
1 INTRODUCTION 

Digital twin technology has revolutionized infra-
structure management by enabling real-time moni-
toring and predictive maintenance through virtual 
replicas of physical systems, providing valuable in-
sights for optimizing asset performance (Saghat-
foroush et al., 2022). In pavement management, 
digital twins integrate data from IoT sensors, histori-
cal records, and predictive models to proactively ad-
dress damages, reducing costs and enhancing safety 
(Talaghat, 2024). However, the effectiveness of 
these systems depends on the quality and diversity 
of labeled datasets, which traditional methods fail to 
achieve due to data scarcity and generalization limi-
tations (Kumar, 2024). To overcome this, diffusion-
based generative AI models offer a robust solution, 
generating diverse, high-quality synthetic images 
that enhance segmentation accuracy and support 
scalable, robust digital twin applications in pave-
ment management (Ho et al., 2020). 

2 LITERATURE REVIEW 

Several studies have highlighted the potential of dif-
fusion models to outperform GANs and VAEs in 
stability and image quality (Nichol & Dhariwal, 
2021). These capabilities enhance training datasets, 
improving the performance and generalization of 
machine learning models. Han et al. (2024) proposed 
CrackDiffusion, a two-stage framework that inte-
grates diffusion models with U-Net, achieving supe-
rior IoU scores on public datasets. Cano-Ortiz et al. 
(2024) introduced RoadPainter, a semantic diffusion 
model that significantly improved segmentation effi-
ciency by augmenting datasets with diverse synthet-

ic crack images. Additionally, Yan et al. (2024) 
demonstrated how integrating diffusion models with 
Transformer-in-Transformer algorithms enhanced 
road surface friction coefficient detection, achieving 
accuracy improvement. These studies exemplify the 
transformative potential of diffusion-based genera-
tive AI in creating scalable, effective solutions for 
digital twins and infrastructure monitoring (Xu et al. 
2024). 

Generative AI in pavement distress detection and 
segmentation is underexplored, with challenges like 
data scarcity and computational complexity. Da-
tasets like Crack500 lack diversity, limiting model 
training for rare distress types (Zhang et al., 2020). 
Traditional generative models like GANs face insta-
bility (Goodfellow et al., 2014). Diffusion models 
offer a robust solution by generating high-quality 
synthetic images that improve data diversity and 
segmentation accuracy while reducing computation-
al demands (Shorten et al., 2019). This research ad-
dresses these gaps using DDPM to enhance dataset 
robustness and model scalability. 

3 OBJECTIVE AND SCOPE 

This study applies diffusion models to augment 
pavement distress data, enhancing crack segmenta-
tion via deep learning. Contributions include detect-
ing complex cracks like alligator cracks, optimizing 
image augmentation for peak performance, and test-
ing model robustness across domains. The scope in-
volves using DDPM for augmentation and U-
Net/DeepLab models, focusing on longitudinal, 
transverse, and alligator cracks in asphalt pave-
ments. 
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4 METHODOLOGY 

4.1 Dataset preparation 

The dataset preparation for this study involved char-
acterizing the Crack500 dataset and applying essen-
tial preprocessing techniques to ensure data quality. 
The Crack500 dataset includes various types of 
pavement distress, such as longitudinal, transverse, 
and alligator cracks, with annotations indicating the 
type and location of distress. Preprocessing steps in-
cluded resizing images for model compatibility, 
normalizing pixel values, adjusting contrast and 
brightness, and converting images to grayscale. Data 
cleaning removed low-quality or corrupted images, 
while histogram equalization and Gaussian blur 
were applied to enhance contrast and reduce noise, 
ensuring a consistent and high-quality dataset for ro-
bust model training. 

4.2 Diffusion Model Architecture 

The diffusion model architecture is central to gener-
ating high-quality synthetic images that augment ex-
isting datasets for pavement distress detection. Built 
on the DDPM (UNet2DModel), this architecture 
works by progressively adding Gaussian noise to in-
put images and then learning to reverse this process, 
gradually restoring the images to their original state. 
This iterative denoising approach allows the model 
to generate highly realistic images that closely re-
semble real-world pavement distress conditions. The 
model utilizes a U-net structure, which includes en-
coder-decoder blocks and skip connections to retain 
fine spatial details during the downsampling and up-
sampling stages. This ensures the preservation of 
crucial features, such as crack patterns and textures, 
which are essential for accurate segmentation. By 
enhancing dataset diversity and improving image 
quality, this model supports more robust training of 
pavement distress segmentation models, ultimately 
improving their performance and generalization. The 
effectiveness of the generated images is measured 
using metrics such as Structural Similarity Index 
(SSIM), Peak Signal-to-Noise Ratio (PSNR), and 
diversity score, confirming high image quality and 
variability, which boost model performance and 
generalization. 

4.3 Segmentation model framework 

This study uses two state-of-the-art segmentation 
models, U-Net (ResUNet with ResNet34 Backbone) 
and DeepLab (DeepLabV3+ with ResNet101 Back-
bone), to develop a robust pavement distress detec-
tion system. U-Net, with its encoder-decoder struc-
ture and skip connections, is effective for tasks 
requiring precise localization, while DeepLab em-
ploys atrous convolution and spatial pyramid pool-
ing to capture multi-scale context. Both models were 

configured with a uniform input size of 128x128 
pixels and trained using cross-entropy and Dice loss 
functions, optimized by the Adam optimizer. Per-
formance was evaluated using metrics such as IoU, 
F1 Score, pixel-level accuracy, and boundary preci-
sion, to assess the effectiveness of the models when 
trained on augmented datasets from diffusion mod-
els. These models aim to improve the robustness and 
accuracy of pavement distress segmentation. 

4.4 Comparative analysis framework 

The comparative analysis framework evaluates per-
formance improvements from integrating generative 
AI into pavement distress segmentation models. This 
involves pre- and post-generative AI performance 
benchmarking using metrics like IoU, F1 Score, and 
pixel-level accuracy, followed by statistical valida-
tion through paired t-tests, confidence intervals, and 
cross-validation. The baseline performance of U-Net 
and DeepLab was first assessed using the original 
Crack500 dataset (Including 250 segmented image), 
revealing model strengths such as U-Net's perfor-
mance on alligator cracks and DeepLab's robustness 
under variable lighting. After augmenting the dataset 
with synthetic images generated by the diffusion 
model, the models were retrained and reassessed us-
ing the same performance metrics, with additional 
metrics like diversity and realism scores to assess 
synthetic data quality. This framework demonstrates 
the effectiveness of generative AI in enhancing 
model performance and generalization. 

5 RESULTS 

5.1 Generated Image Characteristics 

The diffusion model enhances dataset quality and 

model performance by progressively refining noisy 

synthetic images, revealing basic patterns by epoch 

50, clearer structures by epoch 100, detailed cracks 

by epoch 150, and real-world pavement distress 

complexity by epoch 200. 

Figure 1 provides a visual comparison of original 
pavement distress images and synthetic images gen-
erated by the diffusion model.  

Figure 1. Comparison of real distress and synthetic images. 



This side-by-side comparison illustrates how well 
the synthetic images replicate key visual features of 
real pavement cracks, including crack shape, width, 
alignment, and continuity. Additionally, the synthet-
ic images introduce variability, which helps improve 
model robustness by capturing a wider range of 
crack patterns and distress types. 

The evaluation of these synthetic images was 
conducted using several quantitative metrics to as-
sess their quality and realism, as detailed in Table 1. 
These metrics are as follows: 
 
Table 1. Synthetic image metrics. 

Metric Value Interpretation 

SSIM 0.92 High structural similarity to real-world images 

PSNR 32.5 dB Low noise and high-quality synthetic images 

Diversity Score 0.85 High variability in crack types and patterns 

Realism Score 0.90 Realistic appearance matching real-world data 

 
These metrics confirm that the synthetic images 
maintain structural fidelity, add diversity, and close-
ly resemble real-world data, enhancing dataset quali-
ty and improving segmentation model performance. 

5.2 Segmentation performance metrics 

The performance of U-Net and DeepLab models was 
evaluated using several metrics before and after da-
taset augmentation with synthetic images. Table 2 
presents the performance improvements, including 
IoU, F1 Score, pixel-level accuracy, and boundary 
precision, with significant gains observed after aug-
mentation. Both models showed notable perfor-
mance enhancements with 1000 synthetic images, 
with IoU scores increasing by 8-9%, F1 Scores im-
proving by 8%, and pixel-level accuracy rising by 
4%. However, beyond 1000 augmented images, per-
formance declined, suggesting diminishing returns 
and potential overfitting. 

 
Table 2. Quantitative results of segmentation models. 

Metric IoU F1 

Score 

Pixel-

Level Ac-

curacy 

Bounda-

ry Preci-

sion 

Dice 

Coef-

ficient 

U-Net (Original) 0.81 0.85 0.89 0.79 0.84 

U-Net (+50) 0.84 0.87 0.9 0.81 0.86 

U-Net (+150) 0.87 0.9 0.92 0.84 0.89 

U-Net (+250) 0.9 0.93 0.93 0.87 0.92 

U-Net (+1000) 0.93 0.95 0.95 0.9 0.94 

U-Net (+5000) 0.91 0.94 0.93 0.88 0.92 

DeepLab (Original) 0.84 0.87 0.91 0.81 0.87 

DeepLab (+50) 0.86 0.89 0.92 0.83 0.89 

DeepLab (+150) 0.89 0.92 0.94 0.86 0.92 

DeepLab (+250) 0.92 0.95 0.95 0.88 0.94 

DeepLab (+1000) 0.94 0.96 0.96 0.9 0.95 

DeepLab (+5000) 0.92 0.94 0.94 0.87 0.93 

Figure 2 demonstrates the improved training and 
validation curves for U-Net models trained with 

1000 synthetic images, showing faster convergence 
and reduced overfitting. 

Figure 2. Training and validation curve of u-net model. 

Further validation on additional datasets (GAPs, 
DeepCrack, CrackSegNet, and CFD) showed that 
both models maintained strong generalization capa-
bilities, achieving high IoU, F1 Scores, and accuracy 
across different pavement distress types and condi-
tions (see Table 3). 
 
Table 3. Performance of models in percentage on different da-

tasets with and without augmentation. 

Da-

taset 

Model IoU F1 

Score 

Pixel-Level 

Accuracy 

Boundary 

Precision 

Dice Co-

efficient 

GAPs U-Net 86 (75) 89 (80) 93 (85) 88 (78) 90 (82) 

DeepLab 88 (76) 91 (81) 94 (86) 90 (79) 92 (83) 

DeepC

rack 

U-Net 85 (74) 88 (79) 92 (84) 87 (77) 89 (81) 

DeepLab 87 (75) 90 (80) 93 (85) 89 (78) 91 (82) 

CrackS

egNet 

U-Net 84 (73) 87 (78) 91 (83) 86 (76) 88 (80) 

DeepLab 86 (74) 89 (79) 92 (84) 88 (77) 90 (81) 

CFD U-Net 83 (72) 86 (77) 90 (82) 85 (75) 87 (79) 

DeepLab 85 (73) 88 (78) 91 (83) 87 (76) 89 (80) 

 
These findings demonstrate that the dataset augmen-
tation using synthetic images significantly improves 
segmentation performance and generalization, vali-
dating the effectiveness of the generative AI ap-
proach in enhancing pavement distress detection 
models. 

5.3 Performance enhancement areas 

The integration of synthetic images generated by the 
diffusion model led to significant improvements in 
pavement distress segmentation, focusing on accura-
cy, boundary precision, and generalization. 



Figure 3 shows a comparison of real images and 
predicted images from both original and augmented 
models, illustrating the enhanced accuracy and clari-
ty of crack segmentation with the augmented da-
taset. 

Figure 3. Comparison of real image with predicted using origi-

nal and augmented models. 

 

Boundary precision improved from 0.79 to 0.9, en-
hancing crack boundary delineation and reducing 
false positives/negatives. The diffusion model re-
quired more resources, taking 2 hours for training 
and 8 hours for inference with 1000 images. In com-
parison, the augmented U-Net and DeepLab models 
showed faster training and inference but demanded 
more computational power than their baseline ver-
sions. 

Despite the benefits of using diffusion-based gen-
erative AI for pavement distress segmentation, sev-
eral limitations exist. The approach is computation-
ally intensive, requiring significant resources for 
training and image generation. There's also a risk of 
overfitting when using excessive synthetic data, 
which can reduce generalization. Initial datasets may 
contain biases that limit the diversity of synthetic 
images. Additionally, limited validation on diverse 
real-world conditions affects generalizability, and 
synthetic images may not fully capture the com-
plexity of real-world data. 

6 CONCLUSION 

This study highlights the impact of diffusion-based 
generative AI in enhancing pavement distress seg-
mentation. Synthetic images with high SSIM (0.92), 
diversity (0.85), and realism (0.90) led to significant 
performance gains. For U-Net, IoU improved from 
0.81 to 0.93, F1 Score from 0.85 to 0.95, and pixel-
level accuracy from 0.89 to 0.95. DeepLab saw simi-
lar improvements, with IoU rising from 0.84 to 0.94. 
Boundary precision improved by 9-11%, and gener-
alization on unseen data increased, with IoU rising 
from 0.73 to 0.85. Despite high computational de-
mands, the integration of synthetic data led to en-
hanced model performance and generalization. 

These findings offer valuable implications for infra-
structure maintenance, safety, and cost reduction, 
with potential for broader applications. Future re-
search should focus on real-time implementation, 
dataset expansion, and AI optimization. 
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