
1 LITERATURE REVIEW 

Faulting is a major issue in jointed concrete pave-
ments (JCPs). Many prediction models are being de-
veloped for predicting fault failure. In the AASHTO 
1993 version of the pavement design guide, faulting 
and cracking were accounted for by maintaining and 
serviceability above a defined threshold. In the 1990s,  
Simpson et al. attempted to separate these two con-
cerns and forecast faults independently based on 
pavement design, traffic, weather conditions (Simp-
son et al., 1994). In recent years various studies sug-
gested that faulting in rigid pavements, particularly in 
Jointed Plain Concrete Pavement (JPCP), is influ-
enced by a multitude of factors that span structural, 
environmental, and design considerations (Hossain, 
Gopisetti and Miah, 2019; Ehsani, Moghadas Nejad 
and Hajikarimi, 2023; Ahmed, Isied and Souliman, 
2024). Traffic loads and the cumulative effect of axle 
load distributions are significant contributors, as they 
induce stress and deformation in the pavement layers, 
particularly affecting the base layer's plastic defor-
mation (Chen, Saha and Lytton, 2020). Most of the 
prediction models used the LTPP database, which in-
cluded faulting measurements at doweled and non-
doweled joints and some measurements at transverse 
crack locations. Ehsani et al. used both artificial neu-
ral and random forest methods with 19 input variables 
to develop a prediction model (Ehsani, Moghadas 

Nejad and Hajikarimi, 2023). Ker et al. developed a 
prediction model for transverse joint faulting incor-
porating the ERESBACK 2.2 program for back cal-
culation to get more accurate data (Ker, Lee and Lin, 
2008). The mechanistic-empirical erosion-based 
faulting model incorporated traffic parameters with 
the application of erosion test showed the correlation 
between traffic and environmental factors with fault-
ing (Jung and Zollinger, 2011). The current faulting 
model integrated into the Pavement ME design pro-
cedure considers pavement response, climatic condi-
tions, traffic, and base erodibility. This model is uni-
formly applied to all types of JCPs, regardless of their 
structural makeup (such as conventional concrete 
pavement, unbonded concrete overlay, bonded con-
crete overlay, etc.). This suggests that the pumping 
mechanism is assumed to be consistent across all 
pavement structures. Furthermore, it assumes uni-
formity in the rate of faulting development and the 
maximum faulting regardless of pavement structure. 
The focus of this study is to develop a machine learn-
ing-based approach for predicting faulting JCPs. Tra-
ditional models struggle with complex interactions, 
whereas machine learning algorithms offers a data-
driven solution thus improving prediction accuracy 
and supporting better pavement maintenance strate-
gies. 

A comparative analysis of machine learning models for predicting 
faulting in jointed plain concrete pavements 

T. Ahmed, M. Isied, M.I. Souliman 
The University of Texas at Tyler, Tyler, Texas, The United States 

 

 
 

 

 

 
 
ABSTRACT: Faulting is defined by variations in elevation at transverse joints in Jointed Plain Concrete Pave-
ments resulting from environmental factors, subgrade properties, and traffic loads. It is a major distress for rigid 
pavements, possessing crucial challenges for maintaining road safety standards. Traditional regression methods 
often fail to address the complexities of faulting, while machine learning approach utilizes data driven learning 
to enhance prediction accuracy. Datasets for this study were sourced from the LTPP database, focusing on dry 
climate zones. Key environmental factors affecting wheel path faulting include Yearly Precipitation, Tempera-
ture, Freeze-Thaw Cycles, along with structural properties such as Pavement Thickness, Pavement Age, Tensile 
Strength, and Optimum Moisture Content are utilized as model input. Five machine learning methodologies, 
including Support Vector Machine, Decision Tree, Linear Discriminant Analysis, Ensemble and Artificial Neu-
ral Network were implemented. Among these, ANN demonstrated highest prediction accuracy, attaining an R² 
of 0.81. The ANN model was further evaluated to assess the influence of the input variables on the model output 
through sensitivity analysis. 



2 OBJECTIVES 

The main objective of this research is to explore the 
potential of machine-learning approaches, mainly 
neural network-based models, for predicting JPCP 
faulting. Datasets are collected from LTPP to train the 
model for the dry climatic zone in the US. Addition-
ally, to confirm the internal relationship among input 
parameters and their corresponding output results, a 
sensitivity analysis on the best model was evaluated. 

3 DATA COLLECTION, SELECTION, AND 
PROCESSING 

For training the neural network model data sets are 
collected from The LTPP database. The LTPP pro-
gram regularly collects joint and crack faulting data 
at each jointed concrete pavement test site using the 
Georgia Fault Meter (GFM). Figure 1 shows the dia-
gram for GFM faulting measurement.  
 

Figure 1. Diagram of manual Faulting measurement using the 
GFM. (Source: FHWA). 

 
Figure 2 shows the faulting measurements over 30 
years of lifespan at the wheel path for the Dry-Freeze 
and Dry No-Freeze climate regions subjected to this 
study.  
 

Figure 2. Study Area Containing States with observations num-

bers in Dry Climatic region. 

 
The prediction models require the normalization of 
datasets before the training phase. Figure 3 presents 
the input parameters of the prediction models and 

their corresponding abbreviations, which are used 
throughout the article.  

Figure 3. Input Variables for ANN model training. 

 
Table 1 outlines the maximum, minimum, average, 
and standard deviation of the training dataset. These 
statistical measures provide essential insights into 
data distribution, variability, and model generaliza-
tion, ensuring the robustness and reliability of the pre-
diction model. Subsequently, these statistical values 
are employed in the equation formulation process. 
ESAL ranges significantly, with a high standard de-
viation (501,379), indicating a wide range of traffic 
loads. 

 
Table 1.  Descriptive Statistics of the Training Data. 

4 FAULTING PREDICTION MACHINE 
LEARNING MODEL DEVELOPMENT 

Significant progress has been made in forecasting 
models with the introduction of Machine learning as 
a computational model. These networks are inspired 
by the workings of neurons in the human brain, and 
they leverage learning algorithms that can adapt and 
improve as new data is collected. As a result, they are 
particularly effective at modeling non-linear statisti-
cal data. After developing the datasets from LTPP da-
tabase, correlation heatmap was generated. This lin-
ear regression analysis demonstrates the correlation 
between the input and output parameters, which was 
subsequently assessed through the correlation 
heatmap illustrated in Figure 4. The variable ESAL 
and the thickness of the pavement exhibit the highest 
positive correlation, attaining a value of 0.5. In con-
trast, the annual mean temperature displays a consid-
erable negative correlation (-0.74) with the occur-
rence of faulting, thereby signifying a strong inverse 
relationship between the two variables. 

Inputs Min Max Avg Std Dev 

ESAL 1995922 1887 698061 501379 

AP (mm) 785.70 70.20 269.72 132.02 

AAT (°C) 19 5.3 10.59 2.15 

FT (days) 195 12 116.18 41.25 

TS (psi) 846 471 691.78 127.11 

PT (mm) 11.70 8.10 9.34 0.88 

PA (yr) 39 1 21.60 9.13 

OMC (%) 14 2 7.87 3.71 



 

Figure 4. Correlation heatmap between input parameters and 

output parameters. 

 
To enhance model performance and ensure balanced 
learning, min-max normalization was applied to scale 
all input features between 0 and 1, preventing domi-
nance by variables with larger magnitudes. Addition-
ally, the dataset was split into 70% training, 15% test-
ing, and 15% validation to optimize model 
generalization. The training set allows the model to 
learn patterns, the validation set fine-tunes hyperpa-
rameters and prevent overfitting, and the testing set 
provides an unbiased evaluation of predictive accu-
racy. This approach ensures a well-validated and reli-
able model for faulting prediction in JPCPs. 

Five machine learning models, Artificial Neural 
Network (ANN), Decision Tree (DT), Linear Discri-
minant Analysis (LDA), Ensemble (E), and Support 
Vector Machine (SVM), were developed to forecast 
faulting. The coefficient of determination (R²) of all 
the developed models is depicted in Table 2.  
 
Table 2: Coefficient of determination (R²) of all the 
prediction models. 

Prediction Model 

Coefficient of  

Determination 

(R²) 

Artificial Neural Network (ANN) 0.81 

Decision Tree (DT) 0.58 

Linear Discriminant Analysis (LDA) 0.41 

Ensemble  (E) 0.62 

Support Vector Machine (SVM) 0.43 

 
The ANN model achieved the highest R² value (0.81), 
signifying its competence in capturing the intricate 
and nonlinear relationship of input parameters associ-
ated with faulting, attributable to its adaptability in 
modeling. The Ensemble model exhibits moderate 
performance with an R² of 0.62, gaining advantages 
from the clustering capabilities of multiple predictive 
outputs, although it lacks the depth of ANN’s feature 

extraction. The Decision Tree and SVM models 
showed relatively lower R² values of 0.58 and 0.43, 
respectively, likely due to their limitations in han-
dling nonlinear or noisy data. LDA underperforms 
with the lowest R² of 0.41, reflecting the inadequacy 
of a linear approach for this problem. Overall, these 
findings underscore the premise that nonlinear mod-
els, especially ANN, are more suitable for faulting 
prediction, as they can capture the underlying com-
plexity of pavement faulting behavior in JPCP. Figure 
5 represents the regression plots of all the forecast 
models.  

Figure 5. Regression plots of the prediction model’s output –  
(a) ANN, (b) DT, (c) LDA, (d) E, and (e) SVM. 

5 SENSITIVITY ANALYSIS OF THE 
DEVELOPED ANN MODEL 

To investigate how an individual input variable is re-
lated to the output, the change of predicted faulting vs 
the change of a single input variable is plotted for the 
ANN model. The sensitivity analysis presented in 
Figure 6 illustrates the principal factors influencing 
the faulting model in rigid pavement structures. The 
variables of traffic load (ESAL), temperature, and 
precipitation exhibit a positive correlation with fault-
ing, thereby indicating that traffic volumes, elevated 
temperatures, and increased rainfall intensify pave-
ment faulting. The structural attributes of the JPCP, 
including tensile strength and thickness, serve to mit-
igate faulting, thereby implying that pavements ex-
hibiting greater strength and thickness demonstrate 
enhanced resilience. Freeze-thaw cycles and pave-
ment age also contribute to higher faulting, reflecting 
the impact of environmental stresses and aging on 
pavement degradation. Moreover, an elevated opti-
mum moisture content amplifies the occurrence of 
faulting, highlighting the critical need for moisture 
regulation. These results suggest that faulting predic-
tion models should prioritize traffic, environmental 
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conditions, and structural factors to improve predic-
tive accuracy. 

Figure 6. Sensitivity Analysis of predicted faulting (mm) with 
the change of each input variable – (a) ESAL, (b) AAT, (c) AP, 
(d) TS, (e) FT, (f) PA, (g) PT, (h) OMC.  

6 CONCLUSIONS 

With the help of machine learning approaches, a pre-
diction model for faulting in Rigid Pavements for 
Dry-Freeze and Dry No-Freeze Climatic Zone was 
developed. For training the ANN model, 190 obser-
vations over 30 years of lifespan were evaluated. By 
incorporating environmental, structural, and traffic 
elements as input parameters the model aims to antic-
ipate faulting in rigid pavements in dry regions. The 
conclusions and suggestions in the following bullets 
are based on the analysis and study findings: 
 
1. In the present study, five Machine learning-based 

faulting models are created. The models' perfor-
mance in making predictions was comparable in 
training and testing. 

2. Among all the developed models, ANN achieved 
the highest prediction accuracy with an R2 of 0.81, 
followed by Ensemble and Decision Tree with an 
R2 of 0.62 and .58 respectively.  

3. Based on the Sensitivity analysis among all the in-
put variables, thickness and tensile strength have a 
major effect on the faulting mitigation of rigid 
pavements. On the other hand, temperature, pre-
cipitation, and Freeze-thaw cycles intensify JPCP 
faulting.  

4. As all the model input parameters are presented. 
Future users will be able to reproduce the models 
and utilize them for different regions. 

 
While the study demonstrates the potential of ma-
chine learning models in predicting faulting in JCPs, 
certain limitations should be acknowledged. As the 
accuracy of faulting predictions relies heavily on the 
quality and completeness of the data surveyed. The 
dataset used in this study consists of 190 observations 
from Dry-Freeze and Dry No-Freeze climate regions. 
As limited dataset size may lead to overfitting, partic-
ularly in complex models such as ANN, where the 
model may capture noise rather than true underlying 
patterns. Future investigations should concentrate on 
broadening the dataset by integrating a more exten-
sive variety of pavement sections across distinct cli-
matic regions. Furthermore, to alleviate overfitting, 
alternative regularization methods can also be inves-
tigated. 
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