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Kurzfassung
Wiederholte Spiele bilden in der Spieltheorie einen grundlegenden Rahmen um
zu modellieren, wie sich strategische Interaktionen mit der Zeit entwickeln, wenn
Spieler_innen ihre Entscheidungen auf Grundlage vergangener Ereignisse treffen.
Zwei besonders interessante Klassen sind reaktive-n-Strategien, bei denen die Wahl
der Aktion von den letzten n Aktionen des Gegners abhängt, und selbst-reaktive-
n-Strategien, die ausschließlich die eigene Handlungshistorie berücksichtigen. Diese
Arbeit behandelt eine zentrale Frage: Welche Informationen benötigt eine Spielerin,
Alice, um ihre Auszahlung gegen ihren Gegner, Bob, zu maximieren, wenn dieser
eine reaktive-n-Strategie spielt?

Die Studie von [Glynatsi, Akin, Nowak, Hilbe: PNAS, 2024] zeigte, dass Alice
in Zwei-Aktionen-Spielen nicht mehr Informationen benötigt als Bob. Zudem kann
Alice die für sie maximal mögliche Auszahlung erreichen wenn sie eine pure selbst-
reaktive-n-Strategie verwendet. Das erste Ziel dieser Arbeit ist es, dieses Ergebnis auf
alle Spiele mit endlich vielen Aktionen zu erweitern. Als unmittelbare Konsequenz
ergibt sich, dass das Problem, ob eine reaktive-n-Strategie ein symmetrisches Nash-
Gleichgewicht darstellt, entscheidbar ist.

Im zweiten Teil der Arbeit wird gezeigt, dass sich die Interaktion zwischen reaktiven
und selbst-reaktiven Strategien als Zyklen auf de-Bruijn-Graphen darstellen lässt.
Dieser neue Ansatz reduziert die Komplexität der Entscheidung, ob eine reaktive-n-
Strategie ein Nash-Gleichgewicht bildet, erheblich.

Zuletzt betrachten wir eine spezielle Klasse wiederholter Spiele, sogenannte addi-
tive Spiele. Unter Verwendung der de-Bruijn-Darstellung zeigen wir, dass Alice in
additiven Spielen ihre maximale Auszahlung gegen ihren reaktiven-n-Gegner Bob
mit einer puren selbst-reaktiven-(n − 1)-Strategie erreichen kann. Alice trägt also
keinen Schaden, wenn sie sich an ein Ereignis weniger erinnert als Bob. Neben seiner
konzeptionellen Bedeutung vereinfacht dieses Ergebnis zusätzlich die Identifikation
symmetrischer Nash-Gleichgewichte unter reaktiven-n-Strategien.



Abstract
Repeated games are a foundational framework in game theory, modeling how strategic
interactions unfold over time as players make decisions based on prior outcomes.
Two classes of interest are reactive-n strategies, which respond to the co-player’s last
n actions, and self-reactive-n strategies, which consider only the player’s own history.
This thesis addresses a key question: What information does one player, Alice, need
to maximize her payoff against her opponent, Bob, if he plays a reactive-n strategy?

Previous work by [Glynatsi, Akin, Nowak, Hilbe: PNAS, 2024] established for
two action games, that Alice requires no more information than is available to Bob.
Moreover, Alice can receive the highest possible payoff when she uses a pure self-
reactive-n strategy. The first goal of this thesis is to extend this result to all finite
action games. As an immediate consequence, the problem of determining whether a
reactive-n strategy is a symmetric Nash equilibrium is decidable.

In the second part of the thesis, we observe that the interaction between these
two classes of strategies, reactive and self-reactive, can be described as cycles on de
Bruijn graphs. This new approach drastically reduces the complexity of deciding if a
reactive-n strategy is a Nash equilibrium.

Finally, the thesis focuses on a specific class of repeated games called additive
games. Employing the de Bruijn graph representation, we prove that in additive
games, Alice can receive her highest possible payoff against her reactive-n opponent
Bob by playing a pure self-reactive-(n − 1) strategy. Thus, Alice is allowed to
remember less than Bob without sacrificing payoff. Apart from being noteworthy
on a conceptual level, this result simplifies the task of identifying symmetric Nash
equilibria among reactive-n strategies even further.
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1 Introduction
Decisions are an unavoidable part of life. Naturally, the question arises: Which
decision is best? To approach this problem theoretically, consider a game defined
by actions, players and payoffs. Each player selects an action, and based on these
choices, each receives a corresponding scalar-valued payoff. It is assumed that every
player strives to maximize their own payoff.

A famous example of such a game is the prisoner’s dilemma. In the most common
version by [AH81] two players are considered, who can both choose to either cooperate
(by playing action C) or defect (by playing action D). If both decide to cooperate,
the payoff is 3, if both defect, the payoff is 1. However, if one player decides to
cooperate and the other to defect, the defective player receives the payoff 5 while the
cooperative player leaves empty handed, i.e., with the payoff 0. It is best for a player
to choose defection, independently of what the opponent chooses. Interestingly, this
dynamic changes, if the game is played iteratively. In simpler words, exploiting an
opponent is only worthwhile if you are not going to face them again. The theory
of repeated games addresses this observation in a general setting, thus becoming a
foundational framework in game theory ([MS06]). It allows the study of complex
behaviors such as cooperation and direct reciprocity ([Now06], [GV16]).

In repeated games, the underlying game, that is played iteratively, possibly even
infinitely often, is referred to as the stage game. This thesis focuses on repeated games
without discounting, meaning the stage game is played infinitely often. Naturally,
the concept of history arises. It is the union of all stage games that have already
been played. It is rationally sound for a player to base their decisions on the history,
or at least on parts of it. The subset of the game’s history, on which the player’s
action depends on, is referred to as the player’s memory at a given stage game.
The size of the memory is defined as the distance from the current stage game to
the earliest stage game the player recalls. Players can then be classified by their
maximum memory size. Particularly cognitively plausible are players with bounded
memory size ([Ued21], [MO11]). One important class of bounded memory players,
that have been the focus of many evolutionary studies, are memory-n strategies
([HMCN17], [RR18]). These are players whose memory at any stage consists for
the past n ∈ N games. This is equivalent to a player having a memory size of n. A
subclass of memory-n strategies are reactive-n strategies, those that solely depend on
their opponents last n actions ([GANH24]). In many real-life situations, it is evident
that individuals tend to place greater emphasis on how they are treated rather than
on how they treat others. This observation is modeled through reactive-n strategies.
Throughout this thesis it is assumed that opponents use reactive-n strategies.

After having established the player’s abilities, the question is raised: How powerful
is memory? Can a player with a larger memory size achieve a higher payoff? In [PD12],
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1 Introduction

it is shown that in the repeated prisoner’s dilemma, if the opponent uses a memory-n
strategy, a player can always achieve the highest possible payoff using a strategy with
the same memory size. This result is further generalized in [LNZ20] to more general
strategy spaces and game types. Building on this, [GANH24] improves the result
for reactive-n strategies in 2 action games. For any reactive-n opponent, one can
construct a self-reactive-n strategy that achieves the maximum payoff against this
opponent. These strategies recall only the player’s own past n actions and match
the opponent’s memory size.

A strategy that achieves the highest possible payoff against a fixed opponent,
is referred to as a best response. Best responses are especially of interest as they
are fundamental in the identification of Nash Equilibria, a central concept in game
theory [Nas50]. A Nash Equilibrium is a state where no player can improve their payoff
by unilaterally switching to another strategy. All results in this thesis contribute to
reducing the set that contains best responses to any arbitrary reactive-n strategy.
As a consequence, this reduction simplifies the task of identifying Nash equilibria.

The first reduction is obtained by extending the result of [GANH24] to all games
in which players have finitely many actions to choose from, rather than just two. We
constructively prove the existence of a self-reactive-n strategy that is a best response
to a fixed but arbitrary reactive-n opponent. This allows us to reduce the set of
strategies that contains best responses to all reactive-n strategies from the set of
all possible strategies to the smaller set of all self-reactive-n strategies. Secondly,
we further reduce this to a finite set by proving the existence of a best response
among all deterministic (or pure) self-reactive-n strategies. Deterministic strategies
are those that choose to cooperate or defect with probability 1 or 0, respectively. As
before, the proof is constructive and is inspired by [GANH24] and [PD12].

Having reduced the search for a best response to a finite set, it is now possible
to computationally solve the problem. However, the number of pure self-reactive-n
strategies grows exponentially with the memory size. This motivates the search for
additional reductions. To this end, we factorize the set of all pure self-reactive-n
strategies by the payoff they receive against an arbitrary opponent in an arbitrary
game. More precisely, two strategies are called equivalent if and only if they receive
the same payoff against every opponent in every game. While this may initially
appear to be an insignificant reduction, the thesis goes on to challenge and ultimately
contradict this assumption.

The key step is to map the histories of pure self-reactive-n strategies as vertices
on a graph, and connecting histories that immediately succeed each other by a
directed edge. Based on this mapping, we observe that every pure self-reactive-n
strategy’s moves eventually reach a cycle on this graph and follow it indefinitely.
If two strategies eventually proceed along the same cycle, they receive the same
payoff in any game against any reactive opponent. This holds regardless of their
(possibly different) moves prior to entering the cycle. Following this observation, we
provide a bijection between the equivalence classes of pure self-reactive-n strategies
and all possible cycles in the graph. Interestingly, the graph that precisely contains
all such cycles is the de Bruijn graph, a well-studied structure in graph theory with
numerous applications, for example in genetics [CPT11]. This result establishes a
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1 Introduction

novel connection between de Bruijn graph theory and game theory, leading to a
noteworthy side result. While a closed-form expression for the exact number of cycles
in the de Bruijn graph, and thus the number of equivalence classes of strategies, is
not known, numerical results indicate that the reduction is substantial.

Not only do the factorization of pure self-reactive strategies and their bijection to
cycles on the de Bruijn graph offer a substantial reduction, they also open the door
to applying graph-theoretical tools in the study of repeated games. This perspective
allows us to address another natural and intriguing question: Can a player remember
less than their opponent without sacrificing payoff? Surprisingly, under two simple
conditions, the answer is yes. The two conditions are that the opponent uses a
reactive-n strategy, and that the game is additive, also known as a game with equal
gains from switching [NS90]. In that case, a player can use less memory and still
achieve the maximum possible payoff. Additive games have played a key role in
evolutionary game theory [MFH14; MRH21; CP23]. They are defined by the property
that each player’s payoff can be decomposed into components depending solely on
the player’s own action and that of their opponent. In this setting, we prove that
for every reactive-n opponent, there exists a best response strategy that is pure
self-reactive-(n − 1). This result is both conceptually significant and practically
useful, as it dramatically reduces the number of strategies that need to be explored
to find a best response.

In summary, this thesis presents four significant reductions in the search for best
responses when the co-player uses a reactive strategy. Along the way, it introduces
new methods that may have broader impact beyond the immediate results. The final
main result has already been published [LHG25], while the others are yet to follow.
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2 Game Theory, Repeated Games and
Best Responses

In this chapter, we introduce essential concepts that will be the main focus of this
thesis. First, we mathematically define games, repeated games, and histories of
games, see Section 2.1. In Section 2.2, we explore strategies and analyze how different
types of strategies relate to each other. We then define payoffs in repeated games
and study their existence in Section 2.3. Finally, in Section 2.4 we characterize best
responses and discuss their significance in game theory.

2.1 Games and Repeated Games
We model the interaction between two people, who we will refer to as players. We
assume that players obtain a value from this interaction or game, as we continue to
call it. Moreover, we postulate that players strive for a high payoff. The payoff is
solely dependent on the actions of both players. We assume both players to choose
one out of m ∈ N actions. The set of actions is denoted by A := {A1, . . . , Am}. We
focus on one player, whose payoff we aim to study, and refer to them as the focal
player. The player opposed to the focal player is referred to as the opponent player,
or in short opponent. The payoff matrix

G :=

����
g11 g12 · · · g1m

g21 g22 · · · g2m
...

... . . . ...
gm1 gm2 · · · gmm

���� ∈ Rm×m (2.1)

defines the game. For example, if the focal player chooses action Ai and their
opponent chooses action Aj , then the focal player receives the payoff gij ∈ R. We
focus on symmetric games, where the opponent’s payoff matrix is the payoff matrix
of the focal player. Thus, the opponent’s payoff can be calculated by considering
the transpose matrix. In our example, where the focal player and opponent choose
action Ai and Aj , respectively, the opponent receives the payoff gji when the game is
symmetric. In an asymmetric game, on the other hand, the payoff matrices of each
player do not need to bear any relation to one another. The two payoff matrices
are often represented as one payoff bimatrix, where each entry is a 2-tuple. The
first entry refers to the payoff of the focal player, while the second defines the payoff
of the opponent. While this thesis focuses on symmetric games, all results can be
generalized to asymmetric games.
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2 Game Theory, Repeated Games and Best Responses

Example 2.1. The prisoner’s dilemma as introduced in Chapter 1 is a symmetric
game. It is defined by the set of actions A := {C, D} and the payoff matrix


R S
T P

�
.

The matrix 

(R, R) (S, T )
(T, S) (P, P )

�

is the representation of the payoff matrix in a form that is more commonly used in
asymmetric games. However, here it allows us to observe the symmetry of the game
and provides insight into why the transpose of the payoff matrix is of interest in
symmetric games.

The focus of the thesis at hand is the study of repeated games. That is, we assume
the two players engage in a fixed game iteratively. We refer to the game that is
played at every iteration as the stage game. Game will from now on denote the whole
process of the repeated game. We introduce the game’s history at each step of the
iteration. Formally, we define the history of the game after t ∈ N steps as an element
of

Ht := (A × A)t

which maps k ∈ {0, . . . , t−1} to the actions that both players chose in the k-th game.
Furthermore, we denote by H i

t the set of the focal player’s own past t actions and by
H−i

t the opponent’s past t actions. Mathematically, H i
t and H−i

t are equivalent to
At.

2.2 Strategies
In each round of the repeated game players follow a rule to determine their next
action. We refer to this rule as the player’s strategy. This strategy depends on the
history of the game so far, and it outputs a distribution over the set of actions.

Definition 2.2. A strategy σ is a sequence of functions, such that for all t ∈ N

σt ∈ {f | f : Ht → Δm−1}, (2.2)

where Δm−1 :=
�

x∈Rm
≥0

�� �m
i=1 xi =1

�
. That is, at step t ∈ N the strategy σ maps

each history h ∈ Ht to a distribution over the action space A. The opponent’s strategy
is defined similarly.

Remark 2.3. In this thesis, we identify the set {f | f : H0 → Δm−1} with the set
Δm−1.

5



2 Game Theory, Repeated Games and Best Responses

We are particularly interested in strategies with bounded recall.

Definition 2.4. A strategy σ is a finite memory strategy if

∃n ∈ N : ∀t, t̂ ∈ N≥n∀h ∈ Ht∀ĥ ∈ Ht̂ :
Pn(h) = Pn(ĥ) ⇒ σt(h) = σt̂(ĥ),

(2.3)

where Pn is the projection onto the last n components. If the input has fewer than n
components, then Pn acts as the identity function. We refer to the set of all finite
memory strategies as Π.

Recall that for every t ∈ N, σt is a function that takes a history and maps it
to a distribution over the action set. Thus, (2.3) refers to a strategy that is only
dependent on a fixed number of previous moves and is independent of the time at
which the moves were observed.

A subset of finite memory strategies that has been of particular interest in evo-
lutionary and classical game theory are memory-n strategies. In contrast to the
definition used in other literature, see [GANH24], we include the initial n moves in
the definition. While the initial moves will play a crucial role in upcoming chapters,
the idea of memory-n strategies is kept in tact. Note that memory-n strategies are
not subsets of finite memory strategies by their mathematical definition. However,
Lemma 2.6 introduces an embedding from memory-n strategies into finite memory
strategies, allowing us to interpret the former as a subset of the latter.

Definition 2.5. A memory-n strategy σ is defined as a 2-tuple

σ = (σ<n, σ) ∈ An × {f | f : Hn → Δm−1}. (2.4)

The first entry σ<n refers to the moves the player takes before a history of size n is
observed. After n games, the actions the player takes are dependent on the second
entry σ. We denote the set of all memory-n strategies by Mn.

From a cognitive perspective, it is natural to require that any memory-k strategy
is also a memory-n strategy for n ≥ k. This implies that the sets Mn, for n ∈ N,
should be nested under inclusion. This monotonicity, however, is not ensured by
Definition 2.5. However, with the following embedding we are able to consider them
as a nested sequence of sets. The second embedding ensures, that all memory-
n strategies can be considered as finite memory strategies. This is visualized in
Figure 2.1.

6



2 Game Theory, Repeated Games and Best Responses

Π

M0 M1 M2

Figure 2.1: The embeddings found in Lemma 2.6 structure the sets of memory-n
strategies for increasing n ∈ N. The figure visualizes that the set of
memory-n strategies form a monotonically increasing series of subsets
that are all contained in Π.

Lemma 2.6. For any n, N ∈ N with n ≤ N there exists an embedding ιn,N from Mn

to MN and an embedding ιn from Mn to Π, which satisfy the following properties for
all k, n, N ∈ N with k < n < N :

1. ιk,N = ιn,N ◦ ιk,n and

2. ∪n∈Nιn(Mn) ⊆ Π

Proof. We fix arbitrary n, N ∈ N and define ιn,N ((σ<n, σ)) := (σ̃<N , σ̃), where
σ̃ := σ ◦ Pn and (σ̃<N )t for t ∈ {0, . . . , N − 1} is iteratively defined by

(σ̃<N )t =
�

A1 for t < N − n

(σ<n)t−N+n else.

To prove that ιn,N is injective, we fix two arbitrary memory-n strategies σ1 and σ2
and assume that ιn,N (σ1) = ιn,N (σ2) = σ̃. By the definition of ιn,N we observe that
σ1 ◦ Pn = σ2 ◦ Pn. Since Pn = id on the domain Hn, we obtain that σ1 = σ2. The
observation, that σ<n

1 = (σ̃<N
i )N−1

i=N−n = σ<n
2 , concludes σ1 = σ2.

Consider k, n, N ∈ N where k < n < N . With Pk = Pn ◦ Pk it follows immediately
that ιk,N = ιn,k ◦ ιk,n.

Furthermore, we define ιn(σ) := (σ̃t)t∈N, where

σ̃t :=
�

σ ◦ Pn for t ≥ n

δ(σ<n)t
else.

Note that (σ<n)t is an element of the action set A and δ is defined as the Kronecker
delta on A. For every ñ ∈ N the function ιñ maps into Π as condition (2.3) holds for

7



2 Game Theory, Repeated Games and Best Responses

n = ñ. The injection of ιn is shown similarly to the injection of ιn,N . The property
∪n∈Nιn(Mn) ⊆ Π follows immediately.

The property of the embeddings ι.,. ensure their commutativity. Thus, it is
irrelevant if a memory-k strategy is embedded in MN or first embedded in Mn and
afterwards in MN . This is visualized in Figure 2.2.

Mk Mn

MN

ιk,n

ιk,N ιn,N

Figure 2.2: The embeddings obtained in Lemma 2.6 commute for k < n < N ∈ N.

We further define a subset of memory-n strategies that are solely dependent on
the opponent’s actions.

Definition 2.7. A reactive-n strategy p is defined as a 2-tuple

p = (p<n, p) ∈ An × {f | f : H−i
n → Δm−1}. (2.5)

We denote the set of all reactive-n strategies by Rn.

Equally, we define the subset of memory-n strategies that solely depend on the
player’s own actions.

Definition 2.8. A self-reactive-n strategy q is defined as a 2-tuple

q = (q<n, q) ∈ An × {f | f : H i
n → Δm−1}. (2.6)

We denote the set of all self-reactive-n strategies by Sn.

Definition 2.9. Any strategy and any sets of strategies is said to be pure if we
replace Δm−1 by the set of all unit vectors of Rm.

Example 2.10. In the repeated prisoner’s dilemma, the famous strategy Tit-for-
Tat, popularized by [AH81], is an example of a memory-1 strategy. A player using
Tit-for-Tat initially chooses cooperation C. Then, the player copies the last move
of the opponent. Thus, the strategy is even a pure reactive-1 strategy. Formally,
Tit-for-Tat is defined by p := ((C), p), where

p(C) = (1, 0)T

p(D) = (0, 1)T .

8



2 Game Theory, Repeated Games and Best Responses

2.3 Calculation of Payoffs
Given two arbitrary strategies σ and σ̃, let πσ,σ̃(t) denote the focal player’s expected
payoff in round t.

Definition 2.11. We define the repeated-game payoff as the limiting average,

π(σ, σ̃) := lim
τ→∞

1
τ

τ�
t=1

πσ,σ̃(t). (2.7)

We note that the limit (2.7) does not need to exist. For a fixed opponent p, we
refer to the set of strategies, for which the limit (2.7) does exist, with Σp. The
following approach shows that if the strategies σ and σ̃ are memory-n then the limit
converges. By Lemma 2.6, it follows that the limit exists for the interaction between
any two finite memory strategies.

To compute the payoff of the focal player in the interaction of two memory-n
strategies, we represent the game as a Markov chain. To this end, we choose the
states of the Markov chain as the game’s n-histories h∈Hn.

The probability of transitioning from state h to state h̃ is then given by

Mh,h̃ = mσ · mσ̃. (2.8)

Here, mσ is defined as

mσ =
�

σ(h)i if hk = h̃k−1 ∀ k ∈ {2, . . . , n} and h̃1
n = Ai,

0 otherwise,

and mσ̃ similarly. For t≥n, let v(t)∈Δ|Hn|−1 denote the probability distribution of
observing each history in round t. For a given distribution v(t), the next round’s
distribution is computed as v(t + 1)=v(t)M . Since M is a stochastic matrix, the
Perron–Frobenius theorem ensures that v(t) converges to a limiting distribution
v =(vh)h∈Hn , which is a left eigenvector of M with eigenvalue 1. If M is primitive,
this limiting distribution is unique; otherwise it is uniquely determined by the
outcome of the first n rounds.

We can use this insight to compute the players’ payoffs, by noting that the focal
player’s expected payoff in round t≥n can be written as

πσ,σ̃(t) = v(t) · u.

Here, u=(uh) is the vector that assigns to every n-history the focal player’s latest
stage payoff. That is, if the history h = (h1, h2) is such that h1

n = Ai and h2
n = Aj ,

9



2 Game Theory, Repeated Games and Best Responses

then uh =gij . If v(t)→v for t→∞, then so does 1
τ

�τ
t=n v(t). We obtain

π(σ, σ̃) = lim
τ→∞

1
τ

τ�
t=1

πσ,σ̃(t) = lim
τ→∞

1
τ

τ�
t=n

(v(t) · u)

=
�

lim
τ→∞

1
τ

τ�
t=n

v(t)


· u = v · u.

2.4 Best Responses
In this thesis, we are interested in determining the minimal memory size of a strategy
that serves as the best response against another strategy of a given memory size.
We focus specifically on reactive-n strategies. From this point onward, unless stated
otherwise, we assume that the opponent employs a reactive-n strategy. Given that
reactive-n strategy p, our goal is to identify a best response within the strategy set
Σp. Specifically, we seek a strategy σ ∈ Σp such that

π(σ, p) ≥ π(σ̃, p) for all σ̃ ∈ Σp. (2.9)

Note that this definition does not imply the existence of a best response. In the course
of this thesis, we demonstrate that, in our setting, a best response always exists.
Best responses are important in the search for symmetric Nash equilibria, which are
a central concept in evolutionary game theory, see [HR04]. Given a symmetric game,
i.e., both players have the same action sets and payoff matrix, we call a strategy σ a
symmetric Nash equilibrium, if for all σ̃ ∈ Σσ

π(σ, σ) ≥ π(σ̃, σ). (2.10)

In other words, a strategy is a symmetric Nash equilibrium if it is a best response to
itself. Such strategies provide a sense of stability, as each player has no incentive
to deviate when both adopt the same strategy. Every symmetric stage game has a
symmetric Nash equilibrium, see [Sig10]. This implies the existence of a symmetric
Nash equilibrium in repeated games, as unconditionally playing the stage game’s
symmetric Nash equilibrium is a symmetric Nash equilibrium in the repeated game.
In this thesis, we focus exclusively on symmetric Nash equilibria, disregarding general,
asymmetric Nash equilibria. Accordingly, any reference to Nash equilibria throughout
the text should be understood as referring specifically to symmetric Nash equilibria.

10



3 Pure Self-Reactive Best Responses in
m-Action Games

In this chapter, we generalize the work of [GANH24] to all games with finitely
many actions. More specifically, we prove that if one player adopts a reactive-n
strategy, then the other player can always find a best response within the set of
pure self-reactive-n strategies, denoted by Spure

n . While this result was previously
established in [LNZ20], we take a different approach. The result is stated as follows.

Theorem 3.1. Let p ∈ Rn be a reactive-n strategy. Then, there exists p̃ ∈ Spure
n

with

π(p̃, p) ≥ π(σ, p) for all σ ∈ Σp. (3.1)

To prove this theorem, we proceed in two steps. First, we construct for every
strategy a self-reactive-n strategy that receives the same payoff against a fixed
but arbitrary reactive-n strategy (Proposition 3.2). Then, we demonstrate that
every self-reactive-n strategy is weakly dominated by a pure self-reactive-n strategy
(Proposition 3.4). These results and their proofs are presented in the following
subsections, namely Section 3.1 and Section 3.2. Combining the results proves not
only the existence of a best response, but also Theorem 3.1.

3.1 Self-Reactive Best Responses
Proposition 3.2. Let p ∈ Rn and σ ∈ Σp be arbitrary but fixed. There exists q ∈ Sn

such that

π(q, p) = π(σ, p). (3.2)

It follows that if a best response against a reactive-n strategy p exists in Σp, then
a best response also exists in Sn.

Proof. A strategy q = (q<n, q) is a self-reactive-n strategy if and only if q only
depends on the player’s own last n-moves. Since the histories in the first n games
are observed at most once, σ’s action choices in these rounds can be interpreted as
deterministic. It is thus possible to define q<n as σ’s first n moves.

We consider the reactive-n strategy p ∈ Rn and the strategy σ ∈ Σp, where σ is
the focal player and p the opponent player. Since σ ∈ Σp, the limiting distribution

11
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v = (vh)h∈Hn
is well-defined by

vh := lim
τ→∞

1
τ

τ�
t=1

vh(t). (3.3)

For a fixed history hi ∈ H i
n we implicitly define q of the self-reactive-n strategy

q = (q<n, q) via �
h−i∈H−i

n

v(hi,h−i)

 q(hi) =
�

h−i∈H−i
n



lim

τ→∞
1
τ

τ�
t=1

v(hi,h−i)(t)σt((hi, h−i))
�

. (3.4)

For all hi ∈ H i
n, h−i ∈ H−i

n , and t ∈ N we note that σt((hi, h−i)) is a vector in
m-dimensions and thus, so is q(hi). The limit in the right hand side of (3.4) exists
due to (3.3). Additionally, if the sum in the left hand side of (3.4) is zero, then so
must be the right hand side. In this case, q(hi) can be arbitrarily chosen in Δm−1.
We aim to show that the limiting distribution v of the strategy σ playing against the
reactive-n strategy p is an eigenvector of the transition matrix M obtained by (2.8)
and the self-reactive-n strategy q defined by (3.4) with appropriate initial moves
q<n. For simplicity, we show v = vM for the history hA1 in which the players both
respond with action A1. We define for j ∈ {i, −i}

e(hj , h̃j) =
�

1 if hj
k = h̃j

k−1 for all k ∈ {2, . . . , n},

0 else.

For t ≥ n we obtain

vhA1
(t + 1) =�

hi∈Hi
n

�
h−i∈H−i

n

v(hi,h−i)(t) (σt(hi, h−i))1 p(hi)1 e(hi, hi
A1) e(h−i, h−i

A1
).

By summing up the equation from t = 1, . . . , τ and dividing by τ results in

1
τ

τ�
t=1

vhA1
(t + 1) =

�
hi∈Hi

n

�
h−i∈H−i

n



1
τ

τ�
t=1

v(hi,h−i)(t) (σt(hi, h−i))1

�
p(hi)1 e(hi, hi

A1) e(h−i, h−i
A1

).

Taking the limit leads to

vhA1
=

�
hi∈Hi

n

�
h−i∈H−i

n

v(hi,h−i)
�
p(hi)1 e(hi, hi

A1)
 �

q(h−i)1 e(h−i, h−i
A1

)


. (3.5)
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With (2.8) this results in

vhA1
=

�
h∈Hn

vhMh,hA1
, (3.6)

where M is the transition matrix obtained by q playing against p.

We have now shown that given a reactive-n strategy p it suffices to test p against
all self-reactive-n strategies to verify (2.9). This requires calculating the payoff
π(q, p) for self-reactive-n strategies q. However, in this setting, both players solely
consider the self-reactive-n player’s previous actions to make their decision. Thus,
the transition matrix M can be reduced to a mn × mn dimensional matrix M̃ defined
by

M̃hi,h̃i =
�

q(hi)j if hi
k = h̃i

k−1 for all k ∈ {2, . . . , n} and h̃i
n = Aj ,

0 else.
(3.7)

Similarly to Section 2.3, we obtain the limiting distribution ṽ of M̃ . Then, the payoff
of q playing against p is given by

π(q, p) =
�

hi∈Hi
n

ṽhi

m�
j,k=1

gjkq(hi)jp(hi)k. (3.8)

3.2 Constraining the Search to Pure Self-Reactive Strategies
Before proving the second proposition, we need an auxiliary result.

Lemma 3.3. Let g, h : [0, 1]k → R be two affine functions and their quotient f := g/h
be bounded on [0, 1]k. Given arbitrary x = (x1, . . . , xk)T and j ∈ {1, . . . , k} define
fx,j(t) := f(x1, . . . , xj + t, . . . , xk). Then fx,j is monotonic.

Proof. Define x0 := 1. Since both g and h are affine, there exist a0, . . . , ak ∈ R and
b0, . . . , bk ∈ R such that

g(x) :=
k�

j=0
ajxj

h(x) :=
k�

j=0
bjxj

Fix an arbitrary x ∈ [0, 1]k and derive

f ′
x,j(t) = ∂

∂t
f(x1, . . . , xj + t, . . . , xk) =

aj
�

i ̸=j bixi − bj
�

i ̸=j aixi�
bj(xj + t) �

i ̸=j bixi

2

We observe that the denominator of f ′
x,j is strictly positive, since f is bounded

on the domain. The numerator is constant in t. Thus, depending on the sign of

13



3 Pure Self-Reactive Best Responses in m-Action Games

the numerator, f ′
x,j is either constant, monotonically increasing or monotonically

decreasing.

Proposition 3.4. Let p ∈ Rn and q ∈ Sn be arbitrary, but fixed. Then, there exists
q∗ ∈ Spure

n such that

π(q∗, p) ≥ π(q, p). (3.9)

Proof. The proof follows in 3 steps:

1. For hi ∈ H i
n let Mhi be the matrix derived from the transition matrix M̃ , as

defined in (3.7), by following the two steps:
• Subtract the Imn identity matrix from M̃ .
• Set every entry in the last column to zero, except the entry that corresponds

to the history hi. This entry is set to one.
We observe, that since the stationary distribution ṽhi is an eigenvector of M̃
with eigenvalue 1, ṽhi(M̃ − Imn) = 0. Thus, det(M̃ − Imn) = 0. Following
Cramer’s rule results in

Adj(M̃ − Imn)(M̃ − Imn) = det(M̃ − Imn)Imn = 0.

Since the eigenspace to the eigenvalue 1 of the matrix M̃ is one dimensional,
every row of the adjugate matrix A := Adj(M̃ − Imn) is a scalar multiple to
the eigenvector ṽ. We consider the last row and denote by c the scalar such
that

ṽ = c (Amn,j)mn

j=1. (3.10)

By definition of A, the j-th entry Amn,j is up to a sign the determinant of the
matrix M̃ where the last column and the j-th row have been eliminated. Since
the last column was eliminated, these determinants are also the determinants of
the Matrix Mhi if the same row and columns are eliminated. Applying Laplace
expansion to the last column of Mhi for every hi ∈ H i

n, we obtain from (3.10)
that

ṽ = c (det(Mhi))hi∈Hi
n
. (3.11)

From �
hi∈Hi

n
ṽhi = 1, we infer that

1
c

=
�

hi∈Hi
n

det(Mhi) (3.12)

We return to the payoff π(q, p) as calculated in (3.8). It follows from (3.11)
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and (3.12) that

π(q, p) =
�

hi∈Hi
n

det(Mhi)
��m

j,k=1 gjkq(hi)jp(hi)k


�

hi∈Hi
n

det(Mhi) . (3.13)

2. Let us examine for fixed hi ∈ H i
n the term det(Mhi). Note that the entries of

the last column are zero except for the row that corresponds to the history hi.
The only entries that contain elements of the vector q(hi) are in the row that
corresponds to the history hi. It follows that the term det(Mhi) is independent
of the vector q(hi). Therefore, both the enumerator and denominator are affine
in each vector q(h̃i) for h̃i ∈ H i

n. The payoff function is bounded from above
and below by the maximum and minimum entry of the payoff matrix G.

3. We consider each history hi iteratively and show that there exists a best
response strategy, that reacts to this history hi purely. Therefore, let us fix the
pure self-reactive-n strategy q and an observed history hi. Since q(hi) is an
element of the space Δm−1 we replace q(hi)m by 1 − �

j ̸=m q(hi)j . We observe
that both the denominator and numerator of π are affine in q(hi)1 since they
are affine in the vector q(hi) as seen in step 2. From Lemma 3.3, it follows
that π is monotonic in q(hi)1. If it is decreasing, the strategy q̃, defined by
q̃<n := q<n and

q̃(h̃i) :=
�

(0, q(h̃i)2, . . . , 1 − �m−1
j=2 q(h̃i)j)T for h̃i = hi

q(h̃i) else,

solves the equation π(q̃, p) ≥ π(q, p). If, on the other hand, π(q(hi)1) is
monotonically increasing, define

q̃(h̃i) :=
�

(1 − �m−1
j=2 q(h̃i)j , q(h̃i)2, . . . , 0)T for h̃i = hi

q(h̃i) else,

to observe the same result as in the decreasing case. In each instance we can
consider the obtained new strategy as as element of Δm−2. The numerator and
denominator of the payoff function π continue to be affine in q̃(hi). We can
therefore apply the same procedure on q̃. Iteratively we obtain a strategy q̂,
where q̂(hi) is an element of the canonical basis of Rm. By applying the same
strategy on q̂, but for another history ĥi, in which q̂(ĥi) is probabilistic and
iteratively repeating this behavior, we obtain a pure self-reactive-n strategy q∗
that fulfills the desired Equation (3.9).

We now combine the results to show Theorem 3.1.

Proof. Consider p ∈ Rn. Let σ ∈ Σp be arbitrary but fixed. We obtain from
Proposition 3.2 a self-reactive-n strategy q with π(q, p) = π(σ, p). To the strategy q

15



3 Pure Self-Reactive Best Responses in m-Action Games

there exists by Proposition 3.4 a pure self-reactive-n strategy q∗, such that π(q∗, p) ≥
π(q, p). The set of pure self-reactive-n strategies is finite, thus the maximum of
π(q̃, p) over all q̃ ∈ Spure

n exists and it holds

π(σ, p) = π(q, p) ≤ π(q∗, p) ≤ max
q̃∈Spure

n

π(q̃, p).

As σ was chosen arbitrary, (3.1) holds for p̃ ∈ argmaxq̃∈Spure
n

π(q̃, p).

3.3 Impact
In this section, we have proven that given an arbitrary reactive-n strategy p, there
always exists a best response within the set of all pure self-reactive-n strategies. This
also proved the existence of a best response. The result is remarkable, as it reduces
the solution space from an infinite set to a finite subset. An illustration of this result
is provided in Figure 3.1.
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Figure 3.1: The figure explores the case of 4 actions. Arbitrary strategies map to the
interior, edges, and vertices (a), while pure strategies map only to the
vertices (b). The probability of the fourth action being chosen corresponds
to 1 minus the probability of all other actions being chosen. Thus, the
fourth action does not need to be represented directly in the figures.

As already stated, best responses are essential for the characterization of Nash
equilibria. Our results allow us to explicitly compute a number of sufficient conditions
for verifying whether a reactive-n strategy is a Nash equilibrium. We can thereby
quantify the complexity of the problem in a concrete way. We formalize this idea in
the following corollary.

Corollary 3.5. Consider a symmetric stage game with m actions. Then,to decide if
a reactive-n strategy p is a symmetric Nash equilibrium, it takes at most mn ·m(mn)+1
calculations of payoffs.
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Proof. By Definition 2.10 and Theorem 3.1 p is a symmetric Nash equilibrium if and
only if

π(p, p) = max
q∈Spure

n

π(q, p). (3.14)

We thus need to compute the size of the set Spure
n = An ×{f |f : H i

n → {e1, . . . , em}}.
Since A consists of m actions, An has mn elements. The set of histories H i

n has mn

elements since it is equal to An. Thus, there are m(mn) functions that map from H i
n

into the canonical basis of Rm. Lastly, we need to compute the payoff of p playing
against itself. This results in mn · m(mn) + 1 calculations of payoffs.
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4 Factorized Pure Self-Reactive Strategies
We have seen in Chapter 3 that searching for a best response against an arbitrary
reactive-n strategy p within the set of all pure self-reactive-n strategies is sufficient.
This raises the question: is it actually necessary to test all of them? Numerical
observations, such as those in [GANH24], suggest that the answer is negative and
that the set of strategies we need to consider can be further reduced. This section
aims to mathematically formalize that observation and to identify a subset of pure
self-reactive-n strategies that is sufficient for determining a best response. To this
end, we study how the behavior of a pure self-reactive strategy maps to a cycle in
a specific graph, the de Bruijn graph. Using this insight, we define an appropriate
equivalence relation to factorize the set of pure self-reactive-n strategies. Finally, we
analyze the extent to which this reduces the number of necessary evaluations.

In Section 4.1, we introduce fundamental graph-theoretical concepts, including
cycles and the de Bruijn graph, which provide the framework for representing
strategies as paths in graphs. We then show in Section 4.2 how each pure self-reactive
strategy can be represented as a subgraph of the de Bruijn graph. In Section 4.3 we
observe that every pure self-reactive strategy corresponds to a cycle in the de Bruijn
graph, leading to an equivalence relation that groups strategies by their associated
cycle. We demonstrate in Section 4.4 that payoffs only depend on the cycle a strategy
induces, enabling a substantial reduction in the number of strategies that must be
evaluated to find a best response.

4.1 Graph Theoretical Preliminaries
In this section, we provide a brief introduction to graph theory by defining all
concepts relevant to this thesis.

Definition 4.1. A directed graph G is a tuple (V, E), where V is a finite set and
E ⊆ {(u, v) : u, v ∈ V }.

The elements of the set V are referred to as vertices or nodes, while the elements
of set E are called edges. Given the edge e = (u, v), we refer to u as the tail of the
edge e and v as the head. We emphasize that we allow for loops, i.e., edges of the
form (u, u).

Definition 4.2. A graph G̃ = (Ṽ , Ẽ) is called a subgraph of the graph G = (V, E) if
Ṽ ⊆ V and Ẽ ⊆ E.

Definition 4.3. The set of edges Z := {e1, . . . , ek} ⊆ E is a cycle of the graph G if
the following three conditions hold
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1. There exist k distinct vertices {v1, . . . , vk}, such that for every i ∈ {1, . . . , k}
there exist j1, j2 ∈ {1, . . . , k} with ei = (vj1 , vj2).

2. No distinct edges have the same head and no distinct edges have the same tail.

3. There exists no subset Z̃ of Z, for which 1 and 2 hold.
A cycle {e1, . . . , ek} is said to have length k. We say a vertex v ∈ V is on the cycle

Z, denoted by v ∈ Z if it is the tail and head of an edge of the cycle.
A cycle can be viewed as a walk over edges in the graph, following specific rules.

Starting from any (initial) vertex in the cycle, one follows edges such that no vertex
is met twice, except for the initial vertex, where the walk terminates. An example of
a walk that does not form a cycle is presented in Figure 4.1.

v1 v2 v3

v4 v5 v6

e1

e2e6 e3 e4

e5

Figure 4.1: The set {e1, e2, e3, e4, e5, e6} is not a cycle.

Remark 4.4. In the literature a cycle is often defined as a sequence of edges rather
than a set. Taking the sequence approach results in cycles having fixed initial vertices.
Since we do not distinguish between sequences of cycles with the same edges but
different starting vertices (see Figure 4.2), we must group such sequences together.
To do this, we factorize all sequences such that those with the same set of edges fall
into the same equivalence class. Instead of factorizing, we define cycles as sets of
edges, achieving the same outcome more directly.

v1 v2 v3

v4 v5 v6

e1 e2

e4 e3

Figure 4.2: The sequences (e1, e2, e3, e4) and (e2, e3, e4, e1) describe the same cycle,
namely {e1, e2, e3, e4}.

Definition 4.5. A cycle Z of the directed graph G = (V, E) is a Hamiltonian cycle
if it is of length |V |.

It follows immediately that in a Hamiltonian cycle every vertex on the Graph is
reached by the cycle. An Hamiltonian cycle can be interpreted as a walk through the
graph, which covers all vertices without reaching any vertex twice and never walking
an edge more than once. Note that a Hamiltonian cycle does not need to include all
edges.
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4.2 Repeated Games represented on the de Bruijn Graph
In this section, we present how graph-theoretical structures can be used in the study
of repeated games. Specifically, we consider the case where nodes of a graph represent
observable histories, and edges represent possible transitions between them during
iterations of the game.

This is motivated by the fact that Markov chains, as the one described in Section 2.3,
can be represented as directed graphs. The vertices are the states of the Markov
chain and the edges are weighted by the probability of transitioning from one state
to another. Commonly, edges exist if and only if their weight is positive.

In our setting both players rely solely on the previous actions of the self-reactive-n
player to make their decisions, as already discussed in Section 3.1. Thus, it is
sufficient to only consider the possible histories and transitions of the self-reactive
strategy. Similar to the Markov chain approach, we define the vertices of our graph
as all observable histories. There exists an edge from one vertex to another if and
only if the history of the second vertex can be obtained from the first through a
single step of the game’s iteration.

Interestingly, the structure of this graph corresponds to the de Bruijn graph,
first introduced by [Bru46]. We give the formal definition in Definition 4.6. See a
numerical example in Figure 4.3. We then show that each pure self-reactive strategy
corresponds to a subgraph capturing all the histories that this strategy allows. In
Algorithm A we construct the subgraph and prove its well-definedness.

Definition 4.6. The n-dimensional de Bruijn graph Gn = (V, E) over the alphabet
A is defined by

• V := H i
n = An as the set of vertices,

• E := {(v1, v2) ∈ V × V : (v1)k = (v2)k−1 for all k ∈ {2, . . . , n}} as the set of
edges.
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DCD CDC DDDCCC

CCD

DCC

CDD

DDC

Figure 4.3: The 3-dimensional de Bruijn graph over the alphabet {C, D}. The
nodes are all possible histories of a self reactive-3 player, i.e., V :=
{C, D}3. In each iteration the history is updated by discarding the
earliest rememberable event and appending the most recent move. This
is reflected in the graph: two nodes are connected by an edge if and only
if the first two entries of the first node match the last two entries of the
second node.

Let n ∈ N be fixed but arbitrary and denote by q a pure self-reactive-n strategy.
We construct the subgraph Gq = (Vq, Eq) of the n-dimensional de Bruijn graph over
the alphabet A via the following algorithm. For simplicity, we define the function
A : {e1, . . . , em} → A that maps for every i ∈ {1, . . . , m} the canonical basis vector
ei of Rm to the action Ai. Recall that Pn−1 is the projection of a tuple onto its last
n − 1 components.

Algorithm A (Strategies to Subgraphs). Given a pure self-reactive-n strategy
q = (q<n, q) and the local variables vloc and uloc take the following steps.

(I) uloc = q<n

(II) Vq = {uloc}
(III) vloc = (Pn−1(uloc), A(q(uloc)))

(IV) Eq = {(uloc, vloc)}
(V) while vloc /∈ Vq:

a) Vq = Vq ∪ {vloc}
b) uloc = vloc

c) vloc = (Pn−1(uloc), A(q(uloc)))
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d) Eq = Eq ∪ {(uloc, vloc)}
(VI) Eq = Eq ∪ {(uloc, vloc)}

(VII) Return (Vq, Eq).

Lemma 4.7. Given a pure self-reactive-n strategy q, Algorithm A terminates and
the returned graph Gq = (Vq, Eq) is a subgraph of the n-dimensional de Bruijn graph
Gn = (V, E) over the alphabet A.

Proof. We observe that Vq is built over the local variables uloc and vloc. In the first
initialization uloc is set to q<n which is an element of An and thus an element of
V . If uloc is in V , then so is vloc = (Pn−1(uloc), A(q(uloc))) as it is an element of
An−1 × A = An = V . Therefore, Vq ⊆ V . For every edge e in Eq there exists u ∈ Vq

and Aj ∈ A such that e = (u, (Pn−1(u), Aj)� �� �
:=v

). Since Pn−1(u) is the projection onto u’s

last n-1 components, uk = vk−1 for all k ∈ 2, . . . , n. By definition 4.6, Eq ⊆ E. We
have thus shown that Gq is a subgraph of Gn. It remains to discuss if the algorithm
terminates at every input. Suppose there exists an input such that the algorithm
does not terminate. If follows, that vloc has never been observed at any interaction
and is added to Vq. However, Vq being a subset of V , which is by definition a finite
set, leads to a contradiction.

Note, that the graph Gq is independent of p. The algorithm starts by initializing
Vq with the first n-history, that the pure self-reactive-n strategy q observes, i.e., q<n.
By calculating, which action q chooses to play next, we build our graph, adding all
observed histories in the order they appear. Since q is deterministic, i.e., q never
chooses differently after the same history, the algorithm terminates upon returning
to a history, that q has already observed before. See Example 4.8 for an illustration
of the procedure.

Example 4.8. Consider the action set A = {C, D} and pure self-reactive-3 strategy
q = (q<3, q) defined by

q<3 = (CCD)

q(v) =
�

(1, 0)T if v ∈ {(CCD), (CDD)}
(0, 1)T else.

The graph constructed in Algorithm A is shown in Figure 4.4. The Algorithm starts
by adding (CCD) to set of vertices. Then, other vertices are added in the order in
which they are observed. Edges connecting the vertices are added accordingly.
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4 Factorized Pure Self-Reactive Strategies

DCD CDC DDDCCC

CCD

DCC

CDD

DDC

Figure 4.4: In the figure the subset Gq = (Vq, Eq) of the n-dimensional de Bruijn
graph over the alphabet {C, D} is marked in red.

Considering the example, note that every history that is observed after and
including the history (DCD) is observed infinitely often as they form a cycle. All
other histories are observed at most once.

4.3 Classes of Pure Self-Reactive Strategies
By the construction of the graph Gq by means of Algorithm A, Gq has a unique
cycle. We refer to this cycle as the cycle of the pure self-reactive strategy q denoted
by Zq.

Remark 4.9. To calculate the cycle, we adapt Algorithm A by taking the following
steps.

1. Every observed vertex is labeled by the iteration at which it was observed. The
history of the initial strategy is labeled 0. A counter is introduced that increases
at every step of the while loop and labels every vloc upon addition to Vq.

2. Suppose that the while-loop has terminated after observing v for the second
time and that v is labeled k. Delete all vertices labeled smaller. Delete all edges
whose head or tail have been removed.

Then, Edel
q , i.e., Eq with deletion, defines the cycle Zq. The labels can be removed.

We show that this cycle is the decisive ingredient for the calculation of payoffs.
To this end, we introduce the following equivalence relation on the set of all pure
self-reactive-n strategies. Two strategies q1 and q2 are equivalent, in short q1 ∼ q2,
if their cycles are equal, i.e., Zq1 = Zq2 . Given a strategy q ∈ Spure

n , we denote by
[q]∼ its equivalence class.
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4 Factorized Pure Self-Reactive Strategies

Lemma 4.10. Consider two pure self-reactive-n strategies q and q̃. Then

q ∼ q̃ ⇒ π(q, p) = π(q̃, p) for all p ∈ Rn. (4.1)

Proof. Let p ∈ Rn be arbitrary but fixed. Since the two pure self-reactive-n strategies
q and q̃ are equivalent, their cycles Zq and Zq̃ are equal. By the construction of
cycles, this implies the existence of N ∈ N and k ∈ N such that πq,p(t) = πq̃,p(t + k)
for all t ≥ N , where πq,p(t) is the expected payoff of q in round t. The value N can
be chosen as the iteration step at which q first observes a node on the cycle. Then,
k can be selected as the number of steps until q̃ observes the same node after step
N . We observe

π(q, p) = lim
τ→∞

1
τ

τ�
t=1

πq,p(t) = lim
τ→∞

1
τ

 N�
t=1

πq,p(t) +
τ�

t=N+1
πq,p(t)

 =

= lim
τ→∞

1
τ

τ�
t=N+1

πq̃,p(t + k) = lim
τ→∞

1
τ

τ�
t=N+1+k

πq̃,p(t) =

= lim
τ→∞

1
τ

N+k�
t=1

πq̃,p(t) +
τ�

t=N+1+k

πq̃,p(t)

 = π(q̃, p).

We emphasize, that the factorization of Spure
n is independent of p. There exists a

bijective mapping φ from Spure
n / ∼ onto the cycles of the n-dimensional de Bruijn

graph, denoted by Cyc(n).
From Lemma 4.10 it follows that the definition of the payoff function π on the

domain Cyc(n) × Rn is well-defined by

π(Z, .) := π(q, .), (4.2)

where q is an arbitrary element of φ−1(Z).

4.4 Impact
The observations made in Section 4.3 lead to the following improvement of Theo-
rem 3.1.

Theorem 4.11. Let p ∈ Rn be a reactive-n strategy. Then, there exists Z ∈ Cyc(n)
with

π(Z, p) ≥ π(σ, p) for all σ ∈ Σp. (4.3)

Considering our goal of efficiently computing a best response against a fixed
but arbitrary reactive-n strategy p, it suffices to test one representative of each
equivalence class or, by (4.2), to test every cycle on the n-dimensional de Bruijn
graph. In this section we first focus on how the calculation of payoffs are simplified
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4 Factorized Pure Self-Reactive Strategies

using cycles. Then, we explore the number of cycles on the de Bruijn graph to
obtain an approximation for the number of conditions to calculate symmetric Nash
equilibria.

Proposition 4.12. Consider the reactive-n strategy p and pure self-reactive-n
strategy q. Let Z = φ([q]∼). Then,

π(q, p) = 1
|Z|

�
hi∈Z

m�
j,k=1

gjkq(hi)jp(hi)k. (4.4)

Note, that q(hi) is a canonical basis vector of Rm. Thus the sum over k is equal to
zero for m − 1 entries of j.

Proof. Considering the payoff calculation of q playing against p as derived in (3.8),
we derive a term for the limiting distribution (ṽh1)h1∈Hi

n
in dependence of the cycle

Z. To this end, observe that every vertex, that is not on the cycle is visited at
most 1 time. All vertices on the cycle are visited infinitely often, with visits uniformly
distributed. It follows that

ṽh1 =
� 1

|Z| if h1 ∈ Z,

0 else. (4.5)

Combining these observations results in

π(q, p) (3.8)=
�

h1∈Hi
n

ṽh1

m�
i,j=1

Gijq(h1)ip(h1)j

=
�

h1∈Z

ṽh1

m�
i,j=1

Gijq(h1)ip(h1)j +
�

h1 /∈Z

ṽh1

m�
i,j=1

Gijq(h1)ip(h1)j

=
�

h1∈Z

1
|Z|

m�
i,j=1

Gijq(h1)ip(h1)j +
�

h1 /∈Z

0 ·
m�

i,j=1
Gijq(h1)ip(h1)j

= 1
|Z|

�
h1∈Z

m�
i,j=1

Gijq(h1)ip(h1)j .

Previously, the limiting distribution was obtained by calculating the eigenvector to
the eigenvalue 1 of the mn × mn transition matrix defined in (3.7). This step is not
necessary by Proposition 4.12. It remains to calculate all cycles on the n-dimensional
de Bruijn graph over the action space as the alphabet. While a closed form for the
number of cycles of arbitrary dimension and arbitrary action space is not known,
we can observe significant reductions already for low dimensions and small action
spaces. To explore this, we calculate the number of pure self-reactive-n strategies as
we did in Corollary 3.5 and compare it to the number of cycles of the corresponding
de Bruijn graph. Table 4.1 illustrates this by considering two actions and calculating
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4 Factorized Pure Self-Reactive Strategies

both numbers for n = 1, . . . , 5. Additionally, Table 4.2 compares the numbers for
three actions and n = 1, . . . , 3.

n-history 1 2 3 4 5
Spure

n 8 64 2 048 1 048 576 137 438 953 472
Cyc(n) 3 6 19 179 30 176

Table 4.1: Comparison of the number of pure self-reactive-n strategies and their
equivalence classes for n ∈ {1, . . . , 5} and m = 2.

n-history 1 2 3
Spure

n 81 177 147 205 891 132 094 649
Cyc(n) 8 148 3 382 522

Table 4.2: Comparison of the number of pure self-reactive-n strategies and their
equivalence classes for n ∈ {1, 2, 3} and m = 3.

To obtain a lower bound for the number of cycles, we make use of the exact number
of Hamiltonian cycles. The work of [AB87] proves that this number is (m!)mn−1

m−n.
As calculated in Corollary 3.5 there are mn · m(mn) pure self-reactive-n strategies,
which provides an upper bound.

Not only does the cyclic approach simplify the search for a best response, it also
provides a whole set of strategies that are best responses. This is formalized in the
following corollary, which immediately follows from Lemma 4.10 and Theorem 4.11.

Corollary 4.13. Let p∈Rn be a reactive-n strategy. Then there exists a Z ∈Cyc(n)
such that every strategy in φ−1(Z) ⊆ Spure

n is a best response.
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5 Best Responses in Additive Games
In this chapter, we focus on a subclass of repeated games known as additive games.
The graph-theoretical embedding introduced in Chapter 4 provides the necessary tools
to prove a central result: for every reactive-n strategy, there exists a best response
of strictly smaller memory. We formalize this result in the following theorem.

Theorem 5.1. Let p ∈ Rn be a reactive-n strategy and the game be additive. Then,
there exists p̃ ∈ Spure

n−1 with

π(p̃, p) ≥ π(σ, p) for all σ ∈ Σp. (5.1)

This is a remarkable finding, as it shows that a player can remember less than
their opponent and still achieve the optimal payoff. The main result of this chapter
has been published in [LHG25]. We take a two-step approach to establishing this
result: first, in Section 5.1, we focus on a specific additive game, the two-action
donation game, and provide examples where the argument holds for memory sizes
1 and 3. Additionally, we observe why the argument fails for non-additive games.
Then, in Section 5.2, we prove Theorem 5.1.

5.1 Donation Game
We return to the repeated prisoner’s dilemma, whose stage game is defined in
Example 2.1. In this section, we consider both the general repeated prisoner’s
dilemma and a specific prisoner’s dilemma known as the donation game. In this
game, player’s are assumed to pay a fixed cost c > 0 for cooperating and receive a
fixed benefit b > c if their opponent cooperates. This results in the payoff matrix


b − c −c
b 0

�

In the following example, we consider the reactive-1 strategy Tit-for-Tat and construct
a pure self-reactive-0 strategy, that is a best response in the donation game. This
proves Theorem 5.1 for a particular reactive-1 strategy. We further explore why this
reduction of memory fails in the general repeated prisoner’s dilemma.

Example 5.2. Consider the reactive-1 strategy p defined by

p<1 = (C)

p(a) =
�

(1, 0)T if a = C,

(0, 1)T if a = D.

27



5 Best Responses in Additive Games

Recall from Example 2.10 that this is the famous strategy Tit-for-Tat, which became
prominent with its success in [AH81]. Let the pure self-reactive-1 strategy q, which
plays against p, be defined by

q<1 = (C) (5.2)

q(a) =
�

(0, 1)T if a = C,

(1, 0)T if a = D.
(5.3)

We observe that φ([q]∼) = {(C, D), (D, C)}, i.e., q observes the histories (C) and (D)
in their cycle. Using the payoff calculation derived in (4.4) results in

π(q, p) = 1
2( b����

(C)

+ −c����
(D)

). (5.4)

The underbraces show at which history each component of the payoff is obtained.
Since pure self-reactive-0 strategies are strategies that constantly play one action,
we will refer to these strategies by AllC and AllD, respectively. We obtain as their
payoffs against p

π(AllC, p) = b − c� �� �
(C)

,

π(AllD, p) = 0����
(D)

.

We observe that π(q, p) is the mean over π(AllC, p) and π(AllD, p). Thus, it is
dominated by at least one of the payoffs. In fact, if b > c then AllC is a better
response against p than q is, else AllD is.

On the other hand, we consider the two strategies q and p to be playing in a
general repeated prisoner’s dilemma. Using the following counterexample we prove
that q cannot be dominated by either AllC or AllD in general. To this end, we
consider the payoff matrix



3 1
6 0

�
.

The payoff of q playing against p is π(q, p) = 7/2, whereas π(AllC, p) = 3 and
π(AllD, p) = 0. This concludes the counterexample.

Example 5.2 serves as a motivation for Theorem 5.1. We present an additional
example that provides insight into why considering cycles, as established in Chapter 4,
is essential for the proof of Theorem 5.1. To this end, we continue in the setting of
the donation game and consider strategies with higher memory than memory-1.

Example 5.3. Let p be a reactive-3 strategy, defined by
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p<3 = (DDD) (5.5)

p(hi) =

������������

(0.4, 0.6)T for hi = DCC,

(0.3, 0.7)T for hi = CDC,

(0.2, 0.8)T for hi = CCD,

(0.1, 0.9)T for hi = CCC,

(0, 1)T else.

(5.6)

Consider the pure self-reactive-3 strategy q,

q<3 = (DDD) (5.7)

q(hi) =

����������������������

(1, 0)T for hi = DCC,

(1, 0)T for hi = CDC,

(1, 0)T for hi = CCD,

(0, 1)T for hi = CCC,

(1, 0)T for hi = DDD,

(1, 0)T for hi = DDC
(0, 1)T else.

(5.8)

To calculate q’s payoff, we first analyze q’s cycle, which is marked in red in Figure 5.1.

DCCDDCDDD

CCC

CCD

CDC

C C

C D

CC

pCCC=0.1

pCCD=0.2

pCDC=0.3

pDCC=0.4

Figure 5.1: The graph Gq as derived from Algorithm A.

The probability, that p cooperates in a specific state, is written above the node.
We observe that Zq = {(DCC, CCC), (CCC, CCD), (CCD, CDC), (CDC, DCC)}.

Calculating q’s payoff using (4.4) results in

π(q, p) = 1
4((0.4 + 0.1 + 0.2 + 0.3)b − 3c). (5.9)

We observe, that q behaves differently in the states (CCC) and (DCC), where
the same 2-history (CC) occurs. Upon observing (CCC), q defects, while q plays
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cooperation after the state (DCC). Thus, q cannot be mimicked by a self-reactive-2
strategy. We aim to find a pure self-reactive-2 strategy that dominates q against
p. To this end, we separate the previously discussed histories, that prevent q from
being represented by a pure self-reactive-2 strategy. By playing C after (CCC) and
D after (DCC), we obtain the graph in Figure 5.2.

DCCDDCDDD

CCC

CCD

CDC

C C D

CC

C

pCCC=0.1

pCCD=0.2

pCDC=0.3

pDCC=0.4

Figure 5.2: The separation of one cycle into two disjoint cycles.

The obtained disjoint cycles

Z1 = {(CCC, CCC)},

Z2 = {(DCC, CCD), (CCD, CDC), (CDC, DCC)}

have the payoffs

π(Z1, p) = 0.1b − c,

π(Z2, p) = 1
3((0.4 + 0.2 + 0.3)b − 2c).

Let q1 and q2 be representatives from the equivalence classes φ−1(Z1) and φ−1(Z2),
respectively. We observe that

π(q, p) (5.9)= 1
4(b − 3c) = 1

4(0.1b − c + 31
3(0.9b − 2c))

=1
4(π(Z1, p) + 3π(Z2, p)) = 1

4π(q1, p) + 3
4π(q2, p).

We note that q’s payoff against p is a convex combination of q1’s and q2’s payoff. It
is thus dominated by at least one of the strategies. Since both q1 and q2 are pure
self-reactive-2 strategies, this concludes the example and proves that there exists
a pure self-reactive-2 strategy, that dominates q. Which of the two is dominant
depends on the values of b and c.
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5.2 Additive games
The following section formalizes the observations previously made and proves them
in a general setting. To this end, consider the general repeated game setting as
introduced in Chapter 2, where the game is possibly not symmetric and allows
for more than two actions. We explore additivity of games as defined by [MFH14]
and [MRH21]. This property, which holds in the donation game, will be a key
characteristic that allows for a memory reduction.

Definition 5.4. A payoff matrix G is additive if there exist vectors a := (a1, . . . , am)T ∈
Rm and b :=(b1, . . . , bm)T ∈ Rm such that

G =

����
a1+b1 a1+b2 · · · a1+bm

a2+b1 a2+b2 · · · a2+bm
...

... . . . ...
am+b1 am+b2 · · · am+bm

���� ∈ Rm×m. (5.10)

A game is additive if the focal player’s payoff matrix is additive.

That is, the focal player’s payoff can be expressed as the sum of two independent
components. Each of the components is solely dependent on one of the player’s
actions.

Example 5.5. As mentioned before, an important example of an additive game is the
donation game. The focal player has to pay a cost c > 0 when choosing cooperation
C, but gets a benefit b > c if their opponent plays cooperation C. Defecting D pays
nothing and gives nothing. This corresponds to an additive game where a = (−c, 0)
and b = (b, 0).

The following theorem does not only show a major result, the proof itself is of
interest as it provides another insight into why the graph theoretical approach of 4 is
relevant.

Theorem 5.6. Let p ∈ Rn be a reactive-n strategy and the game be additive. For
every cycle Z ∈ Cyc(n) there exists a cycle Z̃ ∈Cyc(n − 1) such that

π(Z, p) ≤ π(Z̃, p).

We obtain the following Corollary immediately from Theorem 5.6.

Corollary 5.7. Let p ∈ Rn be a reactive-n strategy. Then there exists Z ∈ Cyc(n−1)
with

π(Z, p) ≥ π(σ, p) for all σ ∈ Σp.

Further, the following generalization of Corollary 4.13 is obtained.

Corollary 5.8. Let p∈Rn be a reactive-n strategy and the game be additive. Then,
there exists a Z ∈ Cyc(n − 1) such that every strategy in φ−1(Z) ⊆ Spure

n−1 is a best
response.
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Theorem 5.1 follows directly from Corollary 5.8.
To prove Theorem 5.6, we make observations that will simplify the proof. In

Chapter 4 we have established the payoff calculation through (4.4). Because the
focal player’s payoff matrix is additive, we obtain

π(q, p) (4.4)= 1
|Z|

�
hi∈Z

m�
j,k=1

gjkq(hi)jp(hi)k

= 1
|Z|

�
hi∈Z

m�
j,k=1

(aj + bk)q(hi)jp(hi)k

= 1
|Z|

�
hi∈Z

 m�
j,k=1

ajq(hi)jp(hi)k +
m�

j,k=1
bkq(hi)jp(hi)k


= 1

|Z|
�

hi∈Z



m�

j=1
ajq(hi)j

m�
k=1

p(hi)k� �� �
=1

+
m�

k=1
bkp(hi)k

m�
j=1

q(hi)j� �� �
=1

�

= 1
|Z|

�
hi∈Z

 m�
j=1

ajq(hi)j +
m�

k=1
bkp(hi)k


= 1

|Z|
�

hi∈Z

�
b·p(hi) + a·q(hi)

�
,

for q ∈ φ−1(Z) and p ∈ Rn.
By Remark 2.6, every pure self-reactive-(n − 1) strategy can be mapped to a

pure self-reactive-n strategy without loss of information. The reverse does not hold
in general. We ask ourselves what conditions must hold for a pure self-reactive-n
strategy, such that there exists a pure self-reactive-(n − 1) strategy, which mimics
the relevant behavior. By Chapter 4, this corresponds to the question, when the
cycle of the pure self-reactive-n strategy on the n-dimensional de Bruijn graph can
be appropriately mapped to the cycle of a pure self-reactive-(n − 1) strategy on the
(n − 1)-dimensional de Bruijn graph. To this end, we project all vertices of a cycle
in the n-dimensional de Bruijn graph onto their last n − 1 components. We check
if this procedure defines a cycle on the (n − 1)-dimensional de Bruijn graph. The
projection of the vertices corresponds to the strategy forgetting the earliest piece of
information they observe.

Lemma 5.9. Consider the cycle Z on the n-dimensional de Bruijn graph. Sort the
vertices of Z in the order of their occurrence as constructed through Algorithm A.
Denote by hi

k the history that ranks k-th in the cycle for k ∈ {1, . . . , |Z|}. Then, Z
well-defines a cycle on the (n − 1)-dimensional de Bruijn graph if and only if for all
k, j ∈ {1, . . . , |Z|} the implication

Pn−1(hi
k) = Pn−1(hi

j) ⇒ Pn−1(hi
k+1) = Pn−1(hi

j+1) (5.11)

holds true. Note that we define hi
|Z|+1 := hi

1.

Proof. Suppose for a cycle Z there exist indices j and k such that Pn−1(hi
k) =
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Pn−1(hi
j) but Pn−1(hi

k+1) ̸= Pn−1(hi
j+1). Then, upon projecting every node on the

cycle Z onto its last n − 1 components, will result in two edges having the same tail
Pn−1(hi

j) but different heads Pn−1(hi
k+1) and Pn−1(hi

j+1). The reverse implication
is proven similarly.

Proof of Theorem 5.6. We sort the vertices of Z as in Lemma 5.9. Let this result in
{hi

1, . . . , hi
N }, where N denotes |Z|.

We distinguish two cases.
Case 1. Suppose for all j, k ∈ {1, . . . , N} the implication (5.11) is true. Then, Z
well-defines a cycle Z̃ on the (n − 1)-dimensional de Bruijn graph with

π(Z, p) = π(Z̃, p).

Case 2. Otherwise, there exist j, k ∈ {1, . . . , N} for which the implication in (5.11)
is false. We define □ := Pn−1(hi

k) = Pn−1(hi
j) and the distinct actions X, Y ∈ A

such that (X,□) = hi
k and (Y,□) = hi

j . Further, we denote (□, U) = hi
k+1 and

(□, T )=hi
j+1 where T ̸=U and T, U ∈A. Then, the cycle takes the form

X,□ Y,□

□, T □, U

where the dashed arrows represent paths, which are possibly empty. We observe
the two disjoint cycles
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X,□ Y,□

□, T □, U

and denote them by Z1 and Z2. For any representatives q, q1 and q2 of the classes
φ−1(Z), φ−1(Z1) and φ−1(Z2), respectively, we observe that

q1(hi) =
�

q(hi) for hi ∈ Z1 \ {(X,□)}
q
�
(Y,□)

�
for hi = (X,□)

and
q2(hi) =

�
q(hi) for hi ∈ Z2 \ {(Y,□)}
q
�
(X,□)

�
for hi = (Y,□).

Note that Z1∪Z2 =Z and Z1∩Z2 =∅. Therefore,

π(Z, p) = 1
|Z|

�
hi∈Z

�
bp(hi) + aq(hi)



= 1
|Z|


 �
hi∈Z1

�
bp(hi)+aq(hi)

�
+

�
hi∈Z2

�
bp(hi)+aq(hi)

��

= 1
|Z|


 �
hi∈Z1

�
bp(hi)+aq1(hi)

�
+

�
hi∈Z2

�
bp(hi)+aq2(hi)

��

= 1
|Z|



|Z1|
|Z1|

�
hi∈I1

�
bp(hi)+aq1(hi)

�
+ |Z2|

|Z2|
�

hi∈Z2

�
bp(hi)+aq2(hi)

��

= |Z1|
|Z| π(Z1, p) + |Z2|

|Z| π(Z2, p).

That is, the payoff π(Z, p) is a convex combination of π(Z1, p) and π(Z2, p). Therefore,
it is dominated by at least one of the terms, either π(Z1, p)≥π(Z, p) or π(Z2, p)≥
π(Z, p). We now check the two cases with the dominating strategy. After finitely
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many steps, we end up in Case 1.

5.3 Impact
The result has two major consequences. On the one hand, it is of conceptional
significance as we provide sufficient conditions for when a player is allowed to
remember less than their opponent without loss of payoff. First, the opponent needs
to play a reactive-n strategy. Secondly, we require that the stage game is additive.
Note that while additivity of the game is restrictive, it has played a crucial role in
applied research, especially in evolutionary game theory (see [MRH21], [MFH14],
[CP23]).

On the other hand, our result further reduce the number of conditions we need to
check to determine whether a reactive strategy is a best response. The reduction
is significant as the following Table 5.1 shows. It compares number of conditions
needed as calculated in Chapter 3 to the reduced number as obtained in this chapter.

n-history 1 2 3 4 5
Spure

n 8 64 2 048 1 048 576 137 438 953 472
Cyc(n − 1) 2 3 6 19 179

Table 5.1: The table compares the number of pure self-reactive-n strategies to the
number of cycles in the (n−1)-dimensional de Bruijn graph in the donation
game.
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6 Discussion
Nash equilibria are a central concept in game theory. A symmetric Nash equilibrium
is defined as a strategy that is a best response against itself. Best responses are
strategies that achieve the maximum possible payoff against a fixed opponent. Thus,
when playing against a symmetric Nash equilibrium, adopting the equilibrium’s
strategy results in obtaining the maximum possible payoff. If both players use the
same symmetric Nash equilibrium, neither can improve their payoff by switching
to a different strategy unilaterally. This makes them of great interest, see [Nas50]
and [HR04]. Suppose a best response against a strategy p is known. In order to check
whether or not p is a symmetric Nash equilibrium, it suffices to compare the best
response’s payoff against p with the payoff of p against itself. This is why efficiently
computing best responses has been the central focus of this thesis.

In Chapter 2, we introduced major concepts for the study of repeated interactions.
To this end, we defined games and repeated games before focusing on strategies.
As we are particularly interested in studying strategies with bounded recall, i.e.,
those who can remember at most finitely many past events, we defined finite memory
strategies and memory-n strategies. A subset of memory-n strategies are reactive-
n strategies. Players who engage in these strategies only recall their opponents’
past moves, which makes them both cognitively plausible and amenable to analysis.
We further define self-reactive strategies as those that only recall their own past
moves. They play a crucial role in the identification of best responses against reactive
strategies.

In Chapter 3, we consider a general repeated game and a fixed but arbitrary
reactive-n strategy. The work of [LNZ20] proves that in this setting there exists a
best response that is a pure self-reactive-n strategy. In [GANH24], they provide an
independent proof in the context of reactive-n strategies in the repeated prisoner’s
dilemma, a two action game. We extend their proof to games with an arbitrary, finite
set of actions. This provides an alternative proof of the result in [LNZ20]. Our result
not only establishes the existence of a best response but also reduces the search for a
Nash equilibrium from an infinite set to a finite one.

The problem arises that the number of calculations though finite is still large
already for intermediate memory sizes. Thus, we aim to reduce this set further. In
Chapter 4, we observe that strategies with the same long-term behavior obtain the
same payoffs, independent of their reactive opponent. We further analyze that these
long-term behaviors correspond to cycles on the de Bruijn graph. To be precise,
there exists a bijection between them, after the long term behavior, factorized pure
self-reactive strategies and the cycles on the de Bruijn graph. This allows us to define
payoffs of cycles. This approach results in a significant reduction of the number
of calculations needed in the quest to find a best response. For example, given a
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6 Discussion

reactive-3 strategy and a two action game, we only need 19 calculations of payoff
instead of 2048. Table 4.1 and Table 4.2 provide additional evidence of the result’s
significance.

In Chapter 5, we specifically focus on additive games. The new cyclic approach is
the foundation needed to be able to proof the existence of a best response among
strategies of lower memory. To this end, we note that using cycles to compute
payoffs separates the players’ action probabilities into distinct summands, rather
than combining them multiplicatively. Further, if a cycle is not well-defined as a
cycle on the graph of one dimension lower, we can separate the problematic histories
and obtain two disjoint cycles. The payoff of the original cycle is then a convex
combination of the two disjoint cycles, thus allowing at least one of them to dominate
the original cycle. Continuing this argument on the dominant cycle will after finitely
many steps lead to a cycle that is well-defined on the graph of lower dimension and
thus proving the assertion. Not only is this result remarkable on a conceptional level,
it further reduces the number of conditions to check to obtain a best response. As
an example, consider a reactive-4 strategy and the two action donation game. We
proved in Chapter 3 that calculating 1 048 576 payoffs is sufficient, in Chapter 4 we
reduced the number to 179. However, by Chapter 5 it now suffices to calculate 19
payoffs. Further reductions are illustrated in Table 5.1.

6.1 Open Problems
In our setting of repeated games we assume that at each iteration the next game
happens with probability 1. An alternative presumption is embedded in the theory of
discounting. Here, for every game the next game occurs with probability δ < 1. While
we did not discuss discounting in games, it is worth mentioning that Algorithm A can
be adapted to receive similar results as we have in Chapter 4. In discounting games,
two parts of the pure self-reactive strategy are important for the calculation of payoffs.
On the one hand, the payoff received in the long-term behavior which is calculated
as a combination of a shifted geometric series over δ and the payoffs obtained in the
cycle. On the other, we need to calculate the payoffs of the extended initial moves,
those that happen before the long term behavior is reached. All possible payoffs are
obtained by combining all possible paths to a vertex (without reaching a node twice)
with all possible long term behaviors that start at that vertex.

Furthermore, what remains to explore is to what extend the factorization reduces
the number of conditions. This breaks down to the combinatorial problem of finding
a closed form for the number of cycles in the n-dimensional de Bruijn graph over an
m-element alphabet.

Additionally, it has yet to be shown that testing against all cycles in the de Bruijn
graph is not only sufficient but also necessary. This could be proven by constructing
for every cycle a game and a reactive-n opponent in which and against which the
cycle is the unique best response.

On a broader scale, the question arises whether similar results can be achieved in
multiplayer games.
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