstacle to the unobstructed 
course of light.

As such, an object opaque to light has a shadow that is intrinsi-
cally transient and fluid. A shadow is a topological and projective 
entity. Geometric objects have been conceptualized out of meta-
phora from their shadows.

A shadow is topological because its shape changes continuous-
ly depending on the time observed in the ordering chain of events 
during a day. Thus, a shadow depends on the ordering 
aspect of time.

FIGURE 2.13

Harmonic analysis 
and synthesis
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It becomes independent of it only if it is frozen in time, mean-
ing that it is fixed at a particular time of the day. A shadow is pro-
jective because it always appears on an epiphaneia, the outlook or 
contour of a shadow (peri-gramma) always appears on a surface. 
For a frozen shadow the contour bounds an area, the geometric 
magnitude that Pythagoras’ theorem refers to.

Is a shadow independent of the periodic/frequential aspect of 
time? Definitely not, because of the fact that shadows do have 
colors. The area of a frozen shadow is a colored area. Color is a 
spectral quantity; it is characteristic of the range of fre-
quencies of light.

If light propagates directly from a single source, then the color 
of the frozen shadow will be black. If light is also reflected from a 
variety of other sources, then although the contour is imprinted 
projectively from the main source, the area inscribed in this con-
tour bears the color of the reflected light. It is enough to recall the 
red colored area appearing at the total 
eclipse of the moon, when light from 
the sun is reflected by the shadow of 
the earth, making the moon that is in 
the earth’s shadow appear red.

But there is a fundamental dif-
ference between harmonic frequen-
cies and colors, at least to the extent 

FIGURE 2.16

The red moon

(Re-elaboration based 
on photo by Robert 
Jay GaBany, 2014, 
Wikipedia, CC BY-SA)

FIGURE 2.14 & 2.15

Projective shadows 
at different times 

 
(Elias Zafiris, 2024,  

CC BY-SA)
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certified by sense perception, through the ear and the eye 
correspondingly.

Although harmonic frequencies keep their characteristic in-
variance and can be separated in a symphony cycle while simul-
taneously being in consonance to each other and synthetically 
sound all together, colors do not bear such an invariance.

Colors tend to overlap, superimpose, and mix continuously. 
Mixing is the major aspect of the frequency domain pertain-
ing to light. All colors can be reproduced out of the mixture of 
three basic colors.

At the ideal extremes we have the white and the black colors. 
Both of them pertain to the isonomic mixture of all colors, the 
first in relation to the emission of light, and the second in relation 
to the absorbtion of light.

A black shadow is the state of complete isonomy of all absorbed 
colors mixed together under the metronomy of light. Therefore, 
the periodic/frequential aspect of time is different from its spec-
tral imprint in space in terms of colored areas and mixtures.

A modular substitution of cycles of symphony in time with an 
entity of a spatial nature composed of colored areas requires a 
metaphora from the domain of harmonics to the domain of ge-
ometry, a certain canonics of transcribing from one domain to 
the other. Paradoxes are again generated by a literal transcription 
without the intervention of a topos where communication 
through metaphora takes place from one domain to the other.

These domains are innately differ-
ent. The argument is that space opens 
up architectonically and stabilizes via 
a topos of communication between 
these domains, a place called chora 
emanating from chorus. Since cycles 
of symphony are generated out of in-

FIGURE 2.17

Metaphora from the 
domain of harmonics 

to the domain of 
spectral geometry
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variant characteristic frequencies of different wholes, which are 
independent of ordering, they can link together events inde-
pendently of their distance on their temporal ordering chain.

Still this temporal ordering chain is imprinted in space as a 
part-whole or local-global relation. If we follow Euclid and think 
of a geometric point as that which does not have any parts, then a 
point in space corresponds to all invariant harmonic frequencies.

LEVEL 1

LEVEL 2

CHORA

RESOLUTION — SPECTRALITY 

FIGURE 2.18

The chora
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But, since the colors in space pertain to areas and not to points, 
and since the mixing refers to areas and not to points as well, 
geometric space analysis cannot be elaborated in terms of points, 
but in terms of areas that span both the ordering aspect and the 
periodic/frequential aspect of time.

Armonia-Arithmos-Arche

The mathematical field of Arithmetics traces back from the 
term “Arithmos”, what we call number presently, which interest-
ingly enough shares the same origin with the term “rhythm”. Not 
only this, but most important is the fact that all the terms 
“Arithmos”, “Armonia”—from which Harmonics emerges—and 
“Arche”—from which Architectonics and Architecture emerge—
all have grown and shared etymologically, obtaining their mean-
ing from the same root.

This root does not pertain to the 
domain of space, but it pertains to the 
domain of time that lies beyond its 
standard ordering aspect. It is the pe-
riodic/frequential aspect that per-
tains to this root, which does not re-
quire any fragmentation into separate 
spatial parts. It refers to different 

FIGURE 2.20

Geometric space 
analysis in terms  

of areas

FIGURE 2.21

Mixing of colors 
pertaining to areas

FIGURE 2.22

Constellations of 
wholes according 

to the periodic/
frequential aspect 

of time
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wholes and examines how these wholes may be bridged together 
in time within a symphony cycle, what we have called harmonic 
synchronization of wholes in a rhythmic circular constellation.

Synchronization and Unveiling

The central point of harmonic synchronization should not be 
thought of as an origin point in space. Its connotation is different 
and bears the name “omphalos”. The omphalos keeps implicitly 
the living memory of the invariants characterizing the wholes that 
enter in a rhythmic arrangement, and thus the memory of the im-
plicit “Logos” that makes the harmonic synchronization possible.

Although the umbilical cord is cut off at the time of birth, the 
memory of harmonic synchronization and connectivity is re-
tained in the form of a trace imprinted on the body that is called 
the umbilicus (navel). The circulation around the omphalos after 
the separation of wholes has taken place in space is the process of 
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uncovering, disclosing, and unveiling the “Logos” that makes a 
symphony cycle of these wholes possible.

This is what is called “Aletheia”, which literally means unveil-
ing from “lethe” (forgetfulness). The connotation of this term is 
quite different from what we call “Truth” within a logical frame-
work. The direct inaccessibility to this center of harmonic syn-
chronization is an obstacle to be embraced by bringing these 
separate wholes into communication through metaphora, and 
thus circulation in the paradigm of the Static Tripod.

Meander and Rhythm

In the process of initiating a metaphora taking place by means 
of bidirectional architectonic bridges bearing temporal depth, 
the role of artifacts is fundamental. An artifact is a symbol of con-
nectivity persisting in time, whose role is to encode in the most 
economic way the knowledge of a stage of a certain depth during 
a multi-level metaphoric circulation involving more than one 
spectra, which can be decoded and retrieved effectively. Daedalus, 
considered as the first architect, is famous for the production of 
artifacts. The concept of Daedalus was that the task of Architec-
ture is not to fill in space, but to open up space in rhythm with the 
domain of living time. The most prominent artifacts of Daedalus 
are the “Meanders”.

TRUTH ENCODED/DECODED
AS MEMORY OF CONNECTIVITY

VIA COMMUNICATION
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Aletheia: unveiling 
from lethe



79

The meanders cannot be imprinted in space through a single 
line. There must be a recurring periodically winding pattern 
formed by two oppositely facing and intertwining assemblage of 
lines in right angular relation to each other, which imprint in 
space the impression of a synchronization rhythm.

This rhythm resembles what we would call in physical terms 
a standing or stationary wave, from where the harmonic frequen-
cies emerge. From this perspective, a meander is like a motif, 
a motivic key that imprints on the homogenous void the trace 
of the harmonics it carries, producing space according to its 
rhythm through time.

The conception of the “Labyrinth” abstracts from the notion 
of a meander. It employs together with a meander its mirror image 
reflection as well with respect to a line, which becomes an implicit 
diameter of a circle, where a circulation is imprinted—with re-
spect to a directly inaccessible center—that has to wind around it 

1 2

3 4

5 6

7a 7b

FIGURE 2.25

Types of meanders 
and synchronization 
rhythms
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in many different scales following in-between the bridges formed 
by a meander and its mirror at every scale.

Architectonic Scaffolding

An architectonic artifact in its symbolic function can be 
thought of as a scaffolding that delineates the topos where com-
munication takes place, according to the preceding. In this sense, 
the chora is metaphorically equivalent to a theatrical stage, the 
epiphaneia where metaphora manifests by adjoining and lifting 
the audience from spectators to participants in the praxis of the 
actors, according to consonance or dissonance in relation to 
their actions.

FIGURE 2.26

Notion of labyrinth
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The architectonic scaffolding of the theatrical stage plays 

the equivalent role of a lever with respect to a fulcrum, a fun-
damental notion in mathematical thinking conceived and 
devised by Archimedes.

From this perspective, abstraction always uses a lever with 
respect to an imaginary fulcrum, based on hypothesis that can 
be spectrally evaluated. Its uniqueness and effectiveness—some-
thing that characterizes the most important theorems and the 
elegance of their proofs in mathematics—is due to the fact that, 
although a lever is always employed in relation to a scaffolding, it 
becomes implicit by internalizing its function while retaining 
the imaginary fulcrum.

This might be considered as an automation through harmon-
ic synchronization guided by this imaginary fulcrum in the to-
tality of its stages, where the completion of each stage internaliz-
es the function of a lever. The imaginary fulcrum is the spatial 
imprint of the center of the cycle of symphony accomplished 
through abstraction by modular substitution of this internalized 
series of levers.

The substitution amounts to the 
internalization of each lever in the 
series in terms of the invariant sym-
plectic area that generates through 
the fulcrum, that is, its spatial areal 
shadow. The fulcrum does not have 
any parts, but it is the accumulation 
point of all imaginary diameters 
meeting at this point.

Since, each one of them is an integral whole in a cycle of sym-
phony—pertaining to its periodic/frequential temporal aspect in 
synchronization with the others—and each one of them has an 

FIGURE 2.28

Modular substitution 
via an internalized 
series of levers
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areal shadow; it can only be thought of as an imaginary dimen-
sionality axis orthogonal to the shadows.

The generic case involves a single imaginary axis through 
which the spatial representation of the complex numbers and 
the complex plane is generated from. In contrast to the usual 
identification of the real two-dimensional space with the complex 
Gaussian plane, the above is concordant with Gauss’ idea to think 
of the imaginary unit(y) as inferrable from a “shadow of shadows”.

The historical convoluted evolution of mathematical thinking 
pertaining both to abstraction and diachronic stability may be 
though of as an intricate imaginary weave. The bridges in time 
out of all cycles of symphony and the elaborate architectonic 
network where metaphora takes place from node to node ascribe 
to this weave two peculiar characteristics.

The first is that the weave bears 
such a temporal depth and multi-
ple-connectivity that makes it impos-
sible to consider mathematical ideas 
of Arithmetics, Algebra, Topology, 
Analysis, Probabilistics, Combinato-
rics, Geometry, and Harmonics in sep-
aration from each other without an 
integral synthetic imaginary fulcrum.

The second is that the crossings of 
this weave are knotted nodes, where the “truth of a theorem” is 
preserved and stabilized as the encapsulated memory of all com-
munication topoi that led to it through metaphora.

FIGURE 2.29

Imaginary weave  
of the omphalos
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Bounding the Rhetorical Topos

We consider the threefold Philosophy/Mathematics/Architec-
tonics in its capacity to give rise to a symphony cycle, involving 
their harmonic synchronization around an initially inconceivable, 
or directly inaccessible, common center according to a Logos.

We recall that if you consider any two of these domaions as 
different layers or levels, the third domain acts as a bridge between 
the other two. Bridges are always bidirectional, such that a domain 
of communication opens up. What is bounded by the bridges is a 
rhetorical topos where communication takes place.

Our present objective is to bound the notion of Logos to the 
notion of Arithmos through metaphora with respect to a series of 
architectonic bidirectional bridges according to the metronomy 
specified. At each stage, the spectral evaluation of a hypothesis in 
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relation to the inexplicable Logos resolves the spectrum according 
to a spectroscopic scale.

The scale together with its numerical/elemental and structur-
al specification gives rise to an arithmetic Cosmos that can be 
communicated, such that Logos can be bound to Arithmos. The 
arithmetic Cosmos bound to the Logos metaphorically defines 
the notion of scalarity that pertains to the way that the Logos is 
encapsulated and linked to the corresponding arithmetic Cosmos.
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The Gnomon:  
Logos Bound to Proportion as Ratio

The gnomon is literally speaking the part of the sundial that 
casts the shadow.

The metronomy of the gnomon is 
intended for the measurement of the 
absolute value of directly inaccessi-
ble integer geometric magnitudes. An 
integer geometric magnitude is con-
ceived with respect to a monad 1, that 
is, a unity that cannot be broken into 
parts. As such, an integer geometric 
magnitude does not express by itself 
any source of invariance, but under 
multiplication with other integer magnitudes it can give rise to 
an invariant relation.

In turn, this invariant relation specifying the metronomy of 
the gnomon instantiates a partition spectrum through which 
an inaccessible magnitude can be indirectly determined. In this 
setting, the invariant relation is the relation of proportionality, 
and the partition spectrum is the 
spectrum of ratios.

The objective is the bounding 
of Logos to Analogia as Ratio, and as 
such, the grasping of Ratio (Portion) 
from the invariance of Proportionality 
among four integer geometric magni-
tudes. In this context, we realize that 
the obstacle preventing the direct 
access to a geometric magnitude is 
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actually a modular source of invariance, expressed by the invar-
iant relation of proportionality (analogia).

The above becomes concrete if we examine its original context 
of instantiation. This pertains to the magnitude measurement of 
the height of a pyramid by Thales using a vertically placed meas-
uring stick as a gnomon, architectonically bridging bidirection-
ally together the level of rigid geometric objects with the level of 
their shadows.

This takes place by means of proportionality of integer mag-
nitudes, which geometrically translates to the invariance of angle 
under parallelism. The proportionality relation involves the fro-
zen shadows, since the natural communication bridge of sunlight 
is considered fixed at the same time of the day in order to gain this 
invariance. In turn, the same invariance gives rise to the geomet-
ric theory of Homeothesis.

Michel Serres, describes the gnomon in a beautiful way as 
follows: “This discovery has ancient letters: neuter in gender, the 
word “gnomon”, which in the Greek language designated the sun-
dial’s axis, signified “that which understands, decides, judges, 
distinguishes, interprets, yes, that which knows”; as if a thing, 
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already, knew. Intercepting the sunlight, its shadow writes, on the 
dial itself, a few events of the sky and of the Earth, the solstice, the 
equinox and the latitude of the site. It functions automatically. 
“Automatic” means: without the intervention of intention, which 
is subjective and cognitive.

It can be said of the gnomon that it knows the way it is said that 
it rains. The gnomon looks like a stylus, but no one holds it in their 
hand. Some things of the world give themselves to be seen to an 
object that shows them: entirely objective, theory does without 
any subject. A thing, the gnomon, intervenes in the world, and 
the world reads on itself the writing drawn by it. This type of 
intrahardware software conditions our cognitive performances, 
like a kind of objective transcendental.

Let us pay a closer attention to Thales’ theory of Homeothesis. 
The objective of Thales was to find the directly inaccessible 
height x  of a pyramid, given the length c  of its accessible shadow 
cast by projection, as well as the height a , and the shadow 
length b , of the gnomon placed orthogonally to the ground.

The invariant relation devised by Thales, called analogia, is 
based on the idea that light rays coming from the sun induce a 
natural bridge projectively between the level of heights and the 
level of shadows, which if fixed for each specific time of the day 
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gives rise to an equivalence relation among the four magnitudes. 
The analogia of homeothesis is expressed symbolically as follows:

(a to b) is as (x to c)

Note that the four terms of this proportion between magni-
tudes are arranged into two distinct levels according to a qualify-
ing characteristic, that is, a and x occupy one level as vertical 
heights, whereas b and c occupy the other level as hori-
zontal shadows.
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 We will explain later, when we examine the proportionality 
invariant relation from the structural perspective of the algebraic 
cosmos of the Rationals, that the solution of the corresponding 
simple equation 

a / b = x / c
in terms of the unknown x , involves the group-theoretic 

operations of multiplication and, inversely, division of positive 
integer magnitudes.

Thus, from the viewpoint of natural communication, the ge-
ometric theory of homeothesis, contains all the seeds of abstrac-
tion leading to the conception of the modern algebraic structure 
of the multiplicative group of the rationals.

In a suggestive manner, we can rewrite the solution of this 
equation as follows

x  =  M a c M b
– 1

meaning that to obtain the not directly accessible magnitude 
x , “multiply by a ” (denoted by M a ) the magnitude c , and then, 
divide by b  (denoted by M b

– 1).
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 From the simple natural communication diagram above, we 
immediately see that a proportionality relation is a case of meta-
phora taking place between the two delineated levels.

This is also in concordance with Aristotle’s qualifying state-
ment of metaphora in Poetics, according to which: “Metaphora 
is the substitution of the name of something else, and this may 
take place from genus to species, or from species to genus, or from 
species to species, or according to proportion.”

The Monochord:  
Logos Bound to Harmonics as Integer

In the Thalesian geometric setting of the gnomon an integer 
geometric magnitude does not express by itself any source of in-
variance, but under multiplication with other integer magnitudes 
gives rise to an invariant relation: the proportionality relation. A 
natural question is if an integer itself can be thought of as a source 
of invariance going beyond the context of rigid geometric objects 
and their shadows. We will see that this task requires to delve 
deeper in the domain of Harmonics.

Leaving the domain of rigid objects, we enter into the domain 
of a magma. At a first approach, a magma is something that cannot 
be characterized in terms of directly distinguishable constituents. 
It displays a stochastic behavior as a whole at some spectroscopic 
scale of observation. Thus, it is not amenable to a part-whole rela-
tion in space, but it has to be thought of in terms of a distribution 
in time involving its potential periodic/frequential aspects.

In other words it has to be considered as a whole in the domain 
of Harmonics. From a philosophical standpoint, we may say that 
a magma does not have any discernible ontology, at least without 
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further qualifications. But, what a magma has is what Aristotle 
calls “entelechy”, a kind of teleonomy that is manifested through 
its periodic/frequential temporal behavior.

This teleonomy may be thought of in terms of a Choreography 
out of which a certain rhythm becomes apparent pertaining to a 
symphony cycle originating from an imaginary synchronization 
center, which brings us to the domain of Harmonics. If we repre-
sent such a cycle in terms of a circle, but not confusing it with a 
geometric circle drawn by a compass since its center is imaginary, 
then a rhythm may be represented in terms of a polygon inscribed 
within this circle (Figure 2.40).

If the nodes of a polygon correspond to the characteristic fre-
quencies, called the harmonic frequencies or simply harmon-
ics, for which a synchronization of wholes takes place in such a 
symphony cycle, then the ratios of arcs would correspond to the 
consonances or dissonances produced.
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It is important to specify what type of scalarity should be as-
cribed to the harmonics. If the cycle of symphony corresponds to 
the joint unity in time, then the harmonics effect a cyclotomy 
expressed by the countable number of windings of the corre-
sponding node per the joint unity of time. The number of wind-
ings per this unity, which is represented by the whole circle, ex-
presses the periodic/frequential aspect we seek for. The greater 
the number of windings of a node, the greater its frequency, thus 
the greater its speed on the circle.

We call the nodes of a polygon inscribed in the circle the roots 
of its unity in time. The idea is that a root raised to its harmonic 
frequency, thus adjoining the circulation with its characteris-
tic speed of winding equals the unity. In this sense, a harmon-
ic corresponds to the power that the root has to be raised such 
that unity emerges.

We will deal with the intricate aspects of powers and roots 
later on. For the time being, we aim to retain only the countable 
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integer aspect of the windings, since this is an invariant aspect 
of a whole in a symphony cycle. The important thing to retain at 
this stage is that integers do pertain to an invariant relation in the 
domain of Harmonics.

In this sense, the ratios of arcs on the circle correspond precise-
ly to the ratios between countable windings of different speeds. Of 
course, all these windings need to have the same orientation ac-
cording to a choreography. Needless to say, there exist two possible 
orientations on the circle, the clock-wise and the anti-clock-wise.

In a choreography both of these orientations pertain, so it is 
important to realize their significance. It will turn out soon that 
it is due to this bivalent aspect of orientation that characteristic 
frequencies—harmonics emerge for the invariant depiction of a 
whole in a symphony cycle, that is, the “entelechy” of the magma.

We think of orientation as a digital bivalent gnomon in the 
domain of Harmonics. The basic idea is that a magma exhibits 
self-interference when bounded, which emanates from the in-
terference of one orientation with the opposite, which we call 
the conjugate one.

This self-interference gives rise to nodes of stasis in the mag-
ma that delineate the harmonics. Self-interference is the major 
characteristic of quantum behavior, therefore the harmonics bear 
the role of quanta with respect to which cyclotomy takes place.

CHOREOGRAPHYMAGMAHYBRID

HARMONICS

CONSONANCES / DISSONANCES

FIGURE 2.42
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Quanta are not constituent particles of the magma, they per-
tain to harmonic synchronization of the sections/arcs obtained 
through cyclotomy with respect to the time unity of the cycle. 
Quanta are the eigenfrequencies of the magma and define its 
discrete partition spectrum.

FIGURE 2.44
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This is the major qualitative difference between the domain 
of Harmonics and the domain of Geometry. In the first domain, 
an entity can co-exist and interact with its conjugate one, without 
cancelling each other, but producing a spectrum of discrete nodes 
of stasis out of self-interference.

The self in this context is constituted teleonomically out of 
the interference of two oppositely oriented cycles, that is, out 
of the digital gnomon of orientation. 
This is clearly not possible in the do-
main of Geometry. It is impossible 
for a geometric object to interact and 
interfere with its mirror image. The 
two copies, the original and the mirror 
image, retain their separability.

However, there is an inherited 
characteristic in the transcription 
from the first domain to the second. 
This is the aspect of chirality, the orig-
inal and the mirror image are enanti-
omorphs of each other. In this man-
ner, geometric areas are signed, that is, 
they are directed, and the duplication 
of signs owes to the digital gnomon 
of orientation.

It is worth pointing out that Harmonic analysis and synthesis 
makes the distinction between the continuous and the discrete 
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look superficial, pertaining only to a topological/geometric con-
text. In Harmonics, the continuous, the discrete, and the bivalent 
co-exist without any contradiction. The choreography and the 
motion of the magma is clearly continuous.

Due to the absence of a predefined phenomenological on-
tology the magma does not have any parts; it is not subject to 
the part-whole relation. It is a whole that is subject to a certain 
type of periodic behaviour that gives it the chance to enter into a 
symphony cycle and synchronize in terms of harmonics. These 
are discrete and countable. They emerge out of self-interference, 
owing to the bivalency of orientation, as quanta delineated by 
nodes of stasis. These nodes pertain to a rhythm, which leads to 
cyclotomy, and the instantiation of consonances or dissonances 
expressed through ratios.

The Harmonic Scale:  
Genesis of Incommensurability

The notion of a magma subject to Harmonic analysis and syn-
thesis obtains a concreteness via thinking in terms of the simpler 
case of sound, the subject of Pythagorean harmonics that inheres 
with music. In this case, a consonance or a dissonance, as well as 
a rhythm can be sensed acoustically through the ear within its 
perception range of frequencies.

The obstacle which Pythagoras was facing was the Logos per-
taining to sound, that is, why the ear perceives consonances and 
dissonances and out of this directly inconceivable cause, how it 
is possible to compose and synthesize music in terms of ratios 
corresponding to consonances.
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Ratios was the type of scalarity that Pythagoras employed to 
make his partition spectrum, of course in relation to the temporal 
periodic/frequential nature of acoustic sound, meaning that these 
ratios are not ratios of magnitudes, but they are ratios of frequen-
cies (pitch). Surely, it is very difficult to construct the partition 
spectrum just by the acoustics of the ear.

For this purpose, he devised the monochord, an instrument 
consisted of a single vibrating string—a chord—plucked to the 
cavity of this instrument acting as a resonator, on which by at-
tunement he intended to make a scale consisting of consonant 
ratios of frequencies.

It is evident that the string can vibrate—within certain 
bounds—only if it is excited under the action of a bow . The cou-
pling of a plucked string with a bow gives rise to a hybrid enti-
ty, a whole that is not separable in parts, since such a separation 
eliminates sound.

Thus, the bow and the string—bound architectonically by 
the bridges of the resonator—refers to a whole, a kind of magma, 
according to the preceding. The idea of Pythagoras was to study 
the consonant ratios through moving the bridges where the string 
is attached, thus altering the length of vibration of the string. This 
is his method of attunement and it deserves special attention. 
Note that it is sufficient to keep one end of the string fixed and 
vary the other.

The underlying reason is that Pythagoras actually devised the 
monochord in its role as a canon on which a scale—built with re-
spect to intervals of string length—can be imprinted as a modular 
substitute of a ratio of acoustic frequencies.

This is the essential aspect of the Pythagorean method, which 
aspires to make manifest the harmonic partition spectrum of 
consonant ratios through the geometric partition spectrum of 
concordant intervals of length on the monochord, that is, through 
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metaphora from the domain of harmonics to the domain of ge-
ometry. Concordant intervals of length under this bidirectional 
correspondence—modular substitution—give rise to a partition 
spectrum at the geometric level, which are directly accessible on 
the canon, the length geometric spectrum of the monochord. Is 
is precisely this kind of metaphora that is called canonics.

The invariant relation that makes the bidirectional bridge 
between the harmonic and the geometric domain possible is that 
frequency and string length are inversely correlated to each oth-
er. This means that their product is always a constant, hence it is 
invariant. The spectrum afforded by the canon is a manifestation 
of this invariance.

The crucial point to observe in the canonics from the har-
monic to the geometric, and inversely, is that ratios of harmonic 
frequencies are transcribed to intervals of length, which are evi-
dently made out of differences in length.

OBSTACLE

HARMONIC SCALE

LIGHT SPECTRUM

C
A

N
O

N
IC

S
E

N
C

O
D

IN
G

 B
R

ID
G

E C
A

N
O

N
IC

S
D

EC
O

D
IN

G
 B

R
ID

G
E

UNITY

FREQUENCY

TIM
E

UNIT SPACE

LENGTH

 HARMONICS

 GEOMETRY

FIGURE 2.47

Metaphora 
between  

harmonics and 
geometry—the 
canonics of the 

architectonic 
scaffolding



99

Thus, the bridge from the harmonic to the geometric should 
be able to transform the operation of division to the operation 
of subtraction, where the first pertains to the harmonic and the 
second to the geometric.

Inversely, the bridge from the geometric to the harmonic 
should be able to transform the operation of substraction to the 
operation of division, so that from an interval we can obtain a ratio.

There is a unique function that bears the property required 
to be satisfied from the harmonic to the geometric, and it is the 
logarithmic function. Thus, the images of harmonic ratios on the 
canon are actually intervals on a logarithmic scale.

Since the value of the logarithmic function is, in general, not 
an integer, nor a ratio, the transcription from the harmonic to 
the geometric requires the extension of the arithmetic cosmos 
to the irrationals, which incorporate the topological assumption 
of continuity. Thus, the canon bounds the Logos to the Arithmos 
in terms of the continuous logarithmic function, whose values 
are logarithms.

Moreover, since ratios of harmonic frequencies pertain to the 
periodic/frequential aspect of time, we conclude that this aspect 
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of time is transcribed logarithmically in space. We will see in the 
sequel, how this logarithmic transcription is expressed through 
the notion of geometric area and color of shadows.

Inversely, there is a unique function that bears the property 
required to be satisfied from the geometric to the harmonic, and 
it is the exponential function. It transforms the logarithmic scale 
of intervals in space, i.e. on the canon, to a rational scale of har-
monic frequencies in time.
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In order to grasp the notion of a harmonic frequency, it is in-
structive to consider briefly the physical notion of a stationary, or 
standing wave. A standing wave is a wave that is bound in space, 
i.e. between two walls, and therefore, since it cannot propagate 
beyond the walls, it gets reflected and interferes with itself. It is 
bound in space, and thus its recurring oscillatory behavior, as an 
outcome of self-interference, pertains to the periodic/frequential 
aspect of time.

A stationary wave has particular frequencies at which the 
amplitude of the wave is maximized. The wave is characterized 
by its amplitude which makes the sound higher or lower, its fre-
quency, and its phase.

Harmonics refer to the range of integer frequencies where the 
amplitude becomes maximal. This is based on the principle of 
minimization of energy, an economy principle of Nature, which 
in Physics originates and is explained by the Principle of Least Ac-
tion. The minimization of energy is implemented by the maximi-
zation of the amplitude. Thus, the harmonic frequencies are those 
with a minimal energy and a maximal amplitude (highest sound).

FIRST HARMONIC

2 : 1

3 : 2

4 : 3

SECOND HARMONIC: 
VIBRATES WITH TWICE THE 
FREQUENCY OF THE FIRST. 
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FREQUENCY OF THE FIRST. 
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FOURTH.
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Based on the principle of minimization of energy, Nature fil-
ters out all frequencies except those that maximize the amplitude. 
Therefore, Nature abstracts and percolates the harmonics through 
sound, achieving in this way minimization of energy, something 
that qualifies sound as a natural communication bridge.

The ear distinguishes the harmonics via resonance, and can 
perceive them separately in the acoustic range it affords, although 
they sound together. Within the range of all the harmonic fre-
quencies the fundamental frequency, called the first harmonic, 
is the first where this phenomenon takes place.

In the descriptive terms of standing waves, all the harmonics 
are the outcome of self-interference. They are distinguished in 
terms of nodes and anti-nodes. Nodes are the states of stasis, where 
the amplitude is null, whereas anti-nodes are the states where the 
amplitude is maximal. Clearly at the bounds the amplitude is null.
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Consonances manifest when different harmonics sound-
ing together are in symphony, and dissonances when they are 
not. Consonances are expressed in terms of ratios of harmon-
ics in symphony. It is consonances that give rise to the partition 
spectrum of sound.

For this purpose, a scale is needed effecting cyclotomy of the 
unity. The canon transcribes this scale to a logarithmic scale of 
length intervals—what is called musical intervals—in such a way 
that the whole length of the bounded string corresponds—in 
space—to the first, or fundamental, harmonic—in time. This is 
the unison attunement of the monochord.

If a dividing bridge is placed in the middle of the string, then 
only half of it can vibrate. You can hear that the frequency is high-
er than when the whole string vibrates, according to the ratio of 
2 / 1 .  Thus, the harmonic frequency doubles by cutting the length 
of the string in half, leaving their product invariant. This frequen-
cy, called the second harmonic, is in symphony with the first 
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harmonic and a consonance is produced giving rise to the conso-
nant ratio of 2 / 1 , called the octave. In an analogous manner, we 
may think of all higher harmonics and their transcription to 
string length on the canon. The most consonant ratios of harmon-
ics, beyond the octave, is the ratio 3 / 2 , and the ratio 4 / 3 , called 
the interval of the perfect fifth, and the interval of the perfect 
forth, after their transcription on the canon.

These consonant ratios of harmonics, intended to be used for 
setting up a scale of musical intervals, may be obtained naturally 
through the method of the means. It is quite significant to focus 
our attention on the meaning of this method and its unifying 
power. According to a surviving fragment of the work of Archytas 
of Tarentum, the person who resolved the Delian problem in an-
tiquity: “There are three means in music: one is the arithmetic, the 
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second is the geometric, and the third is the subcontrary, which 
they call harmonic”.

Implicit in the notion of means is the notion of progressions in 
time. This pertains to the ordering aspect of time, which in sound 
and music pertains to the ordering of the musical intervals on the 
canon. In this manner, the ordering aspect of time, what we may 
think of as the melodic, corresponds in space to the ordering of 
the intervals on the canon. The basic idea here is that harmonics 
are ordered under following some progression. Since harmonics 
are integers their ordering should naturally follow the arithme-
tic progression.

But recall the digital bivalent gnomon of orientation lurking 
in the domain of Harmonics. For every progression following 
the arithmetic progression there exists a conjugate progression 
that reverses the orientation, and thus the former ordering, thus 
following the contrary to the arithmetic progression.

This is what is called the subcontrary, or harmonic progression 
by Archytas. Since harmonics are not geometric magnitudes, but 
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they are invariant integer powers, their reciprocals, which are the 
roots on the cycle of symphony that they apply to, so that they can 
harmonically synchronize, and thus be in consonance to each 
other, should naturally follow the subcontrary progression, i.e. 
the subjected contrary to the progression of the powers.

To every type of progression there corresponds a mean re-
specting this progression. The arithmetic mean, defined by 

	 A M = ( a + b ) / 2

for any two consecutive elements a and b of this progression 
respects the progression of the harmonic frequencies.

The subcontrary mean, defined by 

	 H M = 2 a b / ( a + b )

for any two consecutive elements 1 / b  and 1 / a  of this pro-
gression respects the order-reversing progression of the recipro-
cals of the former ones. Note that in terms of the canon, changing 
the orientation though reciprocals and their progression amounts 
to reversing the ordering of musical intervals in space.

This complicates the construction of a scale, because matters 
of ordering should be settled appropriately in the geometric tran-
scription to the canon, so that the scale should be invariant under 
reversing the ordering.

The resolution of this issue comes from the geometric mean, 
which corresponds to a third type of progression, called the ge-
ometric progression, which pertains to the metaphora from the 
harmonic to the geometric domain.

The geometric mean of two positive elements a  and b  is the 
element G M = p  whose square equals the product a ⋅ b  (elements 
pertain to geometric magnitudes in this case): 
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	 p 2 = a ⋅ b

The geometric mean answers the following question: given a 
rectangle with sides a  and b , find the side of the square whose 
area equals that of the rectangle. Euclid calls it the mean propor-
tional p  between a  and b , which are in geometric progression, 
according to the invariant proportion relation: 

	 a / p = p / b

The fundamental property of the geometric mean G M  of two 
positive elements a  and b  is that its square equals the product 
of their arithmetic mean (considered in arithmetic progression) 
with their harmonic mean (considered in harmonic progression 
through their reciprocals): 

	 G M 2 = A M ⋅ H M

Thus, the area of the square made through the geometric mean 
is equal geometrically with the area made by the product of the 
arithmetic with the subcontrary mean of two harmonics, from 
which the geometric length provided 
on the canon as a unit is the square 
root of this product. But, this is an ir-
rational, implicating that cyclotomy in 
terms of consonant ratios of harmonic 
frequencies, and thus a scale in terms 
of ratios, will always be incomplete, 
there always going to be a residue.

In the Pythagorean setting of consonant ratios the scale is 
constructed as follows: Since the scale is a scale made of ratios, 
the absolute values of the harmonics are not relevant. The integer 
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6 is the first perfect number, meaning that it is invariant under 
addition and multiplication of its factors. Clearly, 6 = 1 + 2 + 3 , 
and 6 = 1 ⋅ 2 ⋅ 3 . In terms of this, the consonant ratio 2 / 1  is ex-
pressible equivalently as the ratio 1 2 / 6 .

The arithmetic mean of 6  and 1 2  is 

A M = ( 6 +1 2 ) / 2 = 9

The harmonic mean of 6  and 1 2  is 

H M = ( 2 ⋅ 6 ⋅ 1 2 ) / ( 6 +1 2 ) = 8

The product of the arithmetic with the harmonic mean 
of 6  and 1 2  is:

A M ⋅ H M = 9 ⋅ 8 = 7 2 

which is equal to the square of their geometric mean.
But, this product also equals the product of 6  and 1 2 , therefore: 

	 9 ⋅ 8 = 1 2 ⋅ 6

from which, we obtain the equality of ratios 9 / 6 = 1 2 / 8  and 
8 / 6 = 1 2 / 9 . The first of these ratios is the consonant ratio 3 / 2 , 
and the second is the consonant ratio 4 / 3 .

We conclude that the musical inter vals of the 
[ Octave, Fifth, Fourth]  have their corresponding logos in the har-
monic ratios [ 2 : 1 ,  3 : 2 ,  4 : 3 ] . The composition of two musical 
intervals corresponds to the multiplication product of their re-
spective ratios.

We have now three small ratios corresponding to consonant 
musical intervals: 2 / 1 ,  3 / 2  and 4 / 3 . The question is if there is 
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a common multiplicative measure among them, so that the scale 
can be completed with reference to this measure. It is easy to see 
that such a common measure does not exist, verifying in this way, 
the conclusion reached also previously.

	 2 / 1 = 3 / 2 · 4 / 3

	 3 / 2 = [ 4 / 3 ] [ 9 / 8 ]

9 / 8  corresponds to a new musical interval called a “tone”. Is 
the “tone” the required common measure? 

	 4 / 3 = [ 9 / 8 ] [ 3 2 / 2 7 ]

But, [ 3 2 / 2 7 ] > [ 9 / 8 ] , hence we obtain: 

	 3 2 / 2 7 = [ 9 / 8 ] [ 2 5 6 / 2 4 3 ]

2 5 6 / 2 4 3 , corresponds to a new musical interval called a “die-
sis”, or “leimma”, from which: 

	 4 / 3 = [ 9 / 8 ] 2  [ 2 5 6 / 2 4 3 ]

The diesis and the tone are not commensurable to each other, 
thus we end up with two incommensurable measures for making 
the scale; the tone, and the diesis. In more detail, we see that 

	 Tone =  [ Diesis ] 2 ⋅ [ Comma ]

where the [ Comma ]  is an even smaller interval, showing that 
the procedure can be continued ad infinitum without finding a 
common measure.



110

The gain of this exercise is to figure out that: 

	 [ Comma ] = 3 1 2 / 2 1 9 

which encodes the following:

[ 1 2  Intervals of the Fifth]  =  
[ 7  Intervals of the Octave]  modulo [ Comma ] .

The [ Comma ]  is the residue of the analysis, certifying the in-
commensurability, thus the presence of the irrational in music. 
Note that since 3  is odd and 2  is even it is impossible to be com-
mensurable under raising to powers. It is because of this fact that 
musical composition allows an infinity of possibilities.

In terms of the two incommensurable measures at dis-
posal, we have: 

	 Octave = [ 2 / 1 ] = [ Tone ] 5 / 1 ⋅ [ Diesis ] 2 / 1

In this manner, the scale is defined, although it bears a residue, 
as a trace of the irrationality lurking in the background, from 
which the octachord (8 chords) in the so called diatonic genus 
emerges out of the disjunction of two tetrachords (4 chords). 

Octave 2:1
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Fourth 4:3

12 11 10 9 8 7
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The outcome of this method of making the scale, based on the 
arithmetic and the subcontrary mean, is a partition spectrum 
consisting only of ratios, and therefore, corresponds to the notion 
of pure tuning. Note that starting from the unison, and proceed-
ing eight steps (intervals) from it, we reach the octave that the 
harmonic frequency doubles.

On top of this scale, we may now 
start from the octave and proceeding 
again eight steps along it we reach the 
double octave where the harmon-
ic frequency quadruples, and so on. 
Therefore, the ladder of scales follows 
the powers of 2 . This may be though 
of as a helix that unfolds according to 
the powers of 2 .

 From the definition of the residue, 
that is, the [ Comma ] ; 

	 [ Comma ] = 3 1 2 / 2 1 9

we see that, since it is very small, 
and thus almost imperceptible, we 
may approximate 2 1 9  in the ladder 
of scales with 3 1 2  following the pow-
ers of 3  instead. This is what usually 
is called the circle of fifths, although 
it is not a circle, but a spiral of fifths, 
showing that the harmonic domain 
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cannot be transcribed only in terms of ratios to the geometric, 
without a trace, the residue or memory of this transcription 
through the canon.

Observe that, since a fifth refers to the ratio 3 / 2 , we may em-
ploy the fifth as the unit of the scale, such that going up the ladder 
by the 12th power we expect to be able to descend back through 
7 octaves, considering literally that 3 1 2 = 2 1 9 , i.e. forgetting or ne-
glecting the comma completely.

Of course, this is not possible, and the best we can do is to 
obtain a never-ending spiral of fifths. It is impossible to close the 
circle, that is to achieve harmonic cyclotomy with pure ratios, and 
the manifestation of the comma is to remind us of exactly this.

From the perspective of natural communication, there emerg-
es the question of how it is possible to employ the canon as an 
actual geometric scale bearing a unit and respecting at the same 
time the harmonic domain, that is, encoding appropriately the 
irrationality inherent in the transcription.

At the moment, the canon bearing the metronomy of pure ra-
tios, for instance the pure fifth, requires two different incommen-
surable measures, such that any attempt to suppress the comma is 
in vain, meaning that the partition spectrum of the canon cannot 
be operable and scalable by geometric means. This does not mean 
that making music is impossible as the ingenuity and the variety 
of scales devised and used throughout history is impressive.

The Tempering Screen: 
 Logos Bound to Spectrum as Chroma

The incommensurability of the canon means the seed of the 
harmonic in the geometric domain cannot be encoded through 
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pure ratios, which opens up, in turn, 
architectonically the geometric do-
main beyond the grasp of ratios and 
frozen shadows, to the grasp of 
the irrational.

This is only possible by substitut-
ing the fixed origins of invariant an-
gles of sight on the ground that give 
rise to the pure ratios geometrically 
by roots that are hidden underground 
and thus their positioning is not di-
rectly accessible to vision.

 But still, they can be envisioned 
through their uplifting—via imagina-
tion—on an epiphaneia, a boundary 
screen between the harmonic and the 
rigid geometric.

This is an epiphaneia where con-
tinuity and variability prevails, and 
where differentiability, stochastics, 
and probabilistics take place. The 
role of this epiphaneia is to distrib-
ute probabilistically the residue of 
the harmonic domain, the dark inaccessible shadow area of the 
comma on the rigid geometric canon, all around the epiphaneia, 
in a uniform manner. This is what we call tempering.

This implies a stochastic equipartition of the epiphaneia 
through a uniform probability distribution pertaining to areas. 
Put simply, the harmonic residue—the obstacle from a rigid ge-
ometric perspective—is distributed evenly all around the disk 
epiphaneia bounded by the circle whose cyclotomy is impossible 
geometrically through ratios.

FIGURE 2.61

Envisioning the roots
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The artifact of this metaphora through the epiphaneia is the 
topological metamorphosis of the dark residue to light, which is 
evenly distributed probabilistically all around the epiphaneia. 
This is not a probability that originates from ignorance, nor ran-
domness, but it is intrinsic and objective chance.

The dark residue is not visible geometrically, it has to be neu-
tralized through differentiation, then spread out probabilistically 
and uniformly on the epiphaneia, so that it can be finally integrat-
ed back from the equipartitioned spectrum of colors distinguish-
ing the equally-spaced areas on the disk.

The obstacle is substituted by a circularly distributed diffrac-
tion pattern of light whose angularity is not rigid but it is invariant 
under scaling. Invariance under scaling is what makes possible 
the grasping of the residue on the epiphaneia geometrically.

The epiphaneia as an in-between boundary refracts the dif-
fracted light—encapsulating the residue—giving rise to a uni-
form probabilistic distribution of equally-spaced areas on the 
disk, hence dividing it isonomically—that is in an equiareal way. 

Each of these areas acquires a color 
through refraction that distinguishes 
it from the rest.

For instance, the equally-tem-
pered scale referring to such an 
epiphaneia, called the chromatic 
scale—where chroma is the ancient 
name for color—is the refraction of 
the circularly distributed diffrac-
tion of the comma—the dark residue 
from the harmonic domain—in the 
twelve colors of the different musical 
keys under tempering equally, thus 
democratically.

FIGURE 2.64

Circularly 
distributed 
diffraction  

pattern of light 



115

This completes the metaphora from the harmonic to the ge-
ometric domain, where the architecture of the latter is now em-
powered by the refracting epiphaneia it encapsulates, allowing 
geometry to be operative through tempering, i.e. probabilistically, 
stochastically, and topologically.

The bounded vibrating temporal chord bearing the harmon-
ics is thus bonded to the spatial geometric domain via an elastic, 
but equally tempering boundary epiphaneia, spectrally distin-
guishable through the colors of the light it refracts. Each key of 
the equally-tempered scale corresponds to a different color of this 
democratic light spectrum.

The tempered canon achieves the modular substitution 
through metaphora of the temporal harmonic cord to a spatially 
distributed—via circular polarization—optical fiber.

 Consequently, the equally-tem-
pered scale arises from detuning the 
pure harmonics through tempering 
equivariantly. The chromatic scale 
employs an equivariant tempering of 
12 equally-sized steps. It is possible to 
initiate musical composition starting 
from any key, any color of this spec-
trum. The only requirement is the preservation of the octaves, 
the powers of 2 , as we proceed geometrically.

The fact that the progression is geometric signifies that we 
should use the geometric mean to progress along the scale be-
tween any two equally spaced marks on the periphery of the disk 
until we arrive at the octave. Since the color cyclotomy is in terms 
of 12 equal intervals, if we start from the unison we should be 
able to reach the octave in 12 equally-sized steps, where the unit 
making this step is the geometric mean between its initial and 
terminal mark on the scale.

FIGURE 2.65

The chromatically 
tempered canon
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Thus, the cyclotomy of the equally-tempered scale is not in 
terms of pure ratios, but in terms of the single irrational unit 1 2√ 2 
that proceeds geometrically from any chosen mark in 12 steps 
until it completes an octave. In this way each of the corresponding 
12 blocks of the partition of the disk corresponds to a chroma, a 
color of the spectrum.

The geometric progression from the unison to the octave takes 
place, according to the above, as follows: 

1 = ( 1 2√ 2  ) 0 , ( 1 2√ 2  ) 1 , ( 1 2√ 2  ) 2 , … ( 1 2√ 2  ) 1 2 = 2

This is a logarithm system with the base 1 2√2 , which stands 
for the unit of the geometric progression along the scale, where 
the logarithms are the exponents 1 , 2 , 3 , 4 , … , 1 2 . Therefore 
stepping from one tone to the next on the equally-tempered can-
on—according to the geometric progression—corresponds to 
logarithmization.

Independently of music, the set up of tables of logarithms to 
simplify calculations performed by hand may be thought of as a 
kind of artificial memory to cope with the irrational domain of 
numbers. A table of logarithms is constructed by the successive 
calculation of a series of logarithms.

In this sense, we arrive at an interesting idea that instantiates 
a bridge in time through metaphora. The construction of a table of 
logarithms in arithmetic is equivalent to tuning a musical instru-
ment according to the equally-tempered scale, where the meta-
phora from one domain to the other takes place through the ge-
ometric progression, or equivalently through a spectrum of colors.

Conclusively, the discrete integer temporal harmonics exert 
their invariance only via exponentiation, that is, via their inscrip-
tion through powers, and manifest in space, thus recognized as 
quanta of light, via logarithmization.
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This pertains both, to the series expansion of the transcen-
dental exponential function, and to its inversion by the equally 
transcendental logarithm function that recognizes the expo-
nents. The exponential function enciphers by elevating the pow-
er of the in-scripted harmonic invariants from the implicit roots 
to the exponent, which in turn, is stochastically recognizable 
through tempering, and thus decipherable on the chromatic 
epiphaneia, by the logarithm.

The geometric progression that takes place along the equal-
ly-tempered scale can be grasped geometrically in terms of a log-
arithmic spiral extending outwards from the center of the disk.

Since the progression preserves 
the octaves, the radius of the logarith-
mic spiral grows according to 2 ( θ / 2 π ) , 
where θ  denotes the corresponding 
angle, that is: 
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R = 2 ( θ / 2 π )

where R is the extending radius of the spiral across the disk. 
Thus, progressing geometrically to the first octave, denoting the 
first turn of the spiral, means that θ / 2 π = 1 , thus θ = 2 π , 
R = 2 , and so on.

The important thing to note is 
that upon completion of each octave 
in the ascent of the spiral, corre-
sponding to the geometric progres-
sion, we can descend back towards the 
center following the exponents of 2, 
that is, backwards along the stairs of 
the octaves following the arithmetic 
progression this time pertaining to 
the logarithms.

In this manner, we accomplish 
the architectural manifestation of 
the epiphaneia of the disk as the web 
of a spider—called arachne—which 
pertains to the dual understanding of 

the polar grid under progression, that is, the geometric progres-
sion outwards following the spiral radius of expansion, and the 
arithmetic progression inwards following the logarithmic stairs.

FIGURE 2.69

Architecture of the 
arachne

FIGURE 2.68
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web of a spider



119

TIME-FREQUENCY

STRUCTURE / OPERATIONS
EQUAL TEMPERAMENT

CANON
ARITHMOS

ALGORITHM

PROBABILISTIC
RE-SOLUTION
STOCHASTIC

CONTINUUM
GEOMETRY

CHROMATIC SPACE

ALGEBRA
GROUP ISOMORPHISM

ADJUNCTION

QUANTA
DISCRETUM
HARMONICS

SPECTRALITY

LOGARITHM

CHROMA

SCALARITY

CYCLE OF SYMPHONY

ROOTS OF UNIT

OBSTACLE

D
IS
TI
N
C
TI
O
N

VA
R
IA
B
LE

IN
VA

R
IA
N
C
E

EQ
U
ATIO

N

FIGURE 2.70

Natural 
communication 

scheme of quanta 
(discrete harmonics) 

via the equally 
tempered chromatic 

spectrality and the 
logarithmic scalarity

FIGURE 2.71

Equally tempered 
architectonic weave





121

	 3. 	  
� The Devil of Algebra:  

The Time Art of Adjoining and Inverting

Structure and Symbol

Algebra pertains to the structural enunciation of the 
“obstacle-embracing”, and communicative process of metaphora 
between any levels. This enunciation is formulated operation-
ally in terms of symbolic algebraic structures like groups, rings, 
modules, and categories. The notion of an algebraic symbol does 
not bear, neither the temporal connotation of a “symbolon”, nor 
the spatial connotation of a “sign”. In this manner, an algebraic 
structure maintains an independence from both the harmonic 
(symbolon), and the geometric (sign) connotation of its symbols, 
although it may properly mediate between them and abstract 
from both of them.

What constitutes a structure is defined in terms of elemental 
closure with respect to certain operations—like addition and 
multiplication—that can be, in principle, inverted within the 
same type of structure. The necessity of inverting operations 
comes from the origin of Algebra, which is the capability of un-
veiling the roots of equations.



122

An algebraic equation involves un unknown variable that 
satisfies this equation formulated in terms of operations, for in-
stance, the well-known polynomial equations. The resolution of 
an equation amounts to working backwards until a root emerges, 
which fixes the variable that satisfies the equation. In turn, work-
ing backwards consists in the ability to move terms from one side 
of the equation to the other, and thus invert operations. The in-
version of operations is the biggest stumbling block.

 In the majority of the cases, inversion cannot be performed 
directly. In these cases, the type of algebraic scalarity has to be 
extended into a more rich structural domain by means of an ad-
junction. The purpose of an adjunction is to adjoin new elements 
that make the inversion of operations possible in the new aug-
mented structural domain. The adjunction should not be ad hoc, 
but structure-respecting, in the sense that the old structure is 
not demolished, but it is embedded inside the new, such that the 
restriction of the new to the old agrees with the old.

FIGURE 3.1
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The art of inverting operations cannot be performed without 
the existence of neutral elements. Every algebraic structure bears 
a neutral element with respect to a corresponding operation. The 
notion of neutral element characterizes the identity of an alge-
braic structure with respect to the operations it carries. In other 
words, the identity of an algebraic structure is enciphered in its 
neutral element. Conversely, the criterion of equivalence that 
constitutes the identity of an algebraic structure is deciphered 
by it neutral element.

The simplest way of presentation of an algebraic structure 
is by means of a set of elements—on which certain operations 
are applied—satisfying the condition of closure. The notion of 
a set is used as an architectonic scaffolding for expressing the 
operations of a structure as operations applied to the elements of 
the scaffolding. The notion of structure is independent from the 
scaffolding of sets.

Conjugation: 
The Algebra of Metaphora

In general terms, the method of metaphora from a directly 
inaccessible, or obstacle-laden, domain X , to another domain A 
architectonically adjoined to the former, and entering into com-
munication with it, is represented symbolically as follows: 

X = SAS –1 

This relation defines X  to be conjugate to A  under S , where 
S –1 is considered to be the conceptual inverse of S .
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The algebraic expression X = SAS –1 consists of two basic or-
ganic structural parts: The first part is delineated by the two con-
ceptually inverse vertically displayed arrows S  and S –1, forming 
the outer, or architectonic part, which specifies the boundary 
of the metaphora.

It consists of a bidirectional bridge of encoding/decoding be-
tween two different levels entering into a communication to each 
other. The second part is constituted by the horizontally displayed 
arrow A , forming the inner part of the metaphora, which gives rise 
to a partition spectrum of the obstacle-laden domain. if the inner 
part A  is absent, then the outer part simply collapses since it can-
cels out. Based on this fact, we can formulate the basic properties 
of this logical conjugation scheme, which models metaphora—by 
means of a motivic key—as follows:

(1) Horizontal Extension of Metaphora in Length: This ex-
presses the property of juxtaposition, that is, if a metaphora shares 
the same encoding/decoding bridges with another metaphora, 
then they can be juxtaposed horizontally as follows:
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If X1 = SA1 S –1 and X2 = SA2 S –1  
then X1 X2  = SA1 A2 S –1

 (2) Vertical Extension of Metaphora in Depth: This expresses 
the stacking of two metaphoras arising from the substitution of 
the inner part of a metaphora by another metaphora, such that, 
the initial metaphora can be accomplished via a splitting into a 
deeper level, and so on, as follows:

If X = SAS –1 and A = TBT –1  so that X = STBT –1 S –1  
then X = (ST) B (ST) –1

FIGURE 3.3
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(3) Inversion of Metaphora: This means that if a process X  is 

conjugate to a process A  at another level under the action of a 
bridge S , then A  is conjugate to X  under S –1, as follows:

If X = SAS –1 ,  then A = S –1 XS.

Monoids of Natural Numbers

A monoid is the simplest type of algebraic structure. It involves 
a set of elements, which satisfy the condition of closure upon ap-
plication of the operations. For instance, in case the operation is 
addition, then the sum of two elements must also be an element 
of the same monoid.

We consider the set of Natural Numbers 1 , 2 , 3 , 4 … —until 
countable infinity—as abstracted from a spectrum of harmonic 
frequencies, denoted by ℕ.

FIGURE 3.5
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Cardinality and Ordinality in ℕ

Cardinality pertains to the notion of counting, while ordinal-
ity pertains to the notion of ordering. Cardinality is though of as 
a measure of the size of a set. The naturals is a countably infinite 
set. From Ordinality derives the relation of order. There exist two 
basic types of order, partial order and total order.

A binary relation R  on a set A  is a partial order if and only if it is:
(1) reflexive,
(2) antisymmetric, and
(3) transitive.
In more detail, for all a , b  and c  in P , the following hold:
a ≤ a  (reflexivity)
if a ≤ b  and b ≤ a  then a = b  (antisymmetry)
if a ≤ b  and b ≤ c  then a ≤ c  (transitivity).
The ordered pair < A , R >  is called a poset (partially ordered 

set) when R  is a partial order.
For example, the subset relation on the power set of a set, say 

{ 1 , 2 } , is also a partial order, and the set { 1 , 2 }  with the subset 
relation is a poset.

Total Ordering and Well Ordering

A binary relation R  on a set A  is a total order if and only if it is:
(1) a partial order, and
(2)  for  a ny pa i r  of  element s  a  a nd b  of 

A ,  < a , b >  ∈ R  or < b , a >  ∈ R .
We simplify the above writing a ≤ b , or b ≤ a . That is, every 

element is related with every element one way or the other. A total 
order is also called a linear order.
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The Natural numbers are totally ordered with respect to the 
less-than-or-equal-to relation (≤ ). Thus, the set of the naturals is 
a totally ordered set.

The well-ordering principle of natural numbers is ex-
pressed as follows:

Every non-empty subset of the set of all Natural numbers 
contains a least element.

Induction Principle

Suppose that S  is a statement meaningful for each natural 
number, and suppose moreover that both a) S  is true of the num-
ber 1 , and b) whenever S  is true of the number n , then S  is also 
true of the number n +1 . Then S  is true for each natural number.

Operations in ℕ

Closure of Addition + and Multiplication ⋅  in ℕ :

{ a , b } ∈ ℕ : ( a + b ) ∈ ℕ

{ a , b } ∈ ℕ : ( a ⋅ b ) ∈ ℕ

Addition is a linear operation: 1  +  2  +  3  +  ⋯  .
Multiplication is a bilinear operation—it should be thought 

of as operating on rows and columns.
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Powers in ℕ

{ a , b } ∈ ℕ : a b ∈ ℕ

The operation of raising to a natural power consists of the 
operations of multiplication and recursion.

Dependency of Operations

(+ ) < ( × ) < ( exp ) : Multiplication can be implemented via 
recursion upon addition and exponentiation (raising to a power) 
can be implemented via recursion upon multiplication.

Spectrum Quanta

The Natural numbers are Quanta that build up a spectrum 
of invariance. The discrete spectrum of ℕ  subsumes four things: 
the spectrum is well-ordered; it admits addition, multiplication 
and exponentiation.

Digital Gnomons:  
Primes and Fundamental Theorem

Primes are numbers that do not have any parts: They are 
the atoms of the arithmetic cosmos because they cannot be 
partitioned in ℕ .

Squares can be expressed as sums of primes, as it can be 
easily seen below.
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If you add a gnomon to a square, you produce again a square. 
The prime numbers appear as right angles in the Natural num-
bers, revealing the hidden Geometry inside ℕ .

Fundamental Theorem of Arithmetic

If m  is a composite natural number, then m  is the product of 
primes; that is, 

m = p1  p2  p3  ⋯  pn

where pi  is prime for 1  ≦  i  ≦  n .
If m  is a natural number other than 1 , then m  can be factored 

into the product of primes, and this factorization is unique (apart 
from the order of the prime factors).

Equivalently, we obtain the following version of the funda-
mental theorem of Arithmetic:

If m  is a natural number other than 1 , then there is one and 
only one way of expressing m  as the product 

	 m = p1
n 1  p2

n 2  p3
n 3  ⋯  pk

n K

where the exponents n1 , n2 ,  …  nk  are natural numbers, and 
p1 , p2 ,  …  pk  are primes arranged so that p 1  <  p2  <  ⋯  <  pk

FIGURE 3.6
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Language of Algebra

Algebra is the mathematical domain pertaining to struc-
ture—defined by means of operations—and the solution to equa-
tions. The language of algebra is multi-faceted and provides the 
most refined way of expressing the notions of equivalence and 
invariance in structural terms.

Algebraic language permeates through the whole history of 
human thinking in relation to its expression in symbolic terms. 
In this manner, we distinguish among mythological, rhetorical, 
and symbolic algebra. The latter is further refined in terms of 
equational, abstract, and universal—or categorical—algebras. 
A broad scheme of qualifying this proposition appears in the 
following diagram:

For the algebraic resolution of equations it is necessary to 
have a precise symbolic language consisting of a syntax and a 
grammar. Only in this case the notion of structure—based on 
the operations and expressed by means of a scaffolding—acquires 
an invariant meaning. The symbols—including the variables and 
the coefficients—and the algebraic signs participate in the syn-
tax. The operations—the rules of closure -, and the equilibria—
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the equality between the two parts of an equation -, participate 
in the grammar. 

Let us suppose that an equation involves the operations of 
addition and multiplication. In order to proceed to its resolution 
we need neutral elements with respect to both operations. Oth-
erwise, it becomes impossible to move terms from one side of the 
equation to the other until a root of the equation emerges. The 
existence of neutral elements allow to perform inversion of the 
operations appropriately. Inversion is what abstractly underlies 
the process of moving back and forth in resolving an equation. 
This may be though as a process of breathing, which if repeated 
twice leads us back to the same side.

Group Structure on the Integers

The inverse operation to addition, that is, the operation of 
subtraction cannot always been performed for natural numbers. 

FIGURE 3.8
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Indeed, the difference 1 – 2  is not a natural number. Let us con-
sider this operation in some details.

By definition, a – b  is a unknown number x  such that x + b = a . 
In other words, a – b  is a solution to the equation 

x + b = a

and the absence of a natural number 1 – 2  translates to the 
absence of solutions for x + 2 = 1 .

We construct the group of the integers as an algebraic ex-
tension of the monoid of the naturals—under the operation of 
addition—in order to be able to express the solution to equations 
of the above simple form. Note that this is not only an extension 
of our arithmetic domain, but it also a structural extension, since 
starting from a monoid we accomplish the solution through the 
structure of a group.

Simply put, the group structure is more powerful because 
the inversion of addition—required for the solution of the above 
equation—that is, subtraction can be carried out in the integers, 
meaning that the integers are closed under subtraction.

This is the major characteristic of every group structure. 
Namely, the operation defining a group can be inverted, such 
that the result is located within the same group. This is called the 
closure algebraic property. The feasibility of this depends on the 
existence of a neutral element, such that operating with the neu-
tral element on every other element it leaves the latter invariant.

In this sense, the neutral element with respect to the opera-
tion of the group, constitutes the algebraic identity of the group. 
Furthermore, the existence of the neutral element secures that for 
every element exists an inverse element, such that their compo-
sition under the operation yields the neutral element. Currently, 
we restrict our attention to the notion of a commutative group. 
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For instance, the sum of two integers is the same irrespective of 
the order in which they are added together.

We focus again to the solution to the simple equation 

x + b = a

stressing again that the absence of the natural number 1 – 2  in-
dicates that the equation x + 2 = 1  cannot be solved within the 
additive monoid of the naturals.

But, it is easy to figure out that the solution to the 
equation x + 2 = 1  is the same as the solution to the equa-
tion x + 3 = 2 ,  x + 4 = 3 , and so on. This is a clear indication that 
we have to consider all these equations as equivalent, in the sense 
that their solution is the same.

Equivalence Relation and Partition Classes

For this purpose, we need to able to express the relation of 
equivalence using the architectonic scaffolding of set theory, 
since our elements are represented through the notion of a set. An 
equivalence relation [ ∼ ] : on a set of elements—independently of 
what these elements stand for—is defined in terms three proper-
ties: Reflexivity, symmetry, and transitivity.

Reflexivity: a ∼ a  (everything is equivalent to itself );
Symmetry: a ∼ b ⇒ b ∼ a  (if a  is equivalent to b , then b  is 

equivalent to a );
Transitivity: ( a ∼ b , b ∼ c ) ⇒ a ∼ c  (if a  is equivalent to b  and 

if b  is equivalent to c , then a  is equivalent to c ).
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An equivalence relation partitions our initial sets of elements 
into equivalence classes. Each equivalence class defines a block 
or cell of this partition. Imagine a set that has infinite elements. 
An equivalence relation is able to partition the set into a finite 
number of blocks. All elements that are equivalent to each other 
with respect to this relation are located within the same block.

The economy of a partition rests on the fact that knowledge 
of a single element in a block is sufficient to characterize the whole 
block. All the blocks of the partition are mutually exclusive and 
jointly exhaustive.

Each block of a partition, or each equivalence class, is com-
pletely characterized by means of a single representative. This 
is the case because every other element located within the 
same block of this partition is equivalent to this single repre-

FIGURE 3.10
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sentative. Note that every element of a partition block can play 
the role of a representative of this block. This is precisely the 
idea that we are going to apply in order to figure out the solu-
tion to all equivalent equations of the form x + b = a , for in-
stance, x + 2 = 1 ,  x + 3 = 2 ,  x + 4 = 3 ,  and so on.

Construction of the Integers from the Naturals

Every such equation is determined by an ordered pair of nat-
ural numbers ( a , b ) . We cannot, however, think of an integer 
as such a pair, because different equations may have the same 
solution, as we already pointed out. Thus an integer should be a 
set of these equations which have the same solution, or, equiva-
lently, a set of ordered pairs ( a , b ) . This consideration motivates 
our construction.

We consider the set ℕ × ℕ ≡ ℕ ⊗ ℕ  of ordered pairs of natural 
numbers. Consider the relation ∼  on this set defined by 
( m , n ) ∼ ( p , q ) , if and only if: 

m + q = n + p

The relation ∼  is an equivalence relation. We define the set of 
integers as follows: 

ℤ= ℕ × ℕ / ∼

NEGATIVE INTEGERS POSITIVE INTEGERS

0 +1 +2 +3 +4-1-2-3-4

FIGURE 3.11
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We think of the pair ( m , n )  as the “difference m – n ” that 
solves the equation: 

x + n = m

The solution is an equivalence class of the partition defined by 
the above equivalence relation. Thus, an integer is an equivalence 
class of ordered pairs of natural numbers, which we denote by the 
symbol [ ( m , n ) ] ∼ .

By ordering the Naturals along a line directed from left to 
right, we devise a mirror placed in such a position in the extension 
of this ordering line to the left such that every Natural acquires a 
mirror image reflection and the order is inverted.

The mirror specifies the position of the neutral element 0—
the cipher under addition—such that, all Naturals are duplicated, 
and each copy bears a minus signs. In this sense, the Integers 
include the 0, the positive, and the negative Naturals.

The adjunction of the duplicate copy of the Naturals to the 
original is described by the direct sum of these copies ℕ ⊕ ℕ , 
which is identified, in this case, with their product ℕ ⊗ ℕ .

All integers generate a set of elements, but we should be able to 
extend the operations of addition and multiplication to this new 
set in order to preserve the algebraic structure.

First, note that an integer n ∈ ℕ  is identified with the equiva-
lence class [ ( n , 0 ) ] ∼ . Indeed, n  is the solution of x + 0 = n . This 
identification allows us to consider ℕ  as a subset of ℤ .

The zero 0  is the cipher that will play the role of the neutral 
element in the set of the integers—endowed with the operation 
of addition—which can be inverted within the same set. In this 
sense, the set of the integers is closed with respect to the operation 
of addition, and its inverse, the operation of subtraction. Further-
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more, for each integer, there exists a unique inverse integer with 
respect to the neutral element 0 .

Under these conditions the integers is not only a set, but bears 
the algebraic structure of a commutative group under the oper-
ation of addition, and its inversion, the operation of subtraction. 
This group is called a commutative group because addition is a 
commutative operation, in the sense that the order in which two 
integers are added can be reverted giving precisely the same sum.

If we use the representation of integers as equivalence classes, 
according to the above construction, then addition is defined by: 

[ ( m , n ) ] ∼ + [ ( p , q ) ] ∼ = [ ( m + p , n + q ) ] ∼

Clearly, we may use the same representation of the integers to 
define the operation of multiplication. Recall that this is a bilinear 
operation, which is defined as follows:

[ ( m , n ) ] ∼  [ ( p , q ) ] ∼ = [ ( m p + n q , n p + m q ) ] ∼

It is easy to assure that both of them are well-defined operations.
Furthermore, the operations of addition and multiplication 

defined on the integers ℤ coincide with the usual operations of ad-
dition and multiplication under restriction to the naturals ℕ ⊂ ℤ .

Distributive law

There is a relation between addition and multiplication for 
natural numbers, namely the identity: 

a ( b + c ) = a b + a c
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holds true for any a ,  b ,  c  in ℕ . The same identity, called the 
distributive law between addition and multiplication, holds true 
for any a ,  b ,  c  in ℤ .

Integer Partition Spectrum

Recall that the purpose of extending the scalars from the 
natural numbers to the integers was the ability to solve equa-
tions of the form 

x + b = a

Let us now verify that this is accomplished in the integers. 
Indeed, for any integers: 

a = [ ( m , n ) ] ∼ ∈ ℤ     and    b = [ ( p , q ) ] ∼ ∈ ℤ

the above equation has solution: 

x = [ ( m + q , n + p ) ] ∼  ∈ ℤ

We may elaborate the above in more detail as follows: 

x + b = [ ( m + q , n + p ) ] ∼ + [ ( p , q ) ] ∼ = 
[ ( m + q + p , n + p + q ) ] ∼ = [ ( m , n ) ] ∼

where the last equality is implied by 
( m + q + p , n + p + q ) ∼ ( m , n ) . This allows us to consider the 

subtraction of the integers: 

[ ( m , n ) ] ∼ – [ ( p , q ) ] ∼  = [ ( m + q , n + p ) ] ∼
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for any naturals m , n , p , q ∈ ℕ  as the inverse operation to 
addition, and simply write: 

x = a – b

for the solution of x + b = a .
Every integer number can be represented by infinitely many 

pairs under the addition of a natural with the mirror image (in-
verse) of another natural, for instance: 

– 2 = 5 – 7

– 2 = 3 – 5

All right sides of these equations must be equivalent because 
they all give the same result. In this way, we have to think of every 
integer as the representative of a block spectrally identified by all 
such pairs that through this equation give the same integer result.

We grasp every block through a single representative of this 
block, identified as such by an integer. All the blocks are independ-
ent from each other but the union of all the blocks gives rise to the 
whole partition spectrum.

Notion of Quotient Structure

Having reflected all the Natural numbers across the cipher 
0, and after adjoining the duplicate copy to the original, that 
is ℕ ⊕ ℕ , the partition spectrum of the integers—blocks of the 
partition—is expressed by the quotient of ℕ ⊕ ℕ  by the equiva-
lence relation ∼ .
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This amounts to the modular substitution of each pair as 
above with the unique representative integer they give rise to, 
expressed as follows: 

( ℕ ⊕ ℕ ) / ∼ = ℤ

where ℤ  is the spectrum of the integers.
The important issue here is that in this new arithmetic spec-

trum ℤ  we are able not only to perform addition, but also to invert 
it, that is perform subtraction, remaining within the same arith-
metic domain. This is due to the existence of the cipher 0 , and 
consequently, the existence of an additive inverse for each integer.

Note that the set ( ℕ ⊕ ℕ ) / ∼ = ℤ  has to be re-instated as a new 
entity in the domain of algebraic structures. This new entity ex-
tending the monoid of the Naturals under addition is the group of 
the Integers, which is closed under both the operation of addition 
and its inversion, the operation of subtraction: ( ℤ , + , – ) .

The group of the integers subsumes algebraically, and thus 
structurally, the invariants of the praxis of counting multitudes. 

FIGURE 3.12
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Commutative or Abelian Group

A Group is a structure that is expressed in terms of closure 
with respect to an operation (to be though of in terms of addition 
in the present case). This operation can be inverted (to be thought 
of in terms of subtraction in the present case) due to the existence 
of a group identity element (a cipher called the neutral element of 
the group). The solution of an equation involves and requires the 
group-theoretic structure in an essential way.

Commutativity of Addition (+)  defines a Commutative or 
Abelian Group: a + b = b + a  for every a , b . Note that not all pos-
sible operations giving rise to a group structure have the commu-
tativity property.

Neutral Element 0 : a + 0 = 0 + a = a .
Existence of Inverses: a + ( – a ) = – a + a = 0  for every a .
The notion of a group-theoretic structure has been conceived 

by Galois. The major idea is that underneath every equation there 
is always a pertinent algebraic group structure that determines 
its roots/solutions.

Commutative Action of a  
Group and Symmetry

The algebraic structure of a group 
should be thought of in an energet-
ic way. A group is a structure which 
is acting on a set, or more generally, 
on a space, and its action gives rise 
to a partition.

FIGURE 3.13

The seed of a spectral 
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algebraic group
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In this sense, the notion of a partition is emergent from the 
action of a group structure. Therefore, the blocks of the partition 
under this action are identified with the orbits of the correspond-
ing group action.

We may formulate it concisely as follows: The idea of an 
algebraic group is the seed of a spectral partition effected by the 
symmetry action of this group.

The notion of a group action elaborates the notion of an equiv-
alence relation, since equivalence classes of this relation are iden-
tified with the orbits of the corresponding group action. Thus, we 
obtain a threefold conceptual identification among equivalence 
classes, partition blocks, and orbits of a group action.

Finally, orbits of a free and transitive group action on a space 
may be thought of in terms of the fibers of a fibered geometric 
structure, called a fiber bundle, which locally is expressed as a 
product, according to the following diagram:

 The notion of a group action constitutes an expression of the 
notion of symmetry, in the sense that all elements in the orbit of 

FIGURE 3.14
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a group action are symmetric to each other. Reciprocally, we may 
say that a partition block, or an equivalence class, is represented 
by a single element—the representative—because all other ele-
ments in the same block, or in the same class, are symmetric with 
the representative.

Ambiguity— 
Objective Probability— 

Information

We revert our perspective and imagine that we start from a 
partition under an unknown group action. The partition consists 
of mutually exclusive and jointly exhaustive blocks. Each block of 
the partition manifests a state of ambiguity, since the elements of 
the block are not distinguishable from each other.

The notion of indeterminacy, or indistinguishability, pertain-
ing to a partition block formed under an unknown group action 
leads to the notion of objective probability.

Imagine a block of a partition spectrum as a cloud. Ambigu-
ity in constituency amounts to objective probability. The latter 
is totally different notion from the one that refers to subjective 
probability, which in turn, pertains to a mere lack of knowledge. 
This means that, in principle, the elements of a partition block are 
distinguishable, but due to various reasons, like combinatorial 
complexity, there is lack of exact knowledge.

In the above sense, the structural action of a group on a bare set 
of elements, under which a partition spectrum may be obtained 
has two consequences:

The first is that the elements of this set are subordinate to 
a symmetry condition. The orbits of the group action express 
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precisely this symmetry condition. All the elements in an orbit, 
or a block of the induced partition, are symmetric to each other;

The second is that all symmetric elements under a group 
action are indistinguishable to each other. Thus a block of a par-
tition subsumes an ambiguity structure that is objectively inde-
terminate constitutively. Consequently, an orbit of an unknown 
group action is amenable to an objective probabilistic treatment.

This leads to the rather peculiar relation between symmetry 
and information. According to the above, complete symmetry 
amounts to null information, since everything is indistinguish-
able from anything else. Reciprocally, complete lack of symmetry 
amounts to maximal information, since all elements are sharply 
distinguishable.

As a consequence, the notion of a set, as a scaffolding, engulfs 
in its conception the assumption of sharp distinguishability of 
its elements, thus starts from the assumption of maximal infor-
mation and zero symmetry. On the antipode is the notion of the 
totally indiscrete partition. This is a state of maximal symmetry, 
since all elements are symmetric and indistinguishable to each 
other, and therefore null information.

FIGURE 3.15
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Integer Modular Arithmetic

On keeping the time during a day on 
a clock with 12 hours division, the in-
dexes 3 and 15 are in the same 
equivalence class: 

15mod12 = 3

The modularity is imposed by the 12 
hours partition.

 The Euclidean algorithm of division runs as follows:

A = k ⋅ Z + B

where Z  is the modulus, B  is the residue, and k is an integer that 
counts how many times the modulus fits within A . For example: 
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25 = 2 ⋅ 12 +1

The algorithm says that A  is equivalent, or congruent, with the 
residue B , with respect to the modulus Z .

In this sense, modularity in integer arithmetic pertains to the 
relation that finds out how many countable times the modulus fits 
inside a greater number and what remains. The given number is 
congruent to the residue with respect to the modulus.

Modularity is expressed as a quotient with respect to the re-
spective relation of equivalence which inherits and preserves, 
both the group structure of the integers—under addition and 
its inversion—and the monoid structure of the naturals under 
multiplication.

Extension of Scalarity from  
the Integers to the Rationals

Multiplication is an essential operation that can be performed 
on the integers endowing them with the closed structure of a 
multiplicative monoid. Division, the inverse operation to multi-
plication, is nevertheless not a total operation on integers, mean-
ing that applying this operation the result, in general, lies out-
side the integers.

The objective is to extend the resolution of our spectral sca-
larity into a novel domain—including the integers—in which 
division, and thus the capability to form ratios, can be achieved. 
This novel domain should be closed with respect to both the op-
erations of addition and multiplication as well as their inversions, 
that is subtraction, and division.
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Therefore, the objective is to construct the algebraic field of 
the rational numbers, which consists of two separate group struc-
tures, the fist under addition, and the second under multiplica-
tion, such that multiplication is distributive over addition. If this 
is accomplished, then the novel domain of numbers, the Rationals 
ℚ , should be a field.

A field constitutes an algebraic body of knowledge, thus 
the field-structure of the Rationals gives rise to a rational body 
of knowledge. In turn, this determines the depth of our spec-
tral scalarity in unraveling relations, and invariants, in the 
Arithmetic Cosmos.

The Field of the Rationals should be thought of in terms of the 
following two group structures:

Group ( ℚ ; + , – ) ⊕  Group ( ℚ ; × , : )  ⇒  Field ( ℚ ; + , – , × , : )

The resolution of the problem of making the operation of 
division total requires the extension of this multiplicative do-
main into a new domain of numbers, where the required inverse 
operation can be always implemented. This means that we seek 
an appropriate extension of the initial closed structure (Integers) 
with respect to the operation of multiplication into a new struc-
ture (Rationals) being closed with respect to both multiplication 
and its inverse operation of division.

For this purpose, it is necessary to devise the architectonic 
encoding/decoding bridges and elaborate the corresponding par-
tition spectrum, according to the general pattern characterizing a 
metaphora, for the construction of the rationals from the integers, 
or equivalently, for the algebraic extension of the scalars from the 
integers to the rationals. We remind that the rationals constitutes 
the set of all fractions a / b , where a  and b  are integers, and b ≠ 0 , 
obeying the relation:
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a / b ≡ c / d

if the following holds: 

a ⋅ d = b ⋅ c

which makes invertible every non-zero element of the integers.
The crucial insight guiding the architectonics of the meta-

phora we look for is that the set of the non-zero elements of the 
integers is multiplicatively closed. Therefore, the task of this struc-
tural metaphora is to make every element of the multiplicative 
closed subset of non-zero integers invertible, such that the new 
structure of numbers obtained in this manner, fulfills the fol-
lowing objectives:

First, it bears a structural similarity to the initial domain of 
numbers, meaning that it is also a commutative ring with respect 
to the operations of addition and multiplication;

Second, the operation of division (inverse to multiplication) 
can be performed by the inverses of the non-zero integers. Third, 
the initial domain of numbers together with their arithmetic can 
be embedded in the new one.

We consider the commutative and unital ring of integers ℤ 
and let S ⊆ ℤ  be the multiplicative closed subset of non-zero in-
tegers. The first step is to set up a directed bridge from the level of 
commutative unital rings to the level of sets, encoding the process 
of extending the underlying set-theoretic domain of integers ℤ in-
to a new domain formed by the cartesian product of sets ℤ × S .

Note that the ordered pairs of integers ( a , s )  with s ≠ 0 , are 
not supposed to have any a priori structure, since their existence 
is required at the level of sets by means of the encoding directed 
bridge connecting the involved structural levels.

In the set ℤ × S  we define the following binary relation: 
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( a , s ) ⋄ ( b , t )

if and only if there exists v  ∈  S  such that: 

v ( at – bs ) = 0

The relation ⋄  is an equivalence relation, partitioning the set 
ℤ × S  into equivalence classes.

This gives rise to a partition spectrum whose blocks or cells 
are these equivalence classes. We will denote the partition spec-
trum, that is the quotient set by ℤS , and the equivalence class 
of ( a , s )  by the fraction symbol a / s . Thus, the quotient set ℤS 
contains elements which can be interpreted as fractions, bearing 
the semantics of numbers allowing division by non-zero integers.

The structural metaphora is completed by setting up an in-
versely directed decoding bridge from the level of sets to the level 
of commutative unital rings (where the unit 1 would play the role 
of the multiplicative cipher), effectuating the circulation around 
the obstacle of division as follows: We set 

a / s + b / t : = ( ( ta + sb ) ) / st

a / s ⋅ b / t = ab / st

for every a / s ,  b / t  ∈  ℤS .  The operations are well defined and 
endow ℤS  with the structure of a ring. The zero and unit elements 
are, respectively, 0 / s  and s / s , for every s  ∈  S .

Finally, we define the canonical homomorphism (struc-
ture-preserving mapping) of rings 

h : ℤ→ℤS
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given by h ( a ) = a / 1 , for every a  ∈  ℤ .
Note that for any s  ∈  S  we have that 1 / s  is the inverse of h ( s ) 

in ℤS . Hence, ℤS  is the smallest ring containing ℤ , in which every 
element of the multiplicative closed subset of non-zero integers 
S  is invertible.

Thus, the extension of scalarity of the commutative and uni-
tal ring of the integers ℤ  with respect to the multiplicative closed 
subset of non-zero integers, is accomplished by means of this 
structural algebraic metaphora.

FIGURE 3.18
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Structural Metaphora:  
Adjunction—Partition—Quotient

First, we observe that the encoding of the underlying set-theo-
retic domain of ℤ , into the new extended domain ℤ × S : = ℤ ⊕ S , 
takes place by means of extending the scalars of ℤ  with respect 
to the scalars of the multiplicative closed subset S  of ℤ , that is, 
by injecting ℤ  into ℤ × S .

Second, the level of sets should be thought of in terms of an un-
derlying architectonic scaffolding adjoined to the upper structural 
level, such that a partition spectrum can be obtained. More pre-
cisely, at the level of sets the operational role of the distinguished 
part S  of ℤ  appears through the equivalence relation defined on 
the set-theoretic domain ℤ × S .

Any suitable criterion of indistinguishability R  must lead 
to a partition of ℤ × S  into disjoint classes, that is, the blocks of 
the partition, bearing the relation R , and hence R  must be an 
equivalence relation.

In this manner, an equivalence class modulo R , consists of all 
the elements of ℤ × S , indistinguishable with respect to R , and 
thus equivalent.

More specifically, the indistinguishability relation R imposed 
on ℤ × S , requires that the pair of integers ( va , vs )  should be 
equivalent as ( a , s )  for any non-zero integer v , under the inter-
pretation of the equivalence class (partition block) of the repre-
sentative ( a , s )  by the fraction symbol a / s .

Note that the equivalence classes ( a , s )  are metaphorically 
interpreted as fractions a / s , being now elements of the partition 
spectrum, by which we mean the quotient set ℤS . It is important 
to notice that consequent to the transition from ℤ × S  to ℤS  is the 
replacement of equivalence modulo R  by equality (isonomy and 
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identification due to indiscernibility of the resolution spectrum) 
in the quotient ℤS .

Third, the structural metaphora is completed by means of the 
inversely directing bridge from the level of sets back to the initial 
level of commutative and unital rings.

The semantic aspect of this bridge amounts to a re-casting 
of the elements of the quotient set ℤS , as elements of a new ring, 
viz. as elements of the same closed structural genus as the initial 
one ℤ, where the obstacle of division resides. This is accomplished 
by extending architectonically the addition and multiplication 
operations referring to fractions.

The extension takes place according to the principle that the 
new operations should incorporate and reproduce the effect of 
the old ones, when restricted to the old elements.

In turn, this guarantees the naturality of the established com-
munication. It neither destroys, nor de-constructs the algebraic 
structure of the integers, as an act of barbarism, but it extends it to 
the more rich algebraic structure of the rationals, where division 
can be performed without obstruction, and in which the former 
structure of the integers is preserved via embedding.

The Bridges of Forgetfulness  
and Remembrance

The most important characteristic of the process of extension 
of an algebraic structure by means of metaphora—through the 
architectonic scaffolding of sets—is that the encoding and decod-
ing bridges bear some particular meaning that is worth focussing 
on. More concretely, the encoding bridge is always a forgetful 
bridge—referring to the initial algebraic structure, whereas the 
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decoding bridge is a remembrance (anamnesis) bridge that re-es-
tablishes the algebraic structure at the initial level.

The reason is that the algebraic criterion of identity, meaning 
the neutral element, or cipher, through which inversion becomes 
possible is established in terms of a regular equivalence relation 
at the level of a partition spectrum, and then, the algebraic struc-
ture is synthesized in a suitable way. In this way, the extended—
through adjunction—algebraic structure, incorporates the initial 
one and does not discard it. This means that the restriction of the 
extended structure at the initial one agrees with it.

Moreover, the extension of an algebraic structure in the above 
manner, always emerges from the necessity to solve an algebraic 
equation. For instance, the extension necessitated by the require-
ment to determine the algebraic structure, where the inverse op-
eration to multiplication becomes a feasible operation, emanates 
from the necessity to solve an equation by means of division.

From this perspective, a structural algebraic metaphora pro-
vides the means to evade the obstacle preventing the solution of 
an algebraic equation by means of inverting the operation in the 
initially specified algebraic domain.

Modular Substitution of Neutral Element:  
The Evasion of Self-Reference

From the perspective of modular substitution, the most im-
portant issue that arises in the algebraic context of thinking is the 
following: How it becomes possible for a metaphora to take place 
within the same algebraic structural genus—for example, groups 
or rings—such that no self-referential paradox arises? Actually, it 
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is precisely the possibility of metaphora within the same algebraic 
genus that can evade self-reference indirectly.

For this purpose, we will make use of the framework of bare 
sets, not in its role as a foundation, but in its role as an architec-
tonic scaffolding. Up to present, it has become evident that a set 
can be related to a distinguished part of it by the imposition of a 
relation on their jointly formed cartesian product with respect to 
a characteristic of equivalence that leads to a partition spectrum.

The metaphora taking place for the realization of this spec-
trum may be abstracted as follows:

Initially, we assume that a set of elements—considered as an 
object within the genus—or category—of sets (characterized by 
the membership relation), can relate to itself by separation of a 
well-defined part of it, that is, a subset bearing some particular 
characteristic for the initiation of a partition.

In turn, a criterion of equivalence is applied to the extended 
set obtained from the initial one—by adjoining the distinguished 
part—which delineates equivalence classes. Finally, using the 
quotient construction, we collapse the extended set into a new 
set that bears the modularity of the imposed relation.

This is possible if the following conditions are met:
First, if the initial set can split its substance between two in-

ternal levels, which we call hypostases, within the same genus;
Second, if the imposition of a similarity relation on the ex-

tended set partitions it into equivalence classes, forcing in this 
way an indiscernibility relation pertaining to the blocks of the 
corresponding partition.

Third, if the equivalence classes of the partition can be re-in-
terpreted as elements of a new set, namely the quotient whose 
elements are the blocks of the partition.
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This is significant because a metaphora taking place within 
the same structural genus—through the scaffolding of the cate-
gory of sets—is equivalent to an indirect self-referential relation 
within this genus. Most interestingly, this relation is not paradox-
ical, since it pertains algebraically to the criterion of identity of 
an algebraic structure—that is, to the specification of the neutral 
element that enciphers a modular criterion of equivalence.

The crucial idea is that an equivalence relation giving rise to a 
partition spectrum is transcribed to equality in the quotient. In 
this way, it gives rise to a new neutral element that embodies the 
criterion of equivalence. Thus, structures within the same alge-
braic genus communicate homomorphically in a structure-pre-
serving way by embodying distinct neutral elements. This is what 
characterizes the economy of the corresponding genus.

Consider two inverse internal bridges operating within the 
same algebraic genus as follows: The first bridge carries out the 
extension process of an object of this genus to another level of 
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hypostasis, which takes place by adjoining to it a distinguished 
part of itself delineated by means of some criterion of similarity.

At the new level, an appropriate equivalence relation on the 
extended object implements this criterion of similarity. As a re-
sult, we end up with a partition spectrum consisting of equiva-
lence classes. These classes are the blocks of the partition, and 
each block contains all elements indiscernible with respect to 
the imposed criterion.

Finally, an inverse bridge performs the transition back to the 
initial level, qualifying the equivalence relation into an equal-
ity (identity) of elements in the quotient set, which appears at 
the initial level.

From the perspective of the set-theoretic scaffolding employed 
for this type of metaphora, if two elements α  and β  of the aug-
mented—by adjunction—set are equivalent with respect to an 
equivalence relation R , that is, αRβ , then their images inside the 
quotient set, interpreted as new elements—identified with the 
partition blocks of this relation—are identical, that is: 

[ α ]R = [ β ]R

Homomorphism and Modulation  
of Neutrality by Ideals

The minimum requirements for an algebraic structure, em-
ploying a set-theoretic scaffolding for its description, is the exist-
ence of a set S  with an equality relation, endowed with a binary 
law of composition, that is, a single-valued function of pairs α , β 
such that αβ  is in S  for α , β  in S . Using this composition law, we 
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can define a criterion of similarity, which gives rise to an equiva-
lence relation R  on S .

The appropriate use of this scaffolding in the case of algebraic 
structures, for instance in the case of groups, requires that an 
operation ⊙ —like addition or multiplication—is defined on Σ 
based upon the composition operation in S . If this is feasible, we 
call the equivalence relation R  on S , a regular one.

The idea is that a regular equivalence relation applied to the 
scaffolding will provide the means of specification of the corre-
sponding neutral element of the quotient structure. At the alge-
braic level of structure, the quotient will be a natural homomor-
phic image of the original, incorporating the modularity imposed 
by the equivalence as a new neutral element.

Thus, the process of modulating a group S  with the aid of a 
regular equivalence R  produces a homomorphic—that is, struc-
ture preserving—image Σ  of S  that is also a group.

This is how the structural specification of the algebraic genus 
is preserved under modulation. Conversely, given a homomorphic 
image Σ  of S , there is defined a partition, and therefore, an equiv-
alence relation R  on S . Moreover, the homomorphism property 
implies that R  is a regular equivalence relation.

In a nutshell, we conclude that in the case of groups, the prob-
lem of finding all homomorphic images of S  reduces to that of 
finding all regular equivalence relations over S .

We consider the general case of a non-commutative group. 
This means that the result of its operation on elements of the 
underlying set is not preserved by exchanging the order of the 
elements, that is: 

ab ≠ ba

for any elements a , b .
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The modular substitution under metaphora in this case, that 
is what makes possible the quotient construction is a subgroup N , 
called a normal subgroup of S , satisfying: 

xN = Nx

for all x  in S . Thus, a regular equivalence relation R in S stems 
from a normal subgroup N  of S , that is a subgroup remaining in-
variant under conjugation, meaning that N = xNx -1  for all x  in S .

Conversely, a normal subgroup of S  defines a regular equiv-
alence relation on S . Now, if N  is a normal subgroup of S , then 
the blocks xN  form a group with the following composition 
rule of closure: 

αN ⊙ βN = αβN

The resulting quotient Σ = S / N  is a group homomorphic 
to S and constitutes that group, which collapses the normal sub-
group N  of S  to the identity of Σ .

In other words, the neutral element of Σ  is the whole normal 
subgroup N . It enciphers the modularity of Σ  with respect to S 
through its neutral element—identified with N .

Conversely, every homomorphic image of S  can be duplicated 
by such a quotient group, thus becoming isomorphic to it. This 
means that its structure is indistinguishable from the structure of 
the latter, meaning that these groups are equal and indiscernible 
within their genus.

In this manner, indirect self-referential metaphora between 
algebraic structures of the same genus is not only feasible, but 
it reveals the process that gives rise to the neutral element of 
such a structure.
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More concretely, the metaphora in this case transcribes a reg-
ular equivalence relation on the underlying set scaffolding to a 
structural comparison morphism—a homomorphism—that is 
either an isomorphism or it is a quotient with respect to a kernel, 
identified as a normal subgroup—in the case of groups. This ker-
nel emerging in a structure-preserving way defines the neutral 
element of the quotient.

In particular, referring to the algebraic genus of groups, we 
have the following:

Let S  and T  be groups and let ϕ  be a group homomorphism 
from S  to T . If eT  is the neutral element of T , then the kernel 
of ϕ is the subset of S  consisting of all those elements of S  which 
are being mapped by ϕ  to the element eT : 

Ker ( ϕ ) = { x ∈ S : ϕ ( x ) = eT }

Since a group homomorphism preserves neutral elements, the 
neutral element eS  of S  must belong to Ker ( ϕ ) .

By the preceding analysis, it turns out that Ker ( ϕ )  is actually 
a normal subgroup of S .  Thus, we can form the quotient group 
S / Ker ( ϕ ) , which is naturally isomorphic to Im ( ϕ ) , that is, the 
image of ϕ , which is a subgroup of T .

Analogously, in the case of rings with a unit element we 
have the following:

Let S  and T  be rings and let ϕ  be a ring homomorphism 
from S  to T . If 0T  is the zero element of T , then the kernel of ϕ is 
the subset of S consisting of all those elements of S which are being 
mapped by ϕ  to the element 0T : 

Ker ( ϕ ) = { x ∈ S : ϕ ( x ) = 0T }



161

Since a ring homomorphism preserves zero elements, the zero 
element 0S  of S  must belong to the kernel.

It turns out that, although Ker ( ϕ )  is generally not a subring 
of S , since it may not contain the multiplicative identity, it is nev-
ertheless a two-sided ideal of S . Thus, we can form the quotient 
ring S / Ker ( ϕ ) , which is naturally isomorphic to Im ( ϕ ) , that is, 
the image of ϕ , which is a subring of T .

The notion of ideal in the theory of algebraic rings has been 
introduced by Dedekind. If we think of the two operations that 
a ring carries as addition and (non-commutative) multiplication, 
then a two-sided ideal is a subgroup with respect to addition, 
such that each of its elements absorbs—under multiplication 
from the left and from the right—all the elements of the ring 
within the ideal.

Powers and Double Invertibility:  
Extraction of Roots and Logarithms

It is well known that the notion of raising to a power is defined 
by recursion on the operation of multiplication. The complexity 
in the notion of a power is that it involves two numerical entities 
assuming different operational roles.

More concretely, we have the base of the power and the power 
itself, such that the operation of raising the base to a power is not a 
commutative operation, meaning the result is not invariant under 
exchanging the roles of bases and powers.

In this sense, the non-commutativity appearing for the first 
time algebraically in the procedure of raising a base to a power, 
necessitates the consideration of two distinct inverses, i.e. one 
referring to the base, and the other referring to the power.
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If we call this non-commutative operation with respect to 
the base and the power as the operation of exponentiation, then 
its inversion is twofold: Inverting with respect to the base is the 
procedure called root extraction, whereas inverting with respect 
to the power is the procedure called logarithmization.

This should be contrasted with the commutativity of multi-
plying numerical entities and the uniquely defined inversion of 
the operation of multiplication, giving rise to the operation of 
division, and the extension of the integers to the rationals.

 Therefore, two distinct types of metaphora are needed in 
order to invert exponentiation:

The first, referring to the powers with respect to a base ne-
cessitates the extension of the field structure of the rationals to 
the field structure of the reals. In this manner, logarithmization 
becomes a total operation in the domain of real numbers.

The second, referring to the roots, necessitates the extension 
of the field structure of the rationals to the field structure of the 
complex numbers, if we include the roots of negative numbers.

Both of these inversions are unified in the field domain of the 
complex numbers under the notion of the complex logarithm. 
It is important to highlight that both of these inversions are not 
purely algebraic, but necessitate topological arguments for the 
effectuation of the respective metaphoras. The first requires an 
argument of continuity, whereas the second requires additionally 
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a topological argument in relation to the obstacle of non-sim-
ple connectivity.

First, we consider real logarithmization in functional and 
algebraic terms. If we consider that b  is any positive natural base 
different from the unit 1 , then the exponentiation equation: 

by = x

where x > 0 , is solved in terms of y  by logarithmization, that is: 

y = logb x

Equivalently, the power y is expressed as the real logarithm of 
x in the base or root b .

It is clearly not allowed to take the real logarithm of zero or a 
negative number.

If we think of by  as a function of y , then this function is a 
continuous (and differentiable) function of the variable y , 
whose inverse is the continuous (and differentiable) real loga-
rithm function: 

x ↦ logb x = y

It is significant to highlight this necessary topological qual-
ification for accomplishing this inversion. In turn, this requires 
the structural extension of the scalars from the rationals to the 
reals, through the incorporation of the irrationals, interpreting 
for instance the meaningful convergence to limits of sequences 
(convergence through exhaustion) pertaining to real analysis.

The real logarithm function is characterized as the unique 
monotonically increasing function from the domain of the posi-
tive non-zero reals to the codomain of all the reals, such that 
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logb b = 1

logb ( y1 ⋅ y2 ) = logb y1+ logb y2

The important fact here is that the real logarithm function 
converts multiplication of positive non-zero reals to addition 
of reals and it is order preserving. This provides the insight that 
the real logarithm plays the role of an architectonic bridge for 
the communication of the multiplicative group of the positive 
non-zero reals with the additive group of all the reals.

A natural question emerging in grasping the real logarithm 
function is how to express the procedure of raising to a power 
independently of the base employed. For this purpose, we define 
the exponential function 

exp : x ↦ exp ( x )

from the reals to the positive non-zero reals, that is, the value 
of the exponential function is never zero and never negative, 
characterized by the property that 

exp ( x1+ x2 ) = exp ( x1) exp ( x2 )

We conclude that the real exponential function converts the 
operation of addition of reals to the operation of multiplication 
of positive non-zero reals.

In turn, this provides the insight that the real exponential 
plays the role of an architectonic bridge for the communication 
of the additive group of all the reals with the multiplicative group 
of the positive non-zero reals. This is clearly a bridge inverse to the 
bridge of the real logarithm. Therefore, if one of them is an encod-
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ing bridge, then the other is a decoding bridge between the addi-
tive and multiplicative group structures.

 Then, the problem of raising to any power a with respect 
to a base ϱ , where ϱ  is thought of as a variable, is resolved by 
regarding the exponential and logarithm functions as inverse 
bridges between the group theoretic domains of the positive 
non-zero reals with respect to multiplication and the reals with 
respect to addition.

More concretely, these inverse bridges, are inverse bijective 
(injective and surjective) homomorphisms between these two 
groups, and thus, constitute the group of the reals under addi-
tion isomorphic to the group of the positive non-zero reals under 
multiplication.

In other words, the real exponential function and the real 
logarithm function are not only inverse functions, but more im-
portant, they are inverse group homomorphisms.

FIGURE 3.21

Conjugation 
of a power by 
multiplication 
via the Exp/Log 
architectonic bridges

POWER

LEVEL 1

 LEVEL 2

MULTIPLICATION

BID
IR

EC
TIO

N
A

L D
O

M
A

IN
O

F C
O

M
M

U
N

IC
ATIO

N

OBSTACLE

exp log



166

Therefore from a structural algebraic perspective, we may 
define the real logarithm architectonic bridge (Functor) 

log : ℝ+→ ℝ

as the group homomorphism from the multiplicative group 
of positive non-zero reals ( ℝ+ , ⋅ )  to the additive group of all reals 
( ℝ , +)  since the property: 

log ( y1 ⋅ y2 ) = log y1+ log y2

is satisfied for any positive non-zero reals y1  and y2 .
Inversely, the real exponential architectonic bridge 

(Adjoint Functor) 

exp : ℝ→ ℝ+

is a group homomorphism from the additive group ( ℝ , +)  to 
the multiplicative group ( ℝ+ , ⋅ )  satisfying the property: 

exp ( x1+ x2 ) = exp ( x1) ⋅ exp ( x2 )

As such these two group homomorphisms are bijective and 
inverse to each other, meaning that they establish an isomorphism 
between these two different group structures on the reals. In 
other words, this means that architectonically these two struc-
tural worlds are totally equivalent under their encoding/decoding 
bridges such that each one of them provides a non-further refin-
able resolution spectrum for the other.
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The most important consequence of this isomorphism is that 
the additive group structure of all real numbers, i.e. of the values 
of the logarithm under addition, is indistinguishable from the 
multiplicative group structure of the positive reals, i.e. of the val-
ues of the exponential function under multiplication.

Consequently, the difficult operation of raising to a power can 
be conjugated to the easy operation of multiplication by metapho-
ra from the additive group of the reals to the multiplicative group 
of the positive non-zero reals, where exp and log play the role of 
the inverse bridges.

FIGURE 3.22
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Symbolically and equationally, the above diagram 
reads as follows: 

ϱa = exp [ a ] log( ϱ )

ϱa = exp [ a ] exp -1 ( ϱ )

Conversely, the above metaphora solving the problem of rais-
ing to a power by conjugating it to multiplication is equivalent to 
the group isomorphism induced by the inverse bridges identified 
with the real exponential and the real logarithm function.
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FIGURE 3.24
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	 4. 	  
� The Transcendental Realm of Eternity: 

Abduction of Space from Time

The Irrationals: Cuts on  
the Arithmetic Line

The integer numbers can be placed on a line extending to 
infinity in both directions with respect to the additive cipher 0. 
The positive integers lie on the right of the line as they are extend-
ing from 0, whereas the negative integers lie of the left as they are 
extending from 0 . The negative integers are the mirror images 
of the positive ones, if we imagine a mirror placed at 0 . The mul-
tiplicative cipher 1  is the monad, and all positive integers are 
replicating this monad.

 As soon as we accept, that the monad is divisible—something 
that was unacceptable to the ancient mathematical world-view—
we can also place all the rational numbers on the same line. The 

NEGATIVE INTEGERS POSITIVE INTEGERS

0 +1 +2 +3 +4-1-2-3-4

FIGURE 4.1

The integer  
number line
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rational numbers are infinite, and they are dense on the line, but 
they do not fill it. They leave holes on the line that they have to be 
properly filled in, if we demand completeness of the line.

Note that, in general, roots and logarithms of positive num-
bers are not rational numbers. The idea is that this new species of 
numbers, called the irrational numbers, also infinite in cardinali-
ty, but of a higher order of infinity in comparison to the rationals, 
if they can be located on the line, then they can fill the holes left 
from the rationals, leading to the completeness of the line.

The arithmetic line may be though of as a line in space. The 
basic characteristic of a line is that entities placed upon it can be 
totally ordered. The line extending infinitely in both directions 
is also continuous. Note that continuity has not be employed at 
all in the case of the integers and the rationals.

But continuity requires that there no holes or gaps on the 
line. These are essentially the holes left from the placement of 
the rationals on the line. Thus, we may think of the irrationals as 
involving the idea of continuity essentially in their conception, in 
case that all holes left from the rationals can be filled in.

If this is possible, then adjoining the irrationals together with 
the rationals on the line, continuity and completeness may be 
accomplished, such that the new arithmetic domain of numbers, 
called the real numbers are identified constitutively with the line. 
In this sense, our whole arithmetic cosmos, up to the real num-
bers, can be represented by means of a line, called the real line.

The idea of Dedekind was to provide an arithmetic grasping of 
continuity based on the notion of order. In other words, he elevat-
ed the notion of order as the crucial one for locating the irrationals 
on the line, such that they fill in the holes left from the rationals.

Recall, that the rationals ℚ  is not only a set, but it bears the 
algebraic structure of a field. Thus, the extension from the ra-
tionals to the real numbers, that would be obtained by adjoining 
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appropriately the irrationals to them, should also bear the field 
algebraic, structure, meaning that it should constitute a real and 
complete body of knowledge. Since the ordering relation is con-
sidered as the essential one for grasping the irrationals, according 
to Dedekind, the objective is the following:

First, we should devise a forgetful bridge, that is, a bridge that 
forgets the algebraic structure of the field of the rationals, such 
that we can descend to the underlying set-theoretic scaffolding. 
In this context, we should be able to consider a set F  such that:

(a) Q ⊂ F ;
(b) F  is an ordered set: (F , < );
(c) F  should have a least upper bound.
If this is fulfilled, then F  should be equipped with a sum + 

and a product × , such that (F , + , × ) becomes structurally a field, 
which is compatible with the ordering relation. In this manner, 
we will be able to re-instate the field algebraic structure in the 
new extended domain of numbers F , such that their restriction 
to the rationals ℚ , is identical with the field structure we already 
have in the rationals.

The idea of Dedekind relies on the observation that every real 
number α  is completely determined by all the rational numbers 
that are less than α , and all the rational numbers that are greater 
or equal than α . This is how the ordering relation should be em-
ployed to identify the irrationals, i.e. the holes or gaps left from 
the placement of the rationals on the line.

We start with the obvious statement that ∀ r ∈ ℚ , r  divides 
the set ℚ  into two subsets: 

Lr : = { q ∈ ℚ | q < r }

Ur : = { q ∈ ℚ | q ≥ r }
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For each r ∈ Q , we call a special Dedekind cut the pair (Lr , Ur  ).
Note that Lr  does not have a maximum (rational) number, 

while Ur  does have a minimum (rational) number and it is pre-
cisely the number r .

 Then, the mapping defined by: 

D : ℚ  → { Dedekind cuts }

r  ↦ ( Lr , Ur)

is a bijection, meaning that it is 1 - 1  and onto.
A Dedekind cut α = ( Lα , Uα )  is a subdivision of ℚ  into 

two non-empty subsets Lα  (lower interval) and Uα  (upper in-
terval) such that:

(a) Lα  has no maximum;
(b) ∀ x ∈  Lα , y ∈  Uα  we have x < y ;
Note that Uα  could have a minimum, or not. In particular, if Uα 

has a minimum, then α  is a rational number, α ∈ ℚ ( ( Lα , Uα ) )  is 
a special Dedekind cut, as defined previously. If Uα  does not have 
a minimum, then we say that α  is an irrational.

For instance, consider α = ( Lα , Uα )  defined as 

Lα : = { q ∈ ℚ | q < 0 } ∪ { q ∈ ℚ | q > 0 , q 2 < 2 }

Uα : = { q ∈ ℚ + | q 2≥ 2 }

Then, α  is a Dedekind cut, the minimum of Uα  does not exist 
in ℚ . By post-anticipation, we can say that α  is actually the 
real number √2 .

FIGURE 4.2
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Then, we define the set of real numbers ℝ  as follows: 

ℝ : = { Dedekind cuts  α = ( Lα , Uα ) }

equipped with the ordering relation: 

α < β  for any α , β ∈ R     ⇔     Lα ⊂ Lβ

We conclude that ( ℝ , < )  is an ordered set that contains Q.
Indeed, ℚ ↔ { special Dedekind cuts r = ( Lr , Ur) }  ↪
↪  { Dedekind cuts ├  α = ( Lα , Uα ) } = ℝ
where, ↔  means that the map is a bijection and ↪  means that 

the map is injective (it is an inclusion map ).
It remains to verify that ℝ  bears the least-upper-bound prop-

erty, meaning that for any subset S ⊆ ℝ , bounded from above, 
there exists a supremum in ℝ , which is indeed the case. This 
establishes the completeness of ℝ .

Then, from the set-theoretic level, where we have constructed 
R as a complete totally ordered set, we need to return to the alge-
braic structural level of fields. Since the rationals constitute a field 
themselves, it is necessary to establish the field algebraic structure 
for the extension of the rationals by the irrationals.

The necessity is due to the fact that the metaphora should 
respect, and not demolish, the already existing structure of the 
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rationals. We can show that the algebraic operations of addition, 
and multiplication—together with their inverses—as well as their 
neutral elements, and the distributive property, as previously, 
can be re-instated in ( ℝ , < ) , such that the latter is structurally 
an ordered field.

We conclude that ( ℝ , + , × ; < )  is a complete ordered field, 
called the field of the reals, constructed by the adjunction of 
the irrationals—as Dedekind cuts—to the rationals. This con-
structions fills in all the holes on the line, and the completeness 
amounts to the continuity of the line. The success of calculus over 
the real numbers is based on this property.

Actually, it can be shown that ℝ  is the unique field with all 
these properties, up to isomorphism (a continuous bijection that 
preserves the sum, product and ordering of the elements).

FIGURE 4.4
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Abduction of Space from  
Eternity via Ordering

The method of Dedekind to recognize the irrationals—by 
means of cuts that utilize the notion of order—may be thought of 
as a panopticon view that completes the arithmetic line from the 
realm of eternity. Then, the completed, and perfect, arithmetic 
line is generating space along its extension in a continuous matter.

It is interesting to note that the notion of a cut has been con-
ceived already in antiquity by Eudoxus, as it is presented in the 
fifth book of Euclid. Eudoxus’ idea was to say that a general length 
magnitude is determined by those rational lengths less than it and 
those rational lengths greater than it.

But the notion was not targeting the construction of the real 
numbers, since ratios were not accepted as numbers. In other 
words, in the ancient Greek arithmetical cosmos every ratio is 
meaningful only in the context of a proportionality relation (ana-
logia), and ratios do not have the status of numbers themselves. 
The underlying reason for this was that the division of the mon-
ad 1  should be unacceptable.

In this sense, we may say that, in the ancient view, the 1  was 
not a unit in space, but a unity in time, which should be indivisible 
in the status of a whole not dissected into parts. Thus, from that 
perspective, the notion of completeness is irrelevant. But, from the 
spatially-oriented perspective of Dedekind cuts, the objective is 
precisely the completeness property that constitutes space con-
tinuously along the extension of the line.

The abduction of space—extending continuously along the 
infinite extension of the arithmetic line—from the ideal realm 
of eternity, through the relation of order, is what the notion of a 
cut accomplishes. The abduction of space from eternity rests on 
the fact that time is conceived only in its sum in this context. The 
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ordering relation along the line—that leads to completeness—
pertains to space, and completeness is a spatial property. The 
filling in of a hole left unoccupied by the rationals takes place in 
a single stroke, the location of the corresponding cut on the line. 
This leaves the notion of an irrational number itself inexplicable 
directly, although graspable from above, via the ordering relation.

A great advantage of this method is that the ordering rela-
tion makes invisible the apparent contradiction emerging, for in-
stance, in the case of an irrational square root, if approached from 
a temporal perspective. The issue is that a square root appears 
simultaneously under a positive and a negative manifestation. 
Thus, if the extraction of a square root is though of as a temporal 
process, then the simultaneous appearance of both the positive 
and the negative root cannot be comprehended at once. Only the 
ideal realm of eternity allows a non-contradictory consideration—
in logical terms—of both roots simultaneously.

The Method of Exhaustion:  
Bounding and Converging to the Limit

Despite this advantage, and since the notion of an irrational 
seems elusive in its core from the perspective of flowing time, the 
question is if there is an alternative method to grasp its essence 
from within, without traversing its ideal sum. This is possible by 
the method of the so called Cauchy sequences, which is never-
theless rooted in the ancient method of exhaustion, developed 
by Eudoxus and perfected by Archimedes.

This is an essentially kinematical method, which is based on 
the stochastic idea of best approximation. The best approxima-
tion, in the modern phraseology of real Analysis, is expressed by 
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the notion of convergence to a limit, where the idea of convergence 
is the objective pertaining to the temporal sequence targeting an 
irrational. In turn, this irrational is identified with the limit of the 
corresponding sequence converging to it.

The method of exhaustion involves in a crucial manner the 
notion of marching to an irrational by a balanced multi-stage act 
of approximation. Since the actual obstacle is the uncountable 
infinity incorporated to the essence of an irrational, something 
that reciprocally is the artifact of the continuity in the temporal 
sequencing process itself, the marching towards a convergence 
limit amounts to an eventual bounding of infinity from above and 
from below, such that the best approximation emerges.

In this sense, from the perspective of the unfolding temporal 
sequence seeking convergence, which is its ultimate purpose, the 
marching towards a limit—the pertinent irrational—is an act of 
will primarily, combined with ingenuity in devising bounds in 
an infinite domain.

Consider the square root of 2 : 

√ 2 = 1.4142  ⋯

The decimal form continues to infinity. There is no ratio capa-
ble of capturing the whole sequence. Although the target is out of 
our reach with ratios, we can march from two directions towards 
it. Exhaustion amounts to develop a strategy to approach it from 
every possible direction (Figure 4.5).

We know that the square root of 2  should be localized be-
tween 1  and 2 . The strategy involves the directions to approach 
it. One needs to develop a method for approaching it from below—
in a increasing way—and from above—in a decreasing way—
such that the sought target can be bounded appropriately—from 
above and from below—via a “zooming in” series of rational ap-
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proximations, which are graspable. The success of the method 
relies on the emergence of a limit where the sequence paths from 
above and from below converge. The design of this method is 
equivalent to the design of a choreography.

Consider the square root of 2  and try to bound it—from above 
and below—with rationals. The first obvious bounds are 1  and 2 .

1 < √ 2 = 1.41421  ⋯  < 2

If we continue “zooming in” from both directions by tighten-
ing the rational bounds, then the resolution towards the square 
root of 2  is increased. The sequence of lower bounds, and the 
sequence of upper bounds, are called Cauchy sequences: 

1 < √ 2 < 2 
1.4 < √ 2 < 1.5 

1.41 < √ 2 < 1.42

Grasping the irrational root of 2  amounts to convergence 
from the two anti-diametric directions of zooming in towards it, 
in the present case. Convergence is subordinate to the condition of 
continuity, which is of topological nature. It grants that there are 
no gaps preventing the gradual unfolding in a series of successive 
steps towards a convergent limit.
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This is the pre-condition for tuning in to the rhythm required 
for converging to a limit through a series of lower bounds, and a 
series of upper bounds, which—in essence—bound the totally 
indeterminate infinite.

The convergence aiming towards attaining a limit—in the 
case of the irrationals—generates the necessity to move kine-
matically in time using an intrinsically continuous scaffolding, 
i.e. what is needed is the topological plasticity of a continuum, 
and not the rigidity of a discretum. Then, the zooming in series 
of rational approximations bounding the infinity of the irration-
al—for instance, in its decimal representation—more and more 
efficiently, is modulated by the existence of the attained limit, 
such that convergence is accomplished.

Therefore, whereas completeness was the major objective of 
the method of cuts, continuity in the process of converging to the 
limit is the major objective of the method of exhaustion in terms 
of bounding sequences.

The key idea here is that a sequence of rational approximations 
is converging to a number that is not rational, although it can be 
located eventually on the arithmetic line. But, this shows pre-
cisely that rational numbers do not fill in the line, meaning that 
there are holes among them. Therefore, convergence is based on 
the conception that, as soon as the line becomes complete, there 
would surely exist a limit.

In other words, completeness is transcribed to filled in holes, 
and hence, to the continuity of the line that guarantees that con-
vergence to a limit is attainable. Reciprocally, order complete-
ness of the real line is secured by the existence of a least upper 
bound and a greatest lower bound in the sequences marching 
anti-diametrically towards an irrational, which is identified even-
tually with the convergent limit of these sequences from above 
and from below.
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Completing the Arithmetic Cosmos:  
Extension by Imaginaries

In the domain of the real numbers, we are able to extract the 
roots of equations involving powers, whose bases is a positive 
number. But, if we consider the simple equation: 

x 2 = - 1

we need to be able to extract the square root of the negative - 1 . 
The result cannot be an irrational because we do not have the 
means to locate it on the real arithmetic line. The latter is already 
completely filled in by the adjunction of the irrationals to the 
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rationals, and it is important to devise other means pertaining 
to the comprehension of roots of negative numbers. This is how 
the extension from the real numbers ℝ  to the complex numbers 
ℂ  may be justified algebraically.

Like every square root, the √ ( - 1 )  appears in two avatars, 
which are mirror images of each other, namely the positive and 
the negative square root with respect to the additive cipher 0 —
that is, + √ ( - 1 ) , and - √ ( - 1 ) . Recall that in the case of real num-
bers this issue has been essentially made invisible, either because 
linear space is abducted from eternity in its completion by the 
method of cuts, or because sequences of rational approximations 
converge uniquely to one or the other root.

Nevertheless, in the case of the square root of a negative num-
ber, this issue has to be confronted by considering seriously the 
notion of duplication involved in the extraction of square roots.

Let us symbolize the positive square root of - 1  by i , that 
is, i ≡ √ ( - 1 ) . The idea is that i  provides a new unit, called the 
imaginary unit, for the duplication of the real line orthogo-
nally to itself.

In this way, we duplicate the domain of the real numbers, 
ℝ ⊕ i ℝ , such that the copy represented orthogonally to the orig-
inal bears the imaginary unit i  as its unit of progression in a 
continuous way.

There is a subtle topological assumption involved in this 
duplication, which—beyond continuity—pertains to the no-
tion of connectivity on the plane that we are going to deal with 
at a later stage.

The imaginary unit i  is though of simultaneously with its 
complex conjugate i ⋆ , such that: 

i ⋅ i ⋆ = i 2 = - 1
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Note that i ⋆  stands for the negative square root of the nega-
tive - 1 . The consequence of the above is the following: 

i 4 = i 2 ⋅ i 2 = 1

that is, the imaginary unit is the positive forth root of the 
unity 1 . This justifies the placement of the imaginary axis orthog-
onally to the real axis, extending in the upward direction along 
it. The complex conjugate i ⋆  is the mirror image of i  with respect 
to the real axis, such that the imaginary axis extends in the down-
ward direction along it simultaneously.

There is no real temporal interval intervening between the 
positive and negative square root of - 1 , thus the imaginary axis 
should be thought of as synchronically extending—vertically 

with respect to the real axis—in 
both directions towards infinity. 
There is though a phase difference 
between these two roots, which is 
represented, in the space opened 
up on the plane through them, by 
the phase difference of a binary 
rotation involving two right an-
gles in succession.

Note that the same prescription works now for the square root 
of every negative number, since the imaginary unit—together 
with its complex conjugate—allows to grasp all of them at once 
in the same spatial setting, identified with the complex plane.

This is the criterion to qualify the complex plane as our spec-
tral epiphaneia, where roots of negative numbers appear, and are 
visible along the imaginary axis as above.

In this sense, a new domain of numbers emerges, which ex-
tends on the plane, and which contains two copies of the real 
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numbers extending orthogonally to each other, the first hori-
zontally along the multiplicative unit 1  in the positive direc-
tion, and the other vertically along the imaginary multiplicative 
unit 1 ⋅ i , giving rise to a screen where every complex number 
is represented.

Therefore, the metaphora that underlies the extension of the 
real numbers to the complex numbers—to address and circulate 
around the obstacle posed by the roots of negative numbers—uses 
the imaginary unit as an encoding vertical bridge and its complex 
conjugate as a decoding vertical bridge to open up the topos of 
communication between these two domains of numbers.

On the complex plane there are four units extending along 
both the horizontal and vertical directions in the positive and 
negative sense correspondingly, 1 ,  - 1 ,  i ,  i ⋆ . The positioning of 
these units on the plane gives rise to the unit circle on the complex 
plane, which intersects the real axis and the imaginary axis on 
their respective units. Hence, the unit circle is what constitutes 
the unity on the screen offered by the complex plane. 

It can be easily shown, that since the complex numbers are 
constructed in terms of two duplicate copies of the real numbers 
extending orthogonally to each other via the action of the imagi-
nary unit, all the algebraic operations pertaining to each copy can 
be extended to their product, or direct sum, thus preserving their 
validity if extended to the plane. In this way, the field algebraic 
structure of the reals with respect to addition and multiplication 
is extended to the field structure of the complex numbers under 
the same operations.
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There is a considerable price to be paid on for the extension of 
our arithmetic cosmos from the real to the complex numbers. The 
price is that the relation of total order that led to the completeness 
of the real line, is not attained to the complex plane any more. This 
means that adjoining the imaginary copy of the arithmetic line 
orthogonally to the former real copy results in loss of total order 
on the plane that led to completeness of the line in the first place.

This loss of order completeness on the complex plane is com-
pensated by a higher order of completeness, called algebraic com-
pleteness. According to the fundamental theorem of Algebra, 
which has been proved by the prince of mathematics, Gauss, every 
single-variable polynomial with complex coefficients has at least 
one complex root.

Equivalently, every non-zero, single-variable, degree n poly-
nomial with complex coefficients has precisely n  complex roots, 
counted with multiplicity. Thus, the complex numbers constitutes 
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the algebraic closure of the real numbers, which makes it an alge-
braically closed field, according to the theorem above.

It is interesting to point out that, although there exist many 
different proofs of the fundamental theorem of Algebra, the one 
which captures the best the essence of the theorem is based on the 
topological notion of the winding number, to which we will come 
later on. In this sense, the expression of the theorem is subordi-
nate to the connectivity properties of the plane, in comparison to 
the simple connectivity of the line.

Vectorial Representation of Complex Numbers

Each complex number z = x + i y  is represented by means of 
a vector on the complex plane whose base is ay the origin of the 
complex plane and its tip is at this number. A vector is character-
ized, either by its projections on the horizontal and vertical axis—
giving the real and the imaginary part of the complex number 
respectively -, or by its modulus, that is, its length measured in 
terms of the real positive distance from the origin, and its argu-
ment, which is the angle with respect to the real horizontal axis.

Note that the length of the above vector, determining the 
modulus of the corresponding complex number on the plane, 
is calculated by means of the Pythagorean theorem as the diag-
onal of the orthogonal triangle formed from the vector and the 
two orthogonal axes—the real and the imaginary one. Thus, the 
modulus of z = x + i y  is given by: 

r 2 = x 2 + y 2 
r = √ ( x 2 + y 2 )
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Polar Representation and  
the Complex Exponential

Euler exploited the polar form of a complex number in an 
ingenious way. The issue pertains to the multi-valency of the 
angle under complete rotations around the origin of the complex 
plane. Namely, a complex number of unit modulus represented 
by a point on the unit circle—and reached via the vector of unit 
modulus from the origin 0 of the complex plane—stands simul-
taneously for all other complex numbers of the same unit modu-
lus whose argument differs by an integer number of complete 
rotations around the origin.

This is the issue of multi-valency of the notion of polar angle 
with respect to the real horizontal axis. To embrace this obstacle, 
Euler devised the expression of all these points of unit modulus 
through a complex phase, that is, a phase having the same repre-
senting value for all integer complete rotations around the origin 
ending up at the same point of the unit circle.

FIGURE 4.9
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In other words, a complex phase, represents the whole equiv-
alence class of all angles differing by an integer number of com-
plete rotations around the origin and ending up at the same point 
of the unit circle. This amounts to an angular power partition of 
the complex plane along all possible radii on the unit circle, such 
that the single representative of each block of this partition is a 
complex phase.

The latter is formally expressed via the extension of the ex-
ponential function from the real line to the unit circle on the 
complex plane, that we are going to treat in detail, regarding its 
function and implications later on.

For the time being, the notion of a complex phase, denoted 
by exp ( i θ ) : = e i ⋅ θ , where θ  is the angle between the vector radius 
and the horizontal axis, is enciphering the multiple-connectivity 
of the complex plane, due to the multi-valency of the notion of an-
gle in its differences by an integer number of complete rotations. 
Thus, the polar form of a complex number, through its Eulerian 
representation, reads simply as follows: 

z = r ⋅ e i ⋅ θ
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Note that in the polar representation of a complex number, 
which captures the underlying multiply-connected topology of 
the plane implicated by the multi-valency of angles, the multipli-
cation of two complex numbers amounts to the multiplication of 
their moduli, but it pertains to the addition of their respective 
angles in the exponent.

The angles are real—expressed in radians—but their expres-
sion on the exponent of the exponential functions is mediated by 
the imaginary unit. Due to the fundamental property of the expo-
nential function the product of two exponentials is transcribed to 
addition of the respective arguments in the resultant exponent.

In brief, two complex numbers are multiplied by multiplying 
their moduli, and adding their angles. In this sense, the moduli 
and the angles appear under different guises in the complex do-
main, the first as radii, whereas the second as exponential phases 
that essentially are conceptualized exclusively through the unit 
circle on the complex plane.

Squaring a complex number, amounts to squaring its modu-
lus-radius, and doubling its angle: 

z 2 = r 2 ⋅ e i 2 θ
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r 2 = r ⋅ r 	 ⟶ 	 Multiplication
2θ = θ + θ 	 ⟶ 	 Addition
Similarly, in the multiplication of two complex numbers, the 

radii are multiplied and the angles are added on the exponent:

z 1 ⋅ z 2 = ( r 1 ⋅ r 2 ) ⋅ e i ( θ 1 + θ 2 )

Quantum Neutrality:  
Abduction of Space from  

Eternity by Phasing

The set of all possible phases on the unit circle gives rise to a 
multiplicative group structure on the unit circle, where multi-
plication is simply expressed by addition of the corresponding 
angles. Since phases remain invariant under any integer number 
of complete rotations, the group structure is well-defined in the 
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sense that the multiplication of any two phases gives a phase de-
fined also on the unit circle.

Note that the neutral element of this multiplicative group, 
that is, its unit algebraic identity under multiplication, involves 
the modulation of all angles differing by an integer number of 
complete rotations, i.e. in radians 0 , 2π , 4π , and so on. This is 
expressed as 2κπ , where κ  is an integer. All these angles are in-
distinguishable to each other, represented in the same partition 
block, by the complex phase: 

e i 2 κ π  = 1

This is very important because it establishes the relation of 
the additive cipher—as pertaining to the angles—and the mul-
tiplicative cipher of the complex numbers in their representation 
on the complex plane—thus, captures its essence as an algebraic 
field of numbers.

 Algebraically thinking, the 
discrete group of the integers un-
der addition, appears as the ker-
nel of the group homomorphism 
from the additive group of the 
real numbers to the multiplica-
tive group of complex phases on 
the unit circle. Thus, it is identi-
fied as an ideal in the field of 

complex numbers, which absorbs the whole group structure of 
the integers within its action, in order to modulate the neutral 
element of the multiplicative group of its complex phases residing 
on the unit(y) circle of the complex plane.
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Since the discrete group structure of the integers is the ideal in 
the field of complex numbers that determines the neutral element 
of its group of phases, and since the integers emanate originally 
from the domain of harmonics, it would be incorrect to consider 
the polar representation of the complex numbers as the geometric 
form of the complex numbers, as it usually displayed.

The notion of a screen, or epiphaneia, is not geometric by itself. 
It rather intervenes between the domain of harmonics and the 
domain of geometry as a mediator, it is a bridge of communication 
making it possible that these two different domains talk to each 
other. It is the rhetorical topos of communication opening up 
architectonically between the domain of harmonics and the do-
main of geometry that this screen accomplishes by incorporating 
the strength of the whole of our arithmetic cosmos, not only in 
its elemental substance, but in its structural elaboration as well.

The modulation of the whole discrete spectrum of harmon-
ics by the neutral element of the group of phases, accomplishes 
something deeper in the action of this ideal, in comparison to the 
abduction of space from the realm of eternity, in the case of the 
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irrationals. Given the uncertainty principle between time and 
frequency, this ideal neutralizes time in its frquential/periodic 
aspect algebraically as a whole in a single stroke, and gives rise 
to quantization.

Thus, although the construction of the irrationals led to the 
abduction of space from eternity through the neutralization of 
the ordered aspect of time, this was applicable only along the 
extension of space along a continuous line, leaving the frequen-
tial/periodic aspect of time completely unsettled. This is exactly 
what is accomplished by this “quantization ideal” of the com-
plex number field.

It abducts space from the realm of eternity by neutralizing 
its periodic/frequential aspect, such that space extends not only 
along a single line, but in every possible branching direction. In 
turn, this is what makes possible the communication between the 
domain of geometry—generated by elements of the plane—and 
the domain of harmonics—generated invariantly by the discrete 
harmonic frequencies in their pertinent role as quanta.

Since, this is accomplished by means of the technology of 
the exponential function it is suitable to think of this function 
as a kind of a transcendental gnomon, and focus again, at the 
first place, at the real domain to examine its power as a bridge 
between the domain of harmonics and the domain of geometry. 
This is what constitutes the essence of the architectonic form and 
function in its entirety from our viewpoint.
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The Spiral and  
the Catenary Natural Bridges

Both the exponential bridge and its inverse logarithmic bridge 
are characterized by self-similarity. Thus, they can be conceived 
in gnomonic terms. More concretely, since both of them are tran-
scendental functions they act as inverse bridges between the 
harmonic domain and the geometric domain, i.e. the exponential 
is a bridge from the geometric to the harmonic, and inversely, the 
logarithm is a bridge from the harmonic to the geometric domain.
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If we consider the well-known example of the logarithmic 
spiral, it clearly provides an example of gnomonic growth, which 
is encountered in the natural world, for instance in the case of the 
Nautilus shell.

The logarithmic or equiangular 
spiral differs from the arithmetic 
spiral in the sense that the distanc-
es between successive windings are 
not constant, but they increase in ge-
ometric progression. It has been first 
discovered by Descartes—in its role 

as an equiangular spiral -, and studied extensively by Jacob Ber-
noulli, who called it “spira mirabilis”. In particular, this spiral can 
be grasped through four equivalent perspectives:

Equiangular spiral: A spiral whose radius vector cuts the curve 
at a constant angle;

Geometrical spiral: A spiral whose radius increases in ge-
ometrical progression as its polar angle increases in arithmeti-
cal progression.

FIGURE 4.17
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(Onofrio Scaduto, 
1998, Wikimedia 

Commons, CC BY-SA)

FIGURE 4.16

The metaphora 
from the reals with 

addition to the 
positive non-zero 
reals via the Exp/
Log architectonic 

scaffolding 
is not only a 

homomorphism but 
an isomorphism.

HARMONICS

GEOMETRY

OBSTACL
E

log exp

BI
D

IR
EC

TI
O

N
A

L 
D

O
M

A
IN

O
F 

C
O

M
M

U
N

IC
AT

IO
N

UNIT

UNITY

SPACELIGHT SPECTRUM

TIME

QUANTA



197

Proportional spiral: A spiral in which the lengths of the seg-
ments of the curve cut by a fixed radial ray are in continued ge-
ometric proportion. Equivalently, the segments are scaled ver-
sions of each other, where the scaling ratios between successive 
pairs are equal;

Logarithmic spiral: A spiral having a linear radius of curvature 
as a function of arc-length.

 The most interesting aspect of these transcendental gnomon-
ic curves, which is absent from the initial rational conception of 
the notion of a gnomon, is the appearance of curvature. Moreover, 
the pattern of gnomonic growth is not a linear trapezium as in the 
former case, but an angular trapezoidal sector, as they are depicted 
for comparison below.

Regarding the exponential bridge, if we consider the arithme-
tic mean of the exponentials exp ( x )  and exp ( - x ) : 

AM = ( exp ( x ) + exp ( - x ) ) / 2

then we obtain a well-known curve, called the catenary curve.

FIGURE 4.18
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The origin of this curve is physical, and more precisely, it is 
the solution to the least action problem referring to a chain in a 
gravitational field. Put simply, the catenary curve composed by 
the arithmetic mean of two exponential bridges according to the 
above, is the natural shape of a hanging chain under the 
pull of gravity.

Leibniz realized that the catenary curve—emerging naturally 
via the least action principle pertaining to gravity—provides the 
physical means to grasp the notion of the real-valued logarithm 

0

FIGURE 4.20

The catenary curve 
as the arithmetic 

mean of real 
exponentials with 

opposite exponents

FIGURE 4.21

Catenary as the 
natural shape of a 

hanging chain
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function. This played an instrumental role in Leibniz’s conception 
of real infinitesimal calculus. This can be demonstrated as follows:

(i) Consider the suspension of a chain from two horizontally 
aligned nails, and draw the horizontal through the endpoints as 
well as the vertical axis through the lowest point;

(ii) Put a third nail through the lowest point and extend one 
half of the catenary horizontally;

(iii) Connect the endpoint to the midpoint of the horizon-
tal, and then bisect this line segment. Drop the perpendicular 
through this point, and then draw the horizontal axis through the 
point where the perpendicular intersects the vertical axis. After 
this, take the distance from the origin of the coordinate system to 
the lowest point of the catenary to be the unit length. The catenary 
curve is now characterized by the equation y = ( e x + e – x) / 2  in this 
coordinate system.

(iv) To locate the real-valued logarithm log ( Y ) , find ( Y+1 / Y ) / 2 
on the y-axis, and measure the corresponding x-value on the orig-
inal catenary curve. This assumes that Y > 1 . To locate the loga-
rithms of negative values, use the fact that log ( 1 / Y ) = - log ( Y ) .

The above steps, pertaining to Leibniz’s natural representa-
tion of real-valued logarithms through the catenary curve, may 
be depicted schematically as follows:
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The Meteoron of the Catenary Arch

The inverted shape of the ca-
tenary is the well-known catenary 
arch in architectonics with myriad 
of applications. The catenary arch 
by its specification through the 
real exponential bridges stands by 
itself without any support, defying 
in a sense the pull of gravity as the 
inverse of the shape assumed by 
a hanging chain.

(A) (B)

(C) (D)
log (Y)

(Y+1/Y)/2

FIGURE 4.22

Leibniz’s 
representation  

of the real  
logarithm via the 

catenary

CATENARY

INVERTED
CATENARY
ARCH

FIGURE 4.23

The catenary arch  
via the inversion  

of the catenary
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The catenary-arch is the only type of arch that stands solely 
under its own weight. Note that in the case of the hanging chain 
the tension is equally distributed along its curved extension from 
one side to the other, where it is bounded. By inverting the hang-
ing chain, tension is transcribed and substituted by contraction 
which, in a real sense, neutralizes the pull of gravity.

The central stone at the top of the catenary arch is called the 
key stone. It hyper-supports the whole of the arc from above—it 
does not support it from below, like the foundation of a column. 
The key stands in the vacuum solely out of compression without 
any under-support. In this sense, the key is the realization of the 
neutral element of the structure in the geometric world.

This is what pertains to the function of a “meteoron”, which 
neutralizes in this case the ordering pull of gravity, making the ge-
ometric curvature manifesting as a consequence of this structural 
neutralization. Note that the key defines the geometric position 
where the inverse exponential curves meet each other.

The key is the geometric way to represent the communica-
tion between the additive structural world of the reals with the 
multiplicative structural world of the positive reals, through 
the compatibility of their ciphers, established by means of the 
real exponential bridge and the real logarithmic bridge in the 
transcription from harmonics to geometry, and inversely. Fur-
thermore, it provides the means to conceptualize geometrically 
what abduction stands for, in the sense that the space opened up 
through catenary arches postpones ad infinitum the temporally 
ordering pull of gravity.
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Surfaces of Revolution  
and Curvature

The different types of local curvature on the screen are already 
evident by considering the catenary curve. The geometric way of 
detecting the local curvature, according to Gauss who formulated 
this notion intrinsically, involves the consideration of the tangent 
and the normal at a point. The normal may be thought of as the 
radius of a circle at the specified point—called the osculating 
circle—whereas the tangent is the orthogonal to the normal, 
identified with the tangent of the circle at this point.

We now imagine another curve that bears the inverse specifi-
cation of tangents and normals, meaning that the former tangents 
are the normals of the new curve and the former normals are the 
tangents of the new curve. Then, we obtain a geometric inver-
sion—with respect to the local curvature—referring to these two 
curves. If we apply this to the case of the catenary, then we obtain 
another curve called the tractrix as depicted below.

The tractrix is a curve with constant tangent, called for this 
reason, the equi-tangential curve. It has been studied by Huygens 
thoroughly, who gave the name tractrix to this curve. It can be 
physically thought of in two ways:

(i) The orbit of the back wheels of a vehicle the front wheels of 
which describe a line;

(ii) The orbit of an object under friction, when pulled on a 
horizontal plane by a line segment attached to a tractor point, 
which moves at a right angle to the initial line between the object 
and the tractor.
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 The surface of revolution emerging by rotating the tractrix 
about its asymptote is a pseudo-sphere, that is, a surface with con-
stant negative intrinsic curvature, characterized geometrically as 
a hyperbolic surface.

The analogy with the sphere comes from the fact that a 
sphere has constant positive curvature 1 / R 2 , where R  is the 
radius of the sphere, whereas the pseudo-sphere has constant 
negative curvature.

They can be treated on an equal footing by considering 
the radius of the pseudo-sphere as an imaginary radius, that 
is, i R , such that its curvature becomes the negative magni-
tude - 1 / R 2  as follows: 

FIGURE 4.24
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K = 1 / ( ( i R ) 2 ) = - 1 / R 2 

This is a non-trivial step that requires an imaginary metaph-
ora between the harmonic and the geometric domain culminat-
ing in the role of the imaginary unit in relation to the understand-
ing of constant geometric curvature on the screen, which gives 
rise to a partition spectrum consisting of three sole blocks: the 
spherical, the flat, and the hyperbolic. These three cases of con-
stant geometric curvature can be localized appropriately in the 
context of the differential geometry of smooth manifolds, i.e. 
geometric spaces that are only locally—in the infinitesimal vi-
cinity of a point—flat.

In more detail, the sphere has the 
property that the curves obtained by 
cutting it by normal planes at a point P 
all have their radii of curvature on the 
same side, and in particular, they are 
ending at the center of the sphere.

 In contrast, a saddle-shaped sur-
face has sections whose radii ρ1  and ρ2 
of curvature are on opposite sides. 
Note that the radius of curvature at a 
point P  is the radius of the osculating 
circle, that is, the circle which most 
closely approximates the curve sec-
tion at P .) Moreover, the curvature of a 
section curve of radius ρ  is measured 
by the reciprocal 1 / ρ .

The appropriate measure of the 
synthesized curvature of sections 
curves of radii ρ1 , ρ2  is 1 / ( ρ1 ρ2 ) , where 
the radii are signed in order to distin-

FIGURE 4.28 

Negative curvature

FIGURE 4.27 

Positive curvature

FIGURE 4.26

The pseudo-sphere 
as an imaginary 

radius sphere
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guish their directions. In particular, 
according to Gauss, the section curves 
should be chosen so that ρ1 , ρ2  take the 
maximum and minimum signed val-
ues at the point P , meaning that they 
are principal curvatures. Then, the 
Gaussian curvature at P  is given by: 

κ = 1 / ( ρ1 ρ2 )

In this sense, the Gaussian curvature of a sphere of radius ρ 
is the positive constant 1 / ρ 2 , whereas the Gaussian curvature of 
a saddle-shaped piece of surface is negative at all points.

According to Gauss’ Egregium theorem, the product of the 
principal curvatures is intrinsic to the surface, that is, it is totally 
independent from any embedding in space. In other words, the 
curvature κ = 1 / ( ρ1 ρ2 )  is an invariant characterizing intrinsi-
cally a surface.

If we consider the pseudo-sphere, then PQ  and QR  are the 
radii of curvature at Q  of the two normal section curves of the 
pseudo-sphere corresponding to the maximum and minimum 
radii of curvature. Moreover, PQ  and QR  are reciprocal to each 
other, and bear opposite signs. Therefore we have: 

κ = [ ( - 1 ) / PQ ] ⋅ [ 1 / QR ] = - 1

FIGURE 4.29 

Radius of curvature 
at a point is the 

radius of the 
osculating circle  

at this point
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Furthermore, the revolution of the 
catenary around an axis can be per-
formed in two ways, that is, in a con-
cave and in a convex way. The surface 
of revolution obtained in the first case 
is a catenoid, whence in the second it 
is a catenary dome.

The catenoid is a minimal surface, 
that is, it occupies the least area when 
bounded from above and below, e.g. 
by two circular rings. Because of this 
fact, it has mean curvature zero every-
where. As such it should be thought of 
as the curved abstraction of the plane, 
which is also a minimal surface con-
sidered as a surface of revolution.

CATENARY

TRACTRIX

0

y

x

P

R

Q

S
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The catenary dome should be thought of as the optimal cor-
rection to the shape of an ideally symmetric spherical dome when 
acceleration due to gravity is in force.

Helicoid:  
The Minimal Surface Bridge  

from Harmonics to Geometry

From a topological perspective, the catenoid is non-simply 
connected due to the hole it bears in the middle. If we make a 
cut, then it is transfigured periodically to a simply-connected 
helicoid, which is also a minimal surface, although not a surface of 
revolution. In particular, it occupies the least area when bounded 
sideways by two helices.

In this way, the catenoid becomes locally isometric to the hel-
icoid, or equivalently, they both have the same local Gaussian 
curvature. A two-dimensional entity could not distinguish locally 
the catenoid from the helicoid. The fact that this locally isometric 
transfiguration exists is a strong motive to explore the implica-
tions of the exponential and logarithmic bridges when extended 
to the imaginary and complex number domains.

The crucial observation is that after half a period a mirror 
image of the same helicoidal surface arises, which may be grasped 
topologically as the twisting of a band. For example, we may think 
of a belt as a toy model whose two sides are coloured differently. 
The closed belt is an approximation to the region around the 
equator of the catenoid. If we open the belt and move the left end 
up and the right end down we have an approximate model of a 
helicoid. On the other side, if we move the left end down and the 
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right end up we obtain the mirror or twisted image of the 
former helicoid.

Note that the rotation axis of both the helicoid and its mirror 
is orthogonal to the equator of the catenoid, i.e. there is a π / 2 
rotation counterclockwise, or clockwise, in relation to the equator. 
This is a strong indication about the role of the imaginary unit 
from a transcendental viewpoint.

The extension of the real exponential function to the 
imaginary domain takes place via the circle-valued expo-
nential function: 

FIGURE 4.33
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exp : R → S 1

where S 1  denotes the unit circle, whose elements are described 
via Euler’s formula: 

e i θ = cos θ + i sin θ

Notice the appearance of the imaginary unit, which is inter-
preted geometrically as a rotation by π / 2  radians, making the 
imaginary axis orthogonal to the real axis in the plane of the 
complex numbers.

Together with the imaginary unit, there always exists its 
mirror image, described as its complex conjugate. Since the unit 
circle is coordinatized exponentially via the imaginary unit, we 
think of this circle as an imaginary ring. We stress that it should 
not to be interpreted geometrically, as it is usually the case.

The manifestation on the screen of the complex plane is an 
artifact between the harmonic and the geometric domain. To 
make this distinction explicit, we may call the imaginary ring—
bearing the algebraic structure of the imaginary unit—a har-
monic ring, in the sense that it descends, not from the domain of 
geometry, but from the transcendental domain of harmonics via 
the exponential function.

Notwithstanding this fact, the image of the ring in the ge-
ometric domain of forms may be visualised as a circle, more pre-
cisely, as a circular shadow of a harmonic entity. The latter is what 
is analytically expressed via the circle-valued—or complex—ex-
ponential function whose value is a phase on the unit circle.

For the consistency of this metaphora from the harmonic to 
the geometric domain it is necessary to qualify this harmonic 
entity, as well as its expression as an imaginary power, that is, a 
power whose exponent is imaginary. The intuition comes from 



210

the consideration of the helicoid together with its mirror image 
in its function to express this entity from the harmonic domain. 
Note that the helicoid unfolds continuously by parallel translation 
of its tangent planes, and after half a period of rotation, a mirror 
image of the same helicoidal surface arises.

We may think of the helicoid together with its mirror image as 
helical waves propagating in opposite directions such that the mir-

ror image is the reflection of the first if 
bounded from above and from below. 
This is possible if these helical waves 
are bounded from above and below 
for temporal length of one period so as 
to give rise to a helical standing wave.

Here, this condition is equivalent 
to the requirement that within this 
bounded interval the helical wave is in 
unison with its reflection, i.e. its mir-
ror image. Being in unison means that 
they are consonant in the fundamen-

tal harmonic frequency corresponding to the frequency ratio 1 : 1 , 
which in turn, would correspond to an angular temporal interval 
of one whole period 2π .

FIGURE 4.35

Helical standing 
wave
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Self-Interference:  
The Spectral Resolution of Time

Let us focus on the distinctive difference between a vibrating 
straight chord whose length is spatial, and a vibrating helical chord 
whose length is temporal, according to the above. The unison ratio 
in the former case corresponds to a zero length spatial interval, 
whereas it corresponds to a 2π  temporal interval in the latter case.

Notwithstanding this fact, we are able to establish the whole 
harmonic series in the helicoidal case, such that there is an inverse 
relationship between frequency and temporal extent as this is 
specified in terms of angles. The visual imaginary ring in this 
context, that is, the unit circle descending from the harmonic 
domain of relations—between a variably bounded helicoid and 
its mirror image—into the visible geometric domain making up 
its observable shadow, spatializes temporal extents via the imag-
inary unit and its conjugate, to allow for twofold directionality.

The spatialization amounts to the architectonic opening up of 
new space unraveled by temporal extents in a twofold imaginary 
axis—qualified via a positive and a negative direction as usual—
as simultaneously, or synchronically extended imaginary spatial 
lengthes, at the present of the shadow.

Equivalently, these spatialized extents can be viewed as an-
gular sectors of the imaginary unit circle via the complex expo-
nential function. In this manner, being in unison in the harmonic 
context of a helical standing wave has a shadow in the visible 
geometric domain quantified by the imaginary spatial length 2πi , 
which is identical to the period of the complex exponential func-
tion. Alternatively, via the complex exponential function, being 
in unison corresponds to the whole 2π  angular sector of the cir-
cumference of the imaginary ring.
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It is worth pondering again on some specific characteristics 
of the harmonic domain that make it different from the visible 
geometric one. If we think ontologically in terms of substances, 
then, in the harmonic domain, the twisted or mirror image, or 
simply the reflection, is of the same substance as the original, 
since it can interact and interfere with it to produce a standing 
helical wave bounded from above and below. This is actually the 
explication of self-interference, which physically is described in 
terms of quantum theory.

Note that a standing or stationary helical wave is not traveling 
in space at all. In contrast, it resolves time in terms of the harmon-
ics series and the concomitant harmonic ratios of frequencies. 
As such a standing helical wave—in the context of its resonating 
environment—is not an ontological entity in physical space, al-
though it has a shadow quantified through the imaginary ring.

What is crucial with respect to it, is that it resolves time pe-
riodically in terms of the harmonics, in a manner that time and 
frequency are reciprocally correlated. Thus, in the same way that 
time is spatialized via the imaginary axis, to give an imaginary 
length, frequency is spatialized orthogonally to the former as 
speed or momentum.

What really matters is the orthogonal placement of frequency 
and spatialized temporal extent via the intervention of the imag-
inary unit. As such, the opposite convention of indexing frequen-
cies as imaginary quantities and spatialized temporal intervals as 
real is also valid and acceptable. Keeping the former convention, 
we identify the stairs of any bounded portion of the helical wave 
unfolding orthogonally to the imaginary ring that constitutes its 
synchronized shadow on the screen of the complex plane, with 
the harmonic series, which is able to induce any harmonic ratio.

The harmonics in this manner are qualified in terms of pow-
ers for the manifestation of consonances and dissonances. The 
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negative harmonics, setting up the whole frequency spectrum, 
correspond to the harmonic series of the reflection, which is nec-
essary for self-interference.
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Logarithmic Branching

From the structural algebraic viewpoint, the complex ex-
ponential is a group homomorphism from the additive group 
( ℝ , +)  to the multiplicative group ( S 1 , ⋅ )  satisfying: 

exp ( i ( θ1+ θ2 ) ) = exp ( i θ1) ⋅ exp ( i θ2 )

The ideal modulating the neutral element in the image of 
this homomorphism, that is, on the unit circle, enciphers the 
criterion of spectral recognition on the unit circle in terms of 
complex phases. In turn, this is what constitutes the group-the-
oretic identity of the circle expressed by the neutral element of 
the group of phases.

In this manner, spectral recognition on the unit circle works 
on the basis of a criterion of identity that encapsulates all an-
gles differing by an integer number of complete rotations in the 
block indexed by a single phase, their representative. We call 
this criterion, the “homeotic” criterion of identity on the unit 
circle of the complex plane, which gives rise to the pertinent 
neutrality condition.

Equivalently, algebraic identity of the group of phases on the 
unit circle is enciphered by the kernel of the group homomor-
phism ( ℝ , +) → ( S 1 , ⋅ ) , which is 2πℤ .

Note that the homeotic criterion of identity is established in 
terms of the angular temporal interval in radians of one whole 
period 2π times the harmonic series, identified to the discrete 
group of all the integers ℤ  under addition. In this way, a single 
moment of time on the extension of the real line is resolvable by 
the whole spectrum of discrete harmonics, or quanta.
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 The existence of this homeotic kernel 2πℤ  of the complex 
exponential group homomorphism: 

e i : ( ℝ , +) → ( S 1 , ⋅ )

which amounts to the fact that the neutral element of the 
group of phases incorporates all the structure of the integers has 
a price. The price is that the complex exponential is not globally 
invertible, but only locally. This leads us to the significance of the 
domain of sheaves pertaining to the notion of topological local-
ization of information, which we will briefly examine later on.

At present, the fact that it is not possible to have a well-defined 
global notion of a complex logarithm by inverting the complex 
exponential—as in the corresponding case of the real-valued 
logarithm—entails the novel phenomenon of branching. In other 
words, the projection from the helix to the circle, although it bears 
well defined local sections inverting exponentiation locally, it 
does not possess a global inverse.

We assert that branching is the geometric way to encoun-
ter the issue of multiple-connectivity—originating from the 
multi-valency of the notion of angle—in the harmonic domain. 
Branching is the geometric way to evade multi-connectivity by 
a process of cutting, bounding, and unfolding, until everything 
unravels and becomes simply connected. Reciprocally, branching 

FIGURE 4.38
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is opening up new space architectonical-
ly that can be navigated geometrically.

Considering the complex loga-
rithm, we figure out that an inverse ho-
momorphism from the multiplicative 
group ( S 1 , ⋅ )  to the additive group ( ℝ ,+) 
can be defined only locally, i.e. by re-
stricting the values of the angle within a 
period, i.e. from – π  to + π , – π < θ ≤ π , or 
from 0  to 2π ,  0 ≤ θ < 2π ,  which depicts 
a branch by cutting.

The meaning of the branch is simply 
that the complex logarithm is single-valued within this branch. 
Recall again that branching arises from the multi-valency of the 
angle, i.e. a complex phase on the unit circle is exactly the same for 
angle θ , and θ + 2kπ , where k  is an integer. This is precisely what 
is encapsulated in the neutral element of the group of phases on 
the unit circle, and unraveled by means of the helicoid.

Concisely put, we assert the following conclusion:
Whereas the harmonic domain is associated with multiplex-

ing and knotting, the geometric domain is associated with branch-
ing and weaving. Topologically, the main theme here is connec-
tivity, and the metaphora pertains to the complete unraveling of 
harmonic multi-connectivity into geometric simple-connectiv-
ity, achieved by the concatenation of all logarithmic branches.

FIGURE 4.39

The branching 
structure and simple 

connectivity
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Canon of Metamorphosis  
and Modular Substitution

Since the harmonic and the geometric domain incorporate 
different principles of organization, we may consider the tran-
scendental exponential and logarithmic functions from the 
perspective of canonics. The notion of a canon establishes the 
means of metamorphosis and modular substitution—via meta-
phora—between two different structurally domain in commu-
nication to each other.

Recall that the notion of canonics traces all the historical way 
back to the Pythagorean monochord. The canon sets up the means 
of transcription from an acoustic chord to an optical in terms 
of a scale that translates between acoustic frequency ratios and 
visual length intervals. The conception of frequency ratios as 
powers that can be perceived by the ear in the acoustic spectrum 

FIGURE 4.40
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implies that the bridge from the harmonic to the geometric is of 
a logarithmic nature.

In other words, the logarithm function transcribes frequency 
ratios to length intervals, since it converts division to subtraction. 
Inversely, the metamorphosis from the geometric to the harmonic 
domain is of an exponential nature. This fact is at the root of the 
impossibility to set up a rational scale of musical intervals.

In turn, this has the consequence that the first historical en-
counter with the irrationals does not originate from the geometric 
domain, as it is usually thought of in relation to the incommensu-
rability of the diagonal with the sides of an orthogonal triangle, 
but descends from harmonics. The notion of an equally tempered 
scale, based on the equipartition of musical intervals, and ending 
up on the chromatic scale gives rise to a screen that radiates in 12 
directions, i.e. the number of the semi-tones of the scale.

Along these lines, the complex exponential is an encoding 
bridge from the geometric to the harmonic domain, whereas 
the complex logarithm is a decoding bridge from the harmon-
ic to the geometric domain. The logarithmic bridge inverts the 
exponential only locally in this case, giving rise to the phenom-
enon of branching.

From a structural algebraic viewpoint, the complex expo-
nential defined in terms of a group homomorphism from the 
additive group ( ℝ , +)  to the multiplicative group ( S 1 , ⋅ )  is finally 
extended to a group homomorphism from the additive group of 
complex numbers ( ℂ , +)  to the multiplicative group of non-zero 
complex numbers ( ℂ  ̃ , ⋅ ) .

Considering the complex logarithm, an inverse homomor-
phism from the multiplicative group ( ℂ  ̃ , ⋅ )  to the additive 
group ( ℂ , +)  can be defined only locally, i.e. by restricting the 
values of the angle within a period, i.e. from – π  to + π ,  – π < θ ≤ π , 
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or from 0  to 2π ,  0 ≤ θ < 2π , which depicts a branch where the 
complex logarithm is continuous and single-valued.

It is quite remarkable that the invariance of the harmonic 
domain is encapsulated in the homeotic kernel 2πℤ  of the expo-
nential group homomorphism from the real line to the unit circle, 
which specifies the neutral element of the group of complex phas-
es coordinating the unit circle, on the screen of the complex plane.

FIGURE 4.41
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The Archimedean Spiral Bridge  
of Circle Rectification

The major problem of ancient Greek mathematical antiq-
uity has been the problem of squaring the circle. We view this 
problem as a problem of natural communication, and for this 
reason, the method proposed by Archimedes to address it bears 
great significance.

We call the above Archimede’s metaphora, because the Ar-
chimedean method does not supply a constructible solution to 
this problem by straightedge and compass. Having realized that a 
constructible solution does not exist, Archimedes invents a meta-
phora from the circular to the linear domain. It is this metaphora 
that deserves a proper emphasis and appreciation.

The problem of squaring the circle refers to the instantiation 
of a square that has the same area with the area of the disk bound-
ed by a circle. In the first stage, Archimedes considers an isomor-
phic problem. Namely, the problem of geometrically straightening 
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the perimeter of a circle to a linear length. This more fundamen-
tal problem, conceptually can be cast isomorphic to the orig-
inal as follows:

If the geometric straightening of the perimeter of a circle to 
a linear length is possible, then the area of a circle can be made 
equivalent to the area of an orthogonal triangle whose sides are 
given by the radius of the circle and the perimeter of the circle. 
The main problem arises from the irrationality of π , which is a 
transcendental irrational number, that is, it is not the solution of 
any algebraic equation.

For every conceivable circle of some radius, π  is an invariant 
characterizing the perimeter through the radius. The incom-
mensurability of the circular domain with the linear domain is 
precisely captured by the irrationality of π .

In the “Measurement of the Circle” Archimedes devised an 
ingenious approximation to the perimeter of the circle involving 
the method of exhaustion by means of inscribed and superscribed 
polygons, i.e. approximating and grasping the perimeter both 
from the inside and the outside using polygons involving 
up to 96 sides.

FIGURE 4.45
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In relation to the pertinent problem of squaring the circle, 
Archimedes devised the means of metaphora from the circular 
domain to the linear domain in terms of the spiral. In other words, 
the Archimedean spiral provides the means of communication 
between these incommensurable domains, or equivalently, it is a 
bridge of metaphora from the circular to the linear and inversely.

The spiral is conceived in physical terms by Archimedes. He 
considers a point particle, located initially at the centre of the 
circle, which starts to move uniformly from the centre to the 
periphery of the circle along the radius. Simultaneously, Archi-
medes considers that the radius rotates uniformly counterclock-
wise around the centre of the circle. Thus, the particle movers 
according to the composition of these two uniform motions, the 
first linear, and the second circular. The composition of these two 
uniform motions is a non-uniform motion, which describes the 
trajectory of motion of the considered particle.

It is this trajectory, or orbit, that bears the geometric form of 
the Archimedean spiral. The spiral provides the natural means 
of transcription of the perimeter of the circle into a measurable 
linear length. This is accomplished by realizing the tangent to 
the spiral after one turn, i.e. at the point of intersecting the circle 
after one turn.

Archimedes showed that the tangent line to the spiral at this 
point crosses the vertical axis at a point whose distance from the 
origin is exactly 2πr , where r  is the radius of the circle. In this 
manner, the tangent to the spiral at the point of its intersection 
with the circle corresponding to a 2π  rotation, accomplishes the 
metamorphosis of the circular perimeter to a linear length, which 
is expressed by the distance of the point of intersection—of the 
tangent with the vertical axis—from the origin.

The important thing to point out is that the abduction of this 
linear length—from the tangent to the spiral—corresponds to 
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the time needed by the particle to 
complete one turn of its spiral tra-
jectory, i.e. the perimeter of the cir-
cle becomes a spatial distance 
through a temporal extent. The un-
derlying means of temporal unfold-
ing is periodic and can be analo-
gously recaptured for all higher 
turns of the spiral. Note that the 
radius of the spiral at each point of 
the trajectory of the particle is de-
termined by the angle with respect 
to the horizontal axis.

According to the above, the 
perimeter of the circle is encoded 
by means of the linear length 2πr 
from the origin. In turn, this is the 
length of the vertical side of an or-
thogonal triangle whose horizontal 
side is the radius r  of the circle.

Then, the area of this triangle 
is half of the area of the parallelo-
gram having the same sides, which 
is clearly 2πr 2 . Thus, the area of the 
circle is the same as the area of the 
above triangle, i.e. πr 2 .

FIGURE 4.47

Genesis of the square 
having the same area 
as the disk bounded 
by the circle

P0

S

WV

R

M

T

FIGURE 4.46

Unrolling the 
perimeter of the 

circle by means of 
the tangent to the 

spiral

CIRCLE

TANGENT 
OF SPIRAL

AT 1ST TURN

2 π r

P0



224

The Helix and the Imaginary 
Axis of Archimedes

Let us think of the possible interpretation of Archime-
des’s method in terms of the unit circle in the complex plane. 
Then, the spatially two-dimensional Archimedean spiral is the 
bridge that unfolds the unit circle into the imaginary axis of 
the complex plane.

The question is how we qualify the imaginary axis in this 
setting. The key lies on the periodicity that is implicit in the suc-
cessive turns of the spiral. More precisely, Archimedes’ method al-
lows the unfolding of the perimeter of the circle multiple times—
recorded by the turns of the spiral—i.e. the spiral is poly-strophic 
and not only mono-strophic. This idea forces the conception of 
time as a helix—in three dimensions—unfolding continuously 
and orthogonally to the screen of the complex pane, such that its 
projection is the unit circle on the complex plane.

This is nothing else than the exponential group homomor-
phism exp : ℝ→ S 1 , whose kernel is 2πℤ . Thus, the discrete group 
of the integers—in its role as the neutral element of the group of 
complex phases—corresponds to the winding number of the he-
lix. It simply counts the integer number of turns around the origin 
of the complex plane, which is invisible through the domain of 
values of the exponential.
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If we consider Archimedes’s spiral as the means of metapho-
ra from the circular to the linear domain, the counterclockwise 
oriented spiral is the encoding bridge, whereas the—inversely 
oriented—clockwise spiral is the decoding bridge. Thus, we may 
invoke harmonic considerations in our setting, as pertaining to 
the helical conception of time, according to the above. Note that 
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this requires to think of the helix in terms of a self-interfering hel-
ical stationary wave that is characterized by its harmonic series.

The leading idea again is that a single phase of the unit circle 
on the screen of the complex plane, is resolvable by the whole spec-
trum of harmonics, giving a precise meaning to the poly-strophic 
quality of the Archimedean spiral unfolding there in. The effect of 
this manoeuvre through the domain of harmonics is that we can 
now qualify the integers as a quantum spectrum of frequencies 
on the imaginary axis of the complex plane via branches of the 
complex logarithm.

We emphasize that this is viable due to the fact that both the 
complex exponential and its local inversion—in terms of a branch 
of the complex logarithm—preserve oriented angles. In this man-
ner, the homeotic criterion of identity can be imprinted on the 
imaginary axis in terms of the angular temporal interval of one 
whole period 2π  times the harmonic series.

The aftermath of the periodic resolution of time in terms of 
the harmonics is that time and frequency become reciprocally 
correlated, and represented orthogonally to each other. Time in 
the form of the helix in three dimensions unfolds orthogonally to 
the complex plane. The helix considered together with its mirror 
image give rise to a helical stationary wave bounded by temporal 
intervals of integer periods.

The latter projects down to the complex plane—excluding its 
origin, since the exponential can never obtain the value 0—on 
an annular strip of the polar grid. Applying a corresponding 
branch of the complex logarithm transforms this strip in an an-
gle-preserving way to a rectangular region on the complex plane 
(Figure 4.49).

The imaginary axis is marked in this way by the harmonic 
frequencies corresponding to the integer number of cycles per 
unit of time, where the latter is taken to correspond to the tem-
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poral length of one whole period 2π . Henceforth, we note that 
the process of bounding—a necessary condition for unraveling 
the harmonics in the complex analytic setting—takes place via 
logarithmic branch cutting, which originates from the fact that 
there does not exist a global complex logarithm function to invert 
the complex exponential function.

Notwithstanding this fact, the restriction to branches pre-
serves oriented angles, such that annular strips are transcribed to 
rectangular regions on the complex plane, and inversely.

As a side remark, which will become more explicit soon, we 
grasp the finite topological coverings of the circle by itself—cor-
responding to the whole range of discrete integer powers—as 
bounded restrictions pertaining to whole angular periods of the 
universal covering of the circle by the helix. Therefore, the topo-
logical notion of the winding number—which encapsulates the 
homological invariance of the helix—physically descends from 
the domain of harmonics.

In the setting of the universal covering of the circle by the he-
lix, the windings are qualified in terms of integers powers for the 
manifestation of consonances, that is, consonant harmonic ratios. 
Finally, it is the action of the logarithm through its single-valued 
branches that transforms these ratios into spatialized spectral 
intervals measured along the imaginary axis.

FIGURE 4.49
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Harmonics of the Screw:  
The Area-Preserving  

Projection of the Sphere

A mechanical model that encapsulates all of the aspects dis-
cussed in the previous section is the Archimedean screw.

If we consider a finite portion of the screw, then the projection 
of the screw onto the plane thought of as perpendicular to the 

central axis of the screw, depicts an 
annular strip of the polar grid on the 
complex plane (excluding the origin, 
as usual in our approach).

If we apply the complex logarithm, 
this strip is transformed to a rectan-
gular region on the complex plane 
leaving all angles invariant, that is, 
preserving all angles. We imagine the 
bounding of such a finite portion of 

the screw by an open cylinder. This is essential to understand in 
relation to Archimedes’s method of calculating the surface of a 
sphere, as an application of the spiral bridge from the circular to 
the linear, which unravels the perimeter of a circle into a 
linear length.

FIGURE 4.50
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 We recall that the Archimedean metaphora in terms of the 
spiral leads to the conclusion that, the area of a circle is equal to 
the area of an orthogonal triangle, whose perpendicular sides 
are equal to the radius of the circle, and the perimeter of the 
circle, respectively.

Since the area of the sphere is 4πr 2 , this area is the same as the 
area bounded by four circles of the same radius r , or equivalently, 
the same as the area of four orthogonal triangles fitting compati-
bly together, whose big side is 2πr  and small side is r , where r  is 
identified with the radius of the sphere.

It is necessary that these circles should be considered as great 
circles of the sphere passing through the North and South pole, 
such that their radius is equal to the radius of the sphere. The 
unraveling of any such circle into a linear length equals the equa-
torial length of the sphere, i.e. the length of the perimeter of the 
equator, given by 2πr .

Thus, all four orthogonal triangles should have a big side equal 
to the equatorial length of the sphere 2πr , and small side equal 
to the radius of the sphere. It is immediate to realize that these 
four triangles fit together in a plane region divided in two equal 
halves by the horizontal equatorial line of length 2πr , such that 
the small side of each triangle r  equals the vertical side of a half 
of this plane region.

Conclusively, this plane region has a horizontal side equal to 
the equatorial length of the sphere 2πr  and a vertical side equal 

FIGURE 4.52
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to 2r . Each horizontally conceived half divided by the equatorial 
line has sides 2πr  and r  respectively. In each half there fit two 
orthogonal triangles sharing the same diagonal of sides 2πr and r, 
respectively. Thus, the area of the sphere equals the area of these 
four orthogonal triangles, each one of which equals πr 2 .

In order to obtain a proper insight on the Archimedean meth-
od of determining the area of a sphere using the spiral as a bridge, 
it is significant to clarify what it implies. Precisely speaking, it 
implies that there exists an equi-areal projection of a sphere 
onto a cylinder, which we call the Archimedean projection. Note 
that this projection of the sphere does not preserve angles, but it 
preserves areas.

It is realized as a horizontal radial projection emerging by 
placing the sphere within an open cylinder, which is touching the 
sphere along the equator. Topologically, we may easily see that if 
we cut the sphere along a meridian passing through both the 
North and South pole of the sphere, we unwrap the sphere onto 
an open cylinder of height 2r .

The area of this cylinder equals the area of a plane region 
on which it can roll for the temporal length corresponding to 
one rotation, i.e. 2πr , identified with the equatorial length of the 
sphere. Hence, the sphere excluding its North and South pole 
can be projected in an area-preserving manner onto a open cyl-

inder, and inversely. Rolling the 
cylinder as above, we obtain an 
equi-areal projection of the sphere 
on a planar region whose horizon-
tal side is the equatorial length of 
the sphere 2πr  and whose vertical 
side is 2r , together with a rectan-
gular and straight weaving grid of 
meridians and parallels.

FIGURE 4.53
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The Resonating Screen:  
Equatorial Cyclotomy

Since the sphere—in terms of its area-preserving projection 
to a cylinder—encodes the spiral metaphora from the circular to 
the linear, it is natural to wonder how the harmonics—in terms of 
the windings—manifest on our screen. The spectral recognition 
of the harmonics on the screen of the complex plane qualifies the 
screen as a resonator, that is, it makes it capable to resonate with 
the whole spectrum of spherical harmonics.

The necessary condition for this is the identification of the 
equator of the sphere with the unit circle on the complex plane, 
or equivalently, the multiplicative group of complex phases 
coordinating it.

 The idea is the following: Given a certain harmonic, devise 
the positioning—on the unit circle—of the phases equaling the 
unity, if raised to the power specified by this harmonic.

Conceptually, the positioning of these phases on the unit cir-
cle symbolizes the specific way of cyclotomy encapsulated by a 
certain harmonic. For this reason, the positions of these phases 
mark the roots of unity with respect to a certain harmonic. In a 

FIGURE 4.54
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nutshell, the roots of unity invert the harmonics in relation to the 
unity, so that the latter manifest on our screen.

Conclusively, the harmonics manifest through inversion as 
the positions of the complex roots of unity on the equator of the 
sphere. There are always n different complex n-th roots of unity, 
i.e. complex numbers whose n-th power equals to unity, equally 
spaced around the perimeter of the unit circle in the complex 
plane. Since they are equally spaced, they constitute an equal-
ly-tempered scale on the screen of the complex plane. It remains 
to qualify how they are understood geometrically.

PRESENT - EPIPHANEIA - EQUAL TEMPERAMENT 

FIGURE 4.55
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The positioning of the roots of unity on the unit circle takes 
place geometrically through radii, which like cords bind the origin 
with the periphery. Depending on the harmonic, the positions of 
the roots on the periphery activated with respect to this harmonic 
are connected through linear segments, which always gives rise to 
a polygon inscribed in the unit circle. Hence, the roots of unity are 
manifested geometrically as the vertices of a regular polygon that 
binds them together with respect to a corresponding harmonic.

Of particular importance are the primitive roots of unity. 
More precisely, on the unit circle with n equally spaced rays, there 
is now a mark on ray k , denoting a primitive root of unity, if and 
only if k  and n  are relatively prime, i.e. they have no common 
divisors other than 1 .

An equally-tempered equatorial 
scale constitutes the means of cycloto-
my, which becomes manifest geomet-
rically in terms of regular polygons in-
scribed in the equatorial circle. Thus, 
cyclotomy is what lies underneath the 
spectral generation of regular poly-
gons. The deeper the resolution of 
the cyclotomy is, the higher the number of vertices appearing 
equi-distantly on the unit circle, and thus, the higher the number 
of sides of the inscribed regular polygon.

FIGURE 4.56

Polygonal unfolding 
of the roots of unity
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	 5. 	  
� The Mediator of Analysis Situs:  

Continuity and Connectivity

Topological Plasticity: The Erasure of Distance

Euler’s resolution of the famous Königsberg bridges problem 
is the first work to address Leibniz’s conception of “Analysis Situs”. 
It is claimed that the citizens of Königsberg used to spend their 
Sunday afternoons walking around their beautiful city. The city 
itself consisted of four land areas separated by branches of the city 
river over which there were seven bridges, as illustrated in the 
figure of Euler’s paper.

 The problem that the citizens set themselves was to walk 
around the city, crossing each of the seven bridges exactly once 
and, if possible, returning to their starting point. The abstraction 
of this problem reads as follows: Given any division of a river into 

FIGURE 5.1

The bridges of 
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branches and any arrangement of bridges, is there a general meth-
od for determining whether such a route exists?

Euler poses the problem as follows:
“In addition to that branch of geometry which is concerned 

with distances, and which has always received the greatest atten-
tion, there is another branch, hitherto almost unknown, which 
Leibniz first mentioned, calling it the geometry of position [Ge-
ometriam situs]. This branch is concerned only with the determi-
nation of position and its properties; it does not involve distances, 
nor calculations made with them. It has not yet been satisfactorily 
determined what kinds of problem are relevant to this geometry 
of position, or what methods should be used in solving them. 
Hence, when a problem was recently mentioned which seemed 
geometrical but was so constructed that it did not require the 
measurement of distances, nor did calculation help at all, I had no 
doubt that it was concerned with the geometry of position—es-
pecially as its solution involved only position, and no calculation 
was of any use. I have therefore decided to give here the method 
which I have found for solving this problem, as an example of the 
geometry of position.”

The attribution to Leibniz of the conception of geometry of 
position appears in a letter Leibniz wrote to Huygens, where he 
remarks the following:

“I am not content with algebra, in that it yields neither the 
shortest proofs nor the most beautiful constructions of geometry. 
Consequently, in view of this, I consider that we need yet another 
kind of analysis, geometric or linear, which deals directly with 
position, as algebra deals with magnitudes … .”

Leibniz introduced the term “Analysis Situs” to characterize 
the domain of plasticity, what we call presently topology. Anal-
ysis Situs pertains to the analysis of position or situation, where 
the notions of distance, length, angle, and area, are erased. What 
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remains after this forgetting, this erasure, is only the notions of 
continuity and connectivity.

The domain of plasticity mediates in the metaphora from 
harmonics to geometry and inversely. Mediation always requires 
an act of forgetting, in the first place. The mediation from ge-
ometry to harmonics—the encoding bridge—consists in the 
forgetting of distance and angle. Then, the spectrum becomes 
non-rigid and malleable.

What constitutes this spectrum is continuity—where local 
positioning takes place—and connectivity—where obstacles act 
as sources of invariance. Topological invariants usually pertain to 
a structural—group-theoretic characterization -, but the invari-
ance itself can be captured arithmetically, like in the case of the 
Euler characteristic. The decoding bridge consists in the transla-
tion of harmonics to topological invariants pertaining especially 
to connectivity. Then, the notion of a universal covering space 
provides the bridge back to geometry, as we will shortly explain.

The Euler Characteristic  
Invariant of Shape

In the case of the Euler invariant of the plasticity domain, 
it pertains to the characteristic of various classes of geometric 
figures, involving only the relationship between the numbers of 
vertices (  V  ) , edges (  E  ) , and faces (  F  ) , of a geometric figure. 
This invariant number, given by: 

C = V – E + F
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is the same for all figures whose boundaries are composed of 
the same number of connected parts. For all simple polygons the 
Euler characteristic equals to unity.

This can be shown through a process called triangulation of a 
figure. We draw lines that connect vertices, such that the region 
of the figure is subdivided into triangles. The triangles are then 
erased, one at a time, starting from the outside and moving in-
wards until only one remains, whose Euler invariant equals one.

Note that this process of adjoining and erasing lines does not 
alter the Euler characteristic of the original figure—since it is a 
topological invariant—and so it must also equal one.

For instance, in the case of a square, we have V = 4 ,  E = 4 ,  F = 1 , 
so the Euler characteristic is 1. Equivalently, we can partition it 
into two triangles and get V = 4 ,  E = 5 ,  F = 2 .

Further, the Euler characteristic is used to demonstrate that 
there are only five regular polyhedra, namely the Platonic solids.

More concretely, a convex polyhedron whose surface compris-
es of V  vertices, E  edges, and F  faces, satisfies: 

V – E + F = 2

FIGURE 5.2

Cellular 
decomposition  

of a sphere
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Being convex, the polyhedron can be enclosed in a sphere and 
its surface projected bijectively to the surface of the sphere. This 
gives a partition of the sphere’s surface into polygons, which is 
called a cellular decomposition. For any two cellular decomposi-
tions P  and P ’ , we say that P ’  is a refinement of P  if all vertices 
and edges of P  are also in P .

Since any two cellular decompositions have a common refine-
ment, if P ’  is a refinement of P , then they have the same Euler 
characteristic.

FIGURE 5.3
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Moreover, the Euler characteristic is constant for any cellular 
decomposition of a suitably nice surface. For example, on the 
surface of a torus, the following decomposition gives—after un-
folding—four faces of rectangles.

Hence, in the case of the torus V = 4 ,  E = 8 ,  F = 4 , 
and V – E + F = 0 .
The Euler characteristic invariant V-E+F pertains to the global 

topological property of the shape. If we partition the surface of a 
two-holed torus, we find that its Euler characteristic is – 2 .

Abstracting from the above cases, the Euler characteristic of 
the surface of a g-holed torus is 2 – 2 g , where g is the genus. Put 
simply, the genus is equal to the number of holes in the topologi-
cal shape. It is expressed by an integer representing the maximum 
number of cuttings along non-intersecting closed simple curves 
without rendering the resultant shape disconnected.

FIGURE 5.4
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Continuity and Information: 
Localization and Sheaves

The domain of plasticity is introduced through the distinction 
between the local and the global, and it is of an information-the-
oretic character. The idea is that the global is not directly grasp-
able, and thus, global information should be constituted by local 
means, together with the appropriate gluing conditions from the 
local to the global.

The obstacle here is objective indistinguishability, intrinsic 
randomness, or indeterminateness that is not due to subjective 
conditions of lack of knowledge. The abstract idea characterizing 
the domain of plasticity is continuity, and its local manifestation 
in terms of continuous functions. This is precisely what leads to 
the notion of a topology on space.

In the conception of a topological space, the notion of a topol-
ogy provides the scaffolding that enables to model the notion of a 
continuous function. It is enough, at the present stage, to consider 
the domain of values as the real line.

A topology essentially specifies how we cover the space, for 
instance, in terms of open sets. In this case, we consider a topology 
consisting of open covers distributed all around and intersecting 
each other. The condition is that an arbitrary union of these cov-
ers, as well as, a finite only intersection of any of them, should also 
qualify in the topology.

A function is said to be continuous if and only if the inverse 
image of every open cover of the range is an open cover of the do-
main topological space. This is an attempt to capture the intuition 
that there are no breaks or separations in a continuous function.
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We stress the following:
(i) The definition of a topology on a space is solely used as a 

scaffolding to express what a continuous function is on that space;
(ii) the continuity of a function is a property which is deter-

mined locally, that is, only referring to the open covers of a space.
This means that due to the plasticity of an open cover, the 

property of continuity of a function should respect the restriction 
of this function to smaller open covers, as well as, its extension 
to bigger and bigger open covers in the topology up to covering 
the whole space.

Regarding the second property, a continuous function defined 
globally over the whole space, and not merely over an open set, 
is subordinate to the condition that its extension to bigger and 
bigger open covers takes place in a unique way, otherwise gluing 
the local pieces together is not feasible.

In that case, a globally defined continuous function can be 
restricted consistently to all open subcovers of any open cover in 
the topology, and inversely, extended by gluing uniquely together 
all its local restrictions. This is the crucial conceptual insight—in 
relation to the local conception of continuity—that is encapsu-
lated in the notion of a sheaf.

The above insight may be generalized in two directions:
Firstly, instead of open covers of a topological space we may 

consider generalized covers under the constraint that they 
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collectively obey topological closure 
conditions analogous to the ones used 
for open covers.

Secondly, instead of functions var-
ying continuously over local covers, 
we may consider generalized func-
tional relations, to be thought of as 
local information carriers.

These carriers encode functional 
relations relatively to a local cover, 
such that the information obtained by 
restriction to a subcover is exactly the 
same as the local information carrier 
over this cover. Of course, the objec-
tive is that local information carriers 
can be uniquely extended from the 
local to the global.

This happens only if they are compatible under their pairwise 
intersections, which constitute the bridges of extending these 
information carriers to bigger and bigger covers. If this is accom-
plished, we obtain an information structure called a sheaf, con-
sisting of the totality of its information carriers, called the 
sections of the sheaf.

FIGURE 5.9
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The latter condition is not always fulfilled. Then, we obtain a 
weaker structure called a presheaf, which satisfies only the re-
striction property. In case that the compatibility property of sec-
tions under extension is also satisfied, but not uniquely, the pre-
heaf is characterized as a separated one. Only in case that 
extension results in a unique gluing of sections, that is, local in-
formation carriers can be uniquely glued together, a separated 
presheaf becomes a sheaf.

Consequently, there will always be more local sections 
than global ones, since not all local sections can be extended 
to global ones.

In more detail, the information structures—pertaining to 
the local conception of continuity—are defined as follows, for the 
case of a topological space:

A presheaf 𝔽  of sets on a topological space X , is constituted 
as an information structure in relation to this space, as follows:

I) For every open set U  of X , there is defined a set of elements 
denoted by 𝔽 ( U ) ;

and II) For every inclusion V ↪ U  of open sets of X , there is 
defined a restriction morphism of sets in the opposite direction: 

r ( U | V ) : 𝔽 ( U ) → 𝔽 ( V )       ( 1 )

such that:

FIGURE 5.10
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a) r ( U | U )  = identity at 𝔽 ( U )  for all open sets U  of X ; and
b) r ( V | W ) ∘ r ( U | V ) = r ( U | W )  for all open sets W ↪V ↪ U .
Usually, the following simplifying notation is used: 

r ( U | V ) ( s ) : = s | V .
A presheaf 𝔽  of sets on a topological space X , is defined to 

be a sheaf if it satisfies the following two conditions, for every 
family V a ,  a ∈ I , of local open covers of V , where V  open set 
in X , such that V = ∪a V a :

I) Local identity axiom of a sheaf: Given s , t  ∈  𝔽 ( V )  with 
s | V a = t | V a  for all a ∈ I , then s = t ; and

II) Gluing axiom of a sheaf: Given 
sa  ∈  𝔽 ( V a ) ,  sb  ∈  𝔽 ( V b ) ,  a , b  ∈  I , such that:

sa | ( V a ∩ V b ) = sb | ( V a ∩ V b )       ( 2 )

for all a , b ∈ I , then there exists a unique s  ∈  𝔽 ( V ) , such 
that: s | V a = sa  ∈  𝔽 ( V a )  and s | V b = sb  ∈  𝔽 ( V b ) .

We note that the above definitions hold if instead of 
presheaves/sheaves of sets, we consider presheaves/sheaves of 
algebraic structures, for example groups, algebras, or modules.

As the most basic example, if 𝔽  denotes the presheaf that 
assigns to each open set U ⊂ X , the commutative algebra of all 
real-valued continuous functions on U , then 𝔽  is actually a sheaf.

This is due to the fact that the specification of a topology on X , 
is solely used as an architectonic scaffolding for grasping the no-
tion of a continuous function on X .

Thus, the continuity of each function can be determined local-
ly. This means that continuity respects the operation of restriction 
to open sets, and moreover, that continuous functions can be 
collated together uniquely, as it is required for the satisfaction of 
the sheaf condition.
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The Plastic Metamorphosis of the Gnomon

In the case of abstract topological figures the homeotic crite-
rion of local identity, that is, the criterion of local congruence, is 
expressed by the notion of a local homeomorphism. This notion 
pertains to the local preservation of shape by means of a contin-
uous function. For instance, from the perspective of the domain 
of plasticity, the exponential function from the real line to the 
circle is indeed a local homeomorphism of topological spaces, i.e. 
it preserves locally the shape, but not globally.

It is natural to wonder how the notion of the gnomon can be 
thought of in the topological domain. In other words, if we erase 
the length of the gnomon and the right angle of its placement, 
what remains of this notion?

For this purpose, it is interesting to focus on the abstraction 
of this notion, conceived by the great mathematician Heron of 
Alexandria, who gave the following formulation: A gnomon is 
that entity which, if it is adjoined to some other originally given 
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unknown entity, it results in a new augmented entity, which is 
partially, or locally congruent, with the original one.

Recall that in the standard context of the Thalesian theory of 
homeothesis, the gnomon is, literally speaking, the part of the 
sundial that casts the shadow.

 In this sense, it is the adjunction of the gnomon to the pyr-
amid, which induces a homeothetic congruence between the 
level of objects and the level of their shadows—with reference 
to their magnitudes at the same time of the day—and conse-
quently, makes the metaphora feasible from one level to the oth-
er, leading to the determination of the height of the pyramid in 
terms of proportion.

In its simplest possible form the general process of adjoining 
a gnomon in order to obtain a relation of homeothesis may be 
visualized as follows:

FIGURE 5.12

Gnomon of Thales
GNOMON

PYRAMID

b c

x
a

FIGURE 5.13

Adjoining a gnomon 
and the notion of 
homeothesis

F

CD

BE

G

A



248

 Formally, the relation of homeothesis is an equivalence rela-
tion, and thus induces a partition spectrum consisting of equiv-
alence classes standing for the blocks or cells of this partition. 
The quotient structure obtained by factoring out this equiva-
lence relation incorporates a new homeotic criterion of identity 
in comparison to the initial one, which is precisely characterized 
in terms of the gnomon.

In other words, the notion of logical identity is relativized with 
respect to the gnomon, such that the neutral element of the quo-
tient structure expresses equivalence modulo the gnomon. This is 
exactly the notion of modular substitution we encountered before.

From the rather rigid case of homeothesis—proportionality 
of magnitudes—, the metaphora may be abstracted to a deeper 
level involving the continuous recursive, or periodic, adjunction 
of a gnomon. This leads naturally to the dynamical notions of gno-
monic growth or gnomonic unfolding, and reciprocally, gnomonic 
subdivision or gnomonic folding.

An example of the continuous recursive adjunction of a 
gnomon, is the case of growth manifesting by the so called “golden 
mean” spiral, depicted graphically as follows:
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Nevertheless, we need an even deeper level of abstraction 
to enter into the domain of plasticity equipped with a gnomon 
adapted to this context, where distances and angles are intrinsi-
cally non-viable as means of comparison and congruence. For this 
purpose, we have to enter the phantasms of shadows themselves, 
which are continuously altering their shapes topologically.

At this level, the abstraction consists in thinking of a gno-
mon as a means to indicate position according to Analysis Situs, 
or discern, and distinguish locally. The adjunction of a gnomon 
in this domain should provide the means of metaphora and 
modular substitution, through a partition spectrum of locally 
congruent figures.

For instance, in the case of an abstract topological figure, 
called a manifold, the gnomon to be adjoined is a local covering 
patch of the figure that is locally homeomorphic to a standard 
space, like a Euclidean space. As a consequence, locally, the means 
of indicating position through the gnomon takes place in terms 
of the standard space.

In a similar way to what we have already discussed, the global 
topological figure may be grasped as a sheaf-theoretic infor-
mation structure, whose modularity type is expressed by the 
gluing conditions of all local patches adjoined to the figure so as 
to cover it entirely.
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Finally, it is worth explicating very briefly, from our perspec-
tive, the notion of gnomon, employed in homology theory, as it is 
appears in the field of algebraic topology. We think of homology 
as the algebraic-topological abstraction of homeothesis. The key 
idea pertaining to topological connectivity—not merely to con-
tinuity—is that the notion of boundary seems to be the most 
appropriate for the topological metamorphosis of the gnomon.

This already makes perfect sense in relation to shadows, under 
certain precautions. Since what matters here is connectivity in 
a continuous stratum, the congruence condition for building 
the spectrum should refer to this criterion. In general, if we 
think of a topological obstacle, all bidirectional bridges of con-
nectivity around it—which we call connectivity chains—can 
be distinguished in a binary way: Either they are cycles, or they 
are boundaries.

Intuitively, a boundary at some dimension is a bounding chain 
of a higher dimensional topological form, whereas a cycle stands 
for a non-bounding chain. Visually, non-bounding chains may be 
thought of in terms of holes or punctures or higher dimensional 
cavities, whereas boundaries may be thought of in terms of filled 
in, and thus bounding chains.
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The basic idea of a boundary as a gnomon, establishing the 
criterion of congruence in homology, is that adjoining a bounda-
ry to a cycle gives a topologically similar or homologous cycle. 
Thus, two cycles differing by a boundary belong to the same ho-
mology equivalence class as it is depicted visually below.

In this sense, homology equivalence classes, which are actually 
commutative groups due to the algebraic operations involved in 
composing chains and orienting boundaries, encode the invariant 
information of holes and cavities of topological forms.

The dual theory, called cohomology theory, is based corre-
spondingly on the notion of cochains of connectivity, that is, 
the evaluations of chains on some group of coefficients, like the 
integers or the reals. In turn, cochains are classified into cocycles 
and coboundaries respectively.

In this case, two cocycles are cohomologically equivalent if 
they differ by a coboundary. For example, in the case of de Rham 
cohomology theory, the cocycles are represented as closed dif-
ferential forms and the coboundaries as exact differential forms.

One important difference between these two dual theories is 
that the notion of boundary in homology pertains to the global, 
whereas the notion of coboundary in cohomology pertains to the 
local. The whole of calculus may be interpreted topologically via 
homology and cohomology theory.

FIGURE 5.18
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The law of variation that activates and enables differential 
calculus in the setting of these theories can be formulated in the 
following simple manner: The boundary of a boundary is zero, and 
the coboundary of a coboundary is zero. Every discrepancy with 
respect to this law is expressed by means of a topological invariant 
that characterizes globally the topological figure.

Multi-Connectivity:  
The Fundamental Group of  

Contraction Invariance

It is the renowned mathematician Poincaré, who first attempt-
ed to probe the connectivity problem of a topological space by 
using paths, and in particular, loops based at a point of this space. 
This approach gave rise to homotopy theory, and led to the notion 
of the fundamental group of a topological space.

The fundamental group at a point of a space is defined in terms 
of the set of based loops at this point modulo homotopies. The 
notion of homotopy establishes a homeotic criterion of identity 
of based loops, which gives rise to a partition spectrum that is 
based on the notion of invariance under continuous contraction. 
Contraction is thought of in terms of continuous distortion of 
based loops and shrinking. Intuitively, if there is no topological 
obstacle we expect the all based loops at a point are contracti-
ble to this point.
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The most basic example is the fundamental group of the cir-
cle S 1 . Note the difference between the circle and the closed disk. 
The closed disk has a boundary, which is clearly a circle. But, in the 
absence of the disk the circle stands topologically for a hole. It is 
equivalent to the erasure of a single point from the plane.

If we think of based loops winding around the circle, then 
the criterion of their homological congruence depends only on 
the number of times they are winding around. In this case, the 
winding criterion serves also as a homotopy criterion, since based 
loops winding around the same number of times can be continu-
ously contracted to each other—this is the essence of the domain 
of plasticity. This is not possible for based loops winding around a 
different number of times, they cannot be neither homologically, 
nor homotopically equivalent to each other.

Thus, the fundamental group of the circle is the additive group 
of the integers ℤ , corresponding to the countable number of the 
windings. This presents a case where homotopy is abducted from 
homology, but, in general this is not the case.

For instance, in case there exist two punctures on the top-
ological screen, then the fundamental group is not reducible 
to the (first) homology group, like in the case of the circle. 
As a general rule, at first order, homology is the commutative 
image of homotopy.

In general, the set of equivalence classes of based loops with 
respect to continuous contraction can be always endowed with 
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a multiplicative group structure, under the operation of compo-
sition of paths.

If the topological space is path-connected, that is, if any two 
points can be joined by a path, then the isomorphic class of the 
fundamental group does not depend on the selection of the base 
point, since the respective fundamental groups at two different 
base points can be made isomorphic. A path-connected space is 
always connected. The crucial thing is that it is simply-connected, 
and thus a geometric space, if it has a trivial fundamental group.

The Universal Covering of  
the Circle by the Helix

A covering space of a topological space—called the base top-
ological space—is a local homeomorphism, such that for each 
point on the base space, the inverse image of an open set contain-
ing this point is a disjoint union of open sets in the covering space 
lying over the base, each of which is mapped homeomorphically 
on this open set, as it is displayed schematically below.

In particular, if the base space X  is connected, then the 
fibers of the covering space projection p : Y ↠ X  are all homeo-
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morphic to the same discrete space I , such that locally, Y  is iso-
morphic with X × I .

The main idea pertaining to the notion of covering space is 
that, both paths and loops (belonging to a homotopy class of the 
fundamental group) on the base space can be lifted uniquely 
from the base to the fibers of a covering space. In particular, if we 
consider a based loop at a marked point of the base space, then its 
unique lift on a covering space is not necessarily a loop, but it is 
always going to be a path whose starting and ending point belong 
to the same fiber of the covering space, and which projects to the 
marked point of the base, where the loop is based.

Let us now imagine the real line ℝ  in the domain of plas-
ticity. The idea is to interpret the exponential exp: ℝ ↠ S 1  as a 
local homeomorphism of topological spaces. In this setting, the 
topological real line is thought of as a helix that is continuously 
covering the circle in each of its windings.

The local homeomorphism exp: ℝ ↠ S 1  is surjective, and 
the circle is universally covered by the helix, in the sense that, 
every possible covering of the circle is a restriction of the helical 
covering. Intuitively, every finite covering of the circle emerges 
from the helical one, by restricting on a certain integer num-
ber of windings.

Every finite such covering is actually a covering of the circle by 
itself, whereas only the universal one is the covering of the circle 
by the helix—taking into account the countably infinite number 
of windings of the helix.

It is important to point out the different interpretations of 
the exponential (valued on the circle) acquires, depending on our 
viewpoint. If the viewpoint is topological then, according to the 
above, the topological real line—though of as a helix—is locally 
homeomorphic, and covering universally the topological circle.
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If the viewpoint is algebraic, and thus structural, then the 
exponential is the homomorphism from the group structure of 
the real arithmetic line (under addition) to the group structure of 
the phases (under multiplication).

These viewpoints can be considered jointly without any con-
tradiction. It is an example of how the topological sheds light on 
the algebraic, and conversely, how the algebraic structures the 
topological. This is a recurring theme in algebraic topology.

Conclusively, the exponential map wraps the real line contin-
uously (anti-clockwise) around the circle . Note that the real line 
R is simply connected, whereas the circle is multiply-connected. 
This is the objective of every universally covering space, that is, it 
should be simply-connected.

Finally, let us consider the symmetries of the real line ℝ  leav-
ing the circle S 1  invariant. They are simply expressed by the 
map t ↦ t + k , where t  in ℝ , and k  in ℤ  is the winding number. 
Thus, we obtain the group isomorphism S 1 ≅ ℝ / ℤ , which iden-
tifies structurally the circle as the group of phases.

FIGURE 5.21
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	 6. 	  
� The Angel of Geometry:  

The Space Art of Angles and Areas

Metronomy of Euclidean Elements: 
Geometric Topos

The obstacle that Euclid addressed through the development 
of the Elements (Stoicheia) is the possibility of obtaining measura-
ble geometric magnitudes out of the qualification of an epiphaneia 
in terms of a metronomy, which amounts to a geometric construc-
tion using the ruler (straightedge without division markings) 
and the compass.

This metronomy is based on the idea that a completed con-
struction in Geometry via the ruler and the compass should corre-
spond either to a consonance in Harmonics, or to a rhythm fitting 
into a synchronization cycle.

The implementation of this metronomy is based on the notion 
of Elements, which should be though of as an alphabet that is capa-
ble of giving rise to a language that grasps geometric magnitudes 
out of certain grammatical and syntactical rules pertaining to 
the interactions and synthesis of these elements under varying 
combinations on the epiphaneia.
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The grasping corresponds precisely to a geometric construc-
tion with the ruler and the compass that respects these rules. 
The grammatical rules are about the morphology of the elements 
in combinations and synthesis, whereas the syntactical rules 
are about the ordering of the steps of synthesis giving rise to a 
geometric construction.

The axioms and the definitions refer to the grammatical mor-
phology emanating from some reasonable hypotheses. The suc-
cessive ordering of the actions of synthesis that in the Euclidean 
setting completes a geometric construction refer to the syntactic 
arrangement of these actions. They are reflected in the ordering of 
the propositions that give rise to the proof of a theorem expressed 
deductively. A theorem corresponds to a completed geometric 
construction that is possible to be orderly synthesized out of the 
analysis conducted by the elements under the grammatical rules.

The elements that Euclid introduced for this purpose are the 
following: The point, the straight line/straight line segment, and 
the circle. A straight line is drawn by the ruler, and a circle is drawn 
by the compass. The notion of a point as an element is holistic and 
synthetic. It is holistic because it does not correspond to a dot on 
the epiphaneia, but to something that does not have any parts, 
thus it is not amenable to analysis, but only to synthesis.

A point is the meeting point of all lines passing through this 
point, and any two points define a line passing through them, 
bounding a linear segment on this line. A point is also the implicit 
center of a circle drawn by the compass, being implicit because 
the center does not belong to the circle. The center together with a 
point on the periphery of the circle bound a straight line, identified 
as a radius of the circle, which also does not belong to the circle.

The elements of Euclid should not be identified with the 
objects of sense perception. The latter are not points, straight 
lines, and circles. They belong to different levels—if the objects 
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of sense perception are on the ground, then the elements are on 
the imaginary epiphaneia together with their grammatical and 
syntactical rules.

The purpose is the architectonic bridging of these levels 
through metaphora, in the sense that the shadows on the ground 
are lifted up to the epiphaneia through the elements, becoming 
in this way amenable to geometric construction, which in turn, 
allows their measurement in terms of geometric magnitudes, that 
is, areas, lengths, and angles.

After the comprehension of all the possible constructions on 
an epiphaneia, we have at our disposal all the available means to 
enter into the domain of solid geometry, conceived as the study 
of crystallization in space emerging out of the combinations and 
interactions of these bounding surfaces.

The geometry made out of the elements is neither a kinemati-
cal geometry, nor a mechanics. Since the objective is construction 
through the ruler and the compass, kinematical notions are not 
allowed to be employed as a means of proof in the context of the 
Elements. At the same time, this pertains to the eventual limit of 
the allowable constructions in this context.

For instance, the big unresolved problems of antiquity involv-
ing only the use of the ruler and the compass, that is; the squaring 
of the circle, the trisection of the angle, and the doubling of the 
cube, determine the limits of this metronomy. The kinematical 
solutions to these problems gave rise to mechanics, which essen-
tially comprehends a geometric magnitude out of its variation—
expressed as relative motion—in relation to other magnitudes.

We distinguish two main notions that underlie the morphol-
ogy of the relations in the setting of the geometry of Euclid:

The first is the notion of parallelism, that is, the notion of 
parallel transport of a unit of measurement along the ruler. Recall 
that the ruler is not marked and not divided ab initio, thus as soon 
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as a unit is chosen, the means of transporting this unit along the 
ruler are needed.

This requirement gives rise to the axiom of parallelism, 
according to which parallel lines never meet on the epiphaneia. 
This is what makes possible the transference of a unit along the 
ruler by means of a geometric construction. The metaphora of the 
unit along the ruler through parallelism transfuses the affinity 
property to the ruler.

The second is the notion of orthogonality, that is, the notion 
of a right angle between two lines. This morphological qualifica-
tion of an angle should be thought of in relation to the perpendic-
ular placement of the gnomon. According to the definition 10 in 
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the first book of the elements, orthogonality indeed is lifted up as 
a relation from the gnomon: “When a straight line standing on a 
straight line makes the adjacent angles equal to one another, each 
of the equal angles is right, and the straight line standing on the 
other is called a perpendicular to that on which it stands”.

Parallelism—Orthogonality—Homeothesis

We are ready now to present the geometric construction of 
Thales, which gives rise to homeothesis, interpreted as a propor-
tionality relation among four geometric magnitudes:
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Consider two straight lines intersecting at O . On the slop-
ing line a point A  is specified such that O A = a . On the horizon-
tal line two points B ,  C  are specified such that: O B = b , and 
O C = c . Somewhere on the sloping line there exists a point X , 
such that O X = x . The Homeothesis theorem is concisely ex-
pressed as follows:

a  to b  is as x  to c

The above gives rise to the following proportionality relation: 

	 a / b = x / c

holds, if and only if C X  is parallel to B A . The point X  is at the 
intersection of the sloping line with the straight line through C , 
which is parallel to A B .

The geometric construction is completed through metapho-
ra in three steps: First draw the straight line segment A B , then 
transfer from B  to C ,  and finally draw the straight line segment 
C X  parallel to A B .  We conclude that homeothesis is equivalent 
to the fact that the triangles O A B  and O X C  are similar meaning 
that all corresponding angles are equal to each other, and thus, as 
a consequence all corresponding sides are in the same ratio.

Henceforth, the geometric construction shows that it is the 
invariance of the angle formed between the two straight lines 
intersecting at O , which together with parallelism, captures the 
proportion among the four magnitudes. According to the original 
geometric conception, every ratio emerges out of a proportion, 
the notion of a ratio independently of the proportion that gives 
rise to it is not meaningful. This contrasts the modern conceptu-
alization that considers ratios as a separate domain of numbers, 
the rational numbers.
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The main difference between these two views boils down to 
the conceptual difference that a ratio acquires with respect to the 
notions of unit and unity. In particular, in the ancient conception 

units are indivisible, they are monads, and thus, the division of 
units is not permissible. Units can be only transported along lines, 
and can also enter into relations with other magnitudes.

What is permissible geometrically is the rational division of 
unity, though of in terms of the circle, with respect to lines inter-
secting at its center, and as such opening up angles, distinguishing 
in this way parts of the unity. Therefore, a proportion delineates 
parts of the unity that share the same angle, and because of this 
invariance, equality of ratios formed by magnitudes along these 
intersecting lines can be established through parallelism.

The ancient geometric view is interesting, not only because it 
implies that ratios are inconceivable independently of an invariant 
angle that distinguishes only a part of the unity as the prerequisite 
for a proportion, but because it reveals that rationality is impossi-
ble without the existence of an origin O - the centre of the unity 
circle and the meeting point of the intersecting lines forming an 
invariant angle.

The implication is that such an origin signifies a point—some-
thing without parts—in its capacity to break the geometric ex-
tension of a line at this point by opening up an angle that reveals 

FIGURE 6.6

Proportionality 
of geometric 

magnitudes in the 
form of a natural 

communication 
diagram

LEVEL 1

LEVEL 2

MAGNITUDES

SHADOWS

BIDIRECTIONAL
DOMAIN OF

COMMUNICATION

ANGLE

bO c

x

a

SPECTRUMADJUNCTIONORIGIN

a --
x

b c



264

part of the unity. The breaking of a line at an origin-point into two 
linear segments meeting at this point, and forming an angle as 
the preconditioning of proportionality, means that the origin 
breaks the ordered continuous progression of time at this point—
it freezes time at the origin as the necessary condition for 
proportionality.

How else can the shadows of the gnomon and the pyramid in 
the Thalesian setting be rationally compared? These shadows have 
to be considered necessarily at the same time of the day, otherwise 
they are not rationally comparable. The fixation of a certain time 
of the day, the intentional freezing of time at a certain instance is 
what gives rise to an origin.

Recall that the shadows are under a continuous variation, 
their shapes undergo a continuous metamorphosis during a day. 
How can a shadow be lifted up on the epiphaneia geometrically, 
that is, in terms of a geometric magnitude in the metronomy of 
Euclid? Only if it is a frozen shadow does it become possible to 
make it measurable by a magnitude, and only if frozen shadows 
refer to the same time, that is, share a common origin, they be-
come comparable.
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Invariance of Angles and Areas

The previous analysis has shown that although motion is not 
the way to think of in the context of the Elements, since a theorem 
amounts to a geometric construction, the means of variation are 
not absent. More concretely, the means of variation are expressed 
in terms of a varying angle with respect to an origin—conceived 
as the center of the unity.

The invariance of this angle, under the fixation of two lines 
intersecting at the origin, is the pre-condition for expressing 
proportions between length magnitudes on these lines through 
parallelism. Thus, length magnitudes, being integer-valued, can 
change, in proportion to each other, only through the change of 
the invariant angle, only rationally. In this sense, the notion of 
a length magnitude is subordinate to the notion of an invariant 
angle delineating a part of the unity.

But, this is not the only means of variation in the context of 
the Elements, as it is certified by the Pythagorean theorem, which 
involves areas. We will see that invariant areas offer a complemen-
tary way to think about homeothesis and proportion in compar-
ison to invariant angles. Put differently, areas also express means 
of variation on a par with angles delineating a part of the unity, 
such that again the notion of a length magnitude is subordinate 
to the notion of an invariant area.

Grasping this fact lies at the heart of the Pythagorean theorem 
and makes its interpretation clear. To post-anticipate what follows, 
the basic idea lies on the abductive mechanical observation that 
on the epiphaneia an area depends only on rotation, and not on 
translation. In other words, parallel translation of a line segment 
along another line does not enclose any area if this segment does 
not rotate simultaneously.
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Thus, under parallel translation and rotation the only area 
that can be enclosed is the one enclosed only by rotation. In this 
way, the geometric magnitude of area—through its dependence 
only on rotation—allows the metaphora of all translated linear 
segments -independently of their distance- to a single center that 
synchronizes all of them. The area enclosed depends only on the 
angle between the initial and the final segment.

In this way, from an areal perspective, the origin of the unity 
is not only a point where time is frozen for the expression of a 
proportion, according to the preceding, but it also serves as a 
center of synchronization of length magnitudes—in terms of 
the enclosed area magnitude—independently of their distance 
under translation. Thus, there exists a subtle encoding/decoding 
bridge between area and angle underlying the potency of geome-
try. From this viewpoint, the significance of the ancient problem 
of squaring the circle can be properly appreciated.

Archimedes showed that this bidirectional bridge between 
area and angle is nothing else than the spiral, which translates 
from one domain to the other and inversely. But, unfortunately, it 
is not constructible by means of the ruler and the compass. Thus, 
the architectonic bridge of the spiral lies beyond the spectra that 
can be grasped in terms of the Elements.

To be fair, angles and areas can be perfectly grasped, but the 
architecture and mechanics of this higher order communication 
between areas and angles that makes Geometry powerful lies be-
yond geometric constructibility. The domains of angles and areas 
are separate, despite of the fact that the seed of their bidirectional 
communication bridge lies in the theorem of Pythagoras.

But, at the same time, it opens up the domain of mechanics in 
a spectacular manner. This is the essence of the method of Archi-
medes. The spiral is not understood as a figure in space, but as a 
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bridge for the metaphora between the circular domain of angles 
and the bilinear domain of areas.

Let us first consider how the notion of an invariant area 
emerges out of a proportionality relation. We stress the fact that 
a proportion involves four geometric magnitudes distributed in 2 
levels: a and x are vertical heights, whereas b and c are horizontal 
shadows. Note that, due to commutativity in the multiplication 
of integer magnitudes, the following holds: 

	 a / b = x / c ⇔ c / b = x / a

If we commute the factors, we again obtain four magnitudes 
distributed in 2 levels: b ,  a  refer to the gnomon, whereas c ,  x 
refer to non-directly accessible object.

The invariant bilinear product A = a ⋅ c = x ⋅ b  describes ge-
ometrically the areas of two rectangles with sides a ,  c ; and 
x ,  b  respectively, which have the same area due to the propor-
tionality relation. Considering this invariance of area in reverse, 
we conclude that the equality of ratios in proportion as above, is 
the expression of leaving some area invariant, identified as the 
area of equal rectangles. Note the diagonal formation of these 
rectangles—the vertical height of the gnomon is paired with the 
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shadow of the pyramid, whereas the vertical height of the pyramid 
is paired with the shadow of the gnomon.

Geometic Mean and  
the Pythagorean Theorem

We recall now our previous discussion focussing on the notion 
of the geometric mean. This notion has a meaning only in the 
context of a geometric progression of magnitudes, or else, in the 
context of a continued proportion among magnitudes.

The geometric mean of two integer magnitudes k and l in 
continued proportion is the magnitude G M = p  whose square 
equals the product k ⋅ l : 

	 p 2 = k ⋅ l

Thus, given a rectangle with sides k and l, the geometric mean 
determines a square whose area equals that of the rectangle. Thus, 
the geometric progression is addressed in terms of areas by em-
ploying the mean proportional p between k and l, according to 
the invariant proportion: 

	 k / p = p / l

FIGURE 6.9
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FIGURE 6.10
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The relation that the geometric mean engulfs is grasped by 
means of a rectangle, inscribed in the unity circle, which keeps 
its area invariant, according to the following figures in succession:

The vertical straight line segment from any point on the pe-
riphery of the circle, orthogonal to the horizontal diameter, is the 
geometric mean of the line segments lying on the left and on the 
right of it along the diameter.

In this guise, the length of the perpendicular segment emerg-
es—through the geometric mean—as the square root of the area 
of the rectangle formed by the left and right segments along the 
diameter in continued proportion, that is, in geometric progres-
sion. Thus, the notion of length obtained out of segments in con-
tinued geometric progression is an irrational square root.

It is worth thinking about the implications of this irration-
al square root in relation to the gnomon. Let us start from the 
symmetric figure in the middle, and consider the vertical line 
segment as the gnomon and the line segments on the left and 
right of the diameter as the shadows obtained through a cone of 
light rays. The unity semi-circle would be the course of the sun 
in the sky during a day. Then, the geometric mean answers the 
question how the length of the gnomon should vary in continued 
proportion with the shadows, such that the area of the rectangle 
above remains invariant.

Furthermore, since the construction refers to a rectangle in-
scribed in the unity circle, which keeps its area invariant, the 
angle formed between the line segments connecting the vertical 
line of the geometric mean, from any point on the periphery of the 
circle, with the endpoints of the diameter, is always a right angle.

All right angles are equal, thus due to orthogonality, we im-
mediately see that we obtain three similar orthogonal triangles 
having all their angles equal. Namely, the big triangle whose di-
agonal is the whole diameter and the two smaller triangles lying 
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on the left and on the right of the vertical line whose diagonals 
are the above-mentioned line segments. Thus, from a rectangle, 
inscribed in the circle, which keeps its area invariant, we always 
end up with three similar orthogonal triangles, as we see in the 
following figure:

From the similarity of the three triangles, we obtain three 
geometric means in this configuration. The first is the vertical 
straight line segment from any point on the periphery of the circle 
that meets orthogonally the horizontal diameter, as we have seen 
previously. This is the geometric mean of the line segments lying 
on the left and on the right of it along the diameter. The second 
and the third are due to the fact that the angle formed between 
the line segments connecting the vertical line segment from any 
point on the periphery of the circle, with the endpoints of the 
diameter, is always a right angle.

In particular, we have the following: Z 2 = X ⋅Y , from the fact 
that Z  is the geometric mean between X  and Y . The sum of X  and 
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Y  gives the diameter D , i.e. D = X +Y . From the similarity of the 
small triangle on the left with the big triangle, K 2 = X ⋅ D , thus, K 
is the geometric mean of X  and D . From the similarity of the small 
triangle on the right with the big triangle, L 2 = Y ⋅ D , thus, L  is the 
geometric mean of Y  and D . Summing up, these two geometric 
means, we obtain K 2 + L 2 = X ⋅ D +Y ⋅ D , thus, K 2 + L 2 = D 2 . Moreo-
ver, since K 2 = X ⋅ D = X ⋅ ( X +Y ) = X 2 + Z 2 , and similarly, L 2 = Y 2 + Z 2 .

We have shown the Pythagorean 
theorem applying to all orthogonal 
triangles. The square of the hypote-
nuse equals the sum of the squares of 
the adjacent sides. This relation can be 
interpreted in terms of areas or in 
terms of lengths. In terms of areas, if 
we think of each of the terms as the 
area of a square, we conclude that the 
area of the square on the hypotenuse 

equals the sum of the areas of the squares on the two adjacent 
sides. This is a commensurability relation between these areas, 
since the first is expressed by the addition of the two others.

We also immediately observe that 
we may scale the two sides of the equa-
tion by the same factor, which anyway 
cancels out, so that these areas do not 
necessarily refer to areas of squares. 
They could be areas of triangles, or 
rectangles, or even irregular figures, 
similarly scaled and proportioned, 
leaving the relation invariant.

This is a clear indication that 
the roots of validity of the Pythagorean theorem lie in a deeper 
domain which pertains essentially to the nature of areas. The 
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method of the geometric mean grasping magnitudes in contin-
ued proportion through areas of squares, which made the proof 
of the theorem quite easy, is just a bridge to express the result in 
the geometric domain, meaning to make it constructible by ruler 
and compass in the context of the Elements.

This is particularly important if we interpret the Pythagorean 
relation in terms of lengths. It says that the length of the hypote-
nuse is the square root of the sum of the squared lengths of the 
adjacent sides. Thus, in terms of lengths, the length of the hypot-
enuse is incommensurable to the lengths of the adjacent sides, 
since it is a square root, and thus, irrational. But, according to our 
analysis, this is something to be expected since the notion of 
length obtained out of segments in continued geometric progres-
sion is an irrational square root. Notwithstanding this fact, the 
square root is constructible by means of the ruler and the compass.

Translation-Rotation-Area:  
Space Synchronization

We need a higher layer of abstraction to grasp the essence 
of the Pythagorean theorem in relation to the notion of area in 
geometry. This is justified by the fact that the Pythagorean theo-
rem permeates through all branches of advanced mathematical 
thinking, including physics, and its applications.

FIGURE 6.14
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For this purpose, we will ascend the ladder from geometry to 
mechanics in the attempt to percolate the truth of the theorem 
from the higher domain through metaphora. The idea is that if we 
manage to grasp the type of invariance engulfed in this theorem 
from the domain of mechanics, then we will be able to bridge it 
back to the geometric domain through the already understood 
notion of the geometric mean. If the metaphora is successful, 
then the gain will be the understanding of the geometric notion 
of area in terms of the invariance it encapsulates, which is of quite 
significant value especially in architecture.

We consider an orthogonal triangle and identify the point 
lying on the intersection of the hypotenuse with one of its adjacent 
sides, as in the figure below, with the center of a circle whose ra-
dius is the hypotenuse. Geometrically, the center appears as the 
origin of this circle, and the intersection of these two line seg-
ments opens up an angle. Mechanically, we start to circulate the 
whole triangle around this center by rotating the hypotenuse 
until it returns to its initial position. We consider that the rotation 
takes place at a constant rate. We observe that the hypotenuse 
traces a full circle being the radius R  of this circle. Beyond this, 
the horizontal side of the triangle, adjacent to the hypotenuse, 
will also trace another circle of smaller radius r  having the same 
center as the former, and is identified with this radius ( Figure 6.15 
and Figure 6.16).

In contrast to the hypotenuse R , and the horizontal adjacent 
side r  of the triangle, the other vertical side k , will start sliding 
along the periphery of the smaller circle of radius r , while rotating 
with the whole triangle at the same time, until it comes back to 
its initial position. Note that k  is tangent to the circle of radius r 
at all times while its tip touches the circle of radius R  from inside, 
like a velocity vector of constant length k . The interesting thing 
here is that while the hypotenuse R , and side r , will sweep out the 
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area of a disk, of radius R  and r  correspondingly, the side k  will 
sweep out the area of the annulus formed between these two disks.

FIGURE 6.17
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If we accept knowledge of the area of a disk, the larger one will 
have area π ⋅ R 2 , while the smaller will have area π r 2 . Thus, the area 
of the annulus will be π ( R 2 – r 2 ) . Since the triangle is orthogonal, 
the Pythagorean theorem says that r 2 + k 2 = R 2 , thus, the area of 
the annulus will be equal to π k 2 .

This result about the area of the annulus swept out by the 
side k  is interesting because it says that the area of the annulus is 
precisely equal to the area of a disk of radius k .

Note that the annulus is swept out by the combination of two 
mechanical motions: The first is translation along the periphery 
of the circle of radius r  in the direction of the tangent at each 
point, and the second is rotation around the point of tangency. 
The result shows that all the area enclosed by k  translating and 
rotating at a constant rate is exactly the same with the area that 
would be obtained solely by rotation with respect to a center, that 
is, with the area enclosed in a circle of radius k .

The invariance embodied in the concept of area is that all 
area enclosed by combined translation in the direction of motion 
and simultaneous rotation is the same as the area enclosed only 
through rotation synchronized with respect to a center.

In this way, area pertains to circulation and synchronization 
with respect to a center—not an origin in the geometric sense 
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of the term—and is independent of translation in the ordered 
progression of time.

Simply put, this amounts to synchronization of all tangent 
vectors (velocities) of constant length k  at a joint center, being in 
resonance with all of them.

We call this process harmonic parallel transport. Note that 
harmonic parallel transport does not require any time in its 
ordered progression to take place. The harmonic center is in 
resonance with all tangents in the periphery, and thus synchro-
nizes them all together spontaneously.

Then, the invariant area covered by all these synchronized 
tangents of the same length at their joint center, that is, the area 
enclosed in a circle of radius k , equals the area of the annulus 
swept out during combined translation and rotation of these 
tangents, according to the above.

Since this notion abstracts something significant about the 
nature of area, we need now to use it in reverse, and examine if the 
proof of the Pythagorean theorem rests precisely on this fact. If 
this is true, the validity of the Pythagorean theorem is the artifact 
symbolizing and encapsulating geometrically the synchroniza-

FIGURE 6.19
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tion—or resonance—aspect of harmonic parallel transport that 
determines geometrically the nature of area.

Harmonic Parallel Transport

All the difficulty intrinsic to the proof of the Pythagorean 
theorem disappears if we think about its truth from this higher 
level in communication with the geometric through metaphora. 
Recall that initially we had to use the Pythagorean theorem to 
derive that the area of the annulus will be equal to the area of a 
disk of radius π k 2 . This is the analytic stage. If we remain there 
we gain no insight in why this is so, why the area of the annulus 
emerges from the synchronized area pertaining to the resolution 
spectrum of the disk of its tangents. We can calculate the area of 
the annulus, but we cannot grasp the invariance encapsulated in 
the concept of area.

Thus, we need to evaluate the spectrum, and then work in 
reverse, that is, synthesize the truth of the Pythagorean theo-
rem by the type of invariance engulfed in the nature of area. 
This is the architectonic bridge back to Geometry that com-
pletes the metaphora.

This bridge is enunciated by harmonic parallel transport, 
which through synchronization with respect to a center of unity, 
sheds light on why all area enclosed mechanically by combined 
translation in the direction of motion and simultaneous rotation 
is the same as the area enclosed only through rotation.

Thus, making use of this argument in reverse, and erecting 
the bridge back to the geometric domain, that is, by grasping the 
area of the annulus via the area of the disk through harmonic 
parallel transport, the Pythagorean theorem emerges as a simple 
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consequence. The synthesis rest on the fact that harmonic parallel 
transport of all the tangents with respect to the center of their 
synchronization gives by spanning the area of a disk of radius k .

Thus, since the area of the annulus equals π ( R 2 – r 2 ) , and 
also equals—through harmonic parallel transport—the area 
π k 2 of a disk of radius k , then the Pythagorean theorem follows 
from the equality: 

	 π ( R 2 – r 2 ) = π k 2

which by cancelling out the common scaling factor π , gives: 

	 R 2 = r 2 + k 2

This transfers an extra layer of sophistication onto our equal-
ly-tempered epiphaneia of the disk. The idea is that this epipha-
neia is capable of recording area synchronically and invariantly 
with respect to a center that is not explicit in advance. Since the 
tangential component in the direction of motion following the 
ordering aspect of time does not have any impact on the rate of 
change of area, it all depends mechanically upon rotation with 
respect to this center, as well as upon the rate of this rotation, that 
is, how fast the winding takes place.

Thus, what matters referring to invariant area is a variable 
angle, and the rate of change, i.e. the differential of this angle, 
independently of translation. Concomitantly, the rate of change 
of rotation per unit area gives rise to the notion of curvature.

This realization opens up three new pathways to qualify and 
strengthen the capacity of our epiphaneia, which we will navigate 
in what follows. The first is differential calculus leading to differ-
ential geometry; the second is the concept of imaginary numbers 
that in combination with the first leads to complex analysis and 
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complex geometry; and the third is mechanics based on the invar-
iance of area. These pathways are not straight and independent. 
Rather they intermingle and facilitate the encoding and decoding 
bridges required for different types of metaphora between the 
harmonic and the geometric domain.
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Conic Sections

Consider our epiphaneia as a geometric one, equipped with 
the gnomon placed orthogonally to it, as in the original setting of 
an upright stick bearing a sundial. We would like to think of the 
gnomon as a measure of solar time. During the course of a day, the 
shadow of the gnomon is moving following the sun. Consider the 
sun’s orbit as a semi-circle during the course of a day. Then, as the 
sun rises and sets, a branch of a hyperbola is traced out on the 
epiphaneia by the tip of the shadow of the gnomon, according 
to the figure:

FIGURE 6.20
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The study of the conic sections originates in the geometric 
understanding of the shadow of the gnomon. The idea is that a 
unified treatment can be obtained if our epiphaneia is thought of 
as a cutting plane on a cone. After the masterly work of Apollonius 
on conic sections the cone should be always considered as 
a double cone.

FIGURE 6.22
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The pointing tip of the gnomon is considered as the vertex 
of the cone. The double cone arises by the idea of harmonically 
conjugating the simple cone. This may be thought of as a mirror 
image, obtained by reflection of the simple cone with respect to its 
vertex. In the double cone, the cutting epiphaneia delineates both 
branches of the hyperbola, and symmetrizes the semi-circular 
orbit of the sun to a full circle.

An important question pertains to the nature of the cone, and 
this is related with the propagation of light rays—the cone of 
light—as well as the transport of the source from the sun to the 
tip of the gnomon, serving as the vertex of the double cone. It is 
with respect to this vertex that the shadows are qualified geomet-
rically on our epiphaneia—the cutting plane.

Geometrically, the double cone 
is generated as follows: We imagine 
a horizontal geometric disk and an 
inclined line segment—called the 
generatrix—being tangent to the 
disk. Then, if this line segment ro-
tates around the disk while it holds 
fast at the point lying exactly above 
the center of the disk, the rotation will 
generate a cone above and below this 

point, identified as the vertex of the double cone. In this function, 
the rotating inclined line is called the directrix.

 If we intersect the double cone with our cutting-through 
screen in various positions the conic sections emerge as follows:

Conic Sections Name

Ortogonal to the central axis of the cone Circle

FIGURE 6.23
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Conic Sections Name

Between right angles to the central axis of the 
cone and parallel to the generatrix Ellipse

Parallel to the generatrix Parabola

Between a plane parallel to the generatrix and a 
plane parallel to the central axis Hyperbola

The geometric topos of points on our screen/epiphaneia, for 
each conic section, is specified as follows:

Geometric Topos of Points Conic Section

Same distance to the center Circle

Distances to two given foci have a constant sum Ellipse

Same distance to a focus and the directrix Parabola

Distances to two given foci have a con-
stant difference Hyperbola

FIGURE 6.24
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An ellipse is a simple closed curve and it can be traced by a point 
moving in a plane in such a way that the sum of its distances from 
two other fixed points—called the foci of the ellipse—is constant. 
Thus, the sum of the distances F 1 P  and F 2 P  is invariant in the 
case of the ellipse.

The parabola is the geometric topos of points P such that the 
distance from the directrix to P  is equal to the distance from P 
to a fixed point F —called the focus of the parabola.

The hyperbola is the geometric topos of points whose dis-
tances to the foci have an invariant difference. As it is clear, the 
hyperbola has two symmetric, equal, and infinite branches.

The conic sections, after Apollonius, are also graspable in 
terms of an invariant ratio, called the eccentricity of the 
conic section.

Given the focus, F , the directrix d , and a point on the conic P , 
eccentricity e  is defined by the following ratio: 

	 e = r / a

where r = P F  and a = P D .

FIGURE 6.25
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For a parabola, since r = a , then e = 1 . For an ellipse, since r < a , 
we have that e < 1 . For the hyperbola, since r > a , we have that e >1 . 
Clearly, the circle has zero eccentricity. It is this eccentricity that 
provides the etymological ground for the respective names of 
these three conic sections, in relation to the act of throwing that 
characterizes their respective symptoms:

e Conic Section Throwing /Symptom

e  =  1 Parabola Equal to

0 < e < 1 Ellipse To fall short of

e >1 Hyperbola In excess of

Trapezium Invariance of Double Cone 
and Equiangular Spiral

Let us focus our attention now from the 
conic sections to the double cone. As we point-
ed out already, the vertex of the double cone 
is identified with the tip of the gnomon that 
throws the shadows.

What is of interest is the modular substitution 
of the sun by the tip of the gnomon—by means of 
parallel transport of the rays at the tip—such that 
the spectrally qualified shadows on the epipha-
neia give rise to the family of conics. Recall that 
the velocity of light is constant in all directions.

FIGURE 6.26

Trapezium 
increment of growth 
on a cone and 
invariance of shape



286

What is special with the cone is that its geometric shape re-
mains invariant under incremental addition, as depicted in the 
adjacent figure:

Of course, the same holds symmetrically for the double cone. 
The increment of growth on the cone is a trapezium. This means 
that the cone grows retaining its shape.

In other words, it remains always self-similar, and thus invar-
iant, under adjoining to it a trapezium. This naturally leads to the 
notion of gnomonic growth, where the trapezium is conceived as 
an extension or contraction gnomon for the cone itself.

In this sense, the notion of the gnomon—as a right angle—
with respect to the geometrically-cutting epiphaneia/screen, if 
transcribed in terms of the double cone where the cutting takes 
place, gives rise to the notion of the gnomon of growth of the cone 
itself. This is what characterizes the invariance of the double cone.

A further interesting metaphora 
pertains to the modular substitution 
of the gnomonic invariance of the 
cone by the gnomonic invariance 
of the logarithmic spiral pertaining 
to the fact that it grows retaining 
its shape invariant. The logarithmic 

spiral may be simply obtained by first bending, and then coil-
ing a cone. The same transcription of gnomonic growth from 
the cone to the spiral takes place, in case that the growth of the 
cone is scaled by an invariant ratio on one of its sides in compar-
ison to the other.

FIGURE 6.27
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Optical and Acoustic Symptoms of the Conics

The conic sections may be also understood from an optical 
viewpoint pertaining to the reflection of light on the epiphaneia. 
This approach, based on the notion that the angle of reflection 
equals the angle of incidence of a light ray, leads to an understand-
ing of the conics in relation to their capacity to concentrate or 
reflect light rays or sound beams. The great Archimedes, according 
to the legend, devised a parabolic mirror to concentrate the rays 
of the Sun at the focus of the mirror.

Conic Section Reflection of Rays from the Focus

Circle Back to the center of the circle

Ellipse Into the focus

Parabola As a parallel outgoing ray

Hyperbola As if coming from the other focus

Because of the reflective property of parabolas, they are used in 
automobile headlights or searchlights. Note that the mirror in 
each headlight has a curved surface formed by rotating a parabola 
about its axis of symmetry.

If we place a light at the focus of the mirror, it is reflected in 
rays parallel to the axis. In this way, a straight beam of light is 
formed. The opposite principle is used in the giant mirrors of 
reflecting telescopes, radar transmitters, solar furnaces, sound 
reflectors, and in satellite or radio wave dishes. With these in-
struments the beam comes toward the parabolic surface and is 
brought into focus at the focus point.
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The reflective property of an ellipse is used in the creation of 
what are called “whispering galleries”. If you are at one focal point 
in a room shaped in the size of an ellipse—imagine an ellipsoidal 
roof—you will be able to hear the whispers of a person located at 
the other focal point, even in the case that other conversations are 
taking place in the same room.

The hyperbola is the curve that a shock wave gives rise to. 
When an airplane flies faster than the speed of sound, it induc-
es a shock wave, which is heard at the screen as a “sonic boom”. 
The shock wave has the shape of a cone with its apex located at 
the front of the airplane. It intersects the screen in the shape 
of the hyperbola.

Kepler Laws in Momentum Space 
and Unification of Conics

The invariance embodied in the concept of area is that all 
area enclosed by combined translation in the direction of motion 
and simultaneous rotation is the same as the area enclosed only 
through rotation synchronized with respect to a center.

In this way, area pertains to circulation and synchronization 
with respect to a center—not an origin in the geometric sense of 
the term—and is independent of translation in the ordered pro-
gression of time. Simply put, this amounts to synchronization of 
all tangent vectors—instantaneous velocities—of constant 
length k  at a joint center, being in resonance with all of them 
(Figure 6.28).

We have seen that harmonic parallel transport allows the 
synchronization of all tangents at the center. In other words, the 
center is in resonance with all tangents in the periphery, and thus 
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synchronizes them all together spontaneously. Then, the invar-
iant area that is covered by all the synchronized at this center is 
precisely the area enclosed in a circle of radius k . In turn, it equals 
the area of the annulus swept out during combined translation 
and rotation of these tangents.

In the above setting, we have assumed that all tangents have 
the same length. Let us think from the perspective of mechanics 
and consider the tangents as velocity vectors. A natural question 
is what are the implications of harmonic parallel transport in the 
case of velocities that change their magnitude, that is, in the case 
of varying length of the tangents according to some condition. 
This is of importance because it demonstrates that the harmonic 
center of synchronization is not by necessity the center of a ge-
ometric circle or a geometric disk.

For this purpose, we consider Kepler’s first two laws of orbital 
motion of the planets around the sun. 
According to these laws:

(a) Each planet moves in an elliptical 
orbit with the sun at one focus;
(b) The line segment from the sun 
to any particular planet sweeps out 
equal areas in equal times;

FIGURE 6.29
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From the first law, the orbit of a planet is an ellipse, where the 
sun is located at one focus of this ellipse. The elliptical orbit is a 
closed orbit, whose particular geometric shape is obtained as a 
consequence of the second law, that is, the line connecting the 
sun with a planet covers equal areas at equal times. This is the 
condition that we intend to focus on.

The condition implied by the second law is that the rate of 
change of area is constant. We think again of the possibility 
that the area can be actually be swept out by velocity vectors if 
synchronized with respect to a center.

Consider a velocity vector directed tangentially to the orbit, so 
that its direction changes continuously. Since the orbit is elliptical 
with the sun at one focus, it is clear that the magnitudes of these 
velocities cannot be constant. The question is if all these velocity 
vectors can be parallel transported to a center, such that they 
generate all the area by rotation around this center.

This is exactly the fact that it is vindicated by the condition 
that equal areas are swept out in equal times, as it can be seen in 
the following figure:

FIGURE 6.30
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The important thing to point out is that all velocity vectors 
are synchronized with respect to a common center by har-
monic parallel transport, but this center is not the center of a 
geometric circle.

It is located within the closed curve that is generated by the 
lengths of the velocities, which is actually a circle, but the center 
of this circle is not the center of synchronization. Having grasped 
this fact, we may use the argument in reverse. It shows that in case 
that the velocity vectors sweep out a circle synchronized with 
respect to a center inside this circle, but different from its center, 
then the orbit to which they are tangent is an ellipse.

We call the topos of velocity vectors, where they synchronize 
all together in a circle, with respect to their center of synchroni-
zation, the momentum space. Therefore, the condition that the 
rate of change of area is constant is equivalent to a circular orbit 
in momentum space, whereas it is an ellipse in position space. The 
subtle point is that the center of synchronization in momentum 
space is not the center of the circle in this space. 

FIGURE 6.31
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Thus, harmonic parallel transport of directed tangent linear 
segments—the instantaneous velocities—works equally well in 
case that the lengths of these segments are varying according to 
the law that the rate of change of area is invariant—equal areas at 
equal times. Inversely, this law is equivalent to a circular orbit in 
momentum space, where all the tangent segments synchronize 
at a center that is different from the center of this circle.

This fact is important, because it shows that the metaphora 
from position space to momentum space allows the unified treat-
ment of all conic sections.
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Consider the case of an open parabolic orbit where the rate of 
change of area is invariant—for instance the orbit of a satellite. 
From the figure below, it is clear that it can be thought of as the 
limiting case of an elliptical orbit whose apogee recedes to infinity, 
such that the length of the tangent velocity at apogee tends to zero. 

In momentum space, the orbit is a closed circle whose center of 
synchronization is not inside, but on the periphery of this circle. 
Thus, in momentum space the orbit is a circle, where the center of 
synchronization of all the velocity vectors lies on the periphery of 
this circle, whereas in position space the orbit is a parabola.

This is a strong indication that we may also treat the case of a 
hyperbolic orbit in a similar unifying manner, from the perspec-
tive of harmonic parallel transport that realizes what we called the 
momentum space. We expect that in this case, the condition that 
the rate of change of area is invariant is equivalent to a circular 
orbit in momentum space, such that the center of synchronization 
lies outside the circle.

This is very interesting because it demonstrates that the center 
of synchronization, not only is not restricted to be inside or at the 
periphery of the synchronizing circle of tangent velocities, but it 
can also be at the outside of it.

FIGURE 6.34
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This pertains to the significance of the architectural inside/
outside distinction with respect to the notion of a center of syn-
chronization of velocities in relation to grasping the distinctive 
role of the conic sections in position—geometric—space. More 
concretely, the area enclosed as a magnitude, is swept out by ve-
locity vectors that are synchronized with respect to a center—ac-
cording to the law of equal areas at equal times.

This metaphora shows that harmonic parallel transport gives 
rise to a circular orbit in momentum space, whose center of syn-
chronization can be either inside the circle, or outside the cir-
cle, or even at the periphery. Then, each of these cases gives rise 
to a different conic section, observed in geometric space in an 
area-preserving way, thus allowing us to understand how they 
emerge and how they are unified all together under the notion of 
harmonic parallel transport.

It is worth reflecting on the power of this method, which es-
sentially abstracts the notion of area from its underpinning in 
geometric space in an invariant way. Not only it provides an im-
mediate intuitive proof of the Pythagorean theorem, but it leads to 
a deep understanding of the conic sections under the requirement 
of equal areas at equal times.

Moreover, it shows that the notion of a center of synchroni-
zation is not always fixed at the center of the corresponding disk, 
but it is a variable and floating notion, that can be—depending 
on the conditions—within the disk, at the periphery of the disk, 
or even outside the disk.
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Mechanics: Fulcrum and  
Archimedean Law of the Lever

The notion of a fulcrum originates in Mechanics and traces 
back to the Archimedean conception of an equilibrium condition 
achieved by kinematical means.

There are two basic ideas involved here: The first is that the 
equilibrium condition is derived kinematically as a consequence 
of area preservation with respect to the fulcrum; The second is 
that the equilibrium condition is derived in terms of the product 
of two variables, which are inversely co-related to each other, that 
is, they are subject to the uncertainty principle.

The notion of the lever based on a fulcrum, which constitutes 
the mechanical instantiation of the above idea pertaining to a 
fulcrum, provides the means to realize the equilibrium condition 
kinematically through the circle. This takes place if we think of 
the lever as a diameter of a rotating disk whose center is allowed 
to float along the diameter due to “weights” attached at its end-
points. The bigger the weight at one of the endpoints, the smaller 
the length of this endpoint of the lever-diameter from the ful-
crum, such that the area made of their product is preserved.

From this viewpoint, the combined role of a lever balancing 
on a fulcrum amounts to area preservation under proportionate 
re-scaling of the inversely correlated variables, that is, the weights 
and the lengths.

FIGURE 6.35
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There is a further qualification in relation to the notion of a 
weight, that can be described as follows mechanically: Imagine a 
homogeneous bar of length 2 m + 2 n , which is placed symmetrical-
ly on a balance line. Therefore, a “weight” m + n  is distributed to the 
left of the fulcrum, and an equal weight is distributed to the right.

At the next stage, consider a slicing of the bar, which splits it 
into two bars of weights 2 m —on the left—and 2 n —on the right 
-. Replace each of those bars by single weights 2 m  and 2 n  concen-
trated at their respective centers of gravity.

Then the concentrated weight weighing w = 2 m  is of distance 
d = n  to the left of the fulcrum, while the concentrated weight 
weighing w ' = 2 n  is of distance d ' = m  to the right of the ful-
crum. By the postulates of Archimedes, we obtain that this is 
in equilibrium: 

	 w ⋅ d = w ' ⋅ d '

The two weights w ,  w '  on either side of the fulcrum being 
at distances d ,  d '  from the fulcrum respectively, are in equi-
librium if and only if the above condition holds. But, this means 
that the area defined by the corresponding pairs of w ,  d , re-
mains invariant.

Moreover, since it is the product that is preserved at the equi-
librium condition, this invariant relation corresponds geometri-
cally to a rectangular hyperbola, where the preserved bounded 
areas under variation of w = y  and d = s  are areas under the hy-
perbola y = 1 / s ,  which remain invariant under proportionate 
stretching and contraction by the same scaling factor (Figure 6.37).
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We re-express the law of the lever—the equilibrium condi-
tion—with respect to a fulcrum as follows: 

	 W ⋅ d = w ⋅ D

Reciprocals and Invariance of Area

If we abstract from the standard mechanical context, the law 
of the lever—through the preservation of area—can shed light 
on any situation that an equilibrium condition—as the neutral-
ity condition pertaining to the uncertainty principle govern-
ing two reciprocally related variables—is established through 
a fulcrum—a center of “mass”—thought of as a center of syn-

FIGURE 6.38
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chronization. For this purpose, a necessary condition is that the 
reciprocally correlated variables commute at least infinitesimally.

It is worth explaining in more detail the uncertainty principle 
referring to two reciprocally correlated variables α  and ω  in terms 
of areas displayed under the rectangular hyperbola α ⋅ ω = 1 , where 
α = s  is considered to vary on the horizontal axis, and ω = y  is 
considered to vary on the vertical axis.

Consider an area-preserving map, which contracts in the hori-
zontal direction and extends in the vertical direction in propor-
tion. The contraction in the horizontal direction is though of as 
gaining information about α  since its range of possible values is 
more narrow in comparison to the initial situation.

Since, area is preserved the narrowing in the range of α  should 
be equivalent to a proportionate stretching of the range of values 
of ω , that is, losing information about ω . The more the range of 
possible values of α  shrinks the more the range of possible values 
of ω  expands, always in proportion to each other.

Consider now the area-preservation as a mapping: 

	 ψ : ( α , ω ) → ( A , Ω )

FIGURE 6.39
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expressing the law of the lever with respect to a center of syn-
chronization, such that the preserved area is expressed via the 
following integrals: 

	 ∮  ω d α = ∮  Ω d A

where the differential pertains to the horizontal variables α , A , 
and the integration contour is a simple closed curve in both ( α , ω ) 
and ( A , Ω ) , denoted by c , C , as pertaining to the differentials d α , 
and d A , respectively.

Then, each of these integral represents the work done by ω , 
and Ω , in a circuit of variation of d α  and d A  respectively, such 
that C = ψ ( c ) . Each of the contour integrals gives an area that is 
preserved by ψ .

These areas are the areas enclosed within the circuits c , C , 
respectively, which are equal to each other. In turn, since the 
corresponding amounts of work are equal, and the sum of these 
works is zero, we obtain the principle of energy conservation by 
the preservation of area referring to these processes.

In this case, the area-preservation mapping: 

	 ψ : ( α , ω ) → ( A , Ω )

is called a symplectic mapping.
In this sense, the law of the lever is abstracted in the notion 

of a symplectic mapping that preserves areas in ( α , ω ) , and 
( A , Ω ) , according to: 

	 ∮  ω d α = ∮  Ω d A
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The Uncertainty Principle of Light: 
Symplectic Optics

We consider any optical device, irrespectively of its particular 
function, as a black box. This device can be a telescope, or a micro-
scope, or even, a binocular—its precise specification is not rele-
vant to the argument. The idea is how we may abstract from the 
particular details of optical devices—treating them as black box-
es—by thinking of them in terms of the law of the lever, or equiv-
alently, in terms of a symplectic mapping that preserves areas.

For this purpose, we have to consider a ray of light that passes 
through such a black box. Let α , Â  denote two parallel vertical 
axes, standing for the vertical axes of intersection of a light ray 
before and after entering the black box.

The time elapsed from the entrance to the exit of a light 
ray from the black box is denoted by T ( α , A ) . If we consid-
er the constant velocity of light c  to be unity, then the length 
L ( α , A )  equals c ⋅T ( α , A ) . Taking the velocity of light 1 , we have 
that L ( α , A ) = T ( α , A ) .

Let θ  be the angle that the light ray makes with the horizontal 
axis at its entrance point characterized through its sine function, 
that is ω = s i n θ . Similarly, Θ  is the angle that the light ray makes 

FIGURE 6.40
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with the horizontal axis at its exit point from the black box, char-
acterized by Ω = s i n Θ .

The idea is that the mapping induced by the elapsing time 
between the entry and exit of a light ray from the black box, that is: 

	 ( α , ω ) ↦ ( A , Ω )

	 ( α , s i n θ ) ↦ ( A , s i n Θ )

is a symplectic mapping, meaning that it is area-preserving.
Every optical device can be characterized by this area-pres-

ervation property. Let us imagine the front of all light rays orig-
inating from α . Then, this front is a circle upon exiting from the 
black box, such that each light ray is orthogonal—as a radius—to 
the circular front.

Light rays propagate with the same velocity in all directions, 
thus, if we consider that α  is the center, all points on the periphery 
of this circle are equidistant to α . Essentially, α  is thought of a 
center of synchronization for all points in its periphery.

If c d T  denotes an infinitesimal translation of the circular 
front, then upon meeting the Â axis is displaced by d A , where: 

	 d A = c ⋅ d T / s i n Θ

Thus, we obtain: 

	 c ⋅ d T / d A = d L / d A = s i n Θ = Ω

Consider the following figure, where the function of a mag-
nifying optical device is displayed, from the perspective of a sym-
plectic area-preserving mapping as above. The magnification is 
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explained by means of the uncertainty principle governing the 
variables co-related symplectically.

If a beam of rays enters the device and upon exiting it gets 
more narrow, this means that the angle between the rays increas-
es, that is, we have the phenomenon of magnification. Thus, by 
the area-preservation property, whenever a parallel beam of rays 
narrows, we have magnification on the other side.

It is quite clear to see that this pertains to contraction in the 
Â  direction followed by extension in the Ω  direction—such that 
area is preserved—which is precisely the magnification.

Differential Calculus: 
Tangent Slope and Integration Area

As soon as we become aware of the fact that the notion of dif-
ferentiation of a smooth function with respect to time pertains 
to its instantaneous rate of change called the derivative, that is, to 
its tangent slope or tangent vector; whereas the notion of integra-
tion pertains to the area enclosed under the curve of the function 
within the boundaries of integration; it becomes clear that these 

FIGURE 6.41
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constitute inverse bridges between the domain of angles (though 
of as infinitesimally changing) and the domain of areas.

In this manner, we may conceptualize a mapping (natural 
transformation) of the Pythagorean or the Archimedean setting 
to the abstract setting of differential calculus.

The fundamental theorem of calculus for one real variable, 
expressing precisely the fact that differentiation and integration 
are inversely co-related encoding and decoding bridges, where the 
first performs the analysis and the second the synthesis for what 
is spectrally observable from the behaviour of a smooth function, 
is formulated as follows: 

	 d / d t  ∫ a
t  f ( s ) d s = f ( t )

FIGURE 6.42
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Consider the figure below:

It displays a function segment, which we think of that is mov-
ing with unit velocity in the direction orthogonal to itself. The 
theorem says that the rate of change of the area enclosed equals 
the altitude f ( x )  times its velocity. Thus, the function segment 
displayed sweeps the area at a rate equal to its length f ( x )  times 
its velocity. We think in this setting of the variable x  as time t , 
pertaining to the continuous and ordered progression of time 
along the real line.

In reverse, we conclude that the definite integral of a real 
valued function gives the sum-total of accumulated area 
change, where the rate of change of area is given by the function 
being integrated.

Neutral Geometric Element: 
The Real Exponential Function

The fundamental theorem of calculus—viewed through the 
encoding and decoding bridges of differentiations and integration 

FIGURE 6.43
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respectively—leads to the design of a function whose tangent 
slope equals the altitude at all times, namely the real-valued ex-
ponential function: 

	 t ↦ y ( t ) = e x p ( t ) : = 𝑒 t

where e, the base of the function, is Euler’s constant, whose 
meaning will be explored from a novel perspective shortly.

This function bears the unique property—among all real-val-
ued functions—that its tangent slope, i.e. its derivative, equals 
the altitude y ( t )  of the graph of the function at all times. In oth-
er words, the exponential functions remains invariant under 
differentiation: 

	 d / d t  e x p ( t ) = e x p ( t )

If we think of the tangent slope as the instantaneous velocity, 
then the above means that the velocity equals the function at all 
times. Equivalently, the rate of growth of the function at any time 
equals the value of the function at this time.

In terms of a differential equation, the exponential function is 
the solution to the following equation, in the notation of Leibniz: 

FIGURE 6.44
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	 d y / d t = y

Moreover, the exponential function remains invariant under 
integration. Let us see what this means geometrically in terms 
of the invariance of area under translation, that is, the fact that 
translation does not have any impact on the rate of change of 
accumulated area.

Consider the following figure that shows the graph of the 
exponential function, displaying its tangent segments at 
various times:

Note that the tangent line segment at ( t , 𝑒 t )  passes through 
the point ( t – 1 , 0 )  on the t-axis. We call 1  the subtangent of the 
exponential function on the t-axis, since it is a constant for any 
tangent segment crossing the t-axis.

This is a key observation, because it allows to perform a very 
simple translation that leaves the area under the exponential 
curve invariant. More concretely, we parallel translate all tangents 

FIGURE 6.45
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inside the Pythagorean right triangle formed by the tangent at t , 
the t-axis, and the y-axis.

This is clearly an orthogonal triangle whose hypotenuse is 
the tangent segment at t, its horizontal side is 1 —the constant 
length of the subtangent, and its vertical side is 𝑒 t , the altitude of 
the graph of the exponential function at t .

Since all possible area that can be accumulated under the 
curve is by means of area swept through all the tangent segments 
for all t , at any t  we can parallel translate all of them inside this or-
thogonal triangle formed at t, re-filling in this way homogenously 
its enclosed area. This is again another instance of the principle 
of harmonic synchronization of the tangents at their common 
center identified as the point t – 1  on the t-axis for every t .

We conclude that the total area enclosed under the exponen-
tial curve at t is two times the area of this orthogonal triangle, that 
is, the area of a rectangle of base 1  and height 𝑒 t , hence equal to 
𝑒 t . This demonstrates the invariance of the real exponential func-
tion under integration as pertaining to the invariant accumulat-
ed area by means of harmonic parallel transport of the tangents.

The invariance of the real-valued exponential function under 
these inverse processes defines the neutrality condition in the 
enhanced spectrum of the metaphora conducted through the 
inverse bridges of differentiation and integration.

FIGURE 6.46
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As such it should bear a structural role, which will be explored 
again in more detail at a later stage. Intuitively, the real-valued 
exponential function takes any real number and gives a positive 
non-negative real as its value. Due to its fundamental property: 

	 e x p ( t + s ) = e x p ( t ) ⋅ e x p ( s )

it converts the addition of real numbers in its domain to the 
multiplication of powers (positive non-zero reals) in its co-domain 
where it takes its values.

Henceforth, it is an architectonic bridge connecting the addi-
tive structural world of the reals with the multiplicative structural 
world of the powers, i.e. the positive non-zero reals. Astonishingly, 
this takes place in symphony with its role as a neutral element 
in the metaphora conducted by the inverse analytic/synthetic 
bridges of differentiation and integration.

The zero-th power is the multiplicative unity, that is: 

	 e x p ( 0 ) = 1
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Furthermore, since the domain is all real numbers under ad-
dition, we may consider for each real its inverse with respect to 
addition. This means that for each t , we consider - t , which 
amounts to e x p ( - t ) = 1 / e x p ( t ) , i.e. reversing the order of time. 
Since, the exponential function is invariant under integration, 
and integration gives the accumulated area between two bound-
ary values, it is reasonable to consider the arithmetic mean of 
e x p ( t )  and e x p ( - t ) , since areas are additive. This functional 
arithmetic mean gives rise again to the catenary curve as a mani
festation of the explicated neutrality condition in the world of 
geometry and architecture.

Integration Areas and Color:  
The Natural Logarithm Function

Having grasped the real-valued exponential bridge, we should 
be able to invert it, such that a metaphora can take place in terms 
of it. The main issue is the following: The process of taking a 
power whose exponent is a real number (not merely an integer) 
with respect to an arbitrary real-valued base presents an obstacle. 

FIGURE 6.48
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The real exponential function provides an encoding bridge to 
resolve the problem.

Note that it operates with the choice of a special base, the 
base provided by Euler’s constant. This constant is not only an 
irrational, but it is a transcendental real number, bearing the 
same status as π. The purpose of its use in terms of the exponential 
function is the following: Every process of exponential growth, 
irrespectively of the base chosen, is characterized by the property 
that the rate of growth is proportional to the power itself. Among 
all of them, the Euler transcendental is the unique one such that 
the rate of growth equals exactly the power itself.

Therefore, if we transfer every power to this natural base so 
that we become able to follow it without obstruction, then due 
the property of the real exponential function above, the pro-
cess of addition in the exponents is transmuted to the process of 
multiplying positive powers, and hence the spectrum becomes 
transparent under evaluation.

Then, we need to invert the exponential function (in the Euler 
base) that we used as a ladder, to be able to ascend to the domain 
of general powers (in arbitrary real base). This inversion amounts 
to designing the natural logarithm function as a decoding bridge 
back to the level of the initial problem. This is what is expressed 
in terms of the identity: 

	 B Φ = [ e x p ] [ Φ ] [ l o g e  B ] = [ e x p ] [ Φ ] [ l n B ]

where B is an arbitrary base, and Φ  is an arbitrary re-
al-valued exponent.

This completes the metaphora without any residue, since in 
the domain of the reals the exponential and the logarithm func-
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tion are exact inverses of each other, which make the additive 
structural world of the reals (as exponents) isomorphic—and 
thus structurally indistinguishable—with the multiplicative 
structural world of the positive reals (as powers). What is gained 
through this metaphora is that the process of raising to a power 
applies to the whole additive world of the reals (including the 
irrationals) and is communicated simply through multiplication 
at the spectrum.

 Let us now delve into the natural logarithm function consti-
tuting the inverse architectonic bridge in the setting above. This 
is important because the outcome of this scrutiny will lead to 
grasping the spectrum of our tempered epiphaneia in terms of 
colors, something which has not been articulated to its full extent 
up to the present stage (Figure 6.50).

The motivic key is the association of the notion of an invar-
iant area—which due to its invariance can be distinguished via 
a color—with the inverse of the real exponential function, that 
is, the (natural) logarithm function. Since, the domain of this 
function includes only the positive non-zero real numbers (as 
multiplicative powers), and its co-domain includes are all real 

FIGURE 6.49
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numbers (as additive exponents), we will think of the values of 
the logarithm function as colors in a continuous spectrum of 
frequencies of light that can be mixed and superimposed to each 
other, due to the additive closure property of the exponents. This 
pertains to the superposition principle of colors.

Note that the exponent variable of the real exponential func-
tion has been interpreted as time in its ordered aspect, by which 
we mean in its role as a continuously progressing real variable. 
In turn, the values of the logarithm function, which are also real 
additive exponents, are interpreted as a continuous spectrum 
of frequencies, the colors of the spectrum, which pertain to the 
periodic/frequential aspect of time.

How is such a dual reading of the exponents possible? The 
answer, as we already know lies in the invariance of area under 
translation, but the technology of real numbers under addition 
does not allow to capture the analytic/synthetic functional meta-
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phora, which is required to explicate the periodic/frequential 
aspect of time in its becoming through rotation.

For this, we need to extend the resolving spectrum of the ex-
ponential function to the circle—which is anyhow essential since 
our epiphaneia is designed as a disk—that is, we need to make it 
capable of recognizing angles even in a multi-valent way. Never-
theless, the recognition of angles necessitates the extension of our 
notion of numbers to the imaginary ones by the adjunction of a 
single angular unit in the real world (called the imaginary unit—
extending our domain of numbers to the complex numbers), 
which always comes together with its conjugate, since rotation 
can be performed clockwise or anticlockwise.

From our perspective, this capability means that we need to 
make the epiphaneia/screen of our disk capable to rotate—out of 
which we can comprehend why the tempered colors of our light 
spectrum are mixing. Since what we comprehend geometrically 
are areas—which if distinguished in the spectrum are invariant 
admitting a color—and since areas are invariant under progress-
ing in time, i.e. their rate of change is not affected by translating 
linearly in time, the following conclusion emerges:

Architecture pertains to discerning and crystallizing these 
colors/tempered continuous intervals of light frequency in space 
by means of area that is enclosed through rotation.

From this viewpoint, we may also come to appreciate the close 
association of architecture with mechanics in the abstractions 
percolating through these seemingly different domains.

Mechanics has been considered as the art and science of the 
rolling wheel since its inception. In its abstraction, it is the capa-
bility of our disk—the equally-tempered epiphaneia—to roll over 
the ground, that is, to roll as a resolving screen over the domain 
of the shadows. But rolling is nothing else than the synthesis of 
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translation and rotation, thus in terms of area invariance, archi-
tecture and mechanics are naturally equivalent.

What can be translated by rolling in mechanics can be encap-
sulated in an equi-areal manner and crystallized geometrically 
in architecture purely by rotation. This crystallization is natural 
only through the discernibility of the colors—the area sectors of 
the continuous equally-tempered frequency spectrum—that are 
not distinguishable ab initio due to mixing.

After this interlude, whose purpose was to clarify the concepts 
that usually remain in the shadows of the symbols and the signs, 
we come back to the study of the real logarithm functional bridge. 
We recall that the domain of this function includes only the pos-
itive non-zero real numbers (as multiplicative powers), and its 
co-domain includes are all real numbers (as additive exponents).

We think of the values of the logarithm function as colors in 
a continuous spectrum of frequencies of light that can be mixed 
and superimposed to each other. How is the association of colors 
with areas possible, in the first place?

We recall that the exponential function is the solution to the 
following differential equation: 

	 d y / d t = y

If we invert the above, i.e. consider y  as a variable, and t  as the 
function, we obtain: 

	 d t / d y = 1 / y

that is, the differentiation of t —as a function of the variable 
y — with respect to y , equals the reciprocal of y .
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In other words, differentiation of t in the additive world of the 
reals is equivalent to the reciprocation of the power y —in which it 
intrudes as exponent—in the multiplicative world of the powers.

The solution of the above equation by means of integration 
gives the following: 

	 t = ∫ d y / y

	 t = ∫ d l n y

We start the integration at y = 1 , i.e. the zero-th exponent pow-
er which is the multiplicative unity—the neutral element in the 
world of powers—such that the cipher l n 1 = l o g e  1 = 0  emerges 
in the additive world, determining its neutral element as well.

This explains the role of Euler’s constant from a multiplica-
tive viewpoint. It is the unique real constant, through which by 
natural logarithmization we obtain the neutral element, that is, 
the group identity of the additive real world.

Through the introduction of a dummy variable to be integrat-
ed, we write the above as a definite integral in order to obtain its 
qualification by means of area, as follows: 

	 t = ∫ 1
y d s / s = l n y

where the integrated variable pertains to spans of mixtures 
in the continuous tempered real frequency spectrum.

Since the definite integral calculates areas under the curve 
of the reciprocal 1/s of s that is being integrated, we denote by 
A ( 1 , y ) , the area: 

	 A ( 1 , y ) = ∫ 1
y d s / s = l n y
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In this sense, by variation of y over its continuous real spec-
trum, the evaluation of the area at y = K , gives the color of the 
region enclosed under the graph of 1 / s  between 1  and K . In turn, 
this color is quantified by the value of the logarithm function at 
K , that is by l n K .

Note that the graph of the function τ = 1 / s —corresponding 
to the action of reciprocation—is a rectangular hyperbola. It is 
immediate to see that: 

	 τ ⋅ s = 1

meaning that the product of τ  with s is always invariant ex-
pressed by the constant 1 .

This is reminiscent of the inverse co-relation between line-
ar length and frequency, that we have termed the uncertainty 
principle, since complete knowledge of the first leaves the second 
completely undetermined and conversely. In turn, that is exactly 
what is represented by the rectangular hyperbola τ ⋅ s = 1 . It is 
worth emphasizing that grasping the uncertainty principle in this 
vain emerges from the infinitesimal reciprocal action required to 
invert, and thus decode, the real exponential function.

After this clarification in relation to the shape of the graph of 
the function τ = 1 / s ' , we may abduct all the properties of the 
logarithm function by means of colored areas of the spectrum, 
that is, by means of areas under the hyperbola, according to 
the Figure 6.51.

The fundamental property of the logarithm function is that 
it transforms commutative multiplication to addition, and as an 
outcome of this, division to subtraction: 

	 l n ( y 1 ⋅ y 2 ) = l n ( y 2 ⋅ y 1) = l n y 1+ l n y 2
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	 l n ( y 1 / y 2 ) = l n ( y 1) – l n ( y 2 )

This property is easily established in terms of colored areas, 
according to the additive area relations under the hyperbola, ob-
tained by the above figure, as follows: 

	 A ( 1 , y 1 ⋅ y 2 ) = A ( 1 , y 1) + A ( 1 , y 2 )

Note that what is obvious from the figure is: 

	 A ( 1 , y 1 ⋅ y 2 ) = A ( 1 , y 2 ) + A ( y 2 , y 1 ⋅ y 2 )

By subtracting A ( 1 , y 2 )  from both sides, what has to be 
shown is that: 

	 A ( y 2 , y 1 ⋅ y 2 ) = A ( 1 , y 1)

This means that the area under the hyperbola from 1 to y1 
equals the area under the hyperbola from y 2  to y 1⋅ y 2 . In other 
words these regions should bear the same color. We understand 
this equality of areas if we focus on the invariance of the hyper-

FIGURE 6.51
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bola, namely that the product of τ  with s is always invariant, ex-
pressed by the constant 1 .

In particular, since τ ⋅ s = 1 , if we extend horizontally by the 
constant factor λ —multiplying s by λ —and then contract ver-
tically by the same constant factor λ —multiplying τ  b y  1 / λ —
then the hyperbola is preserved: 

	 τ / λ ⋅ s λ = 1

This means that by proportionate re-scaling of both s and τ 
through a constant factor λ , the invariance remains intact. Thus, 
areas are calculated under the same hyperbola τ = 1 / s .

As a consequence, it becomes clear why the area under the 
hyperbola from 1  to y 1  equals the area under the hyperbola from 
y 2  to y 1⋅ y 2 . Starting from the first area, we extend horizontally by 
the factor y 2 , and then contract vertically by the same factor y 2 .

Note that, although the first area is squeezed via the inverse 
processes of extending and contracting, it remains invariant and 
fits precisely under the hyperbola, so that it is equal in magnitude 
to the second area. Thus, these two areas actually bear the same 
colour, which is identified in magnitude with l n y 1 , since it holds: 

FIGURE 6.52
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	 l n  ( y 1 ⋅ y 2 ) / y 2  = l n y 1

We also note the following relations: 

	 l n  𝑒 = 1

	 l n y = A ( 1 , y ) = – A ( y , 1 ) = – l n y

	 l n 1 = 0

The first of the above relations provides an interpretation of 
Euler’s constant from the perspective of area. Euler’s constant 
is the unique real number whose natural logarithm equals 
the neutral element, that is, the group identity of the additive 
world of the reals.

Due to the above association of logarithms with colors corre-
sponding to areas under the rectangular hyperbola, we conclude 
that Euler’s constant is the unique real number such that the area 
contained under the hyperbola between 1  and 𝑒 equals the unit 
area. Note that the cipher l n 1 = 0  is the logarithmic equivalent of 
the exponential cipher e x p ( 0 ) = 1 .

Finally, from the second of the above relations we see that 
areas are signed magnitudes in the sense that: 

	 A ( 1 , y ) = – A ( y , 1 )

which explains in terms of area why the values of the loga-
rithm function are both positive and negative real numbers.
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The main conclusion is that the notion of area bears geometric 
plasticity, in the sense that areas can be stretched and contracted 
retaining their invariance. This is what is revealed by modelling 
the uncertainty principle by means of invariant areas, which are 
identified as colors under the rectangular hyperbola. Moreover, 
all the properties of areas under superposition and mixing are 
prescribed analytically in terms of the natural logarithm func-
tion, which inverts the real exponential function.

FIGURE 6.53
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	 7. 	  
� The Pneuma of Stochastics:  

Quantum Phase and Thermal Spectrum

Helicoidal Universal Covering  
and Branch Cutting

The task we face now is how to extend the resolving spectrum 
of the exponential function to the circle. As we already mentioned 
above this is of essential value since our epiphaneia is designed as 
a disk. Thus, we have to be able to think of this disk as capable of 
rotating with a variety of frequencies. In terms of real area invar-
iance the rotating disk could be a rolling wheel, since the rate of 
change of its area is unaffected by translation.

The issue is how we should envision the exponential function 
in its capacity to recognize and encode angles. This is not straight-
forward for many reasons. The most important of them has to 
do with the multi-valency of the notion of an angle. Recall that 
geometrically an angle is considered with respect to the origin of 
a circle, and all right angles are equal, in the sense that they share 
the same measure of congruence.

It is the notion of orthogonality that together with the ability 
to translate in parallel fashion—the affine property—character-
izes the geometry of the Euclidean elements. If we start thinking 
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mechanically, the notion of an angle is made operational through 
rotation, but an integer number of whole rotations (clock-wise 
or counter-clock-wise) makes an angle look exactly the same ge-
ometrically with respect to the geometric origin. In this way, 
rotation affords a multi-valued encoding of an angle, that is, all 
angles differing by an integer number of full circulations are cast 
equivalent in the spectrum, they are recognized as the same block 
of the partition.

From a topological viewpoint, this is referred as the issue of 
multiple-connectivity, and it is an obstacle. The obstacle rests on 
the fact that geometry requires simple-connectivity to be effec-
tive and operational in its constructible/synthetic role, it cannot 
handle the seeming redundancy—the gauge freedom—inherited 
by the multi-valency of angles.

This problem has been resolved by Riemann, who conceived 
of a principle to deal with multiple connectivity, called the 
covering principle, which led to the notion of a universal cover-
ing epiphaneia.
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The basic abstraction of Riemann was the following: Wher-
ever a phenomenon of multiple-connectivity appears through 
circulation, make a cut, and continue after the cut on a differ-
ent vertical layer extending over the initial level. This procedure 
continues until all multi-valency is resolved in a number of suc-
cessive vertical layers covering surjectively the initial one.

All these different layers are bonded together through a 
common axis. In the case of the multi-valency of the angle we 
are interested in, it is clear that the number of layers should be 
countably infinite, equipotent with all the integers.

We think of each layer as a different branch of the universal 
covering epiphaneia extending over the disk. To be consistent, 
the disk bears a dark spot in the middle, thought of topologically 
as a puncture, since it is the locus of the vertical axis, where all 
branches are bonded to each other over the disk.

The universal covering is like a 
helicoid covering the underlying disk. 
The helical boundary, is universally 
covering the circle surrounding the 
disk. The helix is nothing else than 
the real line of temporal progression, 
but bearing an imprint of integer an-
gularity through integral rotations—
called windings—that inherits from 
the binding cord of all the branches.

FIGURE 7.2
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Imaginary Potentiation of Angles  
through Phases

What the covering principle achieves is the universal covering 
of the circle by the helix, so that the underlying circle is viewed 
from the simply-connected perspective of the helix as the real 
line ℝ modulo the integers ℤ, that is, the circle S 1: = S  is made 
isomorphic to the spectrum of the reals modulo the integers: 

	 S ≅ ℝ / ℤ

This is remarkable, since the circle appears topologically as a 
spectrum that emerges out of the modulation of the real line of 
progression by the discrete integer windings of the helix.

Nevertheless, the integers are undisclosed from the perspec-
tive of the circle, each point of the circle carries with it an invisible 
fiber containing all the discrete integers, all the windings. In this 
sense, each point of the circle indexes a block of the partition spec-
trum, expressed by the quotient ℝ/ℤ. Equivalently, each point of 

the circle indexes a fiber 
or orbit of the transitive 
translation action of the 
discrete integers on the 
continuous real line.

This topological spec-
trum is valuable, but we 
should be able to have a 
calculus, like in the case 
we deal with real-valued 
functions. This is the ex-
tension of real analysis to 
complex analysis and the 

FIGURE 7.3

The relation between 
windings and phases 

in the universal 
covering of the 

circle by the helix 
conducted through 

the complex Exp/
Log architectonic 

scaffolding

UNIVERSAL
COVERING OF

THE CIRCLE BY
THE HELIX

R

S

Z

Exp

Log

3

2WINDINGS

PHASES

1



325

theory of Riemann surfaces. Our objective presently is more hum-
ble than going all the way through, but we should scrutinize what 
makes the abstraction leading to these fields of mathematical 
thinking possible.

We should envision how the exponential function bears the 
capacity to recognize and encode angles. We already know that 
the real-valued exponential function takes the reals under 
addition and transmutes them to non-zero positive reals under 
multiplication, such that these two worlds are made structur-
ally isomorphic.

Note that the non-zero positive reals are powers, thus the 
efficacy of the real-valued exponential function is based on the 
potentiation of all the reals as powers.

FIGURE 7.4
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We need to do the same for angles; the idea is that the extension 
of the exponential function to the circle should be able to poten-
tiate angles. We call phases those envisioned potentiated angles.

Intuitively, if we think mechanically in terms of rotation, 
angles become additive. Thus, they fit in the plan if we manage 
to express them as real numbers. Correspondingly phases, that 
is potentiated angles, should be multiplicative and defined on 
the circle. In other words, the circle should be coordinated in 
terms of multiplicative phases via the exponential function 
resolving the circle.

The caveat in this case is that the world of additive angles and 
multiplicative phases cannot be made isomorphic, for reasons we 
have already discussed, i.e. multi-valence and multiple connec-
tivity of rotation. Despite this fact, this is actually not a caveat, 
because the situation can be turned upside down.

Instead of viewing this as a redundancy, we consider it as a 
modular way to encode an underlying invariance. Recall that the 
invariants of the harmonic domain are integers—pertaining to 
the periodic/frequential aspect of time—and currently, the gauge 
freedom of rotation in terms of integer whole turns presents an 
opportunity to encapsulate these invariants through rota-
tion (Figure 7.5).

 The structural idea is that the extension of the exponential 
function from the reals to the circle—and not only to the posi-
tive non-zero reals—should determine the identity of the circle 
through this unresolvable kernel, that is, precisely this kernel is 
what should characterize structurally the circle.

Recall that the identity of the positive non-zero reals under 
multiplication, is the 1 = 𝑒 0 , functioning as the neutral element 
in this world. In the case of the circle, the identity of the circular 
world under multiplication of phases should be constituted in 
terms of all the integers. This means that all the integers, the 
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invisible fiber of all discrete integers, at each of its points, is the 
neutral element in the circular world.

Concomitantly, the evaluation of the power on the circle at 
each integer should give the unity 1 in this world. What this means 
mechanically is simply that every integer number of whole ro-
tations with respect to any point gives the unity to the world of 
phases, specifying in this way its neutral element.

This is the perplexing issue we have to deal with if we wish to 
grasp the essence of extending the exponential function to the 
circle that makes possible the strengthening and efficacy of our 
calculus. Although we prepared the ground to make the required 
metaphora from the positive reals to the phases as multiplicative 
powers in the domain of values of the exponential function, we 
still need to think of how this recognition procedure should take 
place in relation to angles.
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Recall that the domain of the exponential function are all 
real numbers. If we hope to extend the power of our calculus 
with phases on the circle, we should be able, first of all, to offer 
the means of recognizing angles as real numbers, something not 
evident geometrically.

Our rescue is again at the domain of transcendental numbers 
like with the choice of basis for the exponential function, the Euler 
constant. Since the measurement of the circle by Archimedes, we 
know geometrically the following:

In any circle, the ratio of the perimeter of the circle over its diameter 

is an irrational constant, which is equal to the ratio of the area of 

the disk it encloses over the square of its radius. This constant is the 

transcendental number pi, which cannot be identified as the root of 

any polynomial equation with rational coefficients.

This offers a natural real– valued measure of an angle in 
terms of the arc it opens up on the circle. The measure of the an-
gle equals the length of the arc subtended by it on the unit circle 
(the circle with radius 1). A circle has 2π radians in total, which 
is also its circumference 2 π ρ  divided by its radius ρ . Thus, the 
measure of an angle in terms of the reals is expressed throughπ 
as a length in terms of radians, such that the whole circle has 
real– valued length 2 π .

Therefore, angles expressed as irrational lengths under the 
invariant of any circle π  enter into the domain of the real expo-
nential function as real entities amenable to addition of length. 
The evaluation of an angle θ  under the real exponential function 
gives rise to an angular multiplicative power, that is, the positive 
non– zero real 𝑒 θ .

These powers—although not constructible geometrically—
can be comprehended mechanically through the combination of 
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rotation and translation, for instance, the non– uniform motion 
expressed by a radius ϱ —with respect to a center—that varies 
according to 𝑒 θ , the well-known logarithmic spiral ϱ = 𝑒 θ .

A further more radical step is needed to potentiate the notion 
of an angle, that is, to extend the exponential function to the cir-
cle, resolving its points in terms of phases. For this purpose, we 
need to adjoin a new angular unit to the world of the reals under 
addition, the imaginary unit i , which comes inseparably from 
its conjugate i * .

This refers to the well-known identity: 

	 i 2 = i · i * = - 1

which identifies the imaginary unit as the extracted square 
root of the negative unity—1  of the reals. We usually think of the 
imaginary unit in terms of an anti-clock-wise rotation by angle of 
real length measure π / 2 , such that, its conjugate corresponds to 
a clock-wise rotation by the same measure of angle.

In this manner, the composition of two consecutive rotations 
by π / 2  gives rise to aπ  rotation that transforms from the unity 
1  to the negative unity—1  of the reals.

-i*

i*

-1
i⁴

1

IMAGINARY NUMBER LINE

REAL NUMBER LINE

1 radian

UNIT CIRCLE

e π0
i ii² 

e ie 2i
e 2 i

e πi

π

e 2 i-π

FIGURE 7.6
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Imaginary Geometry of Quantum Phases

There are two issues with this standard approach that need to 
be clarified before proceeding. The first is why we identify a new 
unit—that we call imaginary—with an anti-clock-wise rotation 
by angle of real length measure π / 2 , and the second, is how the 
extension from the real numbers to the complex numbers takes 
place by the introduction of this unit.

The immediate identification of the complex numbers with 
the two-dimensional space of real numbers, and the concomitant 
representation of the exponential function in terms of the trigo-
nometric functions is not satisfactory from our perspective, 

because it hides under the carpet the structural significance of 
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extending the exponential function from the positive reals to the 
circle. It is this extension that allows the trigonometric reduction 
of the exponential function, rather than the other way round.

For this purpose, we will try to explicate, first of all, what the 
imaginary unit stands for. Let us recall the invariance of the real 
exponential function under integration as pertaining to the 
invariant accumulated area:

The fact that all the area can be calculated in terms of the 
displayed Pythagorean orthogonal triangle for any t bears the 
major significance here. If we wish to extend the exponential 
function to the circle, we should be able to keep this invariance. 
Note that by rotating orthogonally this triangle four times it 

FIGURE 7.9
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retains its initial geometric configuration without accumulating 
new area. This means that it is possible to realize our objective.

FIGURE 7.11
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Additionally, we obtain the following symmetries under 
reflections of the Pythagorean orthogonal triangle for any t :

FIGURE 7.12

Symmetry 1

FIGURE 7.13

Symmetry 2

FIGURE 7.14

Symmetry 3
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We consider an imaginary rotation ξ  by means of an angle of 
real length measure ϕ  in radians, conducted by means of a unit i, 
to be specified shortly, such that it takes the real angle ϕ  to a phase 
on the circle S, denoted by 𝑒 i ϕ , according to: 

	 ξ : ϕ ↦ 𝑒 i ϕ

where we have the identification: 

	 ξ ( π / 2 ) : = 𝑒 ( i ⋅ π / 2 ) = 𝑖

and such that, the following condition is satisfied: 

	 𝑒 2 k π i = 1

for any integer k, specifying in this manner the algebraic iden-
tity of the group of phases, that is, the neutral element on the 
circle S under the operation of multiplication of phases 
(Figure 7.16).

Thus, the imaginary unit is the image of a right angle, which 
is measured as π / 2  length in radians, under the extension of the 
exponential function to the circle. This means that the potentia-

FIGURE 7.15

Symmetry 4
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tion of the right angle—through its real length measure π / 2 —as 
a phase on the circle gives rise to, and is identified analytically 
with the imaginary unit 𝑖 :

	 ξ ( π / 2 ) = 𝑖

This is in symphony with the universal covering principle of 
the circle by the helix, according to which the circle is viewed from 
the simply– connected perspective of the helix as the real line ℝ 
modulo the integers ℤ, that is, the circle S is made isomorphic to 
the spectrum of the reals modulo the integers: 

	 exp: ℝ ↦ S ≅ ℝ / ℤ

	 ϕ ↦ exp( 𝑖 ϕ ) = 𝑒 i ϕ

FIGURE 7.17
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Neutrality Condition: 
The Universal Equation of Ciphers

The neutral element on the circle under multiplication of 
phases constitutes the universal equation of ciphers that our cal-
culus is based on, that is: 

	 𝑒 2 k π i = 1

By squaring the identity 

	 𝑒 ( i ⋅ π / 2 ) = 𝑖

we obtain the identity relation on ciphers, called the Euler 
identity, in the form: 

	 𝑒 i π +1 = 0

Note that this is derived without employing the trigonometric 
functions cosinus and sinus as projections on the horizontal and 
vertical axis of the two– dimensional plane. The trigonometric 
functions are derived from the exponential function on the circle, 
under projection, and not the other way round. Let us see how 
this takes place.

Every point of the circle (whose radius is considered one—
called the unit circle) is parameterized surjectively by a phase 𝑒 𝑖 ϕ , 
which is the potentiation of the real length ϕ  that measures the 
angle in the domain of the exponential function. This happens 
through the imaginary unit𝑖 that characterizes the corresponding 
rotation as an imaginary rotation.

An imaginary rotation preserves the area contained within 
the unit circle. If we consider the disk bounded by this circle it 
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preserves its area under the structure inflicted upon it by the im-
aginary unit. Each point of the perimeter, rotates with the same 
velocity under imaginary rotation of the disk, which is expressed 
by the derivative of the phase 𝑒 i ϕ  with respect to the real length ϕ 
of the angle, that is, 𝑖 ⋅ 𝑒 i ϕ

This means that the velocity of each point on the perimeter is 
tangential to the circle and orthogonal to its radius at this point, 
due to the relation: 

	 ξ ( π / 2 ) : = 𝑒 ( i ⋅ π / 2 )  = 𝑖

	 d ( 𝑒 i φ ) / d φ = 𝑖 ⋅ 𝑒 i φ

	 d / d φ  ℤ= 𝑖 ⋅ ℤ

Thus, the imaginary unit can be considered—in geometric 
terms—as orthogonal to the radius at each point on the circle, 
forcing in this way the instantaneous tangency of the velocity 
at this point, for all points. Hence, differentiation is expressed in 
the analytic terms of the exponential function on the circle, in 
the most economic terms, simply as multiplication by the imagi-
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nary unit of the corresponding phase. This is what underlies the 
strength of this function.

Nevertheless, the imaginary unit does not pertain to the cir-
cumference of the circle—it only allows the expression of the 
points as phases, as well as the expression of the velocities at each 
point of the circle as multiplication by the imaginary unit. How-
ever, it pertains to the center of the circle, it emanates from the 
center, not the circumference. In order to understand this subtle 
issue, we need to recall the principle of synchronization with 
respect to the center by means of harmonic parallel transport—
the reason for the validity of the Pythagorean theorem.

The center of the disk is the unique point that is in synchrony 
with all the points at the circumference. This is what justifies the 
harmonic parallel transport of all tangent vectors to the center.

For the calculation of the area of the disk, since all tangents at 
all points bear the same length, it is clear that their lengths will fill 
in the whole disk when synchronized at the center after transport. 
Thus, the area of the disk is the same with the area being swept by 
the length of any single one after rotation by 2 π .

FIGURE 7.19
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Note that it is the length that sweeps the area and the length 
is always real. Thus, all the contribution to the measure of area 
emerges by the positive non– zero reals. Clearly, in the case of unit 
length of the tangent, that is unit velocity, the swept out area is π.

Principle of the Imaginary Rolling Wheel

In the case of an imaginary rotation, there is no contribution 
to new area at all, since any length that can sweep out area is a 
positive non– zero real. A phase does not have any contribution 
to area whatsoever. The imaginary velocities can be considered 
simultaneously synchronized all together being uniformly dis-
tributed all around the center.

But this synchronization refers to their directions only; this is 
why it is area– preserving. Hence, during a whole imaginary rota-
tion all these directions cancel out, their net average is precisely 
zero. The same happens for any integer number of complete im-
aginary rotations. This is what is expressed by the null value of the 
definite integral of 𝑒 i ϕ , integrated over the real ϕ , from 0  to 2 π : 

	 ∫ 0
2 π  𝑒 i ϕ  d ϕ = 0

for any complete imaginary rotation. It is an area– preserva-
tion condition under complete imaginary rotations.

Henceforth, the extension of the exponential function on the 
circle preserves all area—accumulated through sweeping by syn-
chronized positive lengths—under complete imaginary rotations.

Then, since the accumulated area remains invariant in this 
case, we abduct the conclusion that an arbitrary imaginary ro-
tation is actually the same as the translation of the center of 
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spontaneous synchronization along a straight line axis with net 
average velocity—corresponding to the average of all velocities 
during this phase—bearing the 𝑖 as unit, which we call an im-
aginary translation.

Equivalently put, in the imaginary domain, change of phase 
through rotation—at the circumference of the unit circle—and 
imaginary translation of the center with an average velocity are 
entirely equivalent, thus identified.

What happens is that an imaginary rotation corresponding to 
some phase different from a complete rotation has a net average 
of velocities whose area span—in comparison to the whole area 
preserved during a complete rotation—is transfigured to the 
imaginary linear translation of the center with this velocity. We 
call this the principle of the rolling imaginary wheel.

The linear translation of the center takes place along the imag-
inary axis, being thus measurable through the unit 𝑖 by means of 
a real number that expresses net average velocity during the corre-
sponding phase. This identifies the imaginary axis as a 𝑖 ℝ – axis.

Moreover, since ξ ( π / 2 ) : = 𝑒 i π / 2 = 𝑖 , meaning that the imagi-
nary unit is a unit corresponding to a right angle, we conclude that 
the imaginary axis should be orthogonal to the real axis, arriving 
thus, to the standard representation of the complex plane. An im-
mediate outcome is the derivation of the trigonometric expression 
of a complex number consisting of a real and an imaginary part 
through projection to these two orthogonal axis: 

	 z = r 𝑒 𝑖 ϕ : = r ( cosϕ + 𝑖 sinϕ )

However, we are now able to appreciate the strength of the 
calculus based on the complex numbers through grasping the 
notion of an imaginary rotation. This is the actual content of the 
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metaphora needed for the extension of the exponential function 
from the reals to the circle.

Through the calculus of the imaginary unit, the area span of 
the velocities-average corresponding to a phase difference on the 
circle—under imaginary rotation—is transformed to the linear 
translation of the center along the imaginary axis bearing this 
velocity average. This would be impossible without the area pres-
ervation under complete imaginary rotations, and without the 
spontaneous synchronization of all these velocities at the center.

Imaginary Rotation and  
Real Tempering: The π -Tuning

Since we have accomplished the extension of the exponen-
tial function from the positive non-zero reals to the circle, and 
since this extension has led to the domain of complex numbers 
by the adjunction of the imaginary axis orthogonally to the real 
axis, we can consider the action of the exponential on the whole 
complex plane screen.

The domain of the complex exponential function will be the 
complex numbers ℂ  under addition—to serve as the exponents of 
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the exponential—and the codomain will be the non-zero complex 
numbers ℂ × —to serve as the powers under multiplication. Note 
that the powers in the image of the exponential can never be zero.

From a topological viewpoint, the zero on the complex plane 
is thought of as a puncture. It is the dark spot of our topological 
disk in the middle, the center of synchronization, since it is the 
locus of the helicoidal axis where all branches are bonded to each 
other over the topological disk.

From a structural algebraic viewpoint, the complex exponen-
tial is not only a function from ℂ  to ℂ × , but it is a structural mor-
phism between groups—the first in the domain under addition, 
and the second in the codomain under multiplication. This is of 
the utmost significance because it qualifies the role of the neutral 
element in the punctured complex plane, though of as the action 
space of complex powers—obtained through the multiplication 
of a real power with an imaginary power, as follows:

Consider the complex exponential mapping, 

	 exp: ℂ ↦ ℂ × ,  z ↦ exp z

as a homomorphism of the additive group ℂ  into the multi-
plicative group ℂ × .

As in the case of a general group homomorphism σ : ↦ ℍ  we 
should consider the image group σ ( 𝐺 ) : = exp( ℂ ) , and the kernel 
that qualifies the neutral element of the codomain group: 

	 Ker σ : = { g ∈ 𝐺 : σ ( g ) = neutral element of ℍ }

For the exponential group homomorphism we obtain: 

	 exp ( ℂ ) = ℂ × ,  Ker (exp) = 2 π 𝑖 ℤ .
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This is the structural cipher that bridges together the additive 
world of the whole complex plane with the multiplicative world 
of the punctured complex plane bearing the center of synchroni-
zation. This cipher is structural—and not only arithmetical—
because it involves the group structure of the discrete integers ℤ 
under addition.

The latter is instrumental for the consistency of imaginary 
translations. It shows that they should be quantized in discrete 
quanta of length 2 π 𝑖 . In this sense, the complex exponential 
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accomplishes the resolution of the harmonic invariants, which 
were hidden from the resolving spectrum of the positive reals.

As the most important consequence of quantization, we can 
grasp the underlying reason of appearance of the transcendental 
numberπ  in the geometry of the circle, the invariant that deter-
mines both its perimeter and its area. It emerges from the quan-
tization cipher engulfed in the complex exponential as follows:

There exists a uniquely defined real number π > 0 , such that 
the numbers 2 π 𝑖 k , k ∈ ℤ , constitute the set of numbers mapped 
on to 1, the multiplicative identity of the punctured complex 
plane—its neutral element that pertains to the center of synchro-
nization—by the complex exponential mapping exp.

Equivalently there is a unique tuning real number π  with the 
property that: 

	 { w ∈ ℂ : exp w = 1} = 2 π 𝑖 ℤ

The above property characterizesπ  uniquely, thus it amounts 
to the definition of π .
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In this sense, the unique real number π  is the invariant that 
allows the effectuation of our equally– tempered scale as a light 
spectrum of colours, by specifying uniquely and invariantly the 
irrational tuning parameter that allows the natural communica-
tion between the harmonic domain and the geometric domain 
without any ad-hoc assumptions.

We have arrived to the point that our disk epiphaneia equipped 
with the action of the complex exponential is capable to decipher 
the discrete harmonic invariants through quantization.

Therefore, it bears the capacity of the polar spider web, not 
only pertaining to real rotations and translations, but also to 
imaginary rotations and translations as well as to their subtle 
interplay—the type of intricate weaving that takes place with 
complex numbers.

Note that the above exponential group homomor-
phism morphism: 

	 exp ( ℂ ) = ℂ × ,     Ker (exp) = 2 π 𝑖 ℤ ,

is clearly an epimorphism, that is, surjective, but it is not injective. 
Using the fact that: 

	 | exp z | = 1

holds if and only if z ∈ ℝ ⋅ 𝑖 , we derive 
that exp ( 𝑖 ⋅ ℝ ) = S 1 , where S 1  denotes 
the multiplicative circle group, that is, 
the circle viewed structurally as a 
group under multiplication of (quan-
tum) phases. Anyhow, this is already 
what has been accomplished by the 

FIGURE 7.24
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potentiation of angles as phases parameterizing the points 
of the circle.

Hence, the imaginary polar spider web epimorphism of our 
epiphaneia is expressed as follows:

The following homomorphism of groups: 

	 p : ℝ ↦ S 1

	 φ ↦ 𝑒 i φ

is a group epimorphism whose kernel is the group 2πZ such 
that: p(π/2)=i. The important thing to emphasize here is that this 
kernel ideal specifies the structural identity of the circle, that is, 
the algebraic neutral element of the circle bearing the structure 
of the multiplicative group of (quantum) phases.

Note that for φ , ψ ∈ ℝ , we have: 
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	 p ( φ + ψ ) = exp ( i φ + i ψ ) = ( exp i φ ) ⋅ ( exp i ψ ) = p ( φ ) ⋅ p ( ψ )

Thus, p is an epimorphism, since: 

	 p ( ℝ ) = exp ( 𝑖 ⋅ ℝ ) = S 1: = S

Furthermore, since: 

	 Ker (exp) = 2 π 𝑖 ℤ

we obtain that: 

	 Ker p = { t ∈ ℝ : 𝑖 t ∈ Ker (exp)} = { t ∈ ℝ : t ∈ 2 π ℤ }

This is in complete accordance with our previous discussion, 
regarding the nature of the circle invariantπ  as a real transcen-
dental tuning parameter, elucidating the conception of our screen 
as a polar spider web capable of deciphering and resonating with 
the discrete invariants of the harmonic domain.

Therefore, although our equally– tempered scale is intrin-
sically probabilistic, it is not because of any type of subjective 
ignorance, but it is so due to the irrational nature of the universal 
tuning parameterπ  that makes the visible spectrum intrinsically 
continuous, and tempered according to objective chance.

Imaginary Polar Spider Web  
Cyclotomy: Windings and Quanta

The imaginary polar spider web, based on the technology of 
the exponential function on the unit circle, allows the extraction 
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of the roots of the multiplicative unity 1 of the world of powers on 
the circle—that is, of the world of quantum phases.

In this manner, we are able to 
perform cyclotomy in terms of the 
extracted roots. The idea is that a root 
of unity is a complex number whose 
power living on the circle equals the 
unity, that is, the unity phase—the 
neutral element on the circle.

By the fundamental theorem of 
algebra, there are always n different complex n-th roots of unity, 
that is complex numbers z, whose n-th power equals the unity: 

	 z n = 1

The roots of unity are equally spaced around the periphery of 
the unit circle in the complex plane.

Since they are equally spaced they constitute an equally-tem-
pered scale on the epiphaneia of the disk. Roots of unity are man-
ifested geometrically as the vertices of a regular polygon that 
binds them together.

In this sense, the roots are ab-
ducted from the unity phase through 
cyclotomy by the algebraic means of 
root extraction. The crucial idea is 
that complex root extraction from the 
unity—through cyclotomy—recipro-
cates the respective exponents, result-
ing in the neutralization of the powers.

Of particular importance are the primitive roots of unity. 
More precisely, on the unit circle with n equally spaced rays, there 
is a mark on the ray k, denoting a primitive root of unity, if and 

FIGURE 7.26

Cyclotomy and the 
extraction of the 

roots of unity

FIGURE 7.27

Polygonal 
constellations of 

roots of unity



349

only if k and n are relatively prime, meaning that they share no 
common divisors other than the unity 1 .

An equally-tempered scale marking the unit circle on the com-
plex plane enforces cyclotomy, which is manifested geometrically 
on the screen in terms of regular polygons inscribed in the unit 
circle. Thus, cyclotomy corresponds spectrally to the generation 
of regular polygons. The deeper the resolution of the cyclotomy 
is, the higher the number of vertices appearing equally-spaced 

FIGURE 7.28
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on the unit circle, and thus, the higher the number of sides of the 
inscribed regular polygon.

Note that the square power in relation to the unit circle cor-
responds to doubling the angle, and so on for all higher integer 
powers. Since the imaginary unit corresponds to a right angle, it 
is qualified as a fourth root of unity, since it has to be raised to the 
forth power to equal the unity, i.e. 𝑖 4 = 1 , from which it is imme-
diate that 𝑖 2 = – 1 .

From this perspective, the complex plane is set up according 
to the fourth roots of unity, where the vertices 𝑖 , 𝑖 2 , 𝑖 3 , 𝑖 4 , effect 
cyclotomy by means of a square inscribed in the unit cir-
cle, as follows:

Let us consider now the helicoidal universal covering epiph-
aneia extending over the disk included in the unit circle. Recall 
that the disk bears a dark spot in the middle, that is, a topological 
puncture, since it is the undisclosed resonance locus of the heli-
coidal axis bonding together all the branches.

The helical boundary, is universally covering the circle sur-
rounding the disk. According to the universal covering principle 
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of the circle by the helix, the circle S is made isomorphic to the 
spectrum of the reals modulo the integers: 

	 S ≅ ℝ / ℤ

We recall that due to the above isomorphism, the circle ap-
pears as the partition spectrum emerging out of the modulation 
of the real line by the discrete integer windings of the helix.

Under the action of the polar spider web, the circle is identified 
with 𝑖 ℝ , the imaginary axis of translation. Further, due to the 
quantization condition, qualifying the neutral element—the mul-
tiplicative unity on the circle—in terms of the discrete integers, 
we conclude that the windings of the helix are identical with the 
integer exponents of the powers that force the equality with the 
unity on the circle.

Therefore, we obtain a triple correspondence—a static tri-
pod—which consists of the following: The roots of unity, the 
quanta characterized by the integrality condition, and the wind-
ings of the universally covering helix.

Recall that the integers are undisclosed from the perspective 
of the circle, each point of the circle carries with it an invisible 
fiber containing all the discrete integers—all the windings—such 
that, due to the cipher of quantization, is tuned to the harmonic 
domain via the invariant π  that pertains both to the real length 
of its perimeter, and to its area.

This leads to the conclusion that the discrete integers with 
their additive structure, should be identified with both, the in-
variant harmonics, and with the exponents of the phases that 
enforce the unity on the circle. Concomitantly, the abducted roots 
of the scale are the bases of the corresponding powers effecting 
cyclotomy—under their extraction from the neutral unity—by 
means of their integer winding number.



352

Henceforth, any finite bounded portion of the helix qualify 
these windings in terms of harmonics, corresponding to finite 
covering spaces of the circle, and expressed as powers in the com-
plex analytic setting. Recall again that the square power in relation 
to the unit circle corresponds to doubling the angle, and so on for 
all higher integer powers.

Let us consider the finite double covering of the circle by the 
circle. This corresponds spectrally to doubling the velocity, and 
thus the frequency, therefore dividing the unit circle into half. 
Similarly, if we consider the finite triple covering, it corresponds 
to tripling the frequency, and thus dividing the circle in three 
parts. Analogously, we treat all higher integer powers, and by 
inversion, that is, in terms of the extracted roots of unity, we 
are able to accomplish cyclotomy of any resolving depth, in an 
invariant manner.

Area Homology: Complex Logarithm  
and Residue Calculus

The winding number bears major significance because it al-
lows to express homological relations pertaining to areas bounded 
under circulation around the center of synchronization in the 
punctured complex plane, independently of their location in 
geometric space.

All contours around the center sharing the same winding 
number are homologically equivalent, in the sense that they spec-
ify under integration the same quantum length of imaginary 
translation measured in terms of 2 π 𝑖 κ , where κ  counts the num-
ber of quanta, identified in this way with the winding number.
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The analytical tool to achieve this 
identification is the complex loga-
rithm function, that is the inverse of 
the complex exponential function, 
where this inversion can be accom-
plished only locally, i.e. only in rela-
tion to branches of this function ow-
ing to the multi– valence of the angle.

Nevertheless, the local inversion is 
conformal, that is, it respects and pre-
serves all angles and their orientation 
within the respective branches.

Henceforth, the complex logarithm—in its operational role 
under contour integration around the center of synchroniza-
tion—acts like an extremely high precision surgery instrument, 
which cuts through the continuum of the reals—continuous light 
spectrum of colours—and recognizes the quanta, the discrete 
harmonic invariants under any circulation around the center. 
For the complex logarithm the light spectrum is transparent, it 
delineates the harmonics via winding around, thus establish-
ing the basic simple law of our screen/epiphaneia by means of 
unveiling and recognition of the discrete invariants.

In turn, these invariants are characterized as co– homological, 
meaning that they are revealed by means of contour integration 
around the center, which takes place along any circular chain 
surrounding the center.

As we shall see, this is expressed analytically in the simplest 
possible manner, through the reciprocation of the complex var-
iable z , i.e. 1 / z , which is defined everywhere except the center 
z = 0 —thus living in the punctured plane excluding the center—
by contour integration around the center.

FIGURE 7.30
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It is absolutely clear in this manner that contour integration 
around any other point except the center will give a null result, 
something that determines the criterion of analytic behavior of 
any other function defined on the complex plane, or in a region 
of it, with respect to integration.

In other words, analyticity of a continuous function of a com-
plex variable, making it holomorphic, amounts to giving a null 
result under contour integration for any closed chain contained 
in this region. Thus, a continuous complex-valued function f is 
analytic, if and only if: 

	 ∫ γ f ( z ) d z = 0

that is, the integral ∫ γ f ( z ) d z  around any closed path is 0, or 
equivalently, the integral ∫ γ f ( z ) d z  is path independent.

 

It is this fact underlying the globally non-holomorphic branch-
ing behavior of the complex logarithm, which gives rise to the 
Riemann helicoid, consisting of an infinite number of branches 
bonded together around the axis of the helicoid. Locally, in the 
vicinity of a single branch, the holomorphic behavior is retained. 
The process of gluing those branches together, or equivalently, 

FIGURE 7.31
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extending a single branch locally along another branch, is called 
continuous analytic continuation.

Let us consider in more detail the inversion of the complex 
exponential function, that is, the complex logarithm. Due to 
multiple connectivity, the complex exponential function is not 
globally invertible. It can be only locally inverted giving rise to a 
branch of the complex logarithm. Thus, we have: 

	 log( r 𝑒 𝑖 θ ) = { log r + 𝑖 ( θ + 2 π k ) : k ∈ ℤ }

which shows the multi- valency of the angle under integer 
complete circulations around the center of synchronization.

The complex logarithm can be also consistently defined 
through contour integration, corresponding to a complete cir-
culation around the center of synchronization:

	 log( z ) = { ∫ γ ( 1 / z ) d z = ∫ γ d log( z ) : γ  is a contour from 1 to z }

From the latter, we obtain:

	 ∫ S d z / z = ∫ S d l o g ( z ) = 2 π 𝑖

In more detail, z ( φ ) : = 𝑒 i φ , 0 ≤φ ≤ 2 π , and we note that: 

	 d z / d φ : = z ' ( φ ) = 𝑖 z ( φ )

such that: 

	 ∫ S 1 d z / z = ∫ 0
2 π ( z ' ( φ ) / z ( φ ) ) d φ = ∫ 0

2 π 𝑖 d φ = 2 π 𝑖

This means that the undisclosed center of synchronization is 
qualified—by means of the complex logarithm—in terms of the 
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residue 2π𝑖 for one complete circulation around the center on the 
punctured complex plane, which specifies one quantum, accord-
ing to the preceding.

Equivalently, complex residue calculus spreads the undis-
closed center of synchronization uniformly around the contour 
of integration by means of tempering through the tuning real 
parameter π . Of course, the number of circulations around the 
center is the integer winding number that determines the ho-
mology of the punctured disk screen.

We conclude that if γ  is a finite– length path in ℂ \ { 0 }  from 
1  to z = r 𝑒 𝑖 θ , then there is a k ∈ ℤ  such that: 

	 ∫ γ  1 / w  d w = log r + 𝑖 ( θ + 2 π k )

where the integer k is the winding number, or else, the net 
number of times that the path crosses the positive real axis from 
the fourth quadrant.

Therefore, we obtain the following relation: 

FIGURE 7.32
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The above certifies the consistency of the complex logarithm 
in relation to these two equivalent perspectives, that is, as the 
(local) inverse of the complex exponential effecting the branching 
behavior, and as the primitive—or potential—of the reciprocal 
of a complex variable accomplishing the contour integration for 
any circulation surrounding the undisclosed center.

Area Plasticity and the  
Architectonic Inside-Outside Distinction

From the elaboration of the notion of the complex logarithm 
function through contour integration 
in the punctured complex plane, we 
have concluded that the undisclosed 
center of synchronization is qualified 
topologically and analytically in terms 
of the factor 2π𝑖 for one complete 
circulation around the center in the 
punctured complex plane.

Note that the punctured complex 
plane is not a geometric space, since it 
is not simply-connected. But, the uni-

FIGURE 7.34

Simple connectivity 
of the universal 
covering helicoid

FIGURE 7.33

Specification of the 
winding number

WINDING NUMBER = 2



358

versal covering helicoidal epiphaneia is a geometric space, since it 
is simply-connected—not bearing any puncture.

There is something important encoded in the helicoidal shape 
of this universal covering epiphaneia that allows the homological 
parallel transport of area from layer to layer in terms of the addi-
tive group of the discrete integers, the winding numbers.

It is this fact which makes the notion of area essentially inde-
pendent of its positioning in space, although it manifests geomet-
rically as a magnitude. In other words, homological parallel trans-
port abducts area from space. This gives a certain type of plasticity 
in the notion of area—abstracted from its geometric context—
that needs to be explored further. A related question regarding 
this fact pertains to the role of the negative winding numbers, as 
well as their interrelation with the positive winding numbers.

We start this investigation by observing first of all that the 
shape of the contour of integration on the punctured complex 
plane circulating once around the center of synchronization does 
not matter. Any simple closed curve that circulates once around 
the center could be used as a contour of integration. Thus, we 
may simply consider a closed curve in the shape of a circle that 
circulates once around the center.

Topologically, we have a punctured disk whose boundary is a 
circle with a certain orientation—taken anti-clock-wise as a rule. 
This circle separates what is inside the contour and what is outside 
the contour. The distinction between the inside and the outside 
is very important in architecture and instrumental for establish-
ing homological relations referring to area.
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Let us consider the outside of this circle, or equivalently, the 
outside of the corresponding punctured disk, where the latter is 
identified as a unit disk with its center excluded topologically. The 
interesting thing that happens outside is that integration with 
respect to any contour, that is, with respect to any simple closed 
curve, returns a null result.

The reason is that the contour does not surround the center 
in this case, and as such the enclosed region outside is simply-con-
nected. Consequently, any region bounded by a simple closed 
curve in the simply-connected outside is possible to be mapped 
analytically and conformally to the inside of another unit disk. 
The bounding circle of this unit disk is oriented oppositely to the 
one referring to the inside unit disk. 
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At the inside/outside cyclical boundary especial care is needed 
since the inside circle bears the opposite orientation from the one 
outside. If we glue them together we obtain a circular boundary 
that bounds a Möbius band formed by the antipodal gluing of 
these two disks.

We may employ the covering principle again, and consider the 
orientable double cover, where we take two copies, each of which 
corresponds to a different orientation. The interesting thing here 
is that, as a consequence, the real radial length of imaginary trans-
lation doubles although the boundary remains circular.

But, this is exactly what underlies the result of the integration 
2π𝑖 corresponding to a circulation around the center. Recall that 
the inside area of the unit disk that can be unfolded to imaginary 
length by means of an imaginary translation is worth of π .

However, the imaginary length of the quantum between any 
two windings is 2πi, meaning that we should consider the contri-
bution of the outside disk as well. It is clear that in the orientable 
double cover the length doubles from the gluing of the inside with 
the outside disk. This is the reason that underlies the significance 
of the 2:1 ratio for our epiphaneia that becomes aware about the 
distinction between the inside and the outside.

FIGURE 7.37
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Let us examine now the above in terms of the integrand 
f(z)=1/z, i.e. the reciprocal of the complex variable z, that appears 
as the derivative of the complex logarithm, in the sense that: 

	 ∫ S  d z / z = 2 π 𝑖

It is easy to see that the reciprocal function f ( z ) = 1 / z  effects 
a metamorphosis of the inside of the unit disk to the outside 
and conversely. If the complex plane is viewed as a Cartesian 
plane, then the center of the inside disk is distributed uniformly 
and synchronically everywhere on the bounding circle of the 
simply-connected outside disk. In this sense, the unity of the 
outside disk is a distributive or dispersed unity.

Note that the radius of every point in the outside disk is the 
reciprocal of the corresponding point on the inside disk. Howev-
er, their arguments are not the same, but they are complex conju-
gate to each other, something that explains why the imaginary 
unit always comes together with its conjugate.

FIGURE 7.38

The geometric form 
of the analemma 
projected on the 
screen by a gnomon

SUMMER

WINTER

SCREEN

GNOMON



362

Digitalization: Probability and  
the Abduction of Area from Space

The next problem we have to tackle is how it is possible to 
revert back from the complex to the real domain, such that the 
metaphora can be completed. Recall that the metaphora has been 
initiated by the bridge of extension of the real exponential func-
tion to the circle, which needed the technology of the imaginary 
unit, and the residue calculus based on it, to be accomplished. 
Further, the exponential function has been extended to the punc-
tured disk screen, which is topologically homeomorphic with the 
complex plane under exclusion of the synchronization center.

In algebraic terms, if we consider the multiplicative group ℂ * 
of nonzero complex numbers, it is isomorphic with the product 
of the circle with the positive real line, that is, S 1× ℝ + . In other 
words, the former is structurally indistinguishable from the latter: 

S 1× ℝ +   ↦  ℂ ×
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 ( θ , r )   ↦ r exp( 𝑖 θ )

Consider the complex exponential mapping: 

	 exp : ℂ ↦ ℂ × ,     z ↦ exp z

as a homomorphism of the additive group of complex num-
bers ℂ  into the multiplicative group of non– zero complex 
numbers ℂ × ≅ S 1× ℝ + :

	 exp( ℂ ) = ℂ × ,     Ker (exp)= 2 π 𝑖 ℤ .

The complex exponential mapping bridges bidirectionally the 
additive world of the whole complex plane with the multiplicative 
world of the punctured complex plane bearing the center of 
synchronization.
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This culminated in the key role of the complex logarithm, 
through which we managed to build—by contour integration—a 
spectrum, which is so sensitive and refined that bypasses the 
continuum of the reals to gain access to the harmonic invari-
ants, revealing in this manner, the discrete quanta of length 2 π 𝑖 , 
where π  plays the role of the tuning parameter in the tempering 
of the spectrum.

In this sense, the complex exponential encoding accomplishes 
the resolution of the harmonic invariants, which were hidden 
from the resolving spectrum of the positive reals, whereas the 
complex logarithm decoding—through the residue calculus—
spreads the undisclosed center of synchronization uniformly 
around the contour of integration by means of tempering through 
the tuning real parameterπ , such that the number of circulations 
around the center is the integer winding number that determines 
the homology of the punctured disk screen.

The objective now is to examine how we can revert back from 
the complex domain to the real domain. This essentially amounts 
to qualifying amplitudes, i.e. imaginary translations, in terms of 
some type of transmutation of real geometric area. In this sense, 
we think of transmutation as a process that underlies the possi-
bility of abducting the notion of area from its positioning in space, 
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that is, what is encoded in the homology by means of the 
winding number.

Recall that the area span corresponding to a phase difference 
on the circle—under imaginary rotation—is transformed to 
the linear translation of the center of synchronization along the 
imaginary axis. This is necessarily pre– conditioned on the area 
preservation under complete imaginary rotations, as well as on 
the spontaneous synchronization of all the velocities at the un-
disclosed center of the disk.

Since imaginary translations pertain to quanta of length 2 π 𝑖 , 
and since the real geometric continuum is directly insensitive 
to the fine structure of the discrete invariants, the homological 
abduction of area from geometric space is possible only probabil-
istically, that is, in terms of objective chance.

Firstly, we recall that, since the kernel of the complex expo-
nential is 2 π 𝑖 ℤ , that is: 

	 Ker (exp)= 2 π 𝑖 ℤ

the restriction of the complex exponential to the circle S, i.e. 

	 p = exp: ℝ ↦ S

is such that: 
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	 Ker p = Ker (exp)= { ϕ ∈ ℝ : 𝑖 t ∈ Ker (exp)} = { ϕ ∈ ℝ : ϕ ∈ 2 π ℤ }

Secondly, the simplest way to obtain a positive definite 
real– valued function in ℝ + — to be 
interpreted as a quantum probabil-
ity density—from an amplitude in 
ℂ × ≅ S 1× ℝ +  is by squaring, and sub-
sequently, taking the absolute value 
of the squared amplitude.

In this way, we obtain the in-
terpretation of a quantum prob-
ability density ψ ( ϕ ) , whose in-
tegration—with respect to the 
variable ϕ —over a 2 π -interval is 
normalized to unity: 

	 ∫ - π
+ π | ψ ( ϕ ) | 2  d ϕ = 1

Therefore, from the real-valued perspective, a quantum prob-
ability density, obtained in this manner, is what underlies the 
transmutation of the notion of area from geometric space.

The idea is that the synchronized area corresponding to an 
amplitude is totally undifferentiated in terms of space. But, we 
already know that it can be qualified in terms of a color. Recall 
that color, identified with the value of the real logarithm function, 
emerges from the area integration of the reciprocal of a real var-
iable, which we think of as frequency in a continuous spectrum.

In this sense, the probability density over this continuous 
frequency spectrum should pertain to some quality of color that 
is not apparent yet, since it emerges from the imaginary domain, 
and is also amenable to quantum behavior.
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What should be evident is that the quality we are looking for 
should be independent of classical geometric space. It rather opens 
up architectonically digital information space in a de-territorial-
ized way by implementing the homological uplifting of the notion 
of area from geometric space by means of quantum probability.

Imaginary Time Arc:  
Potentiation of Angles on the Hyperbola

Let us start from the consideration of the exponential func-
tion on the circle: 

	 ϕ ↦ e x p ( 𝑖 ϕ ) = 𝑒 𝑖 ϕ

Recall that every point of the circle (whose radius is considered 
one—called the unit circle) is parameterized surjectively by a 
phase 𝑒 𝑖 ϕ , which is the potentiation of the real length ϕ  that meas-
ures the angle in the domain of the exponential function. This 
happens through the imaginary unit 𝑖 that characterizes the 
corresponding rotation as an imaginary rotation. An imaginary 
rotation preserves the area contained within the unit circle.
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Note that what is real– valued in this setting is the arc length 
ϕ , which characterizes the angle in radians.

What happens if we consider the notion of an imaginary arc 
length? Is this notion meaningful at all? The reason behind posing 
this question is that if we consider that ϕ = 𝑖 φ , where φ  is real, 
then by substitution, we obtain: 

	 𝑒 𝑖 ϕ = 𝑒 𝑖 𝑖 φ = 𝑒 - φ

that is, we revert the exponential function in the real domain, 
but with the difference that the exponent bears a negative sign.

This is equivalent to the reciprocation of the positive real 
power 𝑒 φ , since the following identity holds: 

	 1 / 𝑒 φ  = 𝑒 - φ

This is promising, but we have to make sense of what the op-
eration of making the initial real length ϕ  imaginary, that is, 𝑖 φ , 
where φ  is real, actually encodes.

For this purpose, we recall that the operation of the imaginary 
unit on a real variable χ  amounts to a π / 2  turn, such that 𝑖 χ  lies 
orthogonally with respect to χ . Thus, if χ  runs around the unit 
circle on the complex plane, then 𝑖 χ  should run orthogonally 
to it. Nevertheless, synchronization of all velocities 𝑖 χ  at their 
common center, can be thought of equivalently in terms of an 
imaginary translation of the center, according to the principle of 
the imaginary rolling wheel.

We observe that if the real variable χ  becomes imaginary, then: 

	 𝑒 𝑖 𝑖 χ = 𝑒 - χ
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that is, if the real χ  becomes imaginary, then, applying the 
exponential function upon it, we obtain a reciprocated positive 
real power. The result is in the positive real domain, and as such, 
it should be amenable to a qualification according to the real log-
arithm function, that is, in terms of colors under integration.

Recall that the colors identify areas under the rectangular 
hyperbola in an area-preserving manner. This is precisely what is 
expressed by the properties of the real logarithm function.

Therefore, referring to the exponential function, the rectan-
gular hyperbola should play in the real domain the role that the 
circle plays in the imaginary domain. This is the metaphora that 
we have to consider carefully. In the same way, that 𝑒 𝑖 θ  potentiates 
the angle θ  as a phase on the circle, we expect that 𝑒 𝑖 𝑖 θ  = 𝑒 – θ  po-
tentiates the angle θ  on the rectangular hyperbola (Figure 7.45).
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Real Reciprocal Phases  
and Duplication of Areas

What type of angle potentiation is the one referring to the 
rectangular hyperbola? We may call the positive non-zero real, 
obtained in this manner, a reciprocal phase on the hyperbola, 
expressed as follows: 

	 𝑒 𝑖 ( 𝑖 θ ) = 𝑒 - θ

We bear in mind that a hyperbola is characterized by two 
branches. Notwithstanding this fact, areas under the hyperbola re-
tain exactly the same meaning and magnitude for both branches.

If we think of the arc length θ  in terms of elapsing time on the 
circle to proceed anti-clock-wise from zero, then we expect that 
𝑖 θ  would be the elapsing time on the hyperbola to proceed up-
wards—orthogonally to the circle—on the up branch, whereas 
𝑖* θ would be the elapsing time on the hyperbola to proceed down-
wards—orthogonally to the circle—on the lower branch.

In both cases, the orientation is such that areas are positive, 
and mirror each other precisely with respect to the symmetry 
axis of the hyperbola. Hence, the only invariant way to think of 
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the elapsing time on the hyperbola is in terms of the area of the 
sector that is delineated on the hyperbola by the corresponding 
imaginary arc length.

In this sense, the complex conjugate ofi amounts to time-
reversal considered with respect to the lower branch. But, since 
areas are synchronized, it seems that each area under the upper 
branch of the hyperbola bears an exact copy identified under the 
lower branch. There is a duplication which is not apparent in space, 
that is, if we consider only the upper branch of the hyperbola and 
interpret the areas under it as geometric areas. This duplication 
should be the key that unlocks the association of areas with colors, 
and underlies as such, the quality of color.

From this perspective, the upper and the lower branch of the 
hyperbola, which seem disconnected in space, although they are 
placed symmetrically to each other, they acquire connectivity to 
each other via the circle. In particular, the connectivity of the two 
branches takes place through synchronizing imaginary transla-
tions, which are area-preserving by default.

FIGURE 7.47
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Arithmetic Mean Synchronization  
of Branches

We have to think now what this synchronization amounts 
to in relation to the notion of elapsing time. The crucial thing is 
that if we think of arc length—real on the circle, and imaginary 
on the hyperbola—in terms of elapsing time we have to consider 
how fast or slow this arc is traversed.

This is a general rule that pertains to the periodic/frequential 
aspect of time. The idea is that if we parameterize a line by a tem-
poral parameter, then this parameter expresses continuously the 
total ordering of time along the line. But, if we parameterize an arc 
by a temporal parameter, then, because of multi– valency of the 
corresponding angle, the total ordering is lost, and we need to take 
into account how fast or slow this arc is traversed—expressing in 
this way the periodic/frequential aspect of time.

In our case, this is precisely what happens. Thus, if arc length θ 
is parameterized by elapsed time τ , it should be expressed as the 
product ν τ ,  where ν  is the frequency of traversing the arc, and 
τ  is the elapsed time. Clearly, the same arc can be traversed faster 
or slower, such that ν  and τ  are reciprocally co- related and their 
product is invariant. Note also that the arc remains invariant if 
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both ν  and τ  are negative. In other words, this is again an expres-
sion of the uncertainty principle.

In the case of the hyperbola, parameterized by imaginary arc 
length, the task we face regarding synchronization amounts to 
matching each interval of ordered time t with an imaginary arc 
length 𝑖 θ  with respect to a whole spectrum of frequencies. But, 
since 𝑖 θ  parameterizes the upper branch, whereas 𝑖 * θ  parame-
terizes the lower branch which are equipotent in terms of real 
area, t should be synchronized with both of them simultaneously. 
We will examine when this can be accomplished in what follows.

First, we consider the case, where t is real. Since t is real, and 
both, 𝑖 θ  and 𝑖 * θ — pertaining to the upper and lower branch of the 
hyperbola—are imaginary, it is not feasible directly. Plugging in 
the imaginary arcs in the exponential function on the circle, we 
obtain: For 𝑖 θ , the factor 𝑒 – θ , and for 𝑖 * θ , the factor 𝑒 + θ .

We resolve the issue of synchronization with both branches 
by taking their arithmetic average, that is, ( 𝑒 – θ +  𝑒 + θ ) / 2 .

This means that ordered time t runs in proportion to the area 
under the graph of the function ( 𝑒 – θ +  𝑒 + θ ) / 2 . But, this is the 
famous catenary curve, or equivalently, the catenary arch, which 
is characterized precisely by this property. Thus, we obtain, from 
first principles, the major characteristic that exemplifies all the 
properties of the catenary.

FIGURE 7.49
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Imaginary Time and Constant  
Light Velocity: Special Relativity

Next, we consider the case of imaginary time arc, that is, 
𝑖 t = 𝑖 θ = 𝑖 ν ⋅ τ , where both ν  and τ  are reciprocally co- related 
and their product is invariant.

If time is imaginary, the issue of synchronization is resolved 
by default since we have both it and its complex conjugate 𝑖 * t 
simultaneously. We still have to be able to figure out what imag-
inary time means.

For this purpose, we have to distinguish two further possi-
bilities. Interestingly enough, the first of them leads to relativity 
theory. As we will see in the next section, the second one leads to 
the bridge between quantum mechanics and thermal radiation. 
But, these different looking theories appear now as emerging from 
the same root. We proceed as follows:

First, we consider the case that time is imaginary, according to 
𝑖 t = 𝑖 θ = 𝑖 ν ⋅ τ , but we do not allow ν  to vary ab initio. The only way 
that this can be feasible is by expressing spatial length in terms of 
temporal length through a constant, identified with the maximal 
velocity that the arc 𝑖 θ  can be traversed.

The idea is that this constant is provided by the velocity of 
light in vacuum, under the principle that light propagates with 
the same velocity for all observers independently of their state of 
motion. In other words, light through its velocity of propagation 
in vacuum effects the sought after synchronization.

The effect of this maneuver is to think of spatial distance in 
terms of imaginary temporal distance through the interven-
tion of the universal constant velocity of light c, normalized to 
unity. Since, the distance in space is calculated by means of the 
Pythagorean theorem, that is, in terms of its square, by squaring 
𝑖 t = 𝑖 θ = 𝑖 τ , we obtain the term – τ 2 , interpreted spatially, but 
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bearing a negative sign in comparison to ordinary spatial geomet-
ric distance. The crucial idea is that space and time should be con-
sidered as a unity, and the minus squared term changes the geom-
etry of unified space– time from Euclidean to pseudo– Euclidean.

In space– time, there is no unique time– direction, just as 
there is no unique space direction. Specification of the velocity of 
an object—characterized by its inertial frame—is equivalent to 
the specification of its “time– direction”, that is, the direction of 
its path through space– time, called the world– line.

In the above diagram, the lines L'  O L ,  M '  O M , which repre-
sent the paths of light on the light cone, are at right angles for light 
going in opposite directions, and in this case, the time– direc-
tion T '  O T  of an object and its corresponding space– direction 
X '  O X  are equally inclined to the light line L'  O L  between them. 
Motion of an object involves rotating its time– direction and its 
space– direction through equal angles T 1  O T 2 ,  X 1  O X 2  towards 
the light line which goes in the direction of motion.

The invariant connecting two events in space– time emerges 
as follows: Since space coordinates and time coordinates manifest 
under opposite signs when squared—according to the Pythago-
rean theorem—we need to consider both, the screen that cuts the 
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light cone in a circle, and the orthogonal screen that cuts the light 
cone at the two branches of the hyperbola.

The idea is that the upper and the lower branch of the hyper-
bola, which seem disconnected in space, although they are placed 
symmetrically to each other, they acquire connectivity to each 
other via the circle in space-time. In particular, the connectivity 
of the two branches takes place through synchronizing imaginary 
translations, which are area-preserving by default.

In this way, the invariant connecting two events in space-
time is given by: 

	 I 2 = T 2 – X 2 – Y 2

where the spatial distances bear a minus sign, since they are 
expressed through the corresponding squared imaginary tempo-
ral distances. It is clear that if we adjoin a third spatial coordinate 
Z —contributing the term—Z 2  to the invariant formula—the 
validity of the argument is not affected.

The curve of constant radius and uniform curvature in 
a space– time screen instead of being a circle, as in a classical 
screen, is a rectangular hyperbola having a pair of light lines as 
asymptotes. Thus, in the diagram, O T 1 = O T 2 , and O X 1 = O X 2 . 
Unlike the circle, the rectangular hyperbola has a circumference 
of infinite length.

Since the velocity of an object gives the direction of its 
world– line path in space– time, acceleration corresponds to the 
curvature of its path, and is to be measured by the hyperbolic 
angle—imaginary arc length—through which the path turns per 
unit of its length, that is, per unit of time as measured by the object.

Instead of the relative velocity between objects in motion in 
space– time, we should consider the hyperbolic angle—imaginary 
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arc length—between the world-lines of these objects, which is 
additive for objects going in the same direction.

Note that hyperbolic rotation pertaining to the above dia-
gram involves rotating the space-direction and the corresponding 
time-direction by equal amounts in opposite senses.

Recall that 𝑖 θ  parameterizes the upper branch, whereas 𝑖 * θ 
parameterizes the lower branch which are equipotent in terms 
of real area. Thus, 𝑖 should be synchronized with both of them 
simultaneously.

Consider that the relative velocity between two objects in the 
same direction is v, where – 1< v < 1 , where 1 is the speed of light in 
vacuum. We would like to express the relative velocity v in terms 
of the hyperbolic phases 𝑒 θ ,  and 𝑒 – θ , where the first refers to the 
upper branch, and the second to the lower branch, synchronized 
with the invariant space– time interval.

The hyperbolic phases 𝑒 θ ,  and 𝑒 – θ , are subject to the additive 
group structure of the reals. The sought after homomorphism 
should allow us to re-scale the additive group structure of the reals 
to the additive group structure of relative velocities in the interval 
( – 1 , 1 ) , since they are bounded by the constant speed of light.

The following function accomplishes the above objective: 

	 v = ζ ( θ ) = ( 𝑒 θ – 𝑒 – θ ) / ( 𝑒 θ + – θ ) : ℝ ↦ ( – 1 , 1 )

This function is a bijection from R to (– 1,1), with inverse: 

	 θ = ζ ( – 1 )  ( v ) : = ϖ ( v ) = 1 / 2 

l o g ( ( 1+ v ) / ( 1 - v ) ) = l o g √ ( ( 1+ v ) / ( 1 – v ) )

which is equivalent to the following expression of the hyper-
bolic phase 𝑒 θ : 
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	 𝑒 θ = ( ( 1+ v ) / ( 1 – v ) ) ½ = √ ( ( 1+ v ) / ( 1 – v ) )

The fact that ζ  is a homomorphism of groups is established by 
means of the following: 

	 ζ ( θ + δ ) = ζ ( θ ) ⊕ ζ ( δ )

meaning that ζ  transforms ordinary addition + in ℝ to addi-
tion ⊕  restricted within the interval ( – 1 , 1 ) . Inversely π  trans-
forms addition ⊕  in in the interval ( – 1 , 1 )  to ordinary addition 
+ in ℝ, that is: 

	 ϖ ( v ⊕ w ) = ϖ ( v ) + ϖ ( w )

where v ⊕ w , that is the addition of relative velocities v and w 
in the interval ( – 1 , 1 )  is expressed as follows: 

	 v ⊕ w = ( v + w ) / ( 1+ v ⋅ w )

in terms of ordinary addition and multiplication.
The underlying concept is that ordinary addition of relative 

velocities is not a closed operation within the interval ( – 1 , 1 ) 
bounded by the velocity of light. Thus, the additive group struc-
ture can be preserved in the interval ( – 1 , 1 ) —referring to the 
structure of relative velocities—only if the additive group law is 
modified according to the above.

In a nutshell, the above bijection establishes a group isomor-
phism between the additive group of the real numbers—ex-
pressing real arc length—under the ordinary addition law +, and 
the additive group of the real numbers restricted in the inter-
val ( – 1 , 1 ) —expressing relative velocity—under the modified 
addition law ⊕ .
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We note that the function ζ  that accomplishes the above bijec-
tive mapping—and structural isomorphism of additive groups—
from ℝ to ( – 1 , 1 )  is the hyperbolic tangent function, which is the 
natural sigmoid function, denoted by: 

	 v = ζ ( θ ) = ( 𝑒 θ - 𝑒 - θ ) / ( 𝑒 θ + 𝑒 - θ ) : = tanh ( θ )

Its inverse function expresses 2 θ  in terms of the area 
under the graph of the hyperbola, which is characterized 
analytically in terms of the color identified by the real logarithm 
function, as follows: 

	 2 θ = log( ( 1+ v ) / ( 1 – v ) )

Since the curve of constant radius—the speed of light normal-
ized to unity—and uniform curvature on the space– time screen 
is a rectangular hyperbola having a pair of light lines as asymp-
totes, the uncertainty principle holds, as an equivalent relation 
expressing the space– time invariance in terms of the hyperbola.

If we make use of the uncertainty principle, we can identify 
the blue– shift and red– shift factors in the relativistic Doppler 
effect in terms of the hyperbolic phases 𝑒 θ  and 𝑒 – θ  correspondingly.

FIGURE 7.50
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Imaginary Time and Heat of Color:  
Quantization and Temperature

We consider that time is imaginary, according to the relation 

	 𝑖 t = 𝑖 θ = 𝑖 ν ⋅ τ

but we allow ν  to vary ab initio, interpreted genuinely as 
frequency with reference to a spectrum that has to be resolved 
appropriately for its meaning.

The variation takes place such that both ν  and τ  are recipro-
cally co-related and their product is invariant for any θ . Plugging 
in the imaginary time in the exponential function on the circle, 
we obtain the factor 𝑒 ( – ν ⋅ τ ) , that is, a reciprocal phase on the rec-
tangular hyperbola, where ν  is on the horizontal axis and τ  is on 
the vertical axis.

But, since from the perspective of the circle time is real, and 
i ν ⋅ τ  is an imaginary translation preserving the area instantiated 
by the product ν ⋅ τ  for any arc θ , it means that it is quantized in 
integer multiples of 2 π i .

Let h / 2 π  be the quantization proportionality constant. Since 
τ  is real, the corresponding continuum frequencies ν  should 
be made equivalent within classes indexed by the integers. But 
this is a further qualification of the spectrum, which was not 
apparent before.

How should we think of these blocks of the real partition spec-
trum, which are indexed by the integers, such that ν ⋅ τ  is invariant 
under varying both ν  and τ  for a fixed arc, and 𝑖 ν ⋅ τ  is quantized 
in integer multiples of 2 π 𝑖 ?

Since the integer-indexed equivalence classes pertain to 
frequencies, while τ  is real, and since, we keep thinking of the 
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corresponding areas as colors, there must be some characteristic 
of color that is qualified here.

This characteristic is the heat of a color, leading to the conclu-
sion that the blocks—that is, the equivalent areas—should each 
correspond to a certain temperature in equilibrium.

In other words, reciprocal phases 𝑒 – ν ⋅ τ  on the hyperbola are 
equilibrium states corresponding to a certain temperature T with 
respect to the quantization constant of proportionality.

Each reciprocal phase corresponds—via this quantization 
constant—to a spatially undifferentiated macro-state in equilibri-
um, at a certain temperature T , described as a probability density 
function over the underlying indistinguishable microstates. Note 
that each of these phases keeps the real area ν ⋅ τ  invariant for any 
considered arc.

Thermal Quantum Spectrum  
of Hyperbola and Incandescence

Starting from the assumption of imaginary time, according 
to the preceding, we obtain a thermal spectrum identified in 
terms of invariant areas under the hyperbola, where each block 
corresponds to a certain temperature T, and described as a 
reciprocal phase: 

	 𝑒 – ( h / 2 π ) ⋅ ν ⋅ 1 / T

on the hyperbola with respect to the quantization con-
stant h / 2 π , which assures that 𝑖 ν ⋅ τ  is quantized in integer 
multiples of 2 π 𝑖 .
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In this manner, a real thermal radiation spectrum has been 
obtained by the dissociation of the notion of area from geometric 
space. This dissociation captures the essential property of color, 
which was veiled up to present. Namely, color is associated with 
temperature through thermal radiation.

In other words, our spectral epiphaneia not only absorbs light, 
but it emits light as radiation when heated at a certain temper-
ature. The color of light radiated depends on the temperature. 
Thus, the real spectrum we have obtained in terms of reciprocal 
phases on the hyperbola is a spectrum of thermal radiation that is 
characterized by a specific color depending on the temperature, 
and thus, on heat.

Recall that this spectrum has been revealed through metaph-
ora from the real domain to the imaginary and complex domains 
and back, where the major role has been played by the exponential 
function and its interaction with the circle and the hyperbola.

The thermal spectrum of color temperature requires both, 
quantization, and the abstraction of the notion of area from its 
spatial geometric association. Area can be transferred homologi-
cally and invariantly independently of space and throughout time 
by means of thermal radiation, which is made visible through 
color temperature.

Incandescence is the emission of light by an area that has 
been heated at a high temperature until it starts to radiate light. 
It is incandescence that makes heat visible with a particular color, 
which is independent of location in space. It depends only on 
temperature, which as we have seen corresponds to making time 
imaginary, and inducing a quantization condition on the spec-
trum in terms of the discrete integers. The imaginary qualifica-
tion of the arc length on the hyperbola is the necessary condition 
for transcribing the quantization condition to the real thermal 
radiation spectrum.
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In essence, our epiphaneia has been uplifted from the 
geometric to the harmonic domain, since it is capable not only to 
recognize the discrete harmonic invariants, but to make them vis-
ible macroscopically in a space-independent way through thermal 
radiation, and most important, the temperature of color.

What would be a proper scale for the radiating 
screen/epiphaneia?

We already know that our canon is logarithmic, and the loga-
rithms quantify color under the hyperbola. Especially, the tran-
scription of the complex logarithm that recognizes quanta in the 
real macroscopic spectrum of colors is based on the homology of 
area, understood invariantly via the rectangular hyperbola—in-
cluding both of its branches—and reciprocal phases depending 
on temperature.

Macroscopically, our radiating color wheel can resonate in-
dependently of space– time distance in terms of temperature. 
This takes place through a probability density—based not on 
ignorance, but on objective indistinguishability and objective 
chance—which at the macroscopic equilibrium phases folds 
the continuum in countable partition blocks of the same color 
temperature. However, this is accomplished by the homology 
of area that is synchronized, which is at the root of the quanti-
zation condition.

But, recall that the quanta of arc length, refer to the imaginary 
translation of some undisclosed center of synchronization, the 
dark spot of the disk epiphaneia, the puncture on the topologi-
cal complex plane.

This is where the logarithmic scale refers to in the thermal 
spectrum, to the radiation of the dark spot, the so called quantum 
black body radiation, which absorbs and then radiates everything.

But notice that the dark spot—as the center of synchroniza-
tion—is excluded from the values of the complex exponential 
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function. We have to revert back to the macroscopic real spectral 
domain of heat, where at very high temperature, the undisclosed 
dark harmonic center becomes visible reciprocally as the incan-
descent white light.

It is now possible to transmute both the gnomon—in the 
center of the disk— and its shadow—under the hyperbola— from 
space through metaphora that takes place architectonically be-
tween the harmonic and the geometric domain in natural com-
munication to each other.
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Figure 4.17	 Gnomonic growth of logarithmic spiral Photo by Onofrio 
Scaduto, 1998, Wikimedia Commons, https://commons.wikimedia.org/wiki/
File:Nautilus_Shell.jpg, CC BY-SA.

Figure 4.32	 The catenary dome Graphic by © Tim Tyler, HexDome, http://
hexdome.com/essays/catenary_domes/index.php, last visited on March 21, 
2025.

Figure 5.1	 The bridges of Königsberg Illustration by Sarapuig, 2015, 
Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Euler_
fig_1.jpg, CC BY-SA.

Figure 6.27	 Modular substitution of gnomonic invariance from the cone 
to the logarithmic spiral Photo by Onofrio Scaduto, 1998, Wikimedia Com-
mons, https://commons.wikimedia.org/wiki/File:Nautilus_Shell.jpg, CC 
BY-SA.
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The two most predominant characteristics of mathematical thinking � 
are abstraction and diachronic validity. The currently dominant � 
division between pure and applied mathematics eradicates both—
�how abstraction always guides method, and how the universality that 
�pertains to mathematics constitutes transhistorical and transcultural 
�validity. By the method guided by abstraction, this book understands 
 a process of percolation which allows the filtering out of all irrelevant 
�details pertaining to a particular problem, so that the invariants of this 
�problem can be revealed, exposed, communicated, and translated to  
�help coping with a similar problem in another situation. It is through the 
 finding of such invariances that the diachronic validity of mathematical  
thinking can be enunciated beyond the writing of a linearly progressing 
‘history of mathematics’, and also beyond the analytical fixation with  
axiomatics and foundation in a-historical manner. The proposed � 
view on mathematical thinking, and the creativity and inventiveness 
inherent to it, can connect in a surprising manner current physics  
�with computation and the rich legacy of thinking the cosmos� 
architectonically, in philosophy and in the arts. This book guides  
�in an introductory manner through some of the many implications 
�that come with this proposed “involution”.
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