
1 LITERATURE REVIEW 

The highway agencies identified roughness as the pri-
mary indicator for pavement performance from the 
early ‘80s but faced inconsistencies in measurement 
methods. To address this issue, the National Cooper-
ative Highway Research Program and the World 
Bank standardized a new roughness measuring 
method known as the International Roughness Index 
(IRI), ensuring reproducible results across different 
equipment. Since then, IRI has been widely adopted 
to assess pavement roughness and ride quality. The 
Federal Highway Administration has made it manda-
tory for State Departments of Transportation to in-
clude IRI values in their respective Pavement Man-
agement System. Therefore, the IRI prediction model 
is a highly investigated research area. 

Compared to flexible pavements, little research 
has been done on developing IRI prediction models 
for rigid pavements. The Mechanistic-Empirical De-
sign Guide (MEPDG) has an IRI prediction model for 
rigid pavement. Initial IRI is an input parameter in 
that model with transverse cracking, spalling, and 
patching. There are also site factors in the model, such 
as pavement age, freezing index, and subgrade prop-
erty. With the recent development of  ANN, several 
researchers have utilized it for IRI prediction. (Abd 
El-Hakim and El-Badawy, 2013) employed the same 
input variables of the MEPDG empirical model with 
a database of 184 data points to develop the IRI ANN 
forecast model. The ANN model provided a better R2 

of 0.828 than the MEPDG regression model with R2 

of 0.643. Similarly, several studies showed the poten-
tial of ANN for predicting IRI in recent years, utiliz-
ing climate and traffic data, and offering more en-
hanced prediction neural network models. (Sultana et 
al., 2021) explored the impact of climate attributes 
and traffic loads on pavement distress, focusing on 
the IRI as a key indicator of pavement condition. An 
ANN approach is used to develop IRI prediction 
models for Jointed Plain Concrete Pavement (JPCP), 
considering the maintenance and rehabilitation his-
tory of the pavements. The best-performing ANN 
model achieved a high R2 value of 0.87, successfully 
estimating IRI values over time and after maintenance 
activities.  

In recent years, researchers have also applied dif-
ferent machine-learning techniques to predict the IRI 
of rigid pavements. (Wang et al., 2017; Luo, Wang 
and Li, 2022; Ji et al., 2024) developed a hybrid ma-
chine-learning model to predict IRI of Jointed Plain 
Concrete Pavement (JPCP), the study also compared 
several machine learning methods, such as eXtreme 
Gradient Boosting (XGBoost), Gradient Boosting 
Decision Tree (GBDT), multiple linear regression 
(MLR), and support vector machine (SVM). The 
stacking fusion model, combining GBDT and 
XGBoost as base learners with bagging as meta-
learners, outperformed individual models with an 
RMSE of 0.040, R2 of 0.996, and MAE of 1.3%, in-
dicating the model improvement. 
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The ongoing progress of the IRI prediction models 
for rigid pavements is significant. However, from the 
construction and maintenance practitioners' point of 
view, a simpler and more accurate prediction method 
is required without expert knowledge of machine 
learning. Therefore, this study aimed to develop an 
IRI prediction model and extract a closed-form equa-
tion from the model, which pavement engineers can 
utilize without any prior knowledge of Artificial Neu-
ral Networks. With the help of the linear equation, 
pavement engineers can predict the IRI of a particular 
rigid pavement and plan more cost-effective mainte-
nance and rehabilitation work programs.  

2 OBJECTIVES 

The objective of this study is to develop a prediction 
model using ANN for rigid pavement for three South 
Atlantic states in the wet no-freeze climate zone. 
From the model, a closed-form stand-alone equation 
can be extracted, which will work as a proxy for the 
complex machine learning model for practitioners. 
Moreover, sensitivity analysis of the prediction equa-
tion will be performed to identify the effect of input 
variables on the IRI of rigid pavement. 

3 DATA COLLECTION, SELECTION, AND 
PROCESSING 

For pavement construction, upkeep, and manage-
ment, it is essential to comprehend how traffic and 
weather affect IRI in rigid pavements (Hossain, Go-
pisetti and Miah, 2020). The weather, traffic, and IRI 
data for the three South Atlantic states - North Caro-
lina, South Carolina, and Virginia were collected 
from LTPP. Figure 1 shows the three states consid-
ered in this study. A total of 120 data points from 
these three states were utilized to train the model. As 
IRI decreases during the maintenance process of the 
pavement surface. Pavement sections that undergo 
maintenance and rehabilitation processes were ex-
cluded from the datasets. 

Figure 1. The three South Atlantic states are considered in the 
study. 

 
In this study, the IRI of rigid pavement is predicted 
using weather conditions and traffic flow factors. 

These factors include the proportion of Annual Aver-
age Temperature, Equivalent Single Axle Load 
(ESAL), Average Humidity, Total Annual Precipita-
tion, Previous IRI data, and GESAL (General Equiv-
alent Single Axle Load) 

Annual Average Temperature is the temperature 
experienced over a year in a certain area, typically ex-
pressed in degrees Celsius or Fahrenheit. In pavement 
engineering, this measure is frequently used to evalu-
ate how temperature variations affect pavement per-
formance, including thermal cracking and rutting. 

Equivalent Single Axle Load (ESAL) Measures 
the cumulative damage caused by traffic loading on 
the pavement. It represents the impact of repeated 
wheel loads over time, converted to a standard axle 
load. 

The average relative humidity of the air in a par-
ticular area over one year is expressed as a percent-
age. This parameter is frequently used to evaluate 
how moisture affects pavement performance, includ-
ing moisture-related distress and degradation. 

The total quantity of precipitation that falls at a 
certain area over a year represents Total Annual Pre-
cipitation. It includes rain, snow, and other types of 
moisture. The moisture level of the pavement layers, 
which can affect pavement performance such as rut-
ting, cracking, and frost damage, is a crucial parame-
ter in pavement engineering. 

The term "Previous IRI" refers to the IRI value that 
was previously measured or noted at a certain loca-
tion. This metric is used to measure the success of 
prior pavement maintenance or rehabilitation efforts 
as well as the state of a pavement surface. 

GESAL (General Equivalent Single Axle Load) is 
a parameter that is calculated similarly to ESAL 
(Equivalent Single Axle Load) but uses constant LEF 
(Load Equivalency Factor). Unlike ESAL, GESAL is 
independent of pavement type, thickness, and level of 
distress and can be used to compare traffic loads and 
their effects on pavement performance between dif-
ferent sites. 

As one of the primary areas of research of the Stra-
tegic Highway Research Program (SHRP), the Long-
Term prediction of the International Roughness Index 
(IRI) in rigid pavement using machine learning and 
environmental factors is a challenging task, but it can 
be achieved with appropriate data collection and 
modeling techniques. To begin, it is essential to 
gather a comprehensive dataset that includes the IRI 
values for the rigid pavements and the corresponding 
environmental factors.  

In this study, the IRIs measured in the left and right 
wheel paths are employed, and the average IRI values 
are chosen as the primary factor. Table 1 shows the 
minimum, maximum, average, and standard devia-
tion of the collected data.  

 
Table 1.  Descriptive Statistics of the Model. 



Inputs Minimum Maximum Average Standard 

Deviation 

Tempera-

ture (°C) 

12.10 18.60 15.23 1.00 

Humidity 

(%) 

61.50 74.00 6.25 2.53 

Precipita-

tion (mm) 

696.30 1,436.90 370.30 177.98 

ESAL 18,735 9,33,000 4,57,132 1,74,340 

GESAL 25,405 7,39,377 3,56,986 1,31,338 

Previous 

IRI 

1.03 2.23 0.60 0.27 

4 ARTIFICIAL NEURAL NETWORK IRI 
MODEL DEVELOPMENT 

Artificial Neural Network is a branch of machine 
learning techniques that work similarly to the human 
brain. It works as a mathematical function with three 
layers (input, hidden, output) that process the infor-
mation through weighted connections. The hidden 
layer transforms the data utilizing weights and biases 
while the output layer produces final predictions. The 
weights and biases are continuously adjusted during 
learning phases to optimize the network’s perfor-
mance. One of the primary objectives of this study is 
to derive an IRI prediction equation from the trained 
ANN model. It was essential to simplify the model 
network while preserving the accuracy of the predic-
tions. Consequently, a neural network comprising a 
single hidden layer with three hidden neurons was 
chosen. 

The architecture of the ANN model is shown in 
Figure 2. The neurons in the hidden layer are con-
nected to each input using weights and biases. 

Figure 2. The Architecture of the ANN model. 

 
Wih and Bih stand in for the hidden layer's weights and 
biases. The hyperbolic tangent function is used as an 
activation function in the hidden layer. The hidden 

layer’s neurons are connected with the output neuron 
with weights and bias - Who, Bho, respectively.  

The model used only the rigid pavements satisfy-
ing the climate condition of Wet No Freeze was used 
for this study. In the model training process, each in-
put was normalized between [-1,1] in the input layer. 
After passing through the input layer, the data moves 
on to the hidden layer. The output layer receives the 
transformed data from the hidden layer and produces 
the final output of the ANN model. The final output 
is then compared with the measured value of IRI, and 
the error is calculated. This error is fed into the model 
and backpropagated to the input layer, adjusting its 
weights and biases with respect to error. One forward 
propagation and backpropagation is called an epoch. 
In the validation process, the objective is to minimize 
the Mean Squared Error (MSE). In the developed 
model development process, the average coefficient 
of determination (R2) was between 0.70 to 0.84. After 
Multiple iteration of model training the best per-
formed model were selected for equation develop-
ment. 

In the model development process, the standard 
70-15-15 approach was used, where 15% of the data 
points were for model validation, 70% of the data 
points were for model training, and 15% of the data 
points were left out for testing. The testing is per-
formed to evaluate the model performance for data 
outside the training set. This serves the main goal of 
the study, which is to develop a robust model. Multi-
ple models were created in that process and one 
model with optimum prediction performance is re-
ported. Figure 3 shows the best-performed model 
with a coefficient of determination (R2) = 0.84, Mean 
Absolute Error (MAE) = 0.12, and Root Mean Square 
Error (RMSE) = 0.219 for overall datasets.   

Figure 3. Coefficient of determination of Training, Validation, 
Testing, and overall dataset. 



For practitioners and engineers, a simple linear equa-
tion from the developed ANN model is extracted. 
This simple equation will predict IRI, which is similar 
to the ANN. Equation 1 is the equation extracted from 
the model. 
 
IRI = 0.6 × ( 0.4358 × ( Tanh ( 1.3907 θ + 0.2735 H 
+ 0.0038 P – 2.748 ES – 6.8248 GS + 0.3087 IRIprev 
) + ( - 0.2940 × ( Tanh ( 1.499 θ + 0.0133 H + 0.0021 
P – 7.4161 ES + 1.2243 GS - 5.1211 IRIprev ) + ( -
0.617 × ( Tanh ( - 0.8883 θ + 0.0973 H - 0.0005 P + 
3.4712 ES – 5.3669 GS + 0.9939 IRIprev ) – 0.2113 + 
1 ) + 1           (1) 
 
Where IRI = International Roughness Index (m/km); 
IRIprev = Previous year IRI (m/km); θ = Annual aver-
age temperature (°C) ; G = Annual GESAL; H = An-
nual average humidity (%); P = Annual average pre-
cipitation (mm); E = Annual ESAL 

5 SENSITIVITY ANALYSIS OF THE 
DEVELOPED ANN MODEL 

The process of sensitivity analysis is crucial for stud-
ies that involve multiple input variables. It helps to 
determine which independent variables have the most 
significant impact on the dependent variable and 
which ones have the least (Ahmed, Isied and Sou-
liman, 2024). The results of the sensitivity analysis in 
Figure 4 show that the IRI for rigid pavement is more 
sensitive to humidity, temperature, and precipitation 
and least sensitive to ESAL.  

Figure 4. The Architecture of the ANN Model 

6 CONCLUSIONS 

The International Roughness Index (IRI) prediction 
model for rigid pavement is developed with the avail-
able climate and traffic data for the wet, no freeze cli-
matic conditions for three South Atlantic states - 
North Carolina, South Carolina, and Virginia. This 
ANN-based prediction model is developed after train-
ing, validation, and testing using LTPP data with R2 
of 0.84. The constructed model can be utilized to 

forecast the IRI in the traffic and climatic conditions 
of these states.  

The sensitivity analysis shows that the climatic 
variables have the most effect on the output of the 
model compared to the traffic-related variables. 

Additionally, unlike previous studies, a closed-
form standalone equation is extracted from the model. 
This equation will enable the practitioner to apply the 
model in practical cases without expert knowledge of 
machine learning. Future recommendations would in-
volve incorporating more data reflecting various 
pavement conditions, along with other essential input 
factors such as the pavement age, aggregate grada-
tion, etc.  
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