Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

3i

B Informatics

Extending Game-Theoretic
Security of Blockchain Protocols
with Compositional Reasoning
and Conditional Actions

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieurin
im Rahmen des Studiums
Logic and Computation
eingereicht von

Ilvana Bocevska, BSc
Matrikelnummer 11929220

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Univ. Prof. Dr. techn. Laura Kovacs, MSc
Mitwirkung: Dipl.-Ing. Dr. techn. Sophie Rain, BSc

Wien, 1. Juni 2025

bllothel,

Your knowledge hu

Ivana Bocevska Laura Kovacs

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

3i

B Informatics

Extending Game-Theoretic
Security of Blockchain Protocols
with Compositional Reasoning
and Conditional Actions

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieurin
in
Logic and Computation
by

Ivana Bocevska, BSc
Registration Number 11929220

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr. techn. Laura Kovacs, MSc
Assistance: Dipl.-Ing. Dr. techn. Sophie Rain, BSc

Vienna, June 1, 2025

bllothel,

Your knowledge hu

Ivana Bocevska Laura Kovacs

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Erklarung zur Verfassung der
Arbeit

Ivana Bocevska, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Ich erkldre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss iiberwiegt. Im Anhang
,Ubersicht verwendeter Hilfsmittel* habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Fiir Textpassagen,
die ohne substantielle Anderungen iibernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 1. Juni 2025

Ivana Bocevska

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Acknowledgements

I would like to express my deepest gratitude to my supervisors, Laura Kovacs and Sophie
Rain, for their support throughout the work on this thesis and their dedication as advisors.
Laura provided invaluable, continuous feedback and with her vast experience, greatly
enhanced the quality of the work. Sophie generously dedicated her time, and together
we engaged in numerous brainstorming and pair-programming sessions that proved to be
incredibly productive.

Moreover, I would like to thank Anja Petkovi¢ Komel and Michael Rawson for the
numerous insightful discussions and ideas that truly broadened my perspective and
helped guide my research.

Lastly, I dearly thank my close family for their unwavering support and encouragement.
They have been by my side throughout my journey, always proud and excited about my
achievements, and offering comfort and motivation whenever I needed it.

This work was partially supported by the Austrian Science Fund (FWF) SPyCoDe
Grant 10.55776/F85.

vii

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Kurzfassung

Fiir die Sicherheitsanalyse von Blockchain-Technologien haben sich spieltheoretische
Ansétze als niitzlich erwiesen. Solche Ansétze untersuchen Protokolle aus einer wirtschaft-
lichen Perspektive, insbesondere durch die Erforschung der wirtschaftlichen Anreize, die
das Nutzerverhalten steuern. Auf diese Weise wird sichergestellt, dass ein Abweichen vom
ehrlichen Verhalten eines Protokolls keine finanziellen Vorteile mit sich bringt: solange sich
die NutzerInnen an das Protokoll halten, kann ihnen kein finanzieller Schaden entstehen,
unabhéngig davon, wie sich andere verhalten.

Eine solche wirtschaftliche Analyse von Blockchain-Protokollen kann als ein automatisier-
tes Schlussfolgerungsproblem in der Arithmetik der reellen Zahlen in der Pradikatenlogik
1. Stufe formuliert werden, wodurch das spieltheoretische Schlussfolgerungsproblem durch
die Erfiillbarkeit einer Menge von Formeln, bekannt als Satisfiability Modulo Theories
(SMT) Solving, gelost wird. Diese Tools stehen jedoch vor grofien Herausforderungen in
Bezug auf Skalierbarkeit und Ausdruckskraft. Das Skalierbarkeitsproblem entsteht, weil
aktuelle Ansédtze den gesamten Spielbaum, der méglicherweise Millionen von Interaktio-
nen umfasst, auf einmal analysieren. Dabei sind die generierten Formeln sehr grofl und
komplex. Hinsichtlich der Ausdruckskraft sind bestehende Frameworks nicht in der Lage,
Spiele zu modellieren und zu analysieren, die externe Faktoren einbeziehen — wie etwa
Preisschwankungen oder Wechselkurse, die vom aktuellen Weltzustand abhingen und
auBerhalb der Kontrolle der Spieler liegen.

Um diesen Herausforderungen zu begegnen, schlagen wir eine auf dem Teile-und-Herrsche-
Prinzip basierende Methode, welche auch die Modellierung grofler Instanzen ermdoglicht.
Die Grundidee besteht darin, das Modell in seine Einzelteile zu zerlegen, die Sicher-
heitsanalyse auf diesen kleineren Teilen des Modells durchzufithren und die Ergebnisse
anschliefend zusammenzufithren, um das Gesamtergebnis der Analyse zu erhalten. Wir
stellen eine korrekte und vollstdndige Automatisierung dieser Methode bereit sowie eine
automatisierte Generierung von Strategien und Gegenbeispielen fiir die (widerlegten oder
bestétigten) Sicherheitseigenschaften. Experimentelle Ergebnisse zeigen, dass diese Me-
thode gut auf Spiele mit Millionen von Knoten skaliert und somit die Sicherheitsanalyse
grofler, realer Protokolle ermoglicht.

Dariiber hinaus nutzen wir Teile-und-Herrsche-Schlussfolgerungstechniken, um die Aus-
druckskraft des Frameworks zu erweitern und die Modellierung sowie Analyse von Proto-
kollen mit durch externe Faktoren beeinflussten Aktionen zu erméglichen. Diese nennen

ix

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

wir Spiele mit bedingten Aktionen. Zu diesem Zweck definieren wir zentrale Konzepte wie
Spielbdume, Sicherheitseigenschaften, Strategien, Gegenbeispiele, ehrliches Verhalten und
verwandte Begriffe neu. Die Analyse von Spielen mit bedingten Aktionen wurde eben-
falls automatisiert und anhand von ersten Benchmarks mit nicht-trivialen Bedingungen
evaluiert.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Abstract

Game-theoretic security analysis of blockchain technologies has proven highly valuable.
Such analysis examines protocols from an economic perspective, specifically by exploring
the economic incentives that drive user behavior. Thus, it ensures that deviating from
the intended, honest behavior of a protocol is not financially beneficial: as long as users
follow the protocol, they cannot be financially harmed, regardless of how others behave.

Such an economic analysis of blockchain protocols can be encoded as an automated
reasoning problem in the first-order theory of real arithmetic, thereby reducing game-
theoretic reasoning to satisfiability modulo theories (SMT) solving. However, existing
frameworks face significant challenges in terms of scalability and expressivity. The
scalability issue arises because current approaches treat the entire game tree, potentially
involving millions of interactions, as a single SMT instance. In terms of expressivity,
existing frameworks fall short in modeling and analyzing games that involve external
factors — such as price fluctuations or exchange rates of currencies — that depend on the
current world state and lie beyond the players’ control.

Therefore, to address these challenges, we propose a divide-and-conquer security analysis
based on compositional reasoning over game trees. In our approach, we decompose games
into subgames, ensuring that changes to one subgame do not require re-analyzing the entire
game, but only its ancestor nodes. We provide a sound and complete automation of this
method, as well as automated compositonal extraction of strategies and counterexamples
for the (dis)proved security properties. Experimental results show that compositional
reasoning scales well to games with millions of nodes, enabling security analysis of large
real-life protocols.

Additionally, we leverage compositional reasoning techniques to enhance the expressivity of
the framework, enabling the modeling and analysis of protocols with actions influenced by
external factors, which we refer to as games with conditional actions. To support this, we
redefine key concepts such as game trees, security properties, strategies, counterexamples,
honest behavior, and related notions. The analysis of games with conditional actions has
also been automated and evaluated on an initial set of benchmarks involving non-trivial
conditions.

X1

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Contents

Kurzfassung

Abstract

Contents

1

Introduction

1.1 Motivationl
1.2 Problem Statement
1.3 _Stateof the Artl.
1.4 Contributionso
1.5 Outline

Preliminaries

2.1 Game Theory
2.2 Game-Theoretic Security Properties|
2.3 Automated Game-Theoretic Security Analysis with CHECKMATE| . . .

Compositional Game-Theoretic Security Properties

3.1 Security Properties for Subgameso
3.2 Total Orders
3.3 Compositional Counterexamples|

Compositional Game-Theoretic Security

4.1 Unsound Naive Approach to Compositionality|.
4.2 Security Properties Stratified over Players
4.3 Splitting and Combining Player-Wise Security Properties

Automation and Evaluation of Game-Theoretic Security Analysis
5.1 Divide-and-Conquer Algorithms for Compositional Security]
5.2 Extracting Compositional Strategies
5.3 Finding Compositional Counterexamples|.
5.4 Experimental Evaluation

ix

xi

17
17
19
19

23
23
24
28

33
34
38
39
40

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6 Game-Theoretic Security for Games with Conditional Actions
6.1 Games with Conditional Actions
6.2 Security Properties for Conditional EFGs|
6.3 Conditional Security| oo
6.4 Automation of Conditional Security,
6.5 Conditional Counterexamples|
6.6 Experimental Evaluation|.

7 Conclusion

Overview of Generative Al Tools Used
List of Figures

List of Tables

List of Algorithms

Bibliography

47
47
54
63
64
74
79

83

85

87

89

91

93

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Introduction

1.1 Motivation

Throughout the last few years, blockchain technology has experienced a significant rise in
popularity. Examples include the use of cryptocurrencies, online auditing, decentralized
finance, etc. As a consequence, security guarantees of such applications need to be
established. Most of the existing approaches focus on cryptographic correctness, such
as making sure that secret information cannot be revealed [4} |15, |16]. However, such
approaches neglect the economic implications of correctness, namely, whether it is possible
for a user or group of users to profit from malicious yet cryptographically correct behavior
within the protocol.

In this respect, game-theoretic approaches have proven to be quite helpful. Rain et
al. introduce a game-theoretic model in which protocols are modeled as extensive form
games (EFGs) [20]. In this manner, all possible interactions between the users (players)
are captured and one can analyze whether a player or a group of players can benefit from
deviating from the intended (honest) behavior. As defined in [20], a protocol is secure if
the following properties are satisfied:

o Incentive compatibility: the intended (honest) behavior is the most profitable one,
i.e., users have no incentive to deviate.

o Byzantine fault tolerance: as long as users follow protocol instructions, they cannot
be harmed, independently of how other users behave.

As a follow-up of [20], the work of [6] introduces CHECKMATE, an automated reasoning
framework for proving the security of a protocol modeled as a game. To this end, game-
theoretic security decisions are modeled as first-order arithmetic problems and solved
using satisfiability modulo theory (SMT) solving.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.

INTRODUCTION

1.2 Problem Statement

Even though game-theoretic approaches have proven to be quite helpful, they are not
without limitations. In terms of scalability, modeling one big game is inefficient and
imposes scalability issues. Consequently, SMT queries capturing the functionalities of
game trees with millions of nodes present a challenge for the solver. An interesting
observation is that many games contain similar or identical subgames multiple times. For
instance, the model of closing a channel in the Lightning network [20] contains 8 subtrees
with identical structure. Such subtrees are currently analyzed multiple times.

Furthermore, in terms of expressivity, there are protocols that require modeling and
reasoning about uncontrollable (external) game aspects that are not controllable by any
player, such as e.g., prices and exchange rates of currencies. This aspect is not adequately
supported by current models.

This master thesis addresses the mentioned limitations by employing compositional
(modular) reasoning in order to overcome the scalability issues, thereby allowing identical
subtrees to be solved only once. Further, is also to improves expressivity by enabling
support of uncontrollable game aspects, through a concept we call conditional actions.

The thesis enhances the framework presented in [6] by utilizing compositional (modular)
reasoning. Simply put, the objective of the work is to introduce a divide-and-conquer
approach to game-theoretic security analysis. This poses complex theoretical problems,
as game-theoretic properties are not compositional in general. As a consequence, the
existing C++ implementation [6] is extensively adapted in this respect.

The benefits of such an approach are manyfold. First of all, a compositional approach offers
improvements in scalability, by allowing to solve (potentially big) subtrees independently
and to reuse the obtained results in the supertree. This is especially useful when an
identical subtree occurs multiple times in the main supertree; it needs to be solved only
once using this approach. Furthermore, SMT queries remain compact, making them less
demanding for the solver. Additionally, such an approach enhances reusability, as specific
parts of the protocol (modeled as subtrees) could be effortlessly substituted with new
ones.

Currently, another main restriction of the existing framework [6] is the lack of support for
modeling and analyzing uncontrollable game aspects, such as price changes and exchange
rates of currencies. To overcome this limitation and enhance the expressivity of the
framework, compositionality can be employed for reasoning about uncontrollable aspects,
a challenge that is also addressed in this master thesis.

1.3 State of the Art

Prospects of using compositionality in computer science, especially in economics and
game theory are addressed in some recent works.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.3. State of the Art

In [14], a new strain of game theory — Compositional Game Theory (CGT) — was
introduced. A new representation of games, namely open games, was developed, which
describe games played relative to a given environment and visualized by string diagrams.
The authors define a number of operators for building up complex games from smaller
simpler games. They point out that studying games compositionally is not a trivial task,
since the interaction between games has to be considered. However, introduction of some
new operators for certain classes of games and (full) automation of the approach are
open problems. Moreover, the approach is restricted to constant numeric utilities instead
of symbolic utilities and assumes rational behavior of players. In contrast to this work,
we employ symbolic utilities and capture honest/rational behavior, and thus security, in
games.

A compositional approach for program verification of smart contracts is presented
in [23]. Instead of verifying a smart contract relative to all users, few representative
users are chosen, thereby avoiding intractability due to state explosion. Each of the
representatives abstracts concrete users symmetric to each other relative to the smart
contract. Nonetheless, this approach requires a manually provided summary for the
behavior of each representative and deals only with the verification of the Solidity language
itself, hence not considering incentive compatibility and Byzantine fault tolerance.

A very prominent application of compositionality in computer science other than game-
theoretic security is Facebook’s static analysis method via the tools Infer and Zoncolan [8].
Program analysis of a composite program is performed based on the analysis results of its
parts and by means of combining them. Through formal reasoning and compositionality,
static analysis becomes scalable to large codebases that are collaboratively developed
by thousands of programmers. Deployments similar to Infer’s implementation exist in
Amazon, Microsoft and Google [17].

In [6], a fully automated framework for reasoning about game-theoretic security of
blockchain protocols is presented. In their work they point out the need of scalability
solutions as well as support of conditional actions. To the best of our knowledge, there
exists no extension to the framework in this respect. As previously discussed, this will be
the main contribution of this master thesis.

Finally, a divide-and-conquer approach for parallelizing SMT queries is presented in [24].
The authors emphasize that solver performance is often the primary bottleneck in many
cases and propose partitioning strategies to decompose an SMT problem into subproblems.
The approach discussed in this master thesis differs in that it avoids generating large
SMT queries altogether, focusing instead on localized aspects — specifically, smaller trees.
While the method outlined in the paper is not directly applicable to our scenario, its
core idea aligns with the overarching approach employed in this thesis.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1.

INTRODUCTION

1.4 Contributions

We present a method for compositional game-theoretic security, as well as a method for
expressing and reasoning about uncontrollable game aspects, which we call conditional
actions. To the best of our knowledge, there exist no other approaches in these regards.
We implement our work as the next generation of the tool CHECKMATE [6] and call it
CHECKMATE 2.0. Our experiments show that divide-and-conquer reasoning makes it
possible to model and analyze complex real-world protocols with millions of nodes. More-
over, such reasoning enables support for the analysis of games that involve uncontrollable
external factors.

We bring the following contributions:

o We propose a compositional framework for game-theoretic security analysis. This
framework introduces player-dependent security properties, enabling divide-and-
conquer reasoning over game trees. We decompose games into subgames, ensuring
that the resulting reasoning remains both sound and complete.

e We propose the use of divide-and-conquer algorithmic reasoning to interleave
compositional modeling and security analysis. This approach combines reasoning
between subgames and their supergames (parent games), incorporating the security
results of subgames into the leaves of their corresponding supergames.

e Our compositional framework supports the generation of counterezamples when
security properties are violated and extraction of game strategies otherwise.

e We define the notion of conditional actions and introduce related concepts, thereby
redefining game-theoretic security analysis in this context. In addition, we present
algorithms for analyzing models that include conditional actions.

The material presented in Chapter |3-Chapter |5, which focuses on using compositional
reasoning for scalability improvement, is based on a paper accepted the peer-reviewed
venue of OOPSLA 2025 — the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, co-authored by the author of this thesis; a
preprint is available at [5]. The contribution in Chapter 6, addressing conditional actions,
is unpublished.

1.5 Outline

In the following chapters, we discuss our approach for compositional (modular) reasoning,
as well as support for conditional actions. The rest of the thesis is organized as follows.
Chapter 2 lays the groundwork by introducing essential game-theoretical concepts and
security properties. Chapter 3| revises the notions of the existing security properties
and redefines them compositionally. Chapter 4/ presents an overview of the theory
underpinning the compositional approach. In Chapter |5, the automation and evaluation

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

1.5. Outline

of this approach are discussed. Chapter 6| demonstrates how compositional methods can
be applied to analyze models involving conditional actions. Lastly, the thesis concludes
in Chapter |7,

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Preliminaries

Before exploring compositionality and discussing the application of divide-and-conquer
techniques, it is essential to first understand the game-theoretic foundation of the topic,
the analyzed security properties and the automation of the analysis process. In the
following, we introduce the relevant concepts by adapting definitions from [6, 21] to our
setting.

2.1 Game Theory

For game-theoretic security analysis, blockchain protocols (or any other relevant protocols)
are modeled as games, representing the interactions between the parties involved, referred
to as the players in the context of game theory.

A game is a static finite object with finitely many players. Players choose from a finite
set of actions until the game ends, whereupon they receive a wutility. The focus is on
perfect information Eztensive Form Games (EFGs) [18] in which the actions are chosen
sequentially with full knowledge of all previous actions. Games may yield collective
benefit or loss, i.e. they are not necessarily zero-sum.

Definition 2.1 (Extensive Form Game — EFG). An extensive form game I' = (N, G) is
determined by a finite non-empty set of players N together with a finite tree G = (V, E).
A game path h = (e1,...,e,), with e; € E, that starts from the root of G is called a
history. We denote the set of histories 5€. There is a bijection between nodes v € V and
histories h € F that lead to these nodes.

o A history that leads to a leaf is called terminal and belongs to the set of terminal
histories .7 C 5. Terminal histories t are associated with a utility for each player.

7

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

PRELIMINARIES

. pw
(%a g) (_a7_a)

Figure 2.1: Market Entry game I'),c, with a,p > 0. Utility tuples state M’s utility first,
E’s second.

e Non-terminal histories are those histories that are not terminal. Non-terminal
histories h have assigned a next player denoted as P(h) € N. Player P(h) chooses
from the set A(h) of possible actions following h.

In an EFG I" we call a terminal history h* honest if it represents the expected behavior
in I An EFG I' can have many honest histories; security analysis over I' is always
performed relative to a chosen and fixed honest history.

Example 2.1 (Market Entry Game). Consider the Market Entry game I'y,e of Figure 2.1.
In this game there are two players: M representing a mew company and E an established
company. At the root, it is the turn of player P(0) = M to choose from actions A(()) =
{n,e}. Action n represents not entering the market, producing a terminal history (n)
where M gets 0 utility and E gets all of the profits p > 0. Action e represents entering
the market, in which case E can respond by either ignoring this move (action i) and thus
splitting profits equally, or by entering a price war (action pw) that damages both players.

In game theory, utilities are typically represented as numeric constants. Following [@], we
generalize utilities to symbolic terms in real arithmetic, allowing us to encode all possible
values within the given constraints. Variables and numeric constants are evaluated over
the real numbers extended by a finite set of infinitesimals, closer to zero than any real
number. Infinitesimals are used to model subtle subjective preferences or (in)conveniences,
not directly related to funds, such as opportunity cost. We model infinitesimals with
terms over R x R, ordered lexicographically: the first component represents the real part,
the second the infinitesimal. We write real for the first projection and avoid writing
pairs, using a, b, c. .. for real variables, and «, 3,7, ... for infinitesimals. The utility term
a + « — € is therefore represented as (a,0) + (0,a) — (0,¢) = (a, 0 — €).

Example 2.2. We could modify the Market Entry game from Figure|2.1| by adding an
infinitesimal o > 0 to the utility of player M at (e,i). The utility & + o represents half
of the profit p and the additional benefit of entering the market o, as M is motivated to
establish a new entity on the market.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.1. Game Theory

We now introduce notions for EFGs that are necessary for defining game-theoretic security
properties, as defined in [5].

Definition 2.2 (EFG Properties). Let I' = (N,G) be an EFG.

Strategy A strategy o for a group of players S C N is a function mapping non-terminal
histories h € A\ 7, where one of the players in group S has a turn P(h) € S, to
the possible actions A(h). We write Ss for the set of strategies for group S, and
& for SN which we call joint strategies. We refer to the union of strategies with
disjoint domains as a combined strategy and denote it as a tuple. To combine e.g.
os € Ss and TN_s € IN—_g, we write (05, TN_g) € L.

Resulting History The resulting terminal history H (o) of a joint strategy o € . is
the unique history obtained by following chosen actions in o from root to leaf.

Following Honest History A strategy for a player p follows the honest history h* if,
at every node along the honest history, where p is making a choice, the strategy
chooses the action in h*. For every other node, there is no constraint.

Utility Function The utility function u,(o) assigns to player p € N their utility at the
resulting terminal history of the joint strategy o € .7, that is uy(o) := up(H(0)).
We sometimes write all player utilities for a joint strategqy o € . as u(c), denoting
a tuple of size |N|.

Subgame Subgames I\, of I' are formed from the same set N of players and a subtree of
G, and are therefore identified by the history h leading to the subtree G\;,. Histories
Hy, of Uy, are histories in F with prefix h, strategies oy, € Sy, of 'y, are strategies
restricted to the nodes in Gy, and the utility function wy;, of I', assigns each joint
strategy oy, € S, the utility of the yielded leaf w(oy,) = u(h, H(oy,)). This
includes trivial subgames: leaves or the entire tree I' at the empty history.

Supergame If h' is a prefix of h, [y is a supergame of I'p,.

Subtree along/off Honest History Let h* be the honest history. A subgame I, is
along the honest history iff h is a prefiz of h*; that is, there is a history g € [in
the subtree such that (h,g) = h*. Otherwise, [y, is off the honest history.

Intuitively, a subgame is the part of the game that is still to be played after some actions
have been taken already. A supergame of a subgame is any game tree that embeds
the subgame as the subtree. For the sake of readability, we use subgame/subtree and
supergame/ supertree interchangeably. We write u(os, 7nv_s) = u((os, 7nv—s)) for the
combined strategy (o5, 7n_s) € . For history k € JZ, we write kj;, to express the suffix
of k after h, that is (h, k) = k.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

PRELIMINARIES

10

Example 2.3. Consider again the Market Entry game [y, in Figure |2.1. A joint
strategy T could be M to take action n initially, and player E taking i after (e). M’s
strategy Tar € Sy takes action n initially. E receives up(7T) = p. The history resulting
from T is (n), and T is a strategy extending history (n).

The subgame for history (e) has players {M, E} and a tree where E must choose between
action i with utility (§,5) and action pw with utility (—a,—a). For honest history (e, 1)
the subtree I'y,.) after action e is along the honest history (e,i), whereas the trivial
subtree U'pe|(ny after action n is off the honest history (e,).

The Market Entry game has 2 X 2 = 4 joint strategies as M chooses from two possible
actions, and independently E picks one action out of two in the subtree I e)-

2.2 Game-Theoretic Security Properties

Once real-life protocols are modeled as extensive form games (EFGs), the game-theoretic
security analysis of a protocol can be reduced to the game-theoretic security analysis of
the corresponding EFG. In this context, we introduce honest players, who adhere strictly
to the protocol’s intended behavior and do not deviate from the prescribed scenario (i.e.
engage in any form of cheating). Additionally, we consider rational players — those who
may deviate from the intended behavior if incentivized, that is, if a deviation offers them
a strictly better payoff. Finally, we also account for Byzantine players, whose behavior
is entirely unpredictable; they may deviate from the protocol with the sole intention of
harming others. Recall that an honest history is the terminal history that results from
all players behaving honestly.

For a protocol to be secure, adversaries must not be able to perform an attack, whether
for personal gain or to harm another party. In this regard, according to [20} 26|, a
protocol is considered game-theoretically secure if it satisfies the following two properties:

(P1) Byzantine Fault-Tolerance. Honest players do not suffer loss, even in the
presence of adversaries. In other words, in a secure protocol an honest player will
not receive negative utility, independent of others’ behavior. Therefore, there are
no “attacks” where somebody is harmed.

(P2) Incentive Compatibility. Rational agents do not deviate from the honest
behavior, as it yields the best payoff. Hence, in a secure protocol, a rational
“attacker” is behaving honestly and no adversary gets personal gain by deviation.

The two properties above are refined and ensured through four security properties as in [6,
20], which we discuss in the following. For all definitions, we consider a fixed arbitrary
EFG I' = (N, G) and provide the definitions relative to it.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.2. Game-Theoretic Security Properties

Definition 2.3 (Weak Immunity of a Strategy). A joint strategy o € . in EFG T is
weak immune if all players p that follow o always receive non-negative utility:

Vpe NVr e S uy(op, Tn—p) > 0. (wi(T))

Weak immunity ensures that behaving honestly never causes the players to lose resources
and thus captures property (P1). In some cases, weak immunity can be too restrictive.
Hence, property weaker immunity is proposed as an alternative to ensure that (P1) holds.

Definition 2.4 (Weaker Immunity of a Strategy). A joint strategy o in EFG T is weaker
immune if all players p that follow o always receive at least a negative infinitesimal:

Vp € N VT € . real(up(op, Tn—p)) > 0. (weri(I"))

Property (P2) is ensured by collusion resilience and practicality. Collusion resilience
guarantees that players do not have an incentive to form a colluding group and deviate
jointly from the honest behavior.

Definition 2.5 (Collusion Resilience of a Strategy). A joint strategy o in EFG T is
collusion resilient if colluding players S C N cannot profit from deviation:

VS C NVreZ. Zup(a) > Zup(aN,S,TS) . (cr)
peS peS

Last but not least, the property practicality ensures that the honest behavior is rational.
That is, even if players behave greedily, the honest behavior is the one that provides the
best utility.

Definition 2.6 (Practicality of a Strategy). A joint strategy o in EFG T' is practical if
it is a subgame perfect equilibrium, i.e. a Nash equilibrium in every subgame:

Vh € A Np € NVT € S p(opn) = Upp(Tp, Ojp,N—p) - (pr(I))

Definition 2.7 (Security Properties of Strategies and Histories). A strategy o € .7 of
a game I' is weak(er) immune, collusion resilient, or practical, iff it can serve as the
witness strategy in (wi(L')), (weri(I')), (cr), or (pr(I')), respectively.

A terminal history ¢t € 7 of the game I" is weak(er) immune, collusion resilient, or
practical, iff there exists a strategy o € % that has the respective property and extends
history t, that is H(o) = t.

Having defined the security properties of strategies and histories, we can introduce the
notion of secure history, as proposed in .

Definition 2.8 (Secure History). A terminal history h* of an EFG T" is secure if there
are three strategies o1, 09,03 extending h*, such that they are weak immune, collusion
restlient and practical, respectively.

11

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

PRELIMINARIES

12

Example 2.4 (Security of Market Entry game with Honest History (e,4)). Let us once
again recall the Market Entry game depicted in Figure|2.1 and fix the only honest history
to be (e,i). In the following, we examine whether the Market Entry game with honest
history (e,i) is secure, i.e. whether there are weak immune, collusion resilient and
practical strategies that extend the history (e, 7).

First of all, consider weak immunity. Out of the four joint strategies that can be
constructed for the Market Entry game, the only one that extends the honest history (e, 1)
is the strategy where M picks e at the beginning and E picks i after (e). We represent
this strategy by [0 — e, (e) — i]. We need to determine whether this strategy is weak
immune, that is, no player can get a negative utility, no matter how the other players
behave. We can see that this is not the case. If player M takes action e, player E might
decide to deviate from the honest behavior and take action pw instead of i, causing harm
to player M. In this case, M follows the honest behavior, but can still end up with a
negative utility, depending on how E plays. Because of this reason, the Market Entry
game with honest history (e,) is not weak immune.

Next, we analyze collusion resilience. To achieve this, we consider all strict subgroups of
players and need to check whether there is a strategy extending the honest history, such
that if any strict subgroup of players chooses to jointly deviate from this strategy they
will not receive a utility strictly better than the honest one by the end of the game. Recall
that out of the four joint strategies that can be constructed for the Market Entry game,
the only one that extends the honest history (e, i) is the strategy [0 — e, (e) — i], so we
analyze this strategy. Since the Market Entry game features two players, the only strict
subgroups of players are M and E. We inspect them individually. Starting with M, we
can conclude that if M decides to deviate and takes action n instead of action e, the
game will end and M will receive utility 0. The honest utility for M is &, where p is a
positive number. As 0 is not strictly better than g, collusion resilience is not violated in
terms of the first possible collusion group M and the honest history (e,i). Moving to the
second subgroup that we need to consider, namely E, we see that if & chooses to deviate
and takes action pw instead on i after non-terminal history (e), the game will end with a
negative utility for E, namely —a, which is trivially not strictly better than the honest
utility for E, namely §. Thus, collusion resilience is also not violated in terms of the
second possible collusion group E and the honest history (e,i). Consequently, the Market

Entry game with honest history (e, 1) is collusion resilient.

Last, we inspect practicality. For this property, we need to also consider each subgame of
the original game. The Market Entry game has two subgames - the trivial one, which is
the whole game and the subgame after action (e) where only player E has a choice. We
analyze the only strategy which extends the honest history, namely [0 — e, (e) — i]. In
the subtree after E, the rational decision for E is to choose action ©, as this yields a utility
for them which is strictly better that the one obtained after pw, namely —a. Next, we
move one level up — at the beginning of the game. Assuming E takes action i we analyze
which choice is best for M. We observe that it is not rational for M to deviate and pick
n, because 0 < g. Hence, the strategy [0 — e, (e) — i] is practical and consequently, the

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.3. Automated Game-Theoretic Security Analysis with CHECKMATE

(0,0,2)/A\B
R
N

(0,2,1) (1,1,1) (1,2,0) (1,0,2)

Figure 2.2: Example I';, for the property Collusion Resilience.

Market Entry game with honest history (e, i) is practical as well.

In summary, the Market Entry game with honest history (e, i) is collusion resilient and
practical, but not weak immune, and thus, not secure.

As a final point for this section, let us consider a non-trivial example for collusion
resilience, namely an example with more than two players. This is a more complex
example, as it allows colluding groups that are not necessarily singletons.

Example 2.5 (Security of an Example for Collusion Resilience). Consider the ex-
ample given in Figure 2.2, with honest history (b,c, f). Let us inspect the strategy
[0 — b, (b) = ¢, (b,c) = f,(b,d) = h]. We consider all possible colluding groups and
check if they can deviate in a way such that they receive a joint utility greater than the
honest one. {A} cannot deviate profitably, as it would lead to utility 0 (both after O and
(b,c)), which is not better than the honest utility for A, namely 1. Should {B} choose
to deviate (alone) after (b), they will get utility O instead of 2, because according to the
strategy we fixed, C' will choose action h after the deviation of B. Player C' cannot
deviate alone, since if A and B are honest, the game will end without C having their
turn. Next, we consider the remaining possible colluding groups, namely {A, B}, {A,C}
and {B,C}. If A and B decide to collude together, they either get a total utility 0 (leaf
after a), or total utility 1 (after (b,d), since C' is honest and chooses the action h fized in
our strategqy). In both cases, the sum of their utilities is less than the sum of the utilities
they would get if not colluding. In a similar manner, it can be arqued for {A,C} and
{B,C} that they cannot deviate profitably. Hence, T's, is collusion resilient.

2.3 Automated Game-Theoretic Security Analysis with
CheckMate

CHECKMATE is a framework for full automation of game-theoretic security analysis, with
particular focus on blockchain technologies [6]. For this purpose, the game, as well as

13

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

PRELIMINARIES

14

the security properties are encoded as SMT constraints. In the following, we briefly
describe the CHECKMATE framework, in particular we elaborate on its input instances,
the generated SMT constraints, its components and its output, as given in [6]. We assume
familiarity with standard first-order logic [22] and real arithmetic in the context of SMT
solving [1, 3].

Pipeline. The pipeline of CHECKMATE follows the structure summarized in [21]:

o First, an input instance is given. An input instance is a tuple
IT= (Fv ﬁa Cv CWiv Cweria CCU Cpr)-

I' is an EFG corresponding to a protocol that needs to be analyzed, whereas & is
a set of honest histories. Next, C' is the set of initial constraints on the variables
occurring in the player’s utilities and Cyi, Cweri, Cer, Cpr are sets of constraints
on variables to hold when checking weak immunity, weaker immunity, collusion
resilience and practicality, respectively.

e After the input is parsed and preprocessed, CHECKMATE proceeds to the analysis
of the honest behavior. If multiple honest histories are given, CHECKMATE will
analyze one honest history at a time and report the results individually.

e For each history and property, CHECKMATE constructs an SMT formula ¢ such
that ¢ is satisfiable iff the EFG satisfies the security property. The construction of
the formulas is described in more detail below.

If ¢ is satisfiable, a model (representing strategy) can be extracted and we can
output the result. Otherwise, it is checked whether case splitting is needed. This
occurs when some utility terms cannot be compared. In such cases, the tool
considers all consistent total orders of the terms that appear in the constructed
formulas. If ¢ is unsatisfiable, but further case splits can be applied, case splitting
is performed again. This iterative process terminates, as CHECKMATE is proven
to be sound and complete [6]. Otherwise, if ¢ is unsatisfiable and no case splits
apply, CHECKMATE can list countereramples witnessing why ¢ is violated, list the
cases in which ¢ is violated or compute the weakest precondition that if added as
an additional constraint, satisfies ¢.

CHECKMATE uses Z3 [7] as its underlying SMT solver to determine the satisfiability
of the constructed SMT formulas.

Construction of SMT formulas. As presented in [6], so-called action variables are
used for the construction of SMT encodings. Action variables are essentially Boolean
variables, that correspond to the branches of the game tree we analyze. For example, v/
is an action variable capturing whether after non-terminal history h, the player whose
turn it is takes action a. Depending on whether the action variable vg is true or false, we

can determine if the current player chooses action a after history h or not.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.3. Automated Game-Theoretic Security Analysis with CHECKMATE

Joint Strategies. In order to be able to extract joint strategies from the model,
one needs to ensure that at every internal node of the game, exactly one action
variable is set to true. This means, that at every point in the game where some
player has a turn they choose exactly one action. This can be achieved by adding a
constraint stating that at every internal node at least one and at most one of the
available action variables is set to true.

Honest Histories. Furthermore, when analyzing a protocol modeled as an EFG,
we are interested in finding joint strategies that extend honest histories. Hence, we
need to ensure that the strategy extracted from the model yields the fixed honest
history we currently check. This can be done by adding a constraint that ensures
that the action variables corresponding to actions along the honest history are set
to true.

Properties. After encoding joint strategies and honest histories it remains to
encode the security properties in order to guarantee that they hold in a model.

The encoding of weak immunity is elaborated in the following. For this property
we need to guarantee that each player gets a non-negative utility at the end of the
game, independent on how the other players behave. To achieve this, we need to fix
one player at a time and an add an implication stating that if the action variables
corresponding to the actions along a terminal history when this player has a turn
are all true, then the utility of this player received upon the end of the game has to
be non-negative. The final SMT formula is constructed by linking the previously
described formulas for the individual players conjunctively.

For the sake of readability and compactness of this chapter, interested users are
instructed to look up the SMT encoding in [6].

Example 2.6 (SMT encoding of Market Entry game with Honest History (e,)). Consider
once again the Market Entry game illustrated in Figure 2.1 and let the only honest history
be (e,i). Constructing the constraints for joint strategies and honest histories as described
above yields:

(W2 v o) A (=0 v =0?) A (vge) v vz(fg) A (—wfe) v w](;g) Ao A vfe).
The first four conjuncts correspond to the encoding of joint strategies. They ensure that
at the beginning of the game, either action n or e is picked but not both and similarly,
after action e either action v or pw is picked, but not both. The last two conjuncts are
action variables that guarantee that action e is picked at the beginning and action i after
that, corresponding to the given honest history.

Encoding weak immunity results in the following formula:
(v2—>020)/\(vg—>§20)/\(1}2—>—a20)/\

(p>0) AW 2

o 5z 0 = —a>0)

15

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.

PRELIMINARIES

16

The formula expresses that for each player, whenever the strategy includes actions leading
to a leaf, the utility the player receives at the end of the game is guaranteed to be non-
negative. The first line above corresponds to the player M, whereas the second one to
the player E. In the first line we ensure that M gets a non-negative utility if M chooses
action n in the strategy (first conjunct), but also if M takes action e, independently on
how E behaves. In the same manner, this is performed for E in the second line. Note
that the first conjunct in the second line does not contain an implication. This is due to
the fact, that this conjunct represents the constraint for the utility of E given terminal
history (o). Along this history, player E does not get to make a choice, so we obtain an
empty conjunction for the antecedent of the implication, which is trivially true and can
be omitted.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Compositional Game-Theoretic
Security Properties

The game-theoretic security properties introduced by Rain et al. in [20] are not composi-
tional by nature. Hence, we need to propose and prove new, but equivalent versions of
the security properties, which allow compositional game analysis.

A more detailed version of this chapter, together with Chapter 4-Chapter |5|is currently
accepted at the peer-reviewed venue of OOPSLA 2025 — the ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, with our preprint available
at [5].

3.1 Security Properties for Subgames

For the purpose of the compositional game-theoretic approach, we define the security
properties weak immunity, weaker immunity, collusion resilience, and practicality for
any subtree of I', generalizing definitions given by [20] and [6]. The definitions coincide
when the entire game I' is taken as the subtree. As before, the property Byzantine
Fault-Tolerance (P1) is ensured by weak immunity or respectively by weaker immunity;
and the property Incentive Compatibility (P2) by the combination of collusion resilience
and practicality. In this chapter we assume a total order on symbolic utility terms, same
as in [6]. Recall that whenever some utility terms cannot be compared, the algorithm
of CHECKMATE takes care of it by performing case splitting and analyzing all possible
consistent total orders.

Definition 3.1 (Weak Immunity of a Subtree). A subtree I', of game I' with honest
history h* is weak immune, if a strategy o € 7}, exists such that all players p following

17

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

COMPOSITIONAL GAME-THEORETIC SECURITY PROPERTIES

18

o always receive non-negative utility:

Jo € Ap.Vp € NVT € S up(op, TN-p) > 0. (wi(T|5))
If h is along h*, additionally H);,(0) = h|*h has to hold.
Sometimes, weak immunity is too restrictive and we take weaker immunity to ensure
(P1).

Definition 3.2 (Weaker Immunity of a Subtree). A subtree I';, of game I' with honest
history h* is weaker immune, if there exists a strategy o € A, such that all players p
that follow o always receive at least a negative infinitesimal:

Jo € H|y.Vp € N V7 € Fp,. real(up(op, Tn-p)) > 0. (weri(I'j;,))

If h is along h*, additionally H), (o) = h|*h.

Next, the property collusion resilience ensures that the honest behavior yields the best
payoff, even in the presence of collusion between players.

Definition 3.3 (Collusion Resilience of a Subtree). A subtree I\, of the game I' with
honest history h* is collusion resilient if there exists a strategy o € A, such that no strict
subgroup of players can deviate to receive a joint utility greater than their joint honest
utlity:

Jo € S}.VS C N V1 € S, Zup(h*) > Z up(oN—-5,T3) - (er(T)))
peS peS

If h is along h*, also H),(0) = hrh has to hold.

Note that the collusion resilience of a subtree according to the above definition depends
on the honest utility, the utility resulting from the honest history in the entire game I'.
The node containing the honest utility is not necessarily part of the considered subtree.

The property practicality ensures that, for all player decisions, the honest behavior is also
“greedy”: when all players act to maximize their own utility, the honest choice provides
the highest payoff.

Definition 3.4 (Practicality of a Subtree). A subtree I';, of the game I' with honest
history h* is practical, if there exists a strategy o € Sy, such that no player can deviate
in any subtree to receive a strictly greater utility in the subtree:

Jdo € Sy, Vg € Hy Vp € N VT € H|(1,,9)- (pr(Cn))
Ulg.p(01g) = Ujgp(Tp, Olg,N—p) -

If h is along h*, also H,(0) = h*h has to hold.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.2. Total Orders

We finally note that every subtree I'jj, of a game I' that is off the honest history is always
practical.

Example 3.1 (Practicality of Market Entry subgame off the honest history). Let the
honest history be (n). Consider the Market Entry subgame in Figure 2.1 after the
non-terminal history (e), that is off the honest history (n). We can always choose the
action that yields the best utility for the current player E. The only way we can violate
practicality is by having the best choice conflicting with the honest choice, which cannot
happen when the subtree is off the honest history.

Recall that in Definition 2.7, we introduced the security properties of strategies and
histories — specifying when a strategy satisfies a given security property and what it
means for a terminal history to do so. The same definition applies in the current context
as well.

3.2 Total Orders

Following [6], to lift the assumption about full knowledge of the relationships between
utility terms, we conduct the security analysis relative to a finite set C' of initial constraints
on the symbolic variables appearing in the utility terms and explicitly universally quantify
over the variables, as follows

V. </\ c[f]) — 3o € .. H(o) = h* Asp(o)[d], (3.1)
ceC
where ¥ = (z1,...,xy) are the real/infinitesimal variables occurring in the utility terms

T, and sp(o) is the formula of a security property sp € {wi,weri,cr,pr} after exis-
tential quantification of the strategy: e.g. for weak immunity wi(c) = Vp € N Vr €
Sh- up(0p, TN—p) > 0, and similarly for the other properties.

Additionally, to enable efficient comparison of symbolic utilities within an SMT solver,
we reformulate the above expression by accounting for all consistent total orders < over
the set T,, of utility terms present in the game I'.

Theorem 3.1 (Game-Theoretic Security with Total Orders). For an EFG I' with honest
history h* and a finite set of initial constraints C, property (3.1) is equivalent to

V(%,Ty) Jo € L. H(oc) =h* N VZ. /\ cl@] | — sp(o)[]. (3.2)
ceCU=

3.3 Compositional Counterexamples

If there is no joint strategy satisfying a security property (wi, weri, cr, or pr), we can
investigate why not. Counterexamples play a crucial role by revealing potential attack

19

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.

COMPOSITIONAL GAME-THEORETIC SECURITY PROPERTIES

20

vectors, thereby highlighting weaknesses in the protocol underlying the game model. By
adjusting [6], the counterezamples to security for each individual property are as given in
the sequel.

Counterexamples to Weak(er) Immunity. For the weak(er) immunity property, a
counterexample is a harmed honest player p and a partial strategy of the other players
N — p such that no matter what honest actions p chooses, they cannot avoid receiving a
real-valued negative utility.

Definition 3.5 (Counterexamples to Weak(er) Immunity). Let ' be an EFG and h* the
considered honest history. A counterexample to h* being weak(er) immune is a player
p together with a partial strategy sy—p, such that sy_, extended by any strategy o, of
player p who follows the honest history h*, yields a terminal history H(sn_p,0p) = to,
with up(ts,) < 0 (resp. for weaker immunity real(uy(ts,)) < 0) and it is minimal with
that property.

Minimality of the partial strategy sy_, states that, if any information point sy_,(h) = a
is removed, there exists a strategy o, of player p such that (o, s’N_p) does not yield a
terminal history, where SE\/'fp is sy—p without action a. That is, when following only
actions of (op, s?v_p), we get stuck at an internal node of the tree.

Example 3.2. A counterexample to the weak immunity of the Market Entry game
depicted in Figure |2.1 with the honest history (e,i) would be player M and a partial
strategy for E, where they choose action pw. If M behaves honestly and chooses action e,
they end up with the negative utility of —a after the terminal history (e, pw).

Counterexamples to Collusion Resilience. A counterexample to collusion resilience
consists of a group of deviating players S and their partial strategy sg € ., such that
the joint utility of S is better than the honest utility, no matter how the other players
N — § react, while still following the honest history.

Definition 3.6 (Counterexamples to Collusion Resilience). Let I' be an EFG and h* the
considered honest history. A counterexample to h* being collusion resilient is a set of
deviating players S together with their strategy sg such that sg extended by any strategy
on_s of players N — S, which follows the honest history h*, yields a terminal history
H(on-s,55) = toy_g with

S wpltoy) > 3 up(h)

peS pES
and it is minimal with that property. The minimality of sg is similar to the minimality
of the partial strategy for weak(er) immunity.

Example 3.3. In the Market Entry game shown in Figure 2.1, a counterexample to the
honest history (e,pw) being collusion resilient is a deviating group {E} with a partial

strategy that takes action i. Since the honest player M can only take action e, the

deviating utility for E is §, which is greater than the honest one —a.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3.3. Compositional Counterexamples

Counterexamples to Practicality. Intuitively, a counterexample to practicality of
the honest history A* has to provide a reason why a rational player would not follow
h*. At some point along h* after a prefix h, there is an action a promising the current
player P(h) a strictly better utility than A*. Further, in the subgame I'|;,) after (h,a)
all practical utilities have to be better for P(h), otherwise other players could choose
actions in I'(, o) that would disincentivize P(h) to deviate from h*.

Definition 3.7 (Counterexamples to Practicality). For an EFG T' and honest history
h*, a counterexample to practicality of h* is a prefiz h of h* together with an action
a € A(h), such that for all practical terminal histories t in the subgame I\, o) it holds
that Up(p) (h*) < uP(h)((ha a, t))

Example 3.4. The Market Entry game depicted in Figure 2.1 with the honest history
(n) is not practical. A counterexample to practicality is the empty prefic h = 0 and the
action e, as the practical utility in the subgame after history (e) yields § for player M,
which is strictly better than the 0 in the honest case.

21

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Compositional Game-Theoretic
Security

Our compositional approach to game-theoretic security analysis is designed through two
fundamental components:

1. Stratified analysis of security properties over players, capturing player-wise security
properties (Section 4.2);

2. Splitting player-wise security properties into subgames, enabling us to propagate
subgame reasoning to supergames in order to derive supergame security (Sec-
tion [4.3)).

For simplicity, in this chapter we assume a total order on the occurring utility terms in
order to relate symbolic game utilities. This assumption is relaxed in the case splitting
engine of the implemented algorithm (Algorithm 5.1), as discussed in Chapter 5.

As noted, this chapter is part of our extended submission [5].

4.1 Unsound Naive Approach to Compositionality

For a divide-and-conquer style of compositional game-theoretic security analysis, we
would like to analyze a game tree by propagating security results of subtrees upwards to
the parent/ancestor nodes of the supertree. However, naively propagating the yes/no
security result of the subtree does not suffice. This is shown in the following example.

Example 4.1. Consider the Market Entry game (from Figure 2.1) reproduced on the
left-hand side of Figure 4.1. Let the honest history to be (n), marked with a solid blue
line in the figure. Let us first analyze whether the property weak immunity is satisfied in

23

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COMPOSITIONAL GAME-THEORETIC SECURITY

24

M
/e
(0,p) E M
i/’/ \\\pw 7/ &

(0,p)

(b/2.0/2) (~a,-a)

Figure 4.1: Naive compositionality of Weak Immunity for Market Entry game, a,p > 0.

—wi

the usual, non-compositional way. The Market Entry game with honest history (n) is
weak immune: if M behaves honestly both players get a nonnegative utility; if M deviates
via e, player E can choose action i and obtains a positive utility §.

Now consider a naive compositional approach looking at the subgame after non-terminal
history (e), marked by teal dashed lines. Since player E can take action pw — leading to
negative utility for M — this subtree is not weak immune. To mimic a naive composi-
tionality approach, we replace the subtree after (e) by —wi, shown on the right. Asked
whether this supertree is weak immune, one would say no, as M could deviate from the
honest history via e, which leads to a subtree that is not weak immune. However, this is
an incorrect conclusion, because the game is weak immune, as justified in the previous
paragraph. Consequently, this example shows that the naive approach is unsound.

The naive approach fails because simply knowing that a subtree is not weakly immune is
not enough—we must also know who it is not weak immune for. As seen in the example
above, if weak immunity is violated only for player M, the parent can still achieve to
satisfy the property if M behaves honestly. In fact, a supertree can be weak immune
even if the subtree is not weak immune for any player. Similar details are needed for
other properties: collusion resilience requires information about the colluding groups
the subtree is collusion resilient against, and practicality requires the practical utilities
resulting from the subtree, and whether the utility of the honest history is practical. We
show that tracking this information enables a sound and complete compositional analysis
— which can further also be implemented algorithmically.

We also observe that the naive approach fails across all security properties and directions.
For instance, in Example 4.1, the subtree is not secure while the full game is secure.
In our experiments, we encountered all possible cases for each of the four properties:
the subgame is secure while the supergame is not, the reverse, both secure, or both not
secure.

4.2 Security Properties Stratified over Players

While Example 4.1 shows that there are no implications of subtree and supertree results
in general, subtrees along the honest history can, in fact, soundly pass negative (not

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.2. Security Properties Stratified over Players

secure) results up to their parents, as formalized in the following theorem.

Theorem 4.1 (Equivalence of Non-Secure Games). A game I with honest history h*
violates one of the security properties of weak(er) immunity, collusion resilience, or
practicality iff there exists a history h along the honest history h* such that I'jj, violates
the respective security property.

Intuitively, the honest history hA* “enforces” a path down the tree I': when a non-
secure subtree I';, is encountered along this path, there is no way to compensate for it.
Theorem 4.1, however, only propagates non-secure properties along the honest history.
To allow for analysis results propagating from subgames to supergames, we stratify
game-theoretic security analysis over individual players.

This allows us to analyze security properties for individual players (weak immunity:
Definition 4.1, practicality: Definition 4.3) or specific a player group (collusion resilience:
Definition [4.2) independently, without affecting the results for others (Theorem 4.2).
Before stating this theorem, we first define what it means for a game to satisfy a security
property for a single player or group.

Definition 4.1 (Weak Immunity for a Player). A subgame I\, with honest history h* is
weak immune for player p € N, if there exists a strategy o € A}, such that no matter to
which strategy T € S}, other players deviate, p’s utility will be non-negative and, if h is
along h*, then also H),(0) = hy,

Jo € Sp. (h along h* — Hy(0) = hjj,) A (wip(T)5))

VT € S Upp(op, TN-p) 2 0.

An analogous definition applies to weaker immunity.

The definition for collusion resilience against a given player group is similar to Defini-
tion 4.1), by lifting the quantifier over the player subgroups S C N to the front of the
formula.

Definition 4.2 (Collusion Resilience against a Player Group). A subgame Ljp of game T’
with honest history h* is collusion resilient against a group of players S C N, if there
exists a strategy o € Ay, such that no matter to which strategy T € A, the players in S
deviate, their joint utility will be not greater than their honest joint utility and, if h is
along h*, then also H),(0) = hiy:

do € Sp. (h along h* — H (o) = hjj,) A (crs(Ljn))
VT € Fp Y unp(0) 2D up (s on-s) -
peS pesS

Defining practicality for a single player requires slight changes: instead of considering an
arbitrary player p, we define practicality for that player whose turn it is in the considered
subtree.

25

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COMPOSITIONAL GAME-THEORETIC SECURITY

26

Definition 4.3 (Practicality for the Current Player). A subgame T, of a game I' with
honest history h* is practical for the current player, if there exists a strategy o € .7,
such that in each subtree Ty 4y no matter to which strategy T € |y, 4y the current player
P(h,g) deviates, the utility of P(h,g) in the subtree will not increase strictly and, if h is
along h*, then also Hy, (o) = hiy -

Jo € Ay (pre(ln))
(h along h* — H)(0) = h|*h) AVg € A, VT € J|(hg)-

Uj(h,g),P(h,g)(Tlg) = U(h,g),P(h,g) (TP(h,g): T|g,N—P(h,g)) -

We now state our first crucial result towards compositionality: stratification of security
analysis over players.

Theorem 4.2 (Player-Wise Security Properties). A game T satisfies a security property iff
it satisfies the respective security property player-wise. That is, the following equivalences
hold:

1. T weak immune < Vp € N. I weak immune for p

2. I weaker immune < Vp € N. I' weaker immune for p

3. ' collusion resilient < VS C N. I' collusion resilient against S
4. T practical < T practical for the current player

Example 4.2 (Player-Wise Weak Immunity). Let us revisit the Market Entry game Ty
with honest history (n) from Figure 4.1, considering one player at a time.

The first player is M. The subgame 'y, () after history (e) is not weak immune for M,
since E could take action pw. Propagating this result to the supertree I'y,e, we report
weak immunity for M: as M will honestly take action n, we avoid I'pe)(c)-

For E, T ¢/(e) s weak immune as action i can always be chosen, yielding positive utility.
Propagating this result, we conclude that I';,e is weak immune for E: all choices of M
(whom we do not assume to be honest in the analysis of E), lead to either non-negative
utility for E or to a subtree which is weak immune for E.

As weak immunity is given for each individual player, we can conclude that I'y,e with
honest history (n) is weak immune.

Example 4.3 (Player-Wise Collusion Resilience). Recall the example for collusion
resilience shown in Figure 2.2. In FExample 2.5 we showed that .. with honest history
(b,c, f) is collusion resilient. We now analyze the different strategies o° € . that are
collusion resilient against S, for all S C N and extend the honest history. Note that,
since these strategies need to extend the honest history, we have the following constraints:
a(0) = b,0%((b)) = ¢, 0%((b,¢)) = f. The only choice that is missing and needs to be
determined is o ((b,d)).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.2. Security Properties Stratified over Players

(1

A
/
,2) /B\

’ \

c’ \d
’ \
’

- ~

(0,2) (2 2)

Figure 4.2: Example I'y, for Practicality

S ={A}. If A deviates, they will not obtain a utility strictly grater than the honest
one. There are no restrictions on the choice of o ((b,d)).

e S = {B}. If B deviates, we need to make sure to set 0°((b,d)) = h, so that B
cannot deviate profitably.

e S={C}. C cannot deviate alone, since C does not get to have a turn, if A and B
are honest.

e S =1{A B}). For the case that both A and B collude, we need to set o°((b,d)) = h,
so that they cannot deviate profitably via terminal history (b,d, g).

e S={A,C}. If A and C collude either A takes action a, or B gets to play their
turn and takes action c, after which a takes action e. In both cases the sum of the
utilities of A and C 1is not greater that the sum of their honest utilities. There are
no restrictions on the choice of o°((b,d)).

e S={B,C}. If B and C deviate in any way, their joint utility will be 2 which is
not strictly better than their honest joint utility (also 2).

In conclusion, a collusion resilient strateqy o that is collusion resilient against all possible
colluding groups has to have o°((b,d)) = h.

Example 4.4 (Player-Wise Practicality). Consider the example for practicality given in
Figure 4.2 with honest history (a), marked by a thick blue line. We inspect whether there
is a strategy o € & that yields the honest history and is practical for the current player.
Let us start by considering the subgame after (b) marked with teal dashed lines. In this
subtree, it is rational for player B to take either one of the actions ¢ and d, as they both
yield the same utility for them. Moving on to the supertree, we consider player A. By
definition, history (a) is practical if there is a strategy that yields (a) such that A cannot
obtain a strictly greater utility by deviating. We observe that this can be achieved by fixing
action c for player B in our strategy, in case A deviates. Hence, Iy, is practical.

27

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COMPOSITIONAL GAME-THEORETIC SECURITY

28

4.3 Splitting and Combining Player-Wise Security
Properties

Theorem 4.2 establishes that security analysis can be conducted independently for each
player, without needing to consider interactions among all players. We will further
demonstrate that the security of a supergame can be broken down into the security of
its subgames, meaning that proving player-specific security in subgames is sufficient to
establish the security of the entire supergame. This approach ensures that compositional
game-theoretic security is both sound and complete.

Theorem 4.3 (Compositional Game-Theoretic Security). The game-theoretic security
of an EFG T" with honest history h* can be computed compositionally. That is, the only
information needed of a subtree I'yy,, to decide whether I' satisfies security property is

o for weak(er) immunity: for which players p € N the subtree I, is weak(er) immune;

o for collusion resilience: against which player groups S C N the subtree T'), is
collusion resilient;

e for practicality:

— if h is along h*: whether h|*h is practical in 'y, ;

— if h is not along h*: the set U(h) containing all practical utilities of T',. A
utility u(t) after terminal history t € 7 is practical in subgame T, iff t is
practical in I'.

Theorem 4.4, Theorem 4.5 and Theorem 4.6, establish how to compositionally com-
pute player-wise security for each security property, yielding a constructive proof of
Theorem 4.3,

Theorem 4.4 (Compositional Weak Immunity). Let T' be an EFG with honest history
h* and p € N a player. The following hold.

1) A leaf of T is weak immune for p iff p’s utility is non-negative:
Vte 7. wip(Ty) & wup(t) 20.

2) A branch of T is weak immune for p, where p is not the current player, iff all children
are weak immune for p:

Vhe #\T.p# P(h) = (wiy(T,) & Ya € A(h). wip(T)(hq)) -

3) A branch of T' along the honest history h* is weak immune for the current player p,
iff the child following h* is weak immune for p. Let a* € A(h) be the honest choice, i.e.
(h,a*) along h*, then:
Vhe #\ T.p=P(h)ANh along h* =
(wip(T)p) < wip(T)nar))) -

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.3. Splitting and Combining Player-Wise Security Properties

4) A branch of T' off the honest history h* is weak immune for the current player p, iff
there exists a child that is weak immune for p:

Vhe #\T.p=Ph)Nh off L* =
(’Ujip(l_“h) & da e A(h) wip(F\(h,a))) .

Similar results to Theorem [4.4] hold for weaker immunity.

Example 4.5 (Compositional Weak Immunity). We revisit the Market Entry game T
of Figure 4.1, with honest history (n). We compute that Ty, is weak immune using
our compositional approach, where we stratify over players first and then split Ty, into
subtrees.

We start with player M. Theorem |4.4| implies thal U is weak immune for M iff T pe\n)
is weak immune for M; since Uy n) is a leaf, we must check that the utility of M is
non-negative, i.e. 0 > 0. As this is true, game L'y, s weak immune for M.

Next, we move to E. According to Theorem 4.4, the game 'y is weak immune iff Tpypein)
and T e) are weak immune for E. The subgame Uy () is weak immune for E if
their utility is non-negative, i.e. p > 0, true by assumption. The subtree I'y,q (e) is now
weak immune for E iff either Ueici) o7 Uej(e,pw) 98- £ s utility at Tpej(e) s p/2 > 0.
Therefore I, is weak immune for E, and from Theorem |4.2 it follows that Uy, is weak
immaune.

Theorem 4.5 (Compositional Collusion Resilience). Let T be an EFG with honest history
h* and honest utility u* = u(h*). The following equivalences hold.

1) A leaf of T is collusion resilient against S C N iff the honest joint utility of the
deviating players p € S is greater than or equal to their joint utility at that leaf:

Vie T.oerg(Ty) < Y up>> up(t).

peS peS

2) A branch of T', where the current player is in the deviating group S C N, is collusion
resilient against S iff all children are collusion resilient against S':

Vhe #\T.Ph)eS =
(ers(T)y) & Va € A(h). ers(Tipna))) -

3) A branch of T' along the honest history h*, where the current player is not in the
deviating group S C N, is collusion resilient against S iff the child following h* is
collusion resilient against S. Let a* € A(h) be the honest action, i.e. (h,a*) along h*,
then:

Vhe #\T.P(h)¢SANh alongh™ =

(Crs(F‘h) = CTS(FKh,a*))) :

29

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.

COMPOSITIONAL GAME-THEORETIC SECURITY

30

4) A branch of T' off the honest history h*, where the current player is not in the deviating
group S C N, is collusion resilient against S iff there exists a child that is collusion
resilient against S:

Vhe #\T.P(h)¢ SAh off h* =
(ch(F|h) & da € A(h). CTS(F\(h,a))) .

Note that, if a player is in a deviating group, all child subtrees need to be collusion
resilient even if we are along the honest history, as the deviator might choose any action
and potentially harm honest players. In contrast, for an honest player and a node off
honest history, there needs to merely exist one collusion resilient child that the player
can choose to defend against the deviating group.

Example 4.6 (Compositional Collusion Resilience). We compositionally compute the
collusion resilience of the Market Entry game I'y,e (Figure 4.1) with honest history (n).
We have two possible colluding groups, both singletons {M} and {E}.

Consider {M}. At the root of e, since the player M is in the colluding group, all
subtrees must be collusion resilient against {M}. Along the honest history we reach a
leaf T pe|(ny, which is collusion resilient (it is the honest leaf). For subtree 'y,) there
needs to exist a collusion resilient child, which is the case in the leaf after (e,pw): utility
—a 1s strictly smaller than the honest utility 0.

Next, consider {E}. At the root, M is not in the deviating group. Hence, only the honest
child Tye)(ny meed be collusion resilient against { E'}, which it is, as it is the honest leaf; so
the utility is equal to the honest one in part (1) of Theorem 4.5. This suffices to establish
collusion resilience against {E'}; checking I'pe|(e) is unnecessary.

Using Theorem |4.2, it follows that I'y,e is collusion resilient.

Theorem 4.6 (Compositional Practicality). Let I be an EFG with honest history h* and
U(h) be the set of practical utilities of subtree T',. Let u* be the honest utility u* = u(h*).
Then the following identities and equivalences hold.

1) In a leaf of T the only practical utility is that of the leaf.
Vte 7.0(t) = {u(t)} .

2) The honest utility u* is practical in a branch of I' along h* iff it is practical in the
child following h* and if for every other child at least one practical utility is not greater
than u* for the current player. Let a* € A(h) be the honest action after h, then:

Vhe A\ T. halongh* = (pr(ly) &
pr(Tinas) A Ya € A(h)\{a"} Ju € U((h, a)). upp) = upm)) -

3) A wtility is practical in a branch of T off the honest history h* iff it is practical in
a child and if, for every other child, at least one practical utility is not greater for the

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4.3. Splitting and Combining Player-Wise Security Properties

current player.

Vhe A\T. hofft* = (Vte T u(t)cUh) <«
Jda € A(h). u(t) € U((h,a)) A
Va' € A(h) \ {a} 3’ € U((h,a")). upmy(t) > upg) -

Example 4.7 (Compositional Practicality). To compositionally compute the practicality
of the Market Entry game I'ye of Figure 4.1 with honest history (n), we start with the
leaves of the tree, where the practical utilities are the utilities of the leaves. Mowving
upwards in the tree, we look at the subtree ', (), which is off the honest history, so
we take the better utility for player E, setting U(e) = {(§,5)}. At the root of the tree,
which is along the honest history, the practical utility of the honest subtree (0,p) should be
practical in the entire tree. Since all practical utilities of the non-honest child (there is just
one) are better for player M (as § > 0), the honest utility is not practical. Theorem 4.2
then implies that T'y,e is not practical.

31

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Automation and Evaluation of
Game-Theoretic Security Analysis

Chapter 4] assumed a total order < on game utility terms T,,. Following the explanation
in Section 3.2} this section lifts this assumption and interprets the game variables in the
utility terms T, as real-valued variables Z. Combining Theorem 3.1/ and Theorem 4.2
we observe that quantification of the variables Z can be done equivalently by grouping
values of ¥ that satisfy the same total order (<,T,), and moreover, security property
quantifications (over players, subgames and strategies) can be pulled out of the ¥
quantification.

More concretely, for weak immunity, the formula (3.1) (with sp = wi) becomes equivalent
to:

V(=%,T,)Vpe NJo € S H(o)=h*A\Vr € .7

G (A c[a_c’]) — up(0p, TN—p)[F] > 0. (5.1)

ceCU=

The translation of game-theoretic security from Theorem 3.1/ to the player-wise security
of Theorem 4.2|is key to automating compositional security, as it allows us to pass on
only compact first-order expressions of the form

V. (A c[f]) Sty [7] > ute]d] (5.2)
ceCU=

to an SMT solver, where ut; and uty are term expressions over Z; which can be efficiently
handled by SMT solvers. Unlike [6], which passes a single large SMT formula to the solver,
the compositional framework passes many but much smaller formulas of the form |5.2.

33

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

S5.

AUTOMATION AND EVALUATION OF GAME-THEORETIC SECURITY ANALYSIS

34

To determine whether (5.2) is a theorem, the formula is first negated and then checked
for satisfiability using an SMT solver. Its simplified quantified structure is particularly
automation-friendly, as it falls within a purely existential fragment, for which efficient
decision procedures exists [1, 3]. Reasoning about players and the existence of strategies o
proving player-wise security is handled separately using the compositional results of
Theorem 4.4, Theorem 4.5/ and Theorem 4.6, keeping this complexity out of the SM'T
solving.

5.1 Divide-and-Conquer Algorithms for Compositional
Security

Our compositionality results from Theorem 4.2, Theorem /4.4, Theorem 4.5, and Theo-
rem |4.6| extended by a lazy total-order approach, induce a divide-and-conquer method
for splitting and combining reasoning over game subtrees and supertrees. Our overall
divide-and-conquer framework for automating compositional game-theoretic reasoning is
summarized in Algorithm [5.1. We compositionally compute the game-theoretic security
of a protocol, analyzing the (protocol) game for all real-valued variables of utitilty terms,
considering all total orders at once. If we fail, we split the total orders into multiple
cases, unless we can conclude that the respective security property cannot be satisfied
even if we restrict the values to one total order.

Algorithm 5.1: Function SatisfiesProperty. In Algorithm |5.1] an instance II,
which contains the game tree I" and the set of initial constraints C' (as introduced in
Section 2.3)), is given as input. The input to Algorithm 5.1 also contains the honest
history h*, the security property to be analyzed, and the currently considered case case.

The function SatisfiesProperty in Algorithm 5.1 is called initially with the empty
case to analyze all total orders. This case can be refined throughout Algorithm 5.1}, using
case splits. Hence, in the first call of the function, the set S, representing the constraints
handed to an SMT solver, contains only the initial constraints C'. The relevant player
groups RelevantGroups of security property sp are set according to the stratified
definitions of sp from Section 4.2: N for w(er)i, as we stratify over players; 2V \ {, N}
for cr, as we stratify over deviating subgroups; and {“none”} for pr.

The function ComputeSP in line 6 of Algorithm 5.1 stands for ComputeWI (Algorithm 5.2)),
ComputeCR or ComputePR, depending on the security property sp. The result of
ComputeSP depends on whether I with honest history h* satisfies property sp for/against
pg, given the constraints in S.

In ComputeSP, we also keep track of utility comparisons we cannot decide. Importantly,
if constraints need to be compared, but cannot, they are returned and checked as split,,
later.

The loop in lines 5-12 of Algorithm [5.1/incorporates player-wise security from Theorem 4.2,
It additionally provides a necessary case split if the security property is violated for a

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.1. Divide-and-Conquer Algorithms for Compositional Security

Algorithm 5.1: Function SatisfiesProperty for Compositional Game-

Theoretic Security Reasoning.

AW N =

© o N o O«

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

input :input instance Il = (I',inf, C), honest history h*, the name of a
security property sp € {wi,weri, cr,pr}, and the currently analyzed

case (as set of SMT constraints) case.
output : t rue if Il satisfies sp in case case, false otherwise

S« 0

AddConstraints (S, CUcase)
result <— true

split < null

for pg € RelevantGroups(Il, sp) do
(resultpg, splitpg) < ComputesSP (II,h*,S,sp,pg)
if resultpy = false then
result < resultpg
split < splitpg
break
end

end

if result = true then
‘ return true
end
if split = null then
‘ return false
end
for constr € {split, —split} do
if -SatisfiesProperty(Il, h*, sp, case U {constr}) then
‘ return false
end
end
return true

35

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

S5.

AUTOMATION AND EVALUATION OF GAME-THEORETIC SECURITY ANALYSIS

36

player group, if one exists. Subsequently, the respective results are returned: truefor all
groups yields true; falsebut nothing to split on for at least one group yields false;
and falsetogether with a split leads to further case splits (lines 19-24). If we split the
total orders into multiple cases, all the cases have to return truefor the property to be
satisfied.

The security-property-specific function variants of ComputeSP recursively apply the
compositional results of Theorem 4.3. To illustrate case splitting of total orders, we only
describe function ComputeWI of Algortihm |5.2| below.

Algorithm [5.2: Function ComputeWI. The function ComputeWI of Algorithm [5.2
is initially called with the entire game tree I' from function SatisfiesProperty of
Algorithm [5.1. We then proceed recursively, according to Theorem [4.4. Note that the
player group pg is just one player.

In aleaf, GetUtility in Algorithm 5.2|returns the utility of player pg. In line 2, we check
if the constraints in S combined with the condition that the utility is negative are unsat.
To ensure non-negative utility, we negate the constraint and check for unsatisfiability. If
the implication holds, we return t rue, indicating the utility is non-negative. If not, we
check if the utility can be non-negative in line 5. If it cannot (line 6), the leaf is not weak
immune, so we return false and null; as no further case split is needed. Otherwise (line
8), weak immunity depends on the total order, requiring a case split.

In lines 10-32 of Algorithm [5.2, we check in which of the cases of Theorem 4.4 we are.
We then call the function ComputeWI recursively on immediate subgames I'j,) and
propagate the result accordingly. Note that, for simplicity, in line 13 of Algorithm 5.2 we
do not wait for a null split that would immediately return false, but rather proceed with
a split. However, as there are only finitely many possible case splits, we will eventually
see the null split for a false subtree if it exists and return it to reach the correct result.

Example 5.1. We simulate the execution of ComputeWI (Algorithm|5.2) on the Market
Entry game (Figure 4.1)), assuming only a > 0 and letting p € R. We check weak immunity
for player M with honest history (e, i) on the full game tree T'ye. Since the root is along
the honest history, the function jumps to line 19 and recursively calls ComputeWI for
the honest subtree I'pe)e). There, E is the current player (not M), so we follow line
10 and evaluate both actions pw and i. For pw we recursively compute weak immunity
for the leaf after (e,pw) in line 12. Algorithm 5.2 will execute lines 1 and 2, and since
the utility of player M is 0, which is a non-negative number, the check in line 2 will
be unsat, so the function returns (true, null). For the other action i, we recursively
compute (line 12 of the algorithm) the weak immunity for the leaf after (e,i). The
Junction GetUtility (Upei(eiy, M) will return £, for which we cannot decide whether
it is non-negative, as there are no initial constraints on p. Both checks in lines 2 and 5
fail, so we return (false, §>0) in line 8. Back in Linel(e)s since the result is false,
we return (false, % >0) in line 14.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.1. Divide-and-Conquer Algorithms for Compositional Security

Algorithm 5.2: Function ComputeWI for Weak Immunity.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21

22

23
24
25
26
27
28
29
30
31
32

input :game tree I', honest history h*, set S containing initial constraints
and current case, player group pg.

output : (result, split), where result states whether I' is weak immune for pg,
given S, and split a crucial utility comparison we cannot decide.

if isLeaf(I") then

if Check(S,GetUtility(T', pg) < 0) = unsat then
‘ return (true,null)

end

if Check(S,GetUtility(I',pg) > 0) = unsat then
‘ return (false,null)

end

return (false,GetUtility(I', pg) > 0)

end

if CurrentPlayer(I') # pg then
for a € Actions(I') do
(result, split) «— ComputeWI(I'|4), h*,S, pg)
if result = false then
‘ return (result, split)
end
end
return (true,null)

end

if AlongHonest(I',h*) then
a* < HonestAction(I', h¥)
return ComputeWI (T4, h*,S, pg)
end

newsplit < null
for a € Actions(I') do
(result, split) <- ComputeWI(T'|4), ", S, pg)
if result = true then
‘ return (true,null)
else if split # null then
‘ newsplit < split
end

end
return (false, newsplit)

Theorem 5.1 (Correctness of 5.1). The compositional approach to compute the game-
theoretic security of an input instance I for honest history h* described in Algorithm 5.1

37

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

S5.

AUTOMATION AND EVALUATION OF GAME-THEORETIC SECURITY ANALYSIS

38

is sound and complete. That is, SatisfiesProperty(Il,h*, sp,0) = true iff II with
honest history h* satisfies the property sp. Otherwise, it returns false.

In addition to compositional security via Algorithm [5.1, our work supports additional
features to debug a protocol and better understand its structure. Those include (i)
strategy extraction in case the considered security property was satisfied (Section [5.2),
(ii) finding counterexamples (Section 5.3)), and (iii) providing weakest preconditions to
make the game secure otherwise. Computing preconditions in our compositional setting
can be done via collecting all cases in which the security property is violated, and then
conjoining and negating them afterwards.

5.2 Extracting Compositional Strategies

The compositional security analysis in Algorithm |5.1/is designed in a way that it efficiently
carries the necessary information to compute witnesses in a simple and intuitive manner.

Theorem 5.2 (Weak(er) Immune Strategies). For a weak(er) immune game I', with
honest history h*, strategy o is honest and weak(er) immune where

o= (o, ... oPINl) |

and oP" € 7, is a strategy for player p;. Strategy o picks the honest choice along the
honest history, whereas at other nodes, where it is p;’s turn, it picks an arbitrary action a
that yields a weak(er) immune for p; subtree after action a.

Theorem 5.2/ outlines a constructive algorithm for extracting a weak(er) immune strategy.
For each player pg, the function ComputeWI (and ComputeWERI) operates as follows:
when it is pg’s turn after history h, h off h*, and a weak(er) immune choice is identified,
the action is recorded as part of a potential weak(er) immune and honest strategy o.
If the game is weak(er) immune for all players, we can compute o by collecting all the
recorded choices throughout the tree.

Example 5.2. We compute the weak immune strateqy of the Market Entry game from
Figure 2.1 with honest history (n), which was analyzed in Example 4.5. The strategy o™
for player M has to choose the honest action n at the root, which is the only choice point
for M. The strateqy o for player E needs to choose one weaker immune subtree after
history (e). Since the subtree after history (e,i) is the only candidate, we set o (e) = i.
The strategy o = (o™, o) is the desired weak immune strategy.

Collusion resilience and practicality also admit elegant methods for deriving compositional
strategies in a similar manner. Detailed description can be found in [5].

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.3. Finding Compositional Counterexamples

5.3 Finding Compositional Counterexamples

Counterexamples to the security properties, as defined in Definition [3.5, Definition 3.6
and Definition 3.7, serve the important purpose of providing attack vectors and thus
pinpointing the weaknesses of a protocol underlying the considered game model. We use
the following pseudo-algorithms to compute counterexamples compositionally.

Compositional Counterexamples to Weak(er) Immunity. We first store infor-
mation during Algorithm 5.2: When analyzing the weak(er) immunity for a player p,
whenever it is not p’s turn and there exists an action leading to a not weak(er) immune
subtree (line 14 with split = null in Algorithm 5.2), we store the action, the current
history and the player p.

Secondly, after the analysis terminated and the result was not weak(er) immune, we
generate a counterexample to the weak(er) immunity of player p by walking through the
tree again. Assume the current history is A and we proceed from the root as follows.

o If p is the current player and h is along the honest history, we follow the honest
action to a subtree. This is sufficient since an honest p follows the honest history.

o If it is p’s turn but A is not along the honest history, all choices had to lead to not
weak(er) immune for p subtrees for the current tree to be not weak(er) immune for
p. We, therefore, have to follow all choices to compute a counterexample.

e Otherwise, if it is not p’s turn, we check our stored data for a choice a that is not

weak(er) immune for p. By construction and using Theorem 4.4) it has to exist.

We add it to our partial strategy sy—_p, i.e. sy—p(h) = a. Then, we continue at
history (h,a).

o At a leaf nothing has to be considered. A leaf that is not weak(er) immune for p
contains a negative (real) utility for p.

According to Theorem 4.4, the steps outlined above provide a player p and a partial
strategy sy—p for the other players N — p, no matter how the honest p behaves off
the honest history. It also yields only negative utilities for p and it thus provides a
counterexample to the weak(er) immunity of p and, therefore, a counterexample to the
weak immunity of the game with the considered honest history.

It is also possible to compute all counterexamples to weak(er) immunity. This can be
done by simply storing all actions that lead to not weak(er) immune subtrees.

Example 5.3. Let us adapt the Market Entry game from Figure 2.1 by changing the
initial constraint on the variable p to p < 0. The honest history (n) is not weak immune
for player E, as they get a negative utility p < 0 in the honest leaf. We can thus construct
the counterexample as follows: starting from the root, it is not E’s turn and the not weak

39

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

S5.

AUTOMATION AND EVALUATION OF GAME-THEORETIC SECURITY ANALYSIS

40

immune choice is (n), so we add the action n to the partial strategy for player M. We
then continue at history (n), which is a leaf, so we are done.

Counterexamples to collusion resilience and practicality can also be computed in a similar
manner. Detailed description can be found in [5].

5.4 Experimental Evaluation

We implemented the compositional security approach of Chapter 4] by exploiting its
divide-and-conquer reasoning nature from Section 5.1, Section |5.2| and Section [5.3. Our
implementation is available online in the CHECKMATE 2.0 tool.

Experimental Setup. We evaluated our tool using a machine with 2 AMD EPYC
7502 CPUs clocked at 2.5GHz with 32 cores and 1TB RAM using 16 game-theoretic
security benchmarks. Our dataset contains the 15 examples analyzed in [21], which
include realistic models of real-world blockchain protocols along with game scenarios
of various sizes. Additionally, we detail later in this section one large example, named
4-Player Routing, in order to showcase the impact of interleaved sub- and supertree
reasoning. Our experiments also compare CHECKMATE 2.0 to CHECKMATE.

Experimental Results. Table|5.1, Table 5.2 and Table|5.3| summarize our experiments.
We report both on the results of CHECKMATE 2.0 and CHECKMATE; the respective
columns on times, nodes, and calls detail these comparisons. In particular, the columns
“Nodes evaluated” and “Nodes evaluated (reps)” indicate the number of game tree nodes
visited during the security analysis without and, respectively, with repetitions. The
“Calls” column of Table 5.1 shows the number of calls made to the SMT solver while
proving the security property listed in column 4.

Experimental Analysis. Table |5.1| demonstrates that the compositional approach of
CHECKMATE 2.0 significantly outperforms the non-compositional CHECKMATE setting
in execution time across nearly all benchmarks. The scalability of CHECKMATE 2.0 is
especially evident in the Tic Tac Toe benchmark, which involves a substantial 548,946
nodes. In this example, for the properties weak immunity (wi), weaker immunity
(weri), and collusion resilience (cr), CHECKMATE 2.0 completes the security analysis in
approximately 5 seconds, whereas CHECKMATE requires between 255 and 287 seconds.
When proving practicality (pr) of Tic Tac Toe, the conventional CHECKMATE fails to
terminate within 8 hours while CHECKMATE 2.0 succeeds in less than 37 seconds.

In some benchmarks, where a security property is not satisfied, CHECKMATE 2.0 explores
significantly fewer nodes, see 3-Player Routing for weak immunity and collusion resilience,
the Pirate game for weak immunity, and Auction for weak immunity and collusion
resilience.

"https://github.com/apre-group/checkmate/tree/CCS25

https://github.com/apre-group/checkmate/tree/CCS25

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.4. Experimental Evaluation

Game Nodes Players Security Secure Time Nodes Nodes Calls
property yes/no evaluated evaluated (reps)
CheckMate 2.0/CheckMate
Splits,,; 5 2 Wi ¥ 0.010 / 0.018 5 18710 10/3
(9) weri ¥ 0.010 / 0.018 5 18 /10 10/3
or ¥ 0.010 / 0.015 4/5 6/10 3/1
pr ¥ 0.011 / 0.017 5 2% /5 19/3
Splits,, 5 2 wi y 0.011 / 0.019 4/5 6 /10 3/1
(n) weri y 0.011 / 0.019 4/5 6/ 10 3/1
cr v 0.011 / 0.018 5 16 / 10 10/3
pr y 0.011 / 0.018 5 15/5 20/3
Market Entry 5 2 wi n 0.011 / 0.014 5 8 /10 5/1
(e,7) weri n 0.010 / 0.014 5 8 /10 5/1
er ¥ 0.010 / 0.014 5 8/10 1/1
pr v 0.010 / 0.015 5 5 2/1
G 5 2 wi 1 0.010 / 0.012 575 B/ 10 8/1
(ra,l5) weri n 0.009 / 0.012 5/5 28/ 10 18 /4
or n 0.008 / 0.010 2/5 2/10 2/1
pr n 0.009 / 0.010 5/5 9/5 5/1
Simplified Closing 8 2 wi y 0.009 / 0.012 8 10 /16 8/1
(H) weri v 0.009 / 0.011 8 10 / 16 8/1
cr v 0.008 / 0.011 7/8 9/16 6/1
pr n 0.009 / 0.012 8 8 8/1
(Ch, S) wi n 0.008 / 0.012 3/8 3/16 2/1
weri n 0.008 / 0.011 3/8 3/16 2/1
cr ¥y 0.008 / 0.012 8 11/ 16 7/1
pr v 0.009 / 0.013 8 8 6/1
Simplified Routing 17 5 wi n 0.008 / 0.012 7/17 7/8 2/1
(Su,L,L,L,L,U,U,U,U) weri y 0.009 / 0.011 17 77/ 85 28/ 1
cr n 0.010 / 0.017 16 / 17 105 / 510 24 /1
pr y 0.009 / 0.012 17 17 8/1
Centipede 19 3 wi n 0.044 / 0.051 19 602 / 57 345 /18
(c,c,c.c.c,o.c.c.0) weri n 0.033 / 0.052 19 602 / 57 345 /18
cr n 0.044 / 0.038 19 534 /114 305 /9
pr n 0.011 / 0.028 19 103 / 19 39/ 7
EBOS 31 1 Wi n 0.009 / 0.013 28 /31 38/ 124 /1
(Mine, Mine, Mine, Mine) weri n 0.008 / 0.013 28 /31 38 /124 21/1
cr n 0.039 / 0.021 31 476 / 434 304 /4
pr n 0.019 / 0.024 31 167 / 31 184 /5
Pirate 79 4 wi n 0.010 / 0.015 10 /79 10 / 316 5/1
(y,n,n,n,y,y) weri n 0.009 / 0.016 10 /79 10 / 316 5/1
or n 0.041 / 0.029 79 622 / 1106 368 /4
pr n 0.036 / 0.049 79 482 /79 554 / 8
Auction 92 4 wi n 0.012 / 0.033 16 / 92 16 / 368 9/1
(E,E,1,1) weri y 0.016 / 0.027 90 / 92 229 / 368 162 /1
cr n 0.018 / 0.030 66 / 92 128 / 1,288 103 /1
pr ¥ 0.021 / 0.145 92 92 188 /1
Closing 221 2 wi y 0.011 / 0.024 20 / 221 22 / 442 16 /1
(H) weri ¥ 0.010 / 0.021 20 / 221 22 / 442 16/1
cr y 0.012 / 0.023 44 /221 46 / 442 36/1
pr n 0.097 / 0.346 221 568 / 221 1454 / 1
(Ch, S) wi ¥ 0.011 / 0.024 33 / 221 36 / 442 2 /1
weri y 0.011 / 0.020 33 /221 36 / 442 25/1
cr y 0.013 / 0.023 60 / 221 63 / 442 48/1
pr y 2.144 / 0.345 221 14353 / 221 38220 / 1
3-Player Routing 21,688 3 wi n 0.248 / 0.984 16 / 21,688 16 / 65,064 9/1
(Su,L,L,U,U) weri y 0.514 / 1.008 7,084 / 21,688 7,570 / 65,064 5441 /1
cr n 0.272 / 1.886 430 / 21,688 474 /130,128 299 /1
pr n 33.162 / 34.717 21,688 416,156 / 21,688 569,418 / 13
Unlocking Routing 36,113 5 wi n 0.621 / 2.121 1,184 / 36,113 1,184 / 180,565 714 /1
(U,U,U,0) weri v 1.525 / 1.625 32,429 / 36,113 55,090 / 180,565 27,897 / 1
cr n 0.584 / 15.247 319 /36,113 373 / 1,083,390 60 /1
pr ¥ 2.848 / 4.382 36,113 /36,113 36,113 /36,113 46,636 / 1
Tic Tac Toe Concise 58,748 2 wi y 0.557 / 6.372 1,345 / 58,748 1,355 / 117,496 698 /1
(CM, LU, RU,LD, LM weri y 0541 /6.373 1,345 /58,748 1,355 / 117,496 698 /1
RM,CU,CD,RD) cr y 0.543 / 7.352 1,345 / 58,748 1,355 / 117,496 698 /1
pr 3.937 / 227.807 58,748 / 58,748 58,748 / 58,748 57,250 / 1
Tic Tac Toe 549,946 2 wi 5.276 / 255.368 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1

LM,CU,CD,LD) cr 5.302 / 286.574 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1

y
v
(CM,RU,LU,RD,RM, weri y 5.256 / 255.600 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
¥
y 36.530 / TO 549,946 / TO 549,946 / TO 527,198 / TO

Table 5.1: Experimental results of game-theoretic security, using the compositional
CHECKMATE 2.0 approach and the non-compositional CHECKMATE setting of .
Runtimes are given in seconds, with a timeout (TO) after 8 hours. For each game,
columns 2-3 list the size (tree nodes and game players) of the game from column 1.
Column 4 shows the game-theoretic security property we analyzed and (dis)proved, as
indicated in column 5. Columns 6-9 present the results of CHECKMATE 2.0 compared to
CHECKMATE, using the slash / sign.

41

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5. AUTOMATION AND EVALUATION OF GAME-THEORETIC SECURITY ANALYSIS
Game Property Time (one CE) Time (all CE)
CheckMate 2.0/CheckMate | CheckMate 2.0/CheckMate
Market Entry wi 0.010 / 0.016 0.010 / 0.023
(e, 1) weri 0.010 / 0.017 0.009 / 0.019
G wi 0.010 / 0.013 0.010 / 0.020
(ra,lp) weri 0.010 / 0.014 0.009 / 0.020
cr 0.008 / 0.011 0.008 / 0.013
pr 0.009 / 0.016 0.009 / 0.028
Simplified Closing (H) pr 0.009 / 0.019 0.008 / 0.019
(Ch, S) wi 0.009 / 0.014 0.008 / 0.016
weri 0.009 / 0.014 0.008 / 0.014
Simplified Routing wi 0.009 / 0.014 0.010 / 0.033
(Su, L, L, L, L,U,U,U,U) cr 0.010 / 0.023 0.016 / 0.096
Centipede wi 0.046 / 0.049 0.080 / 0.495
(c,c,c,c,c,c,c,C,0) weri 0.034 / 0.050 0.061 / 0.495
cr 0.045 / 0.047 0.078 / 0.538
pr 0.012 / 0.062 0.022 / 0.400
EBOS wi 0.010 / 0.015 0.011 / 0.058
(Mine, Mine, Mine, Mine) weri 0.010 / 0.015 0.010 / 0.057
er 0.040 / 0.028 0.057 / 10.760
pr 0.020 / 0.032 0.021 / 0.032
Pirate wi 0.010 / 0.020 0.157 / 9.465
(y,n,m,m,y,y) weri 0.009 / 0.020 0.157 / 9.495
cr 0.041 / 0.039 3.232 / 79.839
pr 0.037 / 0.064 7.414 / 35.227
Auction wi 0.012 / 0.048 0.025 / 4.172
(E,E,I,1) cr 0.018 / 0.066 0.036 / 15.106
Closing (H) pr 0.096 / 0.650 2.204 / 8.846
3-Player Routing wi 0.251 / 1.925 5.909 / 110.716
(Su, L, L,U,U) cr 0.279 / 5.619 1.657 / 7.815
pr 33.561 / 46.480 291.236 / 3 033.784
Unlocking Routing wi 0.602 / 5.219 2.090 / 1 988.997
(U,U,U,0) cr 0.564 / 116.906 3.562 / error
Table 5.2: Experiments on counterexample (CE) generation using our CHECKMATE 2.0
approach and the non-compositional CHECKMATE tool of [21]. Runtimes are given
in seconds; error means we encountered an exception thrown from CHECKMATE’s Z3
backend.
We note that CHECKMATE 2.0 requires considerably more SMT solving calls. Notable
examples include the Closing Game (38,220 CHECKMATE 2.0 calls vs. 1 CHECKMATE
call for practicality), 3-Player Routing (546,418 vs. 13 calls for practicality), and Tic
Tac Toe (10,694 vs. 1 call for weak(er) immunity and collusion resilience). Despite
the higher number of SMT calls in CHECKMATE 2.0, the SMT queries generated by
CHECKMATE 2.0 are considerably smaller than the ones of CHECKMATE. Moreover,
CHECKMATE 2.0 calls inhabit a quantifier-free fragment, easing reasoning significantly
as reflected in the improved execution times.
In general, CHECKMATE 2.0 analysis may occasionally result also in suboptimal splits,
leading to longer execution times. This issue is exemplified in the Closing game when
analyzing practicality of the honest history (C},S). Additionally, analyzing collusion
resilience can sometimes take longer, particularly when more players are involved, for
42

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.4. Experimental Evaluation

example in the Pirate game. This might be explained by the very large number of colluding
groups combined with a small game resulting in many trivial SMT calls compared to
CHECKMATE.

Counterexamples. Table [5.2) presents the CHECKMATE 2.0 runtimes to generate
counterexamples compared to CHECKMATE. It reports the execution time required to
find one counterexample (for one case split) as well as finding all counterexamples in
all cases for violated security properties. The former is useful for quickly identifying
scenarios where the property is not met, while the latter proves particularly helpful when
revising and refining a protocol.

The use of compositionality in CHECKMATE 2.0 demonstrates notable improvements
in execution time, particularly when retrieving all counterexamples. Additionally, the
execution times for compositional analysis with and without counterexample extraction
are quite similar, indicating that CHECKMATE 2.0 enables counterexample extraction
with minimal overhead. The counterexamples to collusion resilience for the Pirate game
show this clearly. While CHECKMATE 2.0 requires slightly more time for property
analysis compared to CHECKMATE, we note that the new CHECKMATE 2.0 identifies all
counterexamples across all cases in approximately 3 seconds, whereas CHECKMATE takes
almost 80 seconds. Similarly, in the case of the 3-Player Routing game, CHECKMATE 2.0
retrieves all counterexamples for all cases within 291 seconds, while it takes CHECKMATE
over 3,000 seconds (50 minutes).

Strategies. We also compared the two approaches in terms of efficiency for strat-
egy extraction and report the results in Table 5.3l The findings closely mirror the
results observed for counterexamples. Firstly, strategy extraction in the compositional
approach outperforms the previous method across nearly all benchmarks. Secondly, the
compositional approach incurs almost no additional overhead for strategy extraction.

One benchmark that stands out is Tic Tac Toe, where the additional overhead for
strategy extraction is clearly noticeable for collusion resilience and practicality. However,
strategy extraction for these properties is still achievable within reasonable time, namely
18 seconds for collusion resilience and 276 seconds for practicality. This represents a
significant improvement over the non-compositional approach, which takes 347 seconds
for collusion resilience and fails to terminate within the 8-hour time limit for practicality.

Sub- and Supertree Reasoning. One of the most significant contributions of the com-
positional reasoning is that CHECKMATE 2.0 enables analyzing subtrees independently
and integrating only their security results in the supertree. This feature of CHECK-
MATE 2.0 is particularly beneficial in larger models. For instance, the 3-Player Routing
and Routing Unlocking benchmarks based on the routing protocol [19] are generated
using a script, as it is not feasible to model protocols of this size manually. Modeling the
routing protocol for 3 players results in a game with 21,688 nodes (3-Player Routing),
taking 20 MB on disk.

43

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

S5.

AUTOMATION AND EVALUATION OF GAME-THEORETIC SECURITY ANALYSIS

44

Next, we detail a more challenging routing example with 4 players, 4-Player Routing,
which has 144,342,306 nodes. This example exceeds our 200 GB of allocated disk space,
and thus could not even be created fully. However, by leveraging compositionality, we
intertwine model generation and analysis, making it possible to discard generated subtrees
after the results of security analysis have been obtained. Specifically, during the game
generation process, each subtree corresponding to a specific phase of the protocol called
unlocking phase (a total of 1440 subtrees) is analyzed on the fly, with only the results
kept. The final outcome, the 4-Player Routing game, is a supertree with 396 regular
nodes and 1440 nodes representing subtrees, or 1,836 nodes in total. The supertree
has a size of about 60 MB and in it all subtrees for the unlocking phase have already
been solved. This allows us to directly apply CHECKMATE 2.0 to the supertree. Using
CHECKMATE compositionally, we conclude that 4-Player Routing is weaker immune, but
not weak immune, nor collusion resilient, nor practical.

5.4. Experimental Evaluation

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Game Property Time
CheckMate 2.0/CheckMate
Splits.; wi 0.010 / 0.019
(q) weri 0.010 / 0.018
cr 0.010 / 0.015
pr 0.011 / 0.017
Splits,, wi 0.011 / 0.018
(n) weri 0.011 / 0.018
or 0.011 / 0.019
pr 0.011 / 0.018
Market Entry cr 0.010 / 0.014
(e,9) pr 0.010 / 0.014
Simplified Closing wi 0.009 / 0.012
(H) weri 0.009 / 0.011
or 0.009 / 0.012
(Ch, S) cr 0.010 / 0.012
pr 0.010 / 0.014
Simplified Routing weri 0.010 / 0.011
(S, L, L, L, L,U,U,U,U) pr 0.010 / 0.012
Auction weri 0.017 / 0.028
(E,E,I,1) pr 0.022 / 0.153
Closing wi 0.011 / 0.025
(H) weri 0.011 / 0.022
or 0.023 / 0.025
(Ch, S) wi 0.012 / 0.025
weri 0.011 / 0.021
cr 0.024 / 0.025
pr 2.185 / 0.0364
3-Player Routing weri 0.539 / 1.163
(Su, L, L,U,U)
Unlocking Routing weri 2.194 / 4.233
(U,U,U,U) pr 4.241 / 5.718
Tic Tac Toe Concise wi 0.556 / 7.003
(CM, LU, RU, weri 0.561 / 7.780
LD, LM,RM, cr 1.883 / 8.894
CU,CD, RD) pr 8.644 / 219.689
Tic Tac Toe wi 5.509 / 276.333
(CM, RU, LU, weri 5.507 / 306.763
RD, RM, LM, cr 18.608 / 347.093
CU,CD, LD) pr 276.719 / TO

Table 5.3: Experiments on strategy extraction using our CHECKMATE 2.0 approach and
the non-compositional CHECKMATE tool of [21]. Runtimes are given in seconds, with a
timeout (TO) after 8 hours.

45

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Game-Theoretic Security for
Games with Conditional Actions

In terms of expressivity, there are protocols that require modeling and reasoning about
uncontrollable game aspects, such as changes in prices and exchange rates of currencies.
Intuitively, these aspects represent the world state at a given moment and, as such,
are not controllable by any party participating in the protocol (or player in the EFG
corresponding to the protocol). A player’s possible actions following an uncontrollable
event depend on the event’s outcome. As a result, actions become conditional — hence,
we refer to such uncontrollable aspects of the game as conditional actions. To the best
of our knowledge, current frameworks and models, particularly CHECKMATE, do not
adequately support the modeling and reasoning of games with conditional actions.

6.1 Games with Conditional Actions

So far, in the games we have seen and analyzed, players have always had a set of actions
they could take at each point in the game. Furthermore, at certain points, namely along
the honest history, the current player always had exactly one honest action to choose.
In the context of conditional actions, however, this is different. Depending on which
condition is satisfied (i.e., the current world state), the current player may have different
actions to choose from. Additionally, the honest (intended) behavior may vary across
different conditions, depending on which condition is satisfied. We will clarify this further
in this section by presenting two games involving conditional actions.

Example 6.1 (Liquidation Phase of FAsset). The Flare Network is a technology designed
to provide decentralized finance (DeF't) services and help different blockchains communicate
and work together (12]. Users can create wrapped tokens, FAssets [13], for their assets
like Bitcoin (BTC) [2], Dogecoin (DOGE) [9] and XRP [25]. For instance, the wrapped

47

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

48

token for Bitcoin in the FAsset context is called FBTC. These tokens can then be used in
Flare’s DeFi ecosystem or be returned in order to reclaim the original assets.

To ensure the security of the network, a so-called FAssets collateral is locked in contracts
every time FAssets are minted to ensure that FAssets can always be redeemed for the
corresponding assets or compensated by the collateral [11]. If one of the agents that
manages the minting and redemption misbehaves in some way, then the assets are
reimbursed to the user from the FAsset collateral fund.

If the value of the collateral drops below a certain threshold due to market fluctuations or
agent’s misconduct, the agent is being liquidated. Users are then encouraged to return
their FAssets and get paid by the agent’s collateral [10]. In this process, some actions are
only possible if the agent is in liqguidation, making them conditional with respect to the
market’s prices. Hence, the EFG model considered in the preceding chapters needs to be
extended if we want to model and analyze the Liquidation Phase of FAsset.

In the following, we revisit some notions that we need to adapt to be able to analyze
games involving (external) uncontrollable aspects.

Game Trees. The game trees involving conditional actions have a very similar structure
to the game trees we considered so far and introduced in Section 2.1, The only difference
now is, that at any node, the choices that the current player can take are grouped into
conditions. Each condition represents a possible world state and contains a set of possible
actions. Players can only choose from the set of actions (choices) corresponding to the
condition satisfied in the moment, i.e. the current world state.

We use C(h) to refer to the set of conditions after history h. We denote by A.(h) the set
of possible actions following history h that the player P(h) can take if condition ¢ € C(h)
is satisfied.

Definition 6.1 (Conditional EFG (CEFG)). A conditional EFG (CEFG) is an EFG as
defined in Definition 2.1, with the following differences:

e Non-terminal histories h € 7€\ .7 have assigned a next player denoted as P(h) € N
and a set of conditions C(h). Player P(h) chooses from the set A.(h) of possible
actions following h for each condition ¢ € C(h).

e For terminal histories h € 7, we define C(h) = {true}.

e For every history h € A, the set of possible conditions C(h) satisfies the following
requirements:

(R1) Conditions in C(h) are mutually exclusive:
Vey € C(h),ca € C(h).c1 # ca — (c1 A ca is unsatisfiable).
(R2) Conditions in C(h) are collectively exhaustive (i.e. span the whole subspace):
=('\ ¢ is unsatisfiable.
ceC(h)

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.1. Games with Conditional Actions

(R3) Conditions along h = (ay,...,ay) are non-contradictory:

(A c) 1is satisfiable.

ceC((a1,...,ai—1))) Na;€Ac((at,....,a;i—1))) for ie{l,..n}

In other words, requirement R3 states that if we descend down a path in the tree the
set of collected conditions that need to hold can only be refined, but can never get
inconsistent. We note that we do not lose any generality by enforcing R3.

For better readability, we will represent the conditions as edges leading to black squares
(H). Note that these squares are, in fact, for visualization purposes only and not part
of the tree. Hence, they can be removed from the tree by adding the corresponding
condition to every edge that is outgoing from a black square.

Honest history. As defined in Section [2.1, the honest history, typically denoted by h*,
has previously been a path in the tree, starting at the root and ending at a leaf. However,

this concept of honest history evolves in the context of games with conditional actions.

Specifically, when conditional actions are involved, the honest action that is indented
to be taken can differ depending on the condition that is satisfied. For each condition
¢ € C(h) available after a non-terminal history h € 2 \ .7, there exists exactly one
honest action a’ € A.(h). As a result, the honest history no longer represents a simple
path, but instead takes the form of a tree within the game tree, i.e. it is a set of edges of
the game tree (respectively actions in the game) which do not form a simple path.

Note that even though the honest behavior is not a history in the strict sense anymore,
we will still use the term honest history to refer to the honest behavior in the remaining
part of this thesis.

Definition 6.2 (Honest Behavior for Conditional Actions). Let G = (V, E) be a game
with conditional actions. The honest behavior h* C E is described as follows:

o At the root node, namely for h =0, for every possible condition ¢ € C(h), we fix one
action a’ € Ac(h), al € h* that is meant to be the action that the current player
P(h) is intended to take if the world state satisfies condition c.

e In each subgame Iy . restricted to a condition c € C(h) we proceed by repeating the
previous step for every condition ¢ € C((a})), i.e. the game that is still to be played
after each previously picked honest action.

The properties of EFGs introduced in Definition 2.2/ can be extended to CEFGs as follows.

Definition 6.3 (Properties of CEFGs). Let I' = (N, G) be a CEFG.

Strategy A strategy o for a group of players S C N is a function mapping non-terminal
histories h € 4\ .7, where one of the players in group S has a turn P(h) € S, to a

49

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

50

possible action a € A.(h) for every condition ¢ € C(h). We write .”s for the set of
strategies for group S, and . for %y which we call joint strategies. We refer to the
union of strategies with disjoint domains as a combined strategy and denote it as a
tuple. To combine e.g. 05 € S5 and Tn_g € SN_g, we write (05, Tn_g) € 7. We
use o.(h) = a for a € A.(h) to denote the action a is fixed to be taken by strategy
o after history h in the case of condition c.

World State A world state or world model is a function mapping each h € S to a
satisfied condition ¢ € C(h). The set of all world states is denoted by M. Given
a fixed world state m € M and a (sub)game '\, the game restricted to only
conditions satisfied in m is denoted by T'),,, 4.

Resulting History The resulting terminal history H,,(c) of a joint strategy o € .%
and world state m € M is the unique history obtained by following chosen actions
oc(h) from root to leaf, taking into consideration which condition ¢ is satisfied in
the current (or fixed) world state m.

Following Honest History A strategy for a player p follows the honest history h* if,
at every node along the honest history, where p is making a choice, the strategy
chooses the action in h* for every possible condition ¢ € C(h). For every other node,
there is no constraint.

Utility Function The utility function up, (o) assigns to player p € N their utility at
the resulting history of the joint strategy o € .#, corresponding to world state
m € M. If we are dealing with a terminal history, i.e. a unique path in the tree
which already takes the current world state m € M into consideration we can also
write u,(Hyp, (o)) for uy, ,(0). We sometimes write all player utilities for a joint
strategy o € .7 as un, (o) (or u(H,,(0))), denoting a tuple of size |N]|.

Subgame Subgames L', of I" are formed from the same set N of players and a subtree
of GG, and are therefore identified by the history h leading to the subtree. Histories
), of I}y, are histories in 7 with prefix h, strategies o}, € 7, of I';, are strategies
restricted to the nodes in G|, and the utility function wy, of I';, assigns each joint
strategy oy, € 7, the utility of the yielded leaf wy,(Hy(03)) := u(h, Hm(o)s))-
Additionally, a subgame I';, of I can be restricted to the chosen or currently satisfied
condition ¢ € C(h) and this is denoted by I .

Prefix of Honest History A history h = (aq,...,a,) is a prefix of the honest history
(behavior) h* iff for each action a; € h along h is holds that the action is an honest
action, that is, a; € h*. Recall that the honest behavior is a tree within the game
tree now and represented by a set of edges.

Supergame A game I'|;, is a supergame of a game I')j, if h' is a prefix of h.

Subtree along/off Honest History Let h* be the honest history. A subgame IRTARE
along the honest history iff all actions along h are in h*; otherwise, I'jj, is off the
honest history.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.1. Games with Conditional Actions

/M\
p<10*,/f;/’/ \\\\13210*]"
m m
SN N
(0,p) (=f,p) (—op) B
d< o.f;/ \ "d > 0.6
- ‘m

Figure 6.1: Market Entry game with Conditional Actions I'ye cq, With a,p, f > 0,
0 < d <1 and infinitesimal . Utility tuples state M’s utility first, E’s second. Conditions
are represented with teal dashed lines and the honest history with thick blue lines.

The newly revised notions for the game trees and the honest history can be better
understood through Example 6.2.

Example 6.2 (Market Entry Game with Conditional Actions). Consider the Market
Entry game with conditional actions I'me cq given in Figure 6.1. We have the two players:
M, representing a new company that is considering entering the market and E — an
established company. At the root, it is the turn of player M. Now, there is a condition
depending on the values of the profit that can be obtained from the market (p) and the fee
that one needs to invest to enter the market (f). Namely, C(0) = {p < 10 f,p > 10 f}.

If the world state satisfies the condition p < 10 f, M can choose one of the actions
Apci0+£(0) = {o1,e1}; namely staying out of the market (action o1) or entering the
market (action e1). The intended behavior (honest history) at this point of the game is to
take action o1, after which M gets utility 0 and all the profit p remains for the established
company E. If M deviates and takes action e, they lose the fee f they paid and therefore
obtain utility — f, whereas the utility of E remains p.

On the other hand, if the condition p > 10x f is satisfied, M can choose from Ap>104(0) =
{02,ea2}. If M chooses action oy they receive utility —«, where « is infinitesimal repre-
senting opportunity cost. Otherwise, M takes action es and it is E’s turn.

At this point of the game, there is another condition, that determines the possible actions
for player E. This condition takes the degree d into account: a value between 0 and 1
measuring the potential and quality of M ’s product.

51

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

52

If the condition d < 0.6 is satisfied, we consider M ’s product to be inferior to E’s product.

Hence, out of the actions Ag<o.¢(€2) = {i1,pw1} we fix the intended behavior for E to

be ignoring M and taking action i1. In this case E still gets the majority of the profit,
2%p

namely =P, whereas M gets &. Otherwise, E can also choose to start a price war and

take action pwy, which causes both companies to lose some assets (a).

If the condition d > 0.6 is satisfied, we consider M ’s product to be superior to E’s product.
Thus, out of the actions Ag>o.¢(e2) = {iz, pwa} we fix the intended behavior for E to be
staring a price war (pws) to make themselves more appealing to consumers. If E only
ignores M instead and takes action is, E2 will only get one-third of the market’s profit
and the majority (two-thirds) will remain for M.

From Figure |6.1 (thick blue lines) and from the description above we can also observe
how the honest history is not a path anymore, but forms in tree.

We will revisit this example later to analyze whether the Market Entry game with condi-
tional actions satisfies the game-theoretic security properties weak(er) immunity, collusion
resilience and practicality.

In the following, we examine the requirements imposed on Conditional EFGs, introduced
in Definition 6.1, and justify these choices through examples.

In the next example, we discuss why the Market Entry game with conditional actions
shown in Figure 6.1 satisfies the requirements in Definition |6.1.

Example 6.3 (Conditional EFG Requirements for Market Entry Game with Conditional
Actions). Looking at the Market Entry game with conditional actions U e cq given in
Figure 6.1 we can show that the requirements (R1-R3) given in Definition 6.1 are satisfied.

After history) we have the conditions p < 10 % f and p > 10 * f for which we can easily
observe that they are mutually exclusive and collectively exhaustive, thereby complying
with R1 and R2. Analogously, the same holds for the conditions d < 0.6 and d > 0.6
after history (ez).

Moreover, there are some histories along which there are multiple conditions. For example,
along history (ea,i2) we have the conditions p > 10 % f and d < 0.6. These are not
contradictory, so R3 is not violated. The same conclusion can be reached for the other
histories along which we have more than one condition.

In addition, we justify requirements R1-R3 with the following two examples.

Example 6.4 (Requirements R1-R2 for Conditional Actions). Consider the very simple
example depicted in Figure 6.2, in which player A can either buy (actions by, by) or sell
(actions s1,s2) some assets. Depending on the value of the price coefficient p in the
current world state, A can either win and receive a utility 1 or lose and receive utility 0.
Howewver, we observe that this game does not satisfy requirement R1, because the conditions
at the root, namely C(0) = {p < 0.5,p > 0.5} are not mutually exclusive. Imagine a world

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.1. Games with Conditional Actions

p<0.5,-" \p>05

N
- N

A"
(1) (0) (0) (1)

Figure 6.2: Example I', p1 for requirement R1 of games with conditional actions,
0<p<1

state where p = 0.5. In this case, it is neither clear what the intended behavior of player
A is, nor what is the obtained utility based on the actions that A takes. Hence, reasoning
over this game s impossible.

Similarly, imagine the conditions are strict inequalities, i.e. C(0) = {p > 0.5,p < 0.5}.
This variation of the game violates requirement R2. Again, in the case when p = 0.5, we
are stuck in the game without reaching a leaf. In other words, there is no adequate part
of the game which depicts this world state and we cannot analyze the game.

Example 6.5 (Requirement R3 for Conditional Actions). Consider the Market Entry
game with conditional actions Tye cq given in Figure 6.1 but instead of C((e2)) = d <
0.6,d > 0.6 let C((e2)) =p < 10% f,p > 10* f. Both C(0) and C((e2)) satisfy requirement
R1 and requirement R2.

However, we can observe that along history (ea,i1) there are contradictory conditions,
namely p > 10 * f (condition at the root) and p < 10 % f (condition after history (ez)).
This is problematic from two different aspects. First of all, from an intuitive point of
view, the history (ea,i1) and the leaf related to it correspond to actions which are taken
in a world state where both p > 10 % f and p < 10 * f hold which is impossible. Secondly,
as discussed later in Section 6.2, we sometimes want to make sure that for a history h
for all conditions ¢ € C(h) the subgame I'\pc is secure. Having contradictory conditions
along a history compromises the security analysis as they do not comply with the world
state and are trivially not possible to satisfy the security properties, which is why we opt
to model games in a way they satisfy requirement RS3.

As a final point in this section, we note that the games we have considered so far can
be observed as games with conditional actions, where at each node of the tree the only
available condition is the trivial condition true.

Theorem 6.1. Every EFG (Definition 2.1) is a CEFG (Definition 6.1), where Yh €
H.C(h) = {true}.

Proof. An EFGI' = (N, G) can be identified with an EFG I'® = (N, I'¢) where I'“ is a game
tree involving conditional actions. The game trees considered in Chapter 2-Chapter 5| can

53

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

54

be naturally extended to game trees with conditional actions by associating every history
h € # with the set consisting of only the trivial condition true, i.e. C(h) = {true}.
Additionally, we set Aiyye(h) = A(h). Note that the extension of I' to a game with
trivial conditions I'“ satisfies requirements R1-R3 from Definition 6.1.

The notion and format of honest history h* coincides in both cases. To construct an
honest history for the newly constructed game tree with trivial conditions, we need to
start at the root and fix an honest action for each possible condition. Since there is
only one possible condition, we fix one honest action a € A()) and need to repeat the
construction recursively for the subtree after the picked action. Since we always have
only one condition, the resulting honest history is a simple path, just like for game trees
with no conditional actions.

The remaining properties either coincide or can be extended analogously. For example,
the notions of Strategy and Following Honest History for games with conditional actions
differ from the ones without conditional actions in the sense that they require that some
properties are satisfied for all possible conditions. Since our newly constructed game
trees with conditional actions only have one condition at each inner node, the notions
coincide. The notion of Resulting History requires to follow conditions which are satisfied
in the current world state. In the newly constructed game trees the only condition we
have is true and it is trivially satisfied in every world state.

O]

6.2 Security Properties for Conditional EFGs

For analyzing games involving conditional actions, we define adaptations of the game-
theoretic security properties weak(er) immunity, collusion resilience and practicality. We
assume a fixed total order on symbolic utility terms, as in Chapter |[3-Chapter 4. This
assumption is lifted in Section 6.4 in the same manner as in Section 5.1/ — if some utility
terms cannot be compared, the algorithm takes care of it by performing case splitting and
analyzing all possible consistent total orders of the real/infinitesimal variables occurring
in the utility terms.

Games restricted to different conditions at a node are independent from each other (recall
requirements given in Definition [6.1), which allows us to define the security properties in
a compositional manner. Moreover, in the sequel, we follow our compositional approach
from the previous chapters and employ player-wise reasoning, as well as propagation of
results from subtrees to supertrees.

As we have seen in Section 6.1, there can be one or more conditions ¢ € C(h) after a
history h € #. Hence, for the analysis of games with conditional actions we introduce
two notions of the security properties: the weak notion of the security properties and the
strong notion of the security properties.

As we will see in the sequel, the strong notion takes into account all possible consistent
world states. While this approach ensures a high degree of generality, it may prove to

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.2. Security Properties for Conditional EFGs

be overly restrictive or impractical in certain contexts. For instance, there could be a
large amount of possible world states and there could be one among them such that
the probability of this one specific possible world state happening may be negligible.
Therefore, we also introduce the weak notion to offer a more tractable and context-
sensitive alternative. In reality, it is often sufficient to have one particular scenario in
which security properties are ensured to hold.

Weak Notion of Security Properties. The intuition behind the weak notion of the
security properties is that for a (sub)game, there exists a world state m € M such that if
it is satisfied, the (sub)game satisfies the security property. Note that in the (sub)game
only actions consistent with m are allowed.

We start by defining how satisfiability of weak(er) immunity for a fixed player and a game
restricted to one condition can be determined compositionally, following the approach
from Theorem 4.4.

Definition 6.4 (Conditional Weak Immunity for a Player — Weak Notion). Let I, . be
a subgame of a CEFG I with honest behavior h*. We define weak immunity of I', . for
player p € N in terms of the weak notion — denoted by wiy, p(I')y,) — recursively:

1) If U\ is a leaf, then it is weak immune for p in terms of the weak notion iff p’s utility
is mon-negative:
Vi€ T winp(T)e) & up(t) 20.

2) If 'y, . is a branch and p is not the current player, then it is weak immune for p, iff
all children T q) for a € Ac(h) can be restricted to a condition c, € C((h,a)) such that
U\(ha)ca @ weak immune for p in terms of the weak notion:

Vh e A\T.p# P(h) = (Wiwp(T|he) © Va € Ac(h).Jeq € C((hya)). wivp(Tiha).c.)) -

3) If Ty is a branch along the honest history and p is the current player p, then it
is weak immune for p, iff the child T4 4+) following h* restricted to some condition
cq+ € C((h,a*)) is weak immune for p in terms of the weak notion. Note that a* € A.(h)
represents the honest choice, i.e. (h,a*) along h*:

Vhe #\T.p=P(h)\Nh along h* =
(wiuﬁp(rm,c) g EIca”‘ € c((h’a*))'wiW,P(FKhaa*):Cu*)) :
4) If U is a branch off the honest history and p is the current player p, then it is weak

immune for p iff there exists a child Ty, o) after some a € A(h) such that T'\, o) restricted
to some condition cq € C((h,a)) is weak immune for p in terms of the weak notion:

Vhe #\T.p=Ph)Ah off h* =
(wiwyp(ﬂh,c) & Ja € Ac(h). 3e, € C((hya)). wiwyp(FKh’a)’Ca)))

55

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

56

Definition 6.5 (Conditional Weak Immunity — Weak Notion). A subgame L', . of a
CEFG T with honest behavior h* is weak immune in terms of the weak notion iff Ty, . is
weak immune in terms of the weak notion for every player p € N, that is:

Wiy (L)p) € Vp € N. winy p(Lpc)- (Wi (Djne))

Further, the subgame I, of a CEFG I' not restricted to any condition is weak immune
in terms of the weak notion of this security property, iff there exists a condition ¢ € C(h)
such that I', . is weak immune in terms of the weak notion, that is:

wiy (L) € Fe € C(h). wiy(T)he)- (Wi (T'|p))

Recall that by definition, for a terminal history h € .7, we have defined C(h) = {true}.
Hence, checking if wi,(I'|;,) holds for a terminal history h refers to determining whether
the leaf is weak immune.

For weaker immunity, weriy »(I'|p, c), weriy (L,) and weriy, (I';,) are defined analogously
to Definition 6.4/ and Definition 16.5.

Example 6.6 (Conditional Weak Immunity — Weak Notion). Consider the Market Entry
game with conditional actions given in Figure 6.2 and let us examine whether weak
immunity is satisfied in terms of the weak notion of the property.

We consider one player at a time, starting with player M. For the weak notion of security
properties for games with conditional actions there should be at least one condition such
that the subtree restricted to this condition is weak immune. Recall that since M is the
player who has a turn and we are along the honest history, we need to choose a condition
where the honest choice leads to a subtree weak immune for M. We see that for the
condition p < 10 x f, there exists a strategy in which the honest history o1 is taken and
the game ends with a non-negative utility for M. Hence, weak immunity is satisfied for
M in terms of the weak notion.

Moving to E, at the root we again look for one condition where the game restricted to
this condition is weak immune for E. Since E is not the player who has a turn at the
root, all the actions in the chosen condition need to be weak immune for E. Again, we
can see that for the condition p < 10 x f this holds: no matter whether M chooses o1 or
e1, the game will end with non-negative utility for E. Thus, weak immunity is satisfied
for E in terms of the weak notion.

Note that in this example, we used the condition p < 10 x f twice as a “witness” for the
satisfiability of weak immunity (one time for each player). In general, the conditions
justifying the satisfiability might differ across players/player groups.

Collusion resilience against a deviating group S C N (cry,s(I'),c)) is defined analogously
to the one in Definition [6.4] following Theorem |4.5.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.2. Security Properties for Conditional EFGs

Definition 6.6 (Conditional Collusion Resilience against a Player Group — Weak Notion).
Let L', . be a subgame of a CEFG I" with honest behavior h*. We define collusion resilience
of T\ against player group S C N in terms of the weak notion — denoted by cry s(T'|s)
— recursively:

1) If Ty, . is a leaf, then it is collusion resilient against S C N in terms of the weak
notion iff the honest joint utility of the deviating players p € S is greater than or equal to
their joint utility at that leaf:

Vte T.crws(le) Z Uy, > Z up(t) .

peES peS

2) If T is a branch and the current player is in the deviating group S C N, it is
collusion resilient against S iff all children T, q) for a € Ac(h) can be restricted to a
condition c, € C((h,a)) such that U q) ., is collusion resilient against S in terms of the
weak notion:

Vhe #\T.Ph)eS =
(crw,S(F|h,c) & Va e Ac(h) deq € C((haa)) crw,S(F\(h,a),ca)) .
3) If L\pc is a branch along the honest history h* and the current player is not in the
deviating group S C N, it is collusion resilient against S iff the child T, o) following h*
restricted to some condition ca» € C((h,a*)) is collusion resilient against S in terms of
the weak notion. Note that a* € A(h) represents the honest action, i.e. (h,a*) along h*,
then:
Vhe A\ T.Ph)¢SNANhalong h* =
(crw,s(Mne) © Fear € C((hya®)). crws(T)(hat).cpn)) -
4) If Ui is a branch off the honest history h*, and the current player is not in the
deviating group S C N, it is collusion resilient against S iff there exists a child I'(, oy after
some a € C(h) such that T'|(, 4) restricted to some condition c, € C((h,a)) is collusion
resilient against S in terms of the weak notion:
Vhe #\T.Ph)¢SANh off ¥ =
(crw,g(ﬂh’c) < Ja € Ac(h).3e, € C((hya)). crw,S(F|(h7a)7ca)) .
Definition 6.7 (Conditional Collusion Resilience — Weak Notion). A subgame I}, . of a

CEFG T" with honest behavior h* is collusion resilient in terms of the weak notion iff T, .
is collusion resilient in terms of the weak notion for every player group S C N, that is:

Cly (F|h,c) & VS CN. Crw,S(F|h,c)‘ (Crw(r\h,c))

Further, the subgame I'\, of a CEFG I" not restricted to any condition is collusion resilient
in terms of the weak notion of this security property, iff there exists a condition ¢ € C(h)
such that 'y, . is collusion resilient in terms of the weak notion, that is:

crw(F|h) < Jc € C(h). crw(I‘|h’C). (crw(F‘h))

o7

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

o8

Conditional practicality can be determined similarly, following Theorem 4.6 This is
formally stated in the next two definitions.

Definition 6.8 (Conditional Practicality — Weak Notion). Let Lipc be a subgame of
a CEFG T with honest behavior h* and U(h) be the set of practical utilities of subtree
Ly, in terms of the weak notion. We define practicality of T, . denoted by pry(Ljp.c) —
recursively:

1) If Uy is a leaf, that is h € 7, it is always practical and the only practical utility is
that of the leaf. Then:
prow(L)n,e) & true

UTjp) = {u(h)} .

2) The honest history is practical in terms of the weak notion in a branch of T’ along h*
restricted to a condition c iff it is practical in terms of the weak notion in the subgame
following h* and for every other child in the condition ¢ and every practical utility u* in
the subgame along h*, at least one compatible practical utility is not greater than u* for the
current player. Here, compatibility (comp) refers to the requirement that the conditions
along the paths leading to the corresponding leaves—where the utilities are compared—must
be satisfiable.

Let a* € A.(h) be the honest action after h complying with condition ¢, then:

Vhe A\ T.halong h*.VeecC(h) = (prolp.) &

Prw(Lihan)) A
Va € Ac(h) \{a"} Yu* € U((h,a")) 3u € U((h,a)) comp(u, u”) A up) = up(n)) -

3) A wtility is practical in terms of the weak notion in a branch of T' off the honest history
h* restricted to condition c iff it is practical in terms of the weak notion in a child and
if, for every other child, at least one compatible practical utility is not greater for the
current player. The definition of compatibility is the same as in the previous item.

Vhe A\ T.hoffbl* = (Vteﬂh.u(t)GU(h) &
Jda € Ac(h) u(t) € U((h,a)) A
Va' € Ac(h) \ {a} Fu" € U((h,a)). comp(u,u’) Aupgy(t) > up) -
Definition 6.9 (Conditional Practicality — Weak Notion). A subgame ', of a CEFG
I' with honest behavior h* not restricted to any condition is practical in terms of the

weak notion of this security property, iff there is a condition ¢ € C(h) such that the game
restricted to this condition is practical:

prw(Tp) < 3e € C(h). pro(Tp,) (prw(T'n))

Providing support for the analysis of games involving conditional actions feels intuitive and
natural, as they seamlessly build on top of the game structure we previously established.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.2. Security Properties for Conditional EFGs

They also come at a low cost, since we can leverage the security properties stratified
over players and their associated splitting and combining techniques (Theorem 4.2,
Theorem 4.4, Theorem 4.5, Theorem 4.6). Note that, we apply the techniques for
splitting and combining (Section 4.3) in an adapted manner, namely to subtrees of the
game resulting when restricting the game to one condition at a time. This is further
elaborated in the following example, as well as in Section 6.4.

Example 6.7 (Conditional Practicality — Weak Notion). We revisit the Market Entry
game with conditional actions given in Figure|6.2-this time to analyze whether it satisfies
the weak notion of practicality.

This game is not a single leaf, so by Definiton|6.9, it follows that we need to find one
condition at the root, for which the game restricted to this condition is practical. We
can first check if the game restricted to condition p < 10 x f at the root is practical in
terms of the weak notion. We observe that both actions in Fmefcapdo,‘f,@ lead to leaves.
Leaves are always practical the practical utilities are simply the utilities contained in
them. So, we set U((01)) = {(0,p)} and U((e1)) = {(—¢,p)}. Moving upwards, we apply
Definition 6.8, in particular item 1), as the root is along the honest history. We know
that the subgame after history (o1) is practical (because it is a leaf) and its only practical
utility is (0,p). Furthermore, for the other action possible in this condition, namely (e1)
it holds that its only practical utility is (—c, p), which is compatible to (0,p), as they both
comply with condition p < 10 x f, that is, the conditions needed to be satisfied to reach
these leaves are not unsatisfiable. Moreover, we know that 0 > —f, since we have f >0
as initial constraint. Thus, prw(FmeKlO*M) holds and the game is practical in terms
of the weak notion of this property.

After defining the weak notions of all four game-theoretic security properties, we proceed
with a theorem about their relation to security properties for games without conditional
actions.

Theorem 6.2 (Equivalence of Weak Notion of Security Properties of CEFGs and Security
Properties of EFGs). Let I' be an EFG and I'° its equivalent CEFG, as in Theorem 6.1.
Then for sp € {wi, weri, cr, pr} the following equivalence holds:

sp(T) < spyw(T°),

where sp(I') is according to Definition 2.5-Definition 2.6, and sp,(I'°) is according to
Definition 6.5, Definition|6.7 and Definition |6.9.

Proof. Consider the property weak immunity, the empty history A = () and Definition [6.5.

According to this definition, I'® satisfies the security property if there is any condition
¢ € C(D) for which the subgame restricted to this condition satisfies the security property
for every player p € N. Moreover, by construction of I'°, we know that C(h) = {true}
for any history h. Thus, I'® satisfies the weak notion of the security property iff Ff@’tm .
satisfies the weak notion of the security property. Proceeding recursively for the subgames

59

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

60

and always having only the one trivial condition, we can conclude that this is the only
condition which can be used for showing that the weak notion of the security property
for I'¢ is satisfied. Hence, checking whether the weak notion of a security property is
satisfied for a game with only trivial conditions essentially boils down to checking whether
the security property is satisfied in I'. This can be argued for the rest of the properties
analogously. O

Strong Notion of Security Properties. Contrary to the weak notion, security in
regard to the strong notion of the security properties ensures that a (sub)game always
satisfies a security property independently on the condition that is satisfied (i.e. the
current or fixed world state).

Definition 6.10 (Conditional Weak Immunity — Strong Notion). A subgame T, of
a CEFG T' with honest behavior h* satisfies the strong notion of the security property
weak immunity — denoted by wis(Ly,) — iff '), satisfies a modified version of wiy(T'),)
where the existential quantification over ¢ € C(h) is replaced by universal quantification.
Specifically, in the definition of the strong notion of weak immunity, every instance of
existential quantification emphasized in blue bold font in Definition |6.4] and Definition|6.5
is replaced by universal quantification.

The strong notion of weaker immunity is defined analogously to the one for weak immunity
given in Definition |6.10.

Definition 6.11 (Conditional Collusion Resilience — Strong Notion). A subgame Iy, of
a CEFG T' with honest behavior h* satisfies the strong notion of the security property
collusion resilience — denoted by crs(I',) — iff ')y, satisfies a modified version of cry(T'|)
where the existential quantification over ¢ € C(h) is replaced by universal quantification.
Specifically, in the definition of the strong notion of collusion resilience, every instance of
existential quantification emphasized in blue bold font in Definition |6.6] and Definition 6.7
is replaced by universal quantification.

Definition 6.12 (Conditional Practicality — Strong Notion). A subgame I';, of a CEFG
I' with honest behavior h* satisfies the strong notion of the security property practicality —
denoted by prs(Ly,) — iff Ty, satisfies a modified version of pry(T'|,) where the existential
quantification over ¢ € C(h) is replaced by universal quantification. Specifically, in
the definition of the strong notion of collusion resilience, every instance of existential
quantification emphasized in blue bold font in Definition|6.8 and Definition 6.9 is replaced
by universal quantification.

Example 6.8 (Conditional Weak Immunity — Strong Notion). We revisit the Market
Entry game with conditional actions given in Figure 6.1 and analyze whether weak
immunity is satisfied in terms of the strong notion of this property.

Starting with player M we see that it is M ’s turn in the beginning. For each condition
ceC)={p<10x f,p>10%* f} we need to check whether the subgame restricted to

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.2. Security Properties for Conditional EFGs

this condition 'y . is weak immune. All conditions need to be checked, as we are dealing
with the strong notion of the security properties. Since M is the player that has a turn
and we are along the honest history, it means that we need to check that the honest action
in each condition leads to a subgame that is weak immune for M.

In Tpc1045,0 the subgame after the honest action o1 is a leaf with non-negative utility for
M and thus weak immune for M.

In T',> 10450 the subgame after the honest action ey leads to a leaf where player E has a
turn. We again need to check all conditions. Moreover, since the player we are checking
weak immunity for is M and it is E’s turn, we need to make sure that all actions in each
condition lead to subtrees that are weak immune for M. We can easily see that this is not
the case, as if condition d < 0.6 is satisfied, E can take action pwy and the game ends
with a negative utility for M. Hence, I'pe cq @5 not weak immune for player M in terms
of the strong notion of weak immunity.

In a similar manner, we can analyze weak immunity for player E and conclude that this
property is satisfied for player E in terms of the strong notion.

In summary, we state that the Market Entry game with conditional actions is not weak
immune in terms of the strong notion of this security property (because it is not weak
immune for player M).

Example 6.9 (Conditional Practicality — Strong Notion). In Example 6.7 we analyzed
practicality in terms of the weak notion for the Market Entry game with conditional
actions given in Figure 6.2 and concluded that the weak notion of practicality is satisfied.

We now revisit this game and are interested in analyzing whether the strong notion of
practicality is satisfied as well. For this purpose, we need to make sure, that at every
node, for every condition, practicality is satisfied. Beginning with the root, we observe
that there are two conditions, namely, p < 10 f and p > 10 % f. The game restricted to
the first condition was analyzed in Example 6.7, so we focus on the game restricted to the

second condition, that is Pmefca\pxo*fm'

Let us start with the leaves in Ume_cajpsy0, 49 Each leaf is practical so we set U((eq,i1)) =
(B ZD)), U((eapwn)) = {(—a,-a)}, Ul(eaiz)) = {(32.3)} and U((ez.pu) =
{(5,5)}. Moving upwards, we look at the subtree Ume_cay., - We apply the adapted
notion Definition 6.9 for strong practicality. Hence, we need to make sure that the
subgame after (e3) is practical in terms of the strong notion for each condition. Ap-
plying Definition 6.8, in particular item 1), we observe that 2% > —a and % > %, 50
the honest behavior is also the one that is “greedy” for the current player, namely E.
Hence, the subgame after (e2) is practical in terms of the strong notion and we set
U((e2)) = {(&, 2%), (5,8)}. Moving up one more time, we apply Definition |6.8 and need
to compare utilities in U((e2)) with U((02)) = {(—a,p)} for the player M. We observe
that both, £ > —a and § > —a hold. Thus, T is practical as well.

Me_Ca|p>10x1,0

Finally, we can conclude that, the Market Entry game with conditional actions is practical
in terms of the strong notion of this property.

61

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

62

Theorem 6.3 (Equivalence of Weak and Strong Notion of Security Properties of CEFGs).
Let T' be an EFG and T'° its equivalent CEFG, as in Theorem |6.1. Then for sp €
{wi, weri, cr, pr} the following equivalence holds:

spw(L€) & sps(T°9),

where spy, (I'€) is according to Definition|6.5, Definition 6.7 and Definition 6.9 and sps(I'°)
is according to Definition 6.10, Definition |6.11 and Definition |6.12.

Proof. By observing Definition 6.10, Definition 6.11] and Definition [6.12 we can see that
the weak and strong notion of a security property for a game involving conditional
actions only differ in the quantifier used to stratify over the possible conditions C(h)
after a history h. Consider the whole game, i.e. let h = (). Since I'° features only trivial
conditions the only available condition at the root is true, i.e. C(0) = {true}. Thus,
the existential and the universal quantification over this singleton coincide and therefore
the weak and the strong notion are equivalent. O

Corollary 6.1 (Equivalence of Strong Notion of Security Properties of CEFGs and
Security Properties of EFGs). Let T' be an EFG and T its equivalent CEFG, as in
Theorem |6.1. Then for sp € {wi, weri, cr, pr} the following equivalence holds:

sp(T) & sps(T°),

where sp(T') is according to Definition |2.3-Definition 2.6, and sps(I'¢) is according to
Definition |6.10, Definition |6.11 and Definition 6.12.

Proof. Follows from Theorem 6.2 and Theorem 6.3} In more details, Theorem |6.2 shows
that the fulfillment of a security property of a game with no conditional actions is
equivalent to the fulfillment of the weak notion of this security property when extending
this game to a game with only trivial conditions, whereas Theorem |6.3| shows that the
weak and strong notions of a security property coincide for games with only trivial
conditions. Consequently, we can conclude that the fulfillment of a security property of a
game with no conditional actions is equivalent to the fulfillment of the strong notion of this
security property when extending this game to a game with only trivial conditions. [J

Lastly, we present one more corollary which states how (super)game security can be
reduced to subgame security. This means, that a decision for the fulfillment of a security
property in a (super)game can be made if some necessary information is provided for the
subgames.

Corollary 6.2 (Compositional Property Analysis for Conditional Actions). Let I' be
a CEFG with honest history h*. Then, it can be computed compositionally whether the
weak (strong) notion of a security property is satisfied. The only information needed of a
subtree I'p,, to decide whether I' satisfies the weak (strong) notion of a security property
is:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.3. Conditional Security

o for weak(er) immunity: for which players p € N the subtree I'}, is weak(er) immune
in terms of the weak (strong) notion;

e for collusion resilience: against which player groups S C e subtree is
llusi 1 gainst which player groups S C N th biree T, i
collusion resilient in terms of the weak (strong) notion;

e for practicality:

— if h is along h*: whether h*h is practical in Ty, in terms of the weak (strong)
notion;

— if h is not along h*: the set of all practical utilities of Ty, in terms of the weak
(strong) notion and the conditions which need to be satisfied (i.e. the world
state) to obtain those utilities. A wutility u(t) after terminal history t € T s
practical in subgame T';, in terms of the weak (strong) notion iff t is practical
in T\, in terms of the weak (strong) notion.

Proof. This corollary is an analogous version of Theorem |4.3| and follows directly from
the definitions of the security properties (Definition |6.5-Definition [6.12). O

6.3 Conditional Security

Having extended the notions of the security properties for games with conditional actions,
we can proceed to define security for CEFGs. In particular, we define weak and strong
conditional security. We note that reasoning in terms of the weak notion of the security
properties necessitates the existence of consistent world states m € M for which weak(er)
immunity, collusion resilience and practicality are satisfied, where as the strong notions
of the security properties require the properties to be satisfied for every consistent world
state m € M.

Definition 6.13 (Weakly Secure CEFG). A CEFG T with honest behavior h* is weakly
secure if it is weak(er) immune, collusion resilient and practical in terms of the weak
notions of these security properties.

Definition 6.14 (Strongly Secure CEFG). A CEFG T" with honest behavior h* is strongly
secure if it is weak(er) immune, collusion resilient and practical in terms of the strong
notions of these security properties.

Finally, we can observe how the weakly and strongly secure honest histories relate to each
other, but also to the notion of a secure honest history for a game with no conditional
actions.

Theorem 6.4 (Equivalence of Weak and Strong Conditional Security). Let I' = (N, Q)
be an EFG with honest history h*. Furthermore, let I'C be the extension of I' using only
trivial conditions. Then the following hold:

63

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6. GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS
Algorithm 6.1: Function ComputeWI_CA for Conditional Weak Immunity.
input :game tree I', honest history h*, set S containing initial constraints
and current case, player group pg, weak notion of security properties
weakCA.
output : (result, split), where result states whether I" is weak immune for pg in
terms of the weak or strong notion, depending on whether weakCA is
true or not, given S, and split a crucial utility comparison we cannot
decide.
1 if isLeaf(I') then
2 if Check(S,GetUtility(I', pg) < 0) = unsat then
3 ‘ return (true,null)
4 end
5 if Check(S,GetUtility(T',pg) > 0) = unsat then
6 ‘ return (false,null)
7 end
8 return (false,GetUtility(T, pg) > 0)
9 end
10 if CurrentPlayer(T') # pg then
11 ‘ return ComputeWI_CA_differentPlayer(Il',h*,S, pg, weakCA)
12 end
13 if AlongHonest(I',h*) then
14 ‘ return ComputeWI_CA_alongHonest(I',h*,S, pg, weakCA)
15 end
16 return ComputeWI_CA_notAlongHonest ([, h*,S, pg, weakCA)
1) T is secure iff I'° is weakly secure;
2) T'° is weakly secure iff it is strongly secure.
Proof. From Theorem 6.1| we know that I'¢ can be obtained from I' and the honest
behavior remains the same.
The proof for 2) follows from Definition 6.13 and Definition [6.14 by taking into con-
sideration that the weak and strong notion of the security properties coincide for I'“
(Theorem 6.3).
Similarly, 1) follows from Theorem 6.2,]
6.4 Automation of Conditional Security
In this section, we discuss the automation of security analysis for CEFGs. The setting is
very similar to the one presented in Section [5.1: we compute the protocol’s security by
64

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.4. Automation of Conditional Security

Algorithm 6.2: Function ComputeWI_CA_differentPlayer for Condi-
tional Weak Immunity.

input :game tree I', honest history h*, set S containing initial constraints

and current case, player group pg, weak notion of security properties
weakCA.

output : (result, split), where result states whether I' is weak immune for pg, in

terms of the weak or strong notion, depending on whether weakCA is
true or not, given S, and split a crucial utility comparison we cannot
decide.

1 compatibleConditionExists «+— false

2

newsplit < null

3 for ¢ € Conditions(I') do

4

© 0w N o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

compatible < CheckCompatibility(S,c)
if compatible = false then
‘ continue
end
compatibleConditionExists < true
S+ SuUc
nonSecureChoiceFound < false
for a € Actions(I') do
(result, split) <- ComputeWI_CA(T|(4)., h", S, pg, weakCA)
if split # null then
‘ newsplit < split
end
if result = false A —weakCA then
‘ return (result, split)
end
if result = false A weakCA then
nonSecureChoiceFound < true
break
end
end
if weakCA A —nonSecureChoiceFound then
‘ return (true,null)
end
end
if weakCA A compatibleConditionExists then
‘ return (false, newsplit)
end
return (true,null)

65

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6. GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

Algorithm 6.3: Function ComputeWI_CA_alongHonest for Conditional
Weak Immunity.

input :game tree I', honest history hA*, set S containing initial constraints
and current case, player group pg, weak notion of security properties
weakCA.

output : (result, split), where result states whether I' is weak immune for pg, in
terms of the weak or strong notion, depending on whether weakCA is
true or not, given S, and split a crucial utility comparison we cannot
decide.

1 compatibleConditionExists < false

2 newsplit <— null

3 for ¢ € Conditions(I') do

4 compatible < CheckCompatibility(S,c)

5 if compatible = false then

6 ‘ continue

7 end

8 compatibleConditionExists < true
9 S'+SuUc

10 a* < HonestAction(I, h¥*)
11 (result, split) <— ComputeWI_CA(L|(4+) ., h*,S’, pg, weakCA)
12 if split # null then

13 ‘ newsplit < split

14 end

15 if result = false A —weakCA then
16 ‘ return (result, split)

17 end

18 if result = true A weakCA then

19 ‘ return (true,null)

20 end

21 end

22 if weakCA A compatibleConditionExists then
23 ‘ return (false, newsplit)

24 end

25 return (true,null)

analyzing one game-theoretic property and one honest history at a time, considering all
possible total orders.

For analyzing games involving conditional actions, we are able to reuse Algorithm 5.1
introduced previously in Section 5.1, Note that the actual implementation of the algorithm

has been adapted in the following manner:

66

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.4. Automation of Conditional Security

Algorithm 6.4: Function ComputeWI_CA_notAlongHonest for Condi-
tional Weak Immunity.

1
2
3
4

© W N o O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

input :game tree I', honest history h*, set S containing initial constraints
and current case, player group pg, weak notion of security properties
weakCA.

output : (result, split), where result states whether I' is weak immune for pg, in
terms of the weak or strong notion, depending on whether weakCA is
true or not, given S, and split a crucial utility comparison we cannot
decide.

newsplit < null
compatibleConditionExists <+ false
for c € Conditions(I') do
compatible < CheckCompatibility(S,c)
if compatible = false then
‘ continue
end
compatibleConditionExists «+ t rue
S+ SuUc
secureChoiceFound + false
for a € Actions(I') do
(result, split) <- ComputeWI_CA(T|(4)., 1", S, pg, weakCA)
if result = true A weakCA then
‘ return (true,null)
end
if result = true A —weakCA then
‘ secureChoiceFound < true
end
if result = false A split # null then
‘ newsplit < split
end

end

if —weakCA A —secureChoiceFound then
‘ return (false, newsplit)

end

end

if weakCA A compatibleConditionExists then
‘ return (false, newsplit)

end

return (true,null)

67

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

68

e The honest history A* given as input has a new format, as described in Section |6.1.

e Additionally, we give as an input a boolean weakCA. If its value is true, we
analyze the underlying game in terms of the weak notion of the security properties,
otherwise in terms of the strong notion.

e The function ComputeSP in line 6, which previously stood for ComputeWI,
ComputeCR and ComputePR now stands for ComputeWI_CA(Algorithm |6.1),
ComputeCR_CA and ComputePR_CA.

Algorithm [6.1: Function ComputeWI_CA. The function ComputeWI_CA of Algo-
rithm 6.1] is initially called with the entire game tree I' from SatisfiesProperty of
Algorithm 5.1 We then proceed by checking weak immunity recursively for pg, which is
one player.

In a leaf, the algorithm works exactly as Algorithm 5.2 Otherwise, it is checked whether
the player pg is the current player and whether we are along the honest history (recall Def-
inition [6.4). One of the functions ComputeWI_CA_differentPlayer(Algorithm 6.2),
Comput eWI_CA_alongHonest(Algorithm 6.3) or ComputeWI_CA_notAlongHonest
(Algorithm 6.4) is called accordingly.

Algorithm 6.2: Function ComputeWI_CA_differentPlayer. The function
ComputeWI_CA_differentPlayer of Algorithm 6.2/ is called whenever the current
player is not the one that we analyze. Recall that according to Definition 6.4, a subgame
I’ after history h restricted to a condition ¢ is weak immune for pg in terms of the
weak(strong) notion wiy(s) »(L'jp,c) iff every action that the current player P(h) can take
leads to a subgame that is weak immune for the player we are checking in terms of the
weak(strong) notion.

In lines 3-27 of Algorithm [6.2| we iterate over the possible conditions and check each of
them. For the weak notion of the security properties, we need to make sure that there is
one condition where all actions lead to weak immune trees, whereas for the strong notion
of the security properties we need to make sure that this holds for all conditions.

It is important to note that we only consider and analyze conditions ¢ that are compatible
with our set S of initial constraints and current case, i.e. S U{c} has to be satisfiable
(lines 4-7). Moreover, we add the currently considered condition ¢ to the set of initial
constraints and current case as it is relevant for the analysis of the subtree restricted to
it (line 9).

Functions ComputeWI_CA_alongHonest and ComputeWI_CA_notAlongHonest
presented in Algorithm 6.3 and Algorithm 6.4, respectively, follow the same reason-
ing.

The algorithms for other security properties can be adapted analogously. Note that
for the property practicality we previously propagated the practical utilities of a node,
whereas now we additionally need to keep track of the sets of conditions that need

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.4. Automation of Conditional Security

to be satisfied for them. Moreover, when comparing two utilities to determine which
one is practical, we need to ensure that we only compare utilities whose corresponding
conditions are not incompatible (i.e. unsatisfiable).

Next, we present two lemmas needed to show the soundness and completeness of our
approach in Theorem |6.5.

Lemma 6.1. Let IT be an input instance, h* an honest history, sp a security property,
weakCA a boolean variable determining whether to choose the weak or strong notion of
the conditional security properties, S the set of initial constraints C' and a case case.
Moreover, let & = (x1,...,x;) be the real/infinitesimal variables occurring in the utility
terms. If there exists a player group pg such that

ComputeSP(II, 1", S, sp, pg, weakCA) = (false, null) ,
then
VZ. Ve € C U case. c[Z] — —spy (T, h*)[Z]
if weakCA = true and similarly,
VZ. Ve € C U case. c[Z] — —sps(T, h*)[Z]

if weakCA = ralse.

Proof. We prove the lemma for the weak notion of the security properties. The strong
notion can be proven analogously.

Let weakCA = true. We prove the lemma for the individual properties and the algorithms
used to analyze them, starting with the property weak immunity. Let II be an arbitrary
but fixed input instance, h* the honest behavior and S the set of initial constraints C' and
a case case. There exists a player group pg such that ComputeSP returns (false, null),
iff ComputeWI_CA returns (false,null) for pg. We fix a player group pg and assume
ComputeWI_CA returns (false, null). To show VZ. Ve € C'Ucase. ¢[Z] — —spy (T, h*)[Z],
we proceed by structural induction on I'. For the base case, assume I' is a leaf. Observing
Algorithm 6.1, in particular lines 1-9, one can see that (false,null) is returned if
C U case Uupg < 0 is satisfiable but C'U case U upg > 0 is unsatisfiable, where u is the
utility of the leaf. Consequently, for all Z that satisfy C'U case the inequality upg < 0
holds. Therefore, —sp,, (', h*) for all such 7.

Next, in the induction step, I' is an inner node (a branch) and by our induction hypothesis
all subtrees of I" satisfy the property. We proceed by case distinction:

o Case 1: Assume pg is not the current player in I'. Then (false, null) was returned
by ComputeWI_CA_differentPlayer in line 29. Hence, there is no condition
where the subgame after each action is weak immune. Consider an arbitrary

69

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

70

condition. Applying the induction hypothesis, we know that for all ¥ satisfying the
constraints in S there is an action a such that I'|(4) is not weak(er) immune for pg.
Let us now fix such an ¥ arbitrarily. Following Definition 6.4, we know that for
values Z the game I restricted to the fixed condition is not weak(er) immune for pg.
Since # was chosen arbitrarily, I" restricted to the fixed condition is not weak(er)
immune for pg for all Z that satisfy the constraints in S. As the condition was fixed
arbitrarily, this holds for every condition and the whole game is not weak immune
in terms of the weak notion for all Z that satisfy the constraints in S, Definition |6.5.

e Case 2: Assume pg is the current player and T is along A* and ComputeWI_CA
returned (false, null). Observing Algorithm 6.1 this can only happen in line 14,
i.e. when (false,null) is returned by ComputeWI_CA_alongHonest in line 23.
By induction hypothesis, we know that for every condition, for all Z satisfying the
constraints in S the subgame I'|(,+) is not weak(er) immune for pg. By Definition 6.4
it follows that also I is not weak(er) immune for pg, for all Z satisfying the constraints
in S for each possible condition. Hence, I' is not weak(er) immune in terms of the
weak notion for pg, for all Z satisfying the constraints in S following Definition |6.5.

e Case 3: Lastly, let pg be the current player and I' is not along h* and ComputeWI_CA
returned (false,null). Observing Algorithm |6.1 this can only happen in line 16,
i.e. when (false, null) is returned by ComputeWI_CA_alongHonest in line 28.
This means that in each condition, all children are not weak immune in terms of
the weak notion for all Z satisfying the constraints in S. Let us fix an arbitrary
condition. Applying the induction hypothesis and Definition 6.4, it follows that
also T is not weak(er) immune for pg for all Z satisfying C' U case in this condition.
As the condition was chosen arbitrarily, this holds for all conditions. Hence, I' is
not weak(er) immune in terms of the weak notion for pg, for all Z satisfying the
constraints in S following Definition [6.5.

For the remaining properties, as well as for the case when weakCA = false, it can be
shown analogously that the property holds. Note that for practicality, ComputeSP can
return (false, null) iff the honest utilities are not practical, implying that I' is along the
honest history. For the setting of games with conditional actions, the proof from [5]
applies (with slight extension to incorporate conditions and accommodate the strong and
weak notion of practicality). O

Lemma 6.2. Let IT be an input instance, h* an honest history, sp a security property,
weakCA a boolean variable determining whether to choose the weak or strong notion of
the conditional security properties, S the set of initial constraints C and a case case.
Moreover, let & = (x1,...,x;) be the real/infinitesimal variables occurring in the utility
terms. If for all player groups pg

ComputeSP(II, h*,S, sp, pg, weakCA) = (true, split) ,

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.4. Automation of Conditional Security

independent of what split s, then

VZ. Ve € C U case. c[Z] — spy (T, h¥)[]
if weakCA = true and similarly,

VZ. Ve € C U case. ¢[Z] — sps(T', h*)[Z]

if weakCA = ralse.

Proof. We prove the lemma for the weak notion of the security properties. The strong
notion can be proven analogously.

Let weakCA = true. Let II be an arbitrary but fixed input instance, h* the honest
behavior and S the set of initial constraints C' and a case case. Further, let pg be a
fixed player group and assume sp is wi. We assume ComputeSP(II, h*,S, sp, pg, weakCA)
returns (true, split). We once again prove the lemma by structural induction on the game
tree I'. In the base case, I' is a leaf and the return value is (true,split). According to
Algorithm [6.1], this can only happen if CUcase together with the negation of the property
inequality of the leaf utility u is unsatisfiable, that is, only if C'U case U {upg < 0} is
unsat. According to Definition 6.4} this implies that for all Z satisfying C' U case the
game I satisfies the security property for player pg.

Next, in the induction step, I' is an inner node (a branch) and by our induction hypothesis
all subtrees of I" satisfy the property. We proceed by case distinction:

o Case 1: Assume pg is not the current player in I". Then (true,split) was returned
by ComputeWI_CA_differentPlayer in line 25 or line 31. If this was returned
in line 25, we know we have found a condition ¢ such that for the subgame after
each action a available in this condition ComputeWI_CA(F(a),C7 h*,S, sp, pg, weakCA)
returns (true,split). Applying the induction hypothesis, we know that for all
satisfying the constraints in S and for every available action a the game I'|,) is
weak immune for pg. Let us now fix such an Z arbitrarily. Following Definition 6.4,
we know that for values ¥ the game I' restricted to the fixed condition is weak
immune for pg. Since Z was chosen arbitrarily, I" restricted to the fixed condition is
weak immune for pg for all ¥ that satisfy the constraints in S. Finally, the fixed
condition can be used as a witness to conclude that the whole game is weak immune
in terms of the weak notion for all # that satisfy the constraints in S, Definition |6.5.

In the following, we consider the case when the return happened in line 31. Recall
that according to R2 from Definition 6.1, the conditions at a node are collectively
exhaustive i.e. span the whole subtree. That is, if the return happened in line 31,
it has to be the case that the constraints in S are unsatisfiable, and the property
trivially holds, as the left side of the implication is false for any Z.

71

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

72

e Case 2: Assume pg is the current player and I' is along h* and ComputeWI_CA
returned (true,split). Observing Algorithm 6.1 this can only happen in line 14, i.e.
when (true, split) is returned by ComputeWI_CA_alongHonest in line 19 or line
25. Let us first consider the case when it is returned in line 19. This means that we
have found a condition ¢ such that for the honest action a* available in condition ¢
it holds that ComputeWI_CA(T'(4+ ., h",S, sp, pg, weakCA) returns (true,split). By
induction hypothesis, we know that for all ¥ satisfying the constraints in S the
subgame I'|(,+) is weak immune for pg. By Definition 6.4 it follows that also I
is weak immune for pg, for all ¥ satisfying the constraints in S for condition c.
Hence, I" is weak immune in terms of the weak notion for pg, for all Z satisfying
the constraints in S following Definition [6.5. The argument for the case when the
return is in line 25 is identical to the argument for line 31 in Case 1 above.

e Case 3: Lastly, let pg be the current player and I is not along h* and ComputeWI_CA
returned (true,split). Observing Algorithm 6.1 this can only happen in line
16, i.e. when (true,split) is returned by ComputeWI_CA_alongHonest in
line 14 or line 30. Assume the return happens in line 14. This means that
there is a condition ¢, such that for an action a available in this condition
ComputeWI_CA(I'(y) ., h*,S, sp, pg, weakCA) returns (true,split). Further from the
induction hypothesis we can infer that for all ¥ satisfying the constraints in S the
subgame I'|(,) is weak immune for pg. Applying Definition 6.4, it follows that also
I' is weak immune for pg for all ¥ satisfying C'U case in this condition. Hence, I' is
weak immune in terms of the weak notion for pg, for all ¥ satisfying the constraints
in S following Definition 6.5l The argument for the case when the return is in line
30 is identical to the argument for line 31 in Case 1 above.

The argument above shows that for all ¥ that satisfy the constraints in S, I' with honest
history h* satisfies sp for player pg. The player pg was fixed arbitrarily and thus, this
holds for all players. Moreover, the quantification over the player group and the
quantification are independent, so their order can be switched. Finally, by Definition 6.4,
we can conclude that for all # that satisfy the constraints in S, the sp(I", h*) holds.

For sp = weri and sp = cr the reasoning is the same. On the other hand, for sp = pr,
we can follow the argument for the algorithm for games with no conditional actions,
presented in [5]. O

Theorem 6.5 (Correctness of Automation of Conditional Actions). The method for
computing game-theoretic security of an input instance 11 for honest history h* in terms
of weak or strong security depending on parameter weakCA is sound and complete. That
is, SatisfiesProperty (II,h*, sp, (), weakCA) = true iff Il with honest history h*
satisfies the property sp in terms of the weak or strong notion (depending on whether
weakCA is true or false). Otherwise, it returns false.

Proof. We prove the theorem for the weak notion of the security properties following the
approach presented in [5]; the proof of the strong notion can be done analogously.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.4. Automation of Conditional Security

We first prove direction “<=” by contraposition. For this purpose, assume that the
return value of SatisfiesProperty (II, h*, sp,), weakCA) is false. We need to show
that II with honest history h* does not satisfy security property sp in terms of the
weak notion. From the assumption and Algorithm 5.1, we observe that due to the
return value being false, there has to exist an ordering of utility terms case such
that SatisfiesProperty (II, h*, sp,), weakCA) = false. Further, this means that
there exists a player (group) pg such that Computesp (II, h*,S, sp, pg, weakCA) returns
(false,null), where S is composed of all constraints from C and case.

We now apply Lemma 6.1/ and infer that for all values of Z that satisfy the (satisfiable) set
of constraints in S, the game I' (of IT) with honest history h* violates security property
sp for player group pg in terms of the weak notion. The set case can be extended
to a total order < on the utility terms T,. Since all Z that satisfy C' U < also satisfy
C U case, it follows that for all Z that satisfy C'U < security property sp does not hold

for player group pg in terms of the weak notion, which means that sp does not hold.

Recall Theorem [3.1) which applies to the setting of CEFGs as well and allows us to infer
this claim. Hence, the input instance II violates the security property sp in terms of the
weak notion.

Next, we prove direction “=". Assume that the return value of SatisfiesProperty
(IT, h*, sp, B, weakCA) is true. Observing Algorithm 5.1, we see that this implies that all
final cases returned true. Moreover, we also know that all considered cases are pair-wise
disjoint, and their disjunction is a tautology. Let case be one such arbitrary, but fixed
case. Then, for all player groups pg it has to hold Computesp (II, h*,S, sp, pg, weakCA)
returns (true,split), where split is irrelevant and S is composed of all constraints from C
and case.

We can apply Lemma 6.2/ and infer that for all ¥ that satisfy C' and case security
property sp holds in terms of the weak notion in game I' with honest history A*. Similarly
as before, this implies that for all total orders < extending case, the security property
holds for all pg. Further, the disjunction of all total orders that extend case is equivalent
to case itself. Thus, this holds for all considered cases and those cases span the whole
universe, so it follows that for all total orders < holds that all # that satisfy C' U < satisfy
the security property for all player groups. Hence, the input instance II with honest
history h* satisfies the security property in terms of the weak notion.

At last, we prove termination by showing that SatisfiesProperty always returns
either true or false. This holds because the Compute<SP>_CA functions traverse the
finite game tree only once, and all SMT queries are decidable (as they involve unquantified
non-linear real arithmetic). Moreover, function SatisfiesProperty splits only on
utility comparisons of players/groups of players, which are finitely many. Thus, the
algorithm terminates. O

73

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

74

6.5 Conditional Counterexamples

As discussed previously in Section 3.3, if a security property (wi, weri, cr, pr) is not
satisfied, we are interested in finding out why not. In the sequel, we extend the notions of
compositional counterexamples presented in Section 3.3 to conditional counterexamples
for games with conditional actions. Specifically, we introduce weak and strong conditional
counterezamples, which refer to violation of weak and strong conditional security, respec-
tively. Note that we use the terms counterexramples and conditional counterexamples
interchangeably when dealing with CEFGs.

Conditional Counterexamples to Weak(er) Immunity. For the property weak(er)
immunity, a counterexample in terms of the weak notion is a harmed honest player p and
a partial strategy of the other players N — p such that no matter what honest actions
p chooses, they cannot avoid receiving a (real-valued) negative utility in any consistent
world state. Recall that the weak notion of weak(er) immunity is satisfied if for each
player there is a consistent world state such that the game in this world state is weak(er)
immune for the fixed player.

Definition 6.15 (Weak Counterexamples to Weak(er) Immunity). Let I' be a CEFG
with honest behavior h*. A weak counterexample to h* being weak(er) immune is a
player p together with a partial strategy sny—p such that for any consistent world state
m € M, sy_p extended by any strategy o, of player p who follows the honest history
h*, yields a terminal history Hy,(SN—p,0p) = tg, with uy(ts,) < 0 (resp. for weaker
immunity real(uy(ts,)) < 0) and it is minimal with that property.

The minimality of the partial strategy sy_, follows the definition from Section 3.3.

Example 6.10 (Weak Counterexamples for Weaker Immunity). Consider the Market
Entry game with conditional actions given in Figure 6.1, but let the utilities after history
(e1) and (02) be (—c,—p) and (—a, —p), respectively (the profit p is negated). A weak
counterexample for the weaker immunity of the modified game is then player E together
with a partial strategy sy for M such that sy, _,,.(0) = e1 and sy, (0) = 02. We
observe that no matter what strategy E chooses, the obtained utility will be negative, that

s —p.

A counterexample for weak(er) immunity in terms of strong conditional security, is a
harmed honest player p, a world state m and a partial strategy of the other players
N — p such that no matter what honest actions p chooses, they cannot avoid receiving
a real-valued negative utility in the world state m. Recall that the strong notion of
weak(er) immunity requires that for every player every world state is weak immune.

Definition 6.16 (Strong Counterexamples to Weak(er) Immunity). Let I' be a CEFG
with honest behavior h*. A strong counterexample to h* being weak(er) immune is
a world state m € M and a player p together with a partial strateqy sy—, such that

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.5. Conditional Counterexamples

sN—p extended by any strategy o, of player p who follows the honest history h*, yields
a terminal history Hy,(sN—p,0p) = tg, with uy(ts,) < 0 (resp. for weaker immunity
real(up(ts,)) < 0) and it is minimal with that property.

Example 6.11 (Strong Counterexamples for Weaker Immunity). We argued in Exam-
ple 6.8 that the Market Entry game with conditional actions given in Figure 6.1 is not
weak immune (for player M) in terms of the strong notion. A strong counterexample, as
defined in Definition |6.16, is player M, world state {p > 10* c¢,d < 0.6} and a partial
strateqy sg for E such that sEleO*c(ez) = pwy. Since the condition p > 10 % f is true at
the root and M s considered an honest player, M takes action ea in any strategy o
(which follows the honest history), after which E can take action pw; according to the
fized sg and M receives a negative utility in the case of the terminal history yielded in

the fized world state, that is history (ea, pw1).

Conditional Counterexamples to Collusion Resilience. For the property collusion
resilience, a counterexample in terms of weak conditional security consists of a group
of deviating players S and their partial strategy sg € .%, such that the joint utility of
S is better than the honest utility in every consistent world state, no matter how the
other players N — S react, while still following the honest history. We recall that the
weak notion of collusion resilience is satisfied if for each possible colluding group there
exist a consistent world state such that the game in this world state is collusion resilient
against the fixed group.

Definition 6.17 (Weak Counterexamples to Collusion Resilience). Let I" be a CEFG
with honest behavior h*. A weak counterexample to h* being collusion resilient is a set
of deviating players S together with their partial strateqy ss such that in any consistent
world state m € M, sg extended by any strateqy on_g of players N — S, which follows
the honest history h*, yields a terminal history Hp(on—g,55) = toy_s With

Z Up(toy_g) > Z up(Hp(h))

peS pES

and it is minimal with that property. The minimality of sg is similar to the minimality
of the partial strategy for weak(er) immunity.

Example 6.12 (Weak Counterexamples for Collusion Resilience). Consider the Market
Entry game with conditional actions given in Figure |6.1], but let the utilities after history
(e1) and (02) be (p,p) and (p,p), respectively (—f and o have been replaced by p). A
weak counterexample for the collusion resilience of the modified game is then the singleton
colluding group S = {M} and a partial strategy ss for S such that sy,_,,,.(0) = e1 and
SMy>10ve (0) = 03. We can observe that in any world state m € M, sg extended by any
strateqy on_g (for E), which follows h*, yields a terminal history which has a strictly
better utility for S then the one corresponding to h*. We discuss this in more detail for
every consistent world state in the following.

75

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

76

Let the world state be such that it corresponds to {p < 10xf, d < 0.6} or {p < 10x f, d >
0.6 }. According to ss, M chooses action e; and the game ends with utility p for M.
The honest utility corresponding to both world states (that we consider at once in this
example) is the leaf after action o1, that is, 0 for M. Recall that we have the additional
constraint p > 0 in the definition of the Market Entry game with conditional actions.
Thus, the sum of the utilities of the players in the colluding group S (in this case only
the utility of M, because S is a singleton) is strictly greater than the corresponding sum
if the strategy is extended by any strategy for E that follows h*.

Now let us consider world states {p > 10 f,d < 0.6} and {p > 10* f, d > 0.6 }.
According to sg, M chooses action oo and the game ends with utility p for M, independent
on the strateqy of E, whereas the utility that M would obtain corresponding to h* is either

£ or %, depending on the world state. We observe that p > £ and p > 5.

For the property collusion resilience, a counterexample in terms of strong conditional
security consists of a group of deviating players S, a world state m and their partial
strategy sg € ., such that in world state m the joint utility of S is better than the
honest utility, no matter how the other players N — S react, while still following the
honest history. Recall that the strong notion of collusion resilience requires that for every
player group every world state is collusion resilient against it.

Definition 6.18 (Strong Counterexamples to Collusion Resilience). Let I' be a CEFG
with honest behavior h*. A strong counterexample to h* being collusion resilient is a
consistent world state m € M and a set of deviating players S together with their partial
strategy sg such that in world state m, sg extended by any strategy on_g of players N — S,
which follows the honest history h*, yields a terminal history Hpy(oN—_g,55) = toy_g With

> uplton_s) > Y up(Hu(h"))

peES pES

and it is minimal with that property. The minimality of sg is similar to the minimality
of the partial strategy for weak(er) immunity.

Example 6.13 (Strong Counterexamples for Collusion Resilience). Consider the Market
Entry game with conditional actions given in Figure 6.1, but let the utilities after history
(e1) and (02) be (p,p) and (p,p), respectively (—f and o have been replaced by p). A strong
counterexample for the collusion resilience of the modified game is then the singleton
colluding group S = {M}, a partial strategy ss for S such that spr,_,,.(0) = e1 and
$My510..(0) = 02 and the world state {p < 10* f, d < 0.6 }. In the picked world state, M
chooses action ey according to sg and the game ends with utility p for M, independent
on how sg is extended by a strategy for E. The honest utility corresponding to the fized
world state is the leaf after action o1, that is, 0 for Mand we know that p > 0 holds
according to the definition of the Market Entry game with conditional actions.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.5. Conditional Counterexamples

Counterexamples to Practicality. Counterexamples to practicality of the honest
history A* have to provide a reason why a rational player would not follow h*. By
definition, the weak notion of practicality holds if there is a world state such that at any
point at the game, the subgame corresponding the condition that is satisfied in the world
state is practical for the current player. Hence, for a counterexample, we need to show
that for every possible state m, there is a prefix h of h* compliant with this state, such
that there is an action a after h in the condition c¢ satisfied by m which promises the
current player P(h) a strictly better utility than h*. Moreover, in the subgame I'|(, 4) .
after (h,a) all practical utilities complying with m have to be better for P(h), otherwise
other players could choose actions in I'|(; 4 that would disincentivize P(h) to deviate
from A*.

Definition 6.19 (Weak Counterexamples to Practicality). For a« CEFG I" with honest
behavior h*, a weak counterexample to practicality of h* is defined as a mapping from
the consistent world states in M to I,

m +— (h,a),

where

e h along h*, all conditions along h satisfied in m;
e a € A:(h) where c =m(h);
o Vt € J(ha)ct weakly practical in T q)c — uppy(Hm(h*)) < upmy((h,a,t)).

Example 6.14 (Weak Counterexamples to Practicality). Consider the Market Entry
game with conditional actions given in Figure 6.1, but let the utilities after history (e1)
and (02) be (p,p) and (p,p), respectively (—f and a have been replaced by p). We construct
a weak counterexample for the practicality of the modified game as follows.

e For every world state m € M, pick the empty history, i.e. h = (). Note that h is
trivially a prefix of h* and is trivially compliant to any m.

e For world states {p < 10* f,d < 0.6} and {p < 10x* f, d < 0.6} pick action
e1, and for world states {p > 10% f,d < 0.6} and {p > 10 f, d < 0.6} pick
action 0y. Both actions are compatible (that is available) with the conditions in the
corresponding world states.

Let us first consider {p < 10 f, d < 0.6} and {p < 10x f, d < 0.6 }. For both world
states we picked h = () and a = oy. We observe that the subgame Fmeica‘(%) is a leaf
and thus U((02)) = {(p,p)}. We analyzed the game after action es in Example 6.9 and
concluded that the honest utilities are the practical ones. Now we observe that the utility
after oo, namely p, is strictly better than both honest utilities, so the conditions for a
counterexample are satisfied.

7

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.

GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS

78

Neat, consider world states {p > 10 f,d < 0.6} and {p > 10x* f, d < 0.6 }. For both
world states we picked h = () and a = e1. We can easiliy observe that the conditions for a
counterexample are satisfied here as well, since p > 0.

Recall that the strong notion of practicality requires that all consistent world states are
practical for the current player. In this sense, a counterexample is one particular world
state, where this is violated.

Definition 6.20 (Strong Counterexamples to Practicality). For a CEFG T with honest
behavior h*, a strong counterexample to practicality of h* is defined as a tuple:

(m7 h? a)?

where

e m € M, m is consistent;

e he A, h along h*, all conditions along h satisfied in m;

e a € Ac(h) where c =m(h);

o Vt € J(na)et weakly practical in T\ qyc — upp)y(Hm(h*)) < upm)((h,a,t)).

Example 6.15 (Strong Counterexamples to Practicality). Consider the Market Entry
game with conditional actions given in Figure 6.1, but let the utilities after history (e1)
and (02) be (p,p) and (p,p), respectively (—f and a have been replaced by p). We construct
a strong counterexample for the practicality of the modified game as follows.

We fiz world state {p < 10 f, d < 0.6 }, pick the empty history, i.e. h =0 and action
e1. Note that h is trivially a prefix of h* and is trivially compliant to any m. In the
fized world state the honest utility for M is 0, whereas if M behaves “greedily” and picks
action ey, M obtains utility p, which is strictly greater than the honest one.

In the following, we present a theorem about how weak and strong counterexamples
for all security properties relate to each other and to counterexamples for conventional
EFGs.

Theorem 6.6 (Equivalence of (Conditional) Counterexamples). Let I' be an EFG with
honest behavior h* and I'° the extension of I' to a CEFG using only trivial conditions (as
in Theorem 6.1). Then the following hold:

1) A counterexample to T' satisfying property sp € {wi,weri,cr,pr} is also a weak
counterexample to I'° satisfying sp and vice versa.

2) A weak counterezample to I'¢ satisfying property sp € {wi, weri,cr,pr} is also a strong
counterexample to I'C satisfying sp and vice versa.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.6. Experimental Evaluation

Proof. Consider the security property weak immunity. With respect to 1), by Defini-
tion [6.15 we observe that a weak counterexample to weak immunity is independent on the
world state, i.e. it is a counterexample for any world state. For games without conditional
actions there is only one possible world state, with only trivial conditions. Hence, by
definition, the counterexample provides an honest player p with a partial strategy sy—,
such p can be harmed. This coincides with the notion of a counterexample for games
without conditional actions presented in Definition 3.5. In other words, 1) follows from
the fact that the game trees of I' and I'® coincide.

For 2), observing Definition 6.15 and Definition 6.16, we see that strong counterexamples
deal with one particular fixed world state, whereas weak counterexamples are independent
on the world state. Since there is only one world state for games with only trivial
conditions, namely the function which assigns the condition true to every history of the
game, weak and strong counterexamples for weak immunity coincide for games with only
trivial conditional actions.

The argument for the remaining security properties follows the same reasoning. O

Finally, we note that the automated finding of counterexamples is left as a direction for
future work.

6.6 Experimental Evaluation

Our compositional security approach for CEFGs has been automated following the
algorithms in Section 6.4. Our implementation is available online in the CHECKMATE 2.0
tooll.

Experimental Setup. We tested the framework with a small set of benchmarks and
we present and discuss the results in the following. The current set of benchmarks
includes games with non-trivial conditions and although both the benchmark set and
the individual games remain relatively modest in size, they constitute an important first
step toward the systematic analysis of games involving conditional actions. As such, this
collection serves as a foundational reference for the development of more comprehensive
benchmark sets in future work.

One of the games we evaluated our framework on is the Market Entry game with
conditional actions, which is given in Figure 6.1 and discussed on several occasions
throughout the examples in this section. Apart from this game, we also evaluated
the framework on adaptations of the games Simplified Closing, Auction, EBOS and
Centipede, analyzed in Section [5.4. The games have been extended to games with non-
trivial conditions and can be found online in the CHECKMATE 2.0 tool?. For example,

"https://github.com/apre-group/checkmate/tree/conditional-actions
thtps ://github.com/apre—group/checkmate/tree/conditional—-actions/
examples/conditional_actions

79

https://github.com/apre-group/checkmate/tree/conditional-actions
https://github.com/apre-group/checkmate/tree/conditional-actions/examples/conditional_actions
https://github.com/apre-group/checkmate/tree/conditional-actions/examples/conditional_actions

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6. GAME-THEORETIC SECURITY FOR GAMES WITH CONDITIONAL ACTIONS
Game Nodes Players Security Secure Time Nodes Nodes Calls
property yes/no evaluated evaluated (reps)
Market Entry CA 9 2 Wiy n 0.009 3 5 5
lo1[], ea[ir[], pwa[]]] weriy, y 0.009 3 5 5
Cry y 0.010 3 5 14
Pl v 0.010 9 9 10
wis n 0.010 8 12 16
weris n 0.009 8 12 16
cry v 0.011 9 14 49
Prs v 0.010 9 9 10
Simplified Closing CA 27 2 Wiy n 0.014 15 15 29
[Ch[S1[], S2], S3(]]s weri, n 0.011 15 15 26
eACAICAINCAI)! ey, vy 0.609 7 10 44
Prw y 0.152 27 183 411
wig n 0.010 3 3 5
werig n 0.009 3 3 4
cry vy 0.630 27 36 236
pre y 0.152 27 183 411
[H], H)] Wiy ¥y 0.014 8 10 14
Werly, y 0.013 8 10 12
CTy y 0.010 6 8 16
Pruw n 0.050 27 69 191
Wi y 0.018 27 30 54
weri y 0.017 27 30 48
Cry y 0.016 27 30 89
Prs n 0.043 27 69 162
Auction CA 97 3 Wiy n 0.013 34 34 44
[Ly[EL[I1]), E2[I1)]], wer, n 0.012 34 34 42
Lo EA[I[)], B2 [I])]]] Cry n 0.027 49 119 360
Pry v 0.020 97 97 336
Wi n 0.011 8 8 9
werig n 0.011 8 8 9
crg n 0.028 49 122 396
Prs v 0.020 97 97 336
EBOS CA 89 4 Wiy n 0.012 46 79 90
[MINE\[MIN Ey[MIN Es[MINE4[]|], weriy, n 0.012 46 79 90
MINEy[MINE1o[MINEy]]]], Cru n 0.073 61 427 1444
MINEy[MINEy[MINEy [MINEy[]]], Pl y 0.162 89 2870 8697
MIN Ey[MIN Ey [MIN E11[]]]]] Wis n 0.013 61 97 114
weris n 0.013 61 97 114
cry n 0.032 53 183 569
prs n 0.067 89 1046 3361
Centipede CA 17 2 Wiy y 0.011 12 17 26
[C1[Co[Cs]), Call)], Esl] weriy, y 0.010 12 17 23
Cry y 0.010 7 11 28
Prw y 0.022 17 85 221
wig n 0.009 3 3 5
werig n 0.009 3 3 4
cry y 0.011 14 20 64
prs n 0.022 17 85 218
Table 6.1: Experimental results of game-theoretic security for CEFGs using the com-
positional CHECKMATE 2.0 approach. Runtimes are given in seconds. For each game,
columns 2-3 list the size (tree nodes and game players) of the game from column 1.
Column 4 shows the game-theoretic security property we analyzed and (dis)proved, as
indicated in column 5. The subscripts w and s refer to the weak and strong notions of
the security properties, respectively. Columns 6-9 present the results of CHECKMATE 2.0
in terms of execution time, number of evaluated notes with and without repetition and
the number of calls to the SMT solver.
Simplified Closing has been extended to include conditions involving several variables
that represent price factors, which also appear in the utilities now. Likewise, Centipede
can now be interpreted as a game where inheritance is divided between two parties and
80

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6.6. Experimental Evaluation

depends on their age.

The evaluation has been conducted using a machine with 2 AMD EPYC 7502 CPUs
clocked at 2.5GHz with 32 cores and 1'TB RAM.

Experimental Results. The results of the evaluation for games with conditional
actions are presented in Table 6.1. The first column lists each game along with the
corresponding analyzed honest behavior. Note that, for instance, for the Market Entry
game with conditional actions the honest behavior is denoted by [o1[], eali1[], pw2[]]],
meaning that at the root, the honest actions for the two available conditions are o and es
and in the subtree restricted to the condition where es is an available action, the honest
actions for the available conditions are ¢; and pws. Columns 2 and 3 report the number
of nodes and the number of players in the respective game trees. Column 4 shows the
game-theoretic security property we analyzed and (dis)proved, as indicated in column 5.
The subscripts w and s refer to the weak and strong notions of the security properties,
respectively. Columns 6—9 present the results of CHECKMATE 2.0 in terms of execution
time, number of evaluated notes with and without repetition and the number of calls to
the SMT solver.

Experimental Analysis. Our framework correctly analyzed all benchmarks in terms
of the weak and strong notions of the security properties. As it can be seen from Table 6.1
the execution time for all instances and properties was below one second, given that they
are relatively simple benchmarks. It is not possible to establish definitive relationships
between the number of evaluated nodes and function calls based solely on whether we are
verifying the weak or strong versions of the properties, or whether those properties hold.
This is because such factors depend heavily on the game’s structure and the required
case splits. The only consistent pattern observed is that, when one of the properties wi,
wert, or cr is satisfied in terms of both the weak and strong notion, verifying the weak
notion involves fewer evaluated nodes and calls than verifying the strong one.

Current Limitations and Future Work. Given their relatively limited size, the
discussed benchmarking set is intended primarily for illustrative and verification purposes
within the context of the proposed approach. It will be especially interesting to find out
how this approach scales and if CHECKMATE 2.0 with support for conditional actions
can analyze big real-life models in feasible time. In particular, we would like to model
and analyze the Liquidation Phase of FAsset presented in Example 6.1.

Moreover, the extraction of counterexamples needs to be automated and accordingly
evaluated, following the definitions of conditional counterexamples (Section 6.5). Auto-
matic extraction of strategies for CEFGs similar to the approach for EFGs discussed in
Section 5.2 is also left as a direction for future work.

Lastly, another interesting direction for future research is to include large benchmarks,
where we can intertwine the generation and the analysis, similarly as for the 4-Player
Routing in Section |5.4.

81

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

CHAPTER

Conclusion

Game-theoretic approaches have proven to be quite helpful and valuable for analyzing
blockchain technologies from an economic standpoint, particularly by examining the
behavior of players. However, existing frameworks face challenges related to scalability
and expressivity.

In this thesis, we discussed the first approach for compositional analysis of security
properties within game-theoretic models. We defined player-dependent notions of security
and developed a method for decomposing games into subgames. Moreover, we interleave
subgame and supergame reasoning such that the security result of a subgame can be
added as a leaf and used in the respective supergame. This is particularly advantageous
for subgames that occur multiple times in the supertree.

Our framework supports the generation of counterexamples when a property is violated,
as well as the extraction of strategies when a property is satisfied, all in a compositional
manner. This approach offers these capabilities with minimal overhead.

By combining our theoretical results with SMT-based techniques, we automated com-
positional reasoning in a sound and complete way. We validated our implementation
using benchmarks from prior approaches, alongside new ones and observed significant
improvements in scalability, especially when applied to real-world protocols with millions
of nodes and actions.

Moreover, we enhanced the expressivity of the existing framework by enabling the
modeling and analysis of games influenced by external uncontrollable factors. The
extension of the framework enables users to model various conditions, with the game
adapting based on which condition is satisfied — reflecting the current state of the world.
For this purpose, we redefined strategies, honest histories, counterexamples and related
notions. In addition, we introduced the concepts of weak and strong conditional security,
which have also been automated. This approach has been evaluated on a small set of

83

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7. CONCLUSION

84

benchmarks with non-trivial conditions, which can serve as a foundational reference for
the development of more comprehensive benchmark sets in future work.

Despite these advancements, our work has some limitations. Notably, while we already
support analysis of games with conditional actions, there is significant potential to further
extend this functionality. Promising directions for future work include evaluating our
implementation on a broader range of games with conditional actions — particularly
real-world scenarios — as well as providing support for automated strategy extraction
and counterexample generation for games involving conditional actions.

Overview of Generative Al Tools

Used

e Grammarly: Free Al Writing Assistance, https://app.grammarly.com/

e DeepL Translate, https://www.deepl.com/

Yaylolqig usipn NL 1e wud ul ajgejiene si sisayl SIyl Jo uoisian [euibuo panoidde ay g
Jregbnuian yayiolqlg uaiph NL Jap ue 1si uagrewo|diq 1asalp uoisiaAjeulbliO aonipab ausiqoidde aig

85

qny a8pajmous| JNoA

Srayrolqie

https://www.deepl.com/
https://app.grammarly.com/

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2.1

2.2

4.1
4.2

6.1

6.2

List of Figures

Market Entry game I'),., with a,p > 0. Utility tuples state M’s utility first,
E’ssecond.
Example I';, for the property Collusion Resilience.

Naive compositionality of Weak Immunity for Market Entry game, a,p > 0.
Example I',, for Practicality

Market Entry game with Conditional Actions I'yye cq, with a,p, f > 0, 0 <

d < 1 and infinitesimal a. Utility tuples state M’s utility first, E’s second.

Conditions are represented with teal dashed lines and the honest history with
thick blue lines.|
Example I'.;, g1 for requirement R1 of games with conditional actions, 0 <
<1 o e

13

24
27

o1

93

87

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

0.1

5.2

9.3

6.1

List of Tables

Experimental results of game-theoretic security, using the compositional
CHECKMATE 2.0 approach and the non-compositional CHECKMATE setting
of [21]. Runtimes are given in seconds, with a timeout (TO) after 8 hours.
For each game, columns 2-3 list the size (tree nodes and game players) of the
game from column 1. Column 4 shows the game-theoretic security property
we analyzed and (dis)proved, as indicated in column 5. Columns 6-9 present
the results of CHECKMATE 2.0 compared to CHECKMATE, using the slash /
SIEIL. | v v v e e e e e e e e e e e e e e e e

Experiments on counterexample (CE) generation using our CHECKMATE 2.0
approach and the non-compositional CHECKMATE tool of [21]. Runtimes
are given in seconds; error means we encountered an exception thrown from
CHECKMATE’s Z3 backend.]

Experiments on strategy extraction using our CHECKMATE 2.0 approach
and the non-compositional CHECKMATE tool of [21]. Runtimes are given in
seconds, with a timeout (TO) after 8 hours.

Experimental results of game-theoretic security for CEFGs using the com-
positional CHECKMATE 2.0 approach. Runtimes are given in seconds. For
each game, columns 2-3 list the size (tree nodes and game players) of the
game from column 1. Column 4 shows the game-theoretic security property
we analyzed and (dis)proved, as indicated in column 5. The subscripts w and
s refer to the weak and strong notions of the security properties, respectively.
Columns 6—9 present the results of CHECKMATE 2.0 in terms of execution
time, number of evaluated notes with and without repetition and the number
of calls to the SMT solver. |

41

42

45

89

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5.1

5.2

6.1
6.2

6.3
6.4

List of Algorithms

Function SatisfiesProperty for Compositional Game-Theoretic Secu-
rity Reasoning.| Lo oo

Function ComputeWI for Weak Immunity.

Function ComputeWI_CA for Conditional Weak Immunity.|

Function ComputeWI_CA_differentPlayer for Conditional Weak Im-
munity.|

Function ComputeWI_CA_alongHonest for Conditional Weak Immunity.

Function ComputeWI_CA_notAlongHonest for Conditional Weak Im-
munity.o e e

35
37

64

65
66

67

91

“jayiolgig usipn N1 1e wud ul ajge(rene si sisay) syl Jo uoisian [euibuo panoidde ay | < any 38pajmoust InoA
JeqgbBnyian yaylolqig usipn NL Jap ue 1si 1agrewoldiq Jasalp uoisiaAfeulBuQ aponipab ausiqoldde aiqg v_U:#O__ﬁ—_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Bibliography

Clark Barrett and Cesare Tinelli. ,,Satisfiability Modulo Theories®. In: Handbook
of Model Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem. UC Berkeley: Springer International Publishing, 2018,
pp- 305-343. 1SBN: 978-3-319-10575-8. pOI: [10.1007/978-3-319-10575-8_11.

Bitcoin homepage. https://bitcoin.org/. [Online; accessed March 10, 2025].

Nikolaj Bjgrner and Lev Nachmanson. ,Arithmetic Solving in Z3“. In: Com-
puter Aided Verification: 36th International Conference, CAV 2024, Montreal, QC,
Canada, July 24-27, 2024, Proceedings, Part I. Montreal, QC, Canada: Springer-
Verlag, 2024, pp. 26—41. 1SBN: 978-3-031-65626-2. DOI1: [10.1007/978-3-031+
65627-9_2.

Bruno Blanchet. ,Automatic Verification of Security Protocols in the Symbolic
Model: The Verifier ProVerif“. In: Foundations of Security Analysis and Design
VII: FOSAD 2012/2013 Tutorial Lectures. Ed. by Alessandro Aldini, Javier Lopez,
and Fabio Martinelli. Cham: Springer International Publishing, 2014, pp. 54—87.
ISBN: 978-3-319-10082-1. po1: 10.1007/978-3-319-10082-1_3.

Ivana Bocevska, Anja Petkovié¢ Komel, Laura Kovécs, Sophie Rain, and Michael
Rawson. Divide and Conguer: a Compositional Approach to Game-Theoretic Se-
curity. BEasyChair Preprint 15785, https://easychair.org/publications/
preprint /kxKK. 2025.

Lea Salome Brugger, Laura Kovéacs, Anja Petkovic Komel, Sophie Rain, and Michael
Rawson. ,,CheckMate: Automated Game-Theoretic Security Reasoning“. In: Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. CCS "23. Copenhagen, Denmark: Association for Computing Machinery,
2023, pp. 1407-1421. 1SBN: 9798400700507. DO1: [10.1145/3576915.3623183.

Leonardo De Moura and Nikolaj Bjgrner. ,,Z3: an efficient SMT solver“. In:
Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
TACAS’08/ETAPS’08. Budapest, Hungary, 2008, pp. 337-340. 1SBN: 3540787992.
DOI: |[10.1007/978-3-540-78800-3_24.

93

https://doi.org/10.1007/978-3-319-10575-8_11
https://bitcoin.org/
https://doi.org/10.1007/978-3-031-65627-9_2
https://doi.org/10.1007/978-3-031-65627-9_2
https://doi.org/10.1007/978-3-319-10082-1_3
https://easychair.org/publications/preprint/kxKK
https://easychair.org/publications/preprint/kxKK
https://doi.org/10.1145/3576915.3623183
https://doi.org/10.1007/978-3-540-78800-3_24

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[15]

[16]

[17]

94

Dino Distefano, Manuel Fahndrich, Francesco Logozzo, and Peter W. O’Hearn.
»Scaling static analyses at Facebook“. In: Commun. ACM 62.8 (2019), pp. 62-70.
ISSN: 0001-0782. po1: [10.1145/3338112!

Dogecoin homepage. https://dogecoin . com/. [Online; accessed March 10,
2025].

Flare Developer Hub, Liquidation. https://dev.flare.network/fassets/
liquidation. [Online; accessed March 10, 2025].

Flare Developer Hub, Overview. https://dev.flare.network/fassets/
overview. [Ounline; accessed March 10, 2025].

Flare homepage. https://flare.network/. [Online; accessed March 10, 2025].

Flare homepage, FAsset. https://flare.network/products/fassets.
[Online; accessed March 10, 2025].

Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. ,,Compositional
Game Theory“. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science. LICS ’18. Oxford, United Kingdom: Association for
Computing Machinery, 2018, pp. 472—481. 1SBN: 9781450355834. DOI: [10.1145/
3209108.3209165.

Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. ,, Verifpal: Cryptographic
Protocol Analysis for the Real World“. In: Progress in Cryptology — INDOCRYPT
2020. Ed. by Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran.
Cham: Springer International Publishing, 2020, pp. 151-202. 1SBN: 978-3-030-65277-
7.DOI1:110.1007/978-3-030-65277-7_8.

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. ,,The TAMARIN
Prover for the Symbolic Analysis of Security Protocols“. In: Proceedings of the 25th
International Conference on Computer Aided Verification - Volume 8044. CAV 2013.
Saint Petersburg, Russia: Springer-Verlag, 2013, pp. 696-701. 1SBN: 9783642397981.
DOI:[10.1007/978-3-642-39799-8_438|

Peter W. O’Hearn. ,,Continuous Reasoning: Scaling the impact of formal methods®.
In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS ’18. Oxford, United Kingdom: Association for Computing Machinery,
2018, pp. 13-25. 1SBN: 9781450355834. DO1: 110.1145/3209108.3209109.

Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. Cambridge,
USA: The MIT Press, 1994.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. 2016.

Sophie Rain, Georgia Avarikioti, Laura Kovacs, and Matteo Maffei. ,, Towards a
Game-Theoretic Security Analysis of Off-Chain Protocols“. In: 2023 IFEFE 36th
Computer Security Foundations Symposium (CSF). 2023, pp. 107-122. por: 10 .
1109/CSF57540.2023.00003.

https://doi.org/10.1145/3338112
https://dogecoin.com/
https://dev.flare.network/fassets/liquidation
https://dev.flare.network/fassets/liquidation
https://dev.flare.network/fassets/overview
https://dev.flare.network/fassets/overview
https://flare.network/
https://flare.network/products/fassets
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1007/978-3-030-65277-7_8
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1109/CSF57540.2023.00003
https://doi.org/10.1109/CSF57540.2023.00003

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

[21]

[24]

Sophie Rain, Lea Salome Brugger, Anja Petkovi¢ Komel, Laura Kovécs, and Michael
Rawson. ,,Scaling CheckMate for Game-Theoretic Security“. In: Proceedings of 25th
Conference on Logic for Programming, Artificial Intelligence and Reasoning. Ed. by
Nikolaj Bjgrner, Marijn Heule, and Andrei Voronkov. Vol. 100. EPiC Series in
Computing. Stockport, UK: EasyChair, 2024, pp. 222-231. Do1: [10.29007/11ng.

Raymond M Smullyan. First-Order Logic. New York: Dover Publications, 1995.

Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler, Valentin Wiistholz,
and Arie Gurfinkel. ,Compositional Verification of Smart Contracts Through
Communication Abstraction®. In: Static Analysis: 28th International Symposium,
SAS 2021, Chicago, IL, USA, October 17-19, 2021, Proceedings. Chicago, IL, USA:
Springer-Verlag, 2021, pp. 429-452. 1SBN: 978-3-030-88805-3. DOI1: 1 10.1007/978+
3-030-88806-0_21.

Amalee Wilson, Andres Noetzli, Andrew Reynolds, Byron Cook, Cesare Tinelli, and
Clark Barrett. ,,Partitioning strategies for distributed SMT solving®. In: Proceedings
of the 23rd Conference on Formal Methods in Computer-Aided Design — FMCAD
2023. Ed. by Alexander Nadel and Kristin Yvonne Rozier. 2023, pp. 199-208. DOT1:
10.34727/2023/1sbn.978-3-85448-060-0_28.

XRP homepage. https://xrpl.org/. [Online; accessed March 10, 2025].

Paolo Zappala, Marianna Belotti, Maria Potop-Butucaru, and Stefano Secci. ,,Game
Theoretical Framework for Analyzing Blockchains Robustness®. In: Leibniz In-
ternational Proceedings in Informatics (LIPIcs). Vol. 209. Leibniz International
Proceedings in Informatics (LIPIcs). Freiburg, Germany: Schloss Dagstuhl, Oct.
2021, 42:1-42:18. pO1: 10.4230/LIPIcs.DISC.2021.42.

95

https://doi.org/10.29007/llnq
https://doi.org/10.1007/978-3-030-88806-0_21
https://doi.org/10.1007/978-3-030-88806-0_21
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_28
https://xrpl.org/
https://doi.org/10.4230/LIPIcs.DISC.2021.42

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	State of the Art
	Contributions
	Outline

	Preliminaries
	Game Theory
	Game-Theoretic Security Properties
	Automated Game-Theoretic Security Analysis with CheckMate

	Compositional Game-Theoretic Security Properties
	Security Properties for Subgames
	Total Orders
	Compositional Counterexamples

	Compositional Game-Theoretic Security
	Unsound Naïve Approach to Compositionality
	Security Properties Stratified over Players
	Splitting and Combining Player-Wise Security Properties

	Automation and Evaluation of Game-Theoretic Security Analysis
	Divide-and-Conquer Algorithms for Compositional Security
	Extracting Compositional Strategies
	Finding Compositional Counterexamples
	Experimental Evaluation

	Game-Theoretic Security for Games with Conditional Actions
	Games with Conditional Actions
	Security Properties for Conditional EFGs
	Conditional Security
	Automation of Conditional Security
	Conditional Counterexamples
	Experimental Evaluation

	Conclusion
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

