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Kurzfassung

Die Laufzeit eines probabilistischen Programmes ist eine Zufallsvariable. Termination
solcher Programme umfasst deshalb den qualitativen Terminationsbegriff “almost-sure
termination” (AST) sowie den quantitativen Begriff “positive almost-sure termination”
(PAST), welcher eine Aussage über den Erwartungswert der Laufzeit trifft. Ein Programm
welches im Sinne von PAST terminiert, terminiert auch im Sinne von AST, jedoch
terminiert nicht jedes Programm, welches im Sinne von AST terminiert auch im Sinne
von PAST. Der symmetrische Random Walk ist ein Beispiel für ein Programm, welches
AST, aber nicht PAST erfüllt.

In dieser Arbeit zeigen wir, dass die Klasse der “Polynomiellen Random Walks” unter
bestimmten Umständen PAST erfüllt. In jedem Schleifendurchlauf wird mit einer kon-
stanten Wahrscheinlichkeit p eines von zwei Polynomen in der Anzahl der bisherigen
Schleifendurchläufen gewählt, welches die Größe und Richtung des nächsten Schrittes
bestimmt. Wir zeigen, dass ein Programm PAST erfüllt, wenn der Grad der Polynome
sowohl höher als der Grad des Erwartungswertes der Schritte ist, als auch einen gewissen
Schwellenwert dmin(p) übersteigt. Unser Ansatz verwendet keine Beweisregeln und Arith-
metische Ausdrücke wie Martingale oder Invarianten. Stattdessen beschränken wir den
oberen Rand der Zufallsvariable, welche die Schritte akkumuliert, induktiv, und zeigen
mit Hilfe dieser Beschränkung, dass PAST erfüllt sein muss. Weiters implementieren
wir die Annäherung dieser Schranke mittels eines genetischen Algorithmus und linearer
optimierung.
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Abstract

The number of steps until termination of a probabilistic program is a random variable.
Probabilistic program termination therefore requires qualitative analysis via almost-sure
termination (AST), while also providing quantitative answers via positive almost-sure
termination (PAST) on the expected number of steps until termination. While every
program which is PAST is AST, the converse is not true. The symmetric random walk
with constant step size is a prominent example of a program that is AST but not PAST.

In this thesis we show that a more general class of polynomial random walks is PAST.
Our random walks implement a step size that is polynomially increasing in the number
of loop iterations and have a constant probability p of choosing either branch. We show
that such programs are PAST when the degree of the polynomial is higher than both the
degree of the drift and a threshold dmin(p). Our approach does not use proof rules, nor
auxiliary arithmetic expressions, such as martingales or invariants. Rather, we establish
an inductive bound for the cumulative distribution function of the loop guard, based
on which PAST is proven. We implemented the approximation of this threshold, by
combining genetic programming, algebraic reasoning and linear programming.
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CHAPTER 1
Introduction

Probabilistic programs extend programs written in classical programming languages
by statements that draw samples from stochastic distributions, such as Normal and
Bernoulli. The output as well as the number of steps until termination of a probabilistic
program are random variables [1], which makes the analysis even harder than in the
nonprobabilistic setting [2]. In this thesis we focus on probabilistic termination and
introduce a class of loops for which we provide a new sufficient condition for positive
almost-sure termination.

Probabilistic loop termination [3, 4] requires qualitative arguments via almost-sure
termination (AST), and quantitative answers via positive almost-sure termination (PAST)
on the expected number of steps until termination. While every program which is PAST
is AST, the converse is not true. The symmetric random walk with constant step size
is a prominent example of a program that is AST but not PAST. Existing works for
proving PAST and/or AST rely on proof rules that need auxiliary arithmetic expressions,
such as invariants and martingales, over program variables [5]. In particular, ranking
super-martingales (RSMs) or lexicographical RSMs are commonly used ingredients in
(P)AST analysis [6]. For probabilistic programs without nondeterminism, RSMs are a
sound and complete method for proving termination [7, 8].
However, finding an RSM is challenging, as shown
in Figure 1.1. Here, ← denotes variable assign-
ments and ⊕p captures probabilistic choice: the
expression on the left hand side of ⊕p is chosen
with probability p, and the one on the right hand
side of ⊕p is chosen with probability 1 − p. While
the program has a finite stopping time, to the best
of our knowledge, no RSM of this program has
been found until now. As such, existing methods
would fail proving PAST for Figure 1.1.

n ← 0
s ← 0
while s ≥ 0 do

n ← n + 1
s ← s − n + 3 ⊕ 1

2
s + n + 5

end while
Figure 1.1: Program with non-trivial
RSM.
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1. Introduction

Our approach. We overcome challenges of RSM inference in PAST analysis, by
identifying a class of loops, called polynomial random walks (Chapter 4), for which PAST
can be proven without martingale/invariant synthesis. While polynomial random walks
are less expressive than arbitrary polynomial loops, their PAST analysis can be automated
using genetic programming, algebraic reasoning and linear programming (Chapter 4).

Our approach relies on bounding the tails of random loop variables in order to guarantee
that a random variable is close to its mean. Tail bounds [9] are important in providing
guarantees on the probability of extreme outcomes. Our work analyzes tail probabilities
P(X ≥ t) of the random variable X summing up the steps, to establish that the probability
that X exceeds some value t decreases fast with increasing t, and the deviation from
0 is in some sense “controlled”. Key to our approach is that variables of polynomial
random walks converge to random variables with almost Normal distributions (Lemma 5),
whose tail bounds can be approximated (Lemma 6). We therefore transform polynomial
random walks into programs with larger expected stopping time, where several steps are
accumulated before the loop guard is checked. In other words, we connect polynomial
random walk analysis to stochastic processes over random variables with almost Normal
distributions whose variance is exponentially growing (Chapter 2). By summing up
random variables of such processes, we prove that a sub-Gaussian tail bound is preserved.
The cumulative distribution function of this summation can tightly be approximated
using an inductive bound over random variables.

By proving that an inductive bound always exists, we find that constant-probability
polynomial random walks are PAST when the step size grows fast enough (Theorem 2).
Our PAST result holds whenever (i) the degree d of the polynomials is larger than the
degree of the expected value of the increments, and (ii) d is larger than a threshold
dmin(p) parametrized by the probabilistic choice probability p. Our work establishes that
Figure 1.1 satisfies this threshold (Table 4.1), implying thus PAST of Figure 1.1 without
the need of an RSM.

We implemented our PAST analysis over polynomial random walks in extension of the
algebraic program analysis tool Polar [10]. To this end, we use linear programming,
by relying on OR-Tools [11] and the Gurobi-solver [12], to derive inductive bounds
for fixed parameters of the program transformation over polynomial random walks. We
further combined Polar with a genetic algorithm, to find the best values for those
parameters. Our experimental results in Chapter 4, give practical evidence on the
tightness of our inductive bounds on polynomial random walks. Existence of these
inductive bounds imply thus PAST of the programs that are analyzed.

Our contributions. We translate the problem of verifying PAST into the problem
of tightly approximating tail bounds of random loop variables. We bring the following
contributions:

• We introduce the class of polynomial random walks for which we provide sufficient
conditions to determine PAST. These conditions do not require user-provided
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invariants and/or martingales. We determine PAST above a threshold dmin(p),
which in turn only depends on the polynomial degree d of the loop updates and
the probabilistic choice p in the loop (Chapter 3).

• We show that such a threshold dmin(p) always exists by transforming polynomial
random walks into stochastic processes over almost Normal variables (Chapter 2).
We prove that such processes admit an inductive bound over their cumulative
distribution function, allowing us to tightly approximate our threshold dmin(p).

• We implemented our approach to approximate dmin(p), and hence conclude PAST,
in extension of the Polar framework (Chapter 4). Our experiments showcase the
tightness of our approximation, implying thus PAST.

Impact and dissemination of the thesis. Results of the thesis have been peer-
reviewed and accepted for publication and presentation at the International Conference
on Quantitative Evaluation of SysTems (QEST) 2025, as follows:

Lorenz Winkler and Laura Kovács. Positive Almost-Sure Termination of Polynomial Ran-
dom Walks. In Proceedings of the International Conference on Quantitative Evaluation
of SysTems (QEST) 2025, LNCS, 2025. To appear.

I have been the main author of the work presented both in this thesis and the above
mentioned published paper. Yet, given the collaborative work upon which the thesis
is based, the work presented in this thesis is referred to within a plural form (e.g. “we
conclude. . . ” instead of “I conclude. . . ”).
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CHAPTER 2
Almost Normal Variables and

Conditioning

This chapter introduces a special class of
stochastic processes (Section 2.1) and estab-
lishes bound properties for such processes. The
stochastic processes we consider are given in
Figure 2.1, for which we show that they in-
duce random variables with sub-Gaussian tail
bounds (Section 2.2) whose inductive bounds
can tightly be approximated (Section 2.3). In
Chapter 3 we then prove that polynomial ran-
dom walks can be transformed into the stochas-
tic process of Figure 2.1, allowing to conclude
PAST of polynomial random walks (Theo-
rem 2).

n ← 0
z ∼ N δ1,C1

c0 (0, σ0)
s ← s0 + z
while s ≥ F −1

Sn
(ϵ) do

n ← n + 1
z ∼ N δ1,C1

c0 (0, σn)
s ← s + z

end while
Figure 2.1: Probabilistic programs sum-
ming up almost normally distributed
variables

In the sequel, we respectively denote by N,R,R+ the set of natural, real, and positive
real (including zero) numbers. We reserve n ∈ N for the loop iteration (counter). We
assume familiarity with probabilistic programs and their semantics, and refer to [13, 9] for
details. The probability measure is denoted by P, while we use E to denote the expected
values of random variables. Further, we denote with (X|E) the conditional probability
distribution of X given event E.

2.1 Almost Normally Distributed Loop Summations
We consider stochastic processes induced by the probabilistic program of Figure 2.1,
which uses the random variable series {Sn}n∈N and {Zn}n∈N corresponding to the values
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2. Almost Normal Variables and Conditioning

of s and z in the n-th iteration. We respectively denote by FSn and FZn the cumulative
distribution function (cdf) of Sn and Zn. The notation z ∼ N δ1,C1

c0 (0, σn) indicates that z
is drawn from a distribution that is almost equivalent to a Normal distribution N (0, σn)
with variance σ2

n, in a sense, that c0 bounds the absolute deviation of cdf of Zn from the
cdf of the Normal variable. Additionally, δ1 bounds the shift of the sub-Gaussian tail
bound and C1 is the multiplicative deviation of that bound’s variance (see Lemma 1).
The initial value of s is also drawn from such an almost Normal distribution with variance
σ2

0. In each loop iteration n, a sample is drawn from an almost Normal distribution
with variance σ2

n and then added to s. The loop is exited, once s is within the smallest
ϵ-fraction of Sn.

Recall that the stochastic processes induced by {Sn} and {Zn} represent a Markov
chain [13]. Based on the semantics of Figure 2.1, the series Sn sums variables Z0, . . . , Zn,
as follows:

• S0 = Z0;

• Sn+1 = (Sn | Sn ≥ F −1
Sn

(ϵ)) + Zn+1, where F −1
Sn

is the inverse of the cdf of Sn.

Note that for Sn only the paths are considered, for which the program has not yet
terminated. To reason about termination of Figure 2.1, we rely on a right tail bound of
the random variable Sn, as it gives an upper limit on the probability of a random variable
exceeding a certain value [9]. In other words, the right tail bound of Sn quantifies how
likely it is to observe values of Sn in the extreme right (or upper) tail of a distribution.
While such extreme cases might yield to the non-termination of Figure 2.1, in Section 2.2
we show that a tail bound for Sn can be derived from the tail bound of Zn, which
ensures that this behavior is unlikely. Moreover, by adjusting standard properties of
distributions [13], we also bound the behavior of Zn, as listed below.

Lemma 1 (CDF deviation and bound). Let {Zn}n∈N be a sequence of random vari-
ables, as defined in Figure 2.1. Recall that Zn follows an almost Normal distribution
N δ1,C1

c0 (0, σn). The following holds:

1. The cdf of Zn, denoted as FZn deviates from a Normal distribution only by at most
c0. That is, |FZn(z) − Φ( z

σn
)| ≤ c0, where Φ denotes the cumulative distribution

function of the Normal distribution.

2. The variable Zn admits a sub-Gaussian tail bound on its right tail, which is offset
by δ1σn and has variance of σ2

n
C1

. That is,

∀a ∈ R+ : P(Zn ≥ a + δ1σn) ≤ exp
(︄

C1
−a2

2σ2
n

)︄
.

6



2.2. Tail Bound for Sn

2.2 Tail Bound for Sn

Lemma 1 limits the behavior of variable z in Figure 2.1. We next show that, in addition
to z, also variable s does not grow in an uncontrolled way. Similarly to Lemma 1, we
reason about the right tail of Sn and prove that it admits a sub-Gaussian tail bound
(Lemma 2); as such, the probability of Sn being significantly greater than its expected
value is limited.

Lemma 2 (Preservation of sub-Gaussian tail bound). Consider the random variable
series {Sn}n∈N induced by s in Figure 2.1. Assume that the variance σ2

n grows such that
the inequality σ2

n+1 ≥ d(σ2
1 + · · · + σ2

n) holds for some d ∈ R+ \ {0}. Then, Sn admits a
sub-Gaussian (but not centered) tail bound:

∀a ∈ R+ : P
(︃

Sn ≥ a + (
√

1 + d√
1 + d − 1

δ1 + b)

⌜⃓⃓⎷ n∑︂
i=0

σ2
i

)︃
≤ exp

(︄
C1

−a2

2 ∑︁n
i=0 σi

)︄
,

where b ≥
√︂

2 ln 1
1−ϵ

√
C1(

√
(1+d)−1)

.

Proof. By induction. Base case. S0 = Z0, and the bound of Z0 is stronger, since δ1 and
b are positive:

P(S0 ≥ a + (
√

1 + d√
1 + d − 1

δ1 + b)σ0) ≤ exp

C1
−(a + (

√
1+d√

1+d−1δ1 + b)σ0)2

2σ2
0


≤ exp

(︄
C1

−a2

2σ2
0

)︄

Induction step. We know that

P(Sn ≥ a + (
√

1 + d√
1 + d − 1

δ1 + b)

⌜⃓⃓⎷ n∑︂
i=0

σ2
i ) ≤ exp

(︄
C1

−a2

2 ∑︁n
i=0 σ2

i

)︄
.

When cutting away a fraction ϵ of the left tail, we multiply the tail probability by 1
1−ϵ :

P

(︂
Sn|Sn > F −1

Sn
(ϵ)

)︂
≥ a +

(︄ √
1 + d√

1 + d − 1
δ1 + b

)︄ ⌜⃓⃓⎷ n∑︂
i=0

σ2
i


≤ 1

1 − ϵ
exp

(︄
C1

−a2

2 ∑︁n
i=0 σ2

i

)︄
≤ exp

(︄
C1

(︄
−a2

2 ∑︁n
i=0 σ2

i

)︄
+ ln 1

1 − ϵ

)︄
.

Now inserting the desired bound involving ∑︁n+1
i=0 σ2

i :
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2. Almost Normal Variables and Conditioning

P

(Sn|Sn > F −1
Sn

(ϵ)) ≥ a + b

⌜⃓⃓⎷n+1∑︂
i=0

σ2
i +

√
1 + d√

1 + d − 1
δ1

⌜⃓⃓⎷ n∑︂
i=0

σ2
i



≤ exp

���C1

���
−

(︃
a + b

(︃√︂∑︁n+1
i=0 σ2

i −
√︂∑︁n

i=0 σ2
i

)︃)︃2

2 ∑︁n
i=0 σ2

i

��� + ln 1
1 − ϵ

��� .

We want to show, that:

exp

���C1

���
−

(︃
a + b

(︃√︂∑︁n+1
i=0 σ2

i −
√︂∑︁n

i=0 σ2
i

)︃)︃2

2 ∑︁n
i=0 σ2

i

��� + ln 1
1 − ϵ

���
≤ exp

(︄
C1

(︄
−a2

2 ∑︁n
i=0 σ2

i

)︄)︄
holds, which is the case, when

−
(︄

a + b

(︄√︃∑︂n+1
i=0

σ2
i −

√︃∑︂n

i=0
σ2

i

)︄)︄2

+ 2
(︁∑︁n

i=0 σ2
i

)︁
C1

ln 1
1 − ϵ

≤ −a2

By inserting the inequality σ2
n+1 ≥ d

∑︁n
i=0 σ2

i , hence ∑︁n+1
i=0 σ2

i ≥ (d + 1) ∑︁n
i=0 σ2

i :

−
(︃

a + b

(︃√︃
(1 + d)

∑︂n

i=0
σ2

i −
√︃∑︂n

i=0
σ2

i

)︃)︃2
+ 2

(︁∑︁n
i=0 σ2

i

)︁
C1

ln 1
1 − ϵ

= −
(︃

a + b(
√︂

(1 + d) − 1)
√︃∑︂n

i=0
σ2

i

)︃2
+ 2

(︁∑︁n
i=0 σ2

i

)︁
C1

ln 1
1 − ϵ

≤ −a2

which again is true, when

−b2
(︃√︂

(1 + d) − 1
)︃2 ∑︂n

i=0
σ2

i + 2
(︁∑︁n

i=0 σ2
i

)︁
C1

ln 1
1 − ϵ

≤ 0

and equivalently when the inequality for b holds

b2
(︃√︂

(1 + d) − 1
)︃2

≥ 2
C1

ln 1
1 − ϵ

⇔ b ≥
√︂

2 ln 1
1−ϵ√

C1(
√︁

(1 + d) − 1)
.

As this is true by the precondition of the lemma, we can conclude, that:

P

(Sn|Sn > F −1
Sn

(ϵ)) ≥ a + b

⌜⃓⃓⎷n+1∑︂
i=0

σ2
i +

√
1 + d√

1 + d − 1
δ1

⌜⃓⃓⎷ n∑︂
i=0

σ2
i


≤ exp

(︄
C1

(︄
−a2

2 ∑︁n
i=0 σ2

i

)︄)︄
.
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2.2. Tail Bound for Sn

When two random variables are σ1 and σ2 sub-gaussian, then their sum is
√︂

σ2
1 + σ2

2
sub-gaussian [14, Lemma 5.4c].

For the random variable
(︃

(Sn|Sn > F −1
Sn

(ϵ)) − (b +
√

1+d√
1+d−1δ1)

√︂∑︁n+1
i=0 σ2

i

)︃
we have just

established a bound, while for (Zn+1 − δ1σn+1) we have a bound from the precondition
of the theorem.

Observe, that we can multiply the factor C1 into the variance-proxy, resulting in√︂
1

C1

∑︁n
i=0 σ2

i and
√︂

1
C1

σn+1 sub-gaussian random variables.

Through applying the just mentioned Lemma, we get the following bound:

P

(Sn|Sn > F −1
Sn

(ϵ)) − b

⌜⃓⃓⎷n+1∑︂
i=0

σ2
i −

√
1 + d√

1 + d − 1
δ1

⌜⃓⃓⎷ n∑︂
i=0

σ2
i

 + (Zn+1 − δ1σn+1) ≥ a


≤ exp

(︄
C1

(︄
−a2

2 ∑︁n+1
i=0 σ2

i

)︄)︄

By the growth of the variance, it holds that
√︂∑︁n

i=0 σ2
i ≤

√︃∑︁n+1
i=0 σ2

i

1+d . Also, trivially,

σn+1 ≤
√︂∑︁n+1

i=0 σ2
i . Using those inequalities, we get that

δ1σn+1 +
√

1 + d√
1 + d − 1

δ1

⌜⃓⃓⎷ n∑︂
i=0

σ2
i ≤ δ1

⌜⃓⃓⎷n+1∑︂
i=0

σ2
i +

√
1 + d√

1 + d − 1
δ1

√︂∑︁n+1
i=0 σ2

i√
1 + d

=
√

1 + d√
1 + d − 1

δ1

⌜⃓⃓⎷n+1∑︂
i=0

σ2
i

and hence can conclude that the induction step holds:

P

(Sn|Sn > F −1
Sn

(ϵ)) − b

⌜⃓⃓⎷n+1∑︂
i=0

σ2
i −

√
1 + d√

1 + d − 1
δ1

⌜⃓⃓⎷ n∑︂
i=0

σ2
i

 + (Zn+1 − δ1σn+1) ≥ a


≤ P

(Sn|Sn > F −1
Sn

(ϵ)) + Zn+1 − b

⌜⃓⃓⎷n+1∑︂
i=0

σ2
i −

√
1 + d√

1 + d − 1
δ1

⌜⃓⃓⎷n+1∑︂
i=0

σ2
i ≥ a


= P

(Sn|Sn > F −1
Sn

(ϵ)) + Zn+1 ≥ a + (b +
√

1 + d√
1 + d − 1

δ1)

⌜⃓⃓⎷n+1∑︂
i=0

σ2
i


≤ exp

(︄
C1

(︄
−a2

2 ∑︁n+1
i=0 σ2

i

)︄)︄

9



2. Almost Normal Variables and Conditioning

2.3 Inductive Bound Set for Sn

While Lemma 2 gives an upper bound for the cdf of Sn, the sub-Gaussian tail bound
of Sn is not very sharp for values close to the mean of Sn. In this section we extend
Lemma 2 with a union-bound compositional approach to tighten cdf bounds, as follows.
We (i) split the cdf into m ∈ N pieces, (ii) provide lower bounds B(Sn) for each piece of
the cdf, and (iii) combine the lower bounds inductively into a tighter upper bound for
the cdf of Sn.
Our compositional framework is inductive over the lower bounds of cdf pieces: S0 satisfies
the bound B(S0) (base case) and, if Sn satisfies the bound B(Sn), then Sn+1 satisfies
B(Sn+1) (induction step). Our bound B(Sn) is uniquely defined by a set of inequalities
using two vectors a⃗B, b⃗B of bounding values, where elements of a⃗B, b⃗B provide the location
of and lower bounds on the cdf pieces of Sn. As such, we set:

B(Sn) =
{︃
P

(︁
Sn ≤ a⃗B,1

⌜⃓⃓⎷ n∑︂
i=0

σ2
i

)︁ ≥ b⃗B,1, . . . , P
(︁
Sn ≤ a⃗B,m

⌜⃓⃓⎷ n∑︂
i=0

σ2
i

)︁ ≥ b⃗B,m

}︃
. (2.1)

For simplicity, we assume a⃗1 ≤ 0 and b⃗1 ≥ ϵ, in order to ensure that only negative values
of s exit the loop therefore enforcing F −1

Sn
(ϵ) ≤ 0. If each inequality in B(Sn) is valid, we

say that the bound B(Sn) holds. By simple arithmetic reasoning, we state the following
property over bounds.

Lemma 3 (Partial order of bounds). The bounds B(Sn) admit an ordering whenever
they describe the same intervals and probabilities are ordered. That is:

B′(·) ≤ B(·) ⇐⇒ a⃗B′ = a⃗B ∧ ∀1≤i≤m : bB′,i ≥ bB,i

Inductive computations of bound set for Sn. With regard to the partial order,
we provide our inductive computation for bounds of Sn: from a bound B(·) that holds
for Sn, we compute a bound B′(·) that holds for Sn+1. If B′(·) ≤ B(·), then B(Sm)
holds for all m ≥ n, as our computation of new bounds ensures monotonicity of bounds.
Doing so and starting with B(Sn), (i) the left tail with a cdf of ϵ is cut away from
Sn, yielding S′

n. Then, using Lemma 1, we (ii) add an almost Normal variable with
variance σ2

n+1 ≥ d
∑︁n

i=0 σ2
i to the resulting distribution of S′

n, and compute a new bound
B′(Sn+1). Our bound computation uses a union-bound approach for deriving interval
boundaries. In addition to the bounds from B, we use tail bounds from Lemma 2, as
otherwise obtaining an inductive bound for Sn with ϵ > 0 is not possible.

The next example illustrates our inductive bound set computation for Sn.

Example 1. Consider an instance of the stochastic process of Figure 2.1, by setting
ϵ = 0.1 and d = 3 and using a set of almost Normal variables {Zn}n∈N with parameters
C1 = 1, δ1 = 0, and c0 = 10−3. For this instance of Figure 2.1, we define the bound set:

B(Sn) =
{︃
P

(︁
Sn ≤ 0

)︁ ≥ 0.1, P
(︁
Sn ≤

√︃∑︂n

i=0
σ2

i

)︁ ≥ 0.4
}︃

.

10



2.3. Inductive Bound Set for Sn

For the tail bounds of Lemma 2, we (arbitrarily) pick the value 3
√︂∑︁n

i=0 σ2
i and derive:

P
(︁
Sn ≥ 3

√︃∑︂n

i=0
σ2

i

)︁ ≤ exp(−(2.54)2

2 ) ≤ 0.04.

Therefore, P(Sn ≤ 3
√︂∑︁n

i=0 σ2
i ) ≥ 0.96. Using these inequalities, we compute new bounds

S′
n. Here, S′

n = (Sn ≥ F −1
Sn

(ϵ)) is the variable obtained from Sn by cutting away the
left tail with weight ϵ. For readability, we denote the summation of variances up to Sn

through σ2
Sn

:= ∑︁n
i=0 σ2

i , and similarly σ2
Sn+1 := ∑︁n+1

i=0 σ2
i . With this notation at hand, we

have:

P
(︁
Sn+1 ≤ 0

)︁ ≥ P
(︁
S′

n ≤ σSn

)︁ · P(︁
Zn+1 ≤ −σSn

)︁
+

P
(︁
σSn ≤ S′

n ≤ 3σSn

)︁ · P(︁
Zn+1 ≤ −3σSn

)︁
P

(︁
Sn+1 ≤ σSn+1

)︁ ≥ P
(︁
S′

n ≤ σSn

)︁ · P(︁
Zn+1 ≤ σSn+1 − σSn

)︁
+

P
(︁
σSn ≤ S′

n ≤ 3σSn

)︁ · P(︁
Zn+1 ≤ σSn+1 − 3σSn

)︁

Note that
√︂∑︁n+1

i=0 σ2
i ≥ √

1 + d
√︂∑︁n

i=0 σ2
i and Zn+1 has standard deviation

√︂
3 ∑︁n

i=0 σ2
i .

Using the bound set B(Sn) and Lemma 1, we get:

P
(︃

Sn+1 ≤ 0
)︃

≥ 0.4 − ϵ

1 − ϵ

(︃
Φ

(︁ −1√
3

)︁ − c0

)︃
+ 0.56

1 − ϵ

(︃
Φ

(︁ −3√
3

)︁ − c0

)︃
≈ 0.1188

Similarly, for the second bound P(Sn+1 ≤
√︂∑︁n+1

i=0 σ2
i ) ⪆ 0.4138. The bound B is inductive

as the new bound which we computed for Sn+1 is smaller than the initial bound B which
is assumed to hold for Sn.

Linear Model. To compute an inductive bound B, the parameters ϵ, d, c0, C1, δ1 must
be fixed. Additionally, we require a sorted vector a⃗ with length m, specifying a⃗B , as well
as a sorted vector c⃗ with length k, with values, for which the Chernoff bound should be
used. The variables b⃗, corresponding to b⃗B are the variables of interest. In the following
we specify a linear model, where the solution values of b⃗B together with the intervals
given as a⃗B specify a valid inductive bound for the given parameters.

We introduce the auxiliary variables d⃗ of length m + k, which instead represent a bound
for probability mass of the interval [a⃗i−1; a⃗i] and [c⃗i−1; c⃗] of the conditioned variable
(Sn|Sn ≥ F −1

Sn
(ϵ)):

d⃗1(1 − ϵ) ≤ b⃗1 − ϵ ∧ ∀2≤i≤m : d⃗i(1 − ϵ) ≤ b⃗i − b⃗i−1

11



2. Almost Normal Variables and Conditioning

and similarly for the values of the Chernoff bound with b =

√︂
2 ln 1

1−ϵ

C1(
√

(1+d)−1)
(also d⃗m+1

represents the interval [a⃗m; c⃗0]):

d⃗m+1(1 − ϵ) ≤ 1 − exp
(︄

C1
−(c⃗i − b − δ1)2

2

)︄
− b⃗m ∧ ∀2≤i≤k :

d⃗m+i(1 − ϵ) ≤
(︄

exp
(︄

C1
−(c⃗i−1 − b − δ1)2

2

)︄
− exp

(︄
C1

−(c⃗i − b − δ1)2

2

)︄)︄

Every inequality must then hold for Sn+1:

b⃗i ≥
m∑︂

j=1
d⃗j

(︄
Φ

(︄
a⃗i

√
1 + d − a⃗j√

d

)︄
− c0

)︄

+
k∑︂

j=1
d⃗m+j

(︄
Φ

(︄
a⃗i

√
1 + d − c⃗j√

d

)︄
− c0

)︄

for all i = 1, . . . , m.

And ultimately, we can only be less restrictive than the loop exit condition, hence the
whole tail that is removed when conditioning must be smaller 0:

a1⃗ ≤ 0 ∧ b⃗1 ≥ ϵ

To ensure, that S0 satisfies the bound, it must also hold, that:

(Φ(a⃗i) − c0) ≥ b⃗i

for all i = 1, . . . , m.

On the existence of inductive bounds. Our approach to inductively computing
bound sets for Sn relies on an union-bound argument to improve the cdf bound of
Lemma 2. Recall that the sub-Gaussian tail bound of Sn only depends on d ∈ R+ \ 0 and
ϵ ∈ R+ \ 0. We next show that the existence of an inductive bound set is conditioned
only by such a d. Namely, Theorem 1 ensure that, for every d there is an ϵ ∈ R+ \ 0, such
that an inductive bound exists for the corresponding series {Sn}n∈N, with F −1

Sn
(ϵ) ≤ 0.

The probability of Sn being smaller than zero is therefore lower bounded by some nonzero
percentage.

Theorem 1 (Inductive bound set). For every d ∈ R+ \ 0 there exists an ϵ ∈ R+ \ 0 such
that an inductive bound set B(Sn) holds, with F −1

Sn
(ϵ) ≤ 0, given that c0 converges to 0

and can be chosen arbitrarily small.

12



2.3. Inductive Bound Set for Sn

Proof. Lemma 2 implies that P(Sn ≥ c) is bounded and converges to 0 as c → ∞. We
choose an arbitrary c′ such that the tail bound P(Sn ≥ c′) ≤ b′ < 1

2 holds. Then,
P(Sn < c′) ≥ 1 − b′ and P

(︁
(Sn|Sn ≥ 0) < c′)︁ ≥ 1 − b′ − ϵ ≥ 0. By union-bound properties,

we have P
(︃

Sn+1 ≤ 0
)︃

≥ P
(︃

(Sn|Sn ≥ 0) < c′
)︃

·P
(︃

Zn+1 < −c′
)︃

≥ (1−b′ −ϵ)(Φ( c′√
d
)−c0).

The bound with a⃗ =
(︂
0
)︂

and b⃗ =
(︄

(1−b′)(Φ( c′√
d

)−c0)

1+(Φ( c′√
d

)−c0)

)︄
is then inductive and the lower

bound is nonzero when c0 is small enough.
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CHAPTER 3
Polynomial Random Walks

Chapter 2 showed that stochastic processes
defined by Figure 2.1 have bounded behavior,
allowing us to lower bound the termination
probability via sub-Gaussian tail bounds and
inductive bound sets. In this chapter we map
the termination analysis of certain polynomial
programs, called polynomial random walks, to
the framework of Chapter 2. Importantly, we
reduce the problem of verifying PAST of polyno-
mial random walks to the problem of ensuring

n ← 0
y ← y0
while y > 0 do

n ← n + 1
x ← q1[n] ⊕p q2[n]
y ← y + x

end while
Figure 3.1: Polynomial random walk P

existence of inductive bounds (Theorem 2). Our recipe consists of transforming a poly-
nomial random walk program P to a program that (i) bounds PAST of P and (ii) is
equivalent to the stochastic process of Figure 2.1.

3.1 Programming Model
We define the class of polynomial random walks via the programming model of Figure 3.1,
where q1[n], q2[n] ∈ R[n] are arbitrary polynomial expressions in the loop counter n.
The degree of a polynomial random walk program P, written as deg(P), is given by the
maximum degree of its polynomials, that is deg(P) = max{deg(q1[n]), deg(q2[n])}. The
series {Xn}n∈N, {Yn}n∈N induced by the random loop variables x, y are next defined.

Definition 1 (Random walk variables). The random walk variable Xn corresponding to
the loop variable x at iteration n in Figure 3.1 is

Xn =
{︄

q1[n] with probability p

q2[n] with probability 1 − p.
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3. Polynomial Random Walks

The random walk variable Yn captures the distribution of y after iteration n, as:

Yn+1 = (Yn|Yn > 0) + Xn+1.

The second-order moment of a random variable Xn is written as V ar(Xn). For Figure 3.1,
we have E(Xn) = q1[n]p + q2[n](1 − p) and V ar(Xn) = q1[n]2p + q2[n]2(1 − p), capturing
the mean (first moment) and variance (second moment) of Xn; note that both moments
of Xn are also polynomials in n.

To prove PAST of Figure 3.1 we need to prove that the expected value of its stopping
time is finite [2]. Based on the semantics of Figure 3.1, it is easy to see that the stopping
time of Figure 3.1 is given by the first iteration n in which Yn becomes negative.

Definition 2 (Expected stopping time). Let T be inf{n ≥ 0 : Yn ≤ 0}, where T denotes
the stopping time of the stochastic process induced by the polynomial random walk of
Figure 3.1. The expected stopping time of Figure 3.1 is defined as E(T ) = ∑︁∞

n=0 P(T ≥
n).

We exploit Definition 2 to show that Figure 3.1
is PAST under additional conditions. Namely,
we translate Figure 3.1 into Figure 3.2 and
ensure that the stopping time of Figure 3.2
becomes finite above a certain threshold; this
threshold depends only on the maximum poly-
nomial degree of Figure 3.1 and the variable k.
We then show that finiteness of the stopping
time of Figure 3.2 implies PAST of Figure 3.1
(Lemma 4).

n ← 0
y ← y0
while n ≤ n0 do

n ← n + 1
x ← q1[n] ⊕p q2[n]
y ← y + x

end while
while y > g do ▷ where g ≤ 0

z ← 0
n′ ← n
while n ≤ n′ · k do

n ← n + 1
x ← q1[n] ⊕p q2[n]
z ← z + x

end while
y ← y + z

end while
Figure 3.2: Transformed random walk

Program transformation. We translate
Figure 3.1 into the stochastic process of Fig-
ure 3.2. This program transformation is defined
through the parameters n0, k and g. The loop
body of Figure 3.2 is initially executed several
times, accumulating n0 steps. In every itera-
tion of the outer loop k times as many steps as
before are summed up, before the loop guard
is checked again. Furthermore, the loop guard
of Figure 3.2 might be relaxed, as g ≤ 0. We highlight similarities between Figure 3.2
and the summation of almost Normal variables with conditioning in Figure 2.1: the inner
loop of Figure 3.2 computes the value for z by summing up Xi. As argued in Section 3.2,
this is similar to drawing z from an almost Normal distribution as in Figure 2.1.

We have that the expected stopping time of Figure 3.2 is larger than of Figure 3.1.
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3.2. Loop Summations of Polynomial Random Walk Increments

Lemma 4 (Stopping Time Inequality). Let T ′ be inf{n ≥ n0 : Yn ≤ g}, denoting the
stopping time of Figure 3.2. Then, E(T ) ≤ E(T ′).

Proof. For every possible draw of the variables Xn, the termination of Figure 3.2 implies
the termination of Figure 3.1

In Figure 3.2, the inner loop is executed at least once per execution of the outer loop’s
body, hence n is incremented at least once per iteration of the outer loop. When the
loop stops after t steps, then either Figure 3.1 also stops after t steps or it has already
stopped at some t′ < t.

We denote with pterm a lower bound for the probability of the outer loop terminating.
In what follows, we will ensure the stopping time of the program in Figure 3.2 is finite
when the probability pterm is high enough and k is small (Lemma 8). The existence of a
nonzero lower bound for pterm is implied by Theorem 1; we note that pterm depends on
the probability of choosing a branch p and grows as k2 deg (P) + 1 increases. By setting
k to its maximum value, we derive a threshold dmin(p) for the degree deg(P) of the
polynomial random walk of Figure 3.2 and prove that the stopping time of Figure 3.1
above this threshold dmin(p) is finite (Theorem 2). We thus use dmin(p) to provide
sufficient conditions for deciding PAST of the polynomial random walks in Figure 3.1.

3.2 Loop Summations of Polynomial Random Walk
Increments

We now establish the formal connection between the polynomial random walks of Fig-
ure 3.2 and the stochastic processes of Figure 2.1. We prove that the loop summation
(defined below) of the increments of the random walk in Figure 3.2 is almost normally
distributed as given in Lemma 1, when an inequality over the degrees of expected value
of the step and its variance is true. This inequality holds, whenever the leading terms of
the steps cancel out.

Definition 3 (Random walk loop summation). The random variables U0 = y0 + X0 +
· · · + Xn0 and Un′ = Xn′ + · · · + X⌈n′·k⌉ are (loop) summations of the random variables
Xi of Figure 3.2.

Lemma 5 then shows that the absolute deviation c0 from the cdf of the Normal distribution
converges to 0. Further, Lemma 6 conjectures that the summation of random walk
increments admits a sub-Gaussian tail bound with C1 = 4p(1 − p) and δ1 converging
to 0, thus establishing, that the loop summation follows an almost Normal distribution
N δ1,4p(1−p)

c0 .

Lemma 5 (Convergence of cdf deviation). Assume that deg(V ar(Xi)) > 2 deg(E(Xi))+1
holds for Figure 3.2. Then, the normalizations of the loop summations U0 and Un′ follow
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3. Polynomial Random Walks

a Normal distribution up to a constant error c0, with c0 converging to 0 with increasing
n0:

∀n′ ≥ n0 :

⃓⃓⃓⃓
⃓⃓FUn′ (z) − Φ

 z√︂∑︁⌈n′·k⌉
i=n0 V ar(Xi)

⃓⃓⃓⃓
⃓⃓ ≤ c0

where n0 is as given in Figure 3.2 and FU ′
n

denotes the cdf of Un′.

Proof. We first consider the centered version of Un′ :

U ′
n′ = Xn′ − E(Xn′) + · · · + X⌈n′·k⌉ − E(X⌈n′·k⌉).

Let now F ′
n′ be the cdf of U ′

n′ .

By the Berry-Esseen-Theorem [15], it then holds that

sup
x∈R

⃓⃓⃓⃓
⃓⃓F ′

n′(x) − Φ( x√︂∑︁⌈k·n′⌉
i=n′ V ar(Xi)

)

⃓⃓⃓⃓
⃓⃓ ≤ C0

∑︁⌈k·n′⌉
i=n′ E(|Xi − E(Xi)|3)(︂∑︁⌈k·n′⌉

i=n′ E((Xi − E(Xi))2)
)︂ 3

2

For the sake of readability, we define b(n′) = C0

∑︁⌈k·n′⌉
i=n′ E(|Xi−E(Xi)|3)(︂∑︁⌈k·n′⌉

i=n′ E((Xi−E(Xi))2)
)︂ 3

2
.

For the numerator, the following equality holds:

⌈k·n′⌉∑︂
i=n′

E(|Xi − E(Xi)|3) =
⌈k·n′⌉∑︂
i=n′

|q1[i] − E(Xi)|3 p + |q2[i] − E(Xi)|3 (1 − p)

E(Xi) is a polynomial (see Definition 1) and different from q1[i] and q2[i], as we have
non-zero variance. Therefore the numerator is a polynomial and its degree is:

deg

⌈k·n′⌉∑︂
i=n′

E(|Xi − E(Xi)|3)

 = 3 deg(P) + 1

Note that the +1 comes from the summation and the fact, that k > 1.

Analogously,

⌈k·n′⌉∑︂
i=n′

E((Xi − E(Xi))2) =
⌈k·n′⌉∑︂
i=n′

(q1[i] − E(Xi))2 p + (q2[i] − E(Xi))2 (1 − p)

and therefore the degree of the denominator is:

deg

�
⌈k·n′⌉∑︂

i=n′
E((Xi − E(Xi))2)


3
2
� = 3 deg(P) + 3

2
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3.2. Loop Summations of Polynomial Random Walk Increments

Since the degree of the denominator is higher b(n′) converges to zero.

By definition, Un′ = U ′
n′ + ∑︁⌈k·n′⌉

i=n′ E(Xi), and therefore FU ′
n
(x) = F ′

n′(x − ∑︁⌈k·n′⌉
i=n′ E(Xi)).

For the standard normal distribution Φ it holds that Φ(x + δ) ≤ Φ(x) + |δ|, as the
probability density function of the standard normal distribution is always smaller than 1:

sup
x∈R

⃓⃓⃓⃓
⃓⃓FUn′ (x) − Φ

 x − ∑︁⌈k·n′⌉
i=n′ E(Xi)√︂∑︁⌈k·n′⌉

i=n′ V ar(Xi)

⃓⃓⃓⃓
⃓⃓

≥ sup
x∈R

⃓⃓⃓⃓
⃓⃓FUn′ (x) − Φ

 x√︂∑︁⌈k·n′⌉
i=n′ V ar(Xi)

⃓⃓⃓⃓
⃓⃓ −

∑︁⌈k·n′⌉
i=n′ E(Xi)√︂∑︁⌈k·n′⌉
i=n′ V ar(Xi)

By the above inequality, it then holds that

sup
x∈R

⃓⃓⃓⃓
⃓⃓FUn′ (x) − Φ

 x√︂∑︁⌈k·n′⌉
i=n′ V ar(Xi)

⃓⃓⃓⃓
⃓⃓ ≤ b(n′) +

∑︁⌈k·n′⌉
i=n′ E(Xi)√︂∑︁⌈k·n′⌉
i=n′ V ar(Xi)

Since b(n′) converges to 0, the whole bound converges when deg(V ar(Xi)) > 2 deg(E(Xi))+
1.

Analogously, we consider U ′
0 = X0 − E(X0) + · · · + Xn0 − E(Xn0), and let F ′

0 be its cdf.
Following the same argument, it then holds that:

sup
x∈R

⃓⃓⃓⃓
⃓⃓F ′

0(x) − Φ( x√︂∑︁n0
i=0 V ar(Xi)

)

⃓⃓⃓⃓
⃓⃓ ≤ b(0) := C0

∑︁n0
i=0 E(|Xi − E(Xi)|3)

(∑︁n0
i=0 E((Xi − E(Xi))2))

3
2

and the expression on the right hand side again converges.

And since U0 = U ′
o + y0 +E(X0) + · · · +E(Xn0), and Φ(x + δ) ≤ Φ(x) + |δ|, it holds that:

sup
x∈R

⃓⃓⃓⃓
⃓⃓FU0(x) − Φ

 x − ∑︁n0
i=0 E(Xi)√︂∑︁n0

i=0 V ar(Xi)

⃓⃓⃓⃓
⃓⃓

≥ sup
x∈R

⃓⃓⃓⃓
⃓⃓FU0(x) − Φ

 x√︂∑︁n0
i=0 V ar(Xi)

⃓⃓⃓⃓
⃓⃓ −

∑︁n0
i=0 E(Xi)√︂∑︁n0
i=0 V ar(Xi)

and therefore

sup
x∈R

⃓⃓⃓⃓
⃓⃓FU0(x) − Φ

 x√︂∑︁n0
i=0 V ar(Xi)

⃓⃓⃓⃓
⃓⃓ ≤ b(0) +

∑︁n0
i=0 E(Xi)√︂∑︁n0
i=0 V ar(Xi)

The bound for the deviation of the cdf of U0 therefore also converges. By the definition
of convergence, we can always find some n0 for an arbitrary c0 > 0 (at least numerically),
which is bigger than both bounds, as required in the lemma.

19



3. Polynomial Random Walks

Using Lemma 5, we derive that the loop summations of polynomial random walks
follow an almost Normal distribution, similarly to the stochastic process of Figure 2.1 in
Chapter 2.

Lemma 6 (Tail bound for Un′). Let σUn′ be the standard deviation of Un′ and assume
deg(V ar(Xi)) > 2 deg(E(Xi)) + 1. Then, the right tail probability is bounded with δ1
converging to 0, as follows:

P(Un′ ≥ λσUn′ + δ1σUn′ ) ≤ exp
(︂
4(1 − p)p−λ2

2

)︂
, and

P(U0 ≥ λσU0 + δ1σU0) ≤ exp
(︂
4(1 − p)p−λ2

2

)︂
.

Proof. We again consider the centered version of U ′
n′ as in the proof of Lemma 5. Let

q′
1[i] = q1[i] − E[Xi] and q′

2[i] = q2[i] − E[Xi] be the increments of U ′
n′ .

The moment generating function of U ′
n′ can be bounded using Hoeffding’s Lemma [16,

Lemma 2.6], since each variable Xi − E(Xi) has bounded support:

MU ′
n′ (t) =

⌈n′·k⌉∏︂
i=n′

exp
(︁
tq′

1[i]
)︁

p + exp
(︁
tq′

2[i]
)︁

(1 − p) ≤
⌈n′·k⌉∏︂
i=n′

exp
(︄

t2(q′
1[i] − q′

2[i])2

8

)︄

Since the increments are zero-mean, q′
2[i] = − q′

1[i]p
(1−p) . Therefore,

(q′
1[i] − q′

2[i])2

V ar(Xi)
=

(︂
q′

1[i] + q′
1[i]p

(1−p)

)︂2

q′
1[i]2p +

(︂
q′

1[i]p
(1−p)

)︂2
(1 − p)

=

(︂
1 + p

(1−p)

)︂2

p +
(︂

p
(1−p)

)︂2
(1 − p)

= 1
(1 − p)p

Hence,

MU ′
n′ (t) ≤

⌈n′·k⌉∏︂
i=n′

exp
(︄

t2V ar(Xi)
8((1 − p)p)

)︄
= exp

 t2 ∑︁⌈n′·k⌉
i=n′ V ar(Xi)

8((1 − p)p)

 = exp
(︄

t2V ar(U ′
n′)

8((1 − p)p)

)︄

The Chernoff bound[14, p.77] states, that for any positive t and variable X, with its
moment generating function MX(t) it holds that:

P(X ≥ a) ≤ e−taMX(t).

We now apply the Chernoff-bound for the variable U ′
n′ and choose a = λ

√︂
V ar(U ′

n′) and
t = λ4((1−p)p)√

V ar(U ′
n′ )

:

P(X ≥ λ
√︂

V ar(U ′
n′)) ≤ exp

(︄
4((1 − p)p)

(︄
−λ2

2

)︄)︄
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3.2. Loop Summations of Polynomial Random Walk Increments

By the definition of U ′
n′ (note that also V ar(U ′

n′) = V ar(Un′)), it then follows that

P(U0 ≥ λ
√︂

V ar(Un′) +
⌈n′·k⌉∑︂
i=n′

E(Xi)) ≤ exp
(︄

4((1 − p)p)
(︄

−λ2

2

)︄)︄

Analogously, for U ′
0 we obtain can obtain the same bound:

MU ′
0
(t) ≤ exp

(︄
t2V ar(U ′

0
8(1 − p)p

)︄
.

Then applying the Chernoff-bound:

P(X ≥ λ
√︂

V ar(U ′
0)) ≤ exp

(︄
4((1 − p)p)

(︄
−λ2

2

)︄)︄

and since U0 = U ′
0 + y0 + ∑︁n0

i=0 E(Xi):

P(U0 ≥ λ
√︂

V ar(U0) + y0 +
n0∑︂
i=0

E(Xi)) ≤ exp
(︄

4((1 − p)p)
(︄

−λ2

2

)︄)︄

By the same argument as in the proof of Lemma 5

δ1 = max


∑︁⌈n′·k⌉

i=n′ E(Xi)√︂∑︁⌈n′·k⌉
i=n′ V ar(Xi)

,
y0 + ∑︁n0

i=0 E(Xi)√︂∑︁n0
i=0 V ar(Xi)


converges to zero.

Example 2. Consider our motivating example from Figure 1.1. In order to ensure that
its loop summations follow an almost Normal distribution, with c0 and δ1 converging to
zero, we need to ensure that deg(V ar(Xi)) > 2 deg(E(Xi)) + 1. This inequality is true,
since V ar(Xi) = (i + 1)2 and E(Xi) = 4, hence deg(V ar(Xi)) = 2 and deg(E(Xi)) = 0.
Consequently, Lemma 5 and 6 can be used.

In the remaining, we define the random variable series {Zn}n∈N corresponding to the loop
summation of the inner loop of Figure 3.2. That is, Zn captures the program variable z
at the end of every iteration of the outer loop of Figure 3.2, with Z0 being the variable
corresponding to z after its first loop. As such,

• Z0 = U0, and

• Zn = Un′
(n)

, where n′
(n) is the value of n′ in the n-th iteration of the outer loop of

Figure 3.2.
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3. Polynomial Random Walks

Further, Yn is induced by the program variable y of Figure 3.2, capturing the loop
summation of Zn with repeated conditioning. In order to use inductive bound sets as in
Theorem 1, the variance of {Zn}n∈N must grow consistently and exponentially. This is
however clearly ensured by choosing k > 1 in Figure 3.2, implying the following result.

Lemma 7 (Growth of variance). The variance {σ2
n}n∈N of {Zn}n∈N grows exponentially,

with δ′ converging to 1:

σ2
n+1 ≥

(︂
δ′k2 deg(P)+1 − 1)

)︂ n∑︂
i=0

σ2
i

Proof. Let qvar[n] be the polynomial describing the variance of X1 + · · · + Xn. Let m =
deg(qvar) denote its degree. Then m = deg(P)+1 and V ar(Zn) = qvar[⌈k·n′

(n)⌉]−qvar[n′
(n)].

Since Z1 + · · · + Zn−1 = X1 + · · · + Xn′
(n)

and thus V ar(Z1 + · · · + Zn−1) = qvar[n′
(n)].

But then the factor d, such that V ar(Zn) ≥ d(V ar(Z1)+ · · ·+V ar(Zn−1)) = d(V ar(Z1 +
· · · + Zn−1)) can be computed:

qvar[⌈k · n′
(n)⌉] − qvar[n′

(n)] ≥ d · qvar[n′
(n)]

A polynomial can be bounded by its leading term with a multiplicative factor. Specifically,
with δ1δ2 ∈ R+:

∀n ≥ n′
0(δ1, δ2) : (1 − δ1)amnm ≤ a1x + · · · + amnm ≤ (1 + δ2)amnm

Inserting this in the above equation:

(1 − δ1)am(⌈k · n′
(n)⌉)m ≥ (d + 1)(1 + δ2)amn′m

(n)

δ′km = (1 − δ1)
1 + δ2

km ≥ (d + 1)

Lemmas 5 and 6 establish that Zn follows an almost Normal distribution as in Lemma 1.
Together with Lemma 7, this ensures that the right tail of Yn can be bounded (Lemma 2),
and therefore inductive bounds can be used. Based on this bounds, Section 3.3 introduces
conditions on the stopping time T of Figure 3.2 being finite, implying thus PAST of
Figure 3.1.

3.3 Bounding the Stopping Time and PAST
Recall that, using Definition 2, the expected stopping time E(T ) of Figure 3.2 is determined
by the loop summation variables Yn and is set to:

E(T ) =
∞∑︂

n=0
P(T ≥ n).

Using Lemma 7, we obtain the following bound on P(T ≥ n), and hence on E(T ).
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3.3. Bounding the Stopping Time and PAST

Lemma 8 (Bounding the stopping time). Assume that the outer loop of Figure 3.2
terminates with probability pterm after some n0. Then,

P(T ≥ n) ≤ min
{︄

1, Bn

ln(1−pterm)
ln(k+ 1

n0
)

}︄
where B = 1

(1−pterm)
log

k+ 1
n0

(n0)+2 . Therefore, if ln(1 − pterm) < − ln(k + 1
n0

) holds, then

the expected stopping time E(T ) is finite.

Proof. During the nth iteration of the inner loop body, Figure 3.2 could have terminated
⌊logk+τ (n)−⌈logk+τ (n0)⌉⌋ ≤ logk+τ (n)− logk+ϵ(n0)−2 times. The error τ here accounts
for the number of rounding ups, as we take ⌈kn′

(n)⌉. A safe choice to approximate τ

is τ = 1
n0

. With increasing n0, note that τ converges to 0. As such, the probability of
Figure 3.2 not terminating is bounded:

P(T ≥ n) ≤ (1 − pterm)logk+τ (n)−logk+τ (n0)−2 = n
ln(1−pterm)

ln(k+τ)

(1 − pterm)logk+τ (n0)+2

On the finiteness of stopping times. Lemma 8 formulates conditions under which
Figure 3.2 has finite stopping time. These conditions effectively only depend on the
probability pterm and k, as n0 can be chosen arbitrarily. As such, finiteness of E(T ) and
PAST of Figure 3.2 is reduced to finding an inductive bound, with d = δ′k2 deg(P)+1 − 1,
C = p(1 − p) and ϵ (which is a lower bound for pterm) so large, that the inequality in
Lemma 8 is satisfies. The terms δ1, δ′ and c0 can be computed from a finite, arbitrary n0.
To this end, let pi.b.(d, n0, p) be a to-be-determined function that returns the largest ϵ
for which an inductive bound exists, which is a lower bound for pterm. Then,

P(T ≥ n) ≤ inf
1<k

 inf
0≤n0

min

Bn

ln(1−pi.b.(δ′k2 deg{P+1}−1,n0,p))
ln(k+ 1

n0
)




 (3.1)

with B = (1 − pi.b.(δ′k2 deg{P+1} − 1, n0, p))
−(log

k+ 1
n0

(n0)+2)
. Enforcing (3.1) requires

however solving a non-trivial optimization problem: we need to approximate the function
pi.b.(d, n0, p). While in Chapter 4 we show that this approximation can be done using
linear programming and a genetic algorithm, the statement of (3.1) has theoretical
consequences. The existence of an inductive bound set from Theorem 1 implies that an
ϵ for pi.b.(d, n0, p) always exist, allowing us to state a PAST condition over polynomial
random walks P from Figure 3.1.

Theorem 2 (PAST of polynomial random walks). Let P be a polynomial random walk
program of Figure 3.1. For every probabilistic choice p in P there exists a threshold
dmin(p) such that P has finite expected stopping time, when deg(P) > dmin(p) and
deg(P) > deg(p(q1[n]) + (1 − p)q2[n]).
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3. Polynomial Random Walks

Proof. As deg(P) > deg(p(q1[n])+(1−p)q2[n]), we get deg(V ar(Xi)) > 2 deg(E(Xi))+1.
We use Lemmas 5–6 and take an arbitrary d. By Theorem 1, there exists an inductive
bound with a nonzero termination probability pterm. Lemma 8 implies that the expected
stopping time E(T ) is finite when ln(1 − pterm) < − ln(k + 1

n0
). Further, Lemma 7 asserts

d = δ′kdeg(P)+1 − 1. Since ln(k + 1
n0

) converges to ln(k) as n0 increases, we can conclude
that P has finite expected stopping time.

Example 3 (PAST of Figure 1.1). There exists an inductive bound with ϵ ≤ 0.1128 and
d ≥ 0.4102 for p = 0.5, when the values of c0 and δ1 are small, i.e. c0 = 10−8, δ1 =
10−5. These constants are chosen so that convergence is guaranteed. The values for
a⃗B and b⃗B are given in Tables 3.1–3.2, and additionally the bound is displayed in
Figure 3.3 in red. Additionally, the tail bound is displayed, for which we use the value
c⃗ = (6.497321214442595). For showing PAST, we only care about the existence of this
bound.

As d = δ′k2 deg(P)+1 − 1 and δ′ converges to 1 (Lemma 7), k ≥ 1.1214 ensures that d is
large enough when the degree of a polynomial random walk program is at least 1 (that is,
at least linear updates).

Through this bound and Lemma 8, the stopping time of a polynomial random walk program
P with deg(P) ≥ 1 is bounded: E(T ) ≤ ∑︁∞

n=0 Bn
ln(0.8872)

ln 1.1214+τ . This stopping time bound has
an exponent which is smaller than −1.04; therefore, the loop summation of the respective
Figure 3.2 is finite and dmin(0.5) ≤ 1.

Using Theorem 2 we conclude that polynomial random walks with linearly (or faster)
increasing step size and branching probability 0.5 have finite expected stopping time and
are PAST, given that deg(P) > deg(p(q1[n]) + (1 − p)q2[n]). In particular, this is true
for Figure 1.1, as shown in Example 2, hence it is PAST.

Higher moments of the stopping time We conclude this chapter by noting that
solving (3.1) and applying Theorem 2 allows us to derive not only PAST, but also higher
moments of the stopping times of polynomial random walks P. That is, the bound we
compute for P(T ≥ n) by solving (3.1) is of the form Bnm and this bound can be used to
bound higher moments N of the stopping time. In particular, E(T N ) = ∑︁∞

n=0 P(T N ≥
n) = ∑︁∞

n=0 P(T ≥ N√n) ≤ ∑︁∞
n=0 Bn

m
N . Therefore, when (3.1) is solved using a bound

with m < −N , then E(T N ) is finite.
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3.3. Bounding the Stopping Time and PAST

Table 3.1: Inductive bound for proving PAST of linear random walk (1)

a⃗ b⃗

0.00000000 0.11296053
0.02610488 0.12030958
0.05220976 0.12796144
0.07831464 0.13591606
0.10441952 0.14417252
0.13052440 0.15272904
0.15662928 0.16158298
0.18273416 0.17073082
0.20883904 0.18016817
0.23494392 0.18988980
0.26104880 0.19988960
0.28715368 0.21016063
0.31325856 0.22069516
0.33936344 0.23148466
0.36546832 0.24251983
0.39157320 0.25379067
0.41767808 0.26528648
0.44378296 0.27699594
0.46988784 0.28890709
0.49599272 0.30100746
0.52209760 0.31328405
0.54820248 0.32572342
0.57430736 0.33831174
0.60041224 0.35103482
0.62651712 0.36387817
0.65262200 0.37682710
0.67872688 0.38986672
0.70483176 0.40298200
0.73093664 0.41615786
0.75704152 0.42937920
0.78314640 0.44263094
0.80925128 0.45589810
0.83535616 0.46916584
0.86146104 0.48241946
0.88756592 0.49564453
0.91367080 0.50882687
0.93977568 0.52195260
0.96588056 0.53500818
0.99198544 0.54798048
1.01809032 0.56085673

a⃗ b⃗

1.04419520 0.57362465
1.07030008 0.58627239
1.09640495 0.59878861
1.12250983 0.61116247
1.14861471 0.62338366
1.17471959 0.63544241
1.20082447 0.64732951
1.22692935 0.65903632
1.25303423 0.67055477
1.27913911 0.68187737
1.30524399 0.69299720
1.33134887 0.70390794
1.35745375 0.71460384
1.38355863 0.72507972
1.40966351 0.73533098
1.43576839 0.74535360
1.46187327 0.75514407
1.48797815 0.76469948
1.51408303 0.77401740
1.54018791 0.78309596
1.56629279 0.79193376
1.59239767 0.80052993
1.61850255 0.80888403
1.64460743 0.81699609
1.67071231 0.82486659
1.69681719 0.83249642
1.72292207 0.83988686
1.74902695 0.84703957
1.77513183 0.85395658
1.80123671 0.86064024
1.82734159 0.86709325
1.85344647 0.87331856
1.87955135 0.87931943
1.90565623 0.88509937
1.93176111 0.89066212
1.95786599 0.89601164
1.98397087 0.90115207
2.01007575 0.90608773
2.03618063 0.91082312
2.06228551 0.91536286

a⃗ b⃗

2.08839039 0.91971167
2.11449527 0.92387440
2.14060015 0.92785598
2.16670503 0.93166140
2.19280991 0.93529570
2.21891479 0.93876397
2.24501967 0.94207130
2.27112455 0.94522282
2.29722943 0.94822363
2.32333431 0.95107883
2.34943919 0.95379348
2.37554407 0.95637261
2.40164895 0.95882119
2.42775383 0.96114415
2.45385871 0.96334635
2.47996359 0.96543255
2.50606847 0.96740745
2.53217335 0.96927568
2.55827823 0.97104173
2.58438311 0.97271002
2.61048799 0.97428488
2.63659287 0.97577049
2.66269775 0.97717096
2.68880263 0.97849027
2.71490751 0.97973227
2.74101239 0.98090071
2.76711727 0.98199922
2.79322215 0.98303130
2.81932703 0.98400034
2.84543191 0.98490961
2.87153679 0.98576224
2.89764167 0.98656127
2.92374655 0.98730960
2.94985143 0.98801003
2.97595631 0.98866522
3.00206119 0.98927774
3.02816607 0.98985004
3.05427095 0.99038445
3.08037583 0.99088322
3.10648071 0.99134848
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3. Polynomial Random Walks

Table 3.2: Inductive bound for proving PAST of linear random walk (2)

a⃗ b⃗

3.13258559 0.99178224
3.15869047 0.99218643
3.18479535 0.99256290
3.21090023 0.99291337
3.23700511 0.99323951
3.26310998 0.99354286
3.28921486 0.99382491
3.31531974 0.99408706
3.34142462 0.99433062
3.36752950 0.99455684
3.39363438 0.99476689
3.41973926 0.99496188
3.44584414 0.99514284
3.47194902 0.99531075
3.49805390 0.99546653
3.52415878 0.99561103
3.55026366 0.99574506
3.57636854 0.99586937
3.60247342 0.99598467
3.62857830 0.99609162
3.65468318 0.99619082
3.68078806 0.99628285
3.70689294 0.99636825
3.73299782 0.99644751
3.75910270 0.99652109
3.78520758 0.99658943
3.81131246 0.99665292
3.83741734 0.99671194
3.86352222 0.99676682
3.88962710 0.99681789
3.91573198 0.99686545
3.94183686 0.99690976
3.96794174 0.99695110
3.99404662 0.99698968
4.02015150 0.99702574
4.04625638 0.99705948
4.07236126 0.99709109
4.09846614 0.99712074
4.12457102 0.99714861
4.15067590 0.99717484

a⃗ b⃗

4.17678078 0.99719959
4.20288566 0.99722298
4.22899054 0.99724515
4.25509542 0.99726622
4.28120030 0.99728630
4.30730518 0.99730550
4.33341006 0.99732393
4.35951494 0.99734168
4.38561982 0.99735885
4.41172470 0.99737553
4.43782958 0.99739181
4.46393446 0.99740777
4.49003934 0.99742349
4.51614422 0.99743905
4.54224910 0.99745452
4.56835398 0.99746999
4.59445886 0.99748552
4.62056374 0.99750118
4.64666862 0.99751703
4.67277350 0.99753314
4.69887838 0.99754957
4.72498326 0.99756637
4.75108814 0.99758359
4.77719302 0.99760130
4.80329790 0.99761953
4.82940278 0.99763833
4.85550766 0.99765773
4.88161254 0.99767776
4.90771742 0.99769847
4.93382230 0.99771986
4.95992718 0.99774197
4.98603206 0.99776480
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Figure 3.3: Bound for proving PAST of linear random walk
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CHAPTER 4
Implementation and Experiments

Theorem 2 states sufficient conditions under which the polynomial random walk programs
P of Figure 3.1 are PAST. These sufficient conditions can be checked by solving inequalities
among random walk updates and, importantly, by finding solutions to the optimization
problem of (3.1). In this chapter, we detail our implementation to find tight bounds
to (3.1), allowing us to conclude PAST of P. Our implementation involves heuristic
optimization techniques to find provably correct solutions. Our experiments provide
practical evidence on the tightness of computed stopping times bounds and give evidence
of the reliability of our approach, despite the absence of convergence guarantees.

4.1 Computing Tight Bounds on Stopping Times
We solve (3.1) in extension of the Polar program analyzer [10]. We use Polar to
compute closed form expressions for the loop-guard changes of probabilistic branches,
allowing us to support programs P that are even more general than Figure 3.1. We
combine Polar with linear programming through OR-Tools [11] and derive inductive
bounds for fixed program transformation parameters. To find the best values for these
parameters, we rely on genetic algorithms, such that the fitness functions of these genetic
algorithms are controlled by our linear solver. Doing so, we use the Gurobi-solver [12]
to solve linear models. By integrating algebraic reasoning, linear programming and
genetic algorithms, our implementation in Polar minimizes the exponent in the bound
of P(T ≥ n) in (3.1), which is sufficient to prove PAST and finiteness of further higher
moments of P (Theorem 2). By changing the objective function, our implementation can
also minimize an explicit bound for the expected stopping time E(T ).

Inferring inductive bound sets. To compute an inductive bound set B in (2.1),
the parameters ϵ, d, c0, C1, δ1 must be fixed. Additionally, we require vectors a⃗B and c⃗B,
specifying respectively which m lower bounds for the inductive bound-set are computed
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and which k tail bounds are used. We compute values for the bounds by solving the
linear inequality:

b⃗i ≥ ∑︁m
j=1 d⃗j

(︂
Φ

(︂
a⃗i

√
1+d−a⃗j√

d

)︂
− c0

)︂
+

∑︁k
j=1 d⃗m+j

(︂
Φ

(︂
a⃗i

√
1+d−c⃗j√

d

)︂
− c0

)︂
(4.1)

for i = 1, . . . , m. The vector d⃗ denotes auxiliary variables, which describe the difference
of neighbouring bounds1. Additionally, we enforce that the initial, almost Normal,
distribution of Z0 satisfies the bound set B.

Our implementation invokes linear programming over the linear model (4.1) in the form
of an indicator function. This function returns 1, when an inductive bound set B is found
for the given parameters ϵ, d, c0, C1, δ1; and 0 otherwise.

Genetic algorithm. We use a genetic algorithm to solve the optimization problem (3.1)
and find the best parameter values in (4.1), for which an inductive bound set B exists.
Our genetic algorithm repeatedly modifies a collection of individual solutions: we select
individuals from the current set of solutions and use them to produce next individu-
als/solutions. An individual has (i) the properties d, ϵ, and n0 to capture the program
transformation of Figure 3.2 and (ii) the parameters g, s, c to specify the vectors a⃗ and c⃗
of (4.1) for the inductive bound B. Specifically, we set a⃗1 = 0, a⃗2 = s

g−1 , . . . , a⃗g = s, and
c⃗ =

(︂
c
)︂
.

The fitness of an individual is calculated by first calculating the exponent of the bound.
In case an explicit bound should be computed, the error-terms c0 and δ1 are inferred
from n0. Otherwise, we choose very small values, such as c0 = δ1 = 10−8, δ′ = 1 + 10−8.
Next, we solve our linear model (4.1). If no solution is found, we set m = 0; otherwise,

we take m = ln(1−ϵ)
ln(k+ 1

n0
) with k =

(︂
(d+1)

δ′
)︂ 1

2 deg(P)+1 . If m < −1 and an explicit bound
is sought, we compute the summation E(T ) = ∑︁∞

n=1 P(T ≥ n) using the Hurwitz ζ-
function 2. The fitness of an individual is further expressed via the tuple (E(T ), m),
which is minimized/optimized with respect to the usual lexicographical ordering.

From a given solution set (generation), a new solution set (population) is generated using
random mutations of the parameters. The property d is biased to decrease, while ϵ is
biased to increase. Additionally, n0 is biased to increase when the exponent is not smaller
than −1, and biased to decrease otherwise. Furthermore, new individuals are generated
by randomly selecting the properties of two parent individuals.

4.2 Experimental Results
We evaluated our approach for computing stopping time bounds, and hence, inferring
PAST, using various polynomial random walk programs P. To this end, we took

1see Section 2.3
2(25.11)NIST:DLMF
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4.2. Experimental Results

Table 4.1: Derived bounds on stopping times for polynomial random walk programs P,
with increasing maximal degree deg P and different probabilistic choices p. The program
in the 3rd line of the table corresponds to Figure 1.1.

deg(P) p measured exponent tightest bound
0.25 0.5 −0.744 −0.5589
0.5 0.5 −0.997 −0.7436
1 0.5 −1.508 −1.1189
2 0.5 −2.442 −1.8639
5 0.5 −4.588 −4.0843
3 0.5 −3.448 −2.5971
3 0.9 −3.334 −2.4453
3 0.1 −3.57 −2.4453
3 0.99 −3.152 −1.9321
3 0.01 −3.516 −1.9321
3 0.999 −3.144 −1.359
3 0.001 −3.562 −1.359

instances of Figure 3.1 with different random walk degrees deg P and various values of
the probabilistic choice p. The PAST analysis of such programs is out of reach of existing
tools (see Chapter 5), notably Amber [17], eco-imp [18], KoAT [19], LexRsm [6], and
LazyLexRsm [20].

Table 4.1 summarizes our experiments, with the third line of Table 4.1 being our
motivating example from Figure 1.1. Column 3 of Table 4.1 reports the empirical
exponents of P(T ≤ n), further detailed in Figure 4.1a. Column 4 of Table 4.1 states the
smallest (tightest) exponent obtained through our approach using inductive bounds. Our
experiments were run on a machine with 2x AMD EPYC 7502 32-Core processor with
one task per core and hyperthreading disabled.

4.2.1 Experimental Analysis
Figure 4.1a displays empirically measured rates of P(T ≥ n) for symmetric random walks
with varying degree. These probabilities appear to converge towards a line in the log-log
plot, which suggests, that P(T ≥ n) eventually is of form Bnm, coinciding with the form
of our bound. The observed exponent of this probability is the slope of the robust log-log
regression lines [21], displayed as dashed lines and displayed in Column 3 of Table 4.1.

In Figure 4.1b we display the stopping times P(T ≥ n) of zero-mean polynomial random
walks with different values of p and degree 3. The approximated values of the exponent,
as well as the tightest bound found by our method can be found in Table 4.1. The
increasing unsharpness for small (or large) values of p stem from the use of Hoeffding’s
lemma in the proof of Lemma 6. While for individual bounds of centered Xi this bound
is sharp, for the product this no longer is the case and the plot suggests, that a tighter
bound might be found.
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Figure 4.1: Empirical results on stopping times of polynomial random walks

Table 4.2: Explicit bounds and empirical means of stopping time, with various polynomial
updates q1, q2 and probabilistic choice p of polynomial random walks from Figure 3.1

id q1 p q2 y0 empiric E(T ) explicit bound
1 n 0.5 −n 100 89.62 9562887
2 n2 0.5 −n2 100 36.4 17708
3 n2 + 2n + 20 0.5 −n2 + 2n + 20 1000 59.47 213570
4 n3

0.99 0.99 − n3

0.01 108 212.8 2671328

4.2.2 Explicit Bound Analysis

Our genetic algorithms can be used to
compute explicit bounds on the running
times. Figure 4.2 shows the tightest ex-
plicit bound found for some random walk
programs. The explicit bound is off by
several orders of magnitude, as listed in
Table 4.2. One of the main reasons for
the explicit bound being unsharp stems
from the fact that we choose a specific n0
in (3.1), from which the parameters for the
inductive bounds B are computed. This
could be improved by computing a bound
with multiple segments, and therefore in-
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Figure 4.2: Examples of explicit bounds

ferring multiple exponents that decrease with growing n.
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Figure 4.3: Empirical results on stopping times of polynomial random walks

4.2.3 Relation of Converging Terms and Empirical Stopping Time

While the relation of the degree of the polynomials and the slope of the empirically
measured P(T ≥ n) has been studied in Section 4.2, the effects of other properties of the
polynomials, which cause the terms in the proofs to converge slower, can also be seen in
the same kind of plot.

Different initial values are shown in Figure 4.3a, and show that termination happens later,
but P(T ≥ n) decays with the same exponent. In our implementation this is accounted
for through c0 (for U0) and δ1 in Lemma 6. Figure 4.3b shows random walks with ±n2

as leading term, and a (strictly positive) polynomial, which is the “drift” of the random
walk. Even the random walk with the high linear drift seems to eventually converge to a
line with the same slope as the other random walks. This effect is covered through the
same constants.

The influence of different values of p is, in addition to C in the tail-bound, covered
through c0 in Lemma 5. Our method computes the bound based on the value of p(1 − p)
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Figure 4.4: Performance of different genetic algorithm configurations

(e.g. the bound for p = 0.1 and p = 0.9 is the same), since the absolute deviation is
captured, and small values of p cause a higher deviation, albeit in the negative,“favorable”
direction. This unsharpness can be clearly seen in Figure 4.3c.

A high non-leading term influences the speed of convergence of δ′ in Lemma 7. The
empirical stopping time then first resembles that of the non-leading term, while later
converging towards that of the leading term, as displayed in Figure 4.3d. This also
supports the claim, that the explicit stopping time could better be approximated, if
multiple segments were used.

4.2.4 Performance of Genetic Algorithm
For the genetic algorithm, higher values of g increase the size of the linear model and
hence the computation time. To mitigate this effect, g is chosen relatively small in
the beginning, but its value increases with each generation. Similarly, the population
size shrinks. Usually, higher values of g allow to decrease d and increase ϵ slightly.
Intuitively, the algorithm tries to first find “good values” for the parameters, which in
later generations are then improved further. Figure 4.4 shows the relative performance
and the running time for different specifications after 50 generations, where the population
size and the granularity g are either set to a fixed value, or set to linearly decrease and
increase respectively. Figure 4.4a shows that (i) the results of our method are relatively
reliably and (ii) changing the parameters over time causes the the absolute value of the
exponent of the bound to be slightly lower, but reduces the running time drastically, as
displayed in Figure 4.4b. This gives reason to making a population, linearly decreasing
from 100 to 20, and a granularity linearly increasing from 50 to 200 the default values in
our implementation.
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CHAPTER 5
Discussion

Related Work. Reasoning about probabilistic program termination is much harder
than for deterministic programs [2], turning the automated analysis of probabilistic loops
into a challenging problem. Most approaches rely on proof rules for proving (positive)
almost-sure termination [22, 3, 23, 24], which in turn require additional expressions,
notably loop invariants and martingale variants, for the applicability in the proof rules.
As the generation of invariants and martingales is undecidable in general, automation of
these approaches requires user-provided invariants/martingales. Our work is limited to
polynomial random walks with the benefit of providing sufficient conditions under which
PAST can automatically be inferred. While restrictive, Figure 1.1 shows advantages of
our approach: proving PAST of this program using proof rules from [22, 3, 23] requires
an auxiliary ranking super-martingale, whose computability is still an open question.
Alternative approaches to automating termination analysis have been proposed by
focusing on restrictive classes of probabilistic loops, whose (P)AST analysis becomes
(semi-)decidable [25, 17]. Notably, constant probability loops [25] limit probabilistic loop
updates to constant increments over random variable and their (P)AST is decidable.
A more expressive class of programs is given in [17], with (P)AST analysis shown
to be semi-decidable and automated. Key to automation is the ability to inferring
(ranking) super-martingales from loop guards and relaxing proof rules to “eventual”
reasoning over polynomial loop updates. Our approach complements these works by
using arbitrary polynomial updates in polynomial random walks. Such loops cannot be
analyzed by [25, 17]; in particular, PAST of Figure 1.1 cannot be inferred.
The analysis of probabilistic programs with arbitrary polynomial updates and control flow
is shown to be difficult, especially due to the lack of compositionality [26]. By adjustments
of the weakest precondition [27, 28] calculus, runtime bounds are inferred as sufficient
conditions for proving PAST in [29, 18]. Control-flow refinement methods are also
advocated in [19] to derive runtime bounds on probabilistic loops. Further, lexicographical
extensions of synthesizing ranking super-martingales are presented in [6, 20] for the
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5. Discussion

purpose of PAST inference. While powerful, automation of these works depend on the
suitable martingales. Unlike our technique, proving PAST of polynomial random walks,
in particular of Figure 1.1, cannot yet be achieved by other works.

Conclusion. We study the positive almost-sure termination (PAST) problem of poly-
nomial probabilistic programs implementing random walks with increasing increments.
We show that PAST can be proven for polynomial random walks by checking conditions
via solving linear inequalities over the polynomial program updates, without requiring
additional user input in the form of invariants and/or martingales. Our experiments
demonstrate that our approach determines PAST of non-trivial probabilistic programs.
Notably, we show PAST for programs beyond the scope of existing methods: for such
programs, state-of-the-art works would require ranking super-martingales whose compu-
tation is undecidable in general. For such loops, we prove PAST by finding bounds on
the probability of termination, depending on the degrees and the branching probability of
the polynomial updates. Future work includes the extension of our results to (i) deriving
hardness results on PAST decidability for polynomial random walks, and (ii) dealing
with probabilistic programs with nondeterminism and more complex updates.
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Overview of Generative AI Tools
Used

No generative AI tools were used while composing this thesis.
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