
1 INTRODUCTION 

To streamline maintenance operations, pavement 
management systems (PMS) have been implemented 
to survey, analyze, and assist decision-makers in allo-
cating resources for pavement maintenance (Al-
Mansour et al., 2022). As an initial step in pavement 
management, data collection is critical to the deci-
sion-making process. 

Various data collection methods such as manual 
surveys, cameras or laser scanners fitted to vehicles, 
portable platforms, and unmanned aerial vehicles 
(UAVs), have been employed. Recent efforts have 
seen the adoption of cameras fitted to portable de-
vices such as cars, motorcycles, and bicycles for the 
collection of pavement distress information (Arya et 
al., 2022). This approach is lauded for its cost-effec-
tiveness and efficiency in data collection. For in-
stance, Mei and Gül (2020) reported spending ap-
proximately 350 USD on purchasing and mounting a 
GoPro to their vehicle for pavement distress data col-
lection. Furthermore, the efficiency of this approach 
is also evident in the introduction of big data compe-
titions that utilize camera data for pavement distress 
detection(Arya et al., 2022). However, the adoption 
of this cost-effective data collection method inevita-
bly encounters the challenge of shadows within the 
images. 

Shadows obscure crack patterns due to their simi-
lar intensity to crack regions (Zou et al., 2012). Addi-
tionally, boundary regions caused by shadows can be 

misinterpreted as cracks, leading to false positive de-
tections (Pal et al., 2021). Furthermore, the uneven il-
lumination caused by shadow regions results in in-
consistencies in detection by machine learning and 
segmentation algorithms (Zou et al., 2012). There-
fore, the elimination of shadow regions in these im-
ages is paramount for the accurate detection of pave-
ment distress. 

This article therefore aims to adopt a novel shadow 
removal algorithm in top-down and oblique-view 
pavement images captured with low-cost cameras. 
Specifically, we will (1) Compile a Pavement Image 
Shadow Triplet Dataset (PISTD) composed of top-
down and oblique-view pavement distress images by 
performing image processing manipulation on 
shadow-free images using ISTD (Wang et al., 2017) 
mask images. (2) Train the latent diffusion model by 
Mei et al. (2023) to eliminate shadows in pavement 
images. Hyperparameter tuning of the training itera-
tions and learning rate will be performed. Addition-
ally, the model will be trained with 512x512 and 
256x256 image sizes. (3) Compare model results with 
existing state-of-the-art models using Root Mean 
Squared Error (RMSE), Peak Signal-to-Noise Ratio 
(PSNR), and F1 score metrics. F1 score metrics are 
based on segmentation accuracy. (4) Test the zero-
shot performance of the model for shadow removal.  
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2 LITERATURE REVIEW 

Within literature, shadow removal across different 
scenes has been explored through image processing 
and deep learning approaches. Deep learning has 
emerged as a prevailing standard for shadow removal 
through popular algorithms such as the ShadowGAN 
(Hu et al., 2019), Stacked Conditional GAN (ST-
CGAN) (Wang et al., 2017), ARGAN (Ding et al., 
2019), and DC-ShadowNet (Jin et al., 2023). How-
ever, these models require a large amount of training 
data and, due to their architecture and adversarial 
training approach, they are computationally complex. 
This complexity can introduce training instability and 
poor generalizability (Mei et al., 2023). 

Diffusion models have demonstrated improved 
stability over GANs in generative tasks (Rombach et 
al., 2022). Given this, in an initial attempt to perform 
instance shadow removal, Mei et al (2023) adopted 
the conditional diffusion model for shadow removal 
across different scenes. Although this approach out-
performs state-of-the-art methods, it has not been spe-
cifically applied to pavement images, which present a 
new level of complexity due to the similarity in inten-
sity between shadow regions and cracks. 

3 PROPOSED METHODOLOGY 

In this research, a diffusion network is employed for 
shadow removal due to its robustness compared to 
other methods. The algorithm proposed by Mei et al. 
(2023) is selected over other diffusion techniques as 
it introduces a learned latent feature space used for 
conditioning the diffusion model and integrates noise 
features within the diffusion network to mitigate the 
risk of converging to local optima during training. 
The adopted algorithm can be delineated into three 
critical modules: (1) the conditional diffusion mod-
ule, (2) the latent encoder module, and (3) the noise 
fusion module. 

3.1 Conditional Diffusion Module 

As an extension of ordinary diffusion models, condi-
tional diffusion models incorporate additional infor-
mation or conditions, such as class labels, text de-
scriptions, or other modalities during training. 
Fundamentally, diffusion models simulate the pro-
cess of data corruption (forward diffusion process) 
and its reversal (reverse diffusion process), enabling 
the generation of new data samples by reversing the 
diffusion process. In the context of this research, the 
forward process corrupts the shadowed image, while 
the reverse process generates the shadow-free image.  

3.2 Latent Encoder 

In this research, a novel latent feature space is em-
ployed to guide the model. Given the shadow mask 
and the shadowed image, the latent encoder generates 
a latent feature vector, which is subsequently used as 
the condition within the diffusion model. A U-Net 
model with an architecture similar to that of the dif-
fusion network is adopted. 

3.3 Noise Fusion Model 

Posterior collapse refers to a phenomenon where the 
learned latent representations fail to encode meaning-
ful information about the input data. Observed within 
diffusion models, this happens when the training pro-
cedure of generative models falls into a trivial local 
optimum. Posterior collapse is especially undesirable 
in shadow removal due to the complexity of different 
shadows within the models. This article, therefore, 
adopts Mei et al. (2023) approach, which involves 
fusing the learned embeddings and features within the 
diffusion network to overcome posterior collapse. 

4 DATASET 

Within the domain of shadow removal, two primary 
benchmark datasets are commonly referenced: the 
ISTD (Wang et al., 2017) and AISTD/ISTD+ (Le & 
Samaras, 2019). The ISTD and AISTD datasets in-
clude triplets of shadow images, shadow-free images, 
and shadow masks, covering a variety of scenes such 
as walls, grass surfaces, and sidewalks of different 
colors. However, shadow removal on pavements pre-
sents unique challenges as pavement distresses can 
have intensities similar to those within the shadowed 
regions.  

This article therefore introduces the Pavement Im-
age Shadow Triplet Dataset (PISTD). To construct 
this dataset, shadow masks from the ISTD dataset are 
applied to pavement images with varying degrees of 
opacity, location and orientation. To better emulate 
real-world shadow conditions, these masks are also 
enlarged to cover more extensive regions within the 
images. Top-down shadow images are sourced from 
the CFD (Shi et al., 2016), CrackTree200 (Zou et al., 
2012), and DSPS24 datasets. Additionally, to repli-
cate angled data collection, crack-free images were 
manually collected by the authors. To further aug-
ment this dataset, crack-free images from the Ed-
mCrack600 (Q. Mei & Gül, 2020) dataset were also 
included. Figure 1 presents an example of shadow im-
age, shadow mask and shadow-free image. The entire 
dataset was divided into training and testing sets in a 
4:1 ratio to facilitate robust evaluation. 



Figure 1. PISTD sample. 

5 TRAINING 

Hyperparameter tuning was performed with results 
revealing a learning rate of 1.0e-5, training over 
300,000 iterations with a gaussian noise schedule 
steps of 1,000 achieving optimum performance. Fur-
thermore, a comparison of training on different image 
sizes (256x256 vs 512x512) showed that an increase 
in image size results in a decrease in PSNR and an 
increase in RMSE.  

Give a batch size of 1, trained over an NVIDIA 
RTX 3090 GPU with 24GB of memory compute, 
took approximately 81 hours with a 512x512 image 
size.  

6 RESULTS 

6.1 Comparison with the state-of-the-art 

The performance metrics of the model are bench-
marked against three state-of-the-art shadow removal 
models: DC-ShadowNet (Jin et al., 2023), SG-Shad-
owNet (Wan et al., 2022), and G2R-ShadowNet (Qu 
et al., 2017). These comparative models utilize Gen-
erative Adversarial Networks (GANs) with distinct 
variations in their architectures, loss functions, and 
training methodologies 

As observed in Table 1, our model, trained on 
256x256 images, achieves PSNR and RMSE metric 
scores comparable to state-of-the-art models when 
tested on top-down view images. Although these val-
ues represent a slight decrease compared to the best-
performing SG-ShadowNet, our approach produces 
smoother, shadow-free images (Figure 2 last col-
umn). The slightly lower RMSE and PSNR are at-
tributed to the noise introduced by our model; how-
ever, this noise does not adversely affect 
segmentation accuracy, as demonstrated by an F1 
score of 59.3% (Table 1).  

Table 2 presents the quantitative comparisons of 
the models when tested on angled view images. As 
shown, our model outperforms all other approaches 
on the RMSE and PSNR metrics when trained on 
256x256-sized images. Similarly to top-down view 
images, while other models result in shadow bounda-
ries, our proposed approach achieves smoother 
shadow removal (Figure 2). However, as in the top-
down view results, the proposed model trained on 
512x512 images exhibits a color shift, adversely af-
fecting the RMSE and PSNR values. Despite this 
color shift, the model effectively removes all shadows 

within the images, attaining a 61.4% F1 score for seg-
mentation, a 74% increase from the shadow image 
(Table 2).  

 
Table 1. Quantitative comparison results in top-down 
view images _______________________________________ 
Method     RMSE PSNR  F1 score         _______________________________________________________________________________________ 
DC-Shadow Net  9.8  28.9   55.5       
SG-Shadow Net  7.4  31.9   49.3   
G2R-ShadowNet 10.9  30.1   39.5   
Ours-256    9.5  30.0   39.5   
Ours-512    14.4  26.0   59.3   
Shadow Image  _   _    43.7    ________________________________________ 

 
Table 2.  Quantitative comparison results in oblique 
view images. ________________________________________ 
Method     RMSE   PSNR  F1 score               ________________________________________ 
DC-Shadow Net  8.1  30.6   44.2 
SG-Shadow Net  8.8  30.1   37.2 
G2R-ShadowNet 12.3  28.2   32.9 
Ours-256    7.8  31.0   47.3 
Ours-512    11.3  28.1   61.4 
Shadow Image   _        _    33.7 ________________________________________ 

Figure 2. Visual comparison of shadow removal algorithms. 

6.2 1.1 Zero-shot Results 

This section aims to evaluate the proposed approach’s 
performance with real-world shadows. As shown in 
Figure 3, the images presented are captured at an 
oblique angle, representing the current trend in data 
collection studies. Since original masks for these im-
ages do not exist, a SAM model was trained and used 
to develop shadow masks for the evaluation. As ob-
served, given the SAM shadow mask, the proposed 
model eliminates shadows with high accuracy, partic-
ularly in the model trained with 256x256-pixel im-
ages. In contrast, the model trained with 512x512-
pixel images experiences a color shift and struggles 
with a larger shadow boundary. 
 



Figure 3. Zero shot results of the proposed approach. 

7 CONCLUSION 

This study presents a novel approach for shadow re-
moval in pavement imagery using a diffusion model 
conditioned on encoded mask and shadow image la-
tent. To achieve this, a Pavement Shadow Triplet Da-
taset (PSTD) was introduced by combining masks 
from the ISTD dataset with different pavement im-
ages at varying opacity. Hyperparameter tuning dur-
ing model training showed that a learning rate of 1e-
5 and training over 300,000 epochs resulted in the 
best model accuracy. A comparison of different im-
age sizes revealed the model trained with 256x256-
pixel images exhibited a superior performance in both 
quantitative metrics and qualitative assessments, 
providing smoother shadow-free images without the 
shadow boundaries observed in other models. The 
model trained with 512x512-pixel images, while ef-
fective in shadow removal, exhibited a color shift, 
highlighting the complexity introduced by larger im-
age sizes. A comparison of segmentation accuracy 
shows the model trained on 512x512-pixel images at-
tains the highest F1 score on both angled and top-
down view pavement images. This was attributed to 
the increased resolution associated with larger im-
ages. The authors also note the segmentation accura-
cies presented within the results reflect lower accura-
cies than those within literature. This is because the 
model adopted was not trained on our dataset, thus the 
relative performance is emphasized. The zero-shot 
capability of our model was validated through the ac-
curate removal of shadows in real-world oblique view 
images, further showcasing the proposed approach's 
robustness and applicability in practical scenarios. 
However, the authors note the limitation of the ap-
proach in the introduction of the color shift in 
512x512 images and computational cost introduced 
in training. Future work should focus on addressing 
these limitations. 
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